Loading...
HomeMy WebLinkAbout2502 GATEWAY RD; STRUCT CALCS; CB133225; Structural CalculationsPRIME STRUCTURAL ENGINEERS 13272 Jacaranda Blossom Dr. Valley Center, California 92082 Tel (858) 751-3300 STRUCTURAL CALCULATIONS ViaSat Building #10 Delta 3-Revision to Panel S-1 Carlsbad, CA 2K13-170 SHEETS D3-1 of D3^1 RECEIVED MAR I 1 ?014 CITY OF CARLSBAD BUILJiNG DIVISION PRIME JnB:2K13-170 STRUCTURAL DATR_2£U2il4_ ENGIIIEERS SHT:_D3ii_ 3/10/2014 Delta 3 Revision: The 2 openings at the first floor of Panel S-1 along Gridiine 10 have been revised fronn 9'-0" high to lO'-O" high. In order for Panel S-1 to maintain the same 2"^* fioor rigidity of 41.15 (A = 0.0243) which is based on 9'-0" openings as caicuiated in the original submittal. With a revision to lO'-O" high openings all the piers of Panel S-1 from 1^ to 2"*^ floor have been thickened to 9 thick which yields a 2nd floor rigidity of 40.5 (A = 0.0247). By adjusting the thickness of the piers of Panel S-1 from 1'* to 2""^ floor to account for a larger opening we are able to keep the panel rigidity relatively unchanged from the original design (9'-0" high openings) therefore we believe that the center of rigidity and seismic force distribution will remain unchanged. Please see attached calculation for out of plane wall design and shear wall design based on the latest revisions. No revisions to reinforcement are required. 1Z±±Z. A ^4ei=^«^:H>- m UJ PRIME J0B:2K13-170 STRUCTURAL DATK:.ilMi- ENGINEERS sm-r 03-2 . PRIME J0B:2kl3-170 fi^l^: ^ I i ; g) \ ^^.J. i ' SmJGTURAL m ?-iQ-i4 ENGINEERS SHT: • DS-S fl-<#g-^ ^/^S^i^^flic^^ ..: . ... ; ..:.. .sz^Or: X ./r'l : ^ ;pz!^p ^uA ^ I jifuir j^. i<- . .i h •S^Sf5r^^Hf<Mrf^ : - 1^1^ .4^^ : ;. ' ^ /f^P*^ :^ ^<^M1^ I "iXf^^ ' .i^i.. .• ht^l^ PRIME JOH:2K13-170 ^ STRUCTURAL DATE; ENGINEERS SHT; 3-10-14 D3-4 CONCRETE SLENDER WALL Considering P-Delta Effects PROJECT* 2K13-170 DESCRIPTION: Panel S-1 Pier A PEaGN CRrrERIA: 3R0 TO ROOF Thk (in) WKtth m Start m q1 = 6.50 5.00 0.00 17.00 q2 = 6.50 10,00 9.00 17.00 q3 = 0.00 q4 = 6.50 5.00 0.00 3.00 q5 = 4000 psi e = 5.50 in Min Vertical Steel = 0.0025 60000 psi Eccentric, Dr= 56 pif Min Horizontal Steel = 0.0025 Concrete Weight = 150 pcf Eccentric, Lr = 80 plf Max Vert Spacing -18.00 in Add'l From Above, Dr = 0.000 idps Clear Height, = 13.00 ft Addl From Above, Lr= 0.000 i<ips <J> = 0.9 Paraph Height = 4.00 ft Girder, Dr= 0.000 kips fi, = 0.85 Wall Thickness, t = 6.50 in Girder, Lr -0.000 kips 3834 ksi M = 24.00 IZ! Girder Load Eccentric? = 29000 ksi n = 7,56 Deptft to Rebar, d = 3.250 In icu -0.003 Vertical Rebar= #4 c, = 0.00207 Spadng = 9.000 in o.ept" 0.0171 fee/@ Each Face = 1 (# layers) SDS ~ 0.790 g QB'FP = 0.346 Wp Reveal Eiepth = 0.75 in Eff. Wind Area = 255 fP Reveal to Battcm = 8.50 ft Wind Load, W= 12.88 psf det Reveal = 2.500 in (16-3) (16-4) (16-6) (16-6) (16-7) (16-I3a) (16-13b) Muo - Am« = 0.00 12846 6692 12846 6692 5021 3513 lt}-in/n ft /El Muo - Am« = 6.50 6.92 5.53 5.92 5.53 5.92 5,53 lt}-in/n ft /El Muo - Am« = O.OOE+00 3.08E+07 1.58E+07 3.08E+07 1.58E+07 1.44E+07 8.27E+06 lt}-in/n ft /El At Reveal: Ao = 0 10309 5213 10309 5213 4832 2737 \b-inm IB Ao = O.OOE+00 2.63E+07 1.31E+07 2.63E+07 1.31E+07 1.23E+07 6.87E+06 \b-inm IB LOAD COMBINATIONS (CBC 160SJ2.1) (16-3) U = (16-4) U = (16-5) U = (16-6) U = (16-7) U = (16-13a) A = (16-13b) A = 12.4.2.3 E = DESIGN SUMMARY: 1.20 D 1.20 D 1.36 D 0,90 D 0.74 D 1.00 D 1.08 D QE± + 0.50L + 0.50 L + 0,50 L + 1.60 W +1.00 Qe + 0,75 L + 0.75 L 0,2SDSD 0.16 D + 1 60Lr + 0.50 Lr + 1.00 Qe + 0.75 W + 0.53 Qe 1.60 W Wind(1.6 W) 18.00 16.00 14.00 12.00 10.00 6.0O e.oo 4.00 2,00 I 0,00 I Seismic (1.0 E) 18,00 16,00 14,00 12,00 10.00 S.OO SOO 4X10 200 0.00 tt strength: (16-3) (16-4) (16-5) (16-6) (16-7) 52,017 51,499 53,344 50,147 48,523 Ib-in M„= 1,901 15,802 8,631 14,919 7,625 ili-in % Over = 0,0% 0.0% 0,0% 0.0% 0.0% At Reveal: <OMri = 50,597 50,016 50,503 48,320 47,563 ItHn 1,897 12,916 6,720 11,901 6,015 it)-in i Over = 0,0% 0,0% 0.0% 0.0% 0.0% Deflection: Wind Seismic At Reveal: Wfind Seismic \J 150 = 1,0400 1.0400 in 1,0400 1.040D in Max A = 0,0167 0.0106 in 0,0151 0,0096 in % Over = 0.0% 0,0% 0,0% 0,0% CONCRETE SLENDER WALL Considering P-Delta Effects PRIME J0B:2K1M70 ^ STRUCTURAL I)ATE:_2JJQJ4_ ENGINEERS SHT: D3-5 PROJECT*: DESCRIPTION: 2K13-170 Panel S-i Pier A 3RD TO ROOF Strength at Factored Load: (16-3) (16-4) (16-5) (16-6) (16-7) Factored ecc, 9^^= 585.60 321.60 228.14 151.20 124,66 Ibs/R Factored axial, Puuui^ 0,00 0.00 0.00 0,00 0,00 Ibs/fl Factored viiall, = = 2583.76 2640.79 3472.82 2273.09 1656,45 lbs/ft Factored, P^ = = 3169.35 2962.39 3700.96 2424,29 1781.11 Ibsfft Pu/Ai = 47.45 SO.Oefc... OKI = 40.63 37.98 47,45 31.08 22.83 psi As = 0.267 £ 0.6p(bd) = 0.667 ...OK (R14,8,3) A„= As + (Pu/fv)(h/2d) = . 0,319 0,316 0,328 0.307 0,296 in* a= (Pu + /\sfv)/(0.85r.b) 0,470 0.465 0.483 0.452 0.436 in c= a/0.85 = 0.553 0 647 0.568 0.531 0.513 in £, = (Ecu / C) d - Ecu 0.0146 0.0148 0.0142 0,0154 0.0160 a 0,005 For Tenston Control OK OK OK OK OK Mn= tA„f,)(ci-aA2) 57797 57221 59272 55719 53914 Ib-in (14-7) W= nA„(d-o)^+bc'/3 18,26 18,12 18.60 17.77 17.33 in* Mu.= IMuo + Puiex/l. = 1610 13651 7225 13224 6983 Ib-in (14-4) M„=IVU + P„A„ = 1901 15802 8631 14919 7625 Ib-in (14-5) A.,= 0.09 0.73 0.38 0.70 0.36 in *M„ = 52017 51499 53344 60147 48523 Ib-in (14-3) Check that (pfA, a M„ OK OK OK OK OK 1„= bt^/12 274,63 274,63 274.63 274.63 274.63 in* (9-9) M„= 7,5f/'l„/0.5t = 40082 4O082 40082 40082 40082 Ib-in (14-2) Check that (J>M„ > M„ OK OK OK OK OK Deflection at Service Load: (16.13a) (16-13b) Servce eoc, P^ = 348,00 361.93 lbs Service axial, P«rt« = 0.00 0.00 lbs Service waH, P„ = = 2200.66 2417,49 lbs Service, P, = P^ + P», = 2548,66 2779.42 lbs A,= 5Mj„l,'/(48E„g 0,10 0.10 in M.= (A„fv)(d-aA2) 57221 59272 Ib-in &„= 5IA,I.'/(48E.U = 1.97 1.96 MM= Mso + P,(ex/lc 6892 4359 M= IVW + P.A^ 6935 4389 Ib-in (14-8) is = 0,02 0.01 in Allowable A= 1^/150 1,04 1.04 in Check tha! A.^ L^tcm OK OK Shear at Factored Load: (16-3) (16-4) (16-5) (16-6) (16-7) w„= 8 Mu/(121c') 7,50 62,33 34.05 58,85 , 30.08 w.,/2 48,75 405.17 221.32 382,55 195.51 (11-3) <l)Vc=0 75 (2) f e"' b d 3699,86 3699.86 3699.86 3699,86 3699,86 C heck that Wc 2 X, OK OK OK OK OK CONCRETE SLENDER WALL Considering P-Delta Effects (AT LOCATION OF REVEAL) PRIME JOB:2K13-170 STRUCTURAL um 3-10-14 ENGINEERS SHT: D3-6 PROJECTS DESCRIPTION; 2K13-170 Panel S-1 Pier A 3RD TO ROOF Strength at Factored Load: (16-3) (16-4) (16-S) (16-6) (16-7) Factored ecc, P^ = = 586,60 321.i50 228.14 151.20 124.66 lbs Factored axial, P„^ = 0,00 0,00 0,00 0.00 0.00 lbs Factored wall, P„ = 2388,75 2388,75 2703.23 1791.56 1477.09 lbs Factored, Pu = 2974.35 2710.35 2831.37 1842.76 1601.75 lbs As = 0.267 S 0,6p(bd) = 0.667 ...OK (R14.8.3) A„= As + (Pu/f,)-(h / 2d) 0.311 0,307 0,310 0.295 0.290 in* a= (Pu + Asf,)/(0.85fcb) 0.465 0,459 0.464 0.440 0.431 in c= a/0.85 0.547 0.540 0.546 0,517 0.508 in M.,= (A«f,)(d-a/2) 56219 55574 56114 53689 52848 Ib-in (14-7) I„ = 17.34 17.21 17.67 16.88 16.47 in* Mu, = + Pu, e X /1, 1610 11113 5746 10687 5504 Ib-in (14-4) M„=M„, + PuAu 1897 12916 6720 11901 6015 Ib-in (14-5) A„= 0.10 0.67 0.33 0.63 0.32 in CPM„ = 50597 50016 50503 48320 47563 Ib-in (14-3) Check that <I>M„ a M„ OK OK OK OK OK l,= bt=/12 190.11 190,11 190.11 190,11 190.11 In* (9-9) M„= 7.5f„''-*l|,/0.5t = 31366 31366 31366 31366 31366 Ib-in (14-2) Check that *M„ a M,, OK OK OK OK OK Deflection at Service Load: (16-13a) (16-13b) A.= 0,02 0.01 in Allowable A = !„M50 1.04 1,04 in Check that i Aai«v OK OK PRIME JOB:2K13-170 ^ STRUCTURAL DA'ffi:_2dM4_ ENGINEERS SHT: D3-7 CONCRETE SLENDER WALL Thk (in) Width fff) Start (ft) End (ft) Considering P-Deita Effects q1 = 8.00 5,00 0.00 14.00 PROJECT #: 2K13-170 q2 = 6.50 10,00 9.00 14.00 DESCRIPTION: Panel S-1 q3 = 0,00 Pier A 2ND TO 3R0 q4 = 6,50 5.00 0.00 3.00 q5 = PESiGNCiyTPRIA; f. = 4000 psi e = 6.50 in Min Vertical Steel = 0,0025 60000 psi Eccentric, D = 282 plf Min Horizontal Steel = 0,0025 Concrete Weight = 150 pcf Eccentric, L = 542 plf Max Vert Spacing = 18.00 in Addl From Above, D = 15.470 kips Clear Height, U = 14.00 ft Add7 From Above, L = 0,000 kips <P = 0.9 Parapet Height = 0.00 fl Girder, D = O.ooo kips 0.88 Wa8 ThfctoJess, f = 8.00 in Girder, L = 0,000 kips £0 = 3834 ksi M = 21,00 IZl Girder Load Eccentric? e,= 29000 ksi Ro6f,Lr-- ;-:i:20o-kips: n = 7.56 Depth to Rebar, d = 4.750 in 0,003 Vertical Rebar = #4 0.00207 Spadng = 9.000 in 0.6p» = 0.0188 Steel @ Eacft Face = 2 (# layers) Sos = 0.790 g 0.346 Wp Reveal Depth = 0.75 in Eff. Wind Area = 210 ft" Reveal to Bottom = 7.00 ft WfndLoad, W= 12.68 psf d at Reveal = 4.750 in (16-2) (16-4) (16-5) (16-6) (16-7) (16.13a) (16-13b) 0,00 18177 15442 18177 15442 8521 8184 7,00 7,00 8.19 7.00 8.19 7,00 8,12 ft Am« = O.OOE+00 6.34E+07 4.62E+07 5.34E+07 4.62E+07 2.51 E+07 2.46E+07 m At Reveal: Mo-0 18177 15148 18177 15148 8521 8045 Ib-in/ft Ao = 0,O0E+OO 5,34E+07 4,61 E+07 5.34E+07 4.61 E+07 2.51 E+07 2.45E+07 /El Wind(1.6W) LOAO COMBINATIONS (CBC 1605.2.1) (16-i2) U = (16-4) U = (16-5) U = (16-6) U = (16-7) U = (16-13a) A = (16-13b) A = 12.4.2.3 E = DESIGN SUMMARY: 1,20 D 1.20 D 1.36D 0.90 D 0.74 D 1.00 D 1.08 D QE± + 1.60 L + 0.50L + 0.50L + 1.60 W + 1.00 Qe + 0.75L + 0.75L 0.2SosD 0,16 D + 0,50 Lr + 0,50 Lr + 1.00 Qe + 0.75 W + 0,53 (2e + 1.60W 16,00 14,00 12,00 10.00 8.00 6.00 4.00 2,00 0.00 IS O- cr Seismic (1.0 E) 16.00 14.00 12.00 10.00 e.D0 6.00 4.0c 2,00 0.00 f Strength: (16-2) (16^) (16.6) (16-6) (16-7) *M„ = 95,120 89,541 92,217 82,005 78.392 ib-in M„ = 14,497 28,702 27,826 23,368 19.711 Ib-in % Over = 0.0% 0.0% 0.0% 0.0% 0,0% At Reveal: <mr\ = 92,197 87,170 89,260 79,857 77,379 Ib-in Mu = 14,602 28,847 27,584 23.331 19,493 Ib-in % Over = 0.0% 0.0% 0.0% 0,0% 0,0% Deflection: Wind Seismic At Reveal: Wind Seismic le/150 = 1.1200 1.1200 in 1.1200 1,1200 in MaxA = 0.0231 0,0246 in 0,0231 0,0246 in % Over = 0.0% 0,0% 0,0% 0.0% CONCRETE SLENDER WALL Considering P-Detta Effects PRIMET0B:2K13J7Q. ^ STRUCTURAL 1)ATB:^J£J4_ ^iS^ ENGINEERS SHT:_DM_ PROJECT* DESCRIPTION: 2K13-170 Panel S-1 Pier A 2ND TO 3RD Strength at Factored Load: (16-2) (16-4) (16-5) (16^) (16-7) Factored ecc, Puf= = 3616.80 1828.20 1961,85 761.40 627.75 lbs/ft Factored axial, Pu«n = 3832.80 3832.80 4201.58 2784.60 2295.82 lbs/ft Factored vifflll. P„« = 1816.00 1815.00 2168.18 1644,06 1034.01 lbs/ft Factored, P,, = 9264.60 7476.00 8331.62 5090.06 3957.67 lbs/ft Pu/Aa= 96.51 S 0,06fc... OKI 96.51 77.88 86,79 53,02 41,22 psi As= 0.267 S 0.6p(bd) = 1.074 ...OK (R14.8,3) A„= As + (Pu/ f,)(h / 2d) = 0.397 0,372 0.384 0.338 0.322 in* a= (Pu + Asf,)/(0.85feb) 0.619 0.575 0.596 0,517 0.489 in c= a (0.85 = 0.729 0.677 0.702 0.608 0,575 in Ei= (Ecu/c)d-eou 0.0166 O.0181 0.0173 0.0204 0,0218 2 0.005 For Tenaon Control OK OK OK OK OK K= (A„f,)(d-a/2) 105689 99490 102463 91117 87102 Ib-in (14-7) Ic = n A„(d-c)'+bc'/3 = 50,07 47.87 48.93 44.77 43.23 in* Mi„= M„o + Pjex/le 11755 24119 22902 20652 17829 Ib-in (14-4) M„=M„. + PuAu 14497 28702 27826 23368 19711 Ib-in (14-6) Au = 0,30 0,61 0.59 0.53 0.48 in 95120 89541 92217 82005 78392 Ib-in (14-3) Check that <t>M„ 2: M„ OK OK OK OK OK l„= bt'/12 = 512.00 512.00 512.00 512.00 512.00 in* (9-9) M„= 7.5 fc"l„/0,51 = 60716 60716 60716 60716 60716 Ib-in (14-2) Check that m„ a M„ OK OK OK OK OK Deflection at Service Load: (16-13a) (16-13b) Servtee ecc, P,, = = 2085.50 2135,67 lbs Service axial. POM = 3274.00 3530.61 lbs Service wall, P;,, = 1512,50 1516.66 lbs Servtee, P, = Pa + P«, = 6852,00 7182.93 lbs A„= 5M„l,*/(48E.g = 0.09 0.09 in M„= {A„f,)(d-a/2) = 99490 102463 Ib-in A„= 5M„I,*((48EJ„) = 1.59 1.63 M., = Ma + Pstfex/lc 15233 15235 M=MM + P.A, = 15391 16412 l»>-in (14-8) A,= 0.02 0.02 in Allowable A = lc/150 1,12 1,12 in Check that A^ < A^i.^ OK OK Shear at Factored Load: (16-2) (16-4) (16-5) (16-6) (16-7) w„= 8Mu/(12U*) 49,31 97.63 94.65 79.48 67.04 V„=l,w«,/2 = 345,17 683.38 662,53 556,38 469.31 (11-3) d>V,= 0.75(2)f^'°bd 5407.49 5407.49 5407.48 5407.49 6407.49 Check that <PVc 2 Vu OK OK OK OK OK PRIME J0B:2K13-170 ^ STRUCTURAL DATE:^zlILll- ENGINEERS SHT: D3-9 CONCRETE SLENDER WALL (>>nsktering P-DeKa Effects (AT LOCATION OF REVEAL) PROJECT*. DESCRIPTION: 2K13-170 Panel S-1 Pier A 2ND TO 3RD Strength at Factored Load: (16-2) (16-4) (16-5) (ifri) (16-7) Factored ecc, P^ = 3616.80 1828.20 1961.85 761.40 627,75 lbs Factored axial, P„^ = = 3832.80 3832.80 4201.58 2784.60 2295.82 lbs Factored wall, P„^ = 1815.00 1815,00 2053.94 1361.26 1122.31 lbs Factored. P„ = = 9264.60 7476,00 8217.38 4907.25 4045.87 lbs Aa = 0.267 s 0.6p(bd) = 1.074 ...OK (R14.8.3) A„=/Vs + (Pu/fv)(h/2d) = 0.385 0,362 0.371 0.329 0.318 in* a = (Pu +Asf,)/(0.85 fcb) 0.619 0,575 0,594 0.612 0.491 in c= a/0.85 0,729 0.677 0:698 0.603 0.578 in M„= {A;.fv)(d-a/2) = 102441 96856 99178 88730 85977 Ib-in (14-7) !„ = 48,58 46,63 47,45 43.68 42.65 in* M^, = + Pj e x / Ic 11755 24119 22608 20652 17536 Ib-in (14-4) M„=f/u, + P„Au 14602 28847 27684 23331 19493 Ib-in (14-5) Au = 0,31 0,63 0.62 0.55 0.48 in <fK = = 92197 87170 89260 79867 77379 lb^n (14-3) Check that <I>M„ 2 Mu OK OK OK OK OK l„=bt'/12 381.08 381.08 381.08 381.08 381.08 in* (9-9) M„= 7.5f/'l„/0.5t 49866 49865 49865 49865 49865 Ib-in (14-2) Check that «M„ 2 M„ OK OK OK OK OK Deflection at Service Load: (16-13a) (16-13b) 0.02 0.02 In /\ltowableA= 1^/150 1,12 1.12 in Checkthat A.S A^jtow OK OK PRIME JOB ^ STRUCTURAL DATE; ENGINEERS SHT; 2K13-170 3-10-14 D3-10 CONCRETE SLENDER WALL Considering P-Deita Effects PROJECT* 2K13-170 DESCRIPTION: Panel S-1 Pier A 1ST TO 2ND ThK (in) Width (fl) Start (ft) End (ft) q1 = 9,26 5.00 0.00 15.00 q2 = 6.50 10.00 10.00 15.00 q3 = 0.00 q4 = 0.00 q5 = DESIGN CRITERIA: rc = Concrete Weight = Clear Height U - Paraph Height = WaH Thickness, t = hA = Depth to Rebar, d = Vertical Rebar= Spacing ~ Steel @ Each Face = Reveal Depth = Reveal to Bottom = d at Reveal = 4000 psi 60000 psi 150 pcf 15.00 ft 0.00 ft 9.25 in 19.46 5.000 In #4 9,000 in 2 (flayers) 0.75 in 7.50 ft 6,000 in (16-2) Eccentric, O = Eccentric, L - Addl From Above. D - Add'l From Above, L = Girder, D = Girder L ~ 7.50 in 282 plf 542 plf 31,980 kips 8.130 kips 0.000 kips 0.000 kips 0 Girder Load Eccentric? Roof, Lr - l.aw kips Min Vertical Steel - Min Horizontal Steel = Max Vert Spacing = 0.0025 0.0025 18.00 in <J> = 0.9 Pi = 0,85 Hc = 3834 k» 29000 ksi n = 7.56 £„ = 0.003 0,00207 o.ept = 0.0188 0,790 g 0,346 Wp Eff, Wind Area = 225 ft' Wind Load, IV= 12,88 psf (16-4) (16-6) (16-6) (16-7) (16-13a) (16-13b) 0.00 20867 18048 20867 18048 9781 9475 Ib-in/ft 7,50 7.50 8.70 7,50 8.70 7.50 8.70 ft An« = 0,O0E+OO 7.O4E+07 6.15E+07 7,04E+07 6.15E+07 3,30E+07 3.23E+07 /El At Reveal: &o = 0 20867 17719 20867 17719 9781 9302 0,OOE+00 7.04E+07 6.14E+07 7.04E+07 6,14E+07 3,30E+07 3.22E+07 Ib-in/ft /El LOAD COMBINATIONS (CBC 1605.2.1) (16-2) U = 1.20 D + 1.60L + 0.50 Lr (16-4) U = 1.20 D + 0.50 L + 0.50 Lr (16-S) U = 1.36 D + 0,50 L + 1,00 Qe (16-6) U = 0,90 D + 1.80 W (16-7) U = 0.74 D + 1,00Qe (16-13a) A = 1.00 D + 0,75L + 0.75 W (16-13b) A = 1.08 D + 0,75 L + 0,53 Qe 12,4,2.3 E = QE± 0.2SosD + 1,60W QE± 0.16 D DESIGN SUMMARY: Strength: (16-2) (16-4) (16-5) (16-6) (16-7) «M„ = 143,105 130.199 ' 135,192 114,621 108,306 Ibnn Mu= 16,900 33,185 • 32,389 26,949 23,094 Ib-in %Over = 0.0% 0,0% o:o% 0,0% 0.0% AtReiwai: <PMn = 138,049 126,240 i 130,520 111,365 106,560 Ib-in Uu = 17,049 33,386 : 32,310 26,966 22,858 Ib-in % Over = 0;0% 0,0% 0.0% 0.0% 0.0% Deflection: Wind Seismic At Reveal: Wind Seismic i./150 = 1.2000 1,2000 in 1,2000 1.2000 in MaxA = 0.0197 0.0212 in 0.0197 0.0212 in %Over = 0.0% 0.0% 0,0% 0.0% CONCRETE SLENDER WALL Consklering P-Delta Effects PRIME J0B:2K13-170 £^ STRUCTURAL DATE:.ili2J4_ ^iSS^ ENGINEERS SHT: D3-II PROJECT* DESCRIPTION: 2K13-170 Panel S-1 F>ierA 1ST TO 2ND Strength at Factored Load: (16-2) (16-4) (16-S) (16-6) (16-7) Factored ecc, Pu,= = 3616.80 1828.20 1961,85 761,40 627,75 Ibsffl Fecstored axial, Punui -= 10396.80 8608.20 9498.63 5756,40 4745.97 lbs/ft Factored wall, Puw= 2015.63 2015.63 2368.40 1694.53 1143.41 lbs/ft Factored, Pu = = 16029.23 12452.03 13828.88 8212.33 6617,13 lbs/ft Pu/A„= 144.41 so.oerc... OKI 144.41 112.18 124.58 73.98 58,71 psi /iis= 0.267 S 0.6p(bd) = 1.356 ...OK (R14.8.3) A„ = As + (Pu/ fy)(h / 2d) 0.473 0.427 0.444 0,372 0,350 in* a= (Pu +Asf,)/(0.85f,b) 0.785 0.697 0,731 0,593 0.652 in c = a / 0.85 0,924 0.820 0.860 0,698 0.649 ir El ~ (Ecu / c) d - Ecu = 0.0165 0.0189 0,0179 0.0228 0.0247 2 0.005 For Tenskm Control OK OK OK OK OK M„= ^fO(d-a/2) 159005 144665 150213 127356 120340 Ib-in (14-7) U = nAK(d-c)*+bc'/3 95.27 88.78 91.33 80,49 76.97 in* Mu,= Muo + P^ex/lc = 13563 27723 26582 23722 20779 Ib-in (14-4) M„=M„u + P„Au 16900 33185 32389 26949 23094 Ib-in (14-5) A„ = = 0.21 0,44 0.42 0.39 0.36 in <t*l„ = 143105 130199 135192 114621 108306 Ib-in (14-3) Check that <t>M„ 2 Mu OK OK OK OK OK l,= bt'/12 791,45 791,46 791.45 791,45 791.46 in* (9-9) M„= 7.5f,<'-^l„/0.5t 81172 81172 81172 81172 81172 Ib-in (14-2) Check that 0M„ 2 OK OK OK OK OK Deflection at Service Load: (16-13a) (16-13b) Service ecc Prf = 2065.50 2135.67 lbs Service axial, Pj^ai = 7796.50 8326.97 lbs Service wall, P,„ = 1679.69 1668,74 lbs Servk», P, = P»( + P^ = = 11540,69 12130,38 lbs A„= 5M„l//(48E,IJ 0,09 0,09 in M„= (A«f,)(d-a/2) 144665 160213 Ib-in A„= 5M„I.*/(48E.U = 1.43 1,46 M„ = + Prf e X / Ic 17527 18765 M = Msa + P, A, 17755 19022 Ib-in (14-8) A.= 0.02 0,02 in Alk>waUeA= 1^/150 1.20 1,20 in Check that A^f Ag|,„ OK OK Shear at Factored Load: (16-2) (16-4) (16-5) (16-6) (16-7) w„= 8Mu/(12lc*) = 50.08 98.33 95.97 79,85 68.43 Vu= lcW„/2 = 375.56 737.45 719.75 598,87 513.20 (11-3) c|)Vc= 0.76(2)f„"*bd = 6830.52 6830,52 6830.52 6830.52 6830.52 Check that cpv^ 2 OK OK OK OK OK CONCRETE SLENDER WALL Considering P-Delta Effects (AT LOCATION OF REVEAL) PRIME JOB:2K13-170 ^ STRUCTURAL DAift ENGINEERS SHT:_D3J2_ PROJECT*: DESCRIPTION: 2K13-170 Panel S-1 Pier A 1ST TO 2ND Strength at Fac:tored Load: (16-2) (16.4) (16-5) (16-6) (16-7) Factored ecc, Puf= 3616.80 1828.20 1961,85 761,40 627,75 lbs Factored axial, P,^ = = 10396,80 8608.20 9498,63 5756,40 4746,97 lbs Factored vrall, P„., = = 2015.63 2015.63 2280.96 1511,72 1246.36 lbs Factored, Pu = = 16029.23 12452.03 13741.46 8029,52 6620.09 lbs /\s= 0.267 £ 0,6p(bd) = 1,356 ...OK (R14,8,3) A„= As + (Pu/ fv)(h / 2d) 0,456 0.414 0,429 0.361 0.346 in* a= (Pu + Asfv)/(0.86f,b) 0,785 0.697 0,729 0.589 0.554 in c= a/0.86 0.924 0.820 0,858 0.693 0.652 in Mn= (A„f,)(d-a/2) = 153387 140267 145022 123739 118400 Ib-in (14-7) l„ = 92.01 86.15 88.31 78,33 75.70 in* Mu,= Muo + Putex/I, 13563 27723 26253 23722 20460 Ib-ln (14^) Mu=M„, + PuAu 17049 33386 32310 26966 22858 Ib-in (14-5) Au = 0,22 0,45 0.44 0.40 0.36 in <t)K = 138049 126240 130620 111365 106660 Ib-in (14-3) Check that <I>M„ 2 Mu OK OK OK OK OK l„=bl'/12 614.13 614,13 614.13 614.13 614.13 in* (9-9) M„= 7.5 fc'-'lj/0.51 68542 68542 68542 68542 68542 Ib-in (14-2) Check that *M„ 2 M„ OK OK OK OK OK Deflection at Service Load: (16-13a) (16-13b) 0,02 0,02 in Allowable A = l„/150 = 1.20 1.20 in Check that A, s Aab* OK OK PRIME J0R:2K13-170 ^ STRUCTORAL DATE.Mje4^ ENGTNRFRR SHT: D3-13 fa Z^^'^ll ^ ^ ^ } ..|... ^ ..'^i^: ..A^^/H."^.. : • t :p!?C^AmaL<^: ^^^^ m-^- Sf^'^- r Pf^IfME jnB:2l<13-170 «^ 1 STRUCTURAL.DAiE:^iii2j^ ENjGINlEElfS s^:42zi4_ /of .1 1. i i i i ! I I i 1-|-j- \ I ;__ .,I,.._J j I.,.. J L. I ! I _i ; i.,„ J , :_ i I 1 ! I ! ; j I i ''^ i i ! ! i ; I i LA I i LU \=^\ ! I 0- ' \ \" ) ] I > f r V !' I 'i « !| 'i ,1 ji ' I :i ii !i i; I' !' I! E r PRIME JOB:2K13-170 STRUCTURAL DATE:^zifid4_ ENGINEERS SHT:_D3J5_ CONCRETE SLENDER WALL Considering P-Delta Effects WIOJECT* 2K13-170 DESCRIPTION: Panel S-1 Pier B 3RD TO ROOF Thk (In) Wfidthfft) Start (ft) End (ft) ql = 8.00 5,00 0.00 17.00 q2 = 6,50 10,00 9.00 17.00 q3 = 0,00 q4 = 6.50 10.00 0.00 3.00 q6 = DESIGN CRITERIA: Concrete Weight - Clear Height. Ic = Parapet Height = Wall Thickness, t = hn = Depth to Rebar, d = Verticai Rebar - Spadng = Steel @ Eacft Face = Reveal Depth = Reveal to Bottom = d at Reveal = 4000 psi 60000 psi 150 pcf 13,00 ft 4.00 ft S.OO in 19,50 4.750 in #4 9,000 in 2 (# 0.75 in 8,50 ft 4,750 in Eccentric, Dr- Eccentric, Lr = Add'l From Above, Dr - Aden From Above, Lr = Girder. Dr = G irder, Lr= 6,60 in 56 plf 80 plf 0.000 kips 0,000 kips 6,140 kips 3,560 kips Q Girder Load Eccentric? Min Vertical Steel = 0,0025 Min Horizontal Steel = 0.0025 Max Vert Spacing = 18.00 in <p = 0.9 p, = 0.85 £o = 3834 ksi £. = 29000 ksi n = 7,56 0.003 s, = 0.00207 o.epi = 0.0188 0.79O Jf Qg=Ff, = 0.346 Wp Eff. Wind Area = 255 ft' Wind Load. W= 12.88 psf (16-3) (16-4) (16-5) (16-6) (16-7) (16-13a) (16-13b) • = 0.00 12846 8916 12846 8916 5021 4900 Ib-inrtl 6.50 5,92 5.33 5.92 6.33 5,92 5.20 ft Am„ = O.OOE+00 3.08E+07 2.12E+07 3.08E+07 2.12E+07 1.44E+07 1,17E+07 /El At Reveal: Wo = 0 10309 6820 10309 6820 4832 3708 Ib-in/ft Ao = 0,0OE+OO 2.63E+07 1.77E+07 2.63E+07 1,77E+07 1.23E+07 9.72E+06 /El Wind (1.6 W) LOAD COMBINATIONS (CBC 1605.2.1) (16-3) U = (16-4) U = (16-5) U = (16-6) U = (16-7) U = (16-13a) A = (16-13b) A = 12.4,2.3 E = DESIGN SUMMARY: 1.20 D 1.20 D 1,36 D 0,90 D 0.74 D 1.00 D 1.08 D QE± QE± + 0.50 L + O.SOL + 0.50 L + 1.60 W + 1.00 Cie + 0.76 L + 0.75 L 0.2St,sD 0.16 D + 1,60 Lr + 0.50 U + 1.00 Qe + 0.75 W + 0.53 Qe + 1.60W 13,00 16.00 14,00 12,00 10,00 S.OO 6.00 4.00 2.00 O.OO CL O- Seismic (1.0 E) 18.00 16.00 14.00 12.00 10.00 8.00 6.00 4.00 2,00 0,00 1^ CJ i Strength: (16-3) (1&4) (16-5) (16-6) (16-7) (1>M„ = 82,467 81,851 85,028 77,620 74,887 Ib-in Mu = 8,747 21,199 16,738 17,849 12,384 Ib-in % Over = 0,0% 0.0% 0,0% 0.0% 0,0% PX Reveal: c&Mn = 80,109 79,352 80,614 74,910 73,284 Ib-ln Mu = 8,727 18,451 14,339 15,048 10,170 Ib-in %Over = 0,0% 0,0% 0,0% 0.0% 0.0% Deflection: Wind Seismic At Reveal: Wind Seismic 1,/150 = 1.0400 1.0400 in 1.0400 1.0400 in Max A -0.0159 0.0139 in 0,0144 0.0126 in %Over = 0.0% 0,0% 0.0% 0.0% CONCRETE SLENDER WALL considering P-Delta Effects PRIME JQH:2K13-170 STRUCTURAL DATE:^ilI2J4_ •'^^ ENGINEERS SBT: D3-I6 PROJECT* DESCRIPTION: 2K13-170 Panel S-1 PierB 3RD TO ROOF Strength at Factored Load: (16-3) (16-4) (16-5) (16-6) (16-7) Factored ecc, P^ = 2415.20 2151.20 2251.74 1256,40 1035.86 lbs/ft Factored axial, Pu^di = 0,00 0.00 0,00 0,00 0.00 lbs/ft Factored wall, P„„ = = 2820,00 2890.20 3791,47 2460,15 1830.57 lbs/ft Factored, Pu = 5235.20 5041.40 6043,21 3716,55 2866.43 Ibsm Pu//Si= 62,95 sO.Oefc... OKI 54.53 52.51 52.95 38,71 29.86 psi As= 0.267 i 0.6p(bd) = 1.074 ...OK (R14.8.3) A„= As V (Py/y (h /2d) = 0.340 0.337 0.351 0.319 0,307 In* a= (Pu + /\sfy)/(0.85fob) 0.520 0.516 0,640 0.483 0,462 in c = a / 0,85 0,612 0.607 0,636 0.569 0,544 in El = (Ecu/c)d-£cu 0.0203 0.0205 0,0194 0,0221 0.0232 2 0.005 For Tenskm Control OK OK OK OK OK Mn= (A«f,)(d-a/2) 91630 90945 94476 86244 83208 Ib-in (14-7) l„= nA»-(d-c)*+bc'/3 44.96 44.70 46,03 42,90 41.71 In* Mu. = Miio * PtK e X / Ic 7849 19208 14917 16562 11677 Ib-in (14-4) M„=Mu, + P„A„ 8747 21199 16738 17849 12384 Ib-in (14-5) A„ = = 0.17 0.39 0,30 0.35 0.25 in 82467 81851 85028 77620 74887 Ib-in (14-3) Check that <J>M„ 2 M„ OK OK OK OK OK 1„= bt^/12 512.00 512,00 512.00 512.00 512.00 in* (9-9) Mc,= 7.5fc''-*l„/0.5t 60716 60716 60716 60716 60716 b-in (14-2) Check that »fifl,v 2 M„ OK OK OK OK OK Deflection at Service Load: (16-13a) (16-13b) Service ecc, P^ = 2110,00 2226.78 lbs Servtee axial, P„^ = 0.00 0.00 lbs Service wall, P«, = 2408.60 2685.69 lbs Service, P, = P^ + P„ = 4518.50 4911.47 lbs Ac= 5 Mc, Ic* / (48 Ec y 0.08 0.08 in M„= {A«f,)(d-a/2) = 90945 94476 Ib-in A„= 5M„lc*/(48Ecl„) 1.27 1.28 M«,= + P^ex/lc = 12262 10687 M = M» + P. A, 12334 10755 Ib-in (14-8) A.= 0.02 0.01 in /ytowableA= lc/160 1,04 1.04 in Check that A, £ A,iow OK OK Shear at Factored Load: (16-3) (16-4) 16-5) (16-6) (16-7) w„= 8Mu/(12lc*) 34.51 83.62 66.03 70.41 48.85 Vu= ic w.,/2 224.29 543,56 429,17 457.67 317.53 (11-3) <t'Vc= 0.75(2)fc"*bd 5407.49 5407.49 5407,49 5407,49 5407,49 Check that OVc 2 V„ OK OK OK OK OK PRIME JOB:2K13-170 ^ STRUCTURAL DATfc^ziQii4_ ENGINEERS SHT: D3-I7 CONCRETE SLENDER WALL Consklering P-Delta Effects (AT LOCATION OF REVEAL) PROJECT* DESCRIPTION: 2K13-170 Panel S-1 PierB 3RD TO ROOF Strength at Factored Load: (16-3) (16-4) (16-5) (16-6) (16-7) Factored eoc. P^ = = 2415.20 2151.20 2251.74 1256,40 1035.86 lbs Factored axial. P^UM = = 0.00 0,00 0.00 0.00 0.00 lbs Factored vrall, P^w = = 2580.00 2680.00 2919,65 1935,00 1595.36 lbs Factored, P„ = = 4995.20 4731.20 5171.39 3191,40 2631,21 lbs As = 0.267 £ 0.6p(bd) = 1.074 ...OK (R14.8.3) A,„=As+(Pu/Wh/2d) = 0.330 0.327 0.332 0.307 0.300 in* a = (Pu +Asf,)/(0,85fcb) = 0.515 0.5O8 0.519 0,470 0.457 in c = a / 0,85 = 0.605 0.598 0.610 0.553 0,537 in M»=(A«,f,)(d-a/2) = 89010 88168 89571 83233 81426 Ib-in (14-7) U = = 43,79 43.47 44.00 41,61 40.91 in* Mu, = Muo + Pui e X / IJ = 7849 16671 12821 14024 9580 Ib-in (14-4) M„=Mua + P„Au = 8727 18451 14339 15048 10170 Ib-in (14-5) A„ = 0.18 0.38 0.29 0.32 0.22 in <1>M„ = = 80109 79352 80614 74910 73284 Ib-in (14-3) Check that <I>M„ 2 M„ OK OK OK OK OK l„= bt'/12 = 381.08 381.08 381.08 381.08 381.08 in* (9-9) fiflcr= 7,5fc"l„/0.5t = 49865 49865 49865 49865 49865 Ib-in (14-2) Check that 2 M„ OK OK OK OK OK Deflection at Service Load: A.= /MIowable A= lc/150 Check that A, s Ado, (16-13a) (16-13b) 0.01 0,01 in 1.04 1.04 in OK OK PRIME JnB:2K13-170 STRUCTIIRAIi HATK: 3-10-14 ENGINEERS SHT:_D3J8_ CONCRETE SLENDER WALL Thk (in) WkJth(ft) Start (ft) End (ft) Considering P-Deita Effects ql = 8.00 5.00 0.00 14,00 PROJECT* 2K13-170 q2 = 6.50 10.00 9.00 14.00 DESCRIPTION; Panel S-1 q3 = 0,00 PierB 2ND TO 3RD q4 = 6.50 10,00 0.00 3.00 q5 = DESIGN CRITERIA: 4000 psi 6.50 In Min Vertical Steel = 0.0025 60000 psi Eccentric, D = 282 plf Min Horizontal Steel = 0.0O25 Concrete Weight = 150 pcf Eccentric, L = 642 plf Max Verf Sjiadng = 18,00 in Addl From Above, D -24,420 kips Clear Height, Ic = 14.00 ft AMIFrom Above, L = 0,000 kips * = 0.9 Parapet H&ght = 0.00 ft G/rt/er, D = 13,420 kips 0.85 Wall Thidawss, t = 8,00 in Girder, L = 17.570 kips £c = 3834 ksi h/t = 21,00 IZlGirdw Load Eccentric? £.= 29000 ksi Roof,:Lr.s ; 4:760 kips n = 7.56 Depth to Rebar, d = 4,750 in Ea, = 0.003 Verttoal Rebar -#4 «f = 0.00207 Spadng = 9.000 in o.ep, = 0.0188 Steel @ Eacfj Face = 2 (# layers) Sos -0.790 g Q£=Fp = 0.346 Wp Reveal Depth = 0.75 in Eff. V^mS Area = 210 ft' Reveal to Bottom ~ 7,00 ft Wind Load, W = 12.88 psf d at Reveal = 4,750 in (16-2) (16-4) (16-S) (16-8) (16-7) (16-13a) (16-13b) MM-0,00 18177 16086 18177 16086 8521 8606 Ib-in/ft 7,00 7,00 7.91 7,00 7,91 7.00 7.64 ft O.OOE+00 5,34E+07 4,87E+07 634E+07 4,87E+07 2.51 E+07 2.62E+07 /El At Reveal: Mo = 0 18177 15907 18177 15907 8521 8535 HHnm Ao = O.OOE+00 5,34E+07 4,87E+07 5,34E+07 4,87E+07 2.51E+07 2.62E+07 /El Wind (1.6 W) LOAO COMBINATIONS (CBC 1605.2.1) (16-2) U = (16-4) U = (16-5) U = (16-6) U = (16-7) U = {16-13a) A = (16-13b) A = 12.4.2.3 E = DESIGN SLRMMARY: 1.20 D 1.20 D 1,36 D 0,90 D 0.74 D 1,00 D 1.08 D QE± QE± + 1.60L + 0.50L + 0,50 L + 1.60W + 1,00 Qe + 0.75 L + 0.75 L 0.2SBSD 0.16 D + 0.50 Lr + 0,50 U + 1,00 Qe + 0,75 W + 0.53 Qe + 1.60W Seismic (1.0 E) 16.00 14.00 12.00 10.00 8.00 8.00 4.00 2.00 0.00 o Q. - -1- -I"™ c-3. n n • a t f= CM tr Strength; (16-2) (16-4) (16-5) (16-6) (16-7) *M„ = 129,133 112,484 116,199 94,661 88,983 Ib-in M„ = 61,297 55,258 61,213 35,051 30,683 Ib-in % Over = 0.0% 0.0% 0.0% 0,0% 0,0% At Reveal: <DMn = 122,833 107,839 110,777 91,272 86,869 Ib-in Mu = 62,820 66,109 62.172 35,162 30,705 Ib-in %Over = 0.0% 0,0% 0,0% 0.0% 0,0% Deflection: Wind Seismic At Reveal: Wind Seismic lc/150 = 1,1200 1,1200 In 1,1200 1,1200 In MaxAs 0.0496 0.0560 in 0.0498 0,0560 in % Over = 0,0% 0.0% 0,0% 0.0% CONCRETE SLENDER WALL Consklering P-Delta Effects PRIME J0B:2K13-170 STRUCTURAL DAm-^jflzi4^ ^iS^ ENGINEERS SHT:_D3J9_ PROJECT* DESCRIPTION: 2K13-170 Panel S-1 PierB 2ND TO 3RD Strength at Factored Load: (16-2) (16-4) (16-5) (16-6) (16-7) Factored ecc, Puf = = 12460.00 6806.00 7363.66 3177.00 2619.34 lbs/ft Factored axial, P„^ = 6336.80 6336.80 6632.36 4395.60 3624.04 lbs/ft Factoied wall, Pu„ = 1815.00 1815.00 2206.21 1644.06 1054,78 lbs/ft Factored, Pu = = 20611.80 14957.80 16202.23 9116.66 7298.16 Ibsm Pu/A,= 214.71 SO.Oefc... OK! 214.71 155.81 168.77 94.97 76.02 psi Aa= 0.267 s0.6p(bd) = 1.074 ...OK (R14.8.3) /\„= Ae + (Pu/{,)(h/2d) 0,566 0.477 0.494 0.395 0.369 In* a= (Pu + Agf,)/(0.65 fcb) 0.897 0.759 0.789 0.616 0.571 In c= a/0.85 1.056 0.893 0,929 0,724 0.672 in E, = (£cu'C)d-£cU 0,0105 0.0130 0.0123 0,0167 0.0182 2 0,005 For Tension Control OK OK OK OK OK Mn= (Ai»t,)(d-a/2) = 143481 124982 129110 106179 98870 Ib-in (14-7) lc= nA»(d-c)*+bc'/3 62.09 56.48 57.77 49.89 47.64 in* Mu.= Mrf,+ Pu(ex/lc «: 40495 40297 43129 28503 25706 to-in (14-4) M„=M,. + PuAu = 61297 55258 61213 35051 30683 Ib-in (14-5) A„ = 1.01 1.00 1.12 0.72 0.68 in <t)M„ = 129133 112484 116199 94661 88983 Ib-in (14-3) Check that «M„ 2 Mu OK OK OK OK OK l„= bt'/12 = 512,00 512.00 512.00 512.00 612.00 in* (9-9) M„= 7.5fc'"l„/0,5t 60716 60716 60716 60716 60716 Ib-in (14-2) Check that <PM„ 2 M„ OK OK OK OK OK Deflection at Service Load: (16-13a) (16-13b) Service ecc, P^ = 7385.00 7677.77 lbs Servtee axial, Pmif,\ = = 5598,00 6003.07 lbs Servtee wail, PBW = 1512.50 1546.98 lbs Service, P,= Prt+ Pa„ = = 14495.50 15227.82 lbs A„= 5M„ic*/(48Ecg 0,09 0,09 in M„= (A^f,)(d-a/2) 124982 129110 Ib-in A,= 5M„lc*7(48EoU 1,70 1,77 M„ = M^ + P^ex/lc 32522 36553 M= M,„ + P.A. 33244 37406 Ib-in (14-8) A.= = 0.05 0.06 in AitowaWe A = lc/150 1,12 1.12 in Check that A.S A^c OK OK Shear at Factored Load: (16-2) (16-4) (16-S) (16-6) (16-7) W«= 8Mu/(12 1c*) 208.49 187.95 208.21 119.22 104.36 V„= lcW„/2 1459.45 1315.67 1457.46 834.54 730.55 (11-3) q)Vc= 0,75{2)fc"*bd 5407.49 5407.49 5407,49 5407.49 5407.49 Check that <t>Vc 2 Vu OK OK OK OK OK PRIME JQB:2K13-170 SJ^ STRUCTURAL DATK:.2£U2i1i ENGINEERS SHT; D3-20 CONCRETE SLENDER WALL C^sidering P-Delta Effects (AT LOCATION OF REVEAL) PROJECT* DESCRIPTION: 2K13-170 Panel S-1 PierB 2ND TO 3RD Strength at Factored Load: (16-2) (16-4) (16-5) (16-6) (16-7) Factored ecc, P„f = = 12460.00 6806.00 7363,66 3177.00 2619.34 lbs Factored axial, Puatui" 6336.80 6336.80 6632.36 4395.60 3624,04 lbs Factored wall, P„, = 1815.00 1815.00 2063.94 1361.25 1122.31 lbs Factored, Pu = = 20611.80 14957.80 16049.97 8933.85 7365.68 lbs As= 0.267 £ 0.6p(bd) = 1.074 ...OK (R14.8.3) A«= As + (Pu/f,)(h/2d) 0.529 0.457 0.471 0.380 0.360 in* a = (Pu + /\sfv)'(0.85fcb) 0.897 0.759 0.786 0.611 0.573 in c = a / 0.85 1.066 0.893 0.924 0.718 0.674 in M„= (A,ef»)(cl-a/2) 136481 119821 123086 101413 96509 Ib-in (14-7) lc,= 69.29 54.27 55,28 48.23 46 51 in* Mu, = Muo + Pui e X / Ic = 40495 40297 42950 28503 25527 Ib-in (14-4) Mu=M„, + PuAu = 62820 56109 62172 35162 30705 Ib-in (14-5) Au = 1.08 1.06 1.20 0.75 0.70 in <m„ = 122833 107839 110777 91272 86859 Ib-in (14-3) Check that <t>M„ 2 M„ OK OK OK OK OK l„= bt'/12 381.08 381.08 381.08 381.08 381,08 in* (9-9) M„= 7.5fc"l„/0.5t 49865 49865 49865 49866 49865 Ib-in (14-2) Check that «M„ 2 M, OK OK OK OK OK Deflection at Service Load: (16-13a) (16-13b) 0.05 0,06 in /\ltowableA= I./160 1.12 1.12 in Check ttiat Ac £ Aaiow OK OK PRIMF .l^h- 2K13-170 S1RUCTimDsrte:____ l^GINEERSshE D3-21 SLENDER WALL DESIGN <ACi 318,14.4) Thk (in) Width (ft) St^rtfft) End (ft) Project*: 2K13-170 ql = 9.25 5.00 0.00 15.00 DESCRIPTION: Panel S-1 q2 = 6.50 10.00 10.00 15.00 Pier B q3 = 1ST TO 2ND q4 = DESIGN CRITERIA: q5 = Sos - Seismic, Fp = fy' Ec = Wall Height. I u = Parapet Height = Wall thickness, h = Rebar Size = Rebar Spadng, s = Depth to rebar, d = Rows of steel LOAD COMBINATIONS: (16-3) U = (16-4) U = (16-5) U = 12.4.2.3 E = DESIGN SUMMARY: 0.789 0.346 4000 60.000 3834 15.00 0.00 9,25 #4 9,00 6.000 2 1.20 D 1.20 D 1.36D QE± QE± psi ksi ksi ft ft in In in Eocentricity, e • Eccentric, wp • Eccentric, Wi • Additional, Pp • Additional, •• Roof, Pu •• Mmax • X @ Mmax • 7,50 0,282 0.542 68.990 43.270 4.760 (16-4) 1.74 k-ft 7.50 ft in klf klf kips kips kips (16-5) 1.50 k-ft 8.70 fi + 1.60L + 0.50 L + 0.50 L 0.2SDSD 0.16 D + 0.50 Lr + 1.60W + 1.00 Qe 16.00 14.00 12.00 10,00 8.00 6.00 4.00 2.00 0,00 I 3 ^ WINCK1.6W) 11 Ol £.10 Ol cone wt= 150 pcf Wind, W = 12.88 psf Pi = 0.850 c„ = 1.00 /c = 1.00 r= 2.78 k''l/r= 64.86 kl/r<100 ...O.K. A,-0.53 P = 0.0048 (16-3) (16-4) <t>M„= 247549 196732 207450 ItMn Mc= 61013 66377 62380 Ib-in %Over= 0,00% 0.00% 0,00% CALCULATIONS: Load Combo = (16-3) (16-4) (16-5) Factored Axial, P^ = 12.460 6.806 7.364 klf Factored Axial, Pu addi = 30.880 20.885 23.062 klf Factored Awal, Puwaii = 2.016 1.849 2.281 klf Factored Axial, Pu = 45.356 29.540 32.706 klf Sustained Axial, Pus = 19.588 19.588 21.975 klf Pd = Pu,/Pu 0.432 0.663 0.672 P = 0,9 + 0.5-|3d*-12p 0.936 1.062 1.068 Gross, Ig = bh'/12 = 791,45 791.45 791.45 In* El = 0.4Eclg/(1+gd) 847730 729864 726026 in^-kip Critical. Pc = •rr* El / (k-lu)* 258,233 222,329 221.160 kip As.= IPi,+(A.-fy)]/fy 1.107 0.814 0.872 in" a = (A,VP„)/(0.85-f,-12) 1.627 1.197 1.283 in c = a/Pi 1.915 1.408 1.509 In Factored Mom, M„ = maxEMuo + Pufe'x /1,, Pu (0.6+0.03h)] = 46.725 46.389 50.080 in-kip Mag. Factor, 6^ = max{C„/[1-Py(0.75Pc)], 1.0} 1.306 1.215 1.246 Magnified, (i^ = 61.013 56.377 62.380 In-kip 0.10*fe/Ag = 44.4 44.4 44.4 kip £1 = 0,003*(d-c)/G 0.0064 0.0098 0.0089 Strain Limit Check = et > 0.004 for Pu < 0,10*fc*A9 • = O.K. O.K. O.K. (t> = min(0.9,max(0,65,0.233+0.25d/c)) 0.90 0.90 0.90 Controlling Region on interaction diagram = Tension Tension Tension M„ = Ase fy (d - a/2) - Pn (d - h/2) 275.054 218.591 230.500 In-kip Capacity Check = O.K. O.K. O.K. I .... i - I \ \ I I -^^X, 4^-^ i ii^dLi...^ pmi^A] ai/^^f/^MX.m^k^^^ PRIME JOR:2K13^170 \ STRUCTUKAL ittifciiiflm-^ ENGINEERS SBT: p?-g2 ; ^ l^('>?^ xiij. ifr^V- ;..^H*^..j.... r^^iUHw/:-^?-©^--; ! i 1 1 1 I ! i j ( .j. j !, ; L i i. 1...J .1 [ i _; ...i. i I \ 'i^^-if^l. .j ....i \. ..! .1 .i i 4v-r I• I- I i !• i i .1. i.! .1 .1.. .i i \ .1. i. I.. .1. .1 A i PRIME ioB:aKiMZQ... STRUCTURAL iMiftJiiiiiii.' ENGINEERS SHT:rD3-23 ^ J .i 1 11 I. i .. I ' ^ . ! I ! i I i : i ; ; , I ^ 1..^ ^if^f^/'^s-'^c^ \ •=r.,! i. I- t i > i. :i : 1 : •it; -f 1 f \ ] i t i i t \ I t ; I ! I f?—'i -j i ^ 1 ; ,' £ ' I ' - i f T f I' f i ' t I, ! i f ^ i ' i ^ f li f f « 1 S 1 1 t % PRIME J0B:2K13-170 SJ^ STRUCTURAL DATS:^£Ujiii_ ENGINEERS SHT: D3-24 CONCRETE SLENDER WALL Thk (in) Width (ft) Start (ftl End (ft) Consiciering P-Delta Effects q1 = 6.50 656 0.00 17.00 PROJECT* 2K13-170 q2 = 6.50 6,00 9.00 17.00 DESCRIPTION: Panel S-1 q3 = 0,00 PierC 3R0 TO ROOF q4 = 6,50 5,00 0.00 3.00 q5 = DESIGN CRITERIA: rc = 4000 psi e = 5,50 in Min Vertical Steel = 0.0025 60000 psi Eccentnc, Dr = 56 plf Min Horizontal Steel = 0.0025 Concrete Weight = 150 pcf Eccentric. Lr-80 plf Max Vert Spacing = 18.00 in Add'l From Above, Dr= 0.000 kips Clear Height, Ic = 13,00 ft Add'l From Above, Lr = 0.000 kips <J> = 0.9 Parapet H^ght = 4.00 ft Girder, Dr = 4,220 kips Pi = 0,86 Wall Thickness, t = 6.50 in Girder. Lr= 3,150 kips £c = 3834 ksi Mt = 24.00 • arder Load Eccentric? E." 29000 ksi n = 7.56 Depth io Rebar, d = 3,250 in «« = 0.003 Vertical Rebar = #4 0.00207 Spacing 9.000 in o.epi, = 0.0171 Steel @ Eacft Face = 1 (# layers) 0.790 g 0.346 Wp Reveal Depth = 0.75 in Eff, Wind Area = 180 ft' Reveal to Bottorn -8.50 ft Wind Load, W= 14,00 psf d at Reveal = 2.500 in (16-3) (16-4) (16-5) (16^) (16-7) (16-13a) (16-13b) 0.00 8838 6604 8838 6604 4143 3467 to-inM 6.50 5.92 5.59 S.92 5.59 5.92 5.59 ft Anwx ~ O.OOE+00 2.12E+07 1.58E+07 2.12E+07 1.58E+07 9.g2E+06 8,29E+06 /El At Reveal: Mo = 0 7092 5160 7092 5160 3325 2709 Ib-in/ft Ao = O.OOE+00 1,81 E+07 1.33E+07 1.81 E+07 1,33E+07 8.47E+06 e.97E+06 /El LOAD COMBINATIONS (CBC 1605.2.1) (16-3) U = 1.20 D + 0,60 L + 1,60 Lr (1fr4) U = 1.20 D + 0,50L + 0.50 Lr (16-5) u = 1.36 D + 0,50 L + 1.00Qe (16-6) u = 0.90 D + 1,60 W (16-7) u = 0.74 D + 1.00 Qe (16-138) A = 1.00 D + 0,75 L + 0,75 W (16-1^3) A = 1,06 D + 0,76 L + 0,63 Qe 12.4,2,3 E = QE± 0,2SDSD + 1,60 W Q6± 0.16 D DESIGN SUMMARY: Strength: (16-3) (16-4) (16-5) (16-6) (16-7) *M„ = 53,870 52,042 52,936 49,885 48,477 Ib-in Mu = 1,249 10,932 8,259 10,190 7,419 Ib-ln % Over = 0.0% 0.0% 0.0% 0.0% 0,0% At Reveal: cDMn = 52,223 60,493 50,447 48,283 47,532 Ib-in Mu = 1,249 8,938 6,457 8,160 5,852 Ib-in %Over = 0.0% 0,0% 0.0% 0.0% 0,0% DeflectiiDn: Wind Seismic At Reveal: Wind Seismic lc/150 = 1.0400 1.0400 in 1,0400 1.0400 in Max A = 0,0114 0.0097 in 0,0103 0.0088 in %Over = 0.0% 0,0% 0.0% 0.0% CONCRETE SLENDER WALL Considering P-Delta Eflects PRIME JQB:2K13-170 4 STRUCTURAL ])AiK.2zliU4_ ENGINEERS SHT: D3-?5 PROJECT* DESCRIPTION: 2K13-170 Panel S-1 PierC 3RD TO ROOF Strength at Factored Load: (16-3) (16-4) (16-5) (16-6) (16-7) Factored eoc, Put = 370.66 203.56' 144,40 95.70 78.90 lbs/ft Factored axial, Puaodi = = 1816,45 1193,53 1030.23 682.79 562.94 Ibe/ft Factored wall, = 1724.67 1781.91 2362.29 1541.84 1121.44 lbs/ft Factored, P„ = 3911.98 3179.00 3636.92 2320.33 1763.28 lbs/ft Piil\= 50.15 S0,06fc,.. OKI 50.15 40.76 45,35 29.76 22.61 psi /Vs = 0.267 S 0,6p(bd) = 0,667 ...OK (R14,8.3) A„= /Vs + (Pu/ fv)(h / 2d) 0.332 0.320 0,326 0.306 0.296 In* a= (Pu+Asf,)/(0,85 fcb) = 0,488 0.470 0,479 0.449 0.435 in 0=8/ 0.85 0.574 0.553 0,563 0.528 0.512 in £, = (Ecu / c) d - Ecu 0,0140 0,0146 0,0143 0.0155 0.0160 2 0,005 For Tension Control OK OK OK OK OK M„= (A..g(d-a,^) 59855 57824 58817 55428 53864 Ib-in (14-7) l„ = n-A„ (d-c)*+bc'/3 18.73 18.26 18.49 17.70 17.32 in* M„s= Muo + Pufex/lc 1019 9347 6946 9077 6791 Ib^n (14-4) M,= M„.+P„Au 1249 10932 8259 10190 7419 Ib-in (14-5) Au = 0.06 0.50 0.37 0.48 0.36 in *M„ = 53870 52042 52936 49885 48477 Ib-in (14-3) Check that (J>M„ 2 Mu OK OK OK OK OK l(= bt'/12 274.63 274.63 274.63 274.63 274.63 in* (9-9) M„= 7.5f."l„/0.5t 40082 40082 40082 40082 40082 Ib4n (14-2) Check that «M„ 2 Mc OK OK OK OK OK Deflection at Service Load: (16-13a) (1S-13b) Service ecc, P^ = 220.27 229.09 lbs Servtee axiat, P,^ = 1183.37 1246.29 lbs Service wall, PM = 1484.93 1636,66 lbs Servtee, P. = Pd + PM» = 2888.57 3112,06 lbs A„= SMclc*/(48Ecl„) 0.10 0,10 in M„= (A„f,)(d.a/2) 57824 58817 Ib-in A„= 6M„lc*/(48Ecl„) 1.98 1,98 M„ = Mrt + Prt e X /1„ = 4694 4009 M= M„ + Pi>A, 4727 4039 Ib-in (14-8) A.= 0.01 0.01 in AnovrableA= lc/150 1.04 1,04 in Check that A, s A,ii„w OK OK Shear at Factored Load: (16-3) (16-4) . 16-S) (16-6) (16-7) w«,= 8Mu/(12(c*) 4.93 43,12 32,58 40.20 29.27 V„=lcW„/2 32.03 280,31 211,78 261.28 190.22 (11-3) «Vc= 0.75(2)fc"*bd 3699.86 3699,86 3699,86 3699.86 3699.86 Check that cPVc 2 V„ OK OK OK OK OK PRIME JOB:211l3d70L ^ STRUCTURAL DATl:_2JiH4_ ENGINEERS SHT: D3-26 CONCRETE SLENDER WALL Ckinsidering P-Delta Effects (AT LOCATION OF REVEAL) PROJECT * DESCRIPTION: 2K13-170 Panel S-1 PierC 3RD TO ROOF Strength at Factored Load: (16-3) (16-4) (16-5) (16-6) (16-7) Factored ecc, P,^ = 370.66 203,56 144.40 96.70 76.90 bs Factored axial, Pu^ni = 1816,45 1193.53 1030.23 682.79 562.94 bs Factored wall, P^ = = 1529,87 1529.87 1731.28 1147.41 946.00 bs Factored, P„ = = 3716,98 2926.96 2905.91 1925.90 1587.84 bs /Vs = 0.267 S 0.6p(bd) = 0.667 ...OK (R14.8.3) /V,.= As + (Pu/f,)(h/2d) = 0,321 0.310 0.310 0.295 0.290 in* a= (Pu +Asf,)/(0.85 fcb) 0,483 0.464 0,463 0.439 0.431 in c= a/0.85 0,569 0.546 0.545 0,517 0.5O7 in M„= (A„f,)(d-a,^) 58026 56103 66052 63648 62814 b-in (14-7) l„ = = 17,79 17.35 17.57 16,81 16.46 in* M„.= Muo + Puiex/lc = 1019 7602 5501 7332 5346 Ib-in (14-4) Mu=Mu, + P,Au 1249 8938 6457 8160 5852 Ib-in (14-5) Au = 0.06 0.46 0.33 0,43 0.32 in 0M„ = 52223 60493 50447 48283 47532 Ib-in (14-3) Check that <t>M„ 2 Mu OK OK OK OK OK l„= bt'/12 = 190.11 190.11 190.11 190.11 190.11 in* (9-9) Mc= 7.Sfc°'l5/0.5t = 31366 31368 , 31366 31366 31366 Ib-in (14-2) Check that «M„ 2 M„ OK OK OK OK OK Deflection at Service Load: (16-13a) (16-13b) ~ 0.01 0.01 in Allowable A= U/ISO 1.04 1.04 in Check that A, s A^^w OK OK PRIME J0B:2K13-170 Wj^ STRUCTURAL DATfc^zifiJi- ENGINEERS SBT: 03-27 CONCRETE SLENDER WALL Thk (inl Wkith (ft) Start (ft) End (ft) Considering P-Delta Effects q1 = 8.00 5.56 0.00 14.00 PROJECT * 2K13-170 q2 = 6,50 6.00 9.00 14.00 DESCRIPTION: Panel S-1 q3 = 0.00 PierC 2ND TO 3RD q4 = 6,50 6.00 0.00 3.00 q6 = DESK3N CRITERIA: 4000 psi e = 8,50 In Min Vertical Steel = O.0025 f,= 60000 psi Eccentric, D = 282 plf Min Horizontal Steel = 0.0025 Concrete Weight 150 pcf Eccentric, L = 542 plf Max Vert Spadng = 18.00 in Addl From Above, D = 16,960 kips Clear Height, U = 14,00 fl Addl From Above, L = 0,000 kips 0 = 0.9 Parapet Height = 0.00 ft Girder, D = 1,400 kips JS, = 0.86 Wall ThKkness, t = 8.00 In Girder. L = 2,620 kips £« = 3834 ksi 21.00 LJ Girder Load Eccentric? E. = 29000 ksi [. Roof, Lr= -;:;^L;.3,996 ki0s--'':'' ' n = 7.56 Depft to Rebar, d = 4750 in £«, = 0.003 Vertical Rebar = #4 = 0.00207 Spacing = 9.000 in 0.6pt = 0.0188 Steel @ Each Face = 2 (# layers) Sos -0.790 g QE=FP = 0.346 Wp Reveal Depth = 0.75 in Eff, Wind Area = 148 ft' Reveal io Bottom = 7.00 ft Wind Load, W= 14.00 psf d at Reveal = 4.750 in (16-2) (16-4) (16-5) (16-6) (16-7) (16-13a) (16-13b) MM-0,00 12506 12786 12506 12786 5862 6791 b-in/fl ^uuo -7.00 7,00 7.42 7.00 7.42 7.00 7,35 ft \m = O.OOE+00 3,68E+07 3.84E+Q7 3.68E+07 3,84E+07 1,72E+07 2.04E+07 /El At Reveal; Mo = 0 12506 12760 12506 12750 5862 6776 INn/ft Ao = 0,OOE+O0 3,68E+07 3,84E+07 3,68E+07 3,84E+07 1.72E+07 2.04E+07 IE\ LOAD COMBINATIONS (CBC 1605.2.1) (16-2) . U = (16-4) U = (16-5) U = (16-6) U = (18-7) U = (16-13a) A = (16-13b) A = 12.4.2.3 E = DESIGN SUMMARY: 1.20 D 1.20 D 1,36 D 0.90 D 0.74 D 1,00 D 1.08 D QE± QE± + 1.60L + 0.50L + 0.50 L + l.SO W +1.00 Qe + 0.75L + 0.75 L 0.2SosD 0.16 D + 0.50 Lr + 0.50Lr + 1.00 Qe + 0.75 + 0,53 Qe + 1.60W Wlnd(1.6W) 16.00 14.00 12.00 10.00 8.00 6.00 4,00 2.00 0,00 Seismic (1.0 E) 16,00 14,00 12,00 10,00 8.00 6,00 4.00 2.00 0.00 4- — ^ |!2. <1 Strength: (16-2) (16-4) (16-5) (16-6) (16-7) 93.182 88,017 89,750 80,252 77,264 Ib-in Mu= 9,064 19,166 20,414 15,730 15,524 Ib-in % Over = 0.0% 0.0% 0,0% 0,0% 0.0% At Reveal: cpMn = 90,451 86,797 86,973 78,432 76,199 Itnn Mu = 9,122 19,252 20,428 15,717 15.620 Ib-in %Oer = 0.0% 0,0% 0,0% 0.0% 00% Deflection: Wind Seismic At Reveal: Wind Seismic lc/15D = 1.1200 1.1200 in 1.1200 1.1200 In MaxA = 0.0153 0.0173 in 0.0153 0,0173 in %Over = 0.0% 0.0% 0.0% 0,0% CONCRETE SLENDER WALL Consklering P-Delta Effects PRIME J0B:2K13-170 STRUCTURAL DATE: 3-10-14 ENGINEERS SBT: D3-28 PROJECT* DESCRIPTION: 2K13-170 Panel S-1 PierC 2ND TO 3RD Strength at Factored Load: (16-2) (16-t) (16-S) (16-6) (16-7) Factored ecc. Put = = 2289.29 1157.18 1241,77 481,93 397.34 lbs/ft Factored axial, Pu^idi = 5073.53 4656.42 4717,75 2970.61 2449.17 lbs/ft Factored wall, = 1278.20 1278,20 1583.15 1087.03 769.21 lbs/ft Factored, Pu = = 8641.02 6990.79 7542.67 4639.57 3605.73 lbs/ft Pu/A„= 90,01 £0,06fc... OK! 90.01 72.82 78.57 47.29 37.56 psi As = 0.267 s 0.6p(bd) = 1.074 ..OK (R14.8,3) Ai.= As + (Pu/ fy)(h / 2d) = 0.388 0.365 0,373 0.330 0.317 in* a= (Pu +Asf,)/(0,85 fcb) 0.604 0.563 0,577 0,503 0.481 in c = a / O.SS = 0.711 0.663 0.679 0.692 0.565 in El " (Ecu / 0) d - Ecu = 0.0171 0.0185 0.0180 0,0211 0.0222 2 0.006 For Tension Control OK OK OK OK OK M„= (A„f,)(d-affi) 103535 97797 99722 89169 86849 Ib-ln (14-7) l„= nA„(d-c)*+b'c'/3 49.31 47,25 47.95 44.03 42.74 In* M„,= M„(, + P„,ex/I„ 7440 16267 17064 14072 14165 Ib-in (14-4) Mu= M„, + P„ A„ = 9064 19166 20414 15730 15524 Ib-in (14-6) Au = 0.19 0,41 0.44 0,37 0.38 in 93182 88017 89750 80252 77264 Ib-in (14-3) Check that *M„ 2 Mu OK OK OK OK OK 1(1= bf'/12 512.00 612.00 512.00 512.00 612.00 in* (9-9) Mcr= 7.5fc'''l„/0.5t 60716 60716 60716 60716 60716 Ib-in (14-2) Check that iJ>M„ 2 M„ OK OK OK OK OK Deflection at Service Load: (16-13a) (16-13b) Service ecc, Prt = = 1307.38 1361,79 lbs Servtee axial, P^ = 4192.58 4466.34 lbs Servtee wall, P„ = 106617 1115,61 lbs Service, P, = Pa + P«, = = 6565,13 6933.73 lbs A„= 5Mc,lc*/(48Ecy = 0.09 0.09 in Mn= (A,.f,)(d-a/2) 97797 99722 Ib-in A„= 5M„lc*/(48Eclc,) = 1.69 1,63 M„= Mai + P^ex71c = 10111 11404 M= M«,+ P.Ac 10212 11523 Ib-in (14-8) A.= 0.02 0.02 in Altowable A>= lc/150 1.12 1,12 in Check lhat Ac sA,to„ OK OK Shear at Factored Load: (16-2) (16-4) 16-5) (16-6) (16-7) 8Mu/(12lc*) 30.83 65,19 69.44 53,50 52.80 V„= lcW«,/2 215.81 456,33 488.06 374,53 369.63 (11-3) 0Vc= 0,75(2)rc^'*bd 5407,49 5407,49 5407.49 5407,49 5407.49 Check that <J>Vc 2 V„ OK OK OK OK OK PRTME.jnB:2K13-170 STRUCTURAL BAxii: 3-1 o-u ENGINEERS SHT: 03-29 CONCRETE SLENDER WALL Considering P-Delts Effects (AT LOCATION OF REVEAL) PROJECT* DESCRIPTION: 2K13-170 Panel S-1 PierC 2ND TO 3RD Strength at Factored Load: (16-2) (16-4) (ie-s) (16-6) (16-7) Factored ecc, P„, = = 2289.29 1157,18 1241.77 481.93 397.34 lbs Factored axial, PUUM = = 5073.53 4555.42 4717.75 2970.61 2449.17 lbs Factored wall, Pu» = 1278.20 1278.20 1446.48 958.65 700.38 lbs Factored, P^ = 8641.02 6990.79 740699 4411.19 3636.89 lbs Ae = 0.267 S 0.6p(bd) = 1,074 „,OK (R14,8,3) A., = As + (Pu/ f,)(h / 2d) = 0,377 0.366 0.361 0.323 0.313 in* a= (Pu +Asf,)/(0.85 fob) 0,604 0,563 0.574 0.500 0.481 In c= a/0,86 0,711 0.663 0,675 0.589 0.666 in Mn=(A«if,)(cl-a/2) 100501 95330 96638 87146 84666 Ib-in (14-7) l„ = = 47,91 46.09 46,55 43.09 42.15 in* M„, = Muo + P„, e x / Ic 7440 16267 17028 14072 14119 Ib-ln (14^) M„=Mu. + P„Au = 9122 19252 20428 15717 15520 Ib-in (14-6) Au = 0.19 0,43 0.46 0.37 0.39 in <J>M„ = 90451 85797 86973 78432 76199 Ib-in (14-3) Check that <I>M„ 2 M„ OK OK OK OK OK l,= bt'/12 = 381,08 381,08 381.08 381.08 381.08 in* (9-9) M„= 7.5 f.^^lj/0.61 49865 49865 49865 49865 49865 Ib-in (14-2) Check that OH, 2 Mc OK OK OK OK OK Deflection at Service Load: (16-13a) (16-13b) A.= 0,02 0,02 in Allowable A = lc/150 = 1.12 1.12 in Check that A, £Adn« OK OK PRIME J0B:2K13-170 ^ STRUCTURAL DATft^zicm. ENGINEERS SBT: D3-3O CONCRETE SLENDER WALL Thk (in) WWth(fl) Start (ft) End (ft) Considering P-Deita Effects q1 = 9.25 6,56 0,00 1600 PROJECT* 2K13-170 q2 = 6.50 6,00 10.00 15.00 DESCRIPTION; Panel S-1 q3 = 0.00 PierC 1ST TO 2ND q4 = 0.00 q5 = DESIGN CRITERIA: fc = 4000 psi e = 7.50 in Mm Vertical Steel = 0,0025 /,= 60000 psi Eccentric, D = 282 plf Min Horizontal Steel = 0.0025 Concf^e Weight = 150 pcf Eccentric, L = 542 plf Max Vert Spacing = 18,00 In Addl From Above. D = 32.370 kips Clear Height, 1, = 15.00 ft Add'l From Above, L = 8,340 kips 0 X 0,9 Parapet Height = 0.00 ft Girder, D = 1,400 kips Pi' 0.86 Wall Thkikness, t = 9,25 in Girder, L = 2,620 kips Ec = 3834 ksi h/t= 19.46 • Girder Load Eccentrfc? E,= 29000 ksi : Roof, Lr = :,3^996:kifw'^: n = 7.56 Depth to Rebar. d = 6.OO0 in (a. = 0.003 Vertical Rabar= #4 0.00207 Spadng= 9.000 in 0.0188 Steel @ Each Face = 2 (# layers) Sos = 0.790 g Qe=Fp = 0,346 Wp Reveal Depth = 0.75 in Eff, Wind Area = 158 ft« Reveal to Bottom = 7 50 ft Wind Load, W= 14,00 psf d at Reveal = 6.000 in (16-2) (16-4) (16-S) (16-6) (16-7) (16-13a) (16-13b) 0.00 14356 15464 14356 15464 6730 8119 Ib-in/ft 7.50 7,50 8.03 7.50 8.03 7,50 8.03 ft Anax •" O.OOE+00 4,85E+07 5,27E+07 4,85E+07 5.27E+07 2,27E+07 2.77E+07 /El At Reveal: M (J — 0 14355 16397 14356 15397 6730 8084 Ib-in/ft Ao = O.OOE+OO 4,85E+07 S,27E+07 4.85E+07 5.27E+07 2,27E+07 2,77E+07 /El Wind (1.6 W) LOAD COMBINATIONS (CBC 1605.2.1) (16-2) U = (16-4) U = (16-5) U = (15-6) U = (16-7) U = (16-13a) A = (16-13b) A = 12.4.2.3 E = DESIGN SUMMARY: 1.20 D 1,20 D 1,36 D 0,60 D 0.74 D 1,00 D 1.08 D QE± + 1.60L + 0,50 L + 0,50 L + 1,60 W + 1.00 Qe + 0,75 L + 0.75 L 0,2SDSD 0,16D + 0.50 Lr + 0.60 Lr + 1.00 Qe + 0,75 W + 0,53 Qe • 1.60 W Seismic (1.0 E) 16.00 14,00 12.00 10.00 e.oo 6,00 4,00 2.00 0.00 Strength: (16-2) (16-4) (16-5) (16-6) (16-7) <PMn = 137,848 125,870 129,485 110,794 105,514 Ib-in Mu= 10,527 22,068 24,465 18,112 18,760 Ib-in %Over = 0,0% 0.0% 0.0% 0,0% 0.0% At Reveal: <PMn = 133,239 122,279 126217 108,046 103,807 Ib-in Mu = 10,607 22,182 24,517, 18,125 18,740. Iti-in % Over = 0,0% 0.0% 0,0% 0.0% 0.0% Deflection: Wind Seismic At Reveal: Wind Seismic lc/150 = 1,2000 1.2000 in 1.2000 1.2000 in MaxA = 0.0131 0.0153 in 0:0131 0.0153 in %Over = 0.0% 0,0% 0.0% 0,0% CONCRETE SLENDER WALL Consklsring P-Delta Effects PRIME J0B:2K13-170 M. STRUCTURAL DATR jjiLli. ENGINEERS SBT: D3-3I PROJECT* DESCRIPTION: 2K13r170 Panel S-1 PierC 1ST TO 2ND Strength at Factored Load: (16-2) (16-4) (16-S) (16<) (16-7) Factored ecc, P^ = 2289.29 1157.18 1241.77 481.93 397.34 Ibs/fl Factored axial, Pu^^fl = = 10796.85 8629.48 9229.47 6463.01 4504.82 Ibs/n Factored wall, Pu« = = 1478.83 1478,83 1784.79 1237.50 869.39 IbS/n Factored, Pu = = 14664,97 11266.49 12256.02 7183.34 5771.56 lbs/ft Pu / A, = 131.22 S 0.06fc... OKI = 131,22 101.49 110.41 64.71 52.00 psi As= 0,267 S 0.6p(bd) = 1,356 ...OK (R14,8,3) A«, = As + (Pu / f,)(h / 2d) = 0,454 0,411 0.424 0.359 0.341 in* a = (Pu + Asf,)/(0.8Sfcb) = 0.749 0.668 0.693 0.588 0.534 in c= a/0.85 = 0.881 0,786 0.815 0.668 0.628 in e, = (Ecu / C) d - Ecu = 0.0174 0.0199 0.0191 0.0239 0,0267 2 0.005 For Tensron Ccsntrol = OK OK OK OK OK M„= (A,.y(d-a/2) = 153164 139855 143872 123104 117238 Ib-in (14-7) 1, = nA»(d-c)*+bcV3 = 92.66 86,63 88.41 78.37 75,38 in* M„, = M„o + Puf e X / Ic = 8585 18696 20446 16164 17058 Ib-in (14-4) M„=Mu. + PuA„ = 10527 22068 24465 18112 18760 Ib-in (14-5) Au = = 0.13 0.30 0.33 0.27 0,29 In <J>M„ = = 137848 125870 129465 110794 105514 Ib-in (14-3) Check that <l)M„ 2 M„ OK OK OK OK OK l„=bt'/12 = 791.45 791.45 791.45 791.46 791,45 in* (9-9) M„= 7.6 fc^ln/0.51 = 81172 81172 81172 81172 81172 Ib-in (14-2) Check that tpM„ 2 M„ OK OK OK OK OK Deflection at Service Load: (16-13a) (16-13b) Service ecc, P^ = 1307.38 1361.79 lbs Servtee axial, P,M,i = 8087.42 8690.94 lbs Service wall, P„ = 1232.36 1268.83 lbs Servtee, P. = P^ + P., = = 10627.15 11211.55 lbs Ac= 5M„lc*/(48Ecl„) 0.09 0,09 in Mn= (AiKfy)(<i-a/2) 139855 143872 ib-in A„= 5M„lc*/(48E,IJ = 1.42 1,45 M„= Mrt + P^ex/lc = 11632 13543 M=Mc + P,A, 1 11771 13714 Ib-in (14-8) A.= i 0.01 0.02 in Allowable Alc/150 \ 1.20 1.20 In Check tha1/\,£/i,ftK, OK OK i Shear at Factored Load: > (16-2) (16-4) (16-S) (16^) (16-7) w«,= 8Mu/(12lc*)! 31.19 65,39 72,49 53.67 66.69 V„=lcW„/2 1 233.93 490,39 543.67 402,49 416.89 (11-3) (|)Vc= 0,75(2)fc"*bd 6830.52 6830.52 6830.52 6630,52 6830.52 Check that 0Vc 2 Vu OK OK OK OK OK PRIME JnB:2K13-170 ^ STRUCTURAL iiATfc^ji2J4_ ENGINEERS SHT: 03-32 CONCRETE SLENDER WALL Considering P-Delta Effects (AT LOCATION OF REVEAL) PROJECT* DESCRIPTION; 2K13-170 Panel S-1 PierC 1ST TO 2ND Strength at Factored Load: (16-2) (16-4) (16-5) (16-6) (16-7) Factored ecx:, P^ = = 2289,29 1157.18 1241.77 481.93 397.34 lbs , Factored axial, Puj^ai = = 10796.85 8629.48 9229.47 5463.91 4504.82 lbs Factored vraH, P„„ = 1478.83 1478.83 1673.51 1109.12 914.44 lbs Factored, P„ = = 14564.97 11265.49 12144.75 7064.97 5816.60 lbs /Vs= 0.267 S 0,6p{bd) = 1,356 .„OK (R14.8.3) A,e= As + (Pu/ f,)(h / 2d) 0.439 0.400 0.410 0.350 0.335 In* a= (Pu + /^sf,)/(0-85 fcb) = 0.749 0.668 0.690 0.565 0.535 in c=a/0,85 0.881 0.786 0.812 0.666 0.629 in M„= (A„fJ(d-aA2) 148044 135866 139130 120051 115341 Ib-in (14-7) l„ = = 89.66 84.11 86.63 76.52 74.16 In* M„, = M„o + Put e x (Ic = 8685 18696 20380 16164 16992 Ib-in (1+4) Mu=Mu. + PuAu = 10607 22182 24517 18126 18740 Ib-in (14-5) Au = = 0.14 0.31 0.34 0.28 0.30 in cl>M„ = 133239 122279 125217 108046 103807 to-in (14-3) Check that <J>M„ 2 Mu OK OK OK OK OK l,= bt'/12 614.13 614.13 614.13 614.13 614.13 in* (9-S) M„= 7,5fc"to/0,6t = 68542 68542 68542 68542 68642 b-in (14-2) Check that *M„ 2 M„ OK OK OK OK OK Deflection at Service Load: (16-138) (16-13b) A,= = 0.01 0.02 in AltewaUe A = lc/150 1.20 1.20 in Check that A, sActo, OK OK PRIME J0R:2K13-170 STRUCTURAL DATI!: 3-10-14 ENGINEERS SHT: 03-33 PRIME JOB STRUCTURAL HATE; ENGINEERS SHT; 2K13-170 03-34 2.855k 2^ »55k 2, }55k 2, i55k >55k 2^ i55k 2,; >55k 2^ ii iSk 2, !55k 2^ iSSk 2. iSSk 2^ }55i< 2^ i55k 2^ ?i 5k 2, iSSk 855k :^ 855k 7.194k 7.19dk 7.19^k7,19^( 6.6 i{7,19. e.5 6.6 6.S 8.5 6.5 47.19i 6.5 ii7.19< 4- 6.5 6.6 6,6 6.6 6.5 6,9 6.6 Ji7.194li \ 7. 6.5 19^ 6.6 2.496k2,496k2,496k2,»96k2,t96k2,}96k2.196k 2,i )6k2, t96kZ i96k2, t96k2.196k2.t96k2,49>k2.«6k 8 7.19^ 8 l|^7.19^ 6.S iL7.194 6.6 6,5 6,5 6,5 ^.1 6.5 Ji.7.19^ 6.5 6.5 6.S i719i 6,6 6.5 7.1|jk 7.1 6.5 1.5 6.5 6.5 6,5 i,5 6.6 8 a496k 2 8 l496k 7 2^ Loads: LC 2, SEISMIC Resuls tor LC 2, SEISMIC S-1 SEiSIVIIC ONLY SK-2 PSE S-1 SEiSIVIIC ONLY Mar 9, 2014 at 7:37 PM 2K13-170 S-1 SEiSIVIIC ONLY PANEL S-1 REVISED 3-7-14.r2d PRIME J0B:2K13-170 STRUCTURAL DATE: 3-10-14 ENGINEERS SHT: 03-35 -.099k| -.099k| -.0991^ -.099k| -,099k| -.099kt -.099k| -.099k 4.655k .,099k) -.099k| -.099kj -.D99kj -.099k| -.099k|-3.2311( 2^55k2, i55^2(?55k2,}55k2, J55k2j ?55k 2,555k_g 855k ^ 855k -.099k 2.855k 2, }55k 2,^55k 2,,fiS5k 2^55k 2.fe55k 2|55k 2,fe55k -.499k -.499k -.499k -.499k -.499K -.499k -,499k -.499k -.499k -.499k -.499k -.499k -.499k -,499k -.49^-1.538k 7.194k7.-^7.1^k7,1^4k7,ic4k7.1^^4k7.1^4k7.1^4k7.1c4k7.1|4k7.1jBk7.1|4k7.1^4k7.1c4k7.1^4k 7.^Wk 7.^Mk ^ -.499k -,499k -,499k] -.499k 2.496k2A96k2i>96k2,ii96k -.499k -.499k -.499k| 2.196k 2 Jt96k2,^96k ,499k 2.^96k 2. ^96k 2Jit96k 2*96k 2it96k 2^96^. 2il96k -,499k '.499k 30.6 ^'^^^ A.-^ ^^^^ •.499k -.499k 499k| 2 -.499kl J!i96k toads: LC 3.0.7420 + £ Resuils for LC 3,0,7420 « E Y-directlon Reaction units we k and k-A 499k| a496k 1.538k a496k 122.2 196.3 PSE 2K13-170 8-1 0.742D + E SK-4 Mar 9, 2014 at 7:59 PM PANEL S-1 REVISED 3-7-14.r2d PRIME J0B:2!<1i170 STRUCTURAL DAffi^ziiti4_ ENGINEERS SHT: 03-35 -.099k 9.2 • -.099k -,099k -.099k -.099k -,09ffl< -.099k -.099k -,099k 4.655k -.099k -.099k it " -.099k -.099k 'a . -.099k -.099k -3,231k 1 -2.8J 5k-2.8J f , 6k-2.8f bk-2.8J 5k-2.8J 5k-2,8! 5k-2.8! 5ir2.8£ 5k-2.8J 5k-2.8e 5k-2.8! 6k-2.8; 5k-2,8J 5k-2.8J 5k-2.85 ;k -2.85 )k- ^ )k- ^ )k- ^ )k- ^ (-.499k -.499k -.499k -.499k -.499k -.499k -.499k -.499k ft 0.4571^ -.499k -.499k -.49911 -,499k •1 -.499k -.499k M 3 -1.538k )k- ^ * -7 T94k-7 f94k-7 "94k-7 •94k-7 T94h-7 T94h-7 T94k-7 T94k-7 T94k-7 T94k-7 T94k-7 T94k-7 T94k-7 T94k-7.1 94k-7.' 9411 a 9411 a —— 9411 a —— 9411 a I -.499k -.499k -.499k -,499k -.499k -.499k -.499k -.499k - t):457R 1 -.499k -.499k -.499k -.499k -.499k -.499k -1.538k 9411 a ' -2.4£ 6k-2.4J 6k-2.4{ 6k-2.45 6lfr2.4i bk-2,4i « 1 11 6k-2.4c 6k-2.4i fek-2.4{ 6k-2.45 6k-2.4£ 6k-2.4« 6k-2.4£ 6k-2.4£ 6k-2.49 >k-2.49 !k-: !k-: !k-: i 1 !k-: i 1 !k-: i 1 /^74J2 C !k-: i i 1 1 ^ 1 -2.496k 187.9 Loads LC 4.0.742D-E RatmtstarLC4,0.742O-E Y-dii«ctk>n Reection units ai» k and k.ft 34.9 tn PSE 2K13-170 S-1 0.742D - E SK-5 Mar 9, 2014 at 8:00 PM PANEL S-1 REVISED 3-7-14,r2d PROJECT #: DESCRIPTION: GEOMETRY: Lo= 5.00 ft Ln= 5.00 ft L2= 10.00 ft L3= 5.00 ft L4= 10.00 ft Ls = 5.56 ft Lg = 0.00 ft H2= 15.00 ft H3 = 29.00 ft HR = 42.00 ft HA = 10.00 ft HB= 3.00 ft He = 6.00 ft HD= 3.00 ft HE= 6.00 ft Hp =4.00 ft CONCRETE SHEAR WALL DESIGN (PER CBC 2010 & ACI 318-08 CH 21) 2K13-170 VIASAT BUILDING #10 PANEL S-1 PRIME Job: 2K13-170 SIRlCTUHAloate: .EHGIIIERSshi: D3-37 ® -48,6 k !H \ 0 -1224 rh I - P t irp P h< • B4 <wiSP» 1—I i Hi ^ _p •> CB5ii i- PlE'iS'B PjFiil'9 sHn^^Hl LOADS: Unfactored Uniform Loads: Unfactored Point Loads: Panel Thickness: WDR = 0.056 klf XA = 21.33 ft XB = 40.56 ft TYPICAL = 6.50 in PIER 7 = 9.25 in Wu, = 0.080 klf PADR " 6.14 kips PBDR ~ 4.22 kips PIER 1 = 6,50 in PIER 8 = 9,25 in = 0.282 klf PALR-3.56 kips PBLR" 3,15 kips PIER 2 = 8.00 in PIER 9 = 9.25 in vifL3 = 0.542 klf PAD3 -13.(42 kips PBD3 ~ 1.40 kips PIER 3 = 6.50 in Parapet = 6.50 in = 0.282 klf PAL3 ~ 17.57 kips PBL3 ~ 2.62 kips PIER 4 = 8.00 in WL2 = 0.642 klf PAD2 ~ 13.42 kips PB02 = 1.40 kips PIER 5 = 8.00 in PAL2 ~ 17.57 kips PBL2 -2,62 kips PIER 6 = 8.00 in LOAD COIWBINATIONS: Reveal in Piers: LC1:U= 1.20 D + 1.60 L + 0.50 Lr HA = TRUE LC2:U= 1.36 D + 0.50 L + 1.00 Qe Hc = TRUE LC 3: U = 0.74 D + 1.00Oe HE = TRUE E= QE± 0.2SosD = QE± 0.16 D DESIGN PROPERTIES: RISA OUTPUT; fc= 4.00 ksi Shear (Neaative to Left); CouDlina Beam Shear Storv Drift: fy= 60.00 ksi PIER 1 = -10,60 kips CB1 = 11,30 kips 2ND = 0.0476 in Cone. Wt. = 150 pcf PIER 2 = -25.80 kips CB2 = 12,50 kips 3RD = 0.0422 in qjv = 0.6 PIER 3 = -12.20 kips CB3 = 54,10 kips ROOF = 0.0254 in iJ= 0,6 PIER 4 = -42.20 kips 08 4 = 55.10 kips pt = 0,0025 PIER 5 = -83.80 kips CB5 = 88,20 kips SD8= 0-789 PIER 6 = -45,00 kips CB6 = 91,70 kips Cd= 5,00 PIER 7 = -61,80 kips f= 1.00 PIER 8 = -79.30 kips H/L= 1.294 PIER 9 = -72.00 kips PROJECT*: DESCRIPTION: CONCRETE SHEAR WALL DESIGN (PER CBC 2010 & ACI 318-08 CH 21) 2K13-170 VIASAT BUILDING #10 PANEL S-1 PRIME Job: 2K13-170 swim Date: iBKSINEERSShi; D3-38 CALCULATION OF FACTORED AXIAL FORCES AND MOMENTS ON WALL PIERS: PIER 8DF PDW PL SL SEISMIC PE ME 1 0.8 k 0.00 n 0.00 ft -OiOCi:!;:;:-" :.?^;RfejHT;-^w -11.8 kip -47 7 k-ft 1 0.8 k D.OOft 15.8 k 0.00 ft 0.00 ft iiii^ji-EFTfey 11.8 kip ' .... 47.7-kip 2 6.2 k 3.31 ft 17.1 k 0.00 ft 0.0 k 0.00 ft RIGHT -0.8 kip -77.4 k-ft 2 6.2 k 3.31 ft 17.1 k 0.00 ft 0.0 k 0.00 ft LEFT 0.8 kip 77.4 kip 3 5.6 k ^^.:^:12.1:K'::ii: -2.50ft 'RiQHT. :;|ai2u|^K -36 « k-ft 3 - 5.6 k -1,94 ft ;;vgO-(5t:----2.50 ft 42.5 kl)).' 36.6 kip < 4 5.1 k 0.00 n 29.3 k 0.00 ft 8.1 k 0.00 ft RIGHT -65.8 kip -189.9 k-ft 4 5.1 k 0.00 ft 29.3 k 0.00 ft 8.1 k 0.00 ft LEFT 65.8 kip 189.9 kip 5 22.0 k .•/•MS^Ic-;:-: 0,00 ft 2.60 ft .. RIGHT -1.8 kip -251.4 k-ft 5 22.0 k. i-j;;2'95:fl;::V 30,6 k :i:-:;p,Op*:: • 123:4;*: >V:2;5p:ft;:-.. ^V.ietvi;;.: 1.8 kip 25l.4k?> - 6 11.8k 0,43 ft 23.2 k -1.76ft 10.7 k -1.94ft RIGHT 67.5 kip -136.0 k-ft 6 11.8k 0.43 ft 23.2 k -1.76ft 10.7 k -1.94ft LEFT -67.5 kip 136.0 kip 7 . 9:3 k 0.00 ft 0.00 ft ;;-::i^i3;^k'T-;; 0.00 ft RIGHT ;=si;5<t;i::i#r? -618.0 k-ft 7 . • 9.3k : 0.00 ft 44.5 k 0.00 ft .-•:::16^3;k^::^. 0.00 ft LEFT S:SiSi3ikjilp 618.akip 8 37.9 k 2.89 ft 45.7 k D.OOft 46.7 k 2.50 ft RIGHT -5.2 kip -793.0 k-ft 8 37.9 k 2.89 ft 45.7 k 0.00 ft 46.7 k 2.50 ft LEFT 5.2 kip 793.0 Wp 9 18,0 k' 36.1 k ,i:";il;;4k:-y. -1.94ft ;-;;.RiG!Ht;;v;i; -720.0 k-ft 9 18.0 k ' -0 67 ft 36.1 k -1.«4ft ;:-£;^iEip^:^i 720.0 kip MIN AXIAL MAX AXIAL CRITICAL PIER MQ ML Pu Mu Pu Mu Po Mu <t>Mn %Over - 0.0 ' 0.0 0.6 k -47.7 10.9 k -47.7 47170 • 289.73 OK 0.0 00 24.2 k 47,7 34.5 k 47.7 • .'. ^*r.'l O ••• 47170 • 289.73 OK 2 -20.4 0.0 16.4 k -92.5 30.7 k -105.1 -105.08 -858.03 OK 2 -20.4 0.0 18.0 k 62.3 32.3 k 49.7 ow. 1 *+ -105.08 -858.03 OK 3 1.6 0.0 25.7 k -35.4 36.6 k -34.4 25.69 • -3542 . -367.79 OK 3 1.6 0.0 0.7 k 37.8 11.6 k 38.8 25.69 • -3542 . -367.79 OK A 0.0 0.0 -40.3 k -189.9 -15.0 k -189.9 91.34 189.90 655.45 OK •t 0.0 o;o 91.3 k 189.9 116,6k 189.9 91.34 189.90 655.45 OK 5 -65 0 -583 37 2 k -299.6 81.3 k -368 8 81 29 -368 76 -944.36 OK 5 -650 -58 3 40 8 k 203.2 84.9 k 134.0 81 29 -368 76 -944.36 OK 6 35,7 20.7 93.5 k -108.6 120.3 k -76.1 -14.67 193.87 1031.51 OK 6 35.7 20.7 -41.5 k 161.5 -14.7 k 193.9 -14.67 193.87 1031.51 OK 7 0.0 -114 2 k -618,0 -72 Jk -618,0 -114.16 -618.00 •«6Q.59 OK 0.0 00 194.0 k 618 0 235 3 k 618.0 -114.16 -618.00 •«6Q.59 OK 8 -109,5 -116.7 56.9 k -874:3 131.7k -1000.0 131.71 -1000.04 -1043.87 OK 8 -109.5 -116.7 67.3 k 711,7 142.1 k 586.0 131.71 -1000.04 -1043.87 OK 9 69.9 41 4 199.5 k -668.1 243.4 k -604 4 -119.30 771 87 806.67 OK 9 69.9 41.4 -119.3 k 771.9 -75.4 k 835.6 -119.30 771 87 806.67 OK / y / y / CONCRETE SHEAR WALL DESIGN (PER CBC 2010 & ACI 318-08 CK 21) PROJECT*: 2K13-170 DESCRIPTION: VIASAT BUILDING #10 PANEL S-1 PRIME Job: 2K13-170 SWimOgfte: lEERSshl: D3-39 INTERACTION DIAGRAMS: Piers 1,4,7 1200.0 1500.0 -400,CI>Mn Piers 2,5,8 1200,0 1000,0 1500,0 2000,0 -SOO.ODMn Piers 3,6,9 1600.0 2000,0 CONCRETE SHEAR WALL DESIGN (PER CBC 2010 & ACI 316-08 CH 21) PROJECT*: 2K13-170 DESCRIPTION: VIASAT BUILDING #10 PANEL S-1 PRIME Job: 2K13-170 ;NGINEERSShi: n^-4n SHEAR CALCULATIONS: PIER1 PIER 2 PIER 3 PIER 4 PIERS PIER 6 PIER 7 PIERS PIERS Effective Thickness = 5.75 In 7.25 in 5.75 in 7.25 in 7,25 in 7.25 in •-S-SOih' 8.50 in 8.50 in Pier Length = 5.00 ft 6.00 ft 6,56 ft 5.00 ft B.OOft 5.56 ft 5.00 ft 5.00 ft s.seft L/t = 10.43 8.28 11.60 8.28 8.28 9.20 7.06 / 7.06 7.85 H/L = 1 20 1.20 1.08 1.20 1 20 1.08 ;• 2,00 : 2.00 1 80 Vail Pier(Y=1; N=0) = 0 ! 0 0 0 0 0 0 0 0 V = 10.60 k 25.80 k 12.20 k 42.20 k 83.80 k 45.00 k ; 61.80 k , 79.30 k 72.00 k v.= N/A| N/A N/A N/A N/A N/A N/A N/A 10 60 k 25.80 k 12.20 k 42.20 k 83.30 k 45.00 k ;:;-:6lJM0k^;i: 79.30 k 72.00 k Acv = 345.0 ih» 435.0 in' :3a3,6 in' 435.0 in' 435.0 in» 483.7 in' 510.0 in* 510.0 In' 567.1 in* 2*Acv*V(f c) = 55.0 k 48;5k 55.0 k 55.0 k 61.2 k 64.5 k 71.rk Curtain Reinf. Req'd = ;;-;;,Ner;|'-:: NO NO YES NO NO YES Y^S ac = 3.00. 3.00 3,00 3.00 3.00 3.00 2.00 2.00 - 2.40 p. min = 0.0025P 0.00250 000250 0.00250 • 0.00250 0.00250 ';050CK25dr ' 0.00250 0.00250 8 2Vu/<l>Acv*V(fc) = 0 81 1.56 0.84 2.56 5,08 2.45 319/ 410 3.36 OK OK OK OK OK OK OK OK As.req (per ft) ~ 0.195 in" 0.240 in' 0.195 in» 0.240 in' 0.240 In' 0.240 in> 0^7«rr!* 0.278 in' 0.278 in* Max Horiz Spacing = :,::i2;.0Q;iA;'-: 12.00 in 13.34 in,. 12.00 in 12.00 in 13.34 in / 12:00 in •.. 12.00 in 13,34 in 7 2'^ Avf = Vu/(*'**|j) = #4 dowels @ slab = 2.29in» , 2.94 in' , - 2.67 ln« 12 V 15^ SPECIAL BOUNDARY ELEMENT REQUIREMENT PER ACI 318 §21.9.6.2: 0^ Elastk: Disp, = 5u = L/[600*(6u/h)] = Pu. critical = Max Neutral Axis, c = Bound. Mem. Req'd = PIER1 PIER 2 PIERS PIER 4 PIERS PIER 6 PIER 7 PIERS PIER 9 0.025 in 0.025 in 0 025 in . 0.068 in 0.068 in 0.068 In ' 0.115 in 0.115 in 0.115 in 0 011 ft 0.011 ft 0.011 ft 0.028 ft 0,028 ft 0.028 ft 0.048 «:'. 0.048 ft 0 048ft '1429 in 14,29 in 15.89 in 14.29 in 14.29 in 15.89 in 14 29 in 14.29 in 15.89 in 109k 32.3 k 116k -15.0 k 84.9 k -14.7 k 235.3 k • 142.1 k 2434 k 7 38 in 8.71 in 8.39 in 9.32 in 10.75 in 10.86 in 10 80 in- . • 11.56 in ,-12.27 in NO x/ NO y NOv/ NO^ NOl/ NO NO-^ COUPLING BEAM CHECK PER ACI 318-OS §21.7.7 (ACI 318-05 §21.9.7): Flexural s^r Oiag. Reinf Rec^'d" #3 . HOOD Suae Vu h d L/h Vu/bhV(fc^ Flexural s^r Oiag. Reinf Rec^'d" #3 . HOOD Suae CBI 11 6Wp ;^:00 in::/ 92.00 in •:/1-,25.; 0.30 N/A NO y , ,N/A CB2 12.5 kip 96.00 in 92.00 in 1.25 0.32 N/A NO V/ N/A CBS 54.1 kip 96.00 in / #.o&:in::.? i/;/1.2i5://:; 1 37 N/A N/A CB4 55,1 kip 96.00 in 92.00 in 1.25 1.40 N/A NON// N/A cas 88,2 kip 96.00 in 92.00ln :/;:'2;23/^;/:: N/A NO ^ / N/A CB6 91.7 kip 96.00 in 92.00 in 1.25 2.32 N/A NO N/A * = Area of flexural steel req'd at both top & bottom of coupling t)eam. = If flexural steel can be satisfied, diagonal reinforcement is not required. - If Hoop Spacing = N/A, typical reinforcement governs. CONCRETE SHEAR WALL DESIGN (PER CBC 2010 8. ACI 318-08 CH 21) PROJECT*: 2K13-170 DESCRIPTION: VIASAT BUILDING #10 PANEL S-1 PRIME j^b: ?.K'l^-^ SIRUCTTiRAL ftjte: .7 0 INEERSshf n.-^-4i d PIER1 PIER 4 PIER7 _2"_ _6;' 1 #8 1#8 ^ 1*5 2#8 2*8 _ ^ 2 #8 2#5_ 38" 1 #5 ""2#5 2 #5" 54" 1 #5 2*5 2 #5 58'; 1jMi__ 2 #5 2*5 • - -•• ..... -—- -—^ - d 2" • lir 24.4f_"'. 35,6'' PIER 2 2#9 2 #5_ 2 #5 2*5 PIERS 2 #9 2 m' 2 #5 PIERS 2 #9 2«S 2 #5 "2*5" 46,8" 2 #5 '2#5' 2#5 " 58;' _ 2#9 2*9 2 #9 — — — —• - ~ • • 1 _ - ~ • • 1 10,00 d PIER 3 WER6 PIER 9 2'; 111*5...I 2*5 "_ 2 #5 .6"__.__I 1 #5 2*5 2#5_ 1_9.63'' 1 #5 2 #5 2 #5 " 33.25" 1 #5 2*5 2#5 46.88;; 1#5 2 #5 "_72#5" 6O.5;; _ 1#8 2#8 ^2#8 64^5" 1 #8 2 #8 2*8 1 1 0.00 0.00 10.00 20.00 30.00 jn 40.00 50.00 10.00 10,00 2000 30,00 40.00 50,00 60,00 10.00 0,00 0,00 10,00 ••, 10,(X) 20.00 40.00 50.00 60,00 0.00 0.00 10.00 20,00 50,00 60,00 0.00 0,00 10.00 20.00 30.00 40jOO 60.00 60,00 70.00 10.00 0.00 0 • • a m X 70,00 3 70,00 •n in 3) 70,00 3 m NJ 70,00 m OI 70,00 2 in Ji 2 m •Ji w 2 m Ti 0,00 10,00 20,00 30 00 40|jj0 50,00 60.00 70,00 10.00 80,00 2 m Ti <o 0.00 0.00 10.00 20.00 30,00 AOgp 50,00 60,00 70,00 PRIME STRUCTURAL ENGINEERS 13272 Jacaranda Blossom Dr. Valley Center, California 92082 Tel (858) 751-3300 STRUCTURAL CALCULATIONS 2K13-170 ViaSat Building #10 Esgil Plan Clieck Response Carlsbad, CA Sheets PC-1 tliru PC-52 A, PRIME J0B:2K13-150 STRUCTURAL DATE:_L21J4_ ENGINEERS SHT: PC-I 1/31/2014 EsGil Corporation 9320 Chesapeake Drive, Suite 208 San Diego, CA 92123 Attention: Ali Sadre Subject: ViaSat Building #10 Building Code Plan Check Response Plan Check No. 13-3225 Responses: The major structural revision for this re-submittal is as we have discussed per our telephone conversations to extend the thicken portion ofthe panels and reinforcing steel to be continuous from f floor to the S"' floor, please see revised panel elevation sheet S-6 and S-7. 24. Note on plans that surface water will drain away from building. The grade shall fall a min of 5% within the first 10' (2% for impervious surfaces). o Please see added note #g on foundation plan on sheet S-2. 25. Provide a letter from soils engineer confirming that the foundation/grading plan and specifications have been reviewed.... o Please see attached letter from soils engineer 26. Provide the following note on the plans: "The contractor responsible for the construction of the seismic-force-resisting system shall submit a written 'Statement of Responsibility' to the building official prior to commencement of work on the system. o Please see added note on Sheet S-1 under General Construction Notes #16. 27. The plans shall indicate that special inspection will be provided for the following work. o Please see added special inspection notes h & i and revised schedule on sheet S-1 29. Please show one A.B. at each corner is adequate for HVAC.as noted on detail 6/SD-6 & reference sheet S-2, versus page 235 of calc's. o Please refer to calculation page 224 for floor mounted mechanical units. Fp=0.237Wp = 0.237 X 11,100# = 263W. Since the bolts do not have uplift force and only shear force. Assume only 2 bolts will be subjected to loading. 2631 lbs./2 bolts = 1315 M/bolt Min. 1 bolt at corner is adequate, see attached calculation pages PC-9 thru PC-12. 30. Redundancy Factor (SDC D-F) o For this project the redundancy factor was determined in accordance to ASCE 7-05 section 12.3.4.2(b). Our interpretation ofthe code is that p = 1.0 since the building is completely regular and there is at least two bays of shear wall on each ofthe perimeter lines. ViaSat Building #10 Building Code Plan Check PRIME JOR:2K13-150 STRUCTURAL IHTR- i-ai-u ENGINEERS SHT: PC-2 For Example: Line 1 and 10 (maximum condition) Per ASCE 7-05 section 12.3.4.2(b) ..."The number of bays fora shear wall shall be calculated as the length of shear wall divided by the story height..." The story height = 15 feet Total length of shear wall = sum of piers = (4x 5'-0") + (2x 5'-6 'A") = 31.08 feet. The number of bays = 31.08 ft/15 ft = 2.072 bays. Since the number of bays is k 2.0 satisfying the requirements of ASCE 7-05 section 12.3.4.2(b) then p = 1.0. o Also for discussion purpose we can also use ASCE 7-05 section 12.3.4.2(a) to show that p = 1.0. Please refer to calculation page L-63. Summing the panel rigidities in the East/West direction (Line 1,10,5 and 6.3) R,otoi=260. Conservatively, even by eliminating an entire panel, say N-l instead of just a pier with height-to-length ratio of great than 1.0. R ^.j = 41.15. This will result in a story strength reduction of 41.15/260 = 0.158 or 15.8%. For our discussion this was a removal of an entire panel, if only a single pier is removed then the reduction in story strength would be substantially less. Therefore, since the removal of N-l would not result in more than 33% reduction in story strength, p = 1.0. 31. Collector design forces (SDC B-F). Collector elements, splices and their connections to resisting elements should be designed to resist the prescribed forces. They must also have the design strength ....This also applies to floor diaphragm openings, by stairs. o For the collector beams and connection along gridlines 1 and 10 please see drag design on calculation pages L-51 and L-57, the forces have been increased by the over strength factor, Oo = 2.5. Please see attached calculation page PC-13 for additional chord bars provided around the opening of the stairs. See revised plan sheet S-3 and 5-4 for reinforcement around stair openings. 32. Seismic Load Effect (SDC B-F) o See attached calculations pages PC-14 thru PC-20. In our original design the load combination that we had used to design the collector beams were 1.2D + 1.6L + OQE which is greater than the load combination 1.2D + (0.2SDS)D + 0.5L + OQ^. But we have included this load combination check in the attached calculations. ViaSat Building #10 Building Code Plan Check PRIME JOR:2K13-150 STRUCTURAL UHULM^ ENGINEERS SHT: PC-3 33. Requirements in Seismic Design Category D. The structures assigned to SDC D should satisfy the following requirements, in addition to requirements for SDC C. Please show irregularities are addressed on various individual panels with large full height openings at the bottom level. o. -Horizontal Irregularity la. Please refer to panel rigidities shown on calculation pages L- 61 thru L-63, using Lines 1 and 10 for check. A between roof and 3^'' floor; for left side (Line 1) 4^,3 = (11.47' -18.12'^) + (11.44'^ -18.05'^)= 0.064" and for right side (Line 10) 4/,,3 = (11.83'' - 18.98'') + (11.83'' -18.98'')= 0.0637". L^,= (0.064 + 0.0637)/2=.06385, when checking tbe story drift at each side relative to the A„^g; 0.064/0.06385 = 1.002 < 1.2 therefore horizontal la and lb does not exist. The rigidities ofthe panels at one end do not differ significantly from the opposite end; therefore the drift at one end relative to the other does not exceed 1.2Aavg. -Horizontal Irregularity 2, Reentrant corner irregularity does not exist as the building is regular in plan and does not possess and 90° corners. -Horizontal Irregularity 3, Diaphragm discontinuity irregularity does not exist as the area of openings in the diaphragm is less than 50% gross diaphragm area. -Horizontal Irregularity 4, Out-of-plane offset does not exist as all the panels are continuous for full height and do not have any plan offsets. b. -Vertical Irregularity 4, In Plane discontinuity irregularity does not exist, as all the concrete shear walls that are part of the lateral force resisting system are continuous through all floors. -Vertical Irregularity 5a & 5b does not exist; please see attached calculation pages PC-21 thru PC-25. The story strength of each floor is at least 80% or greater than the story strength of the floor above. 34. Inverted pendulum-type structures. Inverted pendulum-type structures should be designed in accordance with Section 12.2.5.2 and must use the R factor from Table 12.2-1. Please add R, p,... o Please see attached calculation pages PC-26 thru PC-31. Also please see added seismic design criteria for trellis on sheet S-1. 35. Please show how the 2 kips (Davit Crane) point load, as per detail 18/AD2, is accounted for in the panel design by grid point D-1. o Please see attached calculation pages PC-46 to PC-52 and revised panel elevation on sheet S-7. Also see details 12/SD-8. 36. Please specify where FJ-16, as per joist schedule on Sheet S-3, is called out on the framing plans between gridlines C & D, as per loading diagram. o Please see revised floor plans FJ-16 is between Gridlines 4&5 running between C & D. 37. Please clarify FJ-15, as per loading diagram, called out between gridlines B & C, versus that shown on Sht. S-3 & S-4, between gridlines B & D. o Please see revised sheet S-3 and S-4; the correct FJ-15 is indicated and revised accordingly. ViaSat Building #10 Building Code Plan Check PRIME J0B:2K13-150 ^ STRUCTURAL DATE: JL2M^ ENGINEERS SHT: PC-4 38. The foundation legend is not clear on Sht. S-2, gridiine E, between lines #1 & 3. o Please see revised sheet S-2, the error has been corrected. 39. Detail 8/Sl, as referenced on 9/SD-2 is incorrect. o Please see updated 9/SD-2; the correct reference has been made. 40. General Requirements for Intermediate Special Shear Walls: a. Please show step by step how the intermediate precast structural walls satisfy all the relevant provisions of 21.4 o We have used the indirect connection method to tie the wall panels to footing or grade beam. The rational load path is established to transfer the in-plane and out-of-plane forces from wall panels through the concrete slab on grade's pour strip and back down to the foundation footings. Please see details 2, 3,5 and 8/SD-l. b. All wall piers shall be design as per Section 21.9 or 21.13. Please see ACI 318-11, section 21.4 for the clarification of the intent. o Each shear wall has been checked for wall pier and coupling beam requirements as calculated per calculation pages L-70, L-78, L-84, L-93... c. Please show all elements of the connections that are not design to yield shall develop at least 1.5 Sy. ACI 318-11, section 21.4.3 o Please refer to details 9 and 10/SD-l and also see revised rebar welding schedule on 13/S-l. The welds and L's have been updated to develop the strength of 1.5 Xfy of reinforcing hold down bars. For example for a #9 hold down bar, the area ofthe L required, A.^e^ = (1.5*1.0 in'*60 KSI)/(0.9*36 KSI) = 2.78 in^ therefore use L3X3Xy2 (As = 2.75in^). For a #8 hold down bar, the area of the L required, Asreq = (1.5*0.79 in' * 60 KSI)/(0.9*36 KSI) = 2.19 in' therefore use L2 y,X2y2X'A (As = 2.25 in" and also please refer to attached page PC-33 for required weld length. 41. Special Shear Walls and Coupling Beams. o Please refer to calculation page L-110 for shear wall design of shear reinforcement design and checks, boundary element requirement, coupling beam checks. Also see PC- 34 thru PC-35for design and requirements check for Panel 1-2. o For transverse ties of column at Panel E-4, E-5, W-4 and W-5, per ACI 318-08, section 21.6.4.4; A,, = 0.3*(s*b,*fJf,M(Ag/A,,)-lj (eq. 21-4) and A,, = 0.09*s*b,*fyfy, (eq. 21- 5). Ash is govern by Eq. 21-5, base on 4" spacing of ties A^h = 0.09*4"*20"*4 ksi/60 ksi = 0.48 in'. We provided #4 ties @ 4" O.C. with ft4 crossties at 4" O.C. A^^ = 3 * 0.2 in' = 0.6 in'. See revised detail 7/SD-5. 42. Please justify no shear reinforcement in GB's under panels 1-1 and 2. o Please see calculation sheet L-125 and L-129for Grade Beam calculations of shear walls @ Une 6.3 and 5 respectively. The concrete shear strength, V^ = 444 kips and the maximum V„ = 379.7 kips, therefore since the required shear is less than the shear strength ofthe concrete shear reinforcement is not required. ViaSat Building #10 Building Code Plan Check PRIME J0R:2K13-150 ^ STRUCTURAL DATE:_im4_ ENGINEERS SHT: PC-S 43. Please cross reference detail 3A/S8, on panel W-9, sheet S-8. o Please refer to the plan on Sheet S-8, the return leg on panel W-9 is dimensioned as 5'- 8", therefore 3/S-8 is correctly referenced on the panel elevation on Sheet S-8. 44. Please specify where detail l/SD-7 is crossed referenced on the plans. o Please see revised detail l/SD-7 and referenced on 3"^ floor framing plan on sheet S-4, near stair by gridiine 10. 45. Please indicate where detail 18/SD-6 is called out on plans. o Deto/7 18/SD-6 is referenced on detail 17/SD-6 which is also referenced on the floor framing plans on sheets S-3 and S-4 at the location ofthe elevator 46. On sheet S-6 for panel E-4 & E-5 at 13 %" columns, #3 ties spacing is shown at 6" o.c. (full height) versus detail 7/SD-5, referenced here, showing ties are @ 3" o.c. Clarify. o Please see revised panel elevation on sheet S-6 and detail 7/SD-5. #4 ties and crossites have been provided @ 4" o.c. 47. Please state where details 5 & lO/SD-5 are cross referenced on plans. o 5/SD-5 is reference on the panel E-4 at the roof level showing the reinforcement from top of wall to top of opening. lO/SD-5 is not used on the plans and has been voided. 48. Please specify the panel thickness & reinforcement in each direction on detail 1/ SD-6. o Please refer to sheet S-7 for panel elevation. On the panel elevation there is a wall type 5 called out for the panel. This wall type 5 can be found on detail 5/S-l, which indicates the typical reinforcement for wall type 5 is #5(V) @ 14" O.C. each face and #4(H) @ 16" O.C. 49. Please note where 5/SD-4 is cross referenced on plans. o Detail 5/SD-4 is reference on panel N-l and S-1 at tbe thicken header portion over the openings. 50. Please indicate where detail 5/SD-3 is called out on plans. o 5/SD-3 is reference on detail 3/SD-3 which is referenced on the plans S-3 and S-4 for ledger bolting. 51. Please add an HSS column to footing connection detail for C9, on S-2, by stairs. Alternatively, reference an existing detail for this condition on plans. o Please see added detail reference on foundation plan sheet S-2 and new detail lO/SD-8. ViaSat Building #10 Building Code Plan Check PRIME JOB:2K13-150 ^ STRUCTURAL DATE:_b2l£!4_ S» ENGINEERS SHT: PC-S 52. Please specify the A.B. embedment on details 12 & 14/SD-l. This information is not noted on the column schedule. o See revised details 12 & 14/SD-l. Embedments have been added for anchor bolts per 4/S-l. 53. Please clarify the effective thickness of 9 %" as per calculations, versus what is shown on plans, i.e., 6 'A" etc... o Please refer to sheet S-6 and panel E-3, E-6, W-3 and W-6. On top of these panels there is a box with a number in it, this refers to the typical panel type as indicated on note ffl of the panel notes on sheet S-7. So for these panels they are of Type 2 panel. Type 2 panel as denoted on the panel reinforcing schedule on 5/S-l indicates that it is a 9 %" thick panel typically and recessed to 6 A" over the window. 54. Please specify W18X40, as per calculations, on sheet S-5, for the mechanical well on Gridiine D, instead of W18X35, as noted. o Please see updated sheet S-5, W18X40 has been specified. 55. Please provide a schematic for the 2"'' floor, similar to that on page 36 of the calculations. o Please see attached calculation pages PC-36 thru PC-45. 56. Please show how the 9' parapets, as shown on the plans, are accounted for in the design of the tilt-up wall panels, i.e. See panel E-4, E-5, etc...Sheet S-6. o For parapet design, Fp = [(0.4apSDSWp)/(Rp/lp)] * (l+2(z/h)) (eq. 13.3-1). Base on ASCE 7-05 Table 13.5-1; Op=2.5 and Rp=2.5. Therefore Fp=0.948*Wp, with an 8" thick wall panel at the parapet the wall weight = 100 PSF. Fp=94.8 PLF perfect, and maximum moment at 9'-0" tall parapet = 3.84 k-ft per foot. Base on a 12" width of the 8" thick panel (effective thickness = 7 %") the Asreq-d = 0.28 in'/ft. We have provided #5(V) @ 13" O.C. as shown on detail 5/SD-5, Asprovided = 0.31 in' * 12/13 = 0.29 in'/ft. > 0.28 in'/ft. 57. Please double check the spacing of all rebar(s) on panel calculations. I.e...justify #4 (S) 9" o.c, as noted on page 148 of the calculations, for pier #1, versus #4 @ 10" o.c. as shown for wall type #1, on schedule 5/S-l o Please refer to panel E-1 for this response. Panel E-1 is shown as a Type 1 panel per typical concrete panel schedule 5/S-l. So typically for a Type 1 panel the reinforcement would be #4(H) @ 12" O.C. and ff4(V) @ 10" O.C. Unless otherwise noted. So for the 5'- 0" pier of Panel E-1, the calculation shows the reinforcing required to be #4 @ 9" O.C, this equates to an area of steel required, A^req'd = 0.2 in' * 12/9 = 0.27 in'/ft. For the 5'- 0" pier (Pier A), the total steel required, As,totai = 0.27 in'/ft * 5' = 1.33 in'. For Pier A, the area of steel provided, As,provided = 2-ff4(V) + 4-ff5(V) = (2 * 0.2 in') + (4* 0.31 in') = 1.64 in' > 1.33 in'. As you can see the total area of steel provided for each pier is greater than the total area of steel required by the design and has been check forp balance condition. ViaSat Building #10 Building Code Plan Check PRIME JOR:2K13-150 ^ STRUCTURAL DATE:_L2M4_ ENGINEERS SHT: PC-7 58. Please show a detail depicting the transition between the GB & pad footing on gridiine #5, Sheet S-2. o Please see revised detail l/SD-8 referenced on sheet S-2. The detail shows that the bottom of the pad footing to be at the bottom of elevator pit wall footings. This detail depicts the grade beam to be continuous through the spread footing with additional concrete and reinforcement provided for the spread footing as required by the spread footing schedule. 59. The column like elements such as those on panel E-4, should have transverse reinforcement spacing complying with ACI 318-11, section 21.6.4. o Please see updated panel elevation on sheet S-6 and revised detail 7/SD-5, ff4 ties and crossties have been provided @ 4" o.c. 60. Please show details and references on plans for the transition lines between the &A" panels and 8" (or 9") panels below, etc.. o For ledger conditions where there is a 6 A" panel with a thicken portion below please see details 3 or 4/SD-2. The ledger L is used as a mud stopper to for the top of the thicken portion at the transition from the 6 A" thick panel to the thickened portion. Also please see added detail ll/SD-8 which shows this condition at the joist seat. 61. Please observe that as per the architectural elevation plans the %" reveal are in both directions. See the next correction item as well. o Yes, we have accounted for a maximum %" reveal in all of our panel design. For example, the calculation for a typical Type 1 panel checks the user input of d =3 %"and then if there are reveals present, this dimension d= 3 X" -%" = 2 A" at the reveals is taken into account. Even though the detail on 5/S-l depicts the d dimension as 3 A" we have taken into account that at the reveal lines the d = 2 A". The dimension, d, shown on 5/S-l is for construction purpose as we have already taken into account for the d dimension with a %" reveal. Please see the sketch below, this is reflected in our calculation page 80, revel depth = 0.75" and d @ reveal = 2.5". But the d from the interior face of wall would still be 3 A" for seismic forces in the opposite direction. '4 . -VERTICAL REIhF. EXAMPLE OF feh" PANEL o For the in-plane shear wall calculation the effective thickness of t - A" was used in calculating the effective cross section of each shear wall. ViaSat Building #10 Building Code Plan Check PRIME JOB:2K13-150 a STRUCTURAL DATE:_L21J4_ ENGINEERS SHT: PC-B 62. Please show the %" reveal(s) on the exterior face of the wall panel details on sketch 5/S-l. As such, indicate how the "d" distance was determined for each panel type. o Please see response to item ff61. 63. Please provide a narrative in the calculations clearly describing the lateral force resisting system for this project in each direction along with your design assumptions. o Please see the following below for building design criteria and assumptions. Main Building Occupancy Category: II Importance Factor: I = 1.0 Mapped Spectral Response Acceleration Parameters: Ss= 1.131g, Si= 0.428g Site Classification: D Design Spectral Acceleration Parameters: Sos = 0.789g, SDI = 0.449g Seismic Design Category: SDC = D Designated Seismic Force Resisting System: Special Reinforced Concrete Precast Shear walls. Response Modification Coefficient: R = 5.0 System Over strength Factor: 00=2.5. 64. Please submit a statement from the contractor that they are able to erect 3-story building wall panels.... o As we have discussed per our telephone conversations, we have extended the thicken portion ofthe panels and reinforcing steel to be continuous from f floor to the 3^''floor, please see revised panel elevation sheet S-6 and S-7. Since we are applying this revision consistently with all of tbe panels, we believe that the change in rigidity relative to each other wiil not impact the seismic forces distributed to each panel. 65. Please provide calculations for all miscellaneous structures under this permit, ie., antenna, trash, mechanical enclosures, trellis. o Please refer to calculation pages 186-196for design of antenna enclosure walls. o Please refer to calculation pages 197-206for design of mechanical enclosure walls. o Please refer to calculation pages 207-211 and 219-223 for design of trash enclosure walls and framing over trash enclosure, respectively. o Please refer to calculation pages 212-217 for design of parking enclosure walls. o Please refer to attached calculation page PC-26 thru 31 for design of free-standing trellis. ViaSat Building #10 Building Code Plan Check PRIME J0B:2K13J70 ^ STRUCTURAL DATE:_1.2(iH. •'/sms ENGINEERS SHT: PC-9 www.hilti.us Profis Anchor 2.3.0 Company; Specifier; Address: Plione I Fax: E-Mail: Page; Project: Sub-Project I Pos, No,: Date: 1 ViaSat BIdg. #10 1/16/2014 Specifier's comments: Plan Check #29 1 Input data Anchor type and diameter: Effective embedment depth: Material; Hex Head ASTM F 1554 GR. 36 3/4 he, = 8.000 in. ASTM F 1554 Proof; Stand-off installation; Proflle; Base material: Reinforcement: Seismic loads (cat. 0, D, E, or F) Geometry [in.] & Loading [lb, in.lb] design method ACI 318 / CIP - (Recommended plate thickness; not calculated) no profile cracked concrete, 4000, f^' = 4000 psi; h = 12.000 in. tension; condition B, shear condition B; edge reinforcement: none or < No. 4 bar yes (D.3,3,6) Input data and results must be checked for agreement with Uie enisling condrtions and for plausibility! PROFIS Anchor ( c) 2005-2009 Hiiti AG, FL-S494 Schaan Hiiti is a registered Trademark ol Hiiti AG, Schaan PRIME JOB a STRUCTURAL DATE: ENGINEERS SHT; 2K13-170 1-2014 PC-10 www.hilti.us Profis Anchor 2.3.0 Company: Page: 2 Specifier; Project: ViaSat BIdg, #10 Address: Sub-Project I Pos, No,: Phone I Fax: | Date: 1/16/2014 E-Mail: 2 Load case/Resulting anchor forces Load case: Design loads Anchor reactions [Ib] Tension force: (+Tension, -Compression) Anchiy Tension force Shear force Shear force x Shear force y 1 0 1315 1315 0 max, concrete compressive strain: - [%»] max. concrete compressive stress: - [psi] resulting tension force in (x/y)={O.O00/0.0GO): 0 [lb] resulting compression force in (x/y)=(0,000/0.000): 0 [lb] 3 Tension load Load Nu, [Ib] Capacity ^Nn [Ib] Utilization = tij^„ Status Steel Strength* N/A N/A N/A N/A Pultout Strength* N/A N/A N/A N/A Concrete Breakout Strength** N/A N/A N/A N/A Concrete Side-Face Blowout, direction ** N/A N/A N/A N/A * anchor having the highest loading **anchor group (anchors in tension) Input data and results must be checked for agreement with me existing conditions and for plausibility! PROFIS Anchor (c) 2003-2009 HiHi AG. FL-9494 Schaan HiIti is a registered Tradema* of Hit AG, Schaan www.hilti.us PRIME J0B:2K13-170 STRUCTURAL DATE:_L:2Q14_ •'jg^ ENGINEERS SHT: PC-II Profis Anctior 2.3.0 Company: Specifier: Address: Phone 1 Fax; E-Mail: Page: Project; Sub-Project 1 Pos, No,: Date: ViaSat BIdg, #10 1/16/2014 4 Shear load steel Strength* Steel failure (with lever arm)* Pryout Strength** Concrete edge failure in direction x** * anchor having the highest loading ' Load V„. [Ib] 1315 lm N/A N/A 1315 6897 1315 1345 •anchor group (relevant anchors) Capacity jiVn [lb] Utilization py = VJifVn Status ~i5ir- N/A OK OK 18 N/A 20 98 4.1 Steel Strength V„ =n0,6A,„,vfu,a ^ VjiBei £ Vua Variables n ACl 318-08 Eq. (D-20) ACl 318-08 Eq, {D-2) A..,v [in,'] 1 Calculations V^[lb] 11623 Results V.a[lb] 0.33 futa [psi] 58000 11623 0,650 (|iV«i[lbl Vua [lb] 7555 1315 4.2 Pryout Strength Vcp = k^p J^^^^ v|,ed.N l|/c,N V|/cp,N Nb] ltlVcp2Vua /W see ACI 318-08, PartD.5,2,1, Fig, RD.5.2.1(b) ANCO = 9 hl( Vec.N - I S 1.0 V.d,N = 0.7.0.3(^)sl.O \ Cac Cac / VCP.N Nb = kcxV^h:i^ Variables ken h„[ia) eci,N tin] ACI 318-08 Eq. (D-30) ACI 318-08 Eq. (D-2) ACI 318-08 Eq. (D-6) ACI 318-08 Eq. (D-9) ACI 318-08 Eq. (D-11) ACI 318-08 Eq. (D-13) ACI 318-08 Eq, (D-7) ec2,N [in-l Ca.mln [in ] 8,000 0,000 0,000 6,000 Cac [in.] Ic [psi] 4000 1.000 24 Calculations ANC [in.'] ANCO [in-Vecl,KI VecZ.N Ved.N Vcp,N Nb[lb] 324,00 Results Vcp [lb] 32843 576.00 ijlooncrete 0.700 1.000 ijlseismic 0,750 1,000 i^iwiiductile 0.400 0.850 It. Vcp [lb] 1.000 34346 6897 1315 Input data and results must be checked for agreement with the existing concfitions and for plausibility! PROFIS Anchor (c) 2003-2009 HIIti AG, FL-9494 Schaan Hlti Is a lagislered Trademadi of HM AG, Schaan PRIME JOB:2K13-170 STRUCTURAL DATE:_L2im_ ENGINEERS SHT: pc-12 www.hilti.us Profis Anchor 2.3.0 Company: Specifier; Address: Phone I Fax: E-Mail: Page: Project: Sub-Project I Pos. Date: ViaSat BIdg. #10 1/16/2014 4.3 Concrete edge failure in direction x+ rAy, \cO/ • Vcb^Vua Ave see ACI 318-08, Part D.6.2,1, Fig, RD.6.2.1(b) Vci, = (a^) Ved.V M'c.V Vh,V fparallei.V Vb S1.0 V.d.v = 0.7+ 0.3(^)^1.0 \|/h,V Vb h. £1.0 (7(^) Vdlj.V^cJf Variables Cat [in.] 6.000 Ca; [in.] 6.000 ACl 318-08 Eq,(D-21) ACI 318-08 Eq.(D-2) ACl 318-08 Eq.(D-23) ACI 318-08 Eq,(D-26) ACI 318-08 Eq, (D-28) ACI 318-08 Eq, (D-29) ACI 318-08 Eq. (D-24) ecv [in ] 0,000 1,000 h.[in,] 12,000 I. [in.] d.[in,] f'c [psi] qiparailel.V 6,000 0,750 4000 1.000 Calculations Ave [in.'] 135.00 Results Vcb [lb] Avco [in.'] y/ecv V«d,V yii.v Vb[lb] 162,00 ^ootiCTete 1,000 0,900 itlnondudile 1,000 »Vct 8541 Vu.(lb] 6406 0,700 0.750 0,400 1345 1315 5 Warnings • To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor. Load re-distributions on the anchors due to elastic defomiations of the anchor plate are not considered. The anchor plate is assumed to be sufficiently stiff, in order not to be defomned when subjected to the loadingi • Condition A applies when supplementary reinforcement is used. The <t> factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to ACl 318, Part D.4.4(c). • Checking the transfer of loads into fhe base material and the shear resistance are required in accordance with ACI318 or the relevant StandardI • An anchor design approach for structures assigned to Seismic Design Category C, D, E or F is given in ACI 318-08 Appendix D, Part D.3.3.4 this requires the goveming design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case. Part D.3.3.5 requires that the attachment that the anchor is connecting to the stnjcture shall be designed so that the attachment will undergo ductile yielding at a load level con-esponding to anchor forces no greater than the controlling design strength. In lieu of D,3.3.4 and D,3,3.5, the minimum design strength of the anchors shall be multiplied by a reduction factor per D.3.3.6. /Vl alternative anchor design approach to ACI 318-08, Part D.3.3 is given in IBC 2009, Section 1908,1,9, This approach contains "Exceptions" that may be applied in lieu of D,3,3 for applications involving "non-stnjctural components" as defined in ASCE 7, Section 13.4.2. An alternative anchor design approach to ACI 318-08, Part D.3.3 is given in IBC 2009, Section 1908,1,9, This approach contains "Exceptions" that may be applied in lieu of D.3,3 for applications involving "wall out-of-plane forces" as defined in ASCE 7, Equation 12,11-1 or Equation 12.14-10. • It is the responsibility ofthe user when inputting values for brittle reduction factors ((j)noi,auc«ie) different than those noted in ACl 318-08, Part D,3,3,6 to determine if they are consistent with the design provisions of ACl 318-08, ASCE 7 and the goveming building code. Selection of (ji„„Mi,o«ie = 10 as a means of satisfying ACl 318-08, Part D.3,3,5 assumes the user has designed the attachment that the anchor is connecting to undergo ductile yielding at a force level <= the design strengths calculated per ACI 318-08, Part D.3,3.3. Fastening meets the design criteria! Inmit datfl and results must h« rhf^rkori fnr anrumma^ u/tth »%o aviciinn r-nnMttii o^c <yhff ^-rf. PRlh4E'iob: . STRUCIURAlDate:. ^ENGirtEERSsht PC-]3 PRIME J0R:2K13-170 ' • ' ENGINEERS SHT:_Pcj4_ PRIME JOB 1^ ^^2^r^rir STRUCTURAL DATE; •' ^^M. ENGINEERS SHT; 2K13-170 1-ffl14 PC-15 ^^B PME C-^/ PRIME Job: . STRUCTURAL Date;. lENGlNEIRS SM; ^C-IG DOUBLY AND SINGLY SYMMETRIC MEMBERS SUBJECT TO FLEXURE AND AXIAL FORCE (LRFD DESIGN PER ANSi/AISC 360-05) DESCRIPTION: 2K13-170 DRAG LINE 5 (BET. A/B) DESIGN PROPERTIES: Shape = W14X22 E = 29000 ksi ho = 13.40 in J = 0.208 Fy = 50.00 ksi b,= 5.00 in 314 A = 6.5 ln= tw = 0.23 in <t>C = 0.9 d = 13.7 in tf= 0.34 In <Pb = 0.9 Lx = 21.33 ft K = 1.00 lx = 199,00 in'' Ly = 7.11 ft 1.00 Zx = 33.20 in= Lb = 7.11 ft (KL/r),= 46.20 Sx = 29.00 (KL/r),= 82.04 rx = 5.54 c = 1.00 Stress Increase = 1.00 'y = 7.00 in" Cb = 1.00 Zy = 4.39 in=' ris = 1.27 Sy = 2.80 kc = 0.55 ry = 1.04 FLANGE CHECK: b,/2t,= 7.46 Ap,= 9.15 Arf = 24.08 COMPACT FLANGE CROSS SECTION CHECK: Lb= 85.3 in =7.11 ft Lp= 44.1 in =3.67 ft L,= 125.3 in =10.44 ft NON-COMPACT SECTION 2^ Max Moment = 17.1 k-ft W14X22 69.9 k APPLIED LOADS: Loads applied shall be in LRFD Axial, Pr = Bending, Mix = Bending, M^y = 69.9 k 17.1 k-ft 0.0 k-ft •• 205 k-in 0 k-in CAPACITY: 'cy <t>c-Pn •• 4)b-Mnx: (PbMny = INTERACTION: Pr/Pc + (8/9)[Mr/Mc] •• 178.5 k 99.9 k-ft =1199 k-in 16.5 k-ft =198 k-in 0.54 < 1 (Interpolate AISC Table 4-1) (See AISC Table 3-2) (See AISC Table 3-4) PRIME Job: STRUCTURAL Date: iSlGiNEERSsht: _E£i 17 DOUBLY AND SINGLY SYMMETRIC MEMBERS SUBJECT TO FLEXURE AND AXIAL FORCE (LRFD DESIGN PER ANSI/AISC 360-05) DESCRIPTION: 2K13-170 ROOF DRAG LINE 5 (BET. B/C) DESIGN PROPERTIES: Shape = W18X35 E = 29000 ksi ho = 17.30 in J = 0.506 Fy = 50.00 ksi b,= 6.00 in C„ = 1140 A = 10.3 in' tw = 0.30 in <Pc = 0.9 d = 17.7 in tf= 0.43 in <Pb = 0.9 Lx = 26.67 ft kx = 1.00 lx = 510.00 in" l-y = 9.55 ft ky = 1.00 Zx = 66.50 in= Lb = 9.55 ft (KL/r),= 48.87 Sx = 57.60 (KL/r)y= 93.93 rx = 7.04 c = 1.00 Stress Increase = 1.00 "y = 15.30 in" Cb = 1.00 Zy = 8.06 in' rts = 1.51 Sy = 5.12 ko = 0.55 ••y = 1.22 FLANGE CHECK: b,/2t,= 7.06 Ap,= 9.15 Arf = 24.08 COMPACT FLANGE CROSS SECTION CHECK: Lb= 114.6 in =9.55 ft Lp= 51.7 in =4.31 ft Lr= 148.5 in = 12.38 ft NON-COMPACT SECTION =4> Max Moment = 29.3 k-ft W18X35 163.9 k APPLIED LOADS: Loads applied shall be in LRFD Axial, P, •• Bending, M„: Bending, M^ •• 163.9 k 29.3 k-ft 0.0 k-ft • 352 k-in •• 0 k-in CAPACITY: Mc M, ley OcPn = 243.1 k ct)b Mnx= 185.6 k-ft = 2227 k-in <J>b-Mny = 30.2 k-ft = 363 k-in (Interpolate AISC Table 4-1) (See AISC Table 3-2) (See AISC Table 3-4) INTERACTION: Pr/Pc + (8/9)[Mr/Mc] • 0.81 < 1 PRIME J0B:2K13-170 STRUCTURAL DATE:_L2214_ ^ . ^ ENGINEERS SHT:^ Gravitv Beam Design RAM Steel vl4.02.02.00 DataBase: 2K13-170_Future Mech Load Buildmg Code: IBC Alt PRIME J0B:2K13-170 ^ STRUCTURAL nm, 1-2014 •'^^ ENGINEERS SHT: pc-19 01/16/14 16:23:58 Steel Code: AISC360-05 ASD Floor Type: 2ND Beam Number = 202 SPAN INFORMATION (ft): I-End (112.00,50.00) J-End (112.00,78.67) Beam Size (User Selected) Total Beam Length (ft) Mp (kip-ft) = 458.33 POINT LOADS (kips): Dist 5.250 12.917 8.792 DL 2.60 6.18 2.50 RedLL 2.05 7.31 Red% 12.5 12.5 W21X50 28.67 NonRLL 0.00 0.00 Fy = 50.0 ksi StorLL 0.00 0.00 Red% 0.0 0.0 RoofLL 0.00 0.00 Red% 0.0 0.0 LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.212 0.407 12.5% Red 14.208 0.212 0.407 2 0.000 0.031 0.149 — NonR 14.208 0.031 0.149 3 14.209 0.243 0.467 12.5% Red 28.666 0.243 0.467 4 0.000 0.208 0.400 12.5% Red 5.250 0.208 0.400 5 5.250 0.026 0.050 12.5% Red 12.916 0.026 0.050 6 12.917 0.208 0.400 12.5% Red 28.666 0.208 0.400 7 0.000 0.050 0.000 — NonR 28.666 0.050 0.000 SHEAR: Max Va (DL+LL) = 28.75 kips Vn/l.SO = 158.08 kips MOMENTS: Span Cond LoadCombo Ma @ Lb Cb Q Mn/Q kip-ft ft ft kip-ft Center Max + DL+LL 228.6 12.9 0.0 1.00 1.67 274.45 Controlling DL+LL 228.6 12.9 0.0 1.00 1.67 274.45 REACTIONS (kips): DL reaction Max +LL reaction Max +totaI reaction (factored) DEFLECTIONS: Left 13.47 15.27 28.75 Right 10.76 13.67 24.43 Dead load (in) at 13.90 ft = -0.515 L/D = 668 Live load (in) at 14.05 ft = -0.588 L/D = 585 Net Total load (in) at 14.05 ft = -1.104 L/D = 312 PRIME Job; STRUCTURAL Daje; ENGINEERS Sht _PC. 20 DOUBLY AND SINGLY SYMMETRIC MEMBERS SUBJECT TO FLEXURE AND AXIAL FORCE (LRFD DESIGN PER ANSI/AISC 360-05) DESCRIPTION: 2K13-170 FLOOR DRAG LINE 5 (BET. B/C) DESIGN PROPERTIES: Shape• W21X50 E = 29000 ksi ho= 20.30 in J = 1.14 Fy = 50.00 ksi bf = 6.53 in 2570 A = 14.7 in^ t«= 0.38 in <Pc = 0.9 d = 20.8 in tf= 0.54 in 0b = 0.9 Lx = 28.67 ft kx = 1.00 lx = 984.00 in" Ly = 7.17 ft ky = 1.00 Zx = 110.00 in' l-b = 7.17 ft (KL/r),= 42.06 Sx = 94.50 (KL/r),= 66.18 rx = 8.18 c = 1.00 Stress Increase = 1.00 ly = 24.90 in" Cb = 1.00 Zy = 12.20 in' ru = 1.64 Sy = 7.64 kc = 0.57 ry = 1.30 FLANGE CHECK: CROSS SECTION CHECK: b,/2tf= 6.1 Lb = 86.0 in = 7.17 ft Ap,= 9.15 Lp = 55.1 in = 4.59 ft Arf= 24.08 Lr = 162.7 in = 13.56 ft COMPACT FLANGE NON-COMPACT SECTION Max Moment = 212.6 k-ft 64.0 k 64.0 k A W21X50 A APPLIED LOADS: Loads applied shall be in LRFD Ma\, Pr = Bending, Mn = Bending, M^y = 64.0 k 212.6 k-ft =2551 k-in 0.0 k-ft = 0 k-in CAPACITY: Mp< = Mcy = <J)c Pn = 480.2 k 0b Mnx = 365.2 k-ft = 4383 k-in Ob Mny = 45.8 k-ft = 549 k-in (Interpolate AISC Table 4-1) (See AISC Table 3-2) (See AISC Table 3-4) INTERACTION: Pr/2Pc + [Mr/Mc] •• 0.65 < 1 - PRIME J0B:2K13-170 \1\P0^ m\l^]i^ /g^ STRUCTURAL nm-. 1-2014 ENGINEERS SHT: pc-21 (1 1 ^( 15. 5^, 1 <^ (1, 3( PKlMllJ J0B:2KlM7Qr STRUCTURAL DATE:_L2i214_ ENGINEERS SHT: pc-22 6.5 6.6 6,5 6.5 6,5 6,5 6,5 6,5 6.5 6,5 6,5 6.6 6.5 6.6 6,5 6.5 6,5 6,5 6,5 6,5 6.5 6.5 6,5 6.5 6,5 6.5 6,5 6.5 6,5 6,6 6,5 6,5 6,5 6.5 6,5 6.6 6,6 6.5 6,5 6.5 6,5 6,5 6,5 6,5 6,6 6.5 6,5 6,6 6,6 6,5 6,5 6.6 6,5 6,5 6,6 6,6 6,5 6.5 6,5 6.5 6,5 6.6 8,5 6,5 6,5 6,5 6,5 6,5 6,5 6.5 6,5 6.5 6,5 6,5 6.6 6,5 6,5 6,5 6.5 6,5 6,5 6.5 6,5 6.5 6,5 6,6 6,5 6,5 6,5 6,6 6,6 6,5 6,6 6.5 6.5 6,5 6.5 6.5 6,5 6.5 6,5 6.5 6,6 6,5 6,5 6,6 6,5 6,5 6,5 6,5 6,6 6,6 6.5 6,5 8 8 6,5 6,6 6,5 6,5 8 8 6,5 6,5 6.5 6,5 8 8 6,5 6,5 6,5 6,5 8 8 6,5 6,5 8 8 8 8 8 8 a 8 8 8 6,5 6,5 6.6 6,5 8 8 6.5 6,5 SK-1 PSE E-1 Jan 17, 2014 at 3:36 PM 2K13-170 E-1,r2d tt. PRIME J0B:2K13-170" ^ STRUCTURAL DATE:_L2fi14_ ENGINEERS SHT: pc-23 6,5 6.5 6.6 6.5 6,5 6,5 6,5 6,5 6,5 6.6 6.5 6.6 6,5 6,5 6,6 6,5 6.6 6,5 6,5 6.5 6,5 6.5 6,5 6,5 6,5 6,6 6,6 6,5 6.5 6.5 6.5 6.5 6,5 6,5 8,5 6,5 6,5 8.5 6,5 6.5 6.5 6.5 6,5 6,5 6,5 6,5 6,5 6,5 6.5 6.5 6,6 6,5 6,5 6,5 6,5 6.5 6,5 6.5 6,5 6,5 6,5 6.5 6.5 6.5 6,5 6,6 6.5 6,5 6.5 6,5 6,6 6.5 6.6 6,5 6.5 6,5 6,5 6.5 6.5 6,5 6,6 6,5 6,5 6,5 6,5 6.5 6.5 6,5 6,5 5,5 6,5 6,5 6.5 6,5 6.5 6,5 6.5 6,5 6,5 6,5 6,5 6.5 6,6 6,5 6,5 6,5 6.5 6.5 6.5 6,5 65 6,5 6.5 6,5 6.5 6,6 6.5 6.5 6.5 6-5 6,5 6,5 6.5 6.5 6,5 6.5 6.5 6,5 6.5 6,5 6.5 6.5 6.6 6,5 6,5 6.5 6.5 6,5 6.5 6,5 6.5 6,5 6,5 6.5 6.5 6,5 6.5 6.5 6,5 6.5 6,5 6,5 6.5 6.5 6,5 6,5 6,5 6,6 6.5 6,6 6,5 6,5 6.6 6,5 6,5 6.6 6.5 6,5 6.6 6,5 8 8 6,5 6,5 6.5 6,5 8 8 6.5 6,5 6,5 6,6 9 9 6,5 6.5 6.5 6,5 8 8 6,5 6,6 6.5 6.5 8 6 6.5 6,5 6,5 6,5 9 9 6,5 6,5 8 8 8 8 9 9 8 8 8 8 9 9 6.5 6,5 8 8 6,5 6.5 6,5 6,6 8 8 9 9 6,5 6,5 PSE 2K13-170 E-2 SK-1 Jan 17, 2014 at 3:34 PM E-2,r2d PRIME J0B:2K13-170 ^ STRUCTURAL DATE:_L2Q14_ ENGINEERS SHT: PC-24 5.aaekiii 9,25 9.26 9,25 9,25 9.25 9.25 9,25 9,26 9.25 9,25 9.26 9,25 9,26 9.25 9,25 9.25 9,25 9.25 9,25 9.25 9,25 9,25 9,25 9.25 9,25 9.25 9.25 IIJIJ^ 9.25 9,25 9.25 9.25 9.25 9.25 9,25 9.25 >6k , 9.25 9.25 9,25 9,25 9.25 9.25 , 9.25 i . . 9.26 9,25 9.25 9.25 9,25 9.25 9.25 9,25 9.25 9,25 9,25 9.25 9.25 9,25 9.25 9,25 9,25 9.25 9.26 9,25 9.26 9,25 9,26 9.26 6,5 6.5 6.5 9.25 9,25 9.25 9,25 9,25 9.25 6.5 6.5 6.5 9.25 9.25 9,26 9,25 9.26 9,25 6,5 6.5 6.5 9.25 9,25 9,25 9,25 9,26 9,25 6,5 6.5 6.5 9.25 9.25 9,25 9,25 9,25 9.26 6,5 6.5 6.5 9.25 9,25 9,25 9,25 9,25 9.25 9.25 9,25 9,25 9,25 9,25 9.25 9.25 9,25 9,25 9,25 9,25 9,25 9.25 9.25 9.25 9,25 9,25 9,25 9,26 9,25 6.6 6.5 6.5 9.25 9.25 9,25 9,25 9,25 9,25 6.5 6.5 6,5 9.26 9.25 9,26 9,25 9,25 9,25 6.5 6,5 6,5 9.25 9.25 9,25 9,25 9,25 9,25 6,5 6,5 6,5 9.25 9.25 9.25 9,25 9.25 9.25 6,5 6,5 6,5 9.25 9.25 9.25 9,25 9.26 9.25 9.25 9,26 9.25 9,26 9,25 9.25 9.25 9.26 9.26 9,25 9,25 9.26 9.25 9,25 9,25 9.26 9,25 9.25 9.25 9.25 9.25 <p.^77 Loads; LCI, RIGIDITY Resulte for LCI, RIGIDITY PSE 2K8-110 E-3 SK-1 Jan 17, 2014 at 3:30 PM E-3.r2d PRIME J0B:2K1MZ0. STRUCTURAL DATE:_b2m^ ENGINEERS SHT: pc-25 e 8 e 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8| 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 16,75 16,75 16.75 16.75 1675 16," 6 1675 16,75 16,75 1675 1675 16,75 16,76 16,76 16,75 16,75 13.76 16,76 16.75 16,t6 16,75 13.75 16.75 16.75 16,75 1676 13,75 16.76 16,75 16.75 16,76 16,75 16,75 16,75 16,75 16,75 16,75 1676 16.75 16,76 16,76 16.75 16,75 16,75 16,75 16,75 16,75 16.75 16,75 16.76 16,75 16,75 16,75 16,75 16,75 13,75 16,76 16,75 I6.75 1675 13.76 13,75 16,76 16,75 16, '5 1675 13.76 13,75 16,75 16,75 16,75 16,75 16,75 16.75 16.75 1675 1675 16.75 16.75 1B75 16,75 16,75 16,76 16.76 13,75 16.76 16,76 16,76 16.76 13,75 16.75 16,75 16,j'5 16.75 13,75 16.76 16,75 16.75 16.75 13,75 A,* D.^^^ E-4 SK-1 PSE E-4 Jan 17, 2014 at 3:31 PM 2K13-170 E-4 E-4,r2d fl^ (%}(f^ STRUCTURAL Date: ENGiHEERSsht: if-^^c^y^/i.ft^ - IT.'i^fKf^ |/3^cV^ r: /'^/^ (^nSi'^(f ^^v^^ x: /'^C^>c 7^ ^ /h.{7 t^i/- ^'7X ^ \/^^ 2^7 1 Date: ENGINEERS Sht: IS^i^ : i J RAM Baseplate VI.5 Prime Structural Engineers PRIME JOB:2K13-170 ^ STRUCTURAL DATE;J212fil^ ENGINEERS SHT: VC.-O.P, Detailed Design Results 1/16/14 19:37 CRITERIA: Analysis Maintain Strain Compatibility Use min. effective plate area for axial only compression load on plate. Design Use ASD 9th to check plate benciing Max concrete bearing per AISC J9. Anchor Shear Check Per AISC Specifications. Anchor Tension Check Per AISC Specifications. INPUT DATA: Column Column Size : TS8X8X.2500 Dim: BfTop TfTop BfBot TfBot TW Depth (in) 8.00 0.250 8.00 0.250 0.250 8.00 Base Plate Plate Fy (ksi) 36.000 N (Parallel to Web) (in) 14.000 B {Perpendicular to Web) (in) i 14.000 Plate Thickness (in) \ 1.000 Anchor Anchor Size ^ I 3/4" Anchor Area (in''2)...., ' 0.442 Anchor Material : [ Other / Anchor Modulus (ksi) j 29000.00 r^t/-r-J Anchor Strength Fu (ksi) i 58.00 — 5?S ^ Thread Included in Shear Plane Footing Footing Strength f'c (ksi) \ 4.00 Concrete Modulus (ksi) 1 3605.00 Dimension (Parallel to web) (ft) 6.00 Dimension (Perpendicular to web) (ft)... 6.00 Design Load Building Code: - None - Load combination: Single Load Case Axial (kip) 1.80 Vx (kip) ' 0.75 Mx (kip-ft) ' 15.82 Allowable Stress Increase Factor : 1.33 RESULTS: Analysis YBar (in) , 3.24 Resultant Angle (°) 1 0.00 Plate Bending Max bending moment frojn anchor/s #1 in tension Allowable Stress Increase Factor ! 1.33 m [N-0.95d]/2.0 (in) : 3.200 n [B-0.95b]/2.0 (in) \ 3.200 Controlling effective width to resist mjDment (in) ... 3.200 Controlling plate bending moment (kip-ft) 1.11 fb (ksi) i 25.01 Fb (ksi) : 35.91 fb/Fb 1 0.7 0 Thickness Recjuired (in) ; 0.835 Page 1 RAM Baseplate VI.5 Prime Structural Engineers PRIME J0B:2K13-170 ^ STRUCTURAL DATE; Ji:2m4_ ENGINEERS .SHT:PC-2 9 Detailed Design Results 1/16/14 19:37 Thickness controlled by cantilever action. Anchors Anchor X(in) Ydn) V(kip ) T(kip ) Interaction 1 -5.50 5.50 0.19 7.85 0.70 2 5.50 5.50 0.19 0.00 0.03 3 -5.50 -5.50 0.19 7.85 0.70 4 5.50 -5.50 0.19 0.00 0.03 Bearing Eff Area of Support A2 (in''2) \ 784.00 Plate Area Al (in^2) i 196.00 Sqrt(A2/Al) 2.00 Allowable Bearing Pressure (ksi) 3.72 Actual Bearing Stress (ksi) ; 0.77 DIAGRAM: PL 4 14.00 X 14.00 X l.OO: (in) 3/4" Other Anchor Boits X(in) -5.500 5.500 -5.500 5.500 Y(in) 5.500 5.500 -5.500 -5.500 Page 2 at trellis GRADE BEAM ANALYSIS PROGRAM (4.02) PRIME J0B:2K13-170 m STRUCTURAL DATE:J)1:2214_ ENGINEERS SHT: PC-3 0 01/17/14 2K13-170 Footing LENGTH Footing WIDTH Footing DEPTH 6.00 ft 6.00 ft 1.50 ft Cone Weight Surcharge Footing + Surch. 0.15 kef 0.00 ksf 1.35 klf POINT LOADS (k & ft) 1 X 2.40 3.00 MOMENT LOADS (kft & ft) 1 X 17.32 3.00 RESULTANTS CASE (k, ft & ksf) 1 Pt X Q max Q min 10.50 1.35 0.86 0.00 MAXIMUM FORCES (k, kft) CASE 1 V max M max M min 5. 74 11.49 -5.83 at trelJis PRIME JOB:2K13-170 STRUCTURAL DATE:JJl:2i214_ ENGINEERS SHT: PC-31 01/17/14 2K13-170 GRADE BEAM DESIGN PROGRAM (4l\02) DESIGN DATA f'c = 4.00 icsi b = 72.00 in fy = 60.00 ;csi h = 18.00 in Load Factor =1.00 d = 15.00 in SHEAR DESIGN Vmax = Vn 5.7 k 6.8 k Vc = 136. 6 k Vs = 0.0 k Av = 0.72 si/ft S max = 7.50 in Vs = 0, Stirrups are optional lis Stirrup @ 3. 7" 2 4 3 Stirrups @ 7.3" 1 # 4 Stirrup @ 6. 7" 2 i 4 Stirrups @ 7.5" FLEXURAL DESIGN Beta 1 = 0.85 As min = 3.60 si .As max = 23.09 si M+ max = 11.5 kft M- min = 45.8 kft Mn+ = 12.8 kft Mn- = -6.5 ;cft As str = 0.17 si As str = 0.09 si As = 0.23 sl As = Q.12 si Bar # 4 Bottom Steel No. Space 1.1 33.0" Top Steiel No. Space 0.6 :- CHAPTER 6 PRIME J0B:2K13-170 ^ STRUCTURAL DATE:_L2214_ ^iS^ ENGINEERS SHT: pc-33 " F CONNECTIONS Design Aid 6.15.3 Minimum Length of Weld to Develop Full Strength of Bar. Weld Parallel to Bar Length"*"' L=0.2d 15° maximum L=0.3ct Electrode £80" £90" Bar size, # "Plate ^thickness in. 6 7 8 9 10 11 3 4 5 6 7 8 9 10 11 Minimunfi length of weld, in.' 1/4 1% 2% 3^/4 5 6V, 8 9% Vl, 2% 5 &U 8 9V4 5/16 2% 5 6V4 7^/4 1V4 1% 2 2V4 3 4 5 6V4 7=/4 '8 IV4 IV4 2V4 3V, 4V4 5V4 6Vp IV4 VU 2 2V4 2% 3V4 4V4 5V4 6V, 7/16 IV4 1^/4 2V4 2V, 3V, 3% 4V4 5V, IV4 VL 2V4 2V4 3 3V4 4V, 5V, IV4 1% 2V4 2Vj 3 4V4 4V4 1V4 VL 2V4 2V4 3 3V, Min. splice length, in. 1 IV4 /rC < 1% /I yivt; 2Va XI 3 3V4 1 1 1V4 1% 2 2V4 2V4 » -}lO . a. Lengths above the heavy line are governed by weld strenglh. Lengths below the heavy line are governed by plate shear. Basis: bar f^s 60 l<sl; plate 36 ksi; shear on plate limited to 0.9(0.6)(36) = 19.44 l<si. b. Weld length listed Is the required effective length of weld. Engineer should consider whether weld at start and stop is fully effective. c. Refer to Design Aid 16.4.2 for specifications ot flare bevel groove welds. d. Refer to AWS D1.1 Table 3.1 - Prequalified Base Metal-Filler Material Comblnatlorjs for (hatching Strength and AWfS DI.4 Table 5.1 t*4atching Filler Metal Requirements. Use E80 Electrodes for ASTM A706 rebar; use E90 electrodes for ASTM A616 rebar. 6-102 First Printing/Clj-ROM Edition ^ PCI DESIGN HANDBOOK/SEVENTH EDITION PKiMH; J0B:2K12d70 ^ STRUCTURAL DATE:_L2m4_ ENGINEERS SHT: PC-34 7.969k 7.962) 7.9eai 7,9621 7,962) 7.9«ai 7.9621 7.9621 7.962l( 7,9^1 7.96S1 7.96S! 7,962^ 7,9621 7,963* 7.9621 -2,351k 4,269k 4^ 8 w 8 8 8 8 8 8 8! 8 8 w 8 8 w 8 w 8 8 -2,351k 4,269k 4^ 8 8 6 8 8 8 8 8^ 8 8 8 8 8 8 8 -2,351k 4,269k 4^ 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 -2,351k 4,269k 4^ 8 8 8 8 8 6 8 8! 8 8 8 8 8 8 8 -2,351k 4,269k 4^ 8 8 8 8 8 8 8 8, 8 8 8 8 8 8 8 8 -2,351k 4,269k 4^ 8 8 8 8 -.%»7k |69k 4^ 8 -.%171< 69k 4.; 8 -.?f17l( 69k 4.^ 8 8 8 8 8 8 8 8 8 8 -2,351k 4,269k 4^ -.%*7k 69k 4^ -,%17l< 69k A.} -.%17k 69k 4.^ 8 -.%»7k |69k 4^ 8 -.%171< 69k 4.; 8 -.?f17l( 69k 4.^ B9k =6,0i6k 81 i69k }4,J -.%17k 59k 4.^ -.%*7k 69k 4^ -.%17l( 69k 4,2 -.%»7k e9k 4j ,69k 4^ -.%17k 69k A.'f -3836k 69k , -2,361k 4,019k 4^(; 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 -2,361k 4,019k 4^(; 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 -2,361k 4,019k 4^(; 8 8 8 8 8 8 8 8^ 8 8 8 8 8 8 8 -2,361k 4,019k 4^(; 8 8 8 8 8 8 8 8; 8 8 8 8 8 8 8 -2,361k 4,019k 4^(; 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 -2,361k 4,019k 4^(; 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 -2,361k 4,019k 4^(; -,*l7k 19k 4J -,*t7k 19k 4^C -.*t7k 19k 4^C -.»7k 19k A^(, -.*i7k 19k 4X -.*47k 19k 4; -,»t7k 19k 4J -6.016k 8i 19k 14 J -.»47k 19k 4j; -,$47k 19k 4; -,J47k 19k Ai -,*t7k 19k A{, -.Wk 19k 4^ -.»17k 19k 4J -3#6k 19k , 8 8 8 8 8 8 8 8: 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8| 8 8 8 8 8 8 8 8 8 A' 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 6 8 6 8 sj. 8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 e 8 8 8 8 8 8 8 8 8 8 8 8 a 8 8 8 8 8 8 8 8 8 8 8 8 8 8; 1 8 8 8 8 8 8 8 Loads: LC 3, 0,742D + E Results ter LC 3, 0,742D + E 1-2 SK-1 PSE 1-2 Jan 20, 2014 at 12:20 PM 2K13-170 1-2 l-2.r2d PRIME Job:. SlHUCTURALoate;. ENGINEERS Sht: PC-35 Shear Wall v. 1.0-07/20/2011 CONCRETE SHEAR WALL DESIGN - SHEAR CAPACITY (PER CBC 2010 & ACI 318.08 CH 21) DESCRIPTION: ViaSat Building #10 Panel 1-2 1ST TO 2ND DESIGN CRITERIA: fc = 4000 psi jy = 60000 psi Pier Height« 15.00 ft Pier Length = 30.58 ft Pier Thk = 8,00 in Min. Thii = 8,00 in Sl)s = Jilift Total Story Dilift = V/allHi!L = PierHn.= Ut = Acfv = Vu/(f>Acv*sl(rc) = 0,881 0,1770 in 1,41 0,49 45,87 2936,0 2,33 in"2 <8,00.,.OK * = pf = ac = M = Wall Pier = Max, s = 1 = 0,6 0.0025 3,00 0,60 NO 18,00 in 4.00 1.00 LOAD COMBINATIONS: LC2:U= 1.38 D + 0.50 L +1.00Qe LC3:U= 0,72 D +1.00Qe E = QE ± 0.2SDSD •= QE ± 0.18 D FLEXURAL DESIGN: LC 1: Shear, Vu = LC 1: Min Axial, Pu = LC 1: Moment, Mu = <t)M„ = % Over = LC 2: Shear, Vu = LC 2: Max Axial, Pu = LC 2: Moment, Mu = *M„ = % Over = INTERACTION DIAGRAM RIGHT 260,0 k 397,0 k 8425,0 k-ft -17836,7 k-ft 0,00% RIGHT 260,0 k 339,0 k 8425.0 k-ft -17103.1 k-ft 0.00% BOUNDARY MEMBER REQUIREMENT: Elastic Disp. @ Story = 0.177 in 6u = 0.059 ft L/[600*(6u/h)]= 87.38 in Max Neutral Axis, c = 36.17 in Bound, Mem, Req'd = NO SHEAR DESIGN: V, -• Design, V^ = 2'Acv'^(fc) •• 2 Curtains Req'd - '^V„j„„ •• p.min •• As.rsq = N/A 260.00 k 371.37 NO <I>A.v(acV(fc)+P,f,) 0.00250 0.24 -260,0 k 335,0 k -8425.0 k-ft 17000,5 k-ft 0,00% LEFT -260.0 k 335.0 k -8425,0 k-ft 17000.5 k-ft 0,00% kips In'/ft Avf.req = Vu / («*fy*|J) = 9-63 in' 49 #4 dowels at slab on grade -SOOOO.0.40()00.0 -30000.0 -20000.0 -101 REBAR LAYbUT i:#9 @"2" ^ I i #9@ e" i 1#9@10" i 1 #9 @ 14" 1 #5 @ 26.6" 1 #5 @ 39" 1 #5 @ sr.s" 1 #5 @ 64" 1 #5 (g 76 5" 1 #5 @ 89" 1 #6 @ 101.5" 1#5@114" 1 #5 ©126.5" 1#5@139" 1#5@1S1.5" 1 #5 @ 164" 1 #5 @ 176.5" 1 #5 @ 189" 1 #6@:201.5" 1 #5 @214" 1 #5 @ 226.5" 1 #5 @ 239" 1 #5 ©251.5" 1 #5 ® 264" Provide: 1 Curtain 2 Curtains #3@ 5.S0 11.00 in O.C. #4@ 10.00 18.00 in O.C. #5@ 15.50 18.00 in O.C. #6® 18.00 18.00 in O.C. RAM steel vl 4.02.02 DataBase: 2K13-170_Future Mech Load Building Code: IBC Alt Flf [Map 01/20/14 09:21:32 Steel Code: AISC360-05 LRFD Floor Type: 2ND 5 5 1^ ^ _5l mi I I 3ZIIZJ" I I i 3 < 5 C/3 C=> «-i * I § _^ o IO CO o RAM Steel vl4.02.02 DataBase: 2K13-170_Future Mech Load Building Code: IBC Alt Flo )Map 01/20/14 09:21:32 Steel Code: AISC360-05 LRFD Floor Type: 2ND 10 a , t - -'-tt T • i' 10 2;qi-i M g g ro "D 5 9 g CO CO i: .V ^ ^ NTESNATONM RAM Steel vl4.02.02 DataBase: 2K13-170_Future Mech Load Building Code: IBC Alt Flc iMap 01/20/14 09:21:32 Steel Code: AISC360-05 LRFD Floor Type: 2ND I I if-8 t ^ >- hrl c/3 tr- [?J S i; aa a o =i E;^ Od O CO Flc iMap NtBNArrNivi RAM Steel vl4.02.02 DataBase: 2K13-170_Future Mech Load Building Code: IBC Alt Page 2/2 01/20/14 09:21:32 Steel Code: AISC360-05 LRFD Surface Loads Label Floor Storage Room DL psf 52.0 52.0 CDL psf 43.0 43.0 LL Reduction psf Type 100.0 Reducible 250.0 Unreducible CLL psf 20.0 20.0 Mass DL psf 59.0 116.5 C/3 ES O -3 B:2 TJ O CO ro o CO CO 4^ -J o m RAM Beam Summary RAM Steel vl4.02.02.00 DataBase: 2K13-170_Future Mech Load Building Code: IBC Ah PRIME JOB STRUCTURAL DATE; '^3^ ENGINEERS SHT 2K13-170 1-2014 PC-40 01/20/14 09:21:32 Steel Code: AISC360-05 LRFD JOIST SELECTION SUMMARY: Floor Type: 3RD Standard Joists: Joist # Length WDL WLL WTL Joist 6 21.33 494.0 910.Q 1404.0 xxSJxx * 8 28.67 494.0 857.0 1351.0 xxSJxx * 9 21.33 494.0 910.0 1404.0 xxSJxx * 13 21.33 494.0 910.0 1404.0 xxSJxx * 15 28.67 494.0 857.0 1351.0 xxSJxx * 16 21.33 494.0 910.() 1404.0 xxSJxx * 17 21.33 485.3 896.7 1382.0 xxSJxx * 18 28.67 485.3 845.6 1330.9 xxSJxx 20 28.67 485.3 845.^ 1330.9 xxSJxx * 22 21.33 485.3 896.7 1382.0 xxSJxx * 24 21.33 476.7 883.3 1359.9 xxSJxx * 25 28.67 476.7 834.0 1310.6 xxSJxx * 26 28.67 476.7 834.0 1310.6 xxSJxx * 27 21.33 476.7 883.3 1359.9 xxSJxx * 28 21.33 476.7 883.3 1359.9 xxSJxx * 29 28.67 476-7 834.0 1310.6 xxSJxx * 30 28.67 476.7 834.0 1310.6 xxSJxx * 31 21.33 476.7 883.3 1359.9 xxSJxx * 32 21.33 481.0 890.0 1371.0 xxSJxx * 33 28.67 481.0 839.8 1320.8 xxSJxx * 35 28.67 481.0 839.^ 1320.8 xxSJxx 37 21.33 481.0 890.(| 1371.0 xxSJxx * 39 21.33 487.5 900.3 1387.8 xxSJxx * 40 28.67 485.3 845.^ 1330.9 xxSJxx * 41 28.67 485.3 845.6 1330.9 xxSJxx * 42 21.33 487.5 900.3 1387.8 xxSJxx * 43 28.67 485.3 845.^ 1330.9 xxSJxx * 44 21.33 485.3 896.7 1382.0 xxSJxx * 45 28.67 485.3 845.6 1330.9 xxSJxx * 46 21.33 485.3 896.7 1382.0 xxSJxx * 49 21.33 485.3 897.0 1382.3 xxSJxx * 50 28.67 485.3 903.8 1440.1 xxSJxx • 52 28.67 485.3 903.8 1440.1 xxSJxx * 54 21.33 485.3 897.0 1382.3 xxSJxx * 56 21.33 485.3 896.7 1382.0 xxSJxx * 59 21.33 485.3 896.7 1382.0 xxSJxx * 60 21.33 485.3 896.7 1382.0 xxSJxx * 63 21.33 485.3 896.1 1382.0 xxSJxx * 70 21.33 450.7 842.5 1293.1 xxSJxx * 96 21.33 465.8 866.4 1332.2 xxSJxx * m RAM lt>irEl!N«DvlW Beam Summary RAM Steel vl4.02.02.00 DataBase: 2K13-170_Future Mech Load Building Code: IBC Alt PRIME J0R:2K13-170 STRUCTURAL DATE:^L:2£214_ ENGINEERS SHT: PC-4I Page 2/6 01/20/14 09:21:32 Steel Code: AISC360-05 LRFD Joist # Length WDL WLL WTL Joist 104 21.33 465.8 866.4 1332.2 xxSJxx * 205 21.33 492.9 908.3 1401.2 xxSJxx * 204 21.33 492.9 908.3 1401.2 xxSJxx * 200 21.33 470.2 873.1 1343.3 xxSJxx * 198 28.67 470.2 825.2 1295.4 xxSJxx * 197 28.67 470.2 825.2 1295.4 xxSJxx * 199 21.33 470.2 873.1 1343.3 xxSJxx * 118 21.33 477.7 885.3 1363.0 xxSJxx * 119 28.67 477.7 835.4 1313.2 xxSJxx * 121 28.67 477.7 835.4 1313.2 xxSJxx * 123 21.33 477.7 885.^ 1363.0 xxSJxx * 125 21.33 485.3 896.7 1382.0 xxSJxx * 126 21.33 485.3 896.7 1382.0 xxSJxx * 127 28.67 485.3 845.6 1330.9 xxSJxx * 128 28.67 485.3 845.6 1330.9 xxSJxx • 129 21.33 487.5 900.3 1387.8 xxSJxx * 130 28.67 485.3 845.^ 1330.9 xxSJxx * 131 28.67 485.3 845.^ 1330.9 xxSJxx * 132 21.33 487.5 900.3 1387.8 xxSJxx * 133 21.33 481.0 890.0 1371.0 xxSJxx * 134 28.67 481.0 839.8 1320.8 xxSJxx * 136 28.67 481.0 839.8 1320.8 xxSJxx * 138 21.33 481.0 890.4 1371.0 xxSJxx * 140 21.33 476.7 883.3 1359.9 xxSJxx * 141 28.67 476.7 834.0 1310.6 xxSJxx Ik 142 28.67 476.7 834.0 1 1310.6 xxSJxx * 143 21.33 476.7 883.3 1359.9 xxSJxx * 144 21.33 476.7 883.3 1359.9 xxSJxx * 145 28.67 476.7 834.(| 1310.6 xxSJxx * 146 28.67 476.7 834.0 1310.6 xxSJxx • 147 21.33 476.7 883.3 1359.9 xxSJxx * 148 21.33 485.3 896.7 1382.0 xxSJxx * 149 28.67 485.3 845.6 1330.9 xxSJxx * 151 28.67 485.3 845.6 1330.9 xxSJxx * 153 21.33 485.3 896.7 1382.0 xxSJxx * 155 21.33 494.0 910.0 1404.0 xxSJxx * 158 28.67 494.0 857.0 1351.0 xxSJxx * 159 21.33 494.0 910.Q 1404.0 xxSJxx * 163 21.33 494.0 910.0 1404.0 xxSJxx * 165 28.67 494.0 857.0 1351.0 xxSJxx * 166 21.33 494.0 910.0 1404.0 xxSJxx * Joist Girders: Beam Summary RAM Steel vl4.02.02.00 DataBase: 2K13-170_Future Mech Load Buildmg Code: IBC Alt PRIME JOB STRUCTURAL DATE: •'jg^ ENGINEERS sm 2K13-170 1-2014 PC-42 Page 3/6 01/20/14 09:21:32 Steel Code: AISC360-05 LRFD Joist # Length #Panels PDL PLL FTL Joist 5 28.50 3 13.1 17.6 30.6 XXG3N30.7K 19 27.50 3 12.6 17.3 29.9 XXG3N29.9K 21 27.50 3 14.6 18.4 33.0 XXG3N33.0K 23 27.50 3 12.6 17.3 29.9 XXG3N29.9K 34 28.00 3 12.8 17.4 30.3 XXG3N30.3K 36 28.00 3 14.8 18.5 33.4 XXG3N33.4K 38 28.00 3 12.8 17.4 30.3 XXG3N30.3K 51 28.00 3 12.8 22.9 35.8 XXG3N35.8K 53 28.00 3 14.8 50.3 65.1 XXG3N65.2K 55 28.00 3 12.8 22.9 35.8 XXG3N35.8K 185 18.08 2 14.4 23.7 38.0 XXG2N38.1K 120 28.00 3 12.8 17.4 30.3 XXG3N30.3K 122 28.00 3 14.8 18.5 33.4 XXG3N33.4K 124 28.00 3 12.8 17.4 30.3 XXG3N30.3K 135 27.50 3 12.6 17.3 29.9 XXG3N29.9K 137 27.50 3 14.6 18.4 33.0 XXG3N33.0K 139 27.50 3 12.6 17.3 29.9 XXG3N29.9K 154 28.50 3 13.1 17.6 30.6 XXG3N30.7K lecial Joists: Joist # Length +M -M Joist Size 57 28.67 205.4 0.0 XXGSP 58 28.67 205.4 O.O XXGSP 61 28.67 204.5 0.0 XXGSP 62 28.67 204.5 0.(i XXGSP Floor Type: 2ND Standard Joists: Joist # Length WDL WLI^ WTL Joist 6 21.33 494.0 910.0 1404.0 xxSJxx • 8 28.67 494.0 857.( ) 1351.0 xxSJxx * 9 21.33 494.0 910.C ) 1404.0 xxSJxx * f^'\ 13 21.33 494.0 910.( ) 1404.0 xxSJxx * 15 28.67 494.0 857.( ) 1351.0 xxSJxx * 16 21.33 494.0 910.0 1404.0 xxSJxx * 17 21.33 485.3 896.' 1382.0 xxSJxx * 18 28.67 485.3 845.( 1330.9 xxSJxx * 20 28.67 485.3 845.( 1330.9 xxSJxx * 22 21.33 485.3 896.7 1382.0 xxSJxx • 24 21.33 476.7 883.3 1359.9 xxSJxx * /^j-3 25 28.67 476.7 834.0 1310.6 xxSJxx * 26 28.67 476.7 834.C 1310.6 xxSJxx * 27 21.33 476.7 883.: 1359.9 xxSJxx * 28 .2L31 476.7 883.3 1359.9 xxSJxx * Beam Summary RAM Steel vl4.02.02.00 DataBase: 2K13-170_Future Mech Load Building Code: IBC Ah PRIME J0B:2K13-170 ^ STRUCTURAL DAffi_Lan4_ ENGINEERS SHT: PC-43 Page 4/6 , 01/20/14 09:21:32 Steel Code: AISC360-05 LRFD Joist # Length WDL WLL WTL Joist 29 28.67 476.7 834.0 1310.6 xxSJxx * 30 476.7 834.0 1310.6 xxSJxx * 31 21.33 476.7 883.3 1359.9 xxSJxx * 32 21.33 481.0 890.0 1371.0 xxSJxx * 33 28.67 481.0 839.8 1320.8 xxSJxx * 35 28.67 481.0 839.8 1320.8 xxSJxx * ryil 37 21.33 481.0 890.0 1371.0 xxSJxx * 39 21.33 487.5 900.3 1387.8 xxSJxx * 40 28.67 485.3 845.6 1330.9 xxSJxx * 41 28.67 485.3 845.6 1330.9 ?HiSJxx * fyiy 42 21.33 487.5 900.3 1387.8 xxSJxx * f.\< 43 28.67 485.3 845.6 1330.9 xxSJxx * 44 21.33 485.3 896.7 1382.0 xxSJxx * 45 28.67 485.3 845.6 1330.9 xxSJxx * 46 21.33 485.3 896.7 1382.0 xxSJxx * 49 21.33 485.3 897.0 1382.3 xxSJxx * 50 28.67 485.3 903.8 1440.1 xxSJxx * 52 28.67 485.3 903.8 1440.1 * 54 21.33 485.3 897.0 1382.3 xxSJxx * 56 21.33 485.3 896.7 1382.0 xxSJxx 59 21.33 485.3 896.7 1382.0 xxSJxx * 60 21.33 485.3 , 896.7 1382.0 xxSJxx * 63 21.33 485.3 896.7 1382.0 xxSJxx * 70 21.33 450.7 * 842.5 1293.1 xxSJxx * 96 21.33 465.8 866.^ 1332.2 xxSJxx * 104 21.33 465.8 866.4 1332.2 xxSJxx 194 21.33 492.9 908.i 1401.2 xxSJxx * 193 21.33 492.9 908.3 1401.2 xxSJxx * 198 21.33 470.2 873.1 1343.3 xxSJxx * 196 28.67 470.2 825.2 1295.4 xxSJxx * 195 28.67 470.2 825.2 1295.4 xxSJxx • 197 21.33 470.2 873.1 1343.3 xxSJxx * 118 21.33 477.7 885.3 1363.0 xxSJxx * 119 28.67 477.7 835.4 1313.2 xxSJxx * fy^^ 121 28.67 477.7 835.4 1313.2 xxSJxx * fy^^ 123 21.33 477.7 885.3 1363.0 xxSJxx * 125 21.33 485.3 896.7 1382.0 xxSJxx * fvj'5 126 21.33 485.3 896.7 1382.0 xxS.Txx * fvj'5 127 28.67 485.3 845.6 1330.9 xxSJxx * 128 _28.67 485.3 845.6 1330.9 xxSJxx * 129 21.33 487.5 900.3 1387.8 xxSJxx * 130 28.67 485.3 845.6 1330.9 xxSJxx * 131 28.67 485.3 845.6 .1.230.9,, _,xxSJxx. ,. * 132 21.33 487.5 900.3 * 133 21.33 481.0 890.0 1371.0 xxSJxx * m RAM NTtlMAnOlW Beam Summary RAM Steel vl4.02.02.00 DataBase: 2K13-170_Future Mech Load Building Code: IBC Ah PRIME J0B:2K13-170 STRUCTURAL DATE:_L:2214_ ENGINEERS SHT: PC-44 Page 5/6 01/20/14 09:21:32 Steel Code: AISC360-05 LRFD Joist # Length WDL WLL WTL Joist 134 28.67 481.0 839.8 1320.8 xxSJxx 136 28.67 481.0 839.8 1320.8 xxSJxx 138 140 143 144 145 146 147 148 149 151 153 155 . 1^8 159 163 165 166 21.33 21.33 21.33 21.33 28.67 28.67 21.33 21.33 28.67 28.67 21.33 21.33 28.67 21.33 21.33 28.67 21.33 481.0 890.0 1371.0 xxSJxx 476.7 883.3 1359.9 xxSJxx 476.7 476.7 883.3 883.3 1359.9 1359.9 xxSJxx xxSJxx 476.7 476.7 834.0 834.0 TITO" 1310.6 XXSJXX" xxSJxx 476.7 883.3 1359.9 xxSJxx 485.3 485.3 485.3 485.3 494.0 494:0 494.0 494.0 494.0 494.0 896.7 "845T 845.^ "896T 910i 857.0~ 1382.0 xxSJxx 1330.9 IWJT 1404.0 ~n~5T:(r "xxSJxx" xxSJxx xxSJxx xxSJxx "xxSJxx 910:0 910.0 857.0 910.0 140470" 1404.0 1351.0 1404.0 xxSJxx" xxSJxx xxSJxx xxSJxx 141 28.67 476.7 834.0 1310.6 xxSJxx * 142 28.67 476.7 834.0 1310.6 xxSJxx * fy\0 Joist Girders: Joist # Length #Panels PDL PLL PTL Joist 5 28.50 3 13.1 17.6 30.6 XXG3N30.7K 19 27 50 3 12.6 17.3 29.9 XXG3N29.9K 21 27.50 3 14.6 18.4 33.0 XXG3N33.0K 23 27.50 3 12.6 17.3 29.9 XXG3N29.9K ^4 28.00 3 12.8 17.4 30.3 XXG3N30.3K 36 28.00 3 14.8 18.5 33.4 XXG3N33.4K 38 28.00 3 12.8 17.4 30.3 XXG3N30.3K 51 28.00 3 12.8 22.9 35.8 XXG3N35.8K f-14 7 53 28.00 3 14.8 50.3 65.1 XXG3N65.2K PJ 55 28.00 3 12.8 22.9 35.8 XXG3N35.8K l|i5 —TOT 2 14.4 23.7 38.0 XXG2N38.1K 120 28.00 3 12.8 17.4 30.3 XXG3N30.3K 1?,?, 28.00 3 14.8 18.5 33.4 XXG3N33.4K 124 _ 28 00 3 12.8 17.4 30.3 XXG3N30.3K p^i?'-^ 135 27.50 3 12.6 17.3 29.9 XXG3N29.9K 137 27.50 3 14.6 18.4 33.0 XXG3N33.0K 37.50 3 , 1?6 17.3 29.9 XXG3N29.9K 154 28.50 3 13.1 17.6 30.6 XXG3N30.7K Beam Summary RAM Steel vl4.O2.O2.0O DataBase: 2K13-170_Future Mech Load Building Code: IBC Alt PRIME J0B:2K13-170 14, STRUCTURAL DATE:_L2QH_ ENGINEERS SHT: PC-45 Page 6/6 01/20/14 09:21:32 Steel Code: AISC360-O5 LRFD Special Joists: Joist # Length +M -M Joist Size 57 28.67 205.4 0.0 XXGSP 58 28.67 205.4 0.0 XXGSP 61 28.67 204.5 0.0 XXGSP 62 28.67 204.5 0.0 XXGSP * after Size denotes joist is inadequate. u after Size denotes this size has been assigned by the User. Davit Crane GRAIN CAP 25% V IMPACT POSITION POUNDS POUNDS A-1 2000* 500# A-2 1600# 40CI# A-3 1300# 325# A-4 1000# 250# ^ PRIME J0B:2K13-170 ^ STRUCTURAL DATE:jQ12fil4_ ^ft ENGINEERS SHT: PC-46 20% UTERAL HOOK REACH HOOK HEIGHT SELF POUNDS 338# 468# 338!lt 388# 338# 328# 338# 268# B-1 B-2 B-3 B-4 2000# 1600# 1300# 1000# 500# 400# 325# 250# 338# 338# 338# 333# 468# 388# 328# 268# INCH 46in 57in 69in 81 in 28in 36in 45in S3in INCH 32in 33in 34in 35in 57in 66in 74in 83in M 142673in-# 146057in-# 146585in-# 137994in-# 106117in-# 109750in-# 112577in^lf 106375in-# M=(cap + 0.25 cap + SELF)* X + 0.2*(cap+SELF)*Y u](m I ^ A M 5'- i'^' ^7f 4AC www.hilti.us PRIME JQB:2K13-170 STRUCTURAL DATE:JJ1:2214_ ENGINEERS SHT:_PC-4 7 Profis Anchor 2.4.5 Company: Specifier. Address: Phone I Fax: E-Mail: Page: Project: Sub-Project I Pos. No.: Date: 1/30/2014 Specifier's comments: 1 Input data Anchor type and diameter: Effective embedment depth: Material: Evaluation Service Report: Issued I Valid: Proof: Stand-off installation: Anchor plate: Profile: Base material: Reinforcement: Seismic loads (cat. C, D, E, or F) Geometry [in.] & Loading [lb, in.lb] Kwik Bolt TZ - SS 304 5/8 (4) = 4.000 in., hnom = 4.438 in. AISI 304 ESR-1917 5/1/2013 15/1/2015 design method ACI 318 / AC193 Ob = 0.000 in. (no stand-off); t = 0.500 in. I,x ly X t = 18.000 in. x 18.000 in. x 0.500 in.; (Recommended plate thidcness: not calculated) S shape (AISC); (LxWxTxFT) = 3.000 in. x 2.330 in. x 0.170 in. x 0260 in. unaacked concrete, 4000, fc' = 4000 psi; h = 8.000 in. tension: condition B, shear: condition B; no supplemental splitting reinforcement present edge reinforcement: none or < No. 4 bar no Input data and resuils must be checked for agreement wilh ttie existing conditions and for plausibility! PROFIS Anchor (c) 20O3-20O9 Hilli AG, FL-9494 Schaan Hiiti is a registered Trademark of Hiiti AG, Schaan MM. www.hilti.us Company: Specifier: Address: Phone I Fax: E-Mail: PRIME JnB:2K13-170 STRUCTURAL TIATI;: 01-2014 ,iGllERSm:_££-" I'll"^ Jl Profis Anchor 2.4.5 Page: Project: Sub-Project I Pos. No.: Date: 1/30/2014 2 Load case/Resulting anchor forces Load case: Design loads Anchor reactions [lb] Tension force: {+Tension, -Compression) Anchor Tension force Shear force 4564 0 4564 117 117 Shear force x Shear force y 117 117 117 4 0 max. concrete compressive strain: 117 117 0.13 [%.] max. concrete compressive stress: 546 [psi] resulfing tension force in (x/y)=(-7.250/0.000): 9128 pb] resulting compression force in (x^y)=(8.380/0.000): 9128 [lb] 3 Tension load Load Nu. [lb] Capacity ^N, [Ib] Utilization pm = \i,J^H„ Status Steel Strength* Pullout Strength* Concrete Breakout Strenglh" * anchor having the highest loading 4564 13972 N/A N/A 9128 13258 •anchor group (anchors in tension) 33 N/A 69 OK N/A OK 3.1 Steel Strength Ns, = ESR value ijl Njteei 2 Nua Variables n referto ICC-ES ESR-1917 ACI 318-08 Eq. {D-1) AicNUn.^l 1 <::alculatlons Ns. [lb] 18630 Results Ns. [lb] 0?i6" fw. [psi] 115000 18630 0.750 4 N.. [Ib] 13972 Nu. [lb] 4564 Input data and results must be checked tor agreement with the existing condWons and tor plausltMlityl PROFIS Anchor (c) 2003-2009 HIIti AG, FL-9494 Schaan HIIti Is a registered Tiademadi of Hiiti AG. Schaan www.hilti.us PRIME JOB:2K13-170 ^ STRUCTURAL DATE:J!12(Jj4_ ^ ENGINEERS m-. PC-491 HiLrri Profis Anchor 2.4.5 Company: Specifier: Address; Phone I Fax: E-Mail: Page: Projecl: Sub-ProjedlPos.No,; Date: 1/30/2014 3.2 Concrete Breakout Strength NcDo = (^^) M'«c.N Ved.N Vc.N v;)cp,N Nu * Hig £ N„a ANC see ACI 318-08, Patt D.5.2.1, Fig. RD.5.2.1 (b) ANCO - " ""^ H'eo.N V|/«|.N = 0.7.0.3(^).1.0 MAxC^,i^'ls1.0 ^kcxVfchli' Variables eci,N [in-] ec2.N [in.] ACI 318-08 Eq. (D-5) ACI 318-08 Eq. (D-1) ACI 318-08 Eq. (D-6) ACI 318-08 Eq. (D-9) ACI 318-08 Eq. (D-11) ACI 318-08 Eq (D-13) ACI 318-08 Eq (D-7) ,lin.] 4.000 0.000 O.OQO 4.750 1.000 C.C [in.] ic [psi] 6.000 24 4000 Calculations ANco[in-1 HIecZ.N Vea,N M'cp.N N,[lbl 258.00 Results Nc.«[lb] 20397 144.00 jlconciete 0.650 1.000 .<|i Nets [lb] 13258 1.000 N„a [lb] 0.938 1.000 12143 9126 Input data and results must be dwelled for agreement with the existing conditions and for plauslbiiityl PROFIS Anchor (c) 2003-2009 Hiiti AG. FL-9494 Schaan Hiiti Is a registered Trademaik of Hiiti AG, Schaan WWW.hiltl.U8 PRIME J0B:2K13-170 STRUCTURAL BATR: 01-2014 ENGINEERS SHT:PC-50 i-tikm Profis Anchor 2.4.5 Company: Specifier: Address: Phone I Fax; E-Mail: Page: Project: Sub-Project I Pos. No.: Date: 1/30/2014 4 Shear load steel Strength* Steel failure (with lever ann)* Ptyout Strength** Concrete edge failure in direclion x+*' LoadV„.[lb] Capacity ^Vn [Ib] Utilization py = V„./4Vn Status N/A OK OK 117 N/A 468 468 ' anchor having the highest loading ""anchor group (relevant anchors) 4.1 Steel Strength Vs. = ESR value iJi ^Meel ^ Vu, Variables n refer to ICC-ES ESR-1917 ACI 318-08 Eq. (D-2) A...v[in.'] fut. [psi] 115000 Calculations Vssllb] 9872 Results V„[lb] 6417 N/A 57111 8066 2 N/A 1 6 9872 0.650 6417 V„.[lb] 117 4.2 Pryout Strength 'AN, Vcpg = l<cp [(AN^) "''"•'^ VCN VeP.N NbJ (|)Vcpg£Vu, ANC see ACI 318-08, Part D.5.2.1, Fig. RD.6.2.1(b) ANCO =9h|, Ved,N Vcp.N Nt, (^) S1.0 = 0.7 +0.3 (:^)^ 1.0 = MAX Variables ^ hrt [In.] eci.w [in.] ACI 318-08 Eq. (D-31) ACI 318-08 Eq. (D-2) ACI 318-08 Eq. (D-6) ACI 318-08 Eq. (D-9) ACI 318-08 Eq. (D-11) ACl 318-08 Eq. (D-13) ACl 318-08 &|. (D-7) ec2.N [in.] Ca,rain [in.] 4:000 c.c[in.l 0.000 0.000 4.750 1.000 6.000 24 Calculations ANC [in.'] Aneopn.l VecLN VedN Vcp,N Nb[lb] 516.00 Results VcpoPbl 81587 144.00 0.700 1.000 ijiVcpojlb] 57111 1.000 V.i.[lb] 468 0.938 1.000 12143 Input data and results must be checked (or agreement with the existins conditions and for plausiMltyl PROFIS Anctwr (c) 2003-2009 Hiltl AG, FL-e494 Schaan Hiiti Is a registered Trademark of Hiltl AG. Schaan www.hilti.us PRIME J0B:2K13-170 ^ STRUCTURAL DATE:JU:2fi34_ ^ ENGINEERS smPC-sl Profis Anchor 2.4.5 Company: Specifier: Address: Phone I Fax: E-Mail: Page: Project: Sub-Project I Pos. No.: Date: 1/30/2014 4.3 Concrete edge failure In direction x+ VotJO - (AI^) ^""'^ '^'"•^ ^'-^ l"'-^ Vpiratel.V Vb lj) Vdjg 2 Vua Ave see ACI 318-08, Part D.6.2.1, Fig. RD:6.2,1(b) Avco =4.5cJ, Is 1.0 \ 3c.,/ V«..v =0.7.0.3(:i^)sl.O Vti.v Vb h. i1.0 Variables c,i [in.] C.2 [in.] ecv [in.] 5.333 4.750 0.000 ACI 318-08 Eq. (D-22) ACI 318-08 Eq. (D-2) ACI 318-08 Eq. (D-23) ACI 318-08 Eq. (D-26) ACl 318-08 Eq. (D-28) ACl 318-08 Eq. (D-29) ACl 318-08 Eq. (D-24) Wc,v 1.400 haDn) 8.000 le [in.] d.pn.] fclpslj Vparaltel.v 4.000 1.000 0.625 4000 1.000 Calculations Aye [in.'] 192.00 Results Vcbfl [lb] Avco [in-'] 11523 128.00 ifrconcrele 0.700 Vec.V 1.000 4iVcbg[ib] 0.878 Vu.[lb] 8066 5 Combined tension and shear loads JN_ Pv 468 'Sz' M/h.V 1.000 Vb[lb] 6249 Utilization PN.V [%] Status 0688 o:058 6ra 55 OK PNV = p& + P^ 1 6 Warnings • To avoid failure ofthe anchor plate ttie required thickness can be calculated in PROFIS Anchor. Load re-distributions on the anchors due to elastic deformations of the andior plate are not considered. The anchor plate is assumed to be sufficiently stiff, in order not to be defonned when subjected to the loadingi • Condition A applies when supplementary reinforcement Is used. The <t> factor Is inaeased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to your local standard. • Refer to the manufacturer's product literature for cleaning and installation instructions. • Checking the fransfer of loads into the base material and ttie shear resistance are required in accordance with ACI 318 or the relevant standard 1 Fastening meets the design criteria! Input data and results must be checlted tor agreement with the existino conditions and for plausibiUtyl PROFIS Anchor (c) 2003-2009 HW AG, FL-9494 Schaan Hnti is a registered Tradema* of Hilli AG, Schaan www.hilti.us PRIME JnB:2K13-170 ^ STRUCTURAL DATBjiiQii. ENGINEERS SHT:P£:^ 2 Profis Anchor 2.4.5 Company: Specifier /Address: Phone I Fax: E-Mail: Page: Project Sub-Project I Pos. No.: Date: 1/30/2014 7 Installation data Anchor plate, steel: - Profile: S shape (AISC); 3.000 x 2.330 x 0.170 x 0.260 in. Hole diameter in the fixture: d( = 0.688 In. Plate thickness (input): 0.500 in. Recommended plale ttilckness: not calculated Anchor type and diameter: Kwik Bolt TZ - SS 304, 5/8 (4) Installation torque: 720.001 in.lb Hole diameter in the base material: 0.625 in. Hole depth In the base malenal: 4.750 in. Minimum ttilckness of the base material: 8.000 in. Cleaning: Manual cleaning ofthe drilled hole according lo instructions for use is required. 9.000 i.ooo O: Oi 1.750 14.500 1.750 Coordinates Anchor In. Anchor x y c-x "1 -7.250 -7.250 6:560 WbOO 4755 19.250 2 7.260 -7.250 20.500 24.000 4.750 19.250 3 -7.250 7.250 6.000 38.500 19.250 4.750 4 7.250 7J250 20.500 24.000 19.250 4.750 Input data and results must be checked for agreement with the existing condit'ons and for plausibility! PROFIS Anchor (c) 2003-2009 HUB AG, FL-9494 SChaan HiHi is a registered Trademartt of HIIti AG, Schaan MTHERN ^ ISO 3001/2000 CBrtffiBd wvvw.thern.com Model S124M1 with pedestal base bo9tnexten!lon|$3lb| winch handle (71b) Portable Davit Cranes Hand or Power Winch Operation Up to 2000 lb capacity Ordering your crane is as easy as 1...2...3... Select the option that best suits your needs for each item. Fill in the boxes below to create your crane part number. Crane Optional Wfnch Finish" 5124 I.e. 5124M2GAL "Leave blank for standard powder coat finish Q Order your Base, Wire Rope Assembly and Optional Accessories separately. See next page. • Two-year Limited Warranty Crane breaks down for transport Crane Model • Crane Rotates 360* on a pin and sleeve bear- ing in the base. Handle on the boom makes rotation easy. • Adjustable Boom telescopes to 4 different lengths, and adjusts in height vi^hile under load with ratchet style screw-jack. • Crane Breaks Down for storage or transport. Winch Models • Hand Winch Operated Models include spur gear or worm gear hand winch with brake for load control. Model M2 winch can be drill driven, 400 rpm max. • Power Winch Operated Models include elec- tric winch w/ith pendant control and brake. Other power options available, please contact factory. « Quick Disconnect Anchor for quickly attach- ing or removing wire rope equipped with a swaged ball fitting. Optional Finishes • Galvanized Finish provides extra protection against corrosion. • Stainless Steel Models are constructed from all stainless steel with an electro-polished tl Crane Model 5124 - Section 4" base model description approx. shlpvirt. 5124' up to 2000 Ib - portable davit 253 Ib Please contact factory or nearest lliem Distributor for Um fixed price and delivery. ' Base Model includes corrosion resistant electrostatic powder coated finish. Other finishes available see Option 3. H Winch Options - Section 4 winch description approx. ship wt Ml M4312PB-K-Zinc plated 281b spur gear hand winch M2' 4WM2-K - worni gear hand winch 421b M3 M4312PBSS-K- stainless steel 281b spur gear hand-winch E2' E4> E4DC' 4WI=^»leclrfe^i(i*u*--115/1/B0\m ^to ,£r- wiih 6 R pendent coiM, aee pg. 10, model 4WP2 for details 4777-Kelectricwinch-115/1«0VAC 1101b vHlh 6 ft pendant conWM, see pg 14, tnoiJ^ 4777 for Ms 4777DC-Kelei*icwinch-12voltDC 1051b with 10 ft penitervt confed, see pg 14, model 47T71X; ks det^ ' Winch finish IS powder coated, for epoxy finish conlact factory. ' Winch finish is enamel, for epoxy finish contact factory. g Onfinr^ai Finish (crane only) - Sectton 4 finish description GAL galvanteed finish - crane only 00-843-7648 Wsthernxom 5124 with pedestal base mounted upright 5124 Upright- Height and Reacli 1 — I 120 IN boom hook hook 1 i position reach height 1 1 A-1 45 In 46 in 1 ; 10SIN A-2 67 in 47 in 1 i A-3 69 in 48 in 1 i A-4 81 in 49 in r ^ sew B-1 28 in 71 in i 1 B-2 36 in 80 in i 1 6<IN B-3 45 in 86 in i B-4 53 in 97 In jooo; k 5.0 SCH 40 PIPE Dimensions are for reference only and subject to *ange wittiout noMce. i 14.50 16.0 4X .69 HOLE DIA 5124 Flush - Height and Reach boom hook hook position reach height A-1 45 in 32 in A-2 57 in 33 In A-3 69 in 34 in A-4 81 in 35 In B-1 28 In 57 In B-2 36 in 66 in B-3 46 in 74in B-4 53 In 83 In Olmen^ns are for reference only and subject to change wKhout notice. 5.0 SCH 40 PIPE 14.90 16.0 - 4X .68 HOU DIA ft smi .in Dioc STRUCTURAL CALCULATIONS Viasat BLDG #10 2K13-170 Roof Framing Roof Mech. Well Framing 2"^ & 3"^. Floor Framing Column Design Footing Design Panel Design Canopy Design Interior Panel Design Mechanical Enclosure Rooftop Mech. Supports Lateral Analysis Pages 1 thru 19 20 thru 34 35 thru 46 47 thru 61 62 thru 72A 73 thru 168 169 thru 181 182 thru 185 186 thru 229 230 thru 235 L1 thru L-129 PRIIVIE STRUCTURAL ENGINEERS 13272 Jacaranda Blossom Dr. Valley Center, CA 92082 Tel (760)751-3300 RECEIVED DEC 3 0 2013 CITY OF CARLSBAD BUILDING DIVISION VIASAT BUILDING #10 DESIGN LOADS PRIME J0B:2K13-170 ROOF: DEAD LOAD DEAD LOAD (5) MECH. PAD ROOFING RIGID INSULATION 1 1/2" METAL DECK MECH & ELEC SPRINKLERS SUSP. CEILING MISC. BEAMS GIRDERS 2.2 3.0 2.3 1,5 1.5 1.8 1.7 14.0 PSF 2,0 2,0 18,0 PSF ROOFING 3 1/2"N,M,WT, CONC, OVER 2"METAL DECK MECH & ELEC SPRINKLER SUSP, CEILING IvIISC ROOF MECH,* BEAMS GIRDER "ROOF MECH. = 20 PSF for seismic 2.2 54.4 . 2.7 1.5 1,5 1,8 1,9 66,0 PSF 40,0 106.0 PSF 3.0 2.0 111.0 PSF LIVE LOAD: 20 PSF REDUCIBLE LIVE LOAD (S) MECH. WELL: 20 PSF REDUCIBLE FLOOR: DEAD LOAD FINISH FLR 3 1/4" LT. WT, CONC. 2" METAL DECK MECH & ELEC SPRINKLERS SUSP. CEILING MISC. JOISTS GIRDERS 1.0 39.0 2.4 2.0 1.0 1.8 1.8 49.0 PSF 3.0 2.0 PRIOR TO CONC. HAf^DENING 2" METAL DECK 2,4 3 1/4" LT. WT. CONC. . 39.0 MISC. 1,6 CONSTRUCTION LL 43.0 PSF 20 PSF 54,0 PSF LIVE LOAD: 100 PSF (REDUCIBLE) LIVE LOAD (5) STORAGE: 250 PSF (NON-REDUCIBLE) 1) FOR JOIST DESIGN PROVIDE ADDITIONAL 1000 LB. POINT LOAD AT ANY PANEL POINT TO ACCOUNT FOR FUTURE MECHANICAL LOADS, Site Coefficient, Fa = Site Coefficient, F,, = 1.048 1.572 PRIME Job: S^UDTURAL Daj« ENGINEERS Sht: SEISMIC DESIGN CRITERIA CBC2010 PROJECT #: 2K13-170 Occupancy = importance Factor, 2 1.00 T 1604.5 ASCE? T11.5-1 Structure Type ^ CT = X = OTHER 0,020 0.750 ASCE7 T12.8-2 A - Bearing Wall Systerns 1 - Special reinforced concrete shear walls Response Mod. Factor, R = 5,00 System Overstrength Factor, QQ = 2,50 Deflection Amplification Factor, C.^i = 5,00 ASCE7 T.I 2.2-1 ASCE7T.12.2-1 ASCE7 T.I 2.2-1 Site Class = Spectral Response, Ss • Spectral Response, S, = D 1.131 9 0,428 g T.1613.5.2 Soi! Modified, SMS = Fa^s • Soil Modified, S^i = F^S, = 1,185 0.673 Eq.16-37 Eq. 16-38 Design Spectral Response Acceleration Parameters (at 6% Damping): At Short Periods, Sos = % = 0.790 At 1-second Period, So, = % S,r,i = 0.449 Eq.16-39 Eq. 16-40 To = 0.2So-|/Sos - Ts = SOI/SQS = TL = 0.114 sec 0.568 sec 8,000 sec ASCE7 11,4.6 ASCE7 11.4.5 ASCE7 Fig, 22-15 Fp = 0.40SDsi W>0,1W: 0.316'W ASCE7 12.11.1 Seismic Design Category = Structural Limitations* = D 160 ft T. 1613.5.6 ASCE7 T,12.2-1 General Criteria RAM Manager vl4.02.02.00 DataBase: 2KI3-170_Future Mech Load Buiiding Code: IBC Ait PRIME JQB:2K13-170 14 STRUCTURAL n*Tt: 10-2015 ENGINEERS SHT:_:22— 10/15/13 14:30:18 BUIL.DING CODE FOR LIVE LOAD REDUCTION: IBC Alt Live Load Reduction Method: Alteimate ROOF LOADS: Consider Roof Live Loads, Ignore Snow Loads Roof Live Loads are Reducible DETERMINING NUMBER OF STORIES FOR LIVE LOAD REDUCTION: Include Roof Levels: No Include Unreducible Levels: Yes Include Storage Levels: Yes SELF-WEIGHT: Automatically calculate and include Self-Weight for Member Dead Loads: Beams: Yes ColmTins: Y'es Walls: Yes Slabs / Decks; No Automatically calculate and include Self-Weight for Story Masses: Beams: Yes Columns: Yes Include half mass of columns above and beiow Walls: Yes Include half mass of wails above and below Slabs / Decks: No Beam Design Criteria RAM Steel vl4.02.02.00 DataBase: 2K13-170 Future Mech Load uiiQing Lode: PRIME m STRUCTURAL DATl: ENGINEERS SHT: 2K13-170 10-2013 10/15/13 14:30:18 stee. TABLES SELECTED: Master Steel Table: ramaisc Default Steel Table: ramaisc Alternate Steel Table; ramaisc UNBRACED LENGTH: Check Unbraced Length Consider Point of Inflection as Brace Point Noncomposite/Precomposite Beam Design; Deck Perpendicular to Beam Braces flange Deck Parallel to Beam does not Brace flange Calculate Cb for all Simple Span Beams Use Cb=l for all Cantilevers SPAN/DEPTH CRITERIA: Maximum. Span/Depth Ratio (ft/ft): 0.00 COMPOSITE lEFF: Reduce leff per AISC 360 Conimentar>- DEFLECTION CRITERIA: Default Criteria L/d delta (in) Unshored Initial (Construction Load): 0.0 0.0 Post Composite Live Load: 360.0 0,0 Total Superimposed: 240.0 0.0 Total (Init-FSuperimp-Camber): 240.0 0.0 Shored Dead Load: 0.0 0.0 Live Load: 360.0 0.0 Total Load: 240.0 0.0 Noncomposite Dead Load: 0.0 0.0 Live Load: 360.0 0.0 Total Load; 240.0 0.0 Alternate Criteria L/d delta (in) Unshored Initial (Constmction Load): 0.0 0.0 Post Composite Live Load: 0^0 0.0 Total Superimposed; 0.0 0.0 Total (Init+Superimp-Camber): 0.0 0.0 Shored Dead Load: 0.0 0,0 Beam Design Criteria RAM Steel V 14.02.02.00 DataBase: 2K13-170_Future Mech Load Building Code: IBC Alt PRIME J0B:2K13-170 •am. STRUCTURAL DATE:. ENGINEERS SHT:. 10-2013 Page 2/2 10/15/13 14:30:18 Steel Code; AISC360-05 LRFD Noncomposite Dead Load: Live Load: Total Load: 0.0 0.0 0.0 0.0 0.0 0.0 Note: 0.0 indicates No Limit CAMBER CRITERIA FOR COMPOSITE BEAMS: Do not Camber Beams with Span < 0.0 ft Do not Camber Beams with Weight < 0.0 Ibs./ft Do not Camber Beams with Weight > 1000.0 lbs/ft Do not Camber .Beams with Depth < 0.0 in Do not Camber Beams with Depth > 100.0 in Percent of Dead Load used for Camber: ! 00.00 (For Unshored Composite the specified % of Construction DL is used) Camber Increment (in): 0.125 Minimum Camber (in): 0.625 Maximum Camber (in): 4.000 CAMBER CRITERIA FOR NONCOMPOSfTE BEAMS: Do not Camber Beams with Span < 0.0 ft Do not Camber Beams with Weight < 0.0 lbs/ft Do not Camber Beams with Weight > 1000.0 lbs/ft Do not Camber Beams with Depth < 0.0 in Do not Camber Beams with Depth > 100.0 in Percent of Dead I-oad used for Camber: 100,00 Camber Increment (in): 0.250 Minimum Cainber (in): 0.625 Maximum Camber (in); 4,000 STUD CRITERIA: Stud Distribution: Use Unifonn Maximum % of Full Composite .A.l!owed: 100.00 Minimum % of Full Composite Allowed; 25.00 Maximum Rows of Smds Allowed: 1 Minimum Flange Width for 2 Rows of Studs (in): 5.500 Minimum Flange W'^idth for 3 Rows of Studs (in): 8.500 Maximum Stud Spacing: Per Code WEB OPENING CRITERIA: Stiffener Fy (ksi); 36.000 Stiffener Dimensions Minimum Width (in): 1.000 Minimum Thickness (in): 0.250 Increment of Width (in): 0.250 Increment of Thickness (in): 0.125 Incrementof Length (in): 1.000 Do Not Allow Stiffeners on One Side of web Allow Stiffeners on Two Sides of web ro o OJ o 12 55 fl Fioor Map. S C3 M H-* :s Floor Type: ROOF RAM Steel v 14.02.02 DataBase: 2Ki3-170_Future Mech Load Buildintj Code: II3C Alt I0/L5/13 14:30:18 Steel Code: AISC360-05 LRFD -HI 8^ 8 ' i8 •8 32 --H-- -H-H Sl 8! sa! -nzzz.::jLzz.^r ! ! - \- rH- icfl: -fl- its 3h iTl/A,!'!' RAM Steel v 14.02.02 DataBa.se: 2K13-170 Future Mech Load Building Code: IBC Alt z Surface Loads Label Roof Floor Map W.HI— llllll DL psf 14.0 Page 2/2 10/15/13 14:30:18 Steel Code: AISC360-05 LRFD CDL psf 0.0 LL Reduction psf Type 20.0 Roof CLL psf 20.0 Mass DL psf 18.0 Floor Map RAM Steel v 14.02.02 DataBase: 2K.I3-170jHfture Mech Load Building Code: IBC Alt 10/15/13 14:47:26 Steel Code: A1SC360-05 LRFD Floor- Type: ROOF .A.>!a<26c=<y4S' I 6. I! 1 s ~ I •H- i -H • H- H- % tN WI8< -H 1 Gravlt? Beam Design MM Steel vl4.02.02.00 lAM^ DataBase: 2K13-170 Future Mech Load Building Code: IBC AU PRIME J0B:2KiiLiZ0 ^ STRUCTURAL m, 10-2013 10/15/13 14:41:32 Steel Code: AISC360-05 LRFD oorType: ROOF SPAN INFORMATION (ft): Minimum Depth specified = Beam Size (Optimum) Total Beam Length (ft) Mp (kip-ft) = 184.17 POINT LOADS (kips): Beam Number = 4 -End (0.00,78.67) 11.00 in = W16X26 = 28.50 J-End (28.50,78.67) Fy = 50.0 ksi Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 7,125 1.71 0.00 0.0 0.00 0.00 0.0 1.52 33.4 7.125 2.13 0.00 0.0 0.00 0.00 0.0 2.04-33.4 14.250 1.71 0.00 0.0 0,00 0.00 0.0 1.52 33.4 14.250 2.13 0.00 0.0 0.00 0.00 0.0 2,04 33.4 21.375 1.71 0.00 0.0 0.00 0.00 0.0 1,52 33.4 21.375 2.13 0.00 0.0 0.00 0.00 0.0 2.04 33.4 INE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.026 0,000 — NonR 28.500 0.026 0,000 SHEAR (Ultimate): Max Vu (L2»L+i.6LL) = 13.06 kips- 0.90Vn = 105.97 Wps MOMENTS (Ultimate): Span Cond LoadCotnbo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center Max + I.2DL+1.6LL 123.0 143 7.1 , 1.11 0,90 152.39 Controlling 1.2DL+1.6LL 123.0 14.3 7.1 1.11 0.90 152.39 REACTIONS (kips): DL reaction Max -i-LL reaction Max +total reaction (factored) DEFLECTIONS: (Camber = 3/4) Dead load (in) at Live load (in) at Net Total load (in) at Left 6.14 3.56 13,06 Right 6.14 3.56 13.06 14.25 ft = 14.25 ft - i 4.25 ft = -0.917 L/D = 373 -0.538 L/D = 636 -0.705 L/D = 485 .Gravity Beam Design PRIME J0B:2Ki:i-170 RAM Steel vl4.02.02.00 DataBase: 2K13-170__Future Mech Load Floor Type: ROOF Beam Number = 28 SPAN INFORMATION (ft): I-End (49,12,78.67) J-End (49.13,100.00) Mmimum Depth specified = I i.OO in = W12X14 = 21.33 ENGINEERS SHT:_/ 10/15/13 14:41:37 Beam Size (User Selected) Total Beam Length (ft) Mp (kip-ft) = 72,50 POINT LOADS (kips) Fy = 50.0 ksi Dist DL RedLL Red% 10.667 1.00 LINE LOADS (k/ft): Load Dist DL LL I 0.000 0.096 0.138 21.333 • 0.096 0.138 2 0.000 0,014 0.000 21.333 0.014 0.000 1% Red% 0.0% Type Roof NonR SHEAR (Ultimate): Max Vu (L2DL+1.6LL)-4.36 kips 0.90Vn = 64.26 Wps MOMENTS (Ultimate): LoadCombo Span Cond Max-i-Center Controlling REACTIONS (kips): 1.2DL+1.6LL 1.2DL--i,6LL Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft 26.5 10,7 0.0 1.00 0.90 65.25 26.5 10.7 0.0 1.00 0.90 65.25 DL reaction Max +LL reaction Max -rtotal reaction (factored) DEFLECTIONS: Dead load (in) Live load (in) Net Total load (in) Left 1.68 1.47 4.36 Right 1.68 1.47 4.36 at at at 10,67 ft = 10.67 ft = 10.67 ft = -0.336 -0.249 -0.586 LT) L/D L/D 761 1026 437 fl! BAM lUllll Gravity Beam Design RAM Steel V 14,02.02.00 DataBase: 2K13~I70_Fut'are Mech Load Building Code: IBC Ah PRIME IOB:2]ilMIO ^ STRUCTURAL Dill:J0:2c>i3. ENGINEERS SHT:^ // 10/15/13 14:47:26 Steel Code; AISC360-05 LRFD Floor Type: ROOF Beam Number = 71 SPAN INFORMATION (ft): I-End (120.00,78.67) Minimum Depth specified = 11.00 in Beam Size (Optimum) Total Beam Length (ft) Mp (kip-ft) = 72.50 POINT LOADS (kips): J-End (120.00,100.00) W12X14 21,33 Fy = 50.0 ksi Dist DL RedLL Red% NonRLL StorLL Red% 10.667 LOO LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.112 0.160 0.0% Roof 21.333 0.112 0.160 2 0.000 0.014 0.000 — NonR 21,333 0.014 0.000 RoofLL Red% SHEAR (Ultimate): Max Vu (1.2DL+1.6LL) = 4.95 kips 0.90Vn = 64.26 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center Max + !.2DL+1,6LL 29.6 10.7 0.0 1.00 0.90 65.25 Controlling 1.2DL+1.6LL 29.6 10.7 0.0 1.00 0.90 65.25 REACTIONS (kips): DL reaction Max +LL reaction Max +total reaction (factored) DEFLECTIONS: Leit 1.85 1.71 4.95 Right 1.85 1.71 4.95 Dead load (in) at 10.67ft = -0.365 L/T) = 702 Live load (in) at 10.67 ft --0.290 L/D = 882 Net Total load (in) at 10.67 ft = -0.655 L.D -391 PRIME J0B:2K13-170 £SA STRUCTURAL BATE;. RAM Steel vl4.02.02.00 DataBase: 2K13-170_Futtire Mech: Buildins Code; IBC Alt ENGINEERS m. 10-2013 .oad 10/15/13 14:47:26 Steel Code; AISC360-05 LRFD Floor Type: ROOF SPAN INFORMATION (ft): Minimum Depth specified = 11.00 in Beam Size (Optimum) = Total Beam Length (ft) = Mp (kip-ft) = 184.17 POINT LOADS (Wps): Beam Namber = 45 -End (84.00,50.00) J-End (112.00,50,00) W16X26 28.00 Fy = 50,0 ksi Dist DL RedLL Red% iNfonRLL StorLL Red% RoofLL Red% 7.000 . 2.11 0.00 0.0 0.00 0.00 0.0 2.01 40.0 7.000 2.11 0.00 0.0 0.00 0,00 0.0 2.01 40.0 14.000 2.11 0.00 0.0 0,00 0.00 0.0 2.01 40.0 14.000 2.11 0.00 0.0 0.00 0.00 . 0.0 2.01 40,0 21.000 2.11 0.00 0.0 0,00 0.00 0.0 2.01 40.0 21.000 2.11 0.00 0.0 0.00 0.00 0.0 2.01 40.0 LINE LOADS (k/ft): Load Dist DL LL 1 0.000 0,026 0.000 28.000 0.026 0.000 Red% Type NonR SHEAR (Ultimate): Max Vu (1.2DL+1.6LL) = 13.81 kips 0.90Vii = 105.97 kip,s MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center Max-+ 1.2DL+1.6LL 127.8 14,0 7.0 1.11 0.90 153.64 Controlling 1.2DL+1.6LL 127.8 14.0 7.0 1.11 0.90 153.64 REACTIONS (kips): DL reaction Max •4-LL reaction Max +total reaction (factored) DEFLECTIONS: (Camber = 3/4) Dead load (in) Live load (in) Net Total load (in) Left 6.69 3.61 13.81 Right 6.69 3,61 13.81 at 14.00 ft = -0.948 L/D = 355 at 14.00 ft = -0.518 L/D -649 at 14.00 ft = -0.715 L,^ = 470 L-yravitv Beam sign im" ILAM Steel vl4,02.02.00 DataBase: 2K13-170Juture Mech Load Building Code: IBC Ah PRIME J0B:2K13-170 ^ STRUCTURAL Bffi. ENGINEERS SHT:. 10-2013 10/15/13 14:47:26 Steel Code; A1SC360-05 LRFD Floor Type: ROOF Beam Number = 58 SPAN INFORMATION (ft): I-End (105.06,50.00) Minimum Depth .specified - 11.00 in J-End (105.00,78.67) Beam Size (Us-er Selected) Total Beam Length (ft) Mp (kip-ft) = 72.50 POINT LO ADS (kips): - W12X14 - 28,67 Fv 50,0 ksi Dist DL RedLL Red% NonRl,L StorLL Red% 14.333 1.00 LINE LOADS (k/ft|: Load Dist DL LL Red% Type 1 0.000 0.098 0,140 0.1% Roof ' 28.666 0.098 0.140 2 0.000 0.014 0.000 NonR 28.666 0.014 0.000 SHEAR (Ultimate): Max Vu (L2DL+1 6LL) = 5.74 kips 0.90Vn RoofLL Red% MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center Max + 1.2DL+1.6LL 45.4 14.3 0.0 1.00 0.90 65.25 Controlling 1.2DL+1.6LL 45.4 14.3 0.0 1.00 0.90 65.25 REACTIONS (kips): DL reaction Max -t-LL reaction Max -Ftotai reaction (factored) DEFLECTIONS: (Camber = 3/4) Left 2.1! 2.01 5,74 Right 2.11 2.01 5.74 Dead load (in) at 14.33 ft = -0.993 L/D = 346 Live load (in) at 14.3 3 ft = -0.827 L/D = 416 Net Total load iin) at 14.33 ft = -1.071 L/D = 321 Gravitv Beam Design RAM Steel v 14.02.02.00 DataBase; 2K13-170__Future Mech Load Building Code: IBC Alt PRIME 114 STRUCTURAL ENGINEEi 10/ Steel Code: AISC- 15/13 14:47:26 360-05 LRFD JOB: D.4TE: 'sS SBT 2K13-170 10-2013 Floor Type: ROOF Beam Number = 142 SPAN INFORMATION (ft): l-E?!d (241.75,50.00) Minimum Depth specified = 11,00 in Beam Size (User Selected) = W12X14 Total Beam Length (ft) = 28.67 Mp (kip-ft) == 72.50 POINT LOADS (yps): J-End (241.75,78.67) Fv = 50.0 ksi Dist DL RedLL Red% NonRLL StorLL Red% 14.333 1.00 LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.100 0.142 0.4% Roof 28.666 0.100 0.142 2 0.000 0.014 0.000 — NonR 28.666 0.014 0.000 RoofLL Red% SHEAR (Ultimate): Max Vu (L2DL+1.6LL) = 5.81 kips 0.90Vn = 64.26 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb , Cb Phi Phi*M:n kip-ft ft ft kip-ft Center Max i-1.2DL+1.6LL 46.0 14.3 0.0 1.00 0.90 65.25 Controlling 1.2DL+1.6LL 46.0 14.3. 0.0 1.00 0.90 65.25 REACTIONS (kips): Left Right DL reaction 2.13 2.13 Max -i-LL reaction 2.03 2.03 Max +total reaction (factored) 5.81 5,81 DEFLECTIONS: (Camber -1) Dead load (in) at 14.33 ft = -1.004 L/D = 343 Live load (in) at 14.33 ft -0.839 LT) = 410 Net Total load (in) at 14.33 ft -0.843 L/D = 408 Gra'litv Beam Design RAM Steel vl4.02.02,00 DataBase: 2K13~170_Future Mech Load Buiiding Code: IBC Alt PRIME J0B:2Ki:vi?Q 1^ STRUCTURAL I)ATE:JM013^ ENGINEERS sm /> 10/15/13 14:47:26 Steel Code: AISC360-05 LRFD Floor Type: ROOF Beam Number = 2 SPAN INFORMATION (ft): I-Ejid (0.00,40.00) J-End (0.00,60.00) Minimum Depth specified = = 1 i .00 in Beam Size (User Selected) = W16X26 Fy - 50.0 ksi Total Beam Length (ft) = 20,00 Mp (kip-ft) = 184.17 POLNT LOADS (kips): Dist DL RedLL. Red% NonRLL StorLL Red% RoofLL Red% 10,000 6.77 0.00 0.0 0.00 0.00 0.0 6.13 18.8 LINE LOADS (k/ft): Load Dist DL LL Red% Type 0.000 0.057 0.081 18.8% Roof 20.000 0.057 0.081 2 0.000 0.026 0,000 NonR 20,000 0.026 0.000 SHEAR (Ultimate): Max Vu (1.2DL+1.6LL) - 10.10 kips 0.90Vn = 105.97 Wps MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center Max + 1.2DL+1.6LL 90.7 10.0 0.0 1.00 0.90 165.75 Controlling 1.2DL+1.6LL 90.7 10.0 0.0 1.00 0.90 165.75 REACTIONS (kips): DL reaction Max -f-LL reaction Max -t-total reaction (factored) DEFLECTIONS: Dead load (in) Live load (in) Net Total load (in) Left 4.22 3.15 10.10 Right 4.22 3.15 10.10 at at at 10.00 ft = 10.00 ft = 10.00ft = -0.258 -0.191 -0.449 L/D = L/D = L/D = 932 1254 534 Gravitv Beam Design RAM Steel vl4.02.02.00 DataBase: 2K13-170... Future Mech Load Buildmg Code: IBC Alt PRIME J0B:2K13,170 STRUCTURAL DATE: J£;2011_ ENGINEEES SHT: /.6 10/15/13 14:47:26 Steel Code: AISC360-05 LRFD Floor Type: ROOF Beam Number = 43 SPAN INFORMATION (ft): I-End (84.00,21.33) Minimum Depth specified = 11.00 in Beam Size (Optimum) = Wn5X26 Total Beam Length (ft) - 28.00 Mp (kip-ft) - 184.17 POINT LOADS (kips): J-End (112.00,21.33) Fy = 50.0 ksi Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 7.000 2.11 0.00 0.0 0.00 0.00 0.0 2.01 32.5 7.000 1.70 0.00 0.0 0.00 0.00 0.0 1.49 32.5 14.000 2.11 0.00 0.0 0.00 0.00 0.0 2.01 32.5 14.000 1.70 0.00 0.0 0.00 0.00 0.0 1.49 32.5 21.000 2.11 0,00 0.0 0.00 0.00 0.0 2.01 32.5 21.000 1.70 0.00 0.0 0.00 0.00 0.0 1.49 32.5 LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.026 0.000 NonR 28.000, 0.026 0.000 SHEAR (Ultimate): Max Vu (1.2DL+1.6LL) = 12.96 kips 0.90Vii = 105.97 kips MOMENTS (Ultimate): Span Cond. LoadCombo Mu @ Lb Cb kip-ft ft ft Center Max + 1.2DL+1.6LL 119.9 14.0 7,0 1,11 Controlling 1.2DL-1.6LL 119.9 14.0 7.0 1.11 Phi 0.90 0.90 REACTIONS (kips): DL reaction Max +LL reaction Max •+total reaction (factored) DEFLECTIONS: (Camber = 3/4) Dead load (in) Live load (in) Net Total load (in) Left 6.07 3.54 12.96 Right 6.07 3.54 12.96 at 14.00 ft --0.859 L/D -391 at 14.00 ft = -0.508 L/D = 661 at 14.00 ft = -0.617 L./D = 544 Phi*Mn kip-ft 153.63 153.63 Gravity Beam Design RAM. Steel vl4.02.02.00 DataBase: 2K.B«nO ME MecliLoad Building Code: IBC Alt % PRIME J0B:2K13-170 m STRUCTURAL BATE:. ENGINEERS SHT:. 10-2013 10115/B \m Steel Code: AISC360-05 LRFD Floor Type: ROOF SPAN INFORMATION (ft): Minimum Depth specified - Beam Size (User Selected) Total Beam Length (ft) Mp (kip-ft) = " 138.33 POINT LOABS (kips): Dist DL RedLL 6.875 1.68 0.00 13.750 1.68 0.00 20.625 1.68 0.00 LINE LOADS (L'ft): Beam Number = 120 -End (200.00,21.33) 11.00 in = W14X22 J-End (227.50,21.33) Fy - 50.0 ksi Red% 0.0 0.0 0.0 NonRLL 0.00 0.00 0,00 StorLL 0.00 0.00 0.00 Red% 0,0 0.0 0.0 RoofLL 1.47 1,47 1,47 Red% 2,7 2.7 7 7 Load Dist DL LL Red% Type 1 0.000 0.100 0.000 0.0% Red 27.500 0.100 0.000 2 0.000 0.003 0,005 2.7% Roof 27.500 0.003 0.005 3 0.000 0.022 0.000 NonR 27.500 0.022 0.000 SHEAR (Ultimate): Max Vu (1.2DL+1.6LL) - 8.62 kips l.OOVn = 94.53 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb , Phi Phi*Mn kip-ft ft ft kip-ft Center Max + 1.2.DL+1.6LL 74,1 13,8 6.9 1.10 0.90 11 i .82 Controlling 1.2DL+1.6LL 74.1 13.8 6.9 1.10 0.90 111.82 REACTIONS (kips): DL reaction Max +LL reaction Max -Htotai reaction (factored) DEFLECTIONS: (Camber = 3/4) Dead load (in) Live load (in) Net Total load (in) Left 4.24 2 21 8.62 Right 4.24 2.21 8.62 at 13.75 ft --0.797 UD -414 at 13.75 ft = -0.451 L/D = 732 at 13.75 ft = -0.498 L/D = 663 RAM Steel v 14.02.02 DataBase: 2K13-170 Future Mech Load Building Code; IBC Aft Floor Type: MECH 3* ^4 ... St_ij™_j5j„_a ..< ^. 2 _11 : 15 20 23 30 -9 Sitr -gj .11 sr Floor Map H 10/15/13 15:01:11 Steel Code: AISC360-05 LRFD JT hi H as 41 r-t- i fe 1^ -H- ' 1 35 Floor Map -a: OA PH CO RAM Steel v 14.02.02 DataBase: 2KI3-l70__Futu!-e Mech Load Building Code: IBC Ah Page 2/2 10/15/13 15:01:11 Steel Code: A1SC360-05 LRFD Surface Loads Line Loads L3 L4 Label Mechanical Well Label House Keeping Pad MISC. LOAD DL psf 106.0 DL k/ft 0.525 O.lOO CDL psf 62.1 CDL k/ft 0.000 0.000 LL Reduction psf Type 20.0 Roof LL Reduction k/ft Type 0.000 Reducible 0.000 Reducible CLL psf 20.0 k/ft 0.000 0.000 Mass DL psf 91.0 Mass DL k/ft 0.000 0.100 o N-Pi 5 « CNi 6 g g s K CO III Aln Floor Map RAM .Steel vl4.02.02 DataBase: 2Kl3-!70_Futu,re Mech Load Building Code: IBC Alt 10/15/13 15:22:45 Steel Code: AiSC360-05 LRFD N^l^S Floor Type: MECH. |'<V\felx44telo4/8' 1 li^y 2 ^ WI2 |yw2 lyyia Igjvtz.11 i !^ ^ ^ Sj „.H., Gravitv Beam Design RAM Steel vl4,02.02.00 DataBase; 2K13-170_Future Mech Load Building Code: IBC Alt PRIME JOE:2K1S-170 £14 STRUCTURAL DAmjiMOi^ ENGINEERS sm: y 10/15/13 15:12:25 Steel Code: .AISC360-05 LRFD earn Number = 3 Floor Type: MECH SF.AN INFORMATION (ft): Minimum Depth specified Beam Size (User Selected) Total Beam Length (ft) COMPOSITE PROPERTIES (Not Shored): I-End (28.50,50.00) J-End (28.50,78.67) = 11,00 in =- W14X22 = 28.67 Concrete thickness (in) Unit weight concrete (pcf) f c (ksi) Decking Orientation Decking type beff(in) ' Mnf (kip-ft) C (kips) leff(in4) Stud length (in) = Stud Capacity (kips) Qn = # of studs: Max = 28 Number of Shid Rows 1 LINE LOADS (k/ft): Left 3.50 150.00 3.00 peipendicuiar VERCO W2 Formlok Fy = 50.0 ksi Right 3J0 44.25 295.08 86.15 362.54 3.50 17.2 Rg- Partial - 10 Y bar(in) Mn (kip-ft) PNA (in) ftr (in4> Stud diam (in) 1,00 Rp = 0,60 Actual = 10- 150.00 3.00 peipendicuiar VERCO W2 Fomilok 1461 210.41 10.60 750.95 0.75 Percent of Full Composite Action = 26.55 Load Dist DL CDL LL Red% Type CLL 1 0.000 0.100 0.000 0.000 0.0% Red 0.000 28.666 0.100 0.000 0.000 0.000 2 0.000 0.027 0.016 0,005 0.0% Roof 0.005 28.666 0.027 0.016 0.005 0.005 3 0.000 0.364 0.213 0.069 0.0% Roof 0.069 28.666 0.364 0.213 0,069 0.069 4 0,000 0.022 0.022 0.000 — NonR • 0.000 28,666 0.022 0.022 0.000 0,000 SHEAR (Ultimate): Max Vu (1.2DL+L6LL) = 10.51 kips l.OOVn = 94.53 kips MOMENTS (Uitiraate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center PreCmp-f 1.2DL+1.6LL 43.1 14.3 0.0 1.00 0,90 124,50 InitDL 1.4DL 36,1 14.3 —. Max + 1.2DL+1.6LL 754 14.3 — 0.90 189.37 Controlling 1.2DL--1.6LL 754 14.3 — — 0,90 189.37 REACTIONS (kip,s): Initial reaction DL reaction Max +LL reaction Max +iotaI reaction (factored) Left 4,66 7.35 1.06 10,51 Right 4.66 7.35 1,06 10.51 Gravitv Beam Design PRIME I0B:2K13-170 STRUCTURAL m-.. S& ENGINEERS SHT:. 10-2013 RAM Steel V 14.02.02.00 DataBase: 2K13-170__Future Mech Load Building Code: IBC Ait 'age 2/2 10/15/13 15:12:25 Steel Code: AISC360-05 LRFD DEFLECTIONS: (Camber = 5/8) Inidal load (in) Live load (in) Post Comp load (in) Net Total load (in) at 14.33 ft = -0.661 L/D = 520 at 14.33 ft = -0.107 L,/D = 3227 at 14.33 ft = -0.485 L/D = 709 at 14.33 ft = -0.521 UD = 660 Gravitv Beam Design RAM Steel vl 4.02.02.00 DataBase: 2Ki3-170J'uriire Mech Load Building Code; IBC AU PRIME J0B:2Ki3 f A STRUCTUR.4L DATE: '^•^ ENGINEERS SHT: 70 10-2013 10/15,''! 3 15:12:25 Steel Code; AISC360-05 LRFD Floor Type: MECH SPAN INFORMATION (ft): Beam Number = 27 I-End (63.00,50.00) Beam Size (User Selected) = Wn2X19 J-End (63.00,78.67) Fy 50.0 ksi Total Beam Length (ft) >8.67 COMPOSITE PROPERTIES (Not Shored): Left 3.50 150.00 3.00 peipendicuiar VERCO W2 Formlok Concrete thickness (in) Unit weight concrete (pcf) f c (ksi) Decking Orientation Decking type beff(m) Mnf (kip-ft) C (kips) leff(in4) Stud length (in) Stud Capacity (kips) Qn = # of studs: Max - 28 Number of Stud Rows - 1 POINT LOADS (kips); 84.00 254,13 103.38 325.08 3.50 17,2 Rg = Partial 12 Y bar(in) Mn (kip-ft) PNA (in) ltr (in4) Stud diam (in) i .00 Rp 0.60 .Actual = 14 Right 3,50 150.00 3.00 perpendicular VERCO W2 Formlok 1455 182,07 10.50 628.06 0.75 Percent of Full Composite Action = 32.31 Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofLL Red% 11.250 0,05 0.05 11.250 0.05 0.05 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.525 0.000 0,000 0.0% Red 0.000 11.250 0.525 0.000 0.000 0.000 2 0.000 0.742 0.435 0.140 0.1% Roof 0.140 28.666 0.742 0.435 0,140 0.140 3 0.000 ' 0.019 0.019 0.000 — NonR 0.000 28.666 0.019 0.019 0,000 0.000 SHEAR (Ultimate): Max Vu (1.2DL+1.6LL) - 22.07 kips l.OOVn - 86.01 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center PreCmp+ 1.2DL+L6.LL 79,6 14.3 0.0 1.00 0.90 92.62 InitDL 1,4DL 66.0 14.2 — — Max+ 1.2DL+1.6LL 138.3 13,1 — 0.90 163.86 Controlling 1.2DL--1.6LL 79,6 14.3 0.0 1.00 0.90 92.62 REACTIONS (kips): Initial reaction DL reaction Left 8.57 15,71 Right 8.55 12,10 Gravitv Beam Design PRIME J0B:2K13-170 ENGINEERS siT:. " " RAM Steel vl4.02.02.00 DataBase; 2K13-I70__Future Mech Load Building Code; IBC Alt Page 2/2 10/15/13 15:12:25 Steel Code; AISC360-05 LRFD Max -i-LL reaction Max +tota! reaction (factored) DEFLECTIONS: (Camber = 1-3/4) Initial load (in) at Live load (in) at Post Comp load (in) at Net Total load (in) at Left 2.0! 22.07 Right 2.01 17.73 14.19 ft = 14.19 ft - 14.19 ft = 14.19 ft = 1.849 L/D = 186 0.225 L/D -1526 1.002 L/D = 343 l.lOl L/D = 312 Gravity Beam Design RAM Steel vl4.02.02,00 DataBase: 2,[<.13-170_Future Mech Load Building Code: IBC Alt ^\ PRIME J0B:2K13-170 a£> STRUCTURAL DATE:. WJ^^ ENGINEERS SHT:. 10-2013 10/15/13 15:22:45 Sieei Code; AISC360-05 LRFD Beam Number - 4 Fioor Type: MECH SPAN INFORMATION (ft): l-Eiid (28.50,50.00) Minimum Depth specitied = 11.00 in Beam Size (User Selected) = W21X44 Total Beam Length (ft) =^ 27.50 COMPOSITE PROPERTIES (Not Shored): J-End (56.00,50.00) Fy = 50.0 ksi Concrete thickness (in) Unit weight concrete (pcf) f c (ksi) Decking Orientation Decking type beff(in) Mnf (kip-ft) C (kips) - Ieff(in4) Stud length (in) = Stud Capacity (kips) Qn = # of studs; Full = 62 Number of Stud Rows = 1 POINT LOADS (kips): Left 3.50 150.00 3.00 parallel VERCO W2 Formlok 82,50 774,86 452.28 1813.95 3.50 21,5 Rg = Partial = 22 Percent of Ful Y bar(in) Mn (kip-ft) PNA (in) ltr (in4) Stud diam (in) 1.00 Rp = 0.75 Acmal = 42 1 Composite Action Right 3^50 150.00 3.00 parallel VERCO W2 Formlok 20.47 724.99 20.40 2731.86 0.75 69.58 Dist DL CDL RedLL Red% NonRLL StorLL Red'/o RoofLL Red% CLL . 6.875 10,75 6,42 0.00 0.0 0,00 0.00 0.0 1.97 39.1 1.97 6.875 10,75 6,42 0.00 0.0 0,00 0.00 0.0 1.97 39.1 1.97 13.750 15.52 6.45 0.00 0.0 0.00 0.00 0.0 1.97 39.1 1.97 13,750 15.52 645 0.00 0.0 0.00 0.00 0.0 1.97 39.1 1.97 20.625 15.52 6,45 0.00 0.0 0.00 0.00 0.0 1.97 39.1 1.97 20.625 15.52 6.45 0.00 0.0 0.00 0.00 0.0 1.97 39,1 1.97 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.044 0.044 0.000 — NonR 0.000 27.500 0.044 0.044 0.000 0.000 SHEAR (Ultimate): Max Vu (1.4DL) - 62.70 kips I.OOVn = 217.35 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center PreCmp+ i.2DL+l,6LL 304.3 13.8 6.9 1.11 0.90 352.04 Init DL 1.4DL 253.9 13.8 — — Max L4DL 557.5 13.8 — — 0.90 652.49 Controlling 1.2DL^1.6LL 304.3 13.8 6.9 1.11 0.90 352.04 REACTIONS (kips): Gravitv Beam Design PRIME J0B:2K13-170 STRUCTURAL DO:JMQ13. r/^ ENGINEERS SBT:. RAM Steel vl4.02.02.00 DataBase: 2K13-170_Future Mech Load Building Code: IBC Alt Page 2,/2 10/15/13 15:22:45 Steel Code: AISC360-05 LRFD Initial reaction DL reaction Max +LL reaction Max -i-total reaction (factored) DEFLECTIONS: (Camber = 7/8) Initial load (in) at Live load (in) at Post Comp load (in) at Net Total load (in) at Left 25.83 40.01 3.60 56.02 Right 25.86 44.79 3.60 62.70 13.89ft = 13.89ft = 13.89 ft = 13.89 ft = 0.960 L/D -344 0.081 L/D -4069 0.602 L/D = 548 0.687 L/D = 480 Gravitv Beam Design RAM Steel vl4.02.02,00 DataBase: 2K13-170_Fiiiure Mech Load Building Code: IBC Air PRIME iOR:2Kl3-170 STRUCTURAL DAmjO::20i3 lm Mmm SHTL 10/15/13 15:22:45 Steel Code: AISC360-05 LRFD PloorTvpe:MlCH LvpeLViECM Beam Number = 22 SPAN INFORMATION (ft): I-End (56.00,50.00) J-End (84.00,50.00) Minimum Depth specified = 11.00 in Beam Size (User Selected) = W21X44 Total Beam Length (ft) - 28,00 COMPOSITE PROPERTIES (Not Shored): Left 3.50 150.00 3.00 parallel VERCO W2 Formlok Concrete thickness (in) Unit weight concrete (pet) f c (ksi) Decking Orientation Decking type beff(in) Mnf (kip-ft) C (kips) leff(in4) Stud length (in) Stud Capacity (kips) Qn = # of studs: Full = 62 Number of Stud Rows == 1 POINT LOADS (kips): Fy = 50.0 ksi Right 84.00 776.36 452.28 1820.21 3.50 21.5 Rg = Partial = 24 Y bar(in) Mn (kip-ft) PNA (in) ltr (in4) Smd diam (in) 1.00 Rp = 0.75 Actual = 42 3.50 150,00 3.00 parallel VERCO W2 Formlok 20.52 725.71 20.'40 2741.87 0.75 Percent of Full Composite Action = 69.58 Dist DL CDL RedLL Red% NonRLL StorLL Red% RoofIX Red% CLL 7.000 15.71 6.56 0,00 0.0 0.00 0.00 0.0 2.01 40.0 2.01 7.000 15.71 6.56 0.00 0.0 0.00 0.00 0.0 2.01 40.0 2.01 14.000 15.71 6.56 0.00 0.0 0.00 0.00 0.0 2.01 40.0 2.01 14.000 15.71 6.56 0.00 0.0 0.00 0.00 0.0 2.0! 40.0 2.01 21.000 10.94 6.53 0.00 0.0 0.00 0.00 0.0 2.01 40.0 2,01 21.000 10.94 6.53 0.00 0.0 0.00 0.00 0.0 2.01 40.0 2.01 LINE LOADS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.044 0.044 0.000 — NonR 0,000 28.000 0.044 0.044 0.000 0.000 SHEAR (Ultimate): Max Vu (1.4DL) = 63.52 kips I .OOVn = 217.35 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center PreCmp+ i.2DL+1.6LL 315.3 14.0 7.0 1.11 0.90 349.71 Init DL 1.4DL 263.0 14.0 — — Max T 1.4DL 575.2 14.0 — — 0.90 653.14 ControUins? 1 9nT-f-i r 1 4 A -7 n 1 T 1 Grpit? Beam J\mm -rwnm.««mntimri|iM||||| a,,,,,, •—<>««. RAM Steel vl4.02.02.00 DataBase; 2K13-170_Future Mech Load Building Code; IBC Ail Initial reaction DL reaction Max -f LL reaction Max +total reaction (factored) DEFLECTIONS: (Camber -1) Initial load (in) Live load (in) Post Comp load (in) Net Total load (in) Left Right 26.31 26.28 45.37 40.60 3.61 3.61 63.52 56.83 2K.13-170 PRIME JOB •S-^ mUCTUMiffi: ENGINEERS SBT;„_ Page 2/2 10/15/13 15^22:45 Steel Code: AI§C36()-05 LRFD at 13.86 ft --1.031 L/D = 326 at 13,86ft --0.086 L/D = 3925 at 13.86ft = -0.639 L/D = 526 at 13.86 ft = -0.670 L/D = 501 Sityity Beam Design RAM Steel vl4.02,02.00 DataBase; 2KI3-170Juture Mech Load Bmlding Code: IBC Alt Floor Type: MECH Beam Number = 40 SPAN INFORMATION (ft): I-End (172.0(1,50.00) J-Ejjd (200.00,50.00) Minimum Depth specified = 11.00 in Beam Size (User Selected) = W21X44 Total Beam Length (ft) - 28.00 COMPOSITE PROPERTIES (Not Shored): i PRIME STEUCTUEE BAi;joW ^ ENGINEERS Sfff: m ^ 10/15/1315:22:4S Steel Code: MSC360-05 LRFD Fy = 50.0 ksi Left Right Concrete thickness (in) 3.50 3.50 Unit weight concrete (pcf) 150.00 150.00 f c (ksi) 3.00 3.00 Decking Orientation parallel parallel Decking type •VERCO W2 Formlok VERCO W2 Formlok beff(in) 84.00 Y bar(in) -• 20.52 Mnf (kip-ft) 776.36 Mn (kip-ft) 725.71 C (kips) 452.28 PNA (in) = 20.40 Ieff(in4) 1820.21 ltr (!n4) 2741.87 Stud length (in) = 3,50 Stud diam (in) =• 0.75 Stud Capacit}' (kips) Qn -21.5 Rg = = 1.00 Rp - 0.75 # of studs: Full = 62 Partial = 16 Actual = 42 Number of Smd Rows = 1 Percent of Full Composite Action = 69.58 POINT LO ADS (kips): Dist DL CDL Rc ;dLL Red% NonRLL StorLL Red% RootlX Red°'o CLL 7.000 10.91 6.50 0.00 0,0 0.00 0.00 0.0 2.01 40.0 2.01 7.000 10.91 6.50 0.00 0.0 0.00 0.00 0.0 2.01 40.0 2.01 14.000 10.91 6.50 0.00 0.0 0.00 0.00 0.0 2.01 40.0 2.01 14.000 10.91 6.50 0.00 0.0 0.00 0.00 0.0 2.01 40.0 2.01 21.000 10.91 6.50 0.00 0.0 0.00 0.00 0.0 2.01 40.0 2.01 21.000 10.91 6.50 0.00 0.0 0.00 0.00 • 0.0 2.01 40.0 2.01 LINE LOABS (k/ft): Load Dist DL CDL LL Red% Type CLL 1 0.000 0.044 0.044 0.000 NonR 0.000 28.000 0.044 0.044 0.000 0.000 SHEAR (Ultimate): Max Vu (1.4DL) = 46.68 kips LOOVn = 217.35 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu Lb Cb Phi Phi*Mn Span kip-ft ft ft klp-ft Center PreCmp+ 1.2DL-t-l,6LL 313.6 14.0 7.0 1.11 0.90 349.73 InitDL 1.4DL 261.0 14.0 — ... Max + 1.4DL 433.6 14.0 — — 0.90 14 Gravity Beam Design RAM Steel vl4.02.02.00 DataBase: 2KI3-170_Future Mech Load Buiiding Code; IBC Ait Initial reaction DL reaction Max -f LL reaction Max +total reaction (fectored) DEFLECTIONS: (Camber = 1) Initial load (in) Live load (in) Post Comp load (in) Net Total load (in) at at at ai Left 26.15 33.34 3.61 46.68 Right 26.15 33.34 3.61 46.68 . 10-201 .-j PRIME J0B:2K13-170 STRUCTURAL DAK ENGINEERS m-. Page 10/15/13 15:22:45 Steel Code: AISC360-05 LRFD 1400 ft = -1.023 L/D = 328 14.00 ft --0.086 LT) = 3924 14.00 ft --0.399 L/D = 842 14.00 ft = -0.422 L/D = 796 Gravitv Beam Design ' ' " "W""ii f If ri KI mw •• III IMI I npi-iinii—Mwlffi— RAM Steel vl4.02.02.00 DataBase: 2K13-170Jiitoe Mech Load Building Code: IBC All PRIME 10B:2K13-170 STRUCTURAL m. ENGINEERS SHT:. 10-2013 10/15/13 15:22:45 Steel Code: AISC360-05 LRFD liiiiisit SPAN INFORMATION (ft): I-End (193.00,21.33) J-End (193.00,50.00) Beam Size (User Selected) = W12X19 Fy - 50.0 ksi Total Beam Length (ft) - 28.67 COMPOSITE PROPERTIES (Not Shored): Concrete thickness (in) Unit weight concrete (pcf) f c (ksi) Decking Orientation Decking type beff(in) Mnf (kip-ft) C (kips) = Ieff(in4) Stud length (in) Stud Capacity (kips) Qn = #ofsftids; Max = 28 Number of Stud Rows = 1 LINE LOADS (k/ff): Left 3.50 150.00 3.00 peipendicuiar VERCO W2 Formlok 84.00 254.13 120.61 343.32 3.50 Rg = Partial = 10 7 2 Y bar(in) Mn (kip-ft) PNA (in) ltr (in4) Stud diam (in) .00 Rp = 0,60 Actual = 14 Right 3,50 150.00 3,00 peipendicuiar VERCO W2 Fomrlok 14.55 191.13 11.23 628.06 0,75 Percent of Full Composite Action = 43.30 Load Dist DL CDL LL Red% • Type CLL 1 0.000 0.742 0.435 0.140 0.1% Roof 0.140 28.666 0.742 0.435 0.140 0.140 2 0.000 0.019 0.019 0.000 — NonR 0.000 28.666 0.019 0.019 0.000 0.000 SHEAR (Ultimate): Max Vu (1.2DL+L6LL) = 16.30 kips LOOVn = 86.01 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn Span kip-ft ft ft kip-ft Center PreCmpi-1.2DL+L6LL 78.9 14.3 0.0 1.00 0.90 92.62 Init DL 1.4DL 65.2 14.3 — — Max + 1.2DL+1.6LL 116,8 143 — — 0.90 172.02 Controlling 1.2DLrl.6LL 78,9 14.3 — — 0.90 92.62 REACTIONS (kips): Initial reaction DL reaction Max +LL reaction Max +total reaction (factored) DEFLECTIONS: (Camber = 1-3/4) Initial load (in) at Live load Cm) at Left 8.51 10.91 2.01 16.30 Right 8.51 10.91 2.01 16,30 1433 ft 14 n-i ft -1.828 n /i T rr\ 188 .Gravit¥ Beam J^man RAM Steel vl4.02.02.00 DataBase; 2K13-170 Future Mech Load Building Code; IBC Alt Net Total load (in) PRIME J0B:2K13-170 ^ ENGINEERS SHT:"¥i/ Page 2/2 10/15/13 15:22:45 Steel Code: AISC360-05 LRFD Gravitv Beam Design RAM Steel V 14.02.02.00 DataBase: 2K13-170 Future l^lj^ll Building Code: IBC Alt PRIME J0B:2K13-170 £M STRUCTURAL MTE:JL0:;20i3. ENGINEERS SHT:_|4a.. Steel Code: A1SC360-05 LRFD Floor Type: MECH ieam Number = 51 SPAN INFORMATION (ft): Minimum Depth specified Beam Size (User Selected) Total Beam Length (ft) COMPOSITE PROPERTIES (Not Shored) -End (200.00,50.00) 11.00 in - W21X44 - 27.50 J-End (227.50,50.00) Fy = 50.0 ksi Concrete thickness (in) Unit weight concrete (pcf) f c (ksi) Decking Orientation Decking type beff(in) Mnf (kip-ft) C (kips) leff(in4) Stud length (in) Stud Capacity (kips) Qn # of studs: Full - 62 Number of Stud Rows = 1 POINT LOADS (kips): Left 3.50 150.00 3,00 parallel VERCO W2 Foi-mlok 82.50 774.86 452.28 1813,95 3.50 - 21. Ro = Partial •= 16 Y bar(in) Mn (kip-ft) PNA (in) ltr (in4) Stud diam (in) 1.00 Rp = 0.75 Acmal = 42 Right 3.50 150.00 3.00 parallel VERCO W2 Formlok 20.47 724.99 20.40 2731.86 0.75 Percent of Full Composite Action = 69.58 Dist DL CDL RedLL Red^i'o NonRLL StorLL Red% Roofl[,X Red% CLL 6.875 10.72 6.39 0.00 0.0 0.00 0.00 0,0 1.97 39.1 1.97 6.875 10.72 6.39 0.00 0,0 0,00 0,00 0.0 1.97 39.1 1.97 13.750 10.72 6.39 0.00 0.0 0.00 0.00 0.0 1.97 39.1 1.97 13.750 10.72 6.39 0.00 0.0 0.00 0.00 0.0 1.97 39.1 1.97 20.625 10.72 6.39 0.00 0,0 0,00 0,00 0,0 1.97 39.1 1.97 20.625 10.72 6.39 0.00 0.0 0.00 0.00 0.0 1,97 39.1 1.97 LINE LOADS (k/ft): CLL Load Dist DL CDL LL Red% Type CLL 1 0.000 0.044 0.044 0,000 — NonR 0.000 27.500 0.044 0.044 0.000 0.000 SHEAR (Ultimate): Mas Vu (1,4DL) - 45.86 kips LOOVn = 217.35 kips MOMENTS (Ultimate): Span Cond Center PreCmp-1- Init DL Max + LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft I.2DL+1.6LL 302.6 13.8 6,9 1,11 0,90 352.07 1.4DL 251.9 13.8 — — 1.4DL 418.5 13.8 — — 0.90 652.49 Gravity Beam De.«sigii RAM Steel vl4,02.02.00 DataBase: 2K13-170_Fumre Mech Load Building Code: IBC Alt Inidal reaction DL reaction Max -f-LL reaction Max -i-totai reaction (factored) DEFLECTIONS: (Camber = 7/8) Initial load (in) Live load (in) Post Comp load (in) Net Total load (in) Left 25.69 32.76 3.60 45,86 Right 25.69 32.76 3.60 45.86 . PRIME J0B:2K13-170 ^ STRUCTURAL 8ATE:..IO-2O~ ENGINEERS SHT:.. - Page 2/2 10/15/13 15^^22:45 Steel Code: AISC360-05 LRFD at 13.75 ft -0.953 L/D = 346 at 13,75 ft = -0.081 L/D = 4069 at 13,75ft = -0.374 L.,/D = 883 at 13,75ft --0.452 LT) = 731 to \ o CNJ \ Floor Map RAM Steel v 14.02.02 DataBase: 2K13-170 Future Mech Load Building Code: IBC Alt [/li 1 /:3l:39 Steel Code: A1SC360-05 LRFD Floor Type: 3RD 10 f3 ?: 5 2a , L 38 13 25 29 H -H----H- 8 60 c 8 te 1 - H-174 u si 9E 1tB -hi-- -gi——TT--—3r 66 SS f-f 165 no -H- -H- •H-137 •H-154 135 -H- 157 • ie2 ME Ijy-Sii::::™:^ 1 f 8 Z7 30 CO Floor Map RAM Steel V14.02.02 DataBase; 2K B-170_Future Mech Load Building Code: IBC Alt 10/21/13 17:31 :39 Steel Code: AISC360-05 LR.FD Floor Type: 3RD »d33N3Q7K -H-•H-xk33^M j_j xto3N35,8K -H--H— x«O3N30.iK X!«3EfNe9.5K -H- WI2x:14.yVj2xWa III I 'I; Cf3 S5 fi! RAM 'ls}Kt!-'!t\V:-i'H Floor Map RAM Steel vl4.02.02 DataBase: 2K13-170__Future Mech Load Building Code: IBC Alt Page 2/2 10/2 11/13 17:31:39 Steel Code: AISC 1360-05 LRFD Surface Loads Label Floor Storage Room DL psf 52.0 52.0 CDL psf 43.0 43.0 LL Reduction psf Type 100.0 Reducible 250.0 Unreducible CLL iVJEass DL psf psf 20.0 59.0 20.0 116.5 im Smimarv RAMStee!vl4.02.02.00 DataBase: 2K13-170Juture Mecli Load Building Code: IBC Alt JOIST SELECTION SUMMARY: Floor Type: 3RD PRIME Ji;2KM0 ^ STRUOTAL ffl;jmi ^ ENGINEERS sffiic. 10/15/1316:01:24 Steel Code: AISC36().05 LRFD Standard Joists: Joist # Length WDL WLL 6 21.33 494.0 910.0 8 28.67 494.0 857,0 9 21.33 494,0 910.0 13 21.33 494.0 910.0 15 28.67 494.0 857.0 16 21.33 494.0 910.0 17 21,33 485.3 896.7 18 28.67 485.3 845.6 20 28.67 485.3 845.6 22 21.33 485.3 • 896.7 24 21.33 476.7 883.3 25 28.67 476.7 834,0, 26 28.67 476.7 834^0" 27 21.33 _,.476,7. 883.3 28 21.33 476.7 883.3 29 28.67 476.7 834.0 30 28.67 476.7 834.0 3L ._2L3.3. 476.7 _ 88.33 32 21.33 481.0 890.0 33 28.67 481.0 839.8 35 28.67 481.0 839.8 37 21.33 481.0 890.0 39 21.33 487.5 900,3 40 28.67 485.3 g^^-^ 41 • 28.67 485.3 845.6 42 21.33 487.5 43 28.67 485.3 845.6 44 21.33 . ™ 485,3 896.7 45 28.67 485.3 845.6 46 21.33 485,3 896.7 49 21.33 485.3 8910 50 28.67 485.3 903.8 52 28.67 485.3 903.8 54 21.33 485.3 897.0 56 21.33 .485.3 896.7 50 21.33 485.3 896.7 WTL 1404.0 Joist xxS.lxx \35\A. 1404.0 1404.0 1351.0 1404,0_ 1382.0 -JS.X,SJxx.... xxSJxx... ™.X.XSJ-X.X.., xxSJxx xxSJxx xxSJxx 1330.9 1330.9 1.1§.2J,„ 1359.9 1310.6 .,1,359,9... 1359.9 iITab' 1310.6 1359.9 1371.0 "1320.8' 1320.8 1371.0 "l387X 1330j 1330.9 JL3,&7.*8„„ 1330.9 ....1.3.82,,0. 1330.9 1382.0 1440.1 1440.1 1382.3 ,1382J.. 1382.0 xxSJxx xxSJxx .™JX.Slxx.„ xxSJxx .xx.S.Jxx.,,.. xxSJxx .xxSJxx, xx:SJxx_^ xxSJxx xxSJxx xxSJxx _xxSJxx_ xxSJxx xxSJxx xxSJxx xxSJxx xxSJxx xxSJxx xxSJxx ..--MSJ.X.X_. xxSJxx xxSJxx xxSJxx xxSJxx xxSJxx xxSJxx xxSJxx * / J' * * ~ s ly.. * * * * * * * y • ^ xxSJxx Beam Summary RAM Steel vl4.02,02.00 DataBase; 2K13-170 Jurure Mech Load Building Code: IBC Alt PRIME J0fl:2K13-170 STRUCTURAL im. 10-2013 ENGINEERS sHT;_iiL_ Pagci 2/6 10/15/13 16:01:24 Steel Code: AISC360-05 LRFD st# Length WDL WLL WTL Joist 72 21.33 416.0 786.8 1202.8 20LH10 f j.. "7 76 21.33 416.0 786.8 1202.8 20LH10 78""""" 21.33 416.0 786.8 1262:8 26LHI0' • 83" 21.33 416:0 786:s '1202:8 88 21.33 416.0 786.8 1202.8 20LH10 94 21.33 416.0 786.8 1202.8 20LH10 / /• •' • 96 21.33 450,7 842.5 1293.1 xxSJxx \ * 104 21.33 450.7 842.5 1293.1 xxSJxx y 107 ' 21.33 485.3 %%:7' 1382:0 xxSJxx 111 • 21.33 485.3 896.7 1382.0 xxSJxx i* \. /' 114 2133 485.3 896.7 1382.0 xxSJxx 115 28.67 485.3 845.6 1330.9 xxSJxx * 116 28.67 485.3 845.6 1330.9 xxSJxx * 117 21.33 48.5.3 896.7 1382.0 xxSJxx 118 21.33 485.3 897.0 1382.3 xxSJxx 28.67 485.3 845.6 1330.9 xxSJxx * 121 28.67 485.3 845.6 1330.9 xxS.Ixx • 123 21.33 485.3 897.0 1382.3 xxSJxx 125 21.33 485.3 896.7 T382.0"" xxSJxx * 126 21.33 485.3 , 896.7 1382.0 xxSJxx i y *• 127 28.67 485.3 845.6 1330.9 xxSJxx * 128 28.67 485.3 845.6 1330.9 xxSJxx * 129 21.33 487.5 900,3 1387.8 xxSJxx y*y 130 28.67 485.3 845.6 133(L9 xxSJxx 131 28.67 485.3 845.6 1330.9 xxSJxx * 132 21.33 487.5 900.3 1387.8 xxSJxx > y • 133 21.33 481,0 890.0 1371.0 xxSJxx 134 28.67 481,0 839,8 1320.8 xxSJxx 136 28.67 481,0 839.8 1320.8 xxSJxx * 138 21.33 481,0 890.0 1371.0 xxSJxx fy-^f 140 21.33 476.7 883.3 nws xxSJxx .lit p 141 28.67 476.7 834.0 1310.6 xxSJxx 142 28.67 476.7 834.0 1310.6 xxSJxx * 1,43_ 21.33 476.7 883.3 1359.9 xxSJxx 144 . 21.33 476.7 883.3 1359.9 xxSJxx _ 145 28.67 476.7 834.0 Tsiae xxSJxx 146 28.67 476.7 834.0 1310.6 xxSJxx •* 147 21.33 476.7 883.3 1359.9 xxSJxx /<^ } 148 21.33 485,3 896,7 r382.0 xxSJxx y, .'7 ,. 149 28.67 485.3 "" 845.6 1330.9 xxSJxx * 151 28.67 485.3 845.6 1330.9 xxSJxx 151 21.33 485.3 896.7 1382.0 _xxSJxx_ 155 "21.33 ml" 9'iao 1404k0' ' xxSJxx 158 28.67 494.0 857.0 1351.0 xxSJxx * 159 21,33 494.0 910.0 1404.0 xxSJxx 1 y\' \ B.eam Summary RAM Steel vl4.02,02.00 DataBase; 2Ki3-170_Futare .Mech Load Bmlding Code: IBC Alt PRIME J0B:2K13-170 W..^. STRUCTURAL iiAffijmi^ r^&y ENGINEERS m-.^ Page 3/6 10/15/13 16:01:24 Steel Code: AISC360-05 LRFD Joist # 163 165 166 Length 21.33 28.67 21.33 WDL 494.0 494.0 494.0 WLL WTL Joist 910.0 1404.0 xxSJxx 857.0 1351.0 xxSJxx 910.0 1404.0 xxSJxx Joist Girders: Joist # Length #Panels PDL PLL PTL Joist 5 28.50 3 13.1 17.6 30.6 XXG3N30.7K 19 27.50 3 . 12.6 17.3 29.9 XXG3N29.9K 21 27.50 3 14.6 184 • 33.0 XXG3N33.0K 23 27.50 3 12.6 17.3 29,9 XXi33N29.9K 34 28.00 12.8 17.4 30.3 XXG3N30.3K 36 28.00 14.8 18.5 33.4 XXG3N33.4K 38 28.00 3 12.8 17.4 30.3 XXG3N30.3K 51 28.00 3 12.8 22.9 35.8 XXG3N35.8K 53 28.00 3 14.8 50,3 65.1 XXG3N65.2K 55 28.00 3 12.8 22.9 35.8 XXG3N35.8K 109 18.67 2-14.8 24.2 39.1 XXG2N39.1K 120 28.00 ^ :> 12.8 17.4 30.3 XXG3N30.3K 122 28.00 3 14.8 18.5 33.4 XXG3N33.4K 124 28.00 3 12.8 17.4 30.3 XXG3N30.3K 135 27.50 3 12.6 17.3 29.9 XXG3N29.9K 137 27,50 3 . 14.6 18.4 33.0 XXG3N33.0K 139 27.50 3 12.6 17.3 29.9 XXG3N29.9K 154 28.50 3 13.1 17.6 30.6 XXG3N30.7K Special Joists: Joist # Length -l-M • -M Joist Size 57 28.67 205.4 0.0 XXGSP 58 28.67 205.4 0.0 XXGSP 61 28.67 204.5 0.0 XXGSP 62 28.67 204.5 0.0 XXGSP 71 32.00 348.5 0.0 XXGSP 98 28.00 262.2 0.0 XXGSP 105 28.00 268.6 0.0 XXGSP Floor Type: 2ND Standard Joists: Joist # Length W^DL WLL WTL Joist 6 21.33 494.0 910.0 1404.0 xxSJxx * 8 28.67 494.0 857.0 1351.0 xxSJxx * 9 21.33 494.0 910.0 1404.0 xxSJxx * 13 21.33 494,0 910.0 1404.0 xxSJxx * 15 28.67 494.0 857.0 1351.0 xxSIxx * 16 21.33 494.0 910.0 1404.0 xxSJxx * I Belli mmmm A PRIME J0B:2Kmi2. ^ STETOmiitim ENGINEERS •sHT:_4ja.^ RAM Steel vl 4.02.02.00 DataBase; 2K13-170 Juture Mech Load Building Code; IBC Alt Page 4/6 " 10!l5iB!6;01:H Steel Code: A1SC360-O5 LRFD Joist # Length WDL WLL WTL Joist 17 21,33 485.3 896.7 1382.0 xxSJxx * 18 28.67 485.3 845.6 1330.9 xxSJxx * 20 28.67 4853 845.6 1330.9 xxSJxx * 22 21.33 485.3 896.7 1382.0 xxSJxx 24 21.33 476.7 883.3 1359.9 xxSJxx * 25 28.67 476.7 834.0 1310.6 xxSJxx * 26 28.67 476,7 834.0 1310.6 xxSJxx '•i' 27 21.33 476.7 8833 1359.9 xxSJxx * 28 21.33 476.7 8833 1359.9 xxSJxx * 29 28.67 476.7 834.0 1310.6 xxSJxx 30 28.67 476.7 834.0 1310.6 xxSJxx * 31 21.33 476.7 . 8833 1359.9 xsSJxx 32 21.33 481.0 890.0 1371.0 xxSJxx * 33 28.67 481.0 839.8 1320.8 xxSJxx * 35 28.67 481,0 839.8 1320.8 xxSJ.xx 37 21.33 481,0 890.0 1371.0 xxSJxx 39 21.33 487,5 900.3 1387.8 xxS,Ixx * 40 28.67 485.3 845.6 1330.9 xxS,lxx 41 28.67 485.3 845.6 1330.9 xxS,lxx 42 21.33 487.5 900.3 1387.8 xxSJxx *- • 43 28.67 485.3 B45.6 1330.9 xxSJxx 44 21.33 485.3 896.7 1382.0 xxSJxx 45 28.67 485.3 845.6 1330.9 xxSJxx 46 21.33 485.3 896.7 1382.0 xxSJxx * 49 21.33 485.3 897.0 13823 xxSJxx * 50 28.67 485,3 903,8 1440.1 xxSJxx 52 28.67 4853 903.8 1440.1 xxSJxx * 54 21.33 485,3 897.0 13823 xxSJxx 56 21.33 485.3 896.7 1382.0 xxSJxx •M 59 2133 485.3 896.7 1382.0 xxSJxx * 60 2133 4853 896,7 1382.0 xxSJxx * 63 21..33 485.3 896,7 1382.0 xxSJxx * 64 20.83 450.7 845.5 1296.2 xxSJxx * 70 21.33 450.7 842.5 1293.1 xxSJxx * 72 2133 416.0 786.8 1202.8 20LF1I0 76 21.33 416.0 786.S 1202.8 20LH10 78 21.33 416.0 786.8 1202.8 20LH10 83 21.33 416.0 786.8 1.202.8 20LH10 88 21.33 416.0 786.8 1202.8 20LH10 94 2133 416.0 786.8 1202.8 20LH10 96 2133 450.7 842.5 1293.1 xxSJxx Beam Summan ^. PRIME JOB:2K13-170 i STElTWllMlJ RAM Steel vl4.02.02.00 DataBase: 2K13-170 Future Mech Load Building Code: IBC Alt ENGINEERS.SHT:. ' • .. Page 5/6 10/15/13 \m:M Steel Code: A1SC360-O5 LRFD Joist # Length WDL •WLL WTL Joist 115 28.67 4853 845,6 1330.9 xxSJxx 116 28.67 485.3 845.6 1330.9 xxSJxx * 117 2133 485.3 896.7 1382.0 xxSJxx 118 21.33 4853 897.0 1382.3 xxSJxx 119 28.67 485.3 845.6 1330.9 xxSJxx 121 28.67 4853 845.6 1330.9 xxSJxx 123 21.33 4853 897.0 1382.3 xxSJxx * 125 21.33 485.3 896.7 1382.0 xxSJxx * 126 2133 485.3 896.7 1382.0 xxSJxx 127 28.67 485.3 845.6 1330.9 xxSJxx * 128 28.67 4853 845.6 1.330.9 xxSJxx * 129 21.33 487.5 900.3 1387.8 xxSJxx * 130 28.67 4853 845.6 1330.9 xxSJxx * 131 28.67 485.3 845.6 1330.9 xxSJxx 132 2133 487.5 900.3 1387.8 xxSJxx 133 21.33 481.0 890.0 1371.0 xxSJxx 134 28.67 481.0 839.8 1320.8 xxSJxx * 136 28.67 481.0 839.8 1320.8 xxSJxx 138 21.33 481.0 890.0 1371.0 xxSJxx •.if 140 21.33 476.7 883.3 1359.9 xxSJxx * 141 28.67 476.7 834.0 1310.6 xxS.Ixx * 142 28.67 476.7 83-10 1310.6 xxSJxx * 143 21.33 476.7 8833 1359.9 xxSJxx 144 21.33 476.7 8833 1359.9 xxSJxx * 145 28.67 476.7 834.0 1310.6 xxSJxx * 146 28.67 476.7 834.0 1310.6 xxSJxx * 147 2133 476.7 883.3 1359.9 xxSJxx * 148 2133 4853 896.7 1382.0 xxSJxx 149 28.67 4853 845.6 1330.9 xxSJxx * 151 28.67 485.3 845.6 1330.9 xxSJxx 153 2133 485.3 896.7 1382.0 xxS.Ixx * 155 21.33 494.0 910.0 1404.0 xxSJxx * 158 28.67 494.0 857,0 1351.0 xxSJxx 159 21.33 494.0 910.0 1404.0 xxSJxx 163 21.33 494.0 910.0 1404.0 xxSJxx * 165 28.67 494.0 857.0 1351.0 xxSJ'xx * 166 2133 494.0 910,0' 1404.0 xxSJxx * Joist Girders: Joist # 5 Length #Panels PDL PLL PTL Joist 28.50 3 ni 17<^ ^n^ VYn^xnmv- Beam Siimmarv RAM Steel V 14,02.02.00 DataBase; 2K13-170_Fiitiire Mech Load Building Code; IBC Alt PRIME JOB 14 STRUCTURAL DATE: ENGINEERS SHT; 2K13-170 10-2013 Page 6/6 10/15/13 16":01:24 Steel Code: A1SC360-05 LRFD Joist # Length #Panets PBL PLL PTL Joist 36 28,00 14,8 18,5 334 XXG3N33.4K 38 28,00 3 12,8 17.4 303 XXG3N30.3K 51 28.00 i 12.8 22.9 35,8 XXG3N35.8K 53 28.00 n 3 14.8 50,3 65.1 XXG3N65.2K 55 28.00 3 12,8 22.9 35.8 XXG3N35.8.K 109 18.67 J 14.8 24.2 39.1 XXG2N39,iK ' 120 28.00 3 • 12.8 174 303 XXG3N30.3K 122 28.00 3 14.8 18.5 33.4 XXG3N33.4K 124 28.00 3 12,8 17.4 30.3 XXG3N30.3K 135 27.50 12.6 17.3 29.9 XXG3N29.9K 137 27.50 3 14.6 18.4 33.0 XXG3N33,0K 139 27.50 3 12,6 17.3 29.9 XXG3N29,9K 154 28.50 3 13.1 17.6 30.6 XXG3N30,7K Special Joists: Joist # Length +M -M Joist Size 57 28.67 205.4 0,0 XXGSP 58 28.67 205.4 0,0 XXGSP 61 28.67 204.5 0.0 XXGSP 62 28.67 204.5 0.0 XXGSP 71 32.00 350.3 0.0 XXGSP 98 28.00 262.2 0.0 XXGSP 105 28.00 268.6 0.0 XXGSP * after Size denotes joist is inadequate. u after Size denotes this size has been assigned by the User. I I Gravity Beam Design RAM Steel vl4.02.02.00 DataBase: 2Ki3-170_Future Mech Load Buiiding Code: IBC Alt PRIME J0B:2K13-r7O ^ STRUCTUSAL MTE:_L2:20l^ ENGINEERS SHT. yb 10/21/13 17:55:12 Steel Code; AISC360-05 LRFD Floor Type: 3RD Beam Number = 66 SPAN INFORMATION (ft): I-End (112.00,50.00) Minimum Depth specified = 11.00 in Beam Size (Optimum) = W24X62 Total Beam Length (ft) = 32.00 Mp (kip-ft) =. 637.50 POINT LOADS (kips): J-End (144.00,50.00) Fy = 50.0 ksi Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 8.000 1.11 2.07 32.7 0.00 0.00 0.0 0.00 0.0 8.000 6.46 11.47 32.7 0.00 0.00 0.0 0.00 0.0 16.000 0.67 1.23 32.7 0.00 0.00 0.0 0.00 0.0 16.000 4.85 8.20 32.7 0.00 0.00 0.0 0.00 0.0 17.500 0.20 0.32 32.7 0,00 0.00 0,0 0.00 0.0 17.500 0.72 1.14 32.7 0.00 0.00 0.0 0.00 0.0 20.083 2.76 3.05 32.7 0.00 0.00 0.0 0.00 0.0 20.083 1.29 2.23 32.7 0.00 0.00 0,0 0.00 0.0 24.000 9.53 14.35 32.7 0.00 0.00 0.0 0.00 0.0 24.000 5.01 8.50 32.7 0.00 0.00 0.0 0.00 0.0 30.000 1.78 3.18 32.7 0.00 0.00 0.0 0.00 0,0 LINE LOADS (k/ft): Load Dist DL LL Red% Type 1 30.000 0.026 0.050 32.7% Red 32.000 0.026 0.050 2 0.000 0.062 0.000 NonR 32.000 0.062 0.000 SHEAR (Ultimate): Max Vu (L2DL+L6LL) = 60.51 laps l.OOVn = 305.73 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center Max -f 1.2DL+1.6LL 497.1 17.5 2.6 1.00 0,90 573.75 Controlling 1.2DL4-1.6LL 494,7 16.0 8.0 1.14 0.90 566.52 REACTIONS (kips): DL reaction Max -^LL reaction Max +total reaction (factored) DEFLECTIONS: (Camber = 5/8) Left 15.11 15.76 43 35 Right 21.32 21.83 60.51 Dead load (in) at 16.48 ft = -0.707 L/D -543 Live load (in) at 16,48 ft = -0.730 L/D -526 Net Total load (in) at 16.48 ft = -0.812 L/D = 473 Gravity,' Beam Design RAM Steel v 14,02.02.00 DataBase: 2K,13-170_FLiture:Mech Load Building Code: IBC Alt 2K13-170 10-2013 PRIME JOB: STRUCTURAL DATE: ^ ENGINEERS SHT; 10/21/13 17:55:12 Steel Code: AISC360-05 LRFD Floor Type: 3RD Beam Number = 173 SPAN INFORMATION (ft): I-End (112.00,78.67) J-End (144.00,78.67) Beam Size (Optinuim) Total Beam Length (ft) Mp (kip-ft) = 637.50 POINT LOADS (kips): W24X6; 32.00 Fv = 50.0 ksi Dist DL RedLL Red% NonRLL StorLL Red% RoofLL Red% 8.000 4.67 8.53 30.5 0.00 0.00 0,0 0.00 0,0 8.000 341 6.33 30.5 0,00 0.00 0.0 0.00 0.0 16.000 4.67 8.53 30.5 0.00 0.00 0.0 0.00 0.0 16.000 3.41 633 30.5 0.00 0.00 0,0 0.00 0.0 24.000 4.67 8.53 30.5 0.00 0,00 0,0 0.00 0.0 24.000 9.50 14.87 30.5 0.00 0,00 0,0 0.00 0,0 INE LOADS (k/ft): Load Dist DL LL Red% Type 1 0.000 0.062 0.000 NonR 32.000 0.062 0.000 SHEAR (Ultimate): Max Vu (1.2DL+L6LL) = 53.12 kips LOOVn - 305.73 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu («); Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Cenier Max + 1.2,DL-i-i.6.LL 496.3 16,0 • 8.0 1.06 0.90 529.13 Controlling 1.2DL-1.6LL 496.3 16.0 8.0 1.06 0.90 529.13 REACTIONS (kips): DL reaction Max + LL reaction Max -t-total reaction (factored) DEFLECTIONS: (Camber = 5/8) Left 14.63 16.98 4472 Right 17.68 19.94 53,12 Dead load (in) at 16.32 ft --0,646 L/D = 594 Live load (in) at 16,32 ft = -0.751 L/D = 511 Net Total load (in) at 16.32 ft --0.772 L/D = 497 Gravity Beam Design RAM Steel vl4,02,02.00 DataBase: 2K13~170 Juture Mech Load Building Code: IBC Alt PRIME J0B:2K13-170 m STRUCTURAL MTE: "^XEfc ENGINEERS SHT;. 10-2013 10/21/13 17:55:12 Steel Code: AISC360-05 LRFD Floor Type: 3RD SPAN INFORMATION (ft): Beam Size (Optimum) Total Beam Length (ft) Mp (kip-ft) - 138.33 LINE LOADS (k/ft): Beam Number = 187 I-End (128.00,78.67) = W14X22 - 21.33 J-End (128.00,100.00) Fv 50.0 ksi Load Dist DL LL Red% Type 1 0.000 0416 0.800 1.7% Red 21.333 0416 0.800 2 0.000 0.022 0.000 — NonR 21.333 0.022 0.000 SHEAR (Ultimate): Max Vu (1.2DL-1-L6LL) • MOMENTS (Ultimate): 19.03 kips l.OOVn = 94.53 kips Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft , ft ft kip-ft Center Max + I.2DL-!-1.6LL 101.5 10.7 0.0 1.00 0.90 124.50 Controlling 1.2DL-rl,6LL 101.5 10.7 0.0 1.00 0.90 ! 24.50 REACTIONS (kips): DL reaction Max +LL reaction Max -s-total reaction (factored) DEFLECTIONS: Dead load (in) Live load (in) Net Total load (in) Left 4,67 8.39 19.03 Right 4.67 839 19.03 ai at at 10.67 ft 10.67 ft 10.67 ft -0.354 L/D = 724 -0.635 L/D = 403 -0.989 L/D = 259 Gravity Coiiiiim Design Criteria RAM Steel vl4.02.02.00 DataBase: 2K13-17()Juturc Mech Load Biding Code: IBC All PRIME mmm SlUCTUm m. 10-2013 ENGINEERS SHT:_ 10/21/13 18:14!48 Steel Code: AISC360-05 LRFD DEFAULT SPLICE LEVELS: Level Splice ROOF N MECH N 3RD N 2ND N DESIGN DEFAULTS: Maximum A.ngle from column axis at which beam reaction is not split betvi^een column sides for calculating unbalanced moments: 30.0 deg. Skip-load the Live Load around Column TRIAL GROUPS: Trial Group I Seciion Rect LIS Round HS 1 W8 HSS6X6 HSS4 2 WIO HSS8X8 HSS6 3 W12 HSSIOXIO HSS6.875 COLUMN BRACING: Deck Braces Column Maximum Angle from column axis from which beam braces column: 60.0 deg. BASE PLATES: Design Code: AISC 3 60-05 LRFD Plate Fy (ksi) ^ . , —— — Minimum Dimension From Face of Column to Edge of Plate (in) . Minimum Dimension From Side of Colum.n to Edge of Plate (in) ., . Increment of Plate Dimensions (in) . . . .— Increment of Plate Thickness lin) . . Minimum Footing Dimension Parallel to Web (ft) Minimum Footing Dimension Perpendicular to Web (ft) .Keep Base Plate Square; 36.000 0.250 0.250 0.250 0.125 4.00 4.00 N PRIME J0B:2K13-170 Gravity Column Design Summarvj^^. STRUCTURAL DATE: 10-2013 MM Steel vi4.02.02.00 DataBase; 2I<:i3-l70_Future Mech Load Building Code: IBC Alt BNGINEEKSSHT; 10,/21/13 18:18:49 i liuCJ' Column Line 0.33ft-50.00ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 3RD 47.0 214 o.b 8 0.80Eq(Hl-ia) 0.0 46 HSS6X6X1/4 2ND 84.2 9.2 0.0 1 0.79 Eq (HI-la) 0.0 46 HSS6X6X1/4 Column Line I0.67ft-39.33ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 3RD 18.8 114 0.0 1 0.54Eq(Hl-la) 90.0 46 HSS 10X10X3 2ND 37.6 5.5 0.0 1 0.83Eq(Hl-la) 90.0 46 HSS10X10X3 Column Line 2-D Level Pu Mux Muy LC Interaction Eq. ,4ngle Fy Size ROOF 29.6 11.8 4.4 I 0.17 Eq (HI-lb) 0.0 50 W8X40 MECH 55.1 11.7 7.4 5 0.26 Eq (HI-lb) 0.0 50 W8X40 3RD 164.0 6.5 4.4 5 0.60 Eq(Hl-la) 0.0 50 W8X40 2ND 263,7 03 6.3 10 0.96 Eq (HI-la) 0.0 50 W8X40 Column Line 2-C Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 24.7 25.1 0.8 10 0,17 Eq (Hl-lb) 0.0 50 W8X48 MECH 97.6 8.1 2.1 2 0.28 Eq(Hl-la) 0.0 50 W8X48 3RD 200,9 74 3.4 2 0.58Eq(Hl-la) 0,0 50 W8X48 2ND 3094 1.5 4.6 6 0.90 Eq (HI-la) 0.0 50 W8X48 Column Line 2-B Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 29.6 11.8 4.4 1 0.17 Eq (Hl-lb) 0.0 50 W8X40 MECH 55.1 123 7.4 3 0.26 Eq (Hl-lb) 0,0 50 W8X40 3RD 164.7 6.7 4.3 3 0.61 Eq(Hl-la) 0.0 50 W8X40 2ND 268.5 04 6.4 6 0.98 Eq (Hl-la) 0.0 50 W8X40 Column Line 3-D Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 21.2 2.2 7.6 5 0.12 Eq (Hl-lb) 0.0 50 W8X48 MECH 79.9 12.2 7.4 5 0.24 Eq (Hl-lb) 0.0 50 W8X48 3RD 189.2 6.7 43 5 0.56 Eq (Hl-la) 0.0 50 W8X48 2ND 284.6 0.2 4.9 10 0.83 Eq (Hl-la) 0.0 50 W8X48 Column Line 3-C Level Mnv 1Vf 111' T .C^ T»tt<»iro/*Hn« Tift PRIME JOB: Gravitv CQliimn Design Summary W'S^B,^^'^'- " " ' —•— —ENGINEERS SHT; 2K13-170 .10-2013 RAM Steel vl4.02.02.00 DataBase: 2,KI3-170_Future Mech Load Building Code: IBC Ait Page 10,/2l/l3 18:18:49 Steel Code: AISC360-05 LRFD Column Line 3-B Level Po Mux Muy LC Interaction Eq. Angle Fy Size ROOF 21.2 2.2 7.6 2 0.12 Eq (Hl-lb) 0,0 50 W8X48 MECH 79,9 12.2 7.4 2 0.24 Eq (Hl-lb) 0.0 50 W8X48 3RD 189,2 6.7 4.3 2 0.56 Eq (HI-!a) 0.0 50 W8X48 2ND 284.6 0.2 4,9 6 0.83 Eq(Hi-la) 0.0 50 W8X48 Column Line 4-D Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 29.6 12.2 4.5 1 0.14 Eq (Hl-lb) 0,0 50 W8X48 MECH 55,8 14.2 7.6 5 0.23 Eq(HI-!b) 0,0 50 W8X48 3RD 176,8 93 5 0.54 Eq (Hl-la) 0,0 50 W8X48 2ND 285,2 2.4 5.4 10 0.85 Eq (Hl-la) 0,0 50 W8X48 Column Line 4-C Level Pu Mux May LC Interaction Eq. Angle Fy Size ROOF 24.5 26.4 0.8 6 0.12 Eq (Hl-lb) 0.0 50 W8X67 MECH 88.0 27.3 7.4 5 0.23 Eq (Hl-lb) 0,0 50 W8X67 3RD 274.2 24.1 4,7 5 0.61 Eq (Hl-la) 0,0 50 W8X67 2ND 420.5 15.6 4.7 . 10 0,89 Eq (Hl-la) 0,0 50 W8X67 Coiumn Line 4-B Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 29.6 12.2 4.5 1 0,14 Eq (Hl-lb) 0.0 50 W8X48 MECH 55.8 14.2 7.6 2 0.23 Eq (Hl-lb) 0.0 50 W8X48 3RD 176.8. 9.3 4.7 2 0.54 Eq (Hl-la) 0,0 50 W8X48 2ND 285.2 2.4 5.4 6 0.85 Eq (Hl-la) 0,0 50 W8X48 Column Line 5-C Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 303 21.7 10.4 4 0.23 Eq (Hl-lb) 0.0 50 W8X58 MECH 31.2 21.7 10.4 4 0.23 Eq (Hl-lb) 0,0 50 W8X58 3RD 209.2 224 10.0 4 0.61 Eq (Hl-la) 0,0 50 W8X58 2ND 360.5 14.5 10.8 10 0.95 Eq (Hl-la) 0.0 50 W8X58 Column Line 5-B Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 27.3 11.8 8.5 3 0.20 Eq (Hi-lb) 0.0 50 W8X48 MECH 28.0 11.8 8.5 3 0.20 Eq (Hl-lb) 0.0 50 W8X48 3RD 155.4 8.7 6.6 3 0.51 Eq (Hl-la) 0.0 50 W8X48 2ND 281.9 1.5 8.0 6 0,86Eq(HMa) 0.0 50 W8X48 Gravitv Column Design Summaryij^& PRIME J0B:2K13-170 STRUCTURAL DATE: 10-2013 . ENGINEERS SHT: cy) RAM Steei v 14,02.02.00 DataBase: 2Ki3-i70__Future Mech Load Building Code; IBC Alt Page 3/5 10/21/13 18:18:49 Steel Code: AISC360-05 LRFD Column Line 6-D Level Pu Mux Muy LC Interaction Eq, Angle Fy Size ROOF 23.9 .15.7 6.1 4 0.24 Eq (Hl-lb) 0.0 50 W8X40 MECH 245 15.7 6.1 4 0.24 Eq (Hl-lb) 0:0 50 W8X40 3RD 137.8 11.6 4 0.55 Eq (Hl-la) 0,0 50 W8X40 2ND 246.9 6.3 5.9 10 0.94 Eq (Hl-la) Olo 50 W8X40 Column Line 6-C Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 22.8 214 6.2 4 0.27 Eq (Hl-lb) 0:0 50 W'8X40 MECH 23.4 21.4 6.2 4 0.28 Eq (Hl-lb) 0:0 50 •W8X40 3RD 124.9 193 4.9 4 0.57 Eq (Hl-la) 0:0 50 W8X40 2ND 205.5 16.7 4.8 10 0.85 Eq (Hl-la) 0:0 50 W8X40 Column Line 6-B Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 25.7 15,1 6.4 3 0.24 Eq (Hl-lb) OiO 50 W8X40 MECH 26.3 15.1 64 3 0.24 Eq (Hl-lb) oJo 50 W8X40 3RD 141.8 11.1 4.5 3 0.56 Eq (Hl-la) ,0:0 50 W8X40 2ND 254.1 5..4 6.4 6 0.96 Eq (Hl-la) oJo 50 W8X40 Column Line 7-D Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 29.0 11.5 4.5 1 0.17 Eq (Hl-lb) 0.0 50 W8X40 MECH 54.0 12.6 7.3 5 0.26 Eq (Hl-lb) 0.0 50 W8X40 3RD 1613 73 4.4 5 0.60 Eq (Hl-la) 0.0 50 W8X40 2ND 257.3 13 5.9 10 0.94 Eq (Hl-la) 0.0 50 W8X40 Column Line 7-C Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 18.3 22.2 0.*9 7 0.15 Eq (Hl-lb) 0.0 50 W8X48 MECH 74.3 16.9 6.7 2 0.25 Eq (Hl-lb) 0.0 50 W8X48 3RD 181.6 10.8 3.8 2 0.55 Eq (Hl-la) 0.0 50 W8X48 2ND 266.8 6.2 3.8 6 0.80 Eq (HI-la) 0.0 50 W8X48 Column Line 7-B Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 29.0 11.5 4.5 1 0.17Eq(Hl-lb) 0.0 50 W8X40 MECH 54.0 124 7.3 2 0.26Eq(HMb) 0.0 50 W8X40 3RD 161.9 7.0 4.3 2 0.60 Eq (HI-la) 0.0 50 W8X40 2ND 260.9 0.9 6,1 6 0.95 Eq (Hl-la) 0.0 50 W8X40 PRIME J0B:2K13-170 Gravity Column Design Siimmarv£I4-. SMJCTURAU ' • ^ JO^. ENGINEERS SHT; 10-2013 RAM Steel v 14.02.02.00 DataBase; 2Kl3-170Jniture Mech Load Building Code; IBC Alt Page 4/5 10,/2i/13 18:18:49 Steel Code: AISC360-05 LRFD Column Line 8-D Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 21.2 2 2 7.0 4 0.11 Eq (Hl-lb) 0.0 50 W8X48 MECH 74.9 12.2 7,4 4 0.24 Eq (Hl-lb) 0.0 50 W8X48 3RD 184,2 6.7 4,3 4 0.54 Eq (Hl-la) 0.0 50 W8X48 2ND 280.8 0.2 4,9 10 0.82 Eq (Hl-la) 0.0 50 W8X48 Column Line 8-C Level Pu Mux Muy LC Interaction Eq. Angle Fy Size MECH 110.9 143 6,8 3 0.32 Eq (Hl-la) 0.0 50 W8X58 3RD 2264 6.7 3,1 3 0.52 Eq (Hl-la) 0.0 50 W8X58 2ND 338.6 0,2 3.8 6 0.79 Eq (HI-la) 0.0 50 W8X58 Column Line 8-B Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 21.2 2.2 7.0 3 0.11 Eq (Hl-lb) 0.0 50 W8X48 MECH 74.9 12.2 74 3 0.24 Eq (Hl-lb) 0.0 50 W8X48 3RD 184.2 6.7 43 3 0.54 Eq (Hl-la) 0.0 50 W8X48 2ND 280.8 0.2 4,9 6 0.82 Eq (Hl-la) .0.0 50 W8X48 Column Line 9-D Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 29.6 113 4.4 I 0.17 Eq (Hl-lb) OLO 50 W8X40 MECH 54.0 11,7 74 4 0.26 Eq (Hl-lb) OLO 50 W8X40 3RD 162.9 6.5 4.4 4 0.60 Eq (Hl-la) 0:0 50 W8X40 2ND 262.8 0.3 6,2 10 0.96 Eq (Hi-la) OLO 50 W8X40 Column Line 9-C Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 24,5 21.2 0.9 6 0.15 Eq (Hl-lb) 0:0 50 W8X48 MECH 78,0 14.3 6,8 3 0.24 Eq (Hl-lb) 0:0 50 W8X48 3RD 192.1 73 3.4 '> 0 0.56 Eq (Hl-la) 0:0 50 W8X48 2ND 303,0 1.5 4.6 6 0.88 Eq (Hl-la) 0:0 50 W8X48 Column Line 9-B Level Pu Mux Muy LC Interaction Eq. Angle Fy Size ROOF 29,4 il.3 4.4 1 0.17 Eq (Hl-lb) 0:0 50 W8X40 MECH 53.9 12.3 7.4 2 0.26 Eq (Hl-lb) OjO 50 W8X40 3RD 163.5 6.7 4.3 2 0.60 Eq (Hl-la) 0:0 50 W8X40 2ND 267.4 0.4 6.4 6 0.98 Eq (Hl-la) OJO 50 W8X40 Column Line 245.33ft-39.33ft Level Pu Mux Muy LC Interaction Eq. Angle Fy Size 3RD 18.8 11.4 O.b 1 0.54 Eq (Hl-la) 90.0 46 HSS 10X10X3/16 £^ PRIME J0B:2K13-17Q Gravrrv Column Design S^mmarv.:^^. STRUCTURAL DATE: 10-2013" —KNfJNRFPc; QHT. rn .,. RAM Steel vl4.02.02,00 DataBase; 2K13-170_Fumre Mech Load Bmlding Code: IBC Alt 2ND 37.6 ENGINEERS SHT:] Page 5/5 10/21/13 18^18:49 Steel Code: AISC360-05 LRFD Column Line 255.67ft-50.00ft Level Pl, 3RD 47.0 2ND 84,2 5.5 Mux 21.4 9.2 0.0 1 0.83 Eq (Hl-la) 90.0 46 HSSl0X10X3/16" Muy LC Interaction Eq. Angle Fy Size 0.0 12 0,80 Eq (Hl-la) 0.0 46 .HSS6X6X1/4 0.0 1 0.79 Eq (Hl-la) 0.0 46 HSS6X6X1/4 RAM Baseplate VI.5 Prime St.r'jct'j:'al E 2K13-17 0 W8X40 PRIME JOB STRUCTURAL MTE: ENGINEERS SHT: :?K13-170 10-2013 Detaiied Design Kesuits 10/21/13 18:42 CRITERIA-. Analysis Maintain Strain Compatibility Use min. effective plate area for axial only compression load on plate. Design Use LRFD 2nti to check plate bending H&:i concrete bearing per AI.SC J9. Anchor Shear Check Per AISC Specifications, Anchor Tension Check Fer AISC Specifications. INPUT DATA: Column ColuiRn Size WS;<40 Dim: BfTop TfTop BfBot TfBot TW Depth (in) 8.07 C.560 8,07 G.560 0.360 8.25 Base Plate Plate Fy (.ksi) 36.000 N (Parallel to Web) (in) 9.750 3 (Perpendicular to Web) (in) 9.OOQ Plate Thici-tness (in) 1.000 Anchor Anchor Size 3/4" Anchor Area (in"?) 0.442 Anchor Material ; A307-60 Anchor Modulus (ksi) 29000.00 Anchor Strength Fu (ksi) 6C.00 Tiiread Included in Shear Plane Footing Footing Strength f'c (ksi) 3.00 Concrete Modulus (ksi) 3122.02 Dimension (Parallel to web) (ft)... 4.00 Dimension (Perpendicular to web) (ft)... 4.00 Design Load Building Code: - None - Lead combinaPion: Single Load Case Axial (kip) 268.50 Vx (kip) 0.00 Mx (kip-ft) • 0.00 RESULTS: Analysis Uniforrft Load on Base Plate. Plate Bending iylax bending moment from concrete compression K Eff (in; Si.~50 B Eff (in) 9.G00 m [N-0.95dl/2.0 (in) 0.956 n [B-0.80bj /2.0 (in) 1 .272 LaiTida • • • 1 • 000 n> 2.040 Control Moment Per Width (kip-fti 0.531 Thickness Required (in) 0.887 Thickness controlled by portion betv.-een flanges. .Anchors Anchor X(in) i:(in) Vtkip ) T (krp ) Interaction Paae 1 Prime Structural Engineers 2K13-170 W8X4 0 PRIME jOB:2K13-l70 SB ENGINEEES sn;__ Detailed Design Results 10/21/13 18:42 .Bd •2 . 88 2 .38 ? . p, f COO C '>' 2.88 -2.88 0.00 2.88 0.00 4 2.88 -2.88 0.00 Bearing Eff Area of Support A.2 (in'~2) Plate Area Al {in"2) Sqrt(A2/A1) Phic Pp »= 0. 6 Pp (kip) Pu (kip) ; Actual Bearing Stress (ksi) DIAGR.J4M: o V38X40 O.OQ 0.00 0.00 0.00 0.00 0 .00 0.00 351.00 87 .75 2 . 00 268.51 268.50 3.06 X(in) -2.875 -2.875 2 .875 2.875 V{in) 2.875 -2.875 2.875 -2.875 PL 9.75 X 9.00 X 1.00 (in) 4 - 3/4" A3C7 .Anchor Bolts RAM Baseplate VI, p r-j 2K13-17 0 .VJ8X48 rngm Detailec Design Results 10/21,/13 18:52 CRITERIA: Analysis Maintain Strain Compatibility Use min. effective plate area for axial only compression load on Design Use LRFD 2nd to check plate bending Max concrete bearing per AISC J9, Anchor Shear Check Per AISC Specifications. Anchor Tension Check Per AISC Specifications, INPUT DATA: Coluitn Column Si2e W8X48 Dim: BfTop TfTop BfBot TfBot TW Depth (in) 8.11 0.685 8.11 0.585 C.400 50 Base Plate Plate Fy (ksi) 36 . GCO N (Parallel to v«3eb) (in) 11.250 S (Perpendicular to web) (in) 9.000 Plate Thickness (in) ' 1.000 Anchor Anchor Size 3/4" Anchor Area (in'^2) 0.442 Anchor Material , A307-60 Anchor Modulus (ksi) 29000.00 Anchor Strength Fu (ksi) 60.00 Thread Included in Shear Plane Footing F-ootmg Strengtri f'c (ksi) 3.00 Concrete Modulus (ksi) 3122.02 Dimension (Parallel to v;eb) (ft) 4.00 Dimension (Perpendicular to web) (ft)... 4.00 Design Load Building Code: - None - Load combination: Single Load Case Axial (kip) 309.40 Vx (kip) 0 . 00 .Mx (kip-ft) 0.00 RESULTS: Analysis Uniform Load cn Ba,se Plate. Plate Bending Max bending moment from concrete cortpression N Eff (in) 11.250 B Fff (in) S.OOO m fN-O.95d]/2.0 (in) 1.588 n LB-0.80b]/2.0 (in) 1.256 Lamda 1.000 n' 2.075 Control Moment Per Width (kip-ft) 0.54,9 Thickness Required (in) 0.901 Thickness controlled by portion betv^een flanges. Anchors Anchor X(in) Y{in) V(kip )• T{kip ) Interaction Paqe 1 PAM Baseplate V1-. d Pri.T-e Structural Enc 2K13-170 W8X48 iers Detailed Desigr lG/21/j Results la 30 J.C5 A w 00 0 .00 0 00 38 -3.00 rs 'J 00 0 .00 00 38 3.GO U .00 0 .00 00 38 -3.00 0 00 0 .00 • 0 00 1 2 3 4 Bearing Eff Area of Support A2 (ln'^2j . Plate Area Al (in'''2) Sqrt(A2/A1) Phic Pp = 0.6 Pp (kip) ?u (kip) Actual Bearing Stress (ksi) 405.00 101.25 2.00 309.82 309.40 3.06 DI.AGRAM: O W8X4 8 \ ( L_J 2 „i— # X(in) Y (in) 1 -1.380 3.000 2 -1.380 -3.000 3 1.38Q 3.000 4 1.380 -3.000 PL 11.25 X 9.0G X 1.00 (in) 4 - 3/4" A307 Anchor Bolts RAM Baseplate VI.5 Prime Structural Engineers 2K13-170 W8X58 iile'S Design Results 10/21/13 18:57 -2.07 -2.07 2 . 07 53 4 2.07 -3. Bearing Eff Area of Support .A2 Plate Area Al (in'-2) . . Sqrt(A2/A1) . Phic Pp - 0.6 :PP (ki-o) Pu (kip) ; . Actual Bearina ; 0 . 00 0 . 00 0,00 r. n t . '2) ess (k.si) fl A r. ^' V 0. 00 0 00 0.00 0 00 C- c- 0 cc 0.00 483.00 120.75 2 . 00 369.4 9 367.80 3.05 ;IAGRAM: W8X58 X (in) -2.0 65 -2. 065 2 . 065 2 .065 Y (in) 3.630 -3.630 3. 630 -3.630 11.50 X 10.50 X l.GG (in) 3/4" A307 Anchor Bolts Page 2 R.AJyi Baseplate Vl . 5 Prime Structural Engineers 2K13-170 W8X58 jetai,red Design' Results 10/21/13 18:57 CRITERIA: Analysis Maintain Strain CompatDoility Use min. effective plate area for axial only compression load on plate. Design Use LRFD 2nd to check plate bending Max concrete ioearing per AISC J9. Anchor Shear Check Per AISC Specifications. Anchor Tension Check Per AISC Specifications. INPUT DATA: Column Column Size WSX58 Dim: BfTop TfTop BfBot TfBot TW Depth (in) 8.22 0.810 8.22 D.810 0.510 B".15 Base Plate Plate Fy (ksi) 36.000 N (Parallel tc Web) (in) 11.500 B (Perpendicular to Web) (in) 10.500 Plate Thickness (in) 1.000 Anchor Anchor Size 3/4" Anchor Area (in''2) 0.442 Anchor lyiateriaJ A307-60 Anchor Modulus (ksi) 29000.00 Anchor Strength Fu (ksi) 60.00 Thread Included in Shear Plane Footing Footing Strength f'c (ksi) 3.00 Concrete Modulus (ksi) 3122.02 Dimension (Parallel tc web) (ft) 4.00 Dimension (Perpendicular to vjeb) (ft).,. 4.00 Design Load Building Code: - None - Load combination: Single Load Case Axial (kip) 367.80 Vx (kip) 0.00 Mx (kip-ft) 0.00 RESULTS: Analysis Uniform Load on Base Piate. Plate Bending Max bending moment fxora concrete compression N Eff (in) '. , 11.500 B Eff (in) 10.500 m [N-0.95d]/2.0 (in) 1.594 n [B-0.8Gbj /2.0 (in) 1 .962 Lamda 1.000 n' 2.120 Control Mom.ent Per Width (kip-ft) 0.571 Thickness Required (in) 0.919 Thickness controlled by portion between flanges. Anchors Anchor X(in) Y(in) V(kip ) T{kip ) Interaction Page 1 RAM Baseplate VI.5 Prime Structural Endi.neers 2K13-170 K8X67 % PRIME JOB:2K1M20 IS-^. STRUCTURA!, um 10-2013' ENGINEERS SHT:_J' )ecaiied Design Results 10/21/13 19: C axiaJ CRITERIA; Analysis •Maintain Strain Co.Tipatibility Use min. effective plate area * Design Use LRFD 2nd to check plate bendinq Max concrete bearing per AISC ,79. Anchor Shear Check Per AISC Specifications. Anchor Tension Check Per AISC Soecifications. only compression load on plate. INPUT D.ATA: Column Column Size Dim: BfTop TfTop BfBot (in) 8,26 0.935 8.28 Base Plate Plate Fy (ksi) N (Parallel to Web) (in) B (Perpendicular to Web) (m) Plate Thickness (in) . . -Anchor Anchor Size Anchor Area (in'^2) Anchor Material Anchor Modulus (ksi) hor Strength Fu (ksi) Thread Included in Snear Plane Footing Footing Strength f'c (ksi) Concrete Modulus (ksi) Dimension (Parallel oo -web) (ft) Dimension (Perpendicular to web) (ft) . . . Design Load Building Cods: - None - Load combination: Sinqle Load Case Axial Ckip) , . , . Vx (kip) • Mx (kip-ft) wax 5 7 TVS Dept): 570 9.0C 36.000 12.500 11.OGO 1 . OCO 3/4" 0.442 A307-60 29000.QO 60 . 00 3 .00 3122 . 02 4 .00 4.00 420.50 0.00 0.00 Base Plate RESULTS: Analysis Unifor.Ti Load Plate Bending Max bending moment from concrete cornpression N Eff (in) B Eff (in) m [l-i-0.95dj/2.0 (in) n [B-0.BObj/2,0 (in) Lamda Conrroliing eriective wiotn to r^: Controlling plate bending moment PhiMn = (0.9xMn) (kip-ft) Mu/PhiMn Thickness Required (in) 5ist moment (: .2.500 .1.000 1.97 5 2,188 1 . 000 2.153 .2.500 7 . 62 8.44 0 .90 0 , 951 Page 1 R-AM Baseplate VI. 5 Pri.ne Structural Engineers 2K13-170 W8X67 PRIME J0B:2K13-170 ^ STRUCTURAL D.m: 10-2013 . ENGINEERS SET:....../..f) oetaiiea Design Results ^Ttf— 10/21/13 19: 0 Thickness controlled by cantilever action -Anchors X(in) Y{in) V(kip ) -2.06 4.00 O.OO -4.00 0.00 ^•00 0.00 -4.00 O.OO Anchor 1 2 3 -2 .06 .2 ,06 4 2.06 Bearing Eff Area of -Support A2 (i.n Plate Area Al (in"2) Sqrt (A2/A1-) Phic Pp - 0.6 Pp (kip).... Pu (kip) * Actual Bearing•stress (ksi DIAGRAM: o VJ8X67 o ip ) 00 00 00 0 0 intei 0.00 G .00 0.00 0 .00 action 550.00 137.50 2.00 4 2 0 . 7 5 420,50 3.06 X(in) Y(in) 1 -2.060 4.000 2 -2.060 -4.000 3 2. 0 60 4.000 4 2.050 -4.000 PL 12.50 X 11.00 X i.OO (in) 4 - 3/4" A307 Anchor Bolts Page 2 DataBase: 2K13-J.70 Future Mech Load 10/21/2013 I CO o 6 o S B •-9 (Ca C/5 rv^ '"^ Sr" S i^"^ fv-* Cai^ A E::3 s;;; CO fiq DataBase: 2K13-.17 0 Future Mech Load 11/11/13 15:41:35 m „^ 5 «— i OT HH ^ ^ HH CO W St }••> L; 8,S0" ci^-v,-,.-,,.,^... sL J L: 7,6l,> 3 "'^1 31 SL „J I: B.OO o :^ ac CO RAM Foundation v 14.02.02.00 DataBase: 2K13-170_FLiture Mech Load Building Code: IBC Ah Spread Footing .Pesign Summary Date; 11/11/13 15:41:18 Design Code: AC1318-08 M ^ GO W «t3 03 >^ P=5 W !^ 2 M Grid i=3 Orientation Col/Foot Dimensions (ft) jengih Width Thick fc/fy ksi Bottom Reinforcement I*arallel to Parallel to Width Number between () in reinforcement is quantity of bars in center strip of rectangular footing Top Reinforcement Parallel to Parallel to Width iS§ (2.,t.C)f :.£„ ... 0,0,0/0.00 9.50 9,50 ,1.75 4.00/60.00 7-#8 7-#8 None None 0.00,' 0.00 9.00 9.00 1.75 4.00/60.00 7-#7 7-#7 None None 0.00/ 0.00 7.50 7.50 1.50 4.00/60.00 6-#7 6-#7 None None (6-13) 0.00/ 0.00 8.50 8.50 1.75 4.00/60.00 6-#8 6-#8 None None .(7-C) 0.00/ 0.00 9.00 9.00 1,75 4,00/60,00 7-#2. 7-#7 None None (7-B). . 0.00/ 0.00 8.50 8,50 1.75 4.00/60.00 6-#8 6-^8 None None (8-C)' ' 0,00/0.00 [0.00.. 10,00 1,75 4.00/60.00 7-#8 7-#8 None None 0.00/ 0.00 9.00 9.00 1.75 4.00/60.00 7-#7 7-#7 None None (9 - C) ' 0,00/oio 1.9.5^^^^ 9.50 i;75 4^00/60.00 7-#8 7-#8 None None (9-B) , 0.00/ 0.00 9.00 MoI' L75,J 4.00/60.00 7-#7 7-#7 None None .(,6..~D)'-0,00/0,0()... 8,50 8.50 1.75 4.00/60.00 6-#8 . .Ml., None None (7-D)^ -0.00/ 0.00 8.50 8.50 1.75 4.00/60.00 6-#8 6-#8 None None (H -1))'" 0,00/ 0,00 9.00 9.00 1.75 4.00/60.00 7-#7 "jjii None None (9 .- D) 0.00/ 0.00 8,50 8.50 1.75 4.00/60,00 "6-#8 None None (2-0) 0.00/ 0.00 8,50 8.50 1,75 „ 4.00/60.00 „,„„,6-#8, 6;-/f8 None None (3.- D) 0.00/ 0.00 9.00 9.00 1.75 4.00/bO.OO 7-#7 7-#7.., None None (4-D) \ ' 0.00/ 0.00 9.00 9.00 L75 4.00/60.00 7.#7 7-#7 None None .0...- C) : ' 0.00/ 0.00 10.50 10.50 4.00/60.00 s-im 8-#8 None None (3...- B) . • , 0.00/ 0.00 9.00 9.00 1.75 4.00/60.00 7-#7 7-#7 None None (.4-C) ' : 0,00/0.00 LLOQ U.QQ 2.00 4.00/60.00 8-#8 None None (4-B) • 0.00/ 0.00 9.00 9,00 1.75 4.00/60.00 7-#7 7~#7 None None £5 r B) 0.00/ 0.00 9,00 y.oo L75 4.00/60.00 7-#7 7-#7 None None (0,33 - 50,00) 0,00/ 0.00 5.00 5.00 1.00 4.00/60.00 4~m> 4"#6 None None f i (iO.67-39.33) 0.00/90.00 3.50 3.50 1,00 4.Q0/60i)Q 9-#4 9-#4 None None .,.| (245.33 -39.33) 0.00/90.00 3.50 3,50 1-00 4.00/60.00 9-#4 9-#4 None None (255.67 - 50.00) 0.00/0.00 5.00 5.00 l.OO 4.00/60.00 4-#6 4-#6 None None (5-C) f..& 0.00/ 0.00 10.00 10.00 1.75 4.00/60.00 7-#8 7r#8 None None RAM Foundation vl4.02.02,00 Milll-iMiiEiciw Building Code; IBC .41t Spread Footing Design _ PRIME JOB STRUCTURAL DATE: Si ENGINEERS.SHT; 2K13-170 11-2013 batell./ll/n 15:41;] Design Code: ACI3l8-( FOOTING DESIGN Footing # 2 Footing Orientation (deg):_... Length (ft): Width (ft); Thickness (ft): , Bottom Reinf Parallel to Length: 0.00 9.50 9.50 1,75 Footing Column Location;. Coliuim Orientation (deg): . (2-C) 0.00- Concrete f c (ksi): 4.00 Reinf fy (ksi): 60.00 INPUT DATA Column Size: W8X48 Base Plate Dimensions (in) LOADS Surcharge (ksf) Axial (kip) fcx (ksi): CODE Width; Density (pcf); ] 50.00 7-#8 Ec (ksi); 3834.25 lL25x 9.00 Percent of overhang to assume Rigid; 50.00 Dead Load: Dead Load: Pos. Live: Pos, Roof: CONCRETE CAPACm^ Required Shear (kip) Provided Shear: (kip) Required Moment; (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) REINFORCEMENT 0.000 154.56 8L64 9.80 Major 97.32 189.26 318.00 424.84 304.03 338.23 Live Load: Neg. Live: Neg. Roof; Ld Co/Code Ref. 2 1.4.5.1 a)b) c) 0.000 N/A N/A Sec, Minor Ld Co/Code Ref. 101.99 2 178.45 Sec. 11.4.5.1 a) b) c) 326.12 . 2 399.95 Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bat Size; 7-#8 7-#8 None None Required Steel/Provided Steel (in^) 4.31/5.53 4.49/ 5.53 None None Required Steel Code Ref. Sec ,7.12 Sec. 7.12 None None Bar Spacing (in) 17.83 17.83 None None Bar Depth (in) 17.50 16.50 None None Cover (in) Top N/A Botlom; 3.00 Side; 3.00 SOIL CAPACITY Allowable Soil Bearing Capacity (ksf). Max Unfactored Soil Bearing (ksf). Max Average Unfactored Soil Bearing (ksf)_ Max Soil Bearing for Factored Design (ksf)_ IV^o V A iroTO I'rci Crt^ i D -*•*«^ -CTT J- — ' 3.00 2.88 2.88 3.56 Ld Co 7 7 2 RAM Foundation vl 4,02.02.00 DataBase; 2K13-170 Juture Mech Load Building Code; IBC Alt Spread Footing Design 2K13-170 PRIME JOB:: STRUCTim il: f£^, ENGINEERS sffr:_ Page 2/27 Date; 11/11/13 15:41:18 Design Code: ACI318-08 FOOTING DESIGN Footing # 3 Footing Orientation (deg):. Length (ft):.... Width (ft); Thickness (ft);_ 0.00 9.00 9.00 1,75 Footing Column Location:. Column Orientation (deg):. (2-B) 0.00 Bottom Reinf Parallel to Length: 7 - #7 Width: 7 - #7 Concrete f c (ksi): 4,00 fct (ksi): CODE Density (Dcf): 150.00 Ec (ksi): 3834 25 Reinf ly (ksi): 60.00 INPUT DATA Column Size: W8X40 Base Plate Dimensions (in) LOADS Surcharge (ksfj Axial (kip) 9.75 X 9.00 Percent of overhang to assume Rigid: 50.00 Dead Load; Dead Load: Pos. Live: Pos. Roof: 0.000 120,52 80,45 8.57 Live Load: Neg, Live: Neg. Roof: 0,000 N/A N.^A CONCRETE CAPACITY Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment; (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) REINFORCEMENT Major Ld Co/Code Ref. 82.26 2 179.30 Sec. 11.4.5,1 a) b) c) 262.45 2 324.26 261.75 2 334.49 Minor Ld Co/Code Ref. 85.11 2 170.34 Sec. 11.4.5.1 a)b)c) 264.92 2 307.73 Bottom B ars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size: 7-#7 7-#7 None None Required SteeLProvided Steel (in^) 4.09/ 4.20 4.09/ 4.20 None None Required Steel Code Ref. Sec. 7.12 Sec. 7.12 None None Bar Spacing (in) 16.86 16,86 None None Bar Depth (in) 17.50 16.63 None None Cover (in) Top N/A Bottom: 3.00 Side:' 3.00 SOIL CAPACITY Allowable Soil Bearing Capacity (ksi). Max Unfactored Soil Bearing (ksf) Max Average Unfactored Soil Bearing (ksf) Max Soil Bearing for Factored Design (ksf) Max Average Soil Bearing for Factored Design (ksf). 3.00 2.74 2.74 3.43 3.43 Ld Co 7 7 2 2 Spread Footing Design RAM Foundation v 14,02.02.00 DataBase; 2K13-i70__Future Mech Load Building Code; IBC Alt PRIME J0B:2K13-170 V% STRUCTUM DAIE:. m^. ENGINEERS SHT:. 11-2013 Date: 11/11/ Design Code; Page 3/27 13 15:41:18 ACI3I8-08 FOOTING DESIGN Footing # 12 Footing Oriemation (deg):. Length (ft); Width (ft); „ _ Thickness (ft):. 0.00 7,50 7.50 1.50 44 Footing Column Location:. Column Orientation (deg):. (6 - C) 0.00 Bottom Reinf. Parallel to Length; b - # / Concrete fc (ksi); 4,00 fct (ksi); CODE Reinf fy (ksi); 60.00 INPUT DATA Column Size; W8X40 Base Plate Dimensions (in) 9.75 x 9.00 LOADS Width; Density (pcf); 150.00 6-#7 Ec (ksi): 3834.25 Percent of overhang to assume Rigid: 50.00 Surcharge (ksf) Axial (kip) Dead Load: Dead Load; Pos. Live; Pos. Roof; 0.000 87.10 66.61 7.21 Live Load: Neg. Live; Neg.- Roof: 0.000 N/A N/A CONCRETE CAPACITY Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear; (kip) REINFORCEMENT Ld Co/Code Ref. "I Major 62.02 123.80 Sec. 11.4.5.1 a) b) c) 163.03 2 207.07 200.88 2 243.66 Minor 64.66 116.33 164.91 195.47 Ld Co/Code Ref. 2 Sec. 11.4.5.1 a) b) c) Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantit>7Bar Size: 6-#7 6-#7 None None Required Steel/Provided Steel (in") 3.23/ 3.60 3.20/3.60 None None Required Steel Code Ref. Sec. 7.12 Sec. 7.12 None None Bar Spacing (in) 16,62 16.62 None None Bar Depth (in) 14,50 13.63 None None Cover (in) Top N/A Bottom: 3.00 Side; 3.00 SOIL CAPACITY Allowable Soil Bearing Capacity (ksf)- Max Unfactored Soil Bearing (ksf). Max Average Unfactored Soil Bearing (ksf) Max Soil Bearing for Factored Design (ksfY Max Average Soil Bearing for Factored Design (ksf). 3.00 2.96 2.96 3.82 3,82 Ld Co 7 7 2 7 %. PRIME fOB:2K13-170 Spread Footing Design • fnli'i" iiiimiiimiMiiiii iiiii,iiiniii iMimiiiffiif'inii'iiiniwiiiiiiw •niiiiilPiiiiiHn ENGINEERS SIT; 11-2013 RAM Foundation v 14,02.02.00 DataBase: 2K13-170 Juture Mech Load Building Code; IBC Alt Page 4/27 Date: ll./l 1/13 l$;41:ie Design Code: Aa318-08 FOOTING DESIGN Footing # 13 Footing Orientation (deg); Length (ft): . Width (ft): . 0.00 8.50 8.50 1,75 Bottom Reinf Parallel to Length; 6 - #8 Width: Concrete fc (ksi): 4.00 fct (ksi): CODE Densit}'(pcf): 150,00 Footing Column Location:. Column Orientation (deg);. (6-B) 0.00 Thickness (ft):. 6-#8 Ec (ksi): 3834.25 Reinf, fy (ksi): 60.00 INPUT DATA Column Size: W8X40 Base Plate Dimensions (in) LOADS 9.75 X 9,00 Percent of overhang to assume Rigid: 50,00 Surcharge (ksf) Dead Load: 0.000 Live Load; 0.000 Axial (kip) Dead Load: 100,98 Pos. Live: 86,27 Neg, Live: N/A Pos. Roof; 8,72 Neg. Roof: N/A NCRETE CAPACITY Major Ld Co/Code Ref. Minor Ld Co/Code Ref. Required Shear (kip) 74,94 2 78.12 2 Provided Shear: (kip) 169.34 Sec. 11.4.5,1 a)b)c) 159.66 Sec. H.4.5.! a)b)c) Required Moment: (kip-ft) 232.81 2 235.14 9 Provided Moment: (kip-ft) 334.30 316.42 Required Punching Shear: (kip) 246,75 2 Provided Punching Shear: (kip) 332.45 REINFORCEMENT Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Si.ze: 6-#8 6-#8 None None Required Steel/Provided Steel (in.-) 4.20/ 4.74 4.18/4,74 None None Required Steel Code Ref. Sec. 7.12 Sec. 7.12 None None Bar Spacing (in) 19.00 19.00 None None Bar Depth (in) 17,50 16.50 None None Cover (in) Top N,/A Bottom: 3.00 Side: 3.00 SOIL CAPACITY Allowable Soil Bearing Capacity (ksf). Max Unfactored Soil Bearing (ksf). Max Average Unfactored Soil Bearing (ksf). Max Soil Bearing for Factored Design (ksf) — Max Average Soil Bearing for Factored Design (ksf). 3.00 2.85 2.85 3,65 3.65 Ld Co 7 7 2 9 Spread Footing Design RAM Foundation vl 4.02.02.00 DataBase: 2K13-170_Futiire Mech Load Building Code: IBC Ait PRIME J0B:2K13--70 S'TRUCTUEAL BATE:. K« ENGINEERS s; 11-2013 age"3?27 £:11/U/13 15:41;1E Design Code: ACI318--08 FOOTING DESIGN Footing #15 Footing Orientation (deg):. Length (ft):, Width (ft); .... Thickness (ft); 0,00 9.00 9,00 i,75 -ffi Footing Column Location; _ Column Orientation (deg):. (7-C) 0.00 Bottom Reinf Parallel to Length Concrete fc (ksi): 4.00 fct (ksi): CODE Reinf fy (ksi): 60.00 INPUT DATA Column Size: W8X48 Base Plate Dimensions (in) 11.25 x LOADS Width: .7-#7 Density (pcf): 150.00 Ec (ksi): 3834.25 9,00 Percent of overhang to assume Rigid; 50.00 Surcharge (ksf) Axial (kip) Dead Load; Dead Load: Pos. Live: Pos, Roof: 0.000 133.25 71.40 iO 8.1 Live Load: Neg. Live: Neg. Roof: 0.000 N/A N/A CONCRETE CAPACITY Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment; (kip-ft) Required Punching Shear: (kip) Provided Punching Shear; (kip) REINFORCEMENT Ld Co/Code Ref. .M'ajor 81.30 179.30 Sec. 11.4,5.1 a) b) c) 258,35 2 324.26 261.73 2 ' 340.28 Minor Ld Co/Code Rel. 85.25 2 170.34 Sec. 11.4.5.1 a) b) c) 265.34 • 2 307.73 Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size: 7-#7 7-^7 None None Required Steel/Provided Steel (in^) 4.09/4.20 4.09/ 4.20 None None Required Steel Code Ref Sec. 7.12 Sec. 7.12 None None Bar Spacing (in) 16.86 16.86 None None Bar Depth (in) 17.50 16.63 None None Cover (in) Top N/A Bottom: 3.00 Side: 3.00 SOIL CAPACITY Allowable Soil Bearing Capacity (ksl)_ Max Unfactored Soil Bearing (k.sf) Max Average Unfactored Soil Bearing {ksf} Max Soil Bearing for Factored Design (ksf) Max Average Soil Bearing for Factored Desig" (ksf). 3,00 2,79 2.79 3.43 3.43 Ld Co 7 7 2 ? eacifooim^ Design RAM Foundation ¥14,02.02.00 DataBase: 2K13-170 Juture Mech Load Buildina Code: IBC Alt 1 PRIME MUM ENGINEERS SHT: V'_ Page 6/2/ Date; 11/1 Ln3 15;4I;18 Design Code: kdlMM FOOTING DESIGN Footing #16 Footing Orientation (deg);. Length (ft); Width (ft): ... Thickness (fi):. 0,00 8,50 8,50 1,75 Footing Column Location:. Column Orientation (deg):.. (7-B) 0.00 Bottom Reinf Parallel to Concrete f c (ksi): 4.00 Reinf ty- (ksi): 60.00 INPUT DATA Column Size: W8X40 Base Plate Dimensions (in) LOADS Surcharge (ksf) Axial (kip) Length: 6 - #S fct (ksi): CODE Width; Density (pcf); 150.00 Ec (ksi); 3834.25 9.75 X 9.00 Percent of overhang to assume Rigid: 50,00 Dead Load: Dead Load; Pos. Live: Pos. Roof 0.000 117.01 78.30 8.42 Live .Load; Neg. Live; Nes. Roof; 0.000 N/A N/A CONCRETE CAPACm^ Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment; (kip-ft) Required Punching Shear; (kip) Provided Punching Shear: (kip) REINFORCEMENT Major Ld Co/Code Ref. 76.74 2 169.34 Sec. 11.4.5.1 a) b) c) 238.40 2 334.30 252.68 2 332.45 Minor Ld Co/Code Ref, 80.00 2 159.66 Sec. 11.4.5.1 a) b) c) 240.79 2 316.42 Bottom Bars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size: 6-#8 6-#8 None None Required Steel/Provided Steel (in^) 4,20/4.74 4.18/4.74 None None Required Steel Code Ref. Sec. 7.12 Sec. 7.12 None None Bar Spacing (in) 19.00 19.00 None None Bar Depth (in) 17.50 16.50 None None Cover (in) Top N/A Bottom: 3.00 Side: 3.00 SOIL CAPACITY Allowable Soil Bearing Capacity (ksf). Max Unfactored Soil Bearing (ksf) Max Average Unfactored Soil Bearing (ksf) Max Soil Bearing for Factored Design-(ksf) Max .Average Soil Rearina fnr FnrtnrpH rspcsfrri t'l-cfi 3.00 2.97 2.97 3.74 1 lA Ld Co 7 7 2 0 Spread Footing Design RAM Foundation v 14.02.02.00 DataBase; 2K13-170_Future Mech Load Buildins Code: IBC Alt PRIME .10B:2K13-i70 STRUCTURAL mn-.. ENGINEERS SHi:. 11-2013 Page Date: 11/11/13 r5:41:18 Design Code: ACBI8-0E FOOTING DESIGN Footing # IS Footing Orientation (deg):. Length (ft):_,_ Width (ft): Thickness (ft);. 0.00 10.00 10.00 _ 1.75 Length: 7 - #8 Footing Column Location:. Column Orientation (deg);. (8-C) 0.00 Bottom Reinf Parallel to Length; 7 - #8 Width: 7 - tte Concrete f c (ksi): 4.00 fct (ksi): CODE Density (pet): 150.00 Ec (ksi): 3834.25 Reinf fy (ksi); 60.00 INPUT DATA Column Size; W8X58 Base Plate Dimensions (in) LOADS Surcharge (ksf) Axiai (kip) 1I.50X i0.50 Percent of overhang to assume Rigid: 50.00 Dead Load; Dead Load: Pos, Live: Pos. Roof: 0.000 178.39 81.69 9.55 Live Load: Neg. Live: Neg. Roof: 0.000 NVA N/A CONCRETE CAPACITY Required Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) REINFORCEMENT rvlajor Ld Co/Code Ref. 109.05 2 199.22 Sec. 11.4.5.1 a) b) c 366.30 2 425.37 332.18 2 345.03 Minor Ld Co/Code Ref. 113.08 2 187.84 Sec. 11.4,5.1 a) b) c) 371.42 2 400.48 Bottom B ars Parallel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size; 7-#8 7-#8 None None Required Sleel/Provided Steel (in-) 4.74/ 5.53 5.12/5.53 None None Required Steel Code Ref Sec. 7.12 Sec. 7.12 None None Bar Spacing (in) 18.84 18.84 None None Bar Depth (in) 17.50 16.50 None None Cover (in) Top N/A Bottom: 3.00 Side: 3.00 SOIL CAPACITY Allowable Soil Bearing Capacity (ksf). Max Unfactored Soil Bearing (ksf) Max Average Unfactored Soil Bearing (ksf) Max Soil Bearing for Factored Design (ki:t)„„_ Max Average Soi! Bearing for Factored Design (ksf). 3.00 2.86 2.86 3,50 3.50 Ld Co 7 7 2 2 Spread Footing Design RAM Foundation vl4.02.02.00 DataBase; 2K13-170 Juture Mech Load Building Code; IBC All ^ PRIME J0B:2K13-170 ^.A STRUCTURE m-.. ENGINEERS SHT:. 11-2013 Page 8/27 Date; 11/11/13 15:41:18 DesmnCode: AC131E»0^ FOOTING DESIGN Footing # 19 Footing Orientation (deg):. Length (ft); Width (ft): 0.00 9,00 9,00 Footing Column Location:. Colurnn Orientation I'deg):. (8 - B) 0.00 Thickness (ft): ... Bottom Reinf Parallel to Concrete fc (ksi): 4.00 Reinf f>' (ksi); 60.00 INPUT DATA Column Size; W8X48 Base Plate Dimensions (in) LOADS Surcharge (ksf) Axial (kip) Length; 7 - #7 fct iks\y. CODE Width: Density (pcf): 150.00 7-#7 Ec (ksi): 3834.25 11,25 x 9,00 Percent of overhang to assume Rigid: 50.00 Dead Load; Dead Load: Pos. Live: Pos. Rooft CONCRETE CAP.ACITY Required Shear (kip) Provided Shear: (kip) Required Moment; (kip-ft) Provided Moment: (kip-ft) Required Punching Shear; (kip) Provided Punching Shear; (kip) REINFORCEMENT 0.000 136.58 75.79 8.49 Major 84.58 179.30 268.77 324.26 272.28 340.28 Live Load: Neg. Live: Neg. Roof: Ld Co/Code Ref. 2 Sec. 11.4.5.1 a)b)c) 0 0.000 N/A N/A Minor . Ld Co/Code Ref. 88.69 . 2 170.34 Sec. 11.4.5.1 a) b) c) 276.04 2 307.73 Bottom Bars ParaMel to Top Bars Parallel to Length Width Length Width Bar Quantity/Bar Size; 7-#7 7-#7 None None Required Steel-Trovided Steel (in-) 4,09/ 4.20 4.09/ 4.20 None None Required Steel Code Ref Sec. 7.12 Sec. 7:12 None None Bar Spacing (in) 16.86 16.86 None None Bar Depth (in) 17,50 16.63 None None Cover (in) Top N/A Bottom; 3.00 Side; 3,00 SOIL CAPACITY Allov/able Soil Bearing Capacity (ksfj 3,00 Max Unfactored Soil Bearing (ksf) 2.88 Max Average Unfactored Soil Bearing (ksf) 2.88 Max Soil Bearing for Factored Design (ksf) 3.57 Max Average Soil Bearing for Factored Design (ksf).... 3.57 Ld Co 7 7 2 9 Spread Footing Design oiltiiililll.il DataBase: 2K] 3-170 Juture Mech Load Building Code; IBC Alt 2K13-170 11-2013 PRIME JOB STRUCTUiiAL MTE; ENGINEEES §E B rage Date: 11/11/13 15:41:18 D9§ip»; ACD16-08 FOOTING DESIGN Footing # 21, Footing Orientatioi Length (ft):' Width (ft): . Thickness (ft): (des Bottom Reinf Parallel to Length: 7 Concrete fc (ksi); 4.00 fct (ksi); CODE Reinf. fy (ksi): 60.00 INPUT DATA Column Size: W8X48 Base Plate Dimensions (in) ll,25x 9.00 LOADS Surcharge (ksfi' Axial (kip) Footing Column Location: (9 - C) 0,00 Column Orientation (deg): . 0,00 9,50 9.50 1,75 #8 Width; Density (pcf); 150.00 7-#8 Ec (ksi); 3834.25 Percent of overhang to assume Rigid; 50.00 Dead .Load; Dead Load; Pos. Live; Pos. Roof; 0.000 147.20 83.31 9,80 Live Load; Neg, Live: Neg, Roof: 0.000 N/A N/A CONCRETE CAPACITY Required Shear (kip) Provided Shear; (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear: (kip) Provided Punching Shear: (kip) REINFORCEMENT Major Ld Co/Code Ref. 95,45 2 189,26 Sec, 11.4.5.1 a) b) c) 311.90 2 424.84 298.20 2 338.23 Minor Ld Co/Code Ref. 100.04 2 178,45 Sec. 11.4.5.1 a) b) c) 319.86 2 399,95 Bottom Bars Parallel to Top Bars Parallel to Length • Width Length Width Bar Quantity,/Bar Size: 1 4fQ ! -rr O 7-#8 None None Required Steel/Trovided Steel (in^) 4.31/5.53 4.40/ 5.53 None None Required Steel Code Ref. Sec. 7.12 Sec. 7.12 None None Bar Spacing (in) 17.83 17.83 None None Bar Depth (in) 17.50 16.50 None None Cover (in) Top N/A Bottom: 3,00 Side: 3,00 SOIL CAPACITY Allowable Soil Bearing Capacity (ksf). Max Unfactored Soil Bearing (ksf). Max Average Unfactored Soil Bearing (ksf) Max Soil Bearing for Factored Design (ksf) , Max .Average SnO T^parino fr»r Fwr^tru-c/^ th-c.¥\ 3.00 2.82 2.82 3.49 1 ^r\ LdCo 7 7 9 Footing Design RAM Foundation vl4.02.02.00 DataBase: 2Ki 3-170 Juture Mech Load Building Code: IBC Alt 4 PRIME I0B:2K13-170 i'^^. STRUCTURAL DATE:. ENGINEERS SHT;. 11-2013 Page 10./27 Date: 11,^1/13 15:41:18 Design Code: ACI3!g-08 FOOTING DESIGN Footing # 22 Footing Orientation (deg);. Length (ft): Width (ft); ^ Thickness (ft);. 0.00 9.00 9.00 1 Footing Column Location;. Column Orientation (deg);. (9 - B) 0.00 Bottom Reinf Parallel to Length: 7 - #7 Concrete fc (ksi): 4.00 fct (ksi); CODE Density (pcO; Reinf fy (ksi): 60.00 INPUT DATA Column Size: W8X40 Base Plate Dimensions (in) 9.75 x 9.00 Width: 7-#7 150.00 Ec (ksi): 3834.25 LOADS Surcharge (ksf) .Axial (kip) Dead Load: Dead Load; Pos. Live; Pos. Roof; CONCRETE CAPACITY Reqttired Shear (kip) Provided Shear: (kip) Required Moment: (kip-ft) Provided Moment: (kip-ft) Required Punching Shear; (kip) Provided Punching Shear; (kip) REINFORCEMENT 0.000 119.49 80.55 8.57 Major 81.94 179.30 261.44 324.26 260.74 334.49 Percent of overhang to assume Rigid: 50.00 Live Load: . 0.000 Neg. Live: N/A Neg. Roof: N/A Ld Co/Code Ref. 2 Sec. 11.4.5.1 a) b) c) 7 Minor 84.78 170.34 Sec. 1 263.90 307.73 Ld Co/Code Ref. 7 .4.5.1 a)b)c) Bottom Bars Parallel to Top Bai s Parallel to Length Width Length Width Bar Quantity/Bar Size; 7-#7 7~#7 None None Required Steel/Provided Steel (irr) 4.09/ 4.20 4.09/4.20 None None Required Steel Code Ref Sec. 7.12 . Sec. 7.12 None None Bar Spacing (in) 16.86 16.86 None None Bar Depth (in) I7..50 16.63 None None Cover (in) Top N/A I bottom; 3.00 Side: 3.00 SOIL CAPACITY Allowable Soil Bearing Capacity (ksf)- Max Unfactored Soil Bearing (ksf) Max Average Unfactored Soil Bearing (ksf) Max Soil Bearing for Factored Design (ksf) Max Average Soil Bearing for Factored Design (ksf). 3.00 2.73 2.73 3.41 3.41 Ld Co 7 7 7 Untitled PRIME J0B:g.Ki:i-170 STRD'CTURAL m%. 10-2013 ENGINEERS SHT:_j2:-ii Viasat BLDG mo Corlsbad, CA Conterminous 48 States 2005 ASCE 7 Standard Latitude = 33.127827 Longitude = -117.26458999999981 Spectral Response Accelerations Ss and Sl Ss and Sl = Mapped Spectral Acceleration Values Site Class B~ Fa = 1.0yv = 1.0 Data are based on a 0.01 deg grid spacing Period Sa (sec) (g) 0.2 1.129 (Ss, Site Class B) 1.0 0.427 (Sl, Site Class Bj Conterminous 48 States 2005 ASCE 7 Standard Latitude = 33.127827 Longitude = -117.26458999999981 Spectral Response Accelerations SMs and SMI SMs = FaxSs and SMI ^^FvxSl Site Class D- Fa = 1.048,Fv = 1.573 Period Sa (sec) (g) 0.2 1.183 (SMs, Site Class D) 1.0 0.672 (SMI, Site Class D) Conterminous 48 States 2005 ASCE 7 Standard Latitude = 33.^27527 Longitude = -117.26458999999981 Design Spectral Response Accelerations SDs and SDI SDs = 2/3 X SMs and SDI = 2/3 x SMI Site Class D - fo = 1.048,Fv = 1.573 Period Sa (sec) (g) 0.2 0.789 (SDs, Site Class D) ^ 1.0 0.448 (SDI, Site Class D) y^ Page 1 31^ PRIME jOB:2K13-170 STRUCTURAL DATE:. ENGINEERS SHT: 10-201; ANALYTICAL WIND CALCULATION (Per ASCE 7-05 §6.5.12.4.1) For Components and Cladding of Low-Rise Buildings Projecl #: 2kl3-170 Description: Viasat BLDG #10 Wind Design Criteria: Least Horiz. BIdg Dim = Mean BIdg Roof Height, h = Roof Angle, Q - Occupancy Categorj' = Basic Wind Speed, V - Importance Factor, I = Exposure Category = Velocity Press. Exp. Coeff, Kz ~ Kzt = Kd = a = Velocity Pressure, qh • qh • Int. Pressure Coeff, GCpi •• 100 ft 46 ft 0,00 ° 11 85 mph 1,00 B 0,79 1.00 0.85 10 ft (Tbl 1-1) (Fig, 6-1) (Tbl 6-1) (Sec. 6.5.6) (Tbl. 6--3) (Sec, 6.5,7,2) (Tbl, 6-4) (Fig. 6-11 A) 0.00256-Kz-Kzt-Kd-V--I (Eq. 6-15) 1,2.15 psf ±0,18 (Fig, 6-5) Wind Zones (Fig. 6-1 lA) External Pressure Coefficient. GCp (Fig. 6-11 A): Effective Wind Area 10 fl^ 20 ft^ 50 ft-100 & 200 :ft= 500 ft= Zone 4, 5 (+) 0.90 0,86 0.81 0.72 0.68 0,63 Zone 4 (-) -0.99 -0,95 -0.90 -0.81 -0.77 -0,72 Zone 5 (-) -1.26 -1.17 -1.04 -0.95 -0.86 -0.72 (Note: Where roof angle < 10°, GCp is reduced by 10%.) Design Wind Pressure on Wall Components and Cladding (Sec. 6.5.12.4.1): p ^ qh-[(GCp)-(Gcpi)] (Eq, 6-22) Effective Wind Area lOft^ 20 ft" 50 ft^ too fl^ 200 fi-500 ft- Zone 4, 5 (+) 13,13 12,58 12.03 10,94 10.39 9.84 Zone 4 (-) -14,22 -13.67 -13.13 -12,03 -11.49 -10,94 Zone 5 (-) -17.50 -16.41 -14.77 -13.67 -12.58 -10.94 Y -Z-.i-.X N5 ,316k/ft -•••5 -3.147 ,316k/ft 43 -3,1 4.264 .316k/ft 2 ,316k/ft -1.8 if PRIME JOB:2K13-170 STRUCTURAL DATE: 10-2013 ENGINEERS SHT:__ -5,234 -5,7 All -1.891 Loads: LC 1, CASE 1 Results for LC 1, CASE 1 Member Bending Moments (k-ft) Z-moment Reaction units are k and k-ft Y »2Ui...X A PRIME J0B:2K13-170 ^ mmmklmiMmy ENGINEERS SHT: 2,951 5,341 H4.2,-s316k/ft NS/i-^^k/ft \y^'f 2,6 ,316k/ft ikz -%m6klft -7.6 ••^il -2,196 Loads; LC 2, CASE 2 Results for LC 2, CASE 2 Member Bendina Moments ^k-ffi ,Y Loads: LC 3, CASE 3 Results for LC 3, CASE 3 Member Bending Moments (k-ft) 2-moment Reaction units are k and k-ft M PRIME JOBiiKiMzo STRUCTURAL mi: 10-201:^ ^^.ENGLNEERS SHT: 3,451 ^K4-2.s315k/ft 0,375 4i3 .316k/ft -4.6 .316k/ft S.5 . %^iy -5,816 ,316k/ft 4" I JS y,^'^' -5.1 ^1 -1,802 _^ PRIME J0B:2K13-170 STRUCTURAL DKS:-i0:2013_ ENGINEERS SHT: y^.^ ,316k/ft- N5 5. -3,646 -6.5 7,6 .316k/ft 1 3 " '^N2-4:^6k/ft -8.3 1 -2.285 Loads; LC 4, CASE 4 Results for LC4, CASE 4 Member Bending Moments (k-ft) Z-moment Reaction units are k and k-ft i/vnA/ \/c'7yy ^•yiy-f/c.y •y\ tP s: DyyQ, lyp Loif) if^.c ^ y$--^^ny%, fp- t>^yyb^ t) / y ;itl__ii*:,£/J / (9 'lf4t> t $r^' /C > /^\f' / /? / ,'x:,y ^ 4^yr i'< fi-of^ ^y ^ /•7/ f-'i.-'r' 0. (-4 p I'Cf^ .Jj:/2ii..^..i:y:,ifr:^ /^^^ p^^i-^Z-f kz-y</"ttf=:- PRIME Jcb; 2K13-170 STRUCiySAL Datfi: 10/2013 5igssbEHG|NEERS shi: b CONCRETE SLENDER WALL Thk (in) Wdth (ft) Start mi End fftl Considering P-Dslta Effects ql = 6,50 1.00 0,00 17.00 PROJECT #: 2K13-170 q2 = 0.00 DESCRIPTION; Viasat BLDG #10 q3 = TTYPICAL PANEL 3RD TO ROOF q4 = 0.00 q5 = DESIGN CRITERIA: 4000 psi e = 5.50 in MOT Vertical Steel -0,0025 'y ~ 60000 psi Eccentric, Dr = -71 plf Min Horizontal Steel = 0.002S Concrete Weight = ISO pof Eccentric. Lr -213 pif Max Vert Spacing = 18,00 in Add'l From Aiiove. Dr -0.00 kips Clear Height, 1^ = 13.00 ft Add'! From Above, Lr = 0.00 kips <iB = 0.9 Psrapet Height = 4.00 ft Girder, Dr -0,00 kips 0.85 Wall Thickness, I = 6.50 in Girder, Lr = 0,00 kips C -C 3S34 ksi /?/? = 24.00 • Girder Load Eccentric? £t = 29000 ksi n -7.56 Depth to Rebar, d = 3.250 in «m -0.003 Vertical Rebar = # 4 0.00207 Spacing = 10.000 in 0.0171 S(ee/ @ Each Face -1 (# layers) Qg =Fp = 0.791 0.346 S Reveal Depth = 0.75 in Eff. Wmd Area -17 ft' Reveal to Bottom = 2.50 ft Wind Load, \N= 17.92 psf d ai Reveal = 2.500 in (16-3) (16-4) (16-5) (15-6) (16-7) (16-13a) {16-13b) M„o -0.00 S9S7 5839 5957 5839 2793 3065 ib-in/ft ^tAaO -6.50 5.92 5.S2 5.92 5,92 6.92 5.92 ft Amax = O.OOE+OO 1.43E+07 1.40E+07 1.43E+07 1.40E+07 $.69E+06 7,34E+06 /Ei At Reveal: Mo = 0 3987 3908 3987 3908 1869 2052 lb-in,'ft Ao = O.OOE+00 8.51 E+06 8.34 E+06 8.61 E+06 8.34E+06 3.99E+0S 4,38E+05 /Ei LOAD COH/iBINATlONS (CBC 1605.2.1) (16-3) U = (16-4) U = (16-5) U = (16-6) U = (16-7) U = (16-13a) A = (16-I3b) A = 12.4,2.3 E = DESIGN SUMMARY; 1.20 D 1.20 D 1.36 D 0.90 D 0.74 D 1.00 D 1.08 D QE± + 0.50 L + 0.50 L + 0,50 L + 1.60 W + 1.00 Qe + 0.75 L + 0.75 L 0.2SDSD 0.16 D 1-1.60 Lr t- 0.50 Lr 1.00 Qe + 0.75 W + 0.53 Qe + 1.60 W Strength: (1E-3) (16-4) (16-5) (ie-6) (16-7) «M„ = 43,897 43,441 43,603 42.337 41,898 !b-ir. M„ = 1,642 7,265 6,946 6,586 6,431 Ib-in % Over = 0.0% 0.0% 0.0% 0.0% 0,0% At Reveal; cDMn = 44,279 43,751 43,992 42.595 42.113 Ib-h IV!u = 1,592 5,206 4,929 4,654 4,449 Ib-in % Over = 0.0% 0.0% 0,0% 0,0% 0.0% Deflection Wind Seismic At Reveal: Wind Seismic 15/150 = 1.0400 1.0400 in 1,0400 1,0400 in 0.0087 0.0085 in 0,0054 0,0059 in % Over = 0.0% 0,0% 0,0% 0,0% PRIME Job; 10-2013 CONCRETE SLENDER WALL Considering P-Deita Effects PROJECT #; DESCRIPTION: 2K13-170 ViasasBLOG #10 TTYPICAL P,ANEL 3RD TO ROOF strengtti ai Factored Uo ad: (16-3) (16-4) (16-5) (16-6) (16.7) Factored ecc, = 545.52 311.22 231,70 153.54 126.56 ibs.'rt Factored axial, P^aaa.; = 0.00 0.00 0,00 0.00 0.00 ibs/ft Factored wall, P^,, = = 1023.75 1080.79 1223,21 810.5S 668.16 lbs/ft Factored, P,, = = 1569.27 1392.01 1454.91 964.13 794.73 Ibs/ft Pu/Ag= 20.12 S0,05fc.., OK! = 20,12 17.85 18.65 12.3S 10.IS psi As = 0.240 £ 0.6p(bd) = 0.687 ...OK (R14.8.3) A,,= As + (Pu/ l/Hh 12d) = 0.266 0,263 0,264 0.256 0.253 in'^ a= (Pu + Asf,)/(Q.85f^fa) = 0.391 0.387 G.38S 0.377 0,372 in c = a / 0.85 0.460 0.455 0.457 0,443 0.438 in ti = (Ecu / c) d - Ecu = 0.0182 0.0184 0.0183 0.0190 0.0193 > 0.005 For Tension Controi OK OK OK OK OK M„= {A^f,)(d-a/2) 48775 48268 48448 47041 45553 Ib-in (14-7) W = n-Ass-<ci-c)^+b-o^/3 = 16.05 15.92 15.97 15.61 15.48 in" = .1500 6736 6419 6342 6156 Ib-in (14-4) Mu=M„,+ P„A.j = 1642 7265 6946 6686 S431 Ib-in (14-5) A„ = = 0.09 0.38 0.36 0.38 0.35 in *M„ = = 43897 43441 43603 42337 41898 Ib-in (14-3) ChecK that <PM„ S Mu OK OK OK OK OK lg= b.t^/12 274.63 274.63 274.63 274.63 274.63 in" (9-9) M„= 7.5 r,.''-=ig/O.St = 40082 400S2 40082 40Q82 40082 Ib-in (14-2) Ctieck that ^U„ > M„ OK OK OK OK OK Deflection at Service Load; (16-13a) (16-13bj Service ecc, Pji = = 330.35 344.51 lbs Service axiai, Psa)oai = = 0.00 0.00 lbs Service vKail, Ps„,= 900.66 975.43 lbs Service, Ps= Ps,+Ps„ = -1231.01 131.9.94 lbs Ac= 5M,,!//(48Eclg) = 0.10 0.1Q in IM„= (A«fy)(d-a/2) = 48258 48448 Ib-in a„= 5M„i//{48 e,i„) -1.89 1,39 Msi.= Mso + P,fex/l, = 3519 3928 M= Msa+P-.As = 3630 3940 Ib-in (14-8) As = = 0.01 0,01 in Allowable A = l,/150 1.04 1,04 in Check ttiat AsSAgiio^,. OK OK stiear at Factored Load; (16-3) (16-4) (16-5) (16-6) (16-7) w„,= 8Mu/(12l/) 6.48 28,56 27.40 26.37 25.37 V„= loW„/2 -42.09 186,28 178.10 171.43 164.90 (11-3) <S)V^= Q.75(2)f'J°bd 3699.8S 3699,86 3699.86 3699.86 3699,85 Checic tliat tPVc a V„ OK OK OK OK OK I CONCRETE SLENDER WALL Considering P-Delta Effects (AT LOCATiON OF REVEAL) PRIME STRUCTURA ,10b: 3K13-17 Dtm: 10-2013 ENGINEERS sw; PROJECT #: DESCRIPTION: 2K13-170 Viasat BLDG #10 TTYPICAL PANEL 3RD TO ROOF Strength at Factored Lo ad: (16-3) (16-4) (16-5) (16-6) (16-7) Factored ecc, P„, = 545,52 311.22 231.70 153.54 126:56 lbs Factored axial, P.yaj,i3i = 0,00 0.00 0.00 0.00 0.00 lbs Factored wall, Pi„ = 1413.75 1413.75 1600.05 1050.31 874.01 lbs Factored, P„ = = 1959.27 1724.97 1831.75 1213.85 1000.57 lbs As = 0.240 S 0.6p(bd) = 0.657 „,0K {R14.6,3) A„= As + (Pu/ fy)-(h / 2d) 0.269 0.265 0.267 0,258 Q.255 in-' a = (Pu + Asfy)/(0.85fcb) 0.401 0.395 0.398 0,383 0.377 in 0= a/0.85 0.472 0.465 0.458 0.450 0.444 in M„ = (A,,, fy)(d - a/'2) 49198 48612 48830 47329 46792 Ib-in (14-7) l„ = 15.25 15.13 15.17 14.83 14.71 in' Mra = Muo + Pui e X /1, 1500 4766 4488 4371 4224 Ib-in (14-4) M„=M„a + P„A,j 1692 5206 4929 4654 4449 Ib-in (14-5) Au = 0.10 0.26 0.24 0.23 0.22 in W„ = = 44279 43751 43992 42596 42113 !b-in (14-3) Check that OM, > lvl„ OK OK OK OK OK lg=bt^/12 190.11 190.11 190.11 130.11 190.11 in' (9-9) Mcr = 7,5 fIg / 0,51 = 31366 31366 31385 31366 31366 Ib-in (14-2) Check that !PIVI„ a OK OK OK OK OK Deflection at Service Load: {16-13a) {16-13h) A,= • = 0.01 0.01 in Allowable A = iJ 150 1.04 1.04 in Check that As sAaii^, OK OK PRIME m 2K13-170 11 5111 Bv J-il CONCRETE SLENDER WALL Considering P-Delta Effects Pf^OJECTs: 2K13-170 OESCRiPIiOf^: DESIGN CRITERIA: Concrete Weight = Clear Height, = Parapet Height = Wall Thickness, t = /)// = Depth to Rebar, 0 - Vertical Rebar- Spacing = Steel @ Each Face = Reveal Depth = Reveal to Bottom = d at Reveal = Viasat BLDG 110 TTYPICAL PANEL 4000 psi 60000 psi 150 pcf 14,00 ft 0,00 ft 6,50 in 25,85 3,250 in #4 10,000 in 1 (# layers) 0,75 in 2,50 ft 2,500 in 2ND TO 3RD Thk (in) Width (ftl start {ft^ End (;i) ql = 6.50 1.C0 0.00 14.00 5]: t-'.Ul' q3 = q4 = 0.00 q5 = e = Eccentric. D = Eccentric, L - Add'! From Above, D - Add'l From Above, L = Girder, D - Girder, L = 5.50 in 555 pif 10S7 plf 1.552 kips 0.000 kips O.ClOO kips 0.000 kips D Girder Load Eccentric? Roof. Lr= 0,213 kips Min Vertical Steel - Min Horizontal Steel - Max Vert Spa cing = Eff, Wind Area = Wind Load, W= (16-2) (16-4) (16-S) (16-6) (16-7) (16-t3a) (16-13b) 0.00 8430 8294 8430 8294 3952 4354 7.00 7.00 7.00 7.00 7.00 7,00 7,00 O.COE+00 2.48E+07 2,44£+07 2,48E+07 2,44E+07 1,l6E+07 1,28E+07 At Reveal: Mo = 0 4946 4866 4946 4856 2319 255S Ao = 0,00E+00 1,33E+07 1,31 E+07 1,33E+07 1,31E+07 6.25E+Q6 6,89E+06 0.Q02.5 0.0025 18.00 in 0,9 0.85 3834 ksi 290OO ksi 7.56 0.003 0.00207 0.0171 0.791 g 0.347 W,, 14 ft= 17.92 psf Ib-in/ft ft /El Ib-in/ft :/EI LOAD COMBINATIONS (CBC 1606.2.1) (16-2) (16-4) (15-5) (16-5) (16-7) (16-13a) (16-13b) 12.4.2.3 U = U = U = U = U = A = A; E = 1.20 0 1,20 D 1,36 D 0,9,0 D 0.74 D 1.00 D 1.08 D QE± QE± + 1.60 L + 0.50 L + 0.50 L + 1.60 W +'1,00 Qe + 0.76 L + 0.75 L 0.2SosD 0.16 D + 0.50 Lr + 0.50 Lr + 1.00 Qe + 0.75 W + 0.53 Qe • 1.60 W Wind (t.S W) Seism ic (1.0 E) 16.00 r 14.00 12.00 10.00 I 8.00 • 6.00 - 4.00 t 2,00 - Q.OQ 16.00 1<!.0D 12.00 lO.OD 8,00 S.OO 4.00 2,00 0.00 tl — DESIGN SUMMARY: Strength: (16-2) (16-4) (16-S) {16-6) (16-7) 52,855 49,710 50,508 46,048 44,966 ib-in 9,050 15,096 15,641 11,504 10,791 ib-in % Over = 0,0% 0,0% 0.0% 0.0% 0.0% At Reveal: 0Mn = 52,043 49,469 50,293 48.023 44,946 Ib-in 9,686 10,847 11,326 7,544 6,944 Ib-in % Over = 0.0% 0,0% 0.0% 0.0% O.Q% Deflection: Wind Seismic At Reveal:. Wind Seismic lo/150 = 1,1200 1.1200 in 1.1200 1.1200 in Max A = 0.0217 0.0232 in 0.0127 0.0136 in % Over = 0,0% 0.0% 0.0% 0.0% CONCRETE SLENDER WALL Considering P-Deita Effects PRIME Job: Mil STHIJCTIIRAI n«f 10-2013 ENGNEERSsht; yy PROJECT #: DESCRIPTION: 2K13-170 Viasat BLDG #10 TTYPICAL PANEL 2ND TO 3RD Strength at Factored Lo ad: (16-2) (16-4) (16-5) (16-6) (1B-7) Factored ecc, P„. = 2373,20 1199.50 1287.27 499.50 411.73 Ibs/ft Factored axial, PU^M-I -1968.90 1963.90 2107.83 1396.80 1151.37 !bs,/ft Factored wall. Pi,.., = = 682.50 682.50 772.44 511.88 421.9S Ibs/ft Factored, P„ = 5024.60 3850.90 4167.53 2408.18 1985.04 Ibs/ft Pu/Ag = 64.42 SO.Oerc... OK! 64.42 49.37 53.43 30.87 25.46 psi A.s = 0.240 £ 0.6p(bd) = 0.667 ...OK (R14.8.3) A5e = As + (Pu'fy)-(h/2d) = 0.324 0.304 0.309 0.280 0.273 in'' a = {Pu +Asf,)/(0.85 fV.ta) 0.476 . 0.447 0.455 0.412 0.402 in c = a! O.BS = 0.560 0.52S 0.535 0.485 0.472 in ti = (Ecu ' c) d - f^CLl 0.0144 0.0155 0 0152 0.0171 0.0175 0.005 For Tension Control OK OK OK OK OK M„ = (A,,fy)(d-a/2) = 58506 55233 56120 51164 49S61 ib-in (14-7) 1„ = n-As,-(d-c)^+b-c'/3 18.42 17.65 17.86 15.66 16.36 in" Mia3+ Pu,ex/I<: 6526 11729 11834 9804 9426 ib-in (14-4) M„ = Mua + PuA„ 9050 1509S 15541 11504 10761 ib-in (14-5) A„ = = 0.50 0.87 0.88 0.71 0.67 in <PM„ = 52655 49710 50505 46048 44965 Ib-in (14-3) Check that a)M„S:M„ OK OK OK OK OK 1.3 = bt^/12 = 274.63 274.63 274.63 274.63 274.63 in' (9-9) M„ = 7..5 ry Ig / 0.5 t = 40082 40082 40032 40082 40082 ib-in (14-2) Check that tPM,, > M„ OK OK OK OK OK Deflection at Service Load: (16-13a) (16-13b) Service ecc, P^, = = 1355.25 1401.33 lbs Service axial, Psmasi -1711.75 1840.60 lbs Service wall, P^^, = = 568.75 615.97 lbs Service, P5 = Psf + Psw -3635.75 3857.90 lbs Ac,= 5M,,l,= /(48 = 0.11 0.11 in M.T = (As,f,)(d-a/2) 55233 56120 Ib-in A,„ = 5 M„ I,= / (48 E, l„). 2,40 2.41 Mso + P^iex/l, 7679 8208 U = M^ + P.A, = 7757 8297 Ib-in (14-8) A5 = 0.02 0.02 in Allow/able A = 1^/150 1.12 1.12 in Check that As sAa,o„ OK OK Shear at Factored Load: (16-2) (16-4) (16-5) (16-6) (16-7) W«! = 8IVIg/(12l/) 30.78 51.35 52.86 39.13 36.60 v„ = lcWs,/2 216.48 359.42 370.02 273.90 256.22 (11-3) CPV,= 0.75 (2) ry b d 3699.86 3699.86 3699.86 3699.86 3699,86 Check that OVj > V„ OK OK OK OK OK CONCRETE SLENDER WALL Considering P-De!ta Effects (AT LOCATION OF REVEAL) PRIME J«b; 2K13- S'i'RUCTUHAi Da»;_i ENGINEERS sw; _ !-201 PROJECT #: DESCRIPTION; 2K13-170 Viasat BLDG #10 TTYPICAL PANEL 2ND TO 3RD Strength at Factored Lo ad Factored ecc, P,j, = Factored axial, P„3„3, = Factored wall, P^,.^. = Factored, P„ = As = fR14,8,3) (14-7) (14-4) (14-5) (14-3) (9-9) (14-2) 0,240 S 0.5p(tad) = 0,667 Ass= Ag + (Pu/f,)-(h/2d) a= (Pu +Asf,)/(0.85reb) c = a / 0.85 K = (Ase fyXd - a/2) Ic, = MM= M„£,+ P„rex/!. K - IVlua + Pu Au 4 = *M„ = I. .OK Check that <t>M„ > M.j bt'/12 Mc, = 7.5 ry ig / 0.5 t Check that tt>M, > M,., Deflection at Service Load; A,= Aliowable A = !c/150 Check that A, s A., (16-2) (16-4) (16-S) (16-6) (16-7) 2373.20 1198.50 1287-27 489.50 411,73 lbs 1968.90 1968.90 2107.83 1395.80 1151,37 lbs 1121.25 1121.25 1269.01 840.94 693.18 lbs 5463.35 4289.65 4364.10 2737.24 2255.28 Iba 0.321 0.303 0.309 0.280 0.273 in-' 0.487 0,453 0.467 0.420 0.408 in = • 0.573 0.539 • 0.550 0,494 0.480 in 57825 54965 S5881 51137 49940 Ib-in 17.50 16.77 16.97 15.82 15,54 in' 6526 8245 8406 6320 5999 Ib-in 9586 10847 11326 7544 6944 Ib-in 0.56 0.61 0.63 0.45 0.42 in 52043 49469 50293 45023 4494S Ib-in OK OK OK OK OK = 190.11 190.11 190.11 190,11 190.11 in" 31366 31366 31366 31356 31366 Ib-in OK OK OK OK OK {16-13at (16-13b) 0.01 0.01 in 1.12 1.12 in OK OK I ^-,Li 7—^— 1 ptii ,*-.« 'ry:*~'b»":?'"ji*''.'* n»^* 1 7 <0F 1 11^ V / V i ,\ 1 / \ UT V 1 y A t .A, h' i V A A mi U iji- tr Ty4f^i^ f&6y \ f ' :/ 'yyi.y»%id SAC 0 t^.;.A "• ^i"^"^!^' \y -if /^.^ 5-??r /f>6'l f^-f^ 0[y /i^^'? ^^y ^' f > ATI.— IY-10 . / y 9 ^ . .Jf' K •/ v'O' -0 1 I I I I I PRIME Jati; jiT ^ K ' ENGINEERS sm: CONCRETE SLENDER WALL Thk (in) Width (ft) start (fl 1 End (ft) Considering P-Delta Effects ql = 6,50 5.00 0.00 17.00 PROJECT*: 2K13-170 q2 = 6,50 10.00 9.00 17.00 DESCRIPTION; Viasat BLDG #10 q3 = PIER A (5-0" WIDE) 3RD TO ROOF q4 = 6.50 10.00 0.00 3.00 q5 = DESIGN CRITERIA: f - Concrete Weight - Clear Height. = Parapet Heighl = Wall Thickness, t = • /i/i' = Depth to Rebar, d = Vertical Rebar = Spacing = Steel @ Each Face = Reveal Depth - Reveal to Bottom = d at Reveal = 4000 psi 60000 psi 150 pcf 13.00 tt 4.00 ft 6.50 in 24.00 3.250 in #4 9.000 in 1 (Slayers) 0.75 in 2.50 ft 2,500 in Eccentric, Dr - Eccentric, Lr - Add'l From Above, Dr- Add't From Above, U = Girder, Dr = Girder, Lr - 5.50 in 171 plf 213 plf 8.210 kips 2.140 kips 0.000 kips 0.000 kips iZl Girder Load Eccentric? Min Vertical Steel = Min Horizontal Steel = Max Vert Spacing = 0.0C25 0.0025 18.00 In 0 = 0.9 iS, = 0.85 Ec -3834 ksi E, = 29000 ksi n = 7.56 0.003 0,00207 aspi, = 0,0171 0,751 g 0,346 Wp Eff, Wind Area = 255 ff Wind Load, W= 12,88 psf (16-3) (16^) (16-5) (16-6) (16-7) {16-13a) (16-13b) Muo = 0,00 12848 7582 12846 7582 6021-3980 ib-in/ft •^,«uO -6.50 5..92 5.20 5.92 5.20 5.92 5.20' ft ^max — O.OOE+OO 3.08E+07 1.eOE+07 3.08E+07 1.80E+07 1.44E+07 9.46E+06 /El At Reveal: Mo = 0 8596 6275 8596 6275 4030 3294 Ib-in/ft Ao = O.OOE+OO 1.84E+07 1.13E+07 1.84E+07 1.13E+07 8.60E+0S 5.95E+06 /El LOAD COIVIBINATIONS (CBC 1505.2.1} (16-3) tJ= 1.20 D +0.50L +1.60Lr (16-4) U= 1.20 D +0.50L +0.50Lr (16-5) U= 1.36 D +0.50L +1.00Qe (16-6) U= 0.90 D +1,60W (16-7) U= 0.74 D +1.00Qe (16-13a) A= 1.00 D +0.75L + 0.75 W (16-13b) A= 1.08 D +0.75L +0.53Qe 12.4.2.3 E= QE± 0.2SDSD = QE± 0.16 D DESIGN SUMMARY: + 1.60 W Wind (1.6 W) 18.00 IS.OC? 14.00 12.00 10.00 8.00 6.00 4.00 ' 2.00 - 0.00 :- a. — ci c 1^ Seismic (1.0E) 18.00 16.00 14.00 12.00 10,00 8.00 6.00 4,00 2.00 0.00 3 tN Strength: (16-3) (16-4) (16-5) (16-6) (16-7) 61,1^43 58,425 60,073 54,616 ,52,280 li>-in IVlu = 6,396 20,024 12,360 17,189 9,877 Ib-in % Over = 0,0%; 0,0% 0.0% 0.0% 0.0% At Reveal: (fcMn = 60;054 57,562 58,014 53,368 51,744 Ib-in Mu = 6,757 14,461 9,873 11,825 8,140 !b-in % Over = 0,0% 0,0% 0.0% 0.0% 0.0% Deflection: Wind Seismic At Reveal; Wind Seismic 1, /150 = 1,0400 1,0400 in 1.0400 1.0400 in MaxA = 0,0207 0.0153 in 0.0129 0.0095 ; in Over =; 0,0%: 0.0% : 0.0% 0.0% PRiME Job; JmzUl. SMICTURAL D^;.;: 10-^.11. ifiBbENGNEERS sm: _£ui^ CONCRETE SLENDER WALL Consi(iering P-Delta Effects PROJECT* DESCRIPTION: 2K13-170 Viasat BLDG #10 PIER A (5'-0" WIDE) 3RD TO ROOF Strength at Factored Load: (16-3) (16-4) 1S-5) (16-6) (16-7) Factored ecc, P^f = = 1638.00 935.10 696.72 461,70 380.58 lbs,'fi Factored axial, Puxni = 2655.20 2184.49 2230.05 1477,80 1218,14 tos/ft Factored wall, = 2583.75 2640.79 3509.09 2273.09 1675,68 Sbs,'ft Factored, = 6876.95 5760.29 6435.87 4212.59 3274,40, ibs/ft Pu/Ag= 88,17 <0,06fc„, OK! 88.17 73.85 82.51 54.01 41,98 psi As = 0,267 5 0,6p{bd) = 0,667 ...OK (R14,8,3) A,c= As+ (Pu/fy)(h/2d) 0.331 0.363 0.374 0.337 0,321 in^ a= (Pu + Asfy)/(0,85fcb) 0.561 0.533 0.550 0,495 0,472 in c= a/0,85 0.660 0.627 0.647 0.583 0.556 in Et = (£cu / c) d - ecu 0.0118 0.012s 0,0121 0,0137 0,0145 k 0,005 For Tension Control OK OK OK OK OK M,.= (A,efv)(d-a/2) 67936 64918 6S74S 60584 58089 ib-in (14-7) lc,= nAie1d-c)^+b-o^/3 20.50 19.85 20,25 18.92 18.32 in'' = M„o + Prf e X / Ic 4505 15186 9114 14001 8419 !b-in (14-4) M„= iv1„, + P„A„ 6396 20024 12350 17189 9877 !b-in (14-5) Au= • 0.28 0.84 0.50 0,76 0,45 in 61143 58426 60073 54616 52280 Ib-in (14-3) Check that «IVI„ > OK OK OK OK OK (5= bt^/12 274.63 274.63 274,63 274,63 274,63 in" (S-9) r<,= 7,5r/*l,/0,5t 40082 40082 40082 40082 40082 Ib-in (14-2) Check that 4>M„ s M,„ OK OK OK OK OK Deflection at Service Load: (16-13a) (16-13b) Service ecc, Pj, = 992.25 1034.84 lbs Service axiai, P,„iai = 1963.00 2099.32 lbs Service wall, Ps„ = = 2200.66 2446.28 lbs Service, Pj = P^f + P,„, = S15S.S1 5580.44 lbs A„= 5ti^c,l//(48 Ecy 0.10 0.10 in Mn= (A,ef,)(ci-a/2) 64918 66748 Ib-in A„= 5M„!//(48Ecl„) 2.C4 2.04 IVIisa = Mso + P,, e X / Ic = 8505 6257 M= M,, + P,A, 8611 6342 Ib-n (14-8) A,= 0.02 0.02 in Allowable A = 1,/150 1.04 1.04 in Check that AjS A,,8c„ OK OK Shear at Factored Load: (16-3) (16-4) (16-S) (16-6) (16-7) Wo,= 8Mu/(12lc^) 26.23 78.99 48.76 67.81 38.96 V„= lcW^,/2 164.00 513.43 316,92 440.73 253.25 (11-3) «V<, = 0,75 (2) fc"^ b d 3699.86 3699.86 3699,85 3699.85 3699.86 Check that (PVc a Vu OK OK OK OK OK PRIME Mr. JB±12±. SHUCTURfl Oatf;; io-?ni> .ENGWEERSsht; 1/ CONCRETE SLENDER WALL Considering P-Delta Effects (AT LOCATION OF REVEAL) PROJECT*: DESCRIPTION; 2K13-170 Viasat BLDG #10 PIER A (5'-0" WIDE) 3RD TO ROOF Strength at Factored Load: (16-3) (16-4) (16-S) (16-6) (16-7) Factored ecc, P„, = = 1638.00 935.10 696,72 461.70 380.58 lbs Factored axial, Pumai = 2655.20 2184.40 2230,05 1477.80 1218.14 lbs Factored wall, P„„ = 3071:25 3071.25 3475,98 2303.44 1898.71 lbs Factored, P^ = 7364.45 6190.75 6402,77 4242.94 3497,42 ibs As = 0.267 S 0.6p(bd) = 0.667 ...OK (R14.8.3) A,,= As + (Pu/fy)(h/2d) 0.375 0,358 0.361 0.329 0,318 in^ a = (Pu + Asfy)/{0.65feb) 0.573 0.544 0.549 0.495 0,478 in c= a/0.85 0.674 0.640 0.646 0,584 0,562 in M.= (A,,fy)(d-a/2) = 66726 63958 64460 59298 57493 Ib-in (14-7) l„ = 19.47 18.83 19.23 17.97 17.41 in* Mii3= M„o+ Puiex/lt = 4505 10933 7808 9752 7112 Ib-in (14-4) M„=M„, + P„A„ 6757 14461 9873 11825 8140 Ib-in (14-5) A„ = = 0.31 0.57 0.32 0.49 0,29 in q5IVI„ = 60054 S7S62 58014 53368 51744 Ib-in (14-3) Check that (I)M„ 2: Mu OK OK OK OK OK l5=bt'/12 = 190.11 190.11 190.11 190.11 190,11 in* (9-9) M„= 7.5fc°'lj/0.5t = 31365 31366 31366 31366 31366 Ib-in (14-2) Check that <»M„ £ M„ OK OK OK OK OK Daflection at Service Load: (16-13a) (16-13b) = 0.01 0,01 in Aliovrabie A = I,/150 1.04 1.04 in Check that A, SAaiiow OK OK PRIME -tots; 2^1^-itn ENSI^EERS sw: /a... CONCRETE SLENDER WALL Considering P-Deita Effects q1 = Thk (in) 6,50 Width (ft) 5,00 Start (f!) End (ft] 0,00 14.00 PROJECT* 2K13-170 q2 = 6,50 10,00 9.00 14.00 DESCRIPTION: Viasat BLDG #10 q3 = PIER A (5-0" WIDE) 2ND TO 3RD q4 = 6,50 10,00 0,00 3,00 q5 = DESIGN CRITERIA: 4000 psi e = 5,50 in Min Vertical Steel = 0,0025 fr = 60000 psi Eccentric, D = 555 pif Min Horizontal Steel = 0.0025 Concrete Weight = 150 pcf Eccentric, L = 1067 plf Max Vert Spacing = 18.00 in Add'l From Above, D = 18,410 kips Clear Height, 1^ = 14,00 ft Add'l From Above, L = 0,000 kips 0,9 Parapet Height = 0,00 ft Girder, D = 0,000 kips iS, = • 0,85 IVa// Thickness, t = 6.S0 in Girder, L = 0.000 kips £c = 3834 ksi h/t = 25,85 U Girder Load Eccentric? = 29000 ksi Roof, Lr-:3;2:lo: kips ; n -7,56 Depth to Rebar, d = 3.250 in 0.003 l/e/f/ca/R8dar= #4 h = 0.00207 Spacing = 9.000 in aspc = 0,0171 Stee/ @ £scft Face = 1 (# layers) S/js = 0,791 g Revea/ Depth = 0,75 in Qe=Fp = Eff, Wind Area = 0,347 Wp 210 ft' Reveal to Bottom = 2,50 ft Wind Load. W = 12,88 psf d at Reveal = 2,500 in (16-2) (16-4) <16-5) (16-6) (16-7) (16-13a) (16-13b) M„o = 0,00 18177 14270 18177 • 14270 8521 7492 Ib-in/ft 7,00 7,00 8.12 7.00 8.12 7.00 8,12 ft ^ma« = 0,00E+0O S.34E+07 4.33E+07 5.34E+07 4:33E+07 2,51 E+07 2,27E+07 /EI At Reveal: 0 10666 8796 10665 8796 4999 4618 Ao = O.OOE+OO 2,88E+07 2,31 E+07 2.88E+07 2.31 E+07 1.3SE+07 1,21E+07 Ib-in/ft /El Wind (1.6 W) LOAD COMBINATIONS (CBC 1605.2.1) (16-2) U = (16-4) U = (16-5) U = (16-6) U = (16-7) U = (16-133) A = (16-13b) A = 12,4.2,3 E = DESIGN SUMMARY: 1,20 0 1.20 D 1,36 0 O.90D 0.74 D 1,00 D 1,08 D QE± QE± + 1.60L + 0.50 L + 0,50 L + 1,60 W + 1,00 Qe + 0,75 L + 0.75L 0,2SosD 0.16 D + 0.50 Lr + 0.50 Lr + 1.00 Qe + 0.75W + 0.53 Qe + 1.60 W 16.00 14.00 12.00 10.00 8.00 8.00 4.00 2.00 0.00 2 ^ Seismic (1.0 E) 16.00 14,00 12,00 10.00 SOO e.oo 4.00 2.00 0.00 1, : • CL plf) •* — to c ^ t cr V rr Strength: (16-2) (16-4) (16-5) (16-6) (16-7) «M„ = 76,727 68,563 70,680 59.592 56,374 Ib-in . : J :iviu= 46 362 52.063 53,976 32,637 24^887 Ib-in % Over = 0.0% 0.0% o:o% o:o% 0,0% At Reveal: <PMn = 73,738 66,642 68,303 58,131 65.703 Ib-in Mu = 53 049 38,707 40,779 21,638 17,317 Ib-in %Over = 0.0% 0.0% 0.0% 0.0% 0.0% Deflection: Wind Seismic At Reveal: Wind Seismic lc/160 = 1.1200 1.1200 in 1.1200 1.1200 ! in Max A = O;0565 0.0600 In 0.0332 0.0352 in %Over-0.0% 0.0% 0.0% O;G% . PRIME Job; ^KiiiiZ .Hi. .DatK:_isb.2iiiL. ENGIMEERS sin; n i CONCRETE SLENDER WALL Considering P-Delta Effects PROJECT #: DESCRIPTION: 2K13-170 Viasat BLDG #10 PIER A {5-0" WIDE) 2ND TO 3RD Strength at Factored Load: (16-2) (16-4) (16-5) (16-6) (16-7) Factored ecc, Pur = 7119.60 3598,50 3861.80 1498.50 1235.20 Ibs/fi Factored axial, Pua,jd-i = 4739.40 4739,40 5000.66 3313.80 2731.54 Ibs/ft Factored wall, P^w = = 1657.50 1657,50 2028.21 1425.94 957.19 lbs/ft Factored, Pu = = 13516.50 9995,40 10890.66 6238.24 4923.93 ibs/ft Pu/Ag= 173.29 S0.06fc... OK! = 173.:29 128,15 13962 79.98 63.13 psi As = 0.267 £ 0.6p(bd) = 0.667 ...OK (R14.8.3) A5,= As +(Pu/f,)(h/2d) = 0.492 0,433 0.448 0.371 0.349 in^ a= (Pu +Asf,)/(0.85 fcb) 0.723 0,637 0.659 0.545 0.513 in c = a / 0.85 0.851 0.750 0.775 0.641 0.603 in Kl = (€cu/c)d-£cu 0,0035 0.0100 0.0096 0.0122 0.0132 2 0.005 For Tension Control OK OK OK OK OK Mr= (A,,fy)(d-a/2) = 85252 76204 78533 66214 62637 Ib-in (14-7) Icr = nA5,(d-c)^+bc^/3 = 23.88 22.17 22.62 20.13 19.35 in* Mua = Muo + Pri e x / Ic = 19579 28073 26S89 22298 18210 Ib-in (14-4) M„=Mu, + P„Au 46362 52063 53975 32637 24887 Ib-in (14-5) Au = 1.99 2.40 2.52 1.66 1.35 in 0M„ = 76727 68583 70680 59592 56374 Ib-in (14-3) Check that tPM„ 2: M„ OK OK OK OK OK !„= bt'/12 274.63 274.63 274.63 274.63 274.63 in* (9-9) Mcr= 7.Sfc°=^lg/0.5t 40082 40082 40082 40082 40082 Ib-in (14-2) Check that 0M„ a M„ OK OK OK OK OK Deflection at Service Load: (15-13a) (16-13b) Service ecc, P,f = = 4065,75 4203.98 Ibs Service axial, P,„iai = 4163.60 4469.19 lbs Service wall, P^,., = 1381.25 1397.37 Ibs Service, P, = P,, + P,„ = 9610,50 10070.54 lbs Ac= 5M„lc'/(48Ec y 0,11 0.11 in M„ = (A,, f,)(d - a/2) = 76204 78533 ib-in A„= 5M„lc^/(48EJ„) 2,64 2.75 M„= M,o+Ps,ex/lc 19701 20902 M= M3, + Ps4 = 20245 21507 Ib-in (14-8) A,= = 0,06 0.06 in Allowable A = lc/150 = . 1,12 1,12 in Check that A, s Aaum, OK OK Shear at Factored Load: (16-2) (16-4) (16-5) (16-6) (16-7) w.,= 8Mu/(121c') 157.69 177.08 183.59 111.01 84.65 Vu = Ic We, / 2 1103,86 1239.59 1285.15 777.07 592.55 (11-3) <J)V,= 0.76(2)fc'°bd = 3699.86 3699,86 369S.86 3699.86 3699.86 Check that <t>Vc£Vu OK OK OK OK OK PRIME Jofct: ..^Kp-^o SIHtlCTURM. aate! 10-201,^ ENGINEERS sw: IT CONCRETE SLENDER WALL Considering P-Delta Effects (AT LOCATION OF REVEAL) PROJECT* DESCRIPTION; 2K13-170 Viasat BLDG #10 PIERA(5'-0"WIDE) 2ND TO 3RD Strength at Factored Load: (16-2) (16-4) (18-5) (15-6) (16-7) Factored ecc, P^ = 7119.60 3598,50 3861.80 1498.50 1235.20 Ibs Factored axial, Pu„isi = = 4739.40 4739,40 5000.56 3313.80 2731.54 lbs Factored wall, P,™ = 2193,75 2193,75 2482.84 1645.31 1356.22 Ibs Factored, P„ = = 14052.75 10531,65 11345.30 6457.61 5322,96 Ibs Ag = 0.267 S 0.6p(bd) = 0.667 ...OK (R14.8.3) A,e= As +(Pu/f,)(h/2d) = 0.474 0,422 0.434 0.362 0.345 in^ a= (Pu + Asfy)/(0.85fcb) 0.737 0,650 0.670 0.550 0.S23 in c = a / 0.85 0.867 0,765 0.789 0.648 0.615 in M„= (A.efy){ci-a/2) 81931 74047 75893 64590 S1892 !b-in (14-7) 1„ = 22.68 21,06 21.49 19.13 18.39 in"* Mu»= Muo+ Puiex/ic 19579 20561 21115 14766 12736 ib-in (14-4) M„=Mu, + P„Au = 53049 38707 40779 21638 17317 Ib-in (14-S) Au = 2,39 1,72 1.73 1.06 0.86 in <t>M„ = 73738 66642 68303 58131 55703 ib-in (14-3) Check that «!>M„ > OK OK OK OK OK 1,= bt^/12 190,11 190,11 190.11 190.11 190.11 in* {9-9) M„= 7.5fc"ig/0.5t 31366 31356 31365 31366 3136S ib-in (14-2) Check that 0M„ S M„ OK OK OK OK OK Deflection at Service Load: (16-13a) (16-13b) A.= 0.03 0,04 in AllovwibleA= lc/150 1,12 1,12 in Chet^that AjSAjjicv, OK OK PRIME J*: 2K13-170 liitOiiijyMi. ENGIHEERS m nn. CONCRETE SLENDER WALL Considering P-Delta Effects PROJECT*: 2K13-170 DESCRIPTION: Viasat BLDG #10 P1ERA(5'-0"W1DE) 1ST TO 2ND DESIGN CRITERIA: Concrete Weight = Clear Height, U = Parapet Height = Wall Thickness, t = h/t = Depth to Rebar, d = Vertical Rebar = Spacing = Steel @ Each Face = Reveal Depth = /?evea/foSo«o/n = d at Reveal = Thk (in) WWth (ft) start (ft) End(ft) q1 = 8,00 5,00 0,00 1S,00 q2 = 6,50 10.00 9,00 15,00 q3 = q4 = 6,50 10,00 0,00 3,00 q5 = 4000 psi 60000 psi 150 pcf 15,00 ft 0.00 ft 8,00 in 22,50 Eccentric, D = Eccentric, L = Add'l From Above, D = Add'l From Above, L = Girder, D = Girder, L = 4,750 in #4 9,000 in 2 (Slayers) 0,75 in 11,00 ft 4,750 in 5,50 in 555 pif 1037 plf 38.921 kips 16.005 kips 0.000 kips 0.000 kips Q Girder Load Eccentric? Roof,'Lr= . /:;3,210;Hi()s Min Vertical Steel = Min Horizontal Steel = Max Vert Spacing = © = 0: = Be = = n = ^cu = 0.6p, = Sos " Eff, Wind Area = Wind Load, W= 0.0025 O.0O25 18.C0 in O.S 0.85 3834 ksi 29000 ksi 7.56 0.003 0.00207 0.0174 0,791 g 0,302 Wp 225 ft^ 12.68 osf (16-2) (16-4) (16-5) (16-6) (16-7) (16-13a) (16-13b) 0.00 20867 17480 20867 17480 9781 9177 ^lAiO -7,50 7,50 8,85 7,50 8.85 7,50 6.8S ^max — 0,OOE+00 7,04E+07 6,01 E+07 7,04E+07 6.01 E+07 3,30E+07 3,16E+07 At Reveal; Mo = 0 16322 16461 16322 15461 7651 8117 Ao = 0,OOE+00 5,27E+07 4,62E+07 5.27E+07 4.52E+07 2,47E+07 2,42E+07 Ib-in/ft ft /El Ib-in/ft /El Wind (I.eW) LOAD COMBINATIONS (CBC 1605.2.1) (16-2) U = (16-4) U = (16-5) U = (16-6) U = (16-7) U = (16-13a) A = (16-13b) A = 12.4,2,3 E = DESIGN SUMMARY: 1,20 D 1,20 D 1,36 D 0.90 D 0.74 D 1.00 D 1.08 D QE± + 1.60L + 0.50L + 0.50 L + 1.60 W + 1.00 Qe + 0.76 L + 0.75 L 0.2SDSD 0.16 D + 0.S0Lr + 0.50 Lr + 1.00 Qe + 0.75 W + 0,53 Qe + 1.60W i 16,00 1 14.00 i 12W 10.00 8.00 6.00 4.00 2.00 0.00 Seismic (1.0 E) 1S.00 14.00 - 12.00 1000 8.00 6.00 • 4.00 2.0O - 0.00 - Strength: (16-2) (16-4) (16-5) (16-6) (16-7) cl>M„ = 138 749 118^362 123.056 98,249 ;Sl,774; Ib-iri : ::':'Wu=:; 34,454 46,581 47.538 32.673 25,890 : Ibjin; % Over = 0.0% 0:0% C)'0%:; 0,0% : 0,0% At Reveal: 0Mn = 129,423 : 110;958; 114,542 92,713 88,054. Ib-in Mu -34j9q6: 38,873 41,022 26,125 23,519 Ib-in % Over = ;o.o?4 Q.0% 0,0% • : 0,0% :D;0%:. Deflection: Wind Seismic At Reveal: Wind Seismic • li/150 =: 1 2000 1.2000 _ in i;2ooo: 1,2000 in MaxA = 0.0371 0.0404 m ,• C),029(3 J 0,0316 in % Over = 0.0% 0,0% 0,0% PRIME Job; iSHiiii ENGIffEERS sw; OL CONCRETE SlEHDIR^fjjj^ Considering P-Delta Eflects PROJECT* 2K13-170 DESCRIPTION; Viasat SLOG #10 P1ERA(5'-0"W1DE) 1ST TO 2ND Strength at Factored Load: (16-2) (16-4) (16-5) (16-6) (16-7) Factored ecc, P„( = • = 7119.60 3598,50 3861.80 1498.50 1235.20 lbs/ft Factored axial, Pujij^, = ' = 14783,64 11262.54 12172.51 7005.78 5774.81 lbs/ft Factored wall, Pu„ = = 2070,00 2070,00 2490,48 1771.88 1179.56 Ibsm Factored, = 23973,24 16931,04 18524,79 10276.16 8189.58 lbs/ft Pu/Ag= 249.72 S0,06fc„, OK! 249,72 176,37 192,97 107.04 85.31 psi As = 0,267 £ 0,6p{bd) = 0,992 „,0K (R14,8,3) A,c= As + (Pu/fy)(h/2d) = 0,603 0.504 0,527 0.411 0.382 in^ a = (Pu + Asf,)/(0,85 fcb) = 0,980 0,807 0.846 0.644 0.593 in C= a/0,85 = 1.153 0,950 0.996 0.758 0.698 in £i = (Ecu' c) a - Scu 0.0094 0.0120 0.0113 0.0168 0.0174 a 0,005 For Tension Control = OK OK OK OK OK Mn= (A,a{,)(d-a/2) = 154166 131513 136729 109166 101971 ib-in (14-7) !„= n-A„(d-c)^+bc'/3 = 65,16 58.51 60.10 51.27 48.76 in* Mia = + Puf e X / Ic = 19579 30763 30011 24988 21488 Ib-in (14-4) Mu=Mua+P„Au 34454 46581 47538 32673 268S0 Ib-in (14-5) Au = 0,62 0,93 0.95 0.75 0.66 in a>M„ = = 138749 118362 123056 98249 91774 Ib-in (14-3) Check that <tM„ S: M„ OK OK OK OK OK 1,= btVl2 512,00 512,00 512.00 512.00 512.00 in* (9-9) M„ = 7,5 fc° "18/0,51 = 60716 60716 60715 60716 50718 Ib-in (14-2) Check that cDM„ t Mc, OK OK OK OK OK Deflection at Service Load: (16-13a) (16-13b) Service ecc, P,, = = 4065,75 4203,96 ibs Service axial, P,„iiii = 10666,45 11312,71 Ib 3 Service wall, P,w = = 1725.00 1722^00 Ibs Service, P, = P,, + P,„ = = 16457.20 17238,59 Ibs Ac= 5Mcrlc'/{48Ecg = 0,10 0,10 in M„= (^.f,)(d-a^2) = 131513 136729 Ib-in A„= SM„lc^/.(48Eclcr) = 1,98 2,04 M,o = M,o + P,, e x / Ic 20962 22819 M=M„ + P5A, = 21572 23516 Ib •in (14-8) A,= = 0,04 0,04 in /\ilovi«bleA= lc/150 = • 1,20 1.20 in Check that A, SA,|K,„ OK OK Shear at Factored Load: (16-2) (16-4) (16-5) (16-6) (16-7) w„= 8Mu/{12l/) = 102,09 138.02 140.85 95.81 79.67 V„= lcW,,/2 765.65 1035.13 1056.39 726.07 597.56 (11-3) <}>Vc= 0,76(2)fc"^bd = 5407.49 5407.49 5407.49 5407.49 5407.49 Check that We a Vu OK OK OK OK OK CONCRETE SLENDER WALL Considering P-Delta Effects (AT LOCATION OF REVEAL) PRIME Ji5l2; 2K13-17Q_ STRUCTURftl pjitfe; v>-7fiVf ^sabENGlHEERS siu: ny PROJECT*: DESCRIPTION: 2K13-170 Viasat BLDG #10 PIER A (5-0" WIDE) 1ST TO 2ND Strength at Factored Load: (16-2) (16-4) (16-5) (16-6) (16-7) Factored ecc, = = 7119.60 3598.50 3861.80 1498,50 1235.20 Ibs Factored axial. Pi,,),,,, = 14783.64 11262.54 12172.51 7005,78 5774.81 Ibs Factored wall, Pu„ = 1250.00 1260.00 1425.04 945,00 778.96 Ibs Factored, Pu = = 23163.24 16121.04 17460.35 9449,28 7788.97 Ibs As = 0.267 S 0.6p(bd) = 0.992 ...OK (R14.8.3) A,e= As + {Pu/ f,)(h / 2d) = 0.561 0.472 0.489 0,387 0.365 in^ a= ( Pu + Asfy)/(0.85 f'cb) 0.960 0.787 0,820 0,624 0.583 in c = a / 0.85 = 1.129 0.926 0,965 0.734 0.686 in Mn= (A.,fy)(d-a/2) = 143804 123298 127269 103015 97838 ib-in (14-7) Ic, = = 61.90 55.59 57,09 48,77 46.98 in* Mua = Muo + P,^ e X / Ic = 19579 26218 27993 20443 19470 Ib-in (14-4) Mu=Mu, + PuAu = 34906 38873 41022 26125 23519 Ib-in (14-5) Au = = 0.66 0.78 0,76 0.60 0.52 in <PM„ = = 129423 110968 114642 92713 88054 Ib-in (14-3) Check that «M„ £ M„ OK OK OK OK OK lg= bt'/12 = 381.08 381.03 381,08 381.08 381.08 in* (9-9) Mcr= 7.5fc''-^lj/0.5t = 49865 49855 49565 49865 49865 Ib^n (14-2) Check that t!>M„iM„ OK OK OK OK OK Deflection at Service Load: (16-133) (16-13b) /Si,= = 0.03 0.03 in Allowable A = lc/150 = 1.20 1.20 in Check that A, s As,iic„ OK OK PRiME^ob:^i ffiL .STRUCTURAL Date;. ?«ENGiNEERSsM; .i / : ., 11 V' )y^ 0 k .0-1 f » • sr 2:^JJ> f^^ " r7fr_ fu !:^7l; \- y,jxl *s,ii\t 5, 'l'^ I pi 4 9 k PRIME Job; 0 SIRUCTURAl Datfe: i.Q-?oi? ENGINEERS Shl; r?A CONCRETE SLENDER WALL Considering P-Delta Effects PROJECT*; 2K13-170 DESCRIPTION: Viasat BLDG #10 PIER B (5-0" WIDE) 3RD TO ROOF DESIGN CRITERIA: Concrete Weight = Clear Height. 1^ = Parapet Height = Wall Thickness, t = h/t = Depth to Rebar, d = Vertical Rebar = Spacing = Steel @ Each Face = Reveal Depth = Reveal to Bottom = d at Reveal = Thk (in) Width (ft) Start in) End (ft) ql = 6.50 5.00 0.00 17.00 q2 = 6.50 10.54 9.00 17.00 q3 = q4 = 6.50 10.54 0.00 3.00 q5 = 4000 psi 60000 psi ISO pcf 13.00 ft 4.00 ft 6,50 in 24,00 3,260 in #4 6,500 in 1 (# layers) 0,75 in 2,50 ft 2,500 in Eccentric, Dr Eccentric, Lr Add'l From Above, Dr Add'l From Above, Lr Girder, Dr Girder, Lr 5,50 in 171 plf 214 plf 0,000 kips 0,000 kips 2,140 kips 2.400 kips • Girder Load Eccentric? Min Vertical Steel - Min Horizontal Steel - Max Vert Spacing = 0,0025 0,0025 18,00 in 0 = 0, = 0,9 0,85 Ec = 3834 ksi 29000 Itsi n = 7,56 , 0,003 h = 0,00207 0.6p, = 0.0171 Sos -0,791 g Qg =Fp = 0,346 Wp Eff, Wind Area = 264 ft= Wind Load. W= 12,88 psf y (16-3) (16-4) (16-5) (16-6) (16-7) (16.13a) (16-13b) 0,00 13308 7680 13308 7680 6238 4032 Ib-in/ft 6,50 5,92 5,14 5,92 5,14 5,92 5.14 ft 0,O0E+0O 3,19E+07 1,82E+07 3,19E+07 1.82E+07 1.49E+07 9,57E+06 /El At Reveal: Mo = 0 8906 6403 8906 6403 4175 3361 Ib-in/ft Ao = 0,OOE+00 1,90E+07 1,15E+0r 1,90E+07 1,15E+07 8,91 E+06 6,04E+06 /El Wind (1.6 W) LOAD COMBINATIONS (CBC 1605.2.1) (16-3) U = (16-4) U = (16-5) U = (16-6) U = (16-7) U = (16-13a) A = {16-13b) A = 12,42,3 e = DESIGN SUMMARY: 1,20 D 1,20 D 1,36 D 0.90 D 0,74 D 1,00 D 1,08 D QE± + 0,50 L + 0,50 L + 0,50 L- + 1,60W + 1,00 Qe + 0,75 L + 0.75 L 0,2SDSD 0,16 D + 1,60 Lr + 0,50 Lr + 1,00 Qe + 0,75 W + 0,53 Qe + 1,60 W 18,00 - 15,00 • 14.00 • 12.00 laoo 8.0O 6.00 4.00 2.0O 0.00 - tt> rt Seismic (1.0 E) 18.00 • 16.00 14.00 12.00 10.00 8.00 8.00 4,00 2.00 - OOO Strength; (16-3) (16-4) (16-S) (16-6) (16-7) •<t)Mn = 72,803 70,008 71,150 67,107 65,274 it>^in ;M„ = 5,969 18,842 11,270. 15,53i: 9,423 ib-in %Over = : r !ao% 0.0% 0;0% 0;0% 0,0% Atf^eveai: *Mn = 72,087 69,544: 69,535 66,164 64.988 Ib-in Mu = 6,217 13,6Sb 9,282 11,425 7,906 : Ib-in %:Oyer-: 0.0%: 0.0% 0,0%: 0.0% 0,0% Deflectiiah: Wind seistnic At Reveal: Wind Seismic Ic7150 = 1.04.00 1:0400 in: / 1,0400 1,0400 in MaxA = 0.0214 0.0155 in 0,0133 0,0095 : in % Over = 0.0% 0,0% 0.0% 0,0% CONCRETE SLENDER WALL Considering P-Delta Effects PRIM;E .lots; 2i^-^s-tto STRUCTURAL Date:jLaaaaas_ ENGINEERS Sht; PROJECT*; DESCRIPTION: 2K13-170 Viasat BLDG #10 PIER B (5'-0" WIDE) 3RD TO ROOF Strength at Factored Load: (16-3) (16-4) (16-S) (16-6) (16-7) Factored ecc, = 1701,94 970.32 721.81 478.32 394,28 Ibs/ft Factored axial, Pu,di\ = = 1281,60 753.60 581.28 385.20 317,52 Ibs/ft Factored wall, Py^ = 2667.99 2725.03 3635.43 2352.07 1731,68 lbs/ft Factored, Pu = •5651,53 4448.95 4938.52 3215.59 2443,47 Ibs/ft Py; Aj = 72,46 £ 0,06fc,,, OKI 72,46 57.04 63.31 41.23 31,33 psi As = 0,369 £ 0,6p(bd) = 0,667 „,0K (R14,8,3) As,= As + (Pu / fy)-(h / 2d) 0,463 0.443 0.462 0.423 0.410 in^ a = ,( Pu + Asfy)/(0,86fcb) 0,682 0.652 0.564 0,622 0.603 in c= a/0,85 0,802 0.767 0.781 0.732 0,709 in £i = (Ecu / c) d - £cu = 0,0092 0.0097 0.0095 0.0103 0,0107 a 0.005 For Tension Control OK OK OK OK OK Mn= (A,cfy){d-a/2) = 80893 77786 79055 74563 72527 ib-in (14-7) Icr = nAsc-(d-c)^+b'o'/3 23,07 22.48 22.72 21.86 21.44 in* Mua = Muo + Pu( e X / Ic 4680 16736 9248 14505 8537 Ib-in (14-4) M„=Mu. + P„A„ 5959 18842 11270 16531 9423 Ib-in (14-5) A„ = = 0,23 0.70 0.41 0,63 0.35 in 0M„ = 72803 70008 71150 67107 65274 Ib-in (14-3) Check that 0M„ a: Mu OK OK OK OK OK 15= btVl2 274,63 274.63 274.63 274,63 274.63 in* (9-9) Mcr= 7.5fc"lj/0.5t = 40082 40082 40Q82 40082 40082 Ib-in (14-2) Check that iDM„ 2 M„ OK OK OK OK OK Deflection at Service Load: (16-13a) (16-13b) Service ecc, P,f = = 1030,30 1074.43 lbs Service axial, P,a,iri= 788,00 823.53 Ibs Service wall, P,„ = = 2270,86 2528.02 Ibs Sersflce, P,= P„ + P8„ = = 4089,16 4425.98 Ibs A„= 6Mcrlc'/(48Ecg 0.10 0.10 in M„= (^.fy)(d-a/2) = 77766 79055 Ib-in A„= 5M„lc'/(48Eclc,) 2.16 2.15 M„= M50+P,(ex/lt 8817 6366 M= M.a+PcA, 8904 6435 Ib-in (14-8) As= = 0.02 0.02 in Allowable A = U/ISO 1.04 1.04 in Checltthat AjS AJKOW OK OK Shear at Factored Load: (16-3) (16-4) (16-5) (16-6) (16-7) w.,= ,8Mu/(12l/) 23.55 74.33 44.46 65,21 37.17 Vu= lcWc,/2 153.06 483.12 288.98 423,88 241,62 (11-3) <t>Vc = 0,75 (2) fc"^ b d = 3699.86 3699.86 3699.86 3699.85 3699,86 Check that iPVc a V„ OK OK OK OK OK PRIME m iiML ENGINEERS stn; _^ CONCRETE SLENDER WALL Considering P-Oelta Effects (AT LOCATiON OF REVEAL) PROJECT*: DESCRIPTION; 2K13-170 Viasat BLDG #10 PIER B(5'-0" WIDE) 3RD TO ROOF Strength at Factored Load: (16-3) (16-4) (16-S) (16-5) (16-7) Factored ecc, Pui = 1701.94 970,32 721.81 478:32 394.28 Ibs Factored axiai, Pu,,^ = = 1281,60 753.60 581,28 385,20 317.52 lbs Factored wall, Pu„ = 3160.76 3150.76 3577,28 2370,57 1954.04 lbs Factored, Pu = = 6144.:30 4884,67 4880,37 3234,09 2665,83 Ibs As= 0,369 5 0,6p(bd) = 0,667 ...OK (R14,8,3) A,,= As + (Pu/f,)(h/2d) 0,460 0,441 0,441 0,417 0,409 in^ a= (Pu +Asf,)/(0,85 r^b) . 0.694 0,663 0,663 0,622 0,608 in c = a / 0.85 0.816 0,780 0,780 0.732 0,716 in M„= (A„f,)(d-a/2) = 80097 77271 77261 73515 72209 Ib-in (14-7) !„ = 21.92 21.36 21,59 20.76 20,37 in* Mu» = M„(, + P„, e X / Ic 4680 11334 7971 10103 7259 Ib-in (14-4) M„=M„, + P„Au 6217 13653 9282 11425 7903 Ib-in (14-5) A„ = 0.25 0.47 0,27 0.41 0,24 in (t)M„ = = 72087 69544 69535 65164 64988 Ib-in (14-3) Check that tpMn a M„ OK OK OK OK OK lg= bt'/12 = 190.11 190.11 190,11 190,11 190.11 in* (9-9) M„= 7.5fc''*l5/0.5t = 31366 31366 31366 31366 31366 Ib-in (14-2) Cheol<that*M„£Mc, OK OK OK DK OK Deflection at Service Load: (16-13a) (16-13b) A,= 0.01 0.01 in Allowable A = 1^/150 = 1,04 1.04 in Check that A,£ Aai,„„ OK OK I PRIME jQb: 2K15-170 STRUCTURAL t>ate 10. ^n?? ENGiEERS sm ^r.y CONCRETE SLENDER WALL Thk (in) Width (ft) Start (ft) End (ft) Considering P-Delta Effects q1 = 6,50 5,00 0,00 14,00 PROJECT*; 2K13-170 q2 = 6,50 10.54 9,00 14.00 DESCRIPTION: Viasat BLDG #10 q3- PIER B(5'-0" WIDE) 2ND TO 3RD q4 = 6,50 10.54 0.00 3.00 DESIGN CRITERIA: q5 = DESIGN CRITERIA: fc = 4000 psi e = 5,150 in Min Vertical Steel = 0.0025 (y = 60000 psi Eccentric, D -555 plf Min Horizontal Steel = 0.0025 Concrete Weight = 150 pcf Eccentric. L -1067 plf Max Vert Spacing = 18.00 in Add'l From Above, D = 19,070 kips Clear Height, 1,, = 14,00 ft Add'l From Above, L = 0,000 kips <j> = 0.9 Parapet Height = 0,00 ft Girder. D -7,630 kips 01 = 0.85 Wall Thickness, t = 6,50 in Girder, L = 10,840 kips Ec = 3834 ksi. M = 25,85 n Girder Load Eccentric? E. = 29000 ksi Roof. Lr~ 5,730 kips : : : n = 7.56 Depth to Rebar, d = 3,250 in ^ci; — 0.003 Vertical Rebar = #4 = 0.00207 Spacing = 6,500 in 0,6pi = 0.0171 Steel @ Each Face -1 (# layers) 0.791 g 0.347 Wp Reveal Depth = 0.75 in Bit. Wind Area = 218 ff Reveal to Bottom = 11.00 ft Wind Load, W= 12.88 psf d at Reveal = 2,500 in 12.88 psf (16-2) (16^) (16-5) (16-6) (16-7) {16-13a) (16-13b) M„o = 0,00 18832 14605 18832 14605 8827 7668 Ib-in/ft ^MuO -7.00 7.00 8.19 7,00 8,19 7.00 8,19 ft O.OQE+00 5,54E+07 4.43E+07 5,64E+07 4,43E+07 2,50E+07 2.33E+07 /El • At Reveal: Mo = 0 12683 11855 12683 11855 5945 6224 Ib-in/ft 0,00E+0O 3.49E+07 2,89E+07 3,49E+07 2,89E+07 1,63E+07 1.52E+07 /El Wind (1.6 W) LOAD COMBINATIONS (CBC 1605.2.1) (16-2) U = (16-4) U = (16-5) U = (16-6) U = (16-7) U = (16-13a) A = (16-13b) A = 12.4.2.3 E = DESIGN SUMMARY: 1.20 D 1.20 D 1.36 D 0.90 D 0.74 D 1.00 D 1.08 D QE± QE± + 1.60 L + 0.50 L + 0.50 L + 1.60 W + 1.00 Qe + 0.75 L + 0.75 L 0.2SosD 0.16 D + 0.50 Lr + 0.50 Lr + 1.00 Qe + 0.75W + 0.53 Qe + 1.60 W Seismic (1.0 E) 16.00 14.00 •• 12.00 r 10.00 I 8.00 I 6,00 f 4.00 I 2.00 i- 0,00 i- I 1 1 II *- o "fi. N m tr strength: (16-2) (16-4) (16-S) (16-6) •(16-7) •»M„ = 102,773 90,274 92,251 77.795 74,129 Ib-in Mu = 64,136 60,576 63,117 34,603 26.050 :ib-in % Over = 0,0% 0:0% 0,0% 0;0% 0,0% At Reveal: OMn = 95,611 84,830 86,074 73,878 71,402 Ib-in Mu = 65,390 44,218 44,451 24,008 20,534 • •, 'A Over = 0,0% 0,0% 0;0% /sJ)% . 0,0% Deflection: Wind Seismic At Reveal: Wind Seismic lc/150 = '1,1200 1,1200 in 1,1200 1,1200 in MaxA = 0,0592 0.0630 in 0;0399 0,0424 in %Over = 0 0% 0,0% 0,0% r : 0,0%. : : : I PRIME Job; 2K15-170 ll Pate:, lo-zt'i; EHGKEERS Shl CONCRETE SLENDER WALL Considering P-Detla Effects DESCRIPTION; Viasat BLDG #10 PIER B(5--0" WIDE) 2ND TO 3RD Strength at Factored Load: (16-2) (16-4) (16-5) (16-6) (16-7) Factored ecc. Put = = 7375,91 3728,06 4000,82 1552,45 1279,67 lbs/ft Factored axial, Pua^ifi = = 10449,30 8065,00 8336,45 4806.00 3961,55 Ibst'ft Factored wall, P^,,, = 1710.15 1710,15 2094.97 1475.30 985.52 Ibs/ft Factored, P„ = = 19535,86 13503.20 14432,24 7833,74 6226,74 Ibs/ft Pu / A5 = 250,46 S 0,06fc,,. OK! = 250.46 173,12 185,03 100,43 79,83 psi As = 0.369 S 0.6p{bd) = 0,667 „,0K (R 14,8,3) A,,= As + (Py / f,)-(h / 2d) = 0.695 0,594 0,610 0,500 0,473 in^ a= (Pu + Asfy)/(0,85 fcb) = 1.022 0,874 0,897 0,735 0.695 in c = a / 0,85 = 1.202 1,028 1,055 0.865 0.818 in £1 = (£cu' c) d - Ecu = 0,0051 0,0065 0,0062 0,0083 0,0089 2 0,005 For Tension Control OK OK OK OK OK M„= (A,,fy)(d-a/2) 114192 100304 102501 86439 .82366 Ib-in (14-7) Ic, = nA.tld-O^+b-c^/3 = 28.99 26,54 26.92 24,09 23.35 in* Mua = MttO + Put e X / Ic = 20284 29084 27478 23101 18722 ib-in (14-4) Mu=M„, + PuA„ = 64136 60575 63117 34603 26050 Ib-in (14-5) A„ = = 2.26 2,33 2,47 1.47 1.18 in <J)M„ = = 102773 90274 92251 77795 74129 Ib-in (14-3) Check that <J>M„ > OK OK OK: OK OK 15 = bt^/12 274,63 274,63 274,63 274,63 274.63 in* (9-9) M„= 7,5fc''-'lg/0,5t = 40082 40082 40032 40082 40082 Ib-in (14-2) Check that tl>M„ a M„ OK OK OK OK .OK Deflection at Service Load: (16-13a) (16-13b) Service ecc, Psf = 4212,12 4355.32 Ibs Service axial, PsatUKi = = 7825,50 8258.84 lbs Service wall, P^w = 1425.13 1438,73 Ibs Service, P^ = P,) + Ps„ = = 13462.74 14062,89 lbs Ac,= 5M„l//(48Ecl5) = 0.11 0,11 in M„= (A„fv)(d-a/2) 100304 102501 Ib-in A„=5M„lc'/(48Ecl„) = 2.90 3.01 M,. = M.0 + Ps( e X / Ic 20411 21681 M= Maa + P»iia = 21208 22567 !b-in (14-8) A,= = 0.06 0,06 in Allowable A = lc/150 = 1.12 1.12 in Check that A, S A„|(,„ OK OK Shear at Factored Load: (16-2) (16-4) (16-S) (16-6) (16-7) w.,= 8Mu/(12lc') 218.15 206,04 214,68 117,70 88.61 V„= lcWe,/2 = 1527,06 1442,27 1502,78 823,88 620.24 (11-3) *Vc= 0,75{2)fc'°bd • = 3699.86 3599,86 3699,86 3699,86 3699.86 CheidcthatOVcSVu OK OK OK OK OK PRIME Job; a^i5-i7o SfROCHiRM. Date: ^i>.70X}... ENGIKEERS sw: . .-.n.» CONCRETE SLENDER WALL Considering P-Delta Effects (AT LOCATION OF REVEAL) PROJECT*: DESCRIPTION: 2K13-170 Viasat BLDG #10 PIER B {5'-0" WIDE) 2ND TO 3RD Strength at Factored Load: (16-2) (16-4) (16-5) (16-6) (16-7) Factored ecc, Put = 7375.91 3728,05 4000.82 1552,45 1279.67 Ibs Factored axial, P^,^ = = 10449.80 8055,00 8336.45 4806,00 3961.55 ibs Factored wall, Puv, = = 909.09 909.09 1028.89 681.62 •562.02 lbs Factored, = = 18734.80 12702.14 13366.16 7040,26 5803.24 tos As = 0.369 & 0.6p(bd) = 0.667 ...OK (R14.8.3) Asc = As + (Pu/fy)-(h / 2d) 0.645 0.557 0.566 0.473 0.465 in' a= ( Pu + Asfy)/(0.85fc b) 1.002 0.854 0.871 0.716 0.685 in c = a / 0.85 1.179 1.005 1.024 0.842 0.808 In Ma= (A.cfy)(d-a/2) = 106457 94256 95637 82087 79335 Ib-in (14-7) U = 27.64 25.21 25.57 22.89 22,18 in* Mua= Muo+Pufex/lc 20284 22935 24728 18952 15973 !b-in (14-4) IVIu= Mu.+ PuAu 65390 44218 44451 24008 20S34 Ib-in (14-5) A„ = 2.43 1.68 1.48 1.00 0.79 in ct)M„ = 95811 84830 86074 73878 71402 Ib-in (14-3) Check that <PM„ a M„ OK OK OK OK OK [5= bt^/12 190.11 190.11 190,11 190.11 190.11 in* (9-9) M„ = 7.5 fc" I5 / 0.5 t 31366 31366 31366 31366 3136S ib-in (14-2) Check that <tiM„<:Mc, OK OK OK OK OK Deflection at Service Load: (16-13a) (16-13b) A,= 0.04 0.04 in Allowable A = tc/1-50 1,12 1.12 in Check that Aj s OK OK PRIME Job; 2Kii~i-io SIRUCTUm 10-2013 ENG1N:EERS snt: if, TP SLENDER WALL DESIGN (AC! 318,14.4) Thk (in) Width (ft) Start (ft) End (ft) Project* 2k13-170 q1 = 8.00 5.00 0.00 15.00 DESCRIPTION: Viasat BLDG #10 q2 = 6.50 10.54 9.00 15.00 PIER B (5'-0" WIDE) q3 = 1ST TO 2ND q4 = 6.50 10.54 0.00 3.00 DESIGN CRITERIA: q5 = Sos = 0.790 Seismic, Fp = 0.302 4000 psi fy = 60.000 ksi Hc = 3834 ksi Wall Height, ;„ = 15.00 ft Parapet Height -0.00 ft Wall thickness, h -8.00 in Rebar Size = #4 Rabar Spacing, s = 6.50 in Depth to rebar, d -4.750 in Rows of steel = 2 Eccentricity, e = 5,50 in cone wt = 150 pcf Eccentric, w o = 0,555 klf Wind,W = 12.88 psf Eccentric, = 1,067 klf Pi = 0.850 Additional, PQ -47,920 kips Cm ~ 1,00 Additional, P^ -27,430 kips A' = 1,00 Roof, Pu = 5,730 kips r = 2,40 k''l/r = 75.00 (16-4) (16-5) kl/r< 100 ...O.K. Mmax = 1.80 k-ft 1.47 k-ft 0.74 X @ Mmax = 7,50 ft 9.00 ft P = 0.0077 LOAD COMBINATIONS: (16-3) U = (16-4) U = (16-5) U = 12.4,2,3 E : DESIGN SUMMARY: 1.20 D 1.20 D 1.36 D QE± QE + + 1.60 L + 0.50 L + 0.50 L 0,2SosD 0,16 0 + 0,50 Lr + 1.60 W + 1,00 Qe 16.00 14.00 12.00 10.00 8.00 6.00 4.00 2.00 0.00 W1ND(1.6W) £ <0 <tt CN 16.00 14.00 12.00 I 10.00 •[ 8 00 - 6.00 1 4.00 + 2,00 I OOO i U SEISMIC CALCULATIONS: I1M1 : <16-S> <5>M„ = 181700 : 152770 159250 Ib-in 34313 39768 39608 Ib-in %Over = 0.00% 0.00% 0,00% Load Combo = (16-3) (16-4) (16-6) Factored Axial, Pur = 7.376 3.728 4.001 klf Factored Axial, PuaMi = 20.851 14.244 15.757 Wf Factored/\xial, Pu„8ii = 2.133 1.953 2.414 klf Factored Axial, = 30.360 19.925 22.172 klf Sustained Axial, Pus = 15,704 15.704 17.567 klf Pd=Pus/Pu 0,517 0.788 0.792 p == 0,9 + 0.5'P/ - 12p 0.941 1.118 1.122 Gross, IJ = bh'/ia 512.00 512.00 512.00 in^ El = 0.4-Ec-lg/{1+pd) 517552 439144 438127 in-kip Critical, Pc = Tf^-EI / {k'l„)=' 157.655 133.771 133.461 kip As„=[P„+(A,-f,)}/fy 0.931 0.738 0.780 in^ a= (Asfy+P„)/(0.85V12) 1.370 1.086 1.147 in c=a/|5, 1.612 1.277 1.349 in Factored Mom, M„a = max[Muo + P^t'e-x /1^, Pu-(0,6+0.03h)] 25.503 31.870 30.835 in-kip Mag, Factor, 6„, = max{C„ / [1 -Pu/{0.75Pc)], 1.0} = 1.345 1.248 1.285 Magnified, Mc = Sns'Mu = 34.313 39.768 39,608 in-kip 0,10%/Aj,= 38.4 38.4 38.4 kip E, = 0.003*(d-c)/c 0.0058 0.0082 0.0076 Strain Limit Chect? = et > 0.004 for Pu < 0.10*fc*Ag O.K. O.K. O.K, * = min(0.9,max(0.65,0.233+0,25d/c)) 0.90 0.90 0-90 Controlling Region on interaction diagram = Tension Tension Tension M„ = Ase fy (d - a/2) - Pn (d - h/2) 201.889 169.744 176,944 in-kip Capacity Chedc = (t>M„i^M^ O.K. O.K. O.K. j£i STRyCTyRAlDate:^^ ENGINEERS Sht; MtM ±±.5'/. ly- ff, t,'" •'! \ i, fr' 10. k^py A-XfA-v. : f /rfif~i, i}:/'i^^')0'^h^i ^yyyysyii)\ 3 lif^ 1 91.^ J i0^y(y.yfy%tts/t^) ni^iM 31.7^ PRIME JOtr. 2K13-17 0 STRUCTURAL Date; io-2^?l? GINEER3 Sr:t; __Uil_ Wind{1.6W) LOAD COMBINATIONS (CBC 1605.2.1) (16-3) U = (16-4) U = (16-5) U = (16-6) U = (16-7) U = (16-13a) A = (16-13b) A = 12.4.2,3 • E = DESIGN SUMMARY: 1.20 D 1,20 D 1,36 D 0,90 D 0,74 D 1,00 D 1,08 D QE± Q,= ± + 0,50 L + 0,60L + 0.50 L + 1.60 W + 1.00 Qe + 0.75 L + 0,75 L 0,2SosD 0,16 0 + 1,60 Lr + 0,50 Lr + 1,00 Qe + 0,75W + 0,63 Qe + 1.60 W 20,00 18,00 I 16,00 t 14.00 • 12,00 " 10,00 8,00 i • 6.00 j 4.00 4 2.00 i 0.00 i-- H Seismic (1.0 E) 20.00 18.00 16.00 14.00 12,00 10,00 8,00 6,00 4,00 2,00 0,00 + 5!s tl "i Strength: (16-3) (16-») (16-5) (16-6) (16-7) *M„ = 93i406 93,978 97;617: 92.674 •90,172 Ib-in M„F 245 5,673 6,087 : :S,5?8^': 5;960 Ib-in %Over = 0,0% ; 0,0%i OM ,0:0%-/ym AtReveal: N,A, Deflection: Wind Seismic At Reveal: Wind Seismic Ic /150 = 1.0400 1 0400 in N;A, MaxA = 0.0022 MQZT in % Over = o:o% 0,0%;: CONCRETE SLENDER WALL Thk fin) Width fftl Start (ft) End (ft) Considering P-Deita Effects ql = 9,25 6.60 0,00 19,00 PROJECT #: DESCRIPTION; 2K13-170 Viasat BLDG #10 q2 = q3 = 9.25 3.50 9.00 19.00 PIER C(6'-6" WIDE) 3RD TO ROOF q4 = 6.50 3.50 0.00 3.00 DESIGN CRITERIA: q5 = DESIGN CRITERIA: 4000 psi e = 5,50 in f^in Vertical Steel = 0.0025 f,= 60000 psi Eccentric, Dr = 16 plf Min Horizontal Steel = 0.0025 Concrete Weight -150 pcf Eccentric, Lr = 23 plf Max Vert Spacing = 18.00 in Add'l From Above, Dr = 0,000 kips Clear Height, = 13,00 ft Add'l From Above, Lr = 0,000 kips ® = 0.9 Parapet Height = 6,00 ft Girder, Dr-0,000 kips 01 = 0.85 Wail Thickness, t = 9,25 in Girder, Lr-= 0,000 kips He = 3834 ksi h/t = 16,86 • Girder Load Eccentric? = 29000 ksi Depth to Rebar, d = 6.000 in n = 7.56 0.003 Vertical Rebar = #4 = 0.00207 Spacing = 9.000 in ftSPi, = 0.0179 Steel @ Each Face = 2 (# layers) SDS = Qe =/=p = 0.791 g 0.346 Wp Reveal Depth = 0 in Eff. Wind Area = 190 ft* Reveal to Bottom = ft Wind Load, W = 14.00 psf d at Reveal = in 14.00 psf (16-3) (16-4) (16-5) (16-6) (16-7) (16-13a) (16-13b) MM = 0,00 5411 5829 5411 5829 2536 3178 Ib-in/ft 6.50 6,14 4.55 5,14 4,55 6.14 4,49 ft ^max — O.OOE+OO 1,11E+07 1.02E+07 1,11E+07 1,02E+07 5.18E+06 S,65E+06 /El At Reveal; Mo = 0 0 0 0 0 0 0 Ib-in/ft Ao = O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+00 /El PRIME .lob: aK15-17t3 SIKUCTURU :D.^Sf>;. 10-201'? tENGIIIEERSsw: CONCRETE SLENDER WALL Considering P-Delta Effects PROJECTS; DESCRIPTION: 2K13-170 Viasat BLDG #10 PIER C(6'-6" WIDE) 3RD TO ROOF Strength at Factored Load: (16-3) (16-4) (16-5) (16-6) (16-7) Factored ecc, Pg, = 86.15 47.23 33.43 22.15 18.26 Ibs/ft Factored axial, Puad<n = 0.00 0.00 0.00 0.00 0.00 IbSt'ft Factored wall, P^ = = 2481.49 2670.88 3643.20 2353.37 1701.37 Ibs/ft Factored, = 2567.64 2718.11 3676.63 2375.53 1719.63 lbs/ft Pu / Aj = 33; 12 S 0.06fc... OK! 23,13 24.49 33.12 21.40 15.49 psi As= 0.267 s 0.6p(bd) = 1.291 ...OK (R14.8.3) Aie=As+(Pu/f,)'(h/2d) 0,300 0.302 0.314 0.297 0.289 in^ a= (Pu + Asfy)/(0.85 fcb) 0,466 0.4S9 0.482 0.450 0.434 in c = a / 0.85 = 0,535 0.540 0.567 0.530 0.511 in £, = (ecu / c) d - Ecu = 0.0306 0.0303 0.0287 0.0310 0.0322 s 0.005 For Tension Control OK OK OK OK OK M„= (A,.f,)(d-a/2) 103784 104420 108463 102971 100191 Ib-in (14-7) l„= nA,.-(d-c)^+b-c'/3 68,29 68.64 70.80 67.85 66; 34 in" Mua = M„o + P„, e X / Ic = 237 5513 5894 5459 5865 Ib-in (14-4) M„=M„, + P„Au = 245 SB73 6087 5598 5960 Ib-in (14-5) A„ = .0,00 0.06 0.05 0.05 0.05'in <I)M„ = 93406 93978 97617 92674 90172 Ib-in (14-3) Check that *M„ a M„ OK OK OK OK OK lp= bt'/12 = 791,45 791.45 791.45 791.45 791.45 in" (9-9) M„= 7.5fc''-'i(,/0.5f 81172 81172 81172 81172 81172 Ib-in (14-2) Check that <1)M„ 2: M„ OK OK OK Ok OK Deflection at Service Load: {16-13a) {16-13b) Service ecc, P„ = = 51,15 53.20 Ibs Service axial, 0.00 0.00 Ibs Service wall, P,« = = 2225-,T4 2491.92 lbs Service, PB = P^, + Ps„ = = 2276.89 2545.11 lbs A„= 5M„ic^/(48Ecy 0.07 0.07 in M„=(A,,fy)(d-a/2) 104420 108463 Ib-in An=5M„lc'/(48EcU = 0.81 0.70 M„ = M,(i + Ps( e X / Ic = 2647 3279 M = M„ + Ps A, 2652 3286 Ib-in • (14-8) A,= 0.00 0.00 in Allowable A = lc/150 1.04 1.04 in Check that As sAaiic OK OK Shear at Factored Load: (16-3) (16-4) (16-5) (16-5) (16-7) w„ = 8 Mu / ( 121/) 0.97 22.38 24.01 22.08 23.51 Vu= lcWc,/2 6.28 145.46 156.07 143.54 152.82 (11-3) (J>V^= 0.7S(2)fc'°bd 6630.52 6830.52 6830.52 6830.52 6830.62 Check that 0Vc£Vu OK OK OK OK OK PRIME .lob: g«is-i7o STRUCTURAL n.t<y lo-.oi. ENGINEERS .S:;:i: __uaA_ CONCRETE SLENDER WALL Considering P-Delta Effects (AT LOCATION OF REVEAL) PROJECT*: DESCRIPTION; 2K13-170 Viasat BLDG #10 PIER C {6-6" WIDE) 3RD TO ROOF Strength at Factored Load: (16-3) (16-4) (16-5) (16-6) (16-7) Factored ecc, P„, = 86.15 47.23 33.43 22.15 18.26 lbs Factored axial, Pu3i,iai= 0.00 0.00 0.00 0.00 O.OO lbs Factored wall, Pu,, = 3540.87 3540.87 4007,48 2355.65 2189.03 lbs Factored, P„ = 3S27.02 3688.10 4040.91 2677.80 2207.29 Ibs As= 0.267 S 0.6p(bd) = 1.291 ...OK (R14.8.3) A,,= As + (Pu/ fy)(h / 2d) 0.313 0.313 0.319 0.301 0.295 in^ a= (Pu + Asfy)/(0.65 fcb) = 0.481 0.480 0.491 0.458 0.446 in c= a / 0.86 0.566 0.565 0.578 0.539 0.525 in Mn = (A,c fy)(d - a/2) = 108254 108090 109995 104260 102259 ib-in (14-7) l„ = 64.88 65.20 67.26 64.46 63.02 in* Mut,= M„o+Pufex/lc 237 103 64 48 35 Ib-in (14-4) Mu=Mu,+ P„Au •249 #DIV/0l #DIV/OI #DiV/0! #DlV/0i Ib-in (14-5) A„ = 0.00 #DIV/0l #DIV/0! • #DIV/0! #DlV/0! in *M„ = 97429 97281 98995 93825 92033" Sb-in (14-3) Check that ct)M„ £ Mu OK #DIV/OI #DIV/0! #DiV/0! #DIV/0! Ij = b t' /12 791.45 791.45 791.45 791.45 791.45 in* (9-9) Mc,= 7.5fc"la/0.5t 81172 81172 81172 81172 81172 Ib-in (14-2) Check that m„ 2 Mc OK OK OK OK OK Deflection at Service Load: (16-13a) (16-13b) 0.00 0.00 in Allowable A = 1^/150 1.04 1.04 in Check that As £A,||„„ OK OK PRIM;E ,tob: SKIS-ITO STSiCTliRAL n&ta: i.o-?m^ ^;«akENGIHEERS .- CONCRETE SLENDER WALL Considering P-Deita Effects PROJECT*; 2K13-170 DESCRIPTION; Viasat BLDG #10 PIER C (6'-6" WIDE) 2ND TO 3RD DESIGN CRITERIA: fc = fy = Concrete Weight = Clear Height. I,. = Parapet Height = Wall Thickness, t = /)/? = Depth to Rebar, d = Vertical Rebar= Spacing = Steel @ Each Face = Reveal Depth = Reveal to Bottom = d at Reveal = Thk (in) Width (ftl Start (ft) Endiftl ql = 9.25 6.50 0.00 14.00 q2 = 6.50 3.50 9.00 14.00 q3 = q4 = 6.50 3.50 0.00 3.00 q5 = 4000 psi 60000 psi 150 pcf 14.00 ft 0.00 ft 9.25 in 18.16 6.000 in #4 9.000 in 2 (# layers) 0 in ft in Eccentric, D = Eccentric, L = Add'l From Above, D = Add'l From Above, L = Girder, D = GinJer, L •• 5.50 in 59 plf 113 plf 19.340 kips 0.000 kips 0,000 kips 0.000 kips IZl Girder Load Eccentric? RooiLr- 0.230: kips Min Vertical Steel = Min Horizontal Steel - Max Vert Spacing = <p = 0, -- E, = ^tt = n = h = 0.6p, = Eff. Wind /\rea = Wind Load, W= 0.0025 0.0025 18.00 in 0.9 0.85 3834 ksi 29000 ksi 7.55 0.003 0,00207 0,0179 0,791 g 0,347 Wp 140 ff 14,00 psf (16-2) (16-4) (16-5) (16-6) (16-7) (16-13a) (16-13b) 0,00 10132 13363 10132 13363 4750 7104 Ib-in/ft ^MuO ~ 7.00 7.00 7.21 7.00 7.21 7:00 7.14 ft Atnax " O.OOE+OO 2.98E+07 3.98E+07 2.98E+07 3.98E+07 1.40E+07 2.12E+07 /El At Reveal: Mo = 0 0 0 0 0 0 0 ib-in/ft Ao = O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+OO /Ei LOAD COMBINATIONS (CBC 1605.2.1) (16-2) U = (16-4) U = (16-5) U = (16-6) U = (16-7) U = (16-13a) A = (16-13b) A = 12.4.2.3 E = DESIGN SUMMARY: 1.20 D 1.20 D 1.36 D 0.90 D 0.74 D 1.00 D 1.08 D Qg + + 1.60 L + 0.60 L + 0.50 L + 1.60 W + 1.00 Qe + 0.75 L + 0.75 L 0.2SDSD 0.16 D + 0.50 Lr + 0.50Lr + 1.00 Qe + 0.75W + 0.53 Qe + 1.60 W (16-2) (16-4) (16-5) (16^6) (16-7) <PM„ = 103,400 102,681 105,621 98,114 : 95,124 Ib-in Mu = 1,147 11,469 15,166 10,957 14,196 Ib-in % Over-0.0% 0.0%; 0.0% 00% 0,0% AtReypal: N.A Deflectibr): Wind Seismic At Reveal: Wind Seismic lc/150 = I.I2S0 1.1200 in N;A, MaxA = 0.0052 0.0075 in % Over = 0.0% 0.0% CONCRETE SLENDER WALL Considering P-Delta Effects PRIME M STRUCTURAL Date: io-??i; :«SiENGWEERS m^i ^„/7 PROJECT #; DESCRIPTION; 2K13-170 Viasat BLDG #10 PIER C {5'-6" WIDE) 2ND TO 3RD Strength at Factored Load: (16-2) (16-4) (16-5) (16-6) (16-7) Factored ecc, ?„, = = 387,08 195.85 210,20 81,69 67,34 Ibs/ft Factored axial, P„i,*i-,= 3568,15 3588.15 4040,98 2677.85 2207,33 sbs/fl Factored wall, P,^ = = 1233,75 1233.75 1549,04 1048.36 744,71 ibs/ft Factored, = 5208,98 5017.75 5800.22 3807.90 3019,38 Ibs/ft Pu / Ag = 52,25 S 0,06f c„, OKI = 46,93 45.20 52.26 3431 27,20 psi- As= 0,267 5 0,6p.{bd) = 1.291 „.0K {R14,8,3) A„= As + (Pu/fy)(h/2d) = . 0,334 0.331 , 0,341 0.316 0,305 in' • a= (Pu + Asfy)/(0.85 fcb) = 0,520 0.515 0,534 0.485 • 0,466 in c = a / 0,85 = 0,612 0.605 0,629 0.571 0,548 in Et = (£cu / c) d - £cu = 0.0264 0.0267 0,0256 . 0.0285 0,0298 2 0,005 For Tension Control = OK OK OK OK OK Mn= (A,cfy)(d-a/2) 114889 114090 117357 109015 105693 Ib-in (14-7) Ic, = nA.!'(d-c)^+bcV3 74.17 73.76 75,45 71,09 69,32 in* Mua = MuO + P„, e X / Ic = 1064 10671 13959 10357 13554 Ib-in (14-4) Mu=Mua + P„Au 1147 11469 15166 10957 14196 Ib-in (14-5) Au = 0.02 0.16 0,21 0,16 0,21 in <I>M„ = = 103400 102681 105621 98114 95124 Ib-in (14-3) Check that *M„ a Mu OK OK OK OK OK l5=bt'/12 = 791.45 791,45 791,45 791,45 791.45 in* (9-9) M„= 7,5fc°'lg/0,5t 81172 81172 81172 81172 81172 ib-in (14-2) Checkthat«M„2IWc, OK OK OK OK OK Deflection at Service Load: (16-13a) (16-13b) Service ecc, P,, = = 221.15 228.69 Ibs • Service axial, P,,a,\ = 3001.92 3248.94 lbs Service wall, P,„ = = 1028.13 1095.95 lbs Service, P,= P,,-<-P^„ = = 4251.20 4573.58 Ibs A„= SM„lc'/(48Ecy 0.08 0.08 in M„= {Ascfy)(d-a/2) = 114090 117357 Ib-in A„= 5r,/IJc'/(48Eclc,) = 1.19 1.21 Mja = Mso + P„ e X / ic = 5358 7746 M = M„ + Pc A, 5380 7780 Ib-in (14-8) A3 = = 0.01 0.01 in Allowable A = Ij/ISO -1.12 1,12 in Check that A^ £ A^c„ OK OK Shear at Factored Load: (16-2) (16-4) (16-5) (15-6) (16-7) We,= 8Mu/(121c^) -3.90 39.01 51,58 37,27 48.28 Vu=lc w.,/2 = 27.30 273,06 361.09 260,88 337.99 {11-3) <J>Vc = 0,76 (2) ry b d = 6830.52 6830,52 6830.52 6830,52 6830,62 CheckthaHDVc^Vu OK OK OK OK OK PRIME Job: 2K13-170 mmm. n«t^:. ENGINEERS 8Ht; CONCRETE SLENDER WALL Considering P-Delta Effects PROJECT* 2K13-170 DESCRIPTION: Viasat BLDG #10 PIER C (6'-6" WIDE) DESIGN CRITERIA: 1ST TO 2ND Thk (in) Width (ft) Start (ft) End (ft) q1 = 9,25 6.S0 0.00 15.00 q2 = 6,50 3.50 9.00 15.00 q3 = q4 = 0,00 q5 = f. = 4000 psi e = 5.50 in 60000 psi Eccentric, D = 59 plf Concrete Weight = 150 pcf Eccentric, L = 113 pif Add'l From Above, D -33.700 kips Clear Height, 1^ = 15.00 ft Add'l From Above, L = • 1.130 kips Parapet Height = 0.00 ft Girder, D = 0.000 kips Wall Thickness, t = 9.25 in Girder. L = 0.000 kips h/t = 19.46 D Girder Load Eccentric? Roof, Lr= 0.230 kips Depth to Rebar, d = • 6.000 in 0.230 kips Vertical Rebar= #4 Spacing = 9.000 in Steel @ Each Face = Reveal Depth = Reveal to Bottom - d at Reveal = 2 (# layers) 0 in ft in Min Vertical Steel •• f/in Horizontal Steel •• Max Vert Spacing •- <P : 01 •• Ec ^ = n • £ci/ - ty-. o.ept, = SDS - Eff, Wind Area = Wind Load, W= 0.0025 0.0025 18,00 in 0.9 0,85 3834 ksi 29000 ksi 7,56 0,003 0,00207 0,0179 0.791 g 0,302 Wp 150 ft^ 14.00 psf (16-2) (16-4) (16-5) {16-6) (16-7) {16-13a> (16-13b) Mao -0.00 11631 13275 11631 13275 5452 6969 Ib-in/ft 7.50 7.50 7.95 7.50 7.95 7.50 7.95 ft A,™ = O.OOE+OO 3.93E+07 4.50E+07 3.93E+07 4:50E+07 1.84E+07 2.36E+07 /El At Reveal; Mo = 0 0 0 0 0 0 0 Ib-in/ft Ao = O.OOE+00 O.OOE+OO O.OOE+00 O.OOE+OO O.OOE+OO O.OOE+OO O.OOE+00 /El LOAD COMBINATIONS (CBC 1605.2.1) (16-2) U = (16-4) U = (16-5) U = (16-6) U = (16-7) U = (ie-13a) A = (16-13b) A = 12.4.2.3 E = DESIGN SUMMARY: 1.20 D 1.20 D 1,36 D 0,90 D 0.74 D 1.00 D 1.08 D QE± Q6± + 1.60 L + O.SO L + 0.50 L + 1.50 W + 1.00 Qe + 0.75 L + 0.75 L 0.2SosO 0,16 D + O.SO Lr + 0.50 Lr + 1.00Qe + 0,75 W + 0.53 Qe + 1.60 W Strerigth: (16 2) (16-4) (16-5) (16-6) (16-7) CPM„ = 114,798 113,378 117,630 106.041 101,533 Ib-in , M„= 1,210 13,765 15,955 13,053 14,580 Ib-in % Over = 0.0% 0,0% 0.0% 0,0% 0.0% AtReveal: N.A. Deflection: Wind Seismic AtReveal: Wind Seismic lc/150 = 1.2000 1.2000 in N.A MaxA = 0.0068 0.0086 in %Over = 0 0% 0.0% PRIME Jab; ^:tci3-i7o STRUCTURAL nmv. if.-^iii-< ENGlfSRS BU: Hi CONCRETE SLENDER WALL Considering P-Delta Effects PROJECT* 2K13-170 DESCRI PTION; Viasat BLDG #10 PIER C(6'-6" WIDE) 1STT0 2N0 Strength at Factored Load: (16-2) (16-4) (16-5) (16-6) (16-7) Factored ecc, P„, = 387,08 195.85 210,20 81,69 57.34 Ibs/ft Factored axial, Pu,<(cri -= 6517,38 6326.15 7128.34 4666,15 3846.28 lbs/ft Factored wall, = = 1355,63 1355.63 1685.42 1164,38 799.47 lbs/ft Factored, Pu = = 8260,09 7877.63 9024,96 5912,22 4713.09 Ibs/ft Pu/Aj= 81.31 SO.OBfc... OK! = 74.42 70.97 81,31 53.26 42.46 psi As= 0.267 S0.6p(bd)= 1.291 ,„0K 42.46 psi (R14,8.3) /^,e= As + (Pu/ fy)(h / 2d) = 0,373 0.368 0,383 0.343 0.327 in* a =•( Pu + Asfy)/(0.85 fcb) 0,595 0.585 0,613 0.537 0.508 in c= a/0,85 = 0,700 0.689 0,722 0.632 0.597 in £i = (£cu/c)d-Ecu = 0,0227 0.0231 0,0219 0.0265 0.0271 J: 0,005 For Tension Control OK OK OK OK OK Mn= (A,cfy)(d-a/2) = 127553 125975 130700 117824 112814 Ib-in (14-7) 1„= nA,t(d-c)^+b-c'/3 = 80.68 79.80 82.13 75.69 73.09 in* Mua= Muo + Puiex/lc 1064 12170 13888 11856 13471 Ib-in (14-4) Mu=M„a + PuAu = 1210 13765 15955 13053 14580 Ib-in (14-5) Au = = 0,02 0.20 0.23 0,20 0.24 in (PM„ = 114798 113378 117630 106041 101533 Ib-in (14-3) Check that <1>M„ a: M„ OK OK OK OK OK. lj= bt'/12 791,45 791.45 791,45 791.45 791.45 in* (9-9) M„= 7.5fc"'=l,/0,5t = 81172 81172 81172 81172 81172 Ib-in (14-2) Check that <PM„ 2 M„ OK OK OK OK OK Deflection at Service Load: (16.13a) (16-13b) Service ecc, P,, = 221,16 228.69 Ibs Service axial, Ps,xiai = = 5341,54 5771.97 Ibs Service wall. Pt„ = 1129.69 1167.13 Ibs Service, P.= Ps,+ P,„ = 6692,38 7167.79 lbs A„= 5M„lc^/(48 Ec y 0,09 O.OS in Mn= (A,cfy)(d-a/2) • = 125975 130700 Ib-in A„= SM„lc^/(48Ecl„) 1.39 1.41 Msa= Mso+Psfex/lc = 6060 7636 M= M.. + P,A. = 6106 7697 Ib-in (14-8) A.= = 0.01 0.01 in Allowable A = lc/150 = 1.20 1,20 in Check that A5S,Ai,„^ OK OK Shear at Factored Load: (16-2) (16-4) (16-S) (16-6) (16-7) w„= •8Mu/(12lc') = 3.59 40,78 47.27 38.67 43.20 V„=lcWe,/2 = 26.89 305.88 354.56 290.06 324.00 (11-3) »Vc= 0,75{2)fc"^bd = 6830.52 6830,52 6830.52 6830.52 6830.52 Check that <t>Vc 2 v„ OK OK OK OK OK PR||V1EJob;l|£^m _>£i_ii-_££L_ life'??' .^t?^t ^7vr4^ 31'..1^4 i "ly 3% fe^i iz.L,% AO Loads: LCI.seismic i ResultetorLCI, seismic . 'y^', <^ \ Member Seflding Moments (k-ft) > ^^/l • Raai^ion urtits are k and k-ft / 4^1 ".-Pa I—>' /1 •^ •i I 1 PRiMEJGb:-!±iM.1' STRUCTURAL Date; JtiHi? fcEMEERSsht: 1 IPSE 1 1. .— untifled.r2cl \ 1 <-]!/,i •: I *„ 1 ;;zi .387Wtt ^ -2.7 Ll»(is:LCZCASe2 R«sul!SforLC2.CASE2 Member Benijins Moments (k-ft) Reac^on utiils are k aittj k-ft PSE I I .Y ;zi..„x uVwirtLLHu •;5ni, — ,697k/(r ! -5,3 Loads: LC 3, CASE 3 Results for LC 3. CASE 3 Memtw Bending Moments (k-ft) Reaetiort units are k and li-fS |PSE CASES untitled.r2d ,Y i <;. .Z .X :|^- .6 i;u^ -,687k/fl 2rti I A. STHUCTURAlD3te;i±:ai| ^^EIIGlflEERSsht; Ilk Loads: to 4, CASE 4 Results for LC 4, CASE A Member Bentling Moments (H-ft) I'^eaefion units are K and k-fi CASE 4 untitlscl.r2cJ U i ^' i4i4i/ ihi % PRlME>iob;ltezri^ *^«»*-.Ci1b NtCKh Sht: dLd^ fr , t«i<it: '(y_^ „ y y !v r > V M« ' 11..OZ- I't-k: PR!yE^^ob;1t1ilifl ST.RUCT0RIOate:J^5^ J ?<3 ^t: fa a ^"-^PHfl^iir (^'^\) : ^^ ^ ^^ iA<C s #c f/r^:5 PIER D@ LINE A 3RD TO ROOF PIER D@ LINE A 1STT0 2HD PRlMEJDb: ml Length = 5.54 ft Length = 5.54 ft Thk = 16.75 in Thk = 16,75 in Height = 13.00 ft Height = 15.00 ft Ec = 3605 ksi Ec = 3605 ksi Mmax = 2ert4 k-ft ' IVlmax = 21.32 k-fl D = 25.40 kips D = 91.69 kips L = 0.00 kips fp. '-if- L = 48.64 kips Pu = 34.544 kips -2, fp. '-if-Pu = 149.018 kips Pus = 34.544 kips Pus = 124.698 kips Beta (j = 1.000 Beta d = 0.837 r = 5.025 in r = 5.025 in KL = 156.00 in KL = 180.00 in KL/r = 31.0 <34 KL/r = 35.8 >34 ' lg = 26035 inM El = 20438918 kip-in'^2 Pc = 6226 kips . dns = 1.033 Mc = 22.023 k-ft Put Into Interaction Diagram: Pu = 34.544 kips IVIu = 20.140 k-ft I 7f)^ Put Into Interaction Diagram: Pu= 149.018 kips Mu = 22.023 k-ft -7.-1 lo PR!ME Job: INTERACTION DIAGRAM PIERD DESIGN CRITERIA: fc= 4000 psi fy = 60.00 ksi Walt Length, L = 1.40 ft Wall Thickness, t = 66.48 in Reinf. Type = 0 NOTE: Bending over length. = 16.75 in Tied / Other Pu = Mu = 34.54 k 149.02 k (JJ.max = 0.min = Pu = Mu = 20.14 k-ft 22.02 k-ft (JJ.max = 0.min = Ag = Es = 1113.54 ^^^2 29000.00 (JJ.max = 0.min = #bars Bar size d(in) AsOl 5.00 5.00 4.00 As02 5.00 5.00 12.75 0.90 0.65 c a. _.:D RQOE- -800.00 -600.00 -400.00 -200.00 -500.00 200.00 400.00 600.00 800.00 , pRiME^ob: mar STRUCTURAL Oate:I£fM3^ ^ffifcENGINEERS ght; IkL™ - ^ii (i2.y) 6t - i' y 6 7 .if. ^.f^/C'f (ys-j ^ 6 f 3 ? .... . ^ \ . • kf,' ,Y k,L.x Loads: LC 1, CASE t ResulisfarLC t.CASE 1 Men^r Sending Moments (k-ft) ReacSon units are kandX-ft 0! :\yv n .627WI5;; ,827Wir — o.in 351 = '^7/^cF^r:)(«.i/&). ^,351 h/0. |PSE CASE 1 untiti6d.r2d j I I I I I I 1 I I I I I I I I I I I I y U.I-x iL24.'rJi>EHGiHEERSsht: XJ22 Loads: LC 2. CASE 2 Results forte 2, C^e 2. Menr^r B«ndin9 Moments (k-ft) Reaction units are k and k-tt PSE fi&k.Er: ,8271</(f"" CASE 2 2K8-110.r2d .Y ,331li,y '1*7 1 ^ *jl aS...,,*, ^.j. sii«a. L J . t.-i'.V Ola, —i- i Loads: tc 3, CASE 3 Results for LC 3, CASE 3 I I I I I I I I I I I I I I I I I I I ^Z.wL..f X .827ti/ll|- •3.5 I 8. "•-74 :3 •,827ii/fl ™^ -.sawn Loads: LC 4, CASE 4 FlestHts!ocLC4,CASE4 U /z,sy P ^1. Jfi r • *• • ' • • • SA 14Hf (Ai 6OAA§: 70 SlRUCTyRM.Dat0:J±l^ :... .. ;.. . _ *5i*,^"Cs"^»'''.'i|?IEcRv)Sht: 4 ()i47^4.f)f}^'S,f 6> .fe -• fr. [t'g I. p. 2i;_ r : <- PIER |f@ LINE A PIERji@LINEA I 3RD TO ROOF 1ST TO 2ND Length = 5.00 ft Length = 5.00 ft Thk = 16.75 in Thk = 16.75 in Height = 13.00 ft Height = 15.00 ft Ec = 3605 ksi Ec = 3605 ksi Mmax = 23.77 k-ft v5- '^'"'^ Mmax = 22.82 k-ft D = 27.47 kips ^ -x. D = 83.21 kips L = 0.00 kips '• L = 26.68 kips Pu = 37.359 kips Pu = 126.506 kips Pus = 37.359 kips Pus = 113.156 kips Beta d = 1.000 Beta d = 0.895 r = 5.025 in r = 5.025 in KL = 156.00 in KL = 180.00 in KL'r = 31.0 <34 KL/r = 35.8 >34 Ig^ 23497 inM El= 17884368 kip-in'^2 Pc = 5448 kips dns = 1.032 Mc = 23.549 k-ft Put Into Interaction Diagram: Pu = 37.359 kips ' Mu = 23.770 k-ft Put Into Interaction Diagram: Pu = 126.506 kips ' Mu = 23.549 k-ft pRiye Job: sim^ SMIGTUI^ Oate! yy?y ENGINEERS Sht _ 1/ IMTERACTIOW DIAGRAM PIERE DESIGN CRITERIA: fc = fy = Wall Length. L = Wall Thickness, t = Reinf, Type = Pu = Mu = Ag = Es = NOTE: Bending over length. 4000 psi 60.00 ksi 1.40 ft = 16.75 in 60.00 in 0 Tied / Other 37.36 k 126.51 k 23.77 k-ft 23.55 k-ft 1005.00 in'^2 29000.00 4».max: cp.min: 0.90 0.65 #bars Bar size d(in> As01 7.00 4.00 4.00 As02 7.00 4.00 12.75 c CL 0 -800.00 -600.00 -400.00 -200.00 Ol -500.00 <t>Mn 200.00 400.00 600.00 800.00 ^^.^3 !\rc: / •'iMjjy t : I \ S 6 V * t^ » ^\ j l« -™™—». ^y ~ ^ , • -i3d2. ^y^ /t>i7^M fmi ^ tP>fott y.s^)(^oO('^/i^)i 7~iiyv PL • 11 i:*?^ J i 7 '> •y.S(¥y ':> -•!> y Y U..L..X ' " 't 1?^ "' n r y-'i ,3321^ I—-5H =*• r^ - Ji^r - J ^ •2 3 •2.3 111 I i Loads;LCI,CASE 1 i Results(orLCl,CASE! \ MemlMr Sending Moments (k-tl) Reaction units are k and ){-ft PSE CASE1 Y P RIME Job: Loads; LC 2, CASES Resuils lor LC 2, CASE 2 Member Bem^iH) Moments {Mk) Reaction units are k and k-ft 1? '^^m .m»JK '\3Skm. 5 $ I PSE PIE CASE 2 .Y lz„i...x Loads: LC 3. CAS6 3 R«sull$forLC3.CASE3 Member Bending Moments (k-ft) Reaction units are K and k-ft |p.132MH6 .132k/g; .MZKJX CASE 3 PSE CASE 3 F 33p*6_^ .e95K.'(l 4.3 IgH -1.1 .2_ .13Mt UfvlE^ob: v_: I vTft!iCiy^|Oate;_^ s»l".Vl!!v.U,!U» WSU. Loads: LC 4. CASE 4 Resuils IbrLC4. CASE4 uiy (hi PRlMFJob:1^y-^^ ^ 11 .../ate: ... 1 H r-,. y^ Jld^s'} ^ 'i.t; y.^y<'^(-yy!y r .J^'f/^i>rr*ig'Sj. 'yf0 'i: fff IT t 7^ 1.75 > 4^ PJ;-|L, /o^t^ / ...i..;r -n z»g g4 STOJCTURAlDate: ki-," si,^-*-- r-l j'iS^ E^GlflEERS Sht: .UML. s 7- ?r A^f'sv ' r ftt^-t'i^WC: ki&«^f*€¥T" Ml 13. i>5 f- PRIME Job: . $mmmi Date:. ENGINEERS PIER F @ LINE A PIER F @ LINE A 3RD TO ROOF 1ST TO 2ND Length = 2.00 ft Length = 2.00 ft Thk = 13.75 in Thk = 13.75 in Height = 13.00 ft Height = 15.00 ft Ec = 3605 ksi Ec = 3605 ksi Mmax = 23.10 k-ft Mmax = 13.82 k-ft D = 21.73 kips D = 57.85 kips L = 0.00 kips L = 22.40 kips Pu = 29.553 kips Pu = 89.876 kips Pus = 29.553 kips Pus = 78.676 kips Beta d = 1.000 Beta d = 0.875 r = 4.125 in r = 4.125 in KL = 156.00 in KL = 180.00 in KUr = 37.8 >34 KUr = 43.6 >34 ig = 5199 inM lg = 5199 inM El = 3748637 kip-in'^2 El = 3997727 kip-in'*2 Pc = 1520 kips Pc = 1218 kips dns = 1.027 dns = 1.109 Mc = 23.715 k-ft Mc = 15.328 k-ft Put into Interaction Diagram: Put Into Interaction Diagram: Pu = 29.553 kips Pu = 89.876 kips Mu = 23.715 k-ft Mu = 15.328 k-ft • U= 1.36D + 0.5L-f/-E PBMB Jote: Slli:TUIMoaie:__ ENGINEERS Shi: ^n.n. 7^7 INTERACTION DIAGRAM PIER a f DESIGN CRITERIA: fc = fy = Wall Length, L = Wall Thickness, t = Reinf. Type = Pu = Mu = NOTE: Bending over length. 4000 psi 60.00 ksi 1.15ft = 13.75 in 24.00 in 0 Tied / Other 29.55 k 89.88 k 23.72 k-ft 15.33 k-ft Ag= 330.00 in'^2 Es = 29000.00 <t>,max • cD.min ^ 0.90 0.65 #bars Bar size dfin) As01 4.00 6.00 4.00 As02 4.00 6.00 9.75 c a. e 1200.00 -250.00 -200.00 -150.00 -100.00 100.00 150.00 200.00 • 250.00 -400.00 (fMn I'J'ilA ill M , III 'yy yy B , .»:-;!a.i .'7. J7 k {D if) 0 5 'J ; ;,fJi> -To k..> if 1 STRUCTyRtDate:i£ll£{^ ^&ENGiEEft$sht: f5S / > ^•\.'^.^ ^. t- 7 ,<S ci^ '' 7f 1 M>. Pkio^t lit J T^i-^/f, ( IS') yyi.kifi. PF^IME jQb: 2K17.-.X-! STHUCTURAL Date;_i£i ENGiEERS stn; m 20llf... CONCRETE SLENDER WALL Considering P-Delta Effects PROJECT*: DESCRIPTION: DESIGN CRITERIA: fy = Concrete Weight - Clear Height, /„ = Parapet Height = Wall Thickness, t = h/t = Depth to Rebar, d = Vertical Rebar = Spacing - Steel @ Each Face = Reveal Depth = Reveal to Bottom = d at Reveal = 2K13-170 Viasat BLDG #10 PIER 1 (5-0" WIDE) AT LINE 1 4000 psi 60000 psi 150 pcf 13.00 ft 4.00 ft 6.50 in 24.00 3.250 in #4 9.000 in 1 (# layers) 0.7S in 11,00 ft 2.500 in 3RD TO ROOF Thk (in) Width (ft) ; start (ft) End (ft) q1 = 6.50 5,00 0,00 17,00 q2 = 6,50 10.00 9,00 17.00 q3 = q4 = 6,50 10.00 0,00 3.00 qS = Eccentric, Dr = Eccentric, Lr = Add'l From Above, Dr - Add'l From Above, Lr = Girder, Dr = Girder, Lr = 5.50 in 53 plf 80 plf 0.000 kips 0.000 kips 0.000 kips 0.000 kips n Girder Load Eccerflric? Min Vertical Steel = Min Horizontal Steel = Max Vert Spacing - 0.0026 0.0025 18.00 in <J> = 0.9 0, = 0.85 £c =: . 3634 ksi Hs = 29000 ksi n -: 7.56 ^» = 0.003 «y = 0.00207 0.6p, = 0.0171 Sos = 0.791 g Qe =Fp = 0.346 Wp Eff. Wind Area =: 255 ft' Wind Load, W=, 12.88 psf (16-3) (16-4) (16-5) (16-6) (16-7) (16-13a) (16-13b) W„o = 0.00 12846 7582 12846 7582 6021 3930 Ib-in/ft 6.50 5.92 5.20 5.92 S.20 5.92 5.20 ft O.OOE-i-00 3.08E+07 1.80E-I-07 3.08E-I-07 1.80E-I-07 1.44E•^07 9.46E-I-06 /El At Reveal; 0 3139 545 3139 545 1471 286 Ib-in/ft Ao = O.OOE-fOO 1.29E-I-07 6.86E-t-06 1.29E-I-07 6.86E-(-06 6.06E+06 3.60E+0S /El Wind (1.6 W) LOAD COMBINATIONS (CBC 1605.2.1) (16-3) U = (16-4) U = (16-5) U = (16-6) U = (16-7) U = (16-13a) A = (ie-13b) A = 12.4.2.3 ' E = DESIGN SUMMARY: 1.20 D 1.20 D 1.36 D 0.90 D 0.74 D 1.00 0 1.08 D QE± -t- 0.50 L •(• 0.50 L 1- 0.50 L ••• 1.60 W f- 1.00 Qe 1- 0.75 L + 0.75L 0.2SosD 0.16 D -t- 1.60 Lr •^ 0.50 Lr + 1.00 Qe -t-0.75W 0.53 Qe •I-1.60 W 18.00 16.00 14.00 12.00 10.00 8.00 6,00 4,00 2,00 0,00 Seismic (1.0 E) 18.00 16.00 14.00 12.00 10.00 8.00 S.OO 4.00 2.00 0.00 11 Strength: (16-3) (16-4) (16-5) (16-6) (16-7) <CM„ = 52,017 51,499: 53,435 ;50,147 48:571 •; Ib-in 1,901 15,802 9,690 : ;14,;919 8.592 : Ib-in . % Over = 0 0% 0.0% 0.0% 0.0% 0.0% AtReveal: q)Mn = 49,201 48 617 48,922 47,264 46,690 :^:Wn:':, Mu = 1 828 4,767 2,314 4,017:: 1.207 Ib-in % Over = 0.0% yjO:0% :: ::: 0.0%; 0:0% 0 0% Deflection: Wind Seismic AtReveal: Wind Seismic y 150 = 1.0400 1,0400:: in :i;D400: 10400 in Max A = 0 0167 :(>.oii6 in 0.0087 0.0060 in % Over = 0.0% •,;.;• ::o.o%;>: :;o,o% 0,0% PRIME Job: ^t;i3-i7o GIMEERS Sht: CONCRETE SLENDER WALL Considering P-Delta Effects PROJECT* DESCRIPTION; 2K13-170 Viasat BLDG #10 PIER 1 (5'-0" WIDE) 3RD TO ROOF Strength at Factored Load: (16-3) (16-4) (16-5) (16-6) ; (16-7) Factored ecc, = 585.60 321,60 228.17 151.20 124.63 lbs/ft Factored axial, P^j^, = = 0.00 0,00 0.00 0.00 . 0.00 Ibs/ft Factored wsii, P,^, = 2583.75 2640,79 3509.09 2273.09 1675.68 ibSt'ft Factored, P^ = 3169.35 2952.39 3737.25 2424.29; 1800.32 Ibs/ft PiilA^ = 47,91 S0.06fc„, OKI 40,63 37.98 47.91 31.08: 23.08 psi As = 0,267 £ 0,6p(bd) = 0.667 „,0K (R14.8,3) As,= As + (Pu/fy)(ti/2d) = 0,319 0,316 0.329 0.307 0.297 tn^ a = {Pu + Asf,)/(0.85f,b) 0,470 0.465 0.484 0.452 0.436 in 0 = a / 0,85 0,553 0.547 0.569 • 0.531 0.513 in £i = (£cu/c)d-£cu 0,0146 0.0148 0.0141 0.0154 0.0160 ii 0.005 For Tension Control OK OK OK OK: OK M„ = (A„f,)(d-a/2) 57797 57221 59372 55719 53968 ib-in (14-7) l„ = nA„-(d-<)*-i-bc^/3 18.26 18.12 18.62 17.77-17.35 in'* Mu.= + Pttf e X / Ic 1610 13651 8084 13224 7856 Ib-in (14-4) M„ = M„a Pu Au 1901 15802 9690 14919: 8592 Ib-lr; (14-5) 4, = 0,09 0.73 0.43 0.70^ 0.41 in <I>M„ = = 52017 51499 53435 50147 48571 Ib-in (14-3) Check that 0M„ ^ M„ OK OK OK OK OK 1= = bt^/12 274,63 274.63 274.63 274:63. 274.63 in* (9-9) M„ = 7.5 f," 1, / 0,51 40082 40082 40082 40082 40082 Ib-in (14-2) Check ttiat <t>M„ i M„ OK OK OK OK . OK Deflection at Service Load: (16-13a) (16-13b) Service ecc, P„ = 348,00 361.95 Ibs Service axial, Ps^i,! = = 0,00 0.00 Ibs Service wrail, P,v,= 2200,66 2446.28 Ibs Service, P, = Psf Psw -2548,66 2808.22 Ibs Acr = 5M„lc^/(48E,g 0,10 •0.10 in Mn = (A,.f,){d-a/2) 57221 59372 Ib-in A„ = SM„l//(48 EJJ 1,97 1.98 M,a = M,o P,t e X / le 6892 4777 M = MM •'•P.A, 6935 4809 Ib-in (14-8) As = 0,02 0.01 in Allowable A= 1^/150 1,04 1.04 in Check that As SAai,„„ OK OK Shear at Factored Load: (16-3) (18-4) (16-5) (16-6) (16-7) Weq = 8Mu/(12lc^) 7,50 62.33 38.23 56.65 1 33.90 v„ = 48,75 405.17 248.47 382.55 \ 220.32 (11-3) <I>Vc = 0.75 (2) f„"^ b d 3699,86 3699.86 3699.86 3699.86 \ 3699,86 Check that cpV, 2 Vu OK OK OK OK; OK PRIME ..J.*; Jl ENGINEERS sw; „ •0- 201^ tw CONCRETE SLENDER WALL Considering P-Delta Effects (AT LOCATION OF REVEAL) PROJECT* DESCRIPTION: 2K13-170 Viasat BLDG #10 PIER 1 (5'-0" WIDE) 3RD TO ROOF Strength at Factored Load: (16-3) (16-4) (16-5) (16-6) (16-7) Factored ecc, P^, = 585.60 321.60 228,17 151,20 124.63 Ibs Factored axial, = = 0.00 0.00 0.00 0,00; 0.00 lbs Factored wall, = = 1755.00 1755.00 1986.27 1316.25 1084.98 Ibs Factored. P„ = 2340.60 2076.60 2214.44 1467.45 1209,61 Ibs As = 0,267 S 0,6p{bd) = 0,667 ...OK (R14,8,3) A^„= As -i-{Pu/fy) (h/2d) 0.301 0.297 0.299 0,288: 0.285 in^ a= (Pu-^Asf,)/(0,85f,b) 0.450 0.443 0.446 0.428: 0,422 in c = a / 0,85 0.529 0.521 0.525 . 0.504 0,495 in Mr= (Asefy)(d-a/2) 54668 54019 S43S8 52516 S1878 Ib-in (14-7) l„ = 17.34 17.21 17.69 16.88 16.48 in* Mua = Ko ••• Puf e X / Ic 1610 3944 1047 3517; 819 Ib-in (14-4) IWu=M„. + P„A, = 1828 4767 2314 4017 : 1207 Ib-in (14-5) A„ = 0.09 0.40 0.57 0.34 0.32 in m„ = = 49201 48617 48922 47264: 46690. Ib-ir, (14-3) Check that <PM„iM„ • OK OK OK OK OK l,= bt'/12 = 190.11 190.11 190.11 190.11 : 190.11 in' (9-9) Mc= 7,5f,'''lg/0.5f 31366 31366 31366 31366 ; 31366 Ib-in (14-2) Check that <t)M„ a f*fl„ OK OK OK OK OK Deflection at Service Load: (16-13a) {16-13b) A.= = 0.01 0,01 in Allowable A = 1^/150 1.04 1.04 in Check that AjSAajic OK OK PF^IME Job hi 2K13-170 DK;<!- ifi--/ni-s ENGINEERS sin: , .i;v-^ CONCRETE SLENDER WALL Considering P-Delta Effects PROJECTS: DESCRIPTION: DESIGN CRITERIA: 2K13-170 Viasat BLDG #10 PIER 1 (5-0" WIDE) AT LINE 1 2ND TO 3RD Thk (in) Width fft^ Start (ft) End fffi q1 = 6.50 5.00 0.00 14.00 q2 = 6.50 10.00 9.00 14.00 q3 = q4 = 6.50 10,00 0.00 3.00 q5 = 4000 psi e = S.50 in 60000 psi Eccentric, D = 282 plf Concrete Weight = 150 pcf Eccentric, L = 542 plf Add'l From Above, D = 15,470 kips Clear Height, U = 14.00 ft Add'l From Above, L -0,000 kips Parapet Height = 0,00 ft Girder. D = 0,000 kips Wall Thickness, t =' 6,50 in Girder, L = 0,000 kips h/t = 25,85 {3 Girder Load Eccerttric? Ropf„Lr=- : 1 1:200 kips Min Vertical Steel = Min Horizontal Steel - Max Vert Spacing - 0,0025 0,0025 18.00 in Depth to Rebar, d - Vertical Rebar= Spacing - Steel @ Each Face = Reveal Depth = Reveal to Bottom - d at Reveal = 3.250 in #4 9,000 in 1 (# layers) 0,75 in 11,00 ft 2,500 in <f> = 0,9 0, = 0,85 3834 ksi E., = 29000 ksi n = •• 7,56 0,003 0.00207 Q.BPi = 0,0171 0,791 9 0,347 Wp Eff, VWnd Area = 210 ft' Wind Load tV = 12,88 psf (16-2) (16-4) (16-5) (16-6) (16-7) (16-13a) (16-13b) 0,00 18177 14270 18177 14270 8521 • 7492 Ib-in/ft KuuO ~ 7,00 7.00 8.12 7,00 8.12 7,00 8,12 ft O.OOE-i-OO 5.34E-I-07 4,33E-t-07 S,34E-t-07 4.33E-I-07 2,51E-t-07 2,27E-i-07 /El At Reveal: Mo = 0 12242 11534 12242 11534 5738 6055 Ib-in/ft Ao = 0,00E+00 3.36E^t07 2,82E-i-07 3,36E-i-07 2.82E-t-07 1,58E-i-07 1,48E-i-07 /El Wind (1.6 W) LOAD COMBINATIONS (CBC 1605.2.1) (16-2) U = (16-4) U = (16-5) U = (16-6) U = (16-7) U = (16-13a) A = (16-13b) A = 12,4.2.3 E = DESIGN SUMMARY: 1,20 D 1.20 D 1.36 D 0.90 D 0,74 D 1,00 D 1.08 D QE± QE± -I-1.60 L -^0.50L * 0.50 L * 1.60 W -t-1.00 Qe •I-0.75 L •I- 0:75 L O.2S0sD 0.1SD + 0.50 Lr -^ 0.50 Lr + 1.00 Qe •I-0.76 W + 0.53 Qe •I- 1.60 W Seismic (1.0 E) 16,00 14,00 12,00 10,00 8,00 6,00 4,00 2,00 0.00 • n ...I... 11 t- — si £ Ot Strength: (16-2) (16-4) (16-5) (16-6) (16-7) <PM„ = 66,486 62 209 64,307 56,492 53.790 Ib-in 17.412 36,294 34,618 27,477 20,827 Ib-in : % Over = 0.0% 0.0% 0 0% 0.0% 0.0% AtReveal: <I>Mn = ; :^2,077 : : 56,303 59,616 53,284 51,674 Ib-in Mu = •-15,935:. 25.286 25,502 18,336 16.231 Ib-in % Over = 0.0% 0.0% 0.0% 0.0% 0.0% Deflection: Wind Seismic At Reveal: Wind Seismic lo/150 = 1.1200 1.1200 in 1.1200 1.1200 -in Max A = 0.0404 0,0407 in 0.0272 0.0274 in %Over = 0.0% 0 0% 0.0% 0.0%. : PRIME Job; 5IRUCMAL Date: ENGINEERS Sht; 2KX3-170 CONCRETE SLENDER WALL Considering P-Delta Effects PROJECT* DESCRIPTION: 2K13-170 Viasat BLDG #10 PIER 1 (5-0" WIDE) 2ND TO 3RD Strength at Factored Load: (16-2) (16-4) (16-S) (16-6) (16-7) Factored ecc, P„, = 3616.80 1828.20 1961,98 761,40 627,62 Ibs/f! Factored axial, P„,drfi = = 3832.80 3832.80 4202.07 2784.60 2295,33 Ibs/ft Factored wall, P„ = 1657.50 1657.50 2028.21 1425,94 957,19 lbs/ft Factored. P^ = 9107.10 7318.50 8192.27 4971,94 3880.13 Ibs/ft Pul\- 115.76 sO.Oefc... OKI 116.76 93.B3 105.03 63,74 49.75 psi As = 0.267 S 0.6p(bd) = 0.667 ...OK (R14.8.3) A,,= As+(Pu/f,)(h/2d) 0.418 0.389 0,403 0.350 0.331 in' a= (Pu + Asfy)/(0.85fc b) 0.615 0.572 0.593 0,514 0.487 in c = a / 0.85 0.724 0.672 0698 0,605 0.573 in £i = (Ecu c) d - ecu 0.0105 0.0115 0.0110 0,0131 0.0140 £ 0.005 For Tension Control OK OK OK OK OK Mt.= (A..f,)(d-a/2) 73873 69121 71452 6276S 59767 Ib-in (14-7) l„= n-A,.(d-c)=+b-cV3 21.71 20.75 21.23 19,38 18.71 in" Mua = Muo + Pul e X / Ic 9946 23205 20528 20271 16272 ib-in (14-4) Mu= Mu,-i-PuA„ 17412 36294 34618 27477 20827 IWn (14-5) Au = 0.82 1.79 •1.72 1,45 1.17 in <DM„ = = 66486 • 62209 64307 56492 53790 Ib-in (14-3) Check that *M„ a M„ OK OK OK OK OK 1,= btVl2 274.63 274,63 274.63 274,63 274.63 in* (9-9) M„= 7.5 fc" 15/0.51 40082 40082 40082 40082 40082 !b-in (14-2) Check that <DM„ S M„ OK OK OK OK OK Deflection at Service Load: (16-13a) (16-13b) Service ecc, P,) = = 2065.50 2135,74 Ibs Service axiai, Ps„ii,i = = 3274.00 3530,87 Ibs Service wail, P,j„ = = 1381.25 1397,37 Ibs Service, P. = P,,P^v, = 6720.75 7063,97 Ibs A„= 5M„lc^/(48Ecg 0.11 0,11 in Mn=(A,,f,)(d-a/2) 69121 71452 Ib-in A„= 5M„lc'/(48Ecy 2.55 2,66 M,a = -I- P,, e X / Ic = 14201 14305 M = Ms, •^ P5 As 14472 14592 Ib-in (14-8) A,= 0.04 0,04 in Allowable A = 1^/150 = 1.12 1,12 in Checkthat AjS AjMw OK OK Shear at Factored Load: (16-2) (16-4) (16-5) (16-6) (16-7) Wc, = 8 Mu / (12 Ic^) 59.22 123.45 117.75 93,46 70.84 Vu= icWe,/2 414.57 864.15 824.24 654,21 495.88 (11-3) <t)Vc = 0.75 (2) fc"^ b d 3699.86 3599.86 3699,86 3699,86 3599.86 Check that OVc 2 V„ OK OK OK OK OK P Fli M E Job: ENGINEERS Sht; mx. CONCRETE SLENDER WALL Considering P-Delta Effects (AT LOCATION OF REVEAL) PROJECTS: DESCRIPTION: 2K13-170 Viasat BLDG #10 PIER 1 (5'.0" WIDE) 2ND TO 3RD Strength at Factored Load: (16-2) (16-4) (16-S) (16-6) (16-7) Factored ecc, P„, = = 3616.80 1828.20 1961,98 761.40 627.62 lbs Factored axial, Pu„ia,= = 3832.80 3832.80 4202,07 2784,60 2295.33 Ibs Factored wall, Pu^, = = 877.50 877,50 993,14 658,13 542,49 Ibs Factored, = = 8327.10 6538.50 7157.20 4204.13 3465,43 lbs As= 0.267 S0.6p(bd) = 0.667 ...OK (R14.8.3) At.= As-i-(Pg/f,)(h/2d) 0.389 0.363 0,372 0,329 0,318 in^ a= (Pu-*-Asfv)/(0.85fcb) 0.596 0,552 0.568 0,495 0,477 in c= a/0.85 = 0.701 0,650 0.668 0,583 0,561 in M„=(A„f,)(d-a/2) 68974 • 64781 66240 59204 57415 Ib-in (14-7) l„ = = 20.63 19,71 20.16 18.41 17.77 in' Mua = Muo + Pul e x / Ic = 9946 17269 17793 14336 13536 Ib-in (14-4) Mu=Mu, + PuA„ 16935 25286 25502 18336 16231 Ib-in (14-5) Au = = 0.84 1,23 1,08 0.95 0.76 in «M„ = 62077 58303 59616 53284 51674 Ib-in (14-3) Check that tPM„ £ M„ OK OK OK OK OK lg= bt'/12 = 190.11 190,11 190,11 190,11 190.11 in* (9-9) Mc= 7.5fc'''lB/0.5t = 31366 31366 31366 31366 31366 Ib-in (14-2) Check that «M„ a Mc, OK OK OK OK OK Deflection at Service Load: (16-13a) (15-13b) As = = 0.03 0,03 in Allowable A = lc/150 1.12 1.12 in Checkthat A.s Ajiicj, OK OK PRIME Job: STRUCTURAL Date;_ii:i£a2__ ENGIMEERS sht; ^ CONCRETE SLENDER WALL Considering P-Delta Effects PROJECT*: DESCRIPTION: DESIGN CRITERIA: f, = fy- Concrete Weight - Clear Height, 1^ = Parapet Height = Wall Thickness, t = h/t = Depth to Rebar, d = Vertical Rebar = Spacing = Steel @ Each Face = Reveal Depth = Reveal to Bottom = d at Reveal = 2K13-170 Viasat BLDG #10 PIER 1 (5'-0" WIDE) AT LINE 1 4000 psi 60000 psi 150 pcf 15.00 ft 0.00 ft 8.00 in 22.50 4.750 in #4 9.000 in 2 (# layers) 0.75 in 11.00 ft 4.750 in 1ST TO 2ND Thk (in) Width (ft,) Start fftl End (ft) q1 = 8,00 5.00 0.00 15.00 q2 = 6.50 10.00 9.00 15.00 q3r q4 = 6.50 10.00 0.00 3,00 q5 = Eccentric, D - Eccentric, L - Add'l From Above, D = Add'l From Above, L • Girder, D - Girder, L • 5.50 in 282 plf 542 plf 30.680 ki.DS 8.130 kips 0.000 kips 0.000 kips L] Girder Load Eccerftric? Roof,Lr= • 1.200: kips Min Vertical Steel = Min Horizontal Steel - Max Vert Spacing = 0 = 01 = • 0.6p, -. Eff. Wind Area = Wind Load W- 0.0025 0.0025 18.00 in C.9 0.85 3834 ksi 29000 ksi . 7.56 0.003 0.00207 0.0174 0.791 g 0.302 Wp 225 ft' 12.88 psf (16-2) (16-4) (16-5) (16-6) (16-7) (16-13a) (16-13b) 0.00 20867 17231 20867 17231 9781 9177 Ib-in/ft 7.50 7,50 8,93 7,50 8.93 7.50 8.85 ft O.OOE-i-00 7,04E+07 5,89E+07 7.04E+07 5.89E-S-07 3.30E-(-07 3.16E-I-07 /El At Reveal: Mo = 0 16322 15298 16322 15298 7651 8117 Ib-in/ft Ao-O.OOE-i-00 5,27E-f07 4,54E-f07 5.27E-t-07 4.54E+07 2.47E-I-07 2.42E1-07 /El Wind(1.6W) LOAD COMBINATIONS (CBC 1605.2.1) (16-2) U = (16-4) U = (16-5) U = (16-6) U = (16-7) U = (16-13a) A = (16-13b) A = 12.4.2.3 E = DESIGN SUMMARY: 1.20 D 1.20 D 1.36 D 0.90 D 0.74 D 1.00 D 1.08 D QE± Qgl -I- 1.60 L + 0.50L . + 0.50 L 1-1.60 W •^ 1,00 Qe * 0,75 L + 0,75 L 0,2SDSD 0.16 D + 0,50 Lr ••• 0,50 Lr -I-1,00 Qe -^ 0,75 W •1-0,53 Qe -f 1,60 W Seismic (1.0 E) 16,00 -j 14,00 -I 12,00 j- 10,00 4 8,00 1 6,00 I 4.00 2.00 -i, 0.00 4- So. Strength: (16-2) (16-4) (16-5) (16-6) (16-7) (PM„ = 114,917 ;104,131: 108.364 91,355 86,009 Ib-in Mu = 14,689 35,357 ; •33,487 28,507 23,058 Ib-iri % Over = 0.0% 0.0% • 0.0% :o,o% 0,0% AtReveal: : <iSMn = 107i849 98,086 ; 101,248 86,471 82.864 Ib-in ;,Mu = 14,679 28,526 : 28.856 22,324 20,103 Ib-in : %Over = 0.0% 0^0%;:::: 0.0% 0,0%: 0:0% Deflection; Wind Seismic AtReveal: Wind Seismic lc/150 = 1.2000 1.2000 in : 1.2000 1,2000 in Max A = 0.0271 0.0283 in 0.0212 0 0221 in % Over = 0.0% 0 0% 0.0% 0.0% CONCRETE SLENDER WALL Considering P-Delta Effects PRIME Jab: SKIS-170 SIHUGTllRM. naife: iD-ioitt ENGfrlEERS sw: , g PROJECTS: 2K13-170 DESCRIPTION: Viasat BLDG #10 FIERI (5'-0"WIDE) 1ST TO 2ND Strength at Factored Load: (16-2) (16-4) 15-5) (16-6) (16-7) Factored ecc, Pu( = = 3616,80 1828.20 1961.98 761.40 627.62 Ibs/ft Factored axial, Pu,^,,, = 10084,80 8295,20 9146.53 5522.40 4552.07 Ibs/ft Factored wall, P„„ = = 2070.00 2070,00 2430.30 1771.88 1174.00 Ibs/ft Factored, P„ = = 15771,60 12194,40 13588,81 8055.68 6353.69 Ibs/ft Pu/Aj,= 164,29 S0,06fc,„ OKI = 164,29 127,03 141.55 83,91 56.18 psi As = 0.267 S 0.6p(bd) = 0,992 „,0K (R14,8,3) A^= As + {Pu/fy) (h / 2d) = 0,488 0,438 0.457 0.380 0,356 in^ a= (Pu-t-Asfy)/(0,85fcb) 0.779 0,691 0.725 0.590 0.548 in c = a / 0,85 = . 0.916 0,813 0,853 0.694 0.645 in £, = (£cu/c)d-f.cg = 0.0126 0.0145 0,0137 0.0175 0.0191 2 0,005 For Tension Control = OK OK OK OK OK Mn= (A,J,)(d-a/2) 127685 115701 120404 101506 95565 ib-in (14-7) l„= nA„(d-c)^+bcV3 57.33 53,48 55,02 48.59 46.43 in** M^, = M„o P„, e X / Ic = 9946 25894 23651 22961 19285 Ib-in (14-4) M„= Mua-i-P„A„ 14689 35357 33487 28507 23058 ib-in (14-5) Au = = 0.30 o;78 0,72 0.69 0.59 in <PM„ = 114917 104131 108364 91355 86009 Ib-in (14-3) Check that 0M„ 2 Mu OK OK OK OK OK lj= bt'/12 = 512.00 512.00 512.00 512.00 512.00 in* (9-9) M„= 7Sfc'''lg/0.5t = 60716 60716 60716 60716 60716 Ib-in (14-2) Check that 0M„ 2 Ma OK OK OK OK OK Deflection at Service Load: (16-13a) (16-13b) Service ecc, P^i = 2065.50 2135.74 lbs Service axial, P„»i,i= 7535.50 8044.92 Ibs Service wall, P,„ = 1725.00 1722.00 Ibs Service, P,= Psf^-P^-= 11326.00 11902.66 lbs Ac,= 5Mc,lc'/(48 Ec 1,) 0.10 0.10 in M„= (^ef,)(d-a/2) = 115701 120404 Ib-in A„=5M„l//(4aEc y = 1.90 1,95 Mst>= M,o + P„sx/lc = 16461 16107 M= M^-i-P^Ac 15768 15444 Ib-in (14-8) A.= 0.03 0.03 in Allowable A = lc/150 1,20 1.20 in Check that A^SArtic^ OK OK Shear at Factored Load: , {16-2) (16-4) (16-5) (16-6) (16-7) w.,= 8Mu/(12lc^) 43,52 104.76 99.22 84.47 68.32 Vu=Sc w.,/2 326.42 785.71 744.16 633.49 512.41 (11-3) <»Vc= 0,75(2)ft"^bd 5407.49 5407.49 5407.49 5407.49 5407.49 Check that OV, 2 Vu OK OK OK OK OK v.. s > to Jv^-r 5, rs If A PRlME^ob: ^ STKUCTURALOate:„ I': "tf'—^ r ' t<^./. y^'bi MfM- f^j-A^ ^i|Wfr f=!u>/^ * ' "iJy4'Y > ECt . frl p.ism £.*?n>. PRIME .lob; 2K13-ltCI SIHIICTURAL OMfe; 1.0- ENGINEERS Shl; i CV CONCRETE SLENDER WALL Thk (in) Width (ft) Start (ft1 End (ft) Considering P-Delta Effects q1 = 8.00 5.00 0.00 17.00 PROJECTS: 2K13-170 q2 = 6.50 10.00 S.OO 17.00 DESCRIPTION: Viasat BLDG #10 q3 = PIER 2 (S--0" WIDE) 3RD TO ROOF q4 = 6.50 10.00 0.00 3.C0 AT LINE 1 q5 = DESIGN CRITERIA: f c = fy-- Concrete Weight = Clear Height. U = Parapet Height = Wall Thickness, t = hA = Depth to Rebar, d = Vertical Rebar = Spacing = Steel @ Each Face = Reveal Depth = Reveal to Bottom - d at Reveal = 4000 psi 60000 psi ^50 pof 13,00 ft 4.00 ft 8.00 in 19.50 4.750 in #4 9.000 in 2 (# layers) 0.75 in 8.50 ft 4.750 in e = Eccentric, Dr - Eccentric, Lr- Add'l From Above, Dr = Add'l From Above, Lr = GinJer, Or = Girder, Lr = 5.50 in 56 plf 80 plf 30.680 Idps 8.130 kips 4.560 kips 3.560 kips E Girder Load EcceiHric? Min Vertical Steel • Min Horizontal Steel = Max Vert Spacing = <P = 0i -• £c = O.Sp, Scs = Eff. Wind Area = Wind Load, W- 0.0025 0.0025 18.00 in 0,9 0.85 3834 ksi' 29000 ksi 7.56 0.003 0.00207, 0.0174 0.791 g 0.346 Wp 255 ft' 12.88 psf (16-3) (16-4) (16-6) (15-6) (16-7) (16-13a) (16-13b) 0.00 12846 8914 12846 8914 6021 4899 Ib-in/ft ^MiiO -6.50 5.92 5.33 5.92 5;33 5.92 5.20 ft O.OOE-t-00 3.08E+07 2.12E-I-07 3.08E-I-07 2.12E+07 1.44E•^07 1.17E-I-07 /El At Reveal: /Wc = 0 10309 6818 10309 6818 4832 3707 Ibnn/ft A,= O.OOE-i-OO 2.63E+07 1.77E^l-07 2.63E-<-07 i.77E+07 1.23E•^07 S.71E-I-06 /El Wind (1.6 W) LOAD COMBINATIONS (CBC 1605.2.1) (16-3) U = (16-4) U = (16-5) U = (16-6) U = (16-7) U = (16-13a) A = (15-13b) A = 12.4.2.3 E = DESIGN SUMMARY: 1.20 D 1.20 D 1. 36 D 0.90 D 0.74 D 1.00 D 1.08 D Qf.± QE± •I- 0.50 L •I- 0.50 L + 0.50 L •f 1.60W -I- 1.00 Qe -(- 0.75 L -I- 0.75 L 0.2SDSD 0.16 D •^ 1.60 Lr •I- 0.50 Lr + 1.00 Qe •i-0.75W ••• 0.53 Qe -I- 1.60 W 18.00 - 16.00 i 14.00^ 12.00 - 10.00 • 8.00 8.00 - 4.00 - 2.00 - 0.00 ft fir-'s. Ki 2- CL CT cr Seismic (1.0 E) 13.00 T 16.00 -i 14,00 + 12,00 f 10,00 -f 8.00 1- SOO 4 4.00 I 2.00 f 0.00 \- 2 3: strength: (16-3) (16-4) (16-5) (16-B) (18-7) <DM,= 112,073 106,090 109 449 94,157 88,622 Ib-in 7,290 21,627 16,45$ 17,975 12,260 Ib-in % Over -0.0% 0.0% 0.0% 0,0% o:o% At Reveal: <t)Mn = 106,820 101,231 102,730 89.857 85,677 Ib-in Mu = 7,352; 18,754 14,079 15,109 9,982 Ib^in %6ver= 0.0% o;o% 0,0% 00% 0.0% Deflection: Wind Seismic At Reveal: Wind Seismic lc/150 = 1.G400 1,0400 in 1,0400 ;,0400 in MaxA = 0;0138 0,0119 in 0.0125 0,0107 in % Over = . 0.0% 0,0% 0.0% 0 0% I PRIME Job; JKXizlll. S Sht: » r" >; CONCRETE SLENDER WALL Considering P-Delta Effects PROJECTS: DESCRIPTION: 2K13-170 Viasat BLDG #10 PIER2(,'5'-0"W1DE) 3RD TO ROOF - Strength at Factored Load: (16-3) (16-4) (16-5) (16-6) (16-7) Factored ecc, Pu, = = 2036.00 1772,00 1822.79 972,00 801.21 Ibs/ft Factored axial, Puatti = 9964.80 8176,20 8333,53 5522,40 4552,07 ibs/ft Factored wall, = 2820.00 2890,20 3791,92 2460,15 1830,18 Ibs/ft Factored, Py = = 14820,80 12838.40 13948,23 8954,55 7183,46 lbs/ft Pu / Ag = 154,38 S 0,06fc„, OK! 154.38 133.73 145,29 93,28 74.63 psi As = 0,267 S 0.6p(bd) = 0,992 ...OK (R14,8,3) A,,= As^^(Py/f,)-(h/2d) 0.475 0.447 0,462 0,392 0.357 in^ a= (Pu + A=fy)/(0.85 fcb) 0.755 0.707 0,734 0,612 6.568 in c= a/0,85 0,889 0.832 0,864 0,720 0.665 in £( = (£cu / c) d - ecu 0,0130 0,0141 0,0135 0,0168 0.0183 2 0.005 For Tension Control OK OK OK OK OK Mn=(A„fy)(d-a/2) = 124526 117878 121610 104619 98469 Ib-in (14-7) Ic, = nA<t(d-<;)^+bc'/3 56,34 54,19 55,40 49,69 47.50 in* Mua = IVluO -1- Pu( e x / Ic 5599 17280 13024 15278 10721 Ib-in (14-4) Mu= Mua-t-P„A„ 7290 21527 16456 17975 12260 Ib-in (14-5) Au = = 0,11 0,33 0,25 0,30 0.21 in m„ = 112073 106090 109449 94157 88622 Ib-in (14-3) Check that cPM„ 2 Mu OK OK OK OK OK lg= bt*/12 512.00 512,00 512.00 512.00 512.00 in^ (9-9) Mcr = 7.5 fc"' I3 / 0.51 = 60716 60716 60716 60716 60716 Ib-in (14-2) Check that m„ 2 ft^c, OK OK OK OK OK Deflection at Service Load: (16-13a) (16-13b) Service ecc, P^, = 1794.00 1883,66 Ibs Service axial, P,,xi,i = = 7355.50 7864,92 lbs Service wall, Pj,, = 2408,50 2685,89 Ibs Service, P„= P,i + P.w = = 11558,00 12434,48 Ibs A„= 5M„lc'/(48 Eel,) 0,08 0,08 in Mn= (A,.fv)(d-ay2) 117878 121610 Ib-in A„= 5M„lc='/(4a EcW 1.36 1,36 Mstt= Mso-*- Psfex/lc = 10511 9043 M= M„-*-PaA, 10670 9191 Ib-in (14-8) A,= = 0,01 0,01 in Allowable A = lc/150 = 1,04 1,04 in Check that A, £ Aaiio„ OK OK Shear at Factored Load: (16-3) (16-4) (16-S) (16-6) (16-7) Wa,= 8Mu/(121c^) 28,76 84,92 64,92 70,91 48.36 Vu= lcW„/2 186,91 551,97 421,95 460,91 314.35 (11-3) <PVc = 0.75 (2) f c"^ b d 5407.49 5407,49 5407,49 5407,49 S407.49 Check that 0Vc 2 Vu OK OK OK OK OK PR!M:E Job: 2KX5-i-?o STRU»lDst^:. ENGIMEERS Sht; . CONCRETE SLENDER WALL Considering P-Delta Effects PROJECT* 2K13-170 DESCRIPTION: Viasat BLDG #10 PIER 2 (5'-0" WIDE) 2ND TO 3RD Strength at Factored Load: (16-2) (16-4) (16-5) (16-6) (16-7) Factored ecc, = 12220.00 6566.00 7092,59 2997.00 2470.41 Ibs/n Factored axial, P^M -= 5573,60 5573,60 5769,36 3823.20 3151.44 Ibs/ft Factored wall, P^x -= 1815,00 1815,00 2206,46 1544,06 f054.56 !bs/1t Factored, = 19608,60 13954,60 5068,42 8364.26 6676.40 lbs/ft Pu'^ = 204,26 £0,06fo„, OK! = 204,26 145,36 156,96 87.13 69.55 psi As = 0,267 S 0,6p(bd) = 0,992 ...OK (R14,8,3) A,c = As +(Pu/f,)(h /2d) = 0,542 0,463 . 0,478 0.384 0.350 in^ a = (Pu-i-Asf,)/(0,85fc b) = 0,873 0,734 0.761 0.597 0.556 in c = a/0,85 = 1,027 0.854 0.896 0.703 0,654 in ei = (£cu / c) d - Ecu = 0,0109 0.0135 0.0129 0.0173 0.0188 2 0,005 For Tension Control OK OK OK OK OK M„ = (A„f,)(d-a/2) 140247 121631 125351 102577 96697 Ib-in (14-7) l„ = nAs, (d-c)^-i-bcV3 = 61,14 5541 56.60 48.97 46.85 in* Mua = -i- P„, e X / Ic 33605 36234 38183 26419 23819 Ib-in (14-4) Mu = Mua + PuAu = 49997 48798 53065 32008 28052 Ib-in (14-5) Au = 0,84 0.90 0.99 0.67 0.53 in <t>M„ = = 126222 109468 112815 92319 87027 Ib-in (14-3) Check that 0M„ 2 M„ OK OK OK OK OK l,= bt'/12 51200 512.00 512.00 512.00 512.00 in* (9-9) Mc,= 7,5 f c°-= Is / 0,5 f 60716 60716 60716 60716 60716 tb-in (14-2) Check that <I>M„ 2 M^ OK OK OK OK OK Deflection at Service Load: (16-13a) (16-13b) Service ecc, P,, = • 7185.00 7461.46 Ibs Service axial, P^a,^,-= 4962.00 5314,68 lbs Servioe vrall, P^ = = 1512,50 1547,10 Ibs Service. P, = Psf * P»w -13659,50 14323.24 Ibs Acr = 5M„lcV(48Ecl,) 0,09 0,09 in M„ = (A,„f,)(d-a/2) 121631 125351 Ib-in An = 5M„lc'/{48EcU = 1,68 1,75 M.a = Mso-1-P.tex/lc = 28279 31618 M = Msa Ps As 28870 32311 Ib-in (14-8) A.= = 0,04 0.05 in Allovi/able A= lc/150 1,12 1,12 in Check that A, s A,iic,^ OK OK Shear at Factored Load: (16-2) (1S-4) (16-5) (16-6) (16-7) Wt„ = 8Mu/{12lc^) = 170,06 165.98 180.49 108.87 96.42 Vu = lt;W.,f2 1190,41 1161.65 1263.46 762.10 557.91 (11-3) <tVc = 0.75(2)fo'"bd = 5407,49 5407,49 5407.49 5407.49 5407.49 Check that OVc 2 V„ OK OK OK OK OK PRIME Jab; 2y--^'n>^ GiEERS v/'^ CONCRETE SLENDER WALL Considering P-Delta Eltects (AT LOCATION OF REVEAL) PROJECT #: DESCRIPTION; 2K13-170 Viasat BLDG #10 PIER 2 (5-0" WIDE) 2ND TO 3RD Strength at Factored Load: (16-2) (16-4) (16-5) (16-6) (16-7) Factored ecc, Pui = = 12220.00 6566.00 7092.59 2997.00 2470,41 lbs Factored axial, Puajiai = = 5573.60 5573.60 5769.36 3823.20 3151.44 Ibs Factored wall, Puw = = 1535.00 1635.00 1850.46 1226.25 1010.79 lbs Factored, Pu = = 19428.60 13774.60 14712.42 8046.45 5532.53 Ibs As = 0.267 S 0.6p(bd) = 0.992 ...OK (R14.8.3) A,,= As-t-(Pu/fy)(h/2d) 0.514 0.442 0.454 0.369 0.351 in" a= (Pu-t-Asf,)/(0.85 fcb) 0.868 0.730 0.753 0.589 0.555 in c = a / 0.85 = 1.022 0.859 0.886 0.693 0.653 in Mn= (Ac.fy)(d-a/2) 133044 116259 119085 93644 94202 Ib-in (14-7) lc,= 58.28 53.14 54.03 47.26 45.69 in* Mua = MuO + Pu, e X / Ic 33605 35399 38115 25584 23751 Ib-in (14-4) Mu=Mu, + PuAu = 50978 48003 52587 30916 27836 Ib-in (14-5) Au = 0.89 0.92 0.98 0.66 0.62 in CDM„ = = 119740 104633 107176 88779 84781 Ib-in (14-3) Check that 0M„ 2 Mu OK OK OK OK OK lj= bt'/12 381.08 381.08 381.08 381.08 381.08 in* (9-9) M„= 7.5fc"!i,/0.5t = 49865 49865 49865 49865 49855 Ib-in (14-2) Check that <J)M„ 2 Mc, OK OK OK OK OK Deflection at Service Load: (16-13a) (16-13b) Ac = = 0.04 0.05 in Allowable A = Ij/160 1.12 1.12 in Checkthat A,S AaiiM OK OK SLENDER WALL DESIGN (ACI 318,14.4) Pictf: i\m STRUCTURAL Date;. ENGINEERS Shi; DESCRIPTION: i Viasat BLDG #10 PIER 2 (5'-0" WIDE) At Line 1 1ST TO 2ND lERIA: 0.790 Seismic, Fp = 0.302 4000 psi 60.000 ksi 3834 ksi Wall Height, = 15.00 ft Parapet Height -0.00 ft Wall thickness, h = 8.00 in Rebar Size -#4 Rebar Spacing, s = 9.00 in Depth to rebar, cf = 4.750 in Rows of steel = 2 LOAD COIVIBINATIONS: (16-3) U = 1.20 D + 1.60L (16-4) U = 1.20 0 + 0.60 L (16-5) U = 1.36 D + 0.50 L 12.4.2.3 E = QE± 0.2SDSD = QE± 0.16 D Eccentricity, e = 5,50 in cone 'M = 150 pcf Eccentric, Wo = 2.766 klf Wind,-W = 21.57 psf Eccentric, -4.056 klf ^1 = 0.850 Additional, Pp = 50.080 kips C„i = 1.00 Additional, P.^ = 25.700 kips k = 1.00 Roof, Pu- = 4.760 kips r = 2.40 k*l/r = 75,00 (16-4) (16-5) kl/r< 100 ...O.K. Mmax = 2.91 k-ft 1.44 k-ft A,= 0,53 X @ Mmax = 7.60 ft 8.93 ft P = 0,0056 + 0,50 Lr + 1,60 W + 1,00 Qe DESIGN SUMMARY: 1S,00 T U.0O - 12,00 - 10.00 8.00 6.00 -• 4.00 -• 2.00 0.00 SEISMIC £1. cr (16-3) (16-4) (16-5) 0Mrt;= 175195 141515 149031 Ib-in Mc= 50096 71873 57228 to-in CALCULATIONS: % Over = 0,00% 0.00% 0.00% CALCULATIONS: Load Combo = IlMl (16-4) (16-5) Factored /Axial, P^, = 12.220 6.566 7.093 klf Factored Axial, Pu atioi = 20.719 14.589 16.171 klf Factored Axial, Pu^an = 2.070 1.899 2.342 klf Factored Axial, Pu = 35.009 23.054 25.606 kif Sustained Axial, Pus = 24.047 24.047 27.018 klf Pd = P.. IP. 0.687 1.043 1.055 P = 0,9 + 0,5p/- 12p 1.059 1.377 1.390 Gross, Ig = bh^/12 512.00 512.00 512.00 in" El = 0.4-Ec-lg/(1+pd) 465510 384353 382093 in'^-kip Critical, = TT^EI / (kU' 141.802 117.081 116.392 kip [Pn+(Asfy)]/fy 0.915 0,694 0.741 in" a = (A,VPn)/(0.85fci2) 1.346 1.020 1.089 in c = a/pi 1,583 1.200 1.282 in Factored Mom, Mug = max[l\/U Puf-e x /1, Pu•(0,6•^0.03h)] ;?3.60S 53.003 40,441 in-kip Mag. Factor, 6n, = max{C„/[1-Pu/(0,75Pc)]. 1.0} 1.491 1.356 1.415 in-kip Magnified, Mc = 50.096 71.873 57.228 in-kip 0.10*fc/Ag = 384 38.4 38.4 kip £t = 0.003*(d-c)/c 0.0060 0.0089 0.0081 kip Strain Limit Check = ftl - et > 0.004 for Pu < 0.10'fc*Ag O.K. O.K. O.K. M/> f^ffH •••• fi0- "i ^ \ij 5% 4' •< . • '-f ; "-ll'--,- , ?, -' -">, '• -M; ^ i' ^ 'y-'> OF , yv .^^y\A i /^tj^'t /fe/M,- f^i^?^ y^fy(ii')(y]iiy/iy] •fliTfrt fit r»T7f-U ; o it'- 5-7© ii ,-'1.7/ Ly. / w uy $o^/f {h,ry -7./»ih y>p^L At-ur^ (y^A r^rhi H- i ^^-^ (/s^S":f> 5.1/ w.. PRIME Job; aKx3-X70 ENGINEERS Shi: H ^ CONCRETE SLENDER WALL Thk (in) Width (ft) Start (ft) Endfftt Considering P-Delta Effects ql = 6.50 5.00 0.00 17.00 PROJECT* 2K13-170 q2 = 6.50 5.00 9.00 17.00 DESCRIPTION; Viasat BLDG #10 q3 = PIER 3 (5-0" WIDE) 3RD TO ROOF q4-6.50 5.00 0.00 3.00 AT LINE 1 qS = DESIGN CRITERIA: fo = 4000 psi e = 5.50 in Min Vertical Steel = 0.0025 60000 psi Eccentric, Dr= 56 plf Min Horizontal Steel -0.0025 Concrete Weight = 150 pcf Eccentric, Lr = 80 plf Max Vert Spacing -18.00 in Add'l From Above, Dr = 0.000 kips Clear Height, Ic = 13.00 ft Add'l From Above, Lr = 0.000 kips <P = 0.9 Parapet Height -4.00 ft Girder, Dr = 0.000 kips 01 = 0.85 Wall Thickness, t = 6.50 in G 'lrder, Lr = 0.000 kips E, = 3834 ksi hA = 24.00 D Girder Load Eccerttric? Es = 29000 ksi n = 7.56 Depth to Rebar. d = 3.250 in ^ ctj — 0.003 Vertical Rebar = #4 ty = 0.00207 Spacing = 9.000 in 0.6p, = 0.0171 Sfee/@£ac/)F3ce = 1 (# layers) Sos -0.791 g Qf =Fp = 0.346 Wp Reveal Depth = 0.75 in Eff. Wind Area = 170 ft* Reveal to Bottom = 11.00 ft Wind Load W-14.00 psf d at Reveal = 2.500 in 14.00 psf (16-3) (16-4) (16-5) (16-6) (16-7) (16-13a) (16-13b) M«o = 0.00 9308 6690 9308 6690 4363 3512 ib-in/ft 6.50 5.92 5.53 5.92 5.53 5.92 5.53 ft A„«« = O.OOE-i-00 2.23E-f07 1.60E-I-07 2.23E-I-07 1.60E-I-07 1,04E'+07 8.40E-f06 /El At Reveal: Mo = 0 2275 986 2275 986 1066 518 Ib-in/ft Ao = O.OOE-I-OO 9.36E-I-06 6.37E-I-06 9.36E-I-06 6.37E-t-06 4.39E-I-06 3.34E-t-06 /El LOAD COMBINATIONS (CBC 1605.2.1) (16-3) U = (16-4) U = (16-6) U = (16-6) U = (16-7) U = (16-13a) A = (16-13b) A = 12.4.2.3 E = DESIGN SUMMARY: 1.20 D 1.20 D 1.36 D 0,90 D 0,74 D 1,00 D 1.08 D QE± + 0,50 L •••0.50L . •^ 0.50 L •I- 1.60 W •t-1.00 Qe + 0.75 L •>• 0.75 L 0,2SosD 0,16 D •t- 1,60 Lr •<• 0,50 Lr •t-1:00 Qe + 0,75 W 0.53 Qe 1.60 W Strength: (16-3) (16-4) (16-5) (16.6) (16-7) : 0Mf= 49,567 49.266 50,393 48,172 47,192 Ib-in : M„-;; 1,206 10,921 7,984 10,385 7,336 ib-in % Over-0,0% 0.0% 0,0% 0,0% 0,0% : At Reveal: (PMn = 47,471 47,079 47,284 46,173 45,789 Ib-in , Mu = 1,170 3.191 1.6^8 2,763 1,329 Ib-in 4 Over = 0.0% 0.0% 0,0% 0,0% 0,0% Defiection; Wind Seismic At Rc-'eal: Wind Seismic lc/150:=: 1 0400 • 1:0400 in 1,0400 1,0400 in Max A = 0.0120 0.0099 • in 0 0062 0,0051 in % Over= ;:o.o% 0.0% 0.0% : • : : 0,0% PRIME Job: SKIS-170 SMlCTURfiL Date:-^o-?n? :^iSbENG|HEERS sht: CONCRETE SLENDER WAUL Considering P-Delta Effects (AT LOCATION OF REVEAL) PROJECT #: DESCRIPTION: 2K13-170 Viasat BLDG #10 PIER 3 (5'-0" WADE) 3RD TO ROOF Strength at Factored Load: (16-3) (16-4) (16-5) (16-6) (16-7) Factored ecc, Pu, = 390.40 214.40 152.11 100.80 83.09 !bs Factored axial, Pu„iai = 0.00 0,00 0.00 0.00 0.00 Ibs Factored v^ail, -= 1170,00 1170,00 1324.18 877.50 723,32 lbs Factored, = = 1560.40 1384.40 1476.29 978.30 806,41 lbs As = 0.257 < 0.6p{bd) = 0.667 ...OK (R14.8.3) A,c= As + (Pu/fy)(h/2d) 0.290 0.287 0,288 0.281 0,279 in^ a= (Pu-i-'/^sfy)'(0.85 fcb) 0.430 0.426 0,428 0.416 0412 in c= a/0.85 0.506 0.501 0,504 0.490 0,485 in M„= (A,efy)(d-a/2) 52746 52311 52538 51303 50876 Ib-in (14-7) !c = 16.73 16.66 16,94 16.38 16,12 in* Mutt= M„o-^Pufex/lc 1074 2811 1341 2527 1180 Ib-in (14-4) Mu=M„3-tP„Au 1170 3191 1658 2753 1329 Ib-in (14-5) A„ = 0.06 0.27 0,22 0.24 0,19 in ct>M„ = = 47471 47079 47284 46173 45789 Ib-in (14-3) Check that <PM„ 2 M„ OK OK • OK OK OK 1,= bt^/12 190.11 • 190,11 190.11 190.11 190,11 in* (9-9) Mc,= 7.5fc''-'lj/0.5t = 31366 31366 31366 31366 31366 Ib-in (14-2) Check that «M„ 2 OK OK OK OK OK Deflection at Service Load: (16-13a) (16-13b) As = 0.01 0.01 in Allowable A = Ic /160 1.04 1.04 in Check that As sAaiiOT, OK OK PRIME Job; .a.Ki3-i7o SsitbwTyRAl Dale: lo-^ni;^ ENGWEERS sht: CONCRETE SLENDER WALL Considering P-Delta Effects PROJECT*: 2K13-170 DESCRIPTION: Viasat BLDG #10 PIER 3 (5'-0" WIDE) AT LINE 1 2ND TO 3RD DESIGN CRITERIA; fc = r = 'y Concrete Weight - Clear Height, l^ = Parapet Height = Wall Thickness, t = h/t = Depth to Rebar, d = Vertical Rebar Spacing = ! Each Face = Thk fin) V\'idth ffii Start (ft) End ift) 6,50 5,00 0.00 14.00 q2 = 6,50 5.00 9.00 14.00 q3 = q4 = 6,50 5.00 0.00 3.00 q5 = Reveal Depth •• Reveal to Bottom •• d at Reveal = 4000 psi 60000 psi 150 pcf 14.00 ft 0.00 ft 6.50 in 25.85 3.250 in #4 9.000 in 1 (Slayers) 0.75 in 11.00 ft 2.500 in 5.50 in 282 plf 542 plf 12.710 kips 0.000 kips 0.000 kips 0.000 kips U Girder Load Eccerttric? Roof, Lr = . 0:840 kips Eccentric, 0 = Eccentric, L = Add'l From Above, D = Add'l From Above, L = Girder, D - Girder, L = Min Verticai Steel - Min Horizontal Steel = Max Vert Spacing = 0- 0, = He = E. = f7 = = - 0.6p, = S DS - Q£=Fp = Eff. Wind Area = Wind Load, W- (16-2) (16-4) (16-5) (16-6) (16-7) (16-I3a) (1«-13b) I^U0 = 0.00 13172 11227 13172 11227 6174 5894 7.00 7.00 7.56 7.00 7.56 7.00 7.56 Am« = O.OOE-^00 3.87E-I-07 3.38E-I-07 3.87E-t-07 3,38E-»-07 1.82E-I-07 1.78E-(-07 At Reveal; Mo = 0 8871 8560 8871 8560 4158 4494 Ao = O.OOE-t-OO 2.44E-I-07 2.18E-I-07 2.44E-I-07 2,1SE-<-07 1.145+07 1.14E-i-07 0.0025 0.0025 18.00 in O.S 0.85 3834 ksi- 29000 ksi 7.66 • 0.0C3 0.00207 0.0171 0.791 g 0.347 Wp 140 ff 1400 psf lb-l,n/ft ft /El Ib-in/ft /El LOAD COMBINATIONS (CBC 160S.2.1) (16-2) U •• (16-4) U = (16-5) U = (16-6) U - (16-7) U = (16-13a) A = (16-13b) A = 12.4,2.3 E = DESIGN SUMMARY: 1.20 D 1.20 D 1.36 D 0.90 D 0.74 D 1.00 D 1.08 D Qe± QE± 1.60 L + 0,50 L -t- 0.50 L -1- 1.60 W + 1.00 Qe H- 0.75 L -t- 0.75 L 0.2Sosi 0.16 D -I- 0.50 Lr -t- O.SO Lr + 1.00 Qe •^ 0.75 W 0.53 Qe -1-1,60 ,D Strength: (16-2) (16-4) (16-5) (16f6) (16-7) CPM„ = 60,752 57,846 59,404 53,502 .^1,578 ib-in,^ ' :M„ = 9,993 23,156 22,266 18,359 15;076 Ib-in % Over= 0.0% 0.0% 0;0% 0.0% 0,0% : At Reveal: tPMn = 57,434 54,874 55,917 51,167 : 49,918 ithin: Mu = 9,799 16,340 16.629 12,438 11,358 Ib-in %Over = 0.0% 0.0% 0.0% 0.0% ::.o.o% Defiectlon: Wind Seismic At Reveal: Wind Seismic 1„/150 = 1.1200 1.1200 in 1.1200 ;; :1;12Q0 in Max A = 0.0282 0.0287 in 0.0190 0.0193 in % 0v8r = 0.0% 0.0% ':o.o*:: I I I PRIME Jab: ^Ki3-"o STRiiCTUM na;e' la-^o-i-? ENGINEERS shi; CONCRETE SLENDER WALL Considering P-Delta Effects PROJECT*; 2K13-170 DESCRIPTION; Viasat BLDG #10 PIER 3 (5-0" WIDE) 2ND TO 3RD Strength at Factored Load: (16-2) (16-4) (16-5) (16-6) (16-7) Factored ecc. P^, = = 2411,20 1218,80 1307,99 507.60 418.41 ibs,/ft Factored axiai, P^tm ~ = 3134,40 3134,40 3452.38 2287.80 1885.82 Ibs/ft Factored wall, Puw = = 1170,00 1170,00 1400.32 968.91 689.56 lbs/it Factored, P^ = 6715.60 5523,20 6160.70 3764.31 2993.79 IbS/n Pu/A5 = 86.10 sO.Oefc... OKI = 86,10 70,81 78.98 48.26 38.38 psi- As = 0.267 < 0.6p(bd) = 0.667 ,„0K (R14.8.3) As,= As + (Pu/f,)-(h/2d) = . 0.379 0,359 • 0.369 0.329 0,317 in^ • a = (Pu-t-Asfy)/(0,85fcb) 0.557 0,528 0.543 0.484 • 0.465 in c = a / 0,85 = 0.655 0,621 0.639 0.570 0.54S in &. = (Ecu / C) d - Ecu = 0.0119 0,0127 0.0123 . 0.0141 0.0148 > 0,005 For Tension Control = OK OK OK OK OK M„ = (A,cfy)(d.a/2) 67502 64273 56004 59447 57309 Ib-in (14-7) lcr = n•A,s•(d-c)^•^b•c*/3 20.41 19,71 20.09 18.64 18.14 in* Mua = i^fuo Puf e X / Ic 6631 16524 15111 14568 12469 Ib-in (14-4) Mu = Mui, Pu Au 9993 23156 22266 18359 15076 Ib-in (14-5) A„ = 0.50 1,20 1.16 1.01 0.87 in <}>M„ = = 60752 57846 59404 53502 51578 Ib-in (14-3) Check that 0M„ 2 Mu OK OK OK OK OK lg = bt^/12 274.63 274.63 274.63 274.63 274.63 in* (9-9) Mc = 7,5fc''-^lB/0.5t = 40082 40082 40082 40082 40082 Ib-ln (14-2) Check that <1>M„ 2 Mj, OK OK OK OK OK Deflection at Service Load: (18-13a) (16-13b) Service ecc, Ps, = 1377 00 1423,82 lbs • Service axial. PM^M = = 2668.00 2879,04 Ibs Service wall, P^,^ = 975,00 1006,67 lbs Service, Pj = Psf Psw = = 5020,00 5309,53 Ibs 4s = 5M„lc'/(48E,y 0.11 0,11 in M.T = (A,cfy)(d-a/2) 64273 66004 Ib-in A„ = 5M„lc^/(48EcU 2,50 2.58 Ms3 = Mso-^P„ex/lc 9961 10123 M = M,,-^PsAs = 10103 10275 Ib-in (14-8) 0,03 0.03 in Allowable A= lc/150 -1,12 1.12 in Check that AjS Aasow OK OK Shear at Factored Load: (16-2) (16-4) (1S-S) (16-6) (16-7) Wtq = 8Mu/(12l/) -33,99 78.76 75.73 62.45 51.28 v„ = lcW„,/2 = 237.93 551.34 530.14 437.12 358.95 (11-3) (t)Vc = 0.75 (2)fc"^bd 3699,86 3699.86 3699.86 3699.86 3699.86 Chedsthat <PVc2Vu OK OK OK OK OK PRIM.E Jolj; 2K:^S-ITO ENGINEERS Sht: i2X CONCRETE SLENDER WALL Considering P-Delta Effects (AT LOCATiON OF REVEAL) PROJECT*; DESCRIPTION: 2K13-170 Viasat BLDG #10 PIER 3 (5-0" WIDE) 2ND TO 3RD Strength at Factored Load: (16-2) (16-4) (16-5) (16-6) (16-7) Factored ecc, Pu, = 2411.20 1218.80 1307.99 607.60 418,41 lbs Factored axial, P„„ai = 3134.40 3134,40 3452.36 2287.80 1885,82 ibs Factored wall, P^.„ = = 585.00 585,00 662.09 438^75 361,36 ibs Factored, P^ = = 6130,60 4938.20 5422.46 3234.15 2565,89 lbs As = 0.267 s 0.6p(bd) = 0.667 ...OK (R148,3) A..= As-f (Pu/f,)-(h/2d) 0.357 0.339 0.347 0.314 0.305 in' a=.(Pu-i-AEfy)/(0.85fcb) = 0.542 0.S13 0.525 0.471 0.467 in C= a 7 0.85 = 0.638 0.604 0.618 0,555 • 0.538 in K= (A3,fy)(d-a/2) •53815 60971 62130 55852 55466 Ib-in (14-7) 1-,= 19.39 18.73 19.08 17,70 17.23 in* Mutt = Muo Pu, e x / !c 6531 12223 12445 10267 9803 ib-in (14-4) fVI„= IWua-^PuAu 9799 16340 16629 12438 11358 Ib-in (14-5) Au = 0.52 0.83 0.77 0,67 0.58 in 0M„ = 57434 S4874 55917 51167 49918 !b-in (14-3) Check that a>M„ 2 M„ OK OK OK OK OK lj= bt'/12 190.11 190.11 190.11 190,11 190.11 in* (9-9) Mc= 7.5fc"l8/0.5t = 31366 31365 31356 31366 31365 Ib-in (14-2) Checkthat«M„2Mc, OK OK OK OK OK Deflection at Service Load: (16-13a) (16-13b) A.= = 0.02 0;02 in Allowable A = lc/160 1.12 • 1.12 in Check that A, s Aa8„„ OK OK PRIME jQb: STRUCTURAl oaa;. ENGIHEERS SNI: CONCRETE SLENDER WALL Thk (in) Width (ft) Start (fli End (ft) Considering P-Delta Effects q1 = 8.00 S.OO 0,00 15,00 PROJECTS: 2K13-170 q2 = 6,50 S.OO 9,00 15,00 DESCRIPTION; Viasat BLDG #10 q3 = PIER 3 (S'-O WIDE) 1ST TO 2ND q4 = 6,50 S.OO 0.00 3,00 AT LINE 1 q5 = DESIGN CRITERIA: fc = 4000 psi © = 5,50 in Min Vertical Steel -0.0025 f,= 60000 psi Eccentric, D = 282 plf Min Horizontal Steel = 0.0025 Concrete Weight = 150 pcf Eccentric, L -542 plf Max Vert Spacing -18.00 in Add'l From Above, D = 28.840 kips Clear Height, 1^ = 15.00 ft Add'l From Above, L = .5.710 kips 0-0.9 Parapet Height = 0.00 ft Girder, D -0.000 kips 01 = 0,85 Wall Thickness, t = 8,00 in Girder, L -0.000 kips £c = 3834 ksi h/t = 22,50 • Girder Load EcceriJric? = 29000 ksi Roof, Lr-0,840 kips n = 7.56 Depth to Rebar, d = 4,750 in 0,003 Vertical Rebar = #4 «y = • 0,00207 Spacing = 9,000 in 0.6pi, = 0.0174 Steel © Each Face = 2 (# layers) Sos = 0,791 9 0.302 W,» Reveal Depth -0,75 in Eff, Wnd Area = 150 ft^ Reveal to Bottom = 11,00 ft Wind Load, W = 14,00 psf d at Reveal = 4,750 in (16-2) (16-4) (16-5) (16-6) (16-7) (16-13a) (ie-13b) MuO = 0,00 15121 13622 15121 13622 7088 7225 Ib-in/ft 7.50 7.50 8,25 7,50 8.25 7,50 8.18 ft Aji«i» -0.00E-+00 S.10E-I-07 4,67E-i-07 5,10E->-07 4.67E-I-07 2,39E-l-07 2,48E-i-07 /El At Reveal: Mc = 0 11928 11641 11828 11641 5544 6155-Ib-in/ft A,= O.OOE-t-OO 3,82E-»-07 3.S6E-I-07 3.82E-I-07 3.56E-I-07 1,79E+07 1,89E-*-07 /El LOAD COMBINATIONS (CBC 1605.2.1) (16-2) U = (15-4) U = (16-5) U = (16-6) U = (16-7) U = (16-13a) A = (16-13b) A = 12,4,2,3 E = DESIGN SUMMARY: 1,20 D 1,20 D 1.36 D 0,90 D 0,74 D 1,00 D 1,08 D Qg± QE± •<• 1,60 L -1-O.SOL -I-0.50 L -I-1.60 W •*• 1.00 Qe -I- 0.75 L * 0.75 L 0.2SosD 0.16 D -1- 0.50 Lr + 0.50 Lr 1.00 Qe •t- 0.75 W •1- 0.53 Qe •1- 1.1 )W Wind (1,6 W) 18,00 , 14.00 < 12.00 - 10.00 4 I 8.00 6.0-0 1.00 • 2.00 - 0.00 i 5" » Seismic (1.0 E) 16;00 14.00- 12.00 • 10.00 8.00 6.O0 4.00 2.00 0.00 Strength: (16-2) (16-4) ; (16-5) (16-6) (16^) • ct)M„.= 105,758 98.262 1.01,878 87,801 83,498 Ibrin 9,162; 24,156 23,734 19,954 17,440 Ib-in %Over = 0.0% 0.0% 0.0% 0,0% 0,0% AtReveal: (DMn =: 100,094 93,316 .: 96;T85, 83,982 80,797 Ib-in Mu = ; 9.158: 13,496 : ; 20,178 15,690 14,772 ib-in %,Over = 0.0%; 0,0% 0,0% 0,0% 0,0% Defiection: Wind Seismic AtReveal: Wind SeiSmic lc/150 = 1.2000 1,2000 in 1,2000 1.2000 in Max.A = 0.0180: 0:0201 in 0,0149 0.0157 in % Over= 0.0% : 0.0% 0,0% : 0,0% PRIME a«b; ENGINEERS sw: CONCRETE SLENDER WALL Considering P-Delta Ejects 2K13-170 DESCRIPTION: Viasat BLOG #10 PIER3(5'-0"WIDE) 1ST TO 2ND Strength at Factored Load: (16-2) (164) (16-5) (16-6) (16-7) Factored ecc, = 2411,20 1218.80 1307.99 507.60 41841 Ibs/ft Factored axial. P„a^i = 8832,80 7576.60 8404.73 5191.20 4279.07 Ibs/ft Factored wall, P„„ = = 1485,00 1485.00 1744.36 1223,44 852.42 Ibs/ft Factored, = 12729,00 10280.40 11457.08 6922.24 5559.90 Ibs/ft Pu / A, = 132,59 S 0.06fC,,, OK! 132.59 107.09 119.34 72.11 57.S2 psi As = 0,267 5 0.6p(bd) = 0.992 ..,0K 57.S2 psi (R148.3) A,e= As-i-(Pu/fy)-(h/2d) 0.445 0.411 0.427 0.364 0.345 in^ a= (Pu + Asfy)/(0,85 fcb) = 0.704 0.644 0.673 0.SS2 0.528 in c= a/0,85 = 0.828 0.758 0,792 0.661 0.622 in £i = (£ou / c) d - Ecu -0.0142 0,0158 0,0150 0.0186 0.0199 2 0,005 For Tension Control = OK OK OK OK OK Mn= {A,efy)(d-a/2) = 117509 109180 113198 97557. '92775 ib-in (14-7) Ic, = n-A.,-(d-c)^-»-b-c'/3 54.07 51.28 52.64 47.16 45.39 in* M„j= ti^uoP„, e X / Ic = 6631 18473 17579 16517 14888 Ib-in (14-4) Mu=M„,-^PuAu 9162 24156 23734 19954 17440 Ib-in (14-5) Au = = 0.20 0,55 0.54 0.50 0,46 in <PM„ = 105758 98262 101878 87801 83498 Ib-in (14-3) • Check that !!>M„ 2 Mu OK OK OK OK OK lj= bt'/12 = 512.00 512,00 512.00 512.00 512.00 in* (9-9) M„= 7,5fc''*lj,/0.5t = 60716 60716 60716 50716 60716 ib-in (14-2) Check that <t>M„ 2 Mc, OK OK OK • OK OK Defiection at Service toad: (16-13a) (16.13b) Service ecc, P,,= = 1377.00 1423.82 lbs Service axial, P,^ = = 6750.50 7229.37 Ibs Service wail, P,» = = 1237.50 1267,14 lbs Service. P,= P5,-i-Ps« = = 9365.00 9820.33 Ibs A„=SMclc'/{48 Eclg) = 0.10 0,10 in M„= (A,„fy)(d-ay2) = 109180 113198 Ib-in A„=SM„lc'/{48EcW) 1.87 1,92 Msa = Mso Psf e X / Ic 10875 ' 11492 M = Ms, -^ Pt A, = 11053 11692 Ib-in (14-8) A,= = 0.02 0,02 in ,MlowableA= ij/iso 1.20 1,20 in Check that As SA^cw OK OK Shear at Factored Load: (16-2) (1S-4) (16-5) (16-6) (16-7) w«,= 8Mu/{121c') 27.15 71,57 70.32 59.12 61.67 Vu=!cW„f2 = 203.60 536,81 527.43 443.42 387,56 (11-3) tpVc = 0.75 (2) f c'* b d = 5407.49 5407.49 5407.49 5407.49 5407,49 Check that OVc 2 Vu OK OK OK OK OK PRIME Jcb; ;^Kis-i70 Gl\EERS ofat; CONCRETE SLENDER WALL Considering P-Delta Effects (AT LOCATION OF REVEAL) PROJECT*: DESCRIPTION; 2K13-170 Viasat BLDG #10 PIER 3 (5'-0" WIDE) 1ST TO 2ND Strength at Factored Load: (16-2) (16-4) {16-5) (16-6) (1.6-7) Factored ecc, P„, = = 2411.20 1218.80 1307.99 S07.S0 41841 Ibs Factored axial, Puaxtai = = 8832,80 7576,60 8404.73 5191.20 4279.07 lbs Factored wall, P„„ = 870.00 870.00 984.65 552.50 537.85 Ibs Factored, Pu = = 12114.00 9665.40 10697.37 6351.30 5235.33 lbs As = 0.267 S 0.6p(bd) = 0.992 ...OK (R14.8.3) A,,= As -t- (Pu/ fy)-(h / 2d) 0.421 0.390 0.403 0.347 0.333 in^ a= {Pu-t-Asfy)/(0.85f'cb) = 0.689 0.629 0.654 0.548 0.520 in c =3/0.85 = 0.611 0.740 0.770 0.645 0.612 in Mn= (As,f,)(d-a/2) 111216 103685 106872 93313 89775 Ib-in (14-7) lc = 51.51 49.00 50.08 45.36 44.07 in* Mua= Muo•^ PuiBX/ic 6631 15180 15598 13224 •12907 Ib-in (14-4) Mu=M„,-fPuAu 9158 19496 20178 15690 14772 Ib-in (14-5) A„ = 0.21 0.45 0.43 0.39 0.36 in <I>M„ = 100094 93316 96185 83982 80797 Ib-in (14-3) Check that m„ i. Mu OK OK OK OK OK lg= bt^/12 = 381.08 381.08 381.08 381.08 381,08 in* (9-9) Mc, = 7.5 f c°-° 1, / O.S t 49865 49865 49865 49865 49865 Ib-in (14-2) Check that (J>ft/1„£M„ OK OK OK OK OK Defiection at Service Load: (16-13a) (16-13b) Ac = 0.01 0.02 in Allowable A = lc/150 1.20 1.20 in ChecK that A, SA,||„.„ OK OK ,Y —o .z.„,l,.^x 1.36 yi. !H -.03k/ft /.03k/ft \ -.25k Loads: LC 3, DL+Ponit Results for LC 3, DL+Ponit Z-moment Reaction units are k an(d k-fl -r-l I fi ra )-H 2: ^ Ll S=3 (-H GO c- lAi C/3 rc is o —^ e«3 133 Company Designer Job Number PSE 2K13-170 \ PRIME J0B:2K13£120 '^.fSTRUCTURAL m?. 10-2013 ENGINEERS SHT:„.^ Oct 22, 2013 4:30 PM Checked By: Member Cold Formed Steel Code Checks 1 2 A 4 LC 3 ' jMember M1 3 3 M2 M3 M4 5 3 6 3 M5 M6 3628162-33 7 .3 M7 UC Max .000 362S162-33 • .491 T62S162-33'~~^"'j ^362S162^3 i , 362S162-33 1362S162-33 i Lo.e[ftI_Shear UC 0 ^ .600 i 3 0 .432 3,0873 .559 ^1 .046 f ,^75 .075 .022 Loc[ft] Pn[kl _ 0 6.1657 3 5.4669! 0 514669 0 6.4098 J.nm M46_ 8.646 8.646 8.646 0 : .022 0 .000 0 ,5.3946 8.646 0 6.3513 8.646 IVln[k-ft] .8116 .836 .836 .8116 .811^6 ^-6657 .8116 1 Cb Li .'2.591^ 2^5913 il?668/1; Cm .6 1 .85 .6 _ E.Cin iC3.3.1-1| C5.1 ll'j CSlTt 'C5.2.1-2 6 C5.2.1-1 Q C5.2 1-1 3623162-33^ .078 , 0 . .000 , 0 ,5.4022,8.646, .836 , 1 ^ .6 .cs 11-1 y /1' 1 (y R1SA-2D Version 10.1.0 [\...\...\...\...\...\...\RISA\Canopy.r2d] Page 1 .073k/ft .073k/ft LC 1, DL+ira'"' 3 for LCI, DL+win(d lent Reaction units are k ancJ k-fl t.*J f t OQ C—' Company Designer Job Number PSE 2K13.170 A PRIME J0B:2K13-i7n STRUCTURAL DATE:]i^ ENGINEERS SHT:. JL Oct 22,2013 3;28PM Checke(j Bv: Member £gjl£S;2!££Sfoem.daC/,ecfe (Bv Con,H,n^,.„, Memhfir cts SJiape , 3^162-33 ;'362S162-33,' 362S162-T3i Jg25162-33' ' 362S162-33" ^625162-33," ^^i?!?^'^^ ""Til UtMax.Lo^ftJ Shear UC Locfftl ^0,Q0_!.._0_ ^ .000 ~- .241 3 ^24t 0 _ J30 J^0£7^ •J J 0 \ •3J6 079" .131 .131 .003_ .003 MO .6o6~ ^ • , -BnlkL .Tn[y_ 0,^-1657 8.646_ -3 5.4^g9i 8.^6 _P. 5.4669*8.646' -P J5i02_2, a646_; -Q 5,3946 ' 8^6 0 -A3513 8.646 0 5^022 8.646 „„Mn{k-flJ .8116. .836 .836" Jil6. .8J16 Jm i_ 1 .836 "l ,..,-Cft ,. Cm ,_J .6' 2 2129 ^ 2 2129785" T6667 g" 11,6667 -^6 .6 JEgn C3,3,1-1 C5 11-:; €6.1 1-1 05 2,1-3 Csliril C5.2~1-l' cs.-orii I www.hjlti.us Company: Specifier: Address: Phone 1 Fax: E-Mail: Specifier's comments: PRIME JQH:2K13.170 m STRUCTURAL DATE:J15:2QJ2_ 'jgss^ ENGINEERS SHT:. Page: Project: Sub-Project I Date; i PROFIS Anchor 2.2.1 Pos. No.: 1 10/23/2013 Input data Anchor type and diameter: Effective enfibedment depth: t\/laterial: Evaluation Service Report:: Issued I Valid; Proof; Stand-off installation: Anchor plate: Profile Base material: Reinforcement: Seismic loads {cat. C, D, E, or F); Geometry [in.] & Loading [Ib, in.-ib] Kwilt BoltTZ-CS, 1/2(31/4) h., = 3.250 in., h„„ = 4.000 in. Carbon Steel ESR 1917 5/1/2011 I- design method ACl 318 / AC 193 e> = 0,000 in. (no stand-off); t» 0.500 in. I, X I, X t = 2.996 X 2.286 x 0.500 in. (Recommended piate thickness: not calculated) S shape (AISC); (L x W x T x FT) = 3.000 in. x 2.330 in. x 0.170 in. x 0.260 in. aacked concrete , 2500. f." = 2500 psi; h = 12.000 in. tension: condition B, shear: condifion B; no supplemental splitting reinforcement present edge reinforcement: none or < No. 4 bar yes (D.3.3.5) it ^^^^^^ «B ; *' -. J Proof i Utilization (Qoverning Cases) Loading Proof Tension Shear Design values [Ib] Load Capacity Pullout Strength 1360 Steel Strength (without lever 325 arm) 2396 3572 Utilization [%] 57/- -/9 Status '0K~ OK Loading Combined tension and shear loads 0.5S8 0,091 5/3 Utilization Status 41 OK Warnings • Please consider all details and hints/warnings given in the detailed report! Fastening meets the design criteria! Input data and results must be checked for agreement with the existing conditions and lor plau»l>ilily! PROFIS Ani*8r (c) 2003-2009 Hilli AC, FL.M84 Schaen Hilli is a regislered Trademati! of Hiiti AG. S*aan Y o .2,J ,X r64 .25k .03m .25k 0.376 Loa<js: LC 3, DL+Ponit Results for LC 3, DL+Ponit Z-moment Reaction units are k and k-ft y- / ...... /vejttytowi' /y/ /y 4 /' - ivy Ky s s s S 03 Company Designer Job Number PSE 2K13-170 Canopy _ PRIME j0B:2K13-170 m STRUCTURAL DATE:JM2i3. ENGINEERS SHTtIl35 Checkeci By:_ Member Cold Formed Steel Code Checks (By Combination) 1 LC 3 Member IVI1 Shape 362S162-33 UC Max .000 Locift3_ShearUC Locift] 0 .000 0 Pn[k] Tn[k] Mn[k-tt] Cb 5.0849 8.646 .8116 1 Cm .6 Eqn p,3,1-1l i 2 3 M2 6003162-33 .230 .7656 .349 0 5.5188 11.352 1.6408^2312 1 ps.ll-i 3 i 3 • M3 600S-'62-33 .203 0 .144 0 5.5188 11.352 1.64082-7622 .85 C5 1.1-1 4 ,3' M4 6003162-33 .224 , 3.9038' .016 0 '5.2482 11.35211.58741-66S7 .6 "C5.27l'-1 i 5 3 M5 600S162-33 .316 1 0 i .016 i 0 •5.2349 11.352 i 1.58741-6667 .6 C5 2.1-1 6 3 M6 3623162-33 .068 0 .000 i 0 16.0875 8.646 l .8116 1 .6 csTzvij 7 3 M7 362S162-33 .053 0 .000 0 4.7613 8.646 .836 1 .6 C5.1.1-1 /*, .6 RISA-2D Version 10.1.0 [\...\,..\...\...\...\...\RISA\Canopy2.r2cl] Page 1 -.073m •.25k 566 .073k/ft ' M3N / / X A i Loads: LC 1, DL+wind Results for LC 1, DL+wind Z-moment Reaction units are k and k-ft Company Designer Job Number PSE 2K13-170 PRIME JOB:2K13-170 JMA STRUCTURAL DAmjMoil-ENGINEERS SHT:__^ Canopy Checked By:_ Member Cold Formed Steel Code Checks (By Combination) ± 2 3 4 _LC 1 i 1 1 ' 1 i 5. 6 7 i 1 _Member_ M1 M2 __M3__ M4 Shape 362S162-33' 600S162-33 6008162-33 16ClbS162-33 UC Max •QQQ •221 J72_ _ .068 ! 3 9038 Loclfl]„Shear UC Loc[ft] 0 000 0 463 0 276 0 .000 ; 0 Pnfkl 5.0849 Tn{k] 8.646 Mn(k-1lj_ ,8116 Cb 1 Cm .6 _Egn C3.3,1- .7656 0 5.5188 11.352 1.6408 1^503 5.5188 11 352 1 6408 2 «?3 15.2482 11.352 1.5'874>-6667 -] ;c5.1,1-1 jy)5 I600S162-33 .218 0 .000 -0 i 5.2349 11 352 1.5874 H-QS^T} 3625162-331 .iig * 0 - ."OOO 0 i6.0875'8.646 • .8116^ 1 ' M6 M7 362S162-33 ,:0M.„, 0 i .000 \ 0 14.761318.646! .836 i 1 ,85_.C5.i 1-1 ^ ;C5 2.1-^ ITsTi-i TsnSirTvii RISA-2D Version 10.1.0 r\...\...\...\...\-.,\ \RlRA\r:flnr>nv9 r9rii 0 O^-^-^/fy LcAy^^ d. XI/ r? yj..--—-:• ,yyf 0-1 H ft P A.<£i y. 7^ "h,/ 1^ P. Lhi ypr^ h^'i J 6(y /o X I^K!^ \—J / <7 '-:r,' V- ./'•/ A jy^JyjO£z,_ [Af- .SZ^SL™ . •- tf ly , 0 />, ^ / <:5»^ e Lf^^ f<y)^ //~) %4 Vc? cyy' %,5: 4t -f t>/l iA/, j ) pi... --^ ^- - , '•• ' /--' STRUCTURAL TUBE COIOMW DESIGN (2.2) 2K13-170 Col at Line C and ,1, 10 PRIME J0B:2K1M2fi, STRUCTURAL DATE:JS:mS_ ENGINEERS SHT:_4f|^ LDF =1.00 UNITS = INCH-KIPS U.O.N COL.HTS Lx= 15.00 FTS COL.HTS iy= 17.00 FTS LOAD FROM FLOOR ABOVE - 29.07KIPS PID, PIL, el = 13. -/2 15.35 P2D, P2L, e2 = 0.00 0.00 P3D, P3L, e3 = 2.82 2.38 P4D, P4L, e4 = 0.64 0.57 Mx= 0.00 INCH-KIPS Afy= 0.00 INCH-KIPS 10.00 0.00 3.00 3.00 Fy = 46.00 KSI Cb =1.00 Kx,Ky =1.00 CmKfCmy = 1.00 .00 .00 LOAD CASE 1 LOAD CASE 2 LOAD CASE 3 LOAD CASE 4 LOAD CASE 5 PT= 64.54 Mx= 290. 70 My= 11.95 63.97 290. 70 13. 66 46.82 137.20 4.83 62.17 290. 70 4.83 48. 63 137.20 13. 66 TSI2.OX 6.0X0.2500 WEIGHT'^ LOAD CASE= Fa = fa = 29.23 2 17. 60 7.45 Fbx= 27.60 fbx= 10.83 Fby= 27.60 fby^ 0.74 IA = 0.89 iB = 0. 69 per AISC per AISC . 6-la . 6-lb (s3B 12vOsOb3T (sOBlO/25/13 (slpl2^1s0b4148TBEJm ANALYSIS PROGRAM (slp9^1s0b4148T (6.60) (sOplO.OOh • SPAN LENGTH = 15.00 ft (Single Span) POINT LOADS (k & ft) Pcf PI X 9.690 0.000 12.50 BSACTIONS LOAD (k) LEFT RIGHT Dead Live Total MAXIMUM FORCES 1.615 0.000 1.615 8.075 0.000 8.075 V max =• 8.07 k @ 15.00 ft Vd max = 8.07k g 15.00ft M maX' = 20.19 kft @ 12.50 ft Md max = 20.19 kft @ 12.50 ft DEFLECTIONS LOAD (EI = kin^2) Defl (in) X (ft) Total 579209/EI g.54"~" 0/EI 0.00 Dead 566865/EI mxdspan EI TOTAL Defl L / 180 X / £40 L / 360 579209 772278 1158418 .6) ! : V. •\yr -xj^ VL .y\j On J PR,|^s/lE Job; .aK^i-^-J^^o SiRDClUKAl Oate:_i£u,£ai2_ ENGIMEERS snt; CONCRETE SLENDER WALL Considering P-Delta Effects PROJECT*: 2K13-170 DESCRIPTION: VIASAT BLDG #10 1-2 DESIGN CRITERiA: f,. = Concrete Weight = Clear Height, = Parapet Height = Wall Thickness, t = h/t = Depth to Rebar, d = Venical Rebar - Spacing = Steel @ Each Face = Reveal Depth = Reveal to Bottom = d at Reveal = 4000 psi 60000 psi 150 pcf 15.00 ft 0.00 ft 8.00 in 22.50 4.000 in #5 12.500 in 1 (# layers) 0 in ft in 1ST TO 2ND Thk fin) Width (ft) Start (ft) End ifti ql = 8.00 7.50 0.00 15.00 q2 = 0.00 q3 = 04 = 0.00 q5 = Eccentric, D = Eccentric. L = Add'l From Above. D = Add'l From Above, L = Girder. D - Girder, L = 7,00 in 4S8 plf 867 plf 35.240 kips 23.830 kips 7 640 Kips 11.830 kips Q Girder Load Eccentric? Roof. Lr- 0.000 kips Min Vertical Steel - Min Horizontal Steel = Max Vert Spacing = <P = 01 = Ec = n = O.Qpi, - Sos - Qe = Fp = Eff. Wind Area = Wind Load, W- 0.0025 0.0025 13.00 in 0.9 0.85 3834 Ksi 29000 ksi 7.56 0.003 0.00207 0.0171 0.790 g 0.316 Wp 113 ft= 14,00 psf (1S-2) (16-4) (16-5) (16-6) (16-7) (16-13a) {16.13b) 0.00 7560 10664 7560 10664 3544 5598 Ib-ifi/ft •^Mi/i; -7.50 7.50 7.50 7,50 7.50 7.50 7.50 ft ^itijtr — O.OOE-fOO 2.S5E-I-07 3.SCE-i-07 2.55E-I-07 3.60E-I-07 1.20E-i-07 1.89E-t-07 /El At Reveal: Mo = 0 0 0 0 0 0 0 Ib-in/ft Ao = O.OOE-i-OO O.OOE-i-OO O.OOE-i-OO O.OOE-I-OO O.OOE-I-OO O.OOE-I-OO O.OOE-I-OO /El Wind(1.6 W) Seismic (1.0 E) LOAD COMBiNATlONS (CBC 1605.2.1) (16-2) U = (16-4) U = (16-5) U = (16-6) U = (16-7) U = (18-13a) A = (16-13b) A = 12.4.2.3 . E - DESIGN SUMMARY: 1.20 D 1.20 D 1.36 D 0.90 D 0.74 0 1.000 1 08 D -I- 1.S0L •I-0.50 L * 0.50 L •I-1.80 W •t 1.00 Qe •t- 0.75 L •I- 0.75 L 0.2SosO 016 D •f O.SOLr •I- 0.50 Lr •1- 1.00 Qe + 0.75 W -*• 0.53 Qe 1 .ec W 16.00 u.oo 12.C0 10.00 e.oo 6.00 4.00 2.0) 0.00 16.00 1400 -S2.O0 10.00 8,C0 6.00 4.00 200 0.00 Strength: (16-2) (16-4) (16-S) (16-6) (16-7) 0M„ = 112,978 95,092 98,323 80.347 76,972 Ib-in M„ = 37.254 27,220 34.406 15.541 17.725 Ib-in % Over = 0.0% 0.0% 0,0% 0,0% Q;0% At Reveal: N.A. •Deflection: Wind Seismic At Reveal: Wind Seismic lc/150 = 1.2000 1.20C0 in N.A, Max A = 0.0266 • 0,0310 in % Over = 0.0% 0,0% CONCRETE SLENDER WALL Considering P-Delta Effects PRIME Job; JS^r.m. .PROJECT #; DESCRIPTION: 2K13-170 VIASAT BLDG #10 1-2 1ST TO 2,MD Strength at Factored Load: (16-2) (16-4) (16-5) (16-S) (16-7) Factored ecc, P.^ = 5694,93 3006,17 3241.03 1338,00 1103.14 Ibs/ft Factored axiai, P^^^m = = 10722,13 7227,07 7969.35 4228,80 3486.51 Ibs/ft Factored wall. P,,,, = 900,00 900,00 1018.48 675.00 556.52 Ibsm Factored, P„ = = 17317.07 11133,23. 12228.86 6241.80 5146.17 Ibs/ft Pu/A,= 180,39 <-0,06fc,.. OK! 180.39 115,97 127.38 65.02 53.61 psi A5 = 0,298 S 0.6p(bd) = 0.821 ..OK (R14,8,3) As,= A5 •^(Pu/fv)•(h/2d) = 0.586 0,483 0.501 0.402 0.383 in^ a = ( PuAsf,)/(0.65 f,b) 0.862 0,711 0.737 0.591 0.564 in c = a / 0.85 = 1.014 0,836 0.867 0.695 0.663 in (£cu / c.) d - £cu 0.OQS8 0,0114 0,0108 0.0143 0.0151 > 0.005 For Tension Controi OK OK OK OK OK M„ = (A,,. f,)(d - a/2) 125531 105658 109248 89275 85525 Ib-in (14-7) l„ = nAse {d-o)^-t-b-c^/3 43.70 38,92 39.82 34.53 33.45 in* Mua = Mtio -t- Pat e X / lo 1S932 18082 22007 12243 14525 tb-ln (14-4) M„ = Mtta-^PuAu 37254 27220 34406 15541 17725 Ib-in (14-5) A,= 1,00 0,82 1,01 0-53 0.62 in «IVt„ = 112978 95092 98323 80347 75972 Ib-in (14-3) Check that 0U„ 2 tvl„ OK OK OK OK OK 'p -•ofm 512,00 612,00 512.00 512.00 512.00 in* (9-9) M,, = 7.5T.y>„IQ.Sl 6071S 60715 80716 50716 60716 Ib-in (14-2) Check that 0M„ s M„ OK OK OK OK OK Deflection at Service toad: (16-133) (16-13b) Service ecc, P^* = 3319.92 3443,22 lbs Service axial, P^xtaj = 7081.67 - 7471,37 lbs Service wall, ~ 750.00 812,20 lbs Ser/ice, Ps = p , + c -= 11151.58 11726,79 Ibs 5Mc.l//(48E,l,) = 0.10 • 0,10 in K,-(A,,fv)(d-a/2) 105658 109248 Ib-in A„ = 5 M„ i/' / (48 E, 1„) 2.39 2,41 !W« = Msc -»• Ps, e X / i. 15164 17650 M = iM^-,-^P.A., 15460 18013 Ib-in (14-8) 4i = 0.03 0,03 in Allowable A = 1^/150 1.20 1,20 in Check that A, & OK OK Shear at Factored Load: (1S-2) (16-4) (16-5) (16-6) (16-7) 8iV1u/{12!/) 110,38 80,65 101.94 46,06 52,52 v„ = i,:Ws5/2 827,86 604,89 764.59 345,35 393.89 (11-3) <t>V^ = 0,75(2)fV''^bd 4553,68 4553,68 4553,68 4553.68 4553.68 Check thaf *V. a V„ OK OK OK OK OK PRIh^E Jots; STRllCHiK^ Date;. Mitt at: CONCRETE SLENDER WALL Considering P-Delta Effects (AT LOCATION OF REVEAL) PROJECT*; DESCRIPTION: 2K13-170 VIASAT BLDG #10 1-2 1ST TO 2ND Strength at Factored Load: (16-Z) (16-4) (16-5) (18-6) (16-7) Factored ecc, P^i -5694.93 3006.17 3241.03 1338.00 1103.14 lbs Factored axial, Puajj^i = 10722.13 7227.07 7969.35 4228.80 3486.51 lbs Factored wall, P,« = = 1800.00 1800.00 2036.97 1350,00 1113.03 lbs Factored. P^ = 1821707 12033.23 13247.35 6916.80 5702.69 lbs As= 0.29S S Q.5p{bd) = 0.821 ...OK (R14.8 •3} A,„= As->-(Pt,/f,)(h/2d) 0.601 0.495 0.518 0.413 0.395 in^ a= (Pu-^Asf,)/(0.85r,b) 0.884 0.733 0.762. 0.607 0.577 in c-= a/0.85 = 1.040 0.862 0.897 0.714 0.679 in M„= {A^,%){(S-al2) 128345 108609 112558 91570 87433 Ib-m (14-7) W = = 44.34 39.67 40.64 35.17 34.00 in* Kt - Muc-*-P„!ex/!c 19832 10522 11344 4683 3861 Ib-in (14-4) 38482 #DIV/0! #DiV/0! #DIV/0! #DIV/0! Ib-in (14-5) A„ = 1.02 #DiV/0! #DIV/0! #DIV/0! . #DtV/0l in = 115511 97748 101302 82413 78690 Ib-in (14-3) Check that 0fv!,., > M,, OK #DIV/0! #OIV/0l #DiV/0! #DiV/0! l3=bt'/12 512.00 512.00 512.00 512.00 512.00 in* (9-9) M„= 7.5f/'lj,/0.5t = 6071S 60T16 60716 60716 60716 !b-in (14-2) Check that <£>M„ a OK OK OK OK OK Deflection at Service Load: (16-138) (16-13b) = 0.00 0.00 in Allowable A = i,/150 1.20 1.20 in ChecK that A^SAafc^ OK OK /7 / j'f <• '"?y AJ-''. PRIME J0B:2K1MZ0 ^ STRUCTURAL DATE:. ENGINEERS SHT: 11-201; SEISMIC DESIGjiFORi^E^^F^^ I. Wall Element ap= 1.0 Rp= 2.5 lp= 1.0 z= 0,0 [T, 13,5-1 & 13,6-1 ASCE7-05] [T, 13,5-1 & 13,6-1 ASCE7-05] [§13,1.3] Fp= 0.4apSDs(1+2z/h)/(Rp/lp)*W = 0,1264 *W ^n/ s: PpMAX^ I.eSoslpWp = 1.264 *W ^pMIN - O.SSpslpWp = 0.237 * W yi n / / ^./;k /-J— t/S'f-^f/../ i PRIME .kikii jjai:daix 1 yl 6.5.14 Design Wind Load on Solid Freestanding Walls and Solid Signs Per ASCE 7-05 PROJECT: Viasat BLDG #10 DESCRiPTlOhJ: MECHANICAL ENCLOSURE F = PhGCfA, (6-27) qtt= ,00256 Kj K„ KjV'l (6-15) Exposure coefficient K^ = Exposure B I •! Topography factor -1,00 B I •! (6,5,7,2) Directionality factor K,, = 0,85 (6,5,4.4) Wind Speed V = 85 Impofance factor 1 = 1,00 (6.5,5), T-6-1 15.72 Gust Effect factor G = 0,85 (6,5,8) B;S= 5.01 s/h = 1,000 Case A & B, C| = 1,35 Fig 6-20 Since B/s > 2 Case C must also be considered Total # of Segment with width = s Vert, location of resultant force 9.36 ft from grade Balance, see Fig 6-20 = 0,10 ft Case C, C, for Region 0 to s, = 3,10 s to 2s, = 2.00 2s to 3s, = 1.45 3s to 4s, = 1,05 4s to 5s, = 1,05 Multiples factor (if applicable) Horizontal dim pf return corner L, = 31.5 ft when s/h> 0.8, (l,e.s/h) = 0,80 for Lr/s = 1,85,= 0,68 %c^enning = 0,0% Reduction factor = 1.00 B = 85,10 ft 5'r I I ' Cf =1,36 ssst I i mn it ^ t„i.4,..i.> 1 1 1 1 „| L-i F I mi Sit^»t mmim •Method A iS>B Sign h area As c, K F (lbs) Pn« 17,00 1446,7 1.35 0.60 9,4 10569.7 7.31 )»ethod C Sign h area A, c, dh F(lbs) Pti« Balance, see Fig 6-20 = 17,00 1,70 1.35 0,60 9.4 9.9 5.84 0 to s, = 17.00 289,00 3,10 0.60 9.4 3880.5 13;43 sto2s, = 17,00 289,00 2,00 0,60 9;4 2503.7 8.66 2s to 3s, = 17.00 289,00 1,45 0,60 9.4 1815.1 6.28 3s to 4s, = 17.00 289.00 1.05 0,60 9.4 1313.9 4.55 4s to 6s, = 17,00 289,00 1,05 0,60 S.4 1313.9 4.55 Pnelin»it= 13.43 psf PRIME .jeh: 2K13-170 illis CONCRETE SLENDER WALL Considering P-Delta Effects PROJECT*: 2m-m DESCRIPTION: Viasat BLDG #10 Mechanical Enclosure 1ST TO ROOF DESIGN CRITERIA: rc =• Concrete Weight - Clear Height, I c = Parapet Height = Wall Thickness, t ~ h/t = Depth to Rebar, d = Vertical Rebar = Spacing = S(ee/@ Each Face = Reveal Depth = Reveal to Bottom = d at Reveal = Thk (in) Width (ft) start (ft! End(ft) q1 = 9.00 1.00 1.1 0.00 36.20 IjL q3 = q4:.- q5 = 0.00 4000 psi 60000 psi 150 pcf 36.20 ft ^ 0.00 ft 9.00 in 48.27 e = Eccentric, Dr = Eccentric, Lr = Add'l From Above, Dr = Add'l From Above, Lr = Girder, Dr = Girder, Lr = 0.00 in 0 plf 0 plf 0.000 kips 0.000 kips 0.000 kips 0.000 kips D Girder Load Eccentric? J 6.750 in #5 14.0 in 2 (# layers) 0.75 in 17.00 ft 6.750 in Min Vertical Steel • Min Horizontal Steel = Max Vert Spacing - 0- 0, -- Ec = = n = *• Ci/ - h = O.SPi, = Sos - Qe= Ep = . Eff. Wind Area = Wind Load, W = 0.0025 0.0025 18.00 in 0.9 0.85 3834 ksi 29000 ksi 756 0.003 0.00207 C.0181 0.791 g 0.237 Wp 36 ft' 13.43 psf (16-3) (16-4) (16-5) (16-6) (16-7) (16-13a) (16-13b) MuO = 0.00 42240 52455 42240 52455 19800 27539 Ib-in/ft 18.10 18.10 18.10 18,10 18.10 18.10 18.10 ft ^fitax — O.OOE-I-OO 8.30E-I-08 1,03E-f09 8,30E-t-08 1.03E-t09 3.89E-I-08 5.41E-f08 /El At Reveal: Mo = 0 42084 52261 42084 52261 19727 27437 Ib-in/ft Ac,= O.OOE-i-00 8.27E-I-08 1,03E-f09 8,27E-i-08 1.03E-I-09 3.87E-I-08 5.39E-I-03 /El LOAD COIWBINATIONS (CBC 1605,2.1) (16-3) U = (16-4) U = (16-5) U = (16-6) , U = (16-7) U = (16-13a) A = (16-13b) A = 12,4,2,3 E = DESIGN SUMMARY: 1,20 D 1,20 D 1,36 D 0,90 D 0,74 D 1,00 D 1.08 D QE± Qs± * 0:50 L * 0,50 L •I- 0,50 L -I-1,60 W -I-1,00 Qe •t- 0,75 L •i-0,75L 0,2SosD 0,16 D 1-1,60 Lr -I- 0,50 Lr •I-1,00 Qe -I-0,75 W •I- 0,53 Qe -t- 1,60 W Strength: (16-3) (16-4) (18-5) (16-6) (16 7) ;epM„ = 103,186 103,186 104(383 100;910 99,708 Ib-in ^ ^•^••^•;;::,ii/i^=.,: 0 52,379 66,993 49,570 59,818 :lb-in' % Over = 0,0% 0.0% : 0,0%: :o;o% At Reveal: 102,893 102,893 104,051 100,690 99,527 Ib-in Mu = 0 52,999 67,959 49,933 60,125 ;;lb-in % Over = 0.0% 0.0% 0,0% •0,0% 0,0% Wind (1.6 W) 40,00 Seismic (1.0 E) 40,00 35,G0 1 _| 35.00 • 30.00 1 30,00 25.00 -1 26,00 k n 20.00 , . • 20,00 i 1 15,00 • , I 15.00 1 1 - 10,00 , 1 1000 f B 6,00 • • 5.00 f • 0.00 H si 0.00 \ 0.00 H o 0.00 s- a, «o> a. jL r*-a s- a, «o> a. jL -S « Oi s- a, «o> a. jL E «j to R) W JO s- a, «o> a. jL ^ o- CONCRETE SLENDER WALL Considering P-Delta Effects PRIME J«b; 2K13-170 ENGINEERS Sht; . A PROJECT #; DESCRIPTION; 2K13-170 Viasat BLDG #10 Mechanical Enclosure 1ST TO ROOF Strength at Factored Load: (16-3) (16-4) (16-5) (16-6) (16-7) Factored ecc, 0,00 O.OQ 0.00 0.00 0,00 lbs/ft Factored axial, Pi^ddi = 0,00 0.00 0.00 0.00 0,00 ibs/ft Factored wall, P^ = 2443,50 2443.50 2765.51 1832.63 1510,62 lbs/ft Factored, Pg = 2443.50 2443.50 2765.51 1832.63 1510.62 !bs/ft Pu/Aj|= 25,61 S0,06fc„, OKI 22.63 22.63 25.61 16.97 13,99 psi' As- 0,266 S0.6p(bd)= 1.463 ...OK (R14,8,3) A,,= As-*-{Pu/fy)-(h/2d) = • 0.293 0.293 ' 0.296 0,286 . 0,282 in'- ' a= {Pu-i-Asf,/)/(0.85 f,b) 0,451 0.451 0.459 0,436 0,428 in c= a/0,85 0,530 0.530 0.539 0,513 . 0,503 In £i = (ecu / c) d - Ecy = 0,0352 . 0.0352 0.0345 • 0,0365 0.0372 S 0.005 For Tension Control OK OK OK OK OK K.' (A„f,)(d-a/2) 114651 114651 115981 112122 110787 Ib-in (14-7) l„ = nA,,(d-o)'-i-bc'/3 86.29 86.29 87.11 84,72 83,89 in' Mut,= MucH-P^ex/l<, 0 42240 52455 42240 52455 Ib-in (14-4) MM= M„,-t-P„A„ = 0 52379 66993 49570 59818 Ib-in (14-5) A„ = = 0.00 4.15 5.26 4,00 4,87 in 0M„ = 103166 103186 104383 100910 99708 Ib-in (14-3) Check that <DM„S64„ OK OK OK OK OK lg=br'/12 729,00 729.00 729.00 729.00 729,00 in* (9-9) Il4„= 75f,"l3/0.5t 76843 76843 76843 76843 76843 Ib-in (14-2) Check thai d>M„ a U„ OK OK OK OK OK Defiection at Service Load: (16-13a) (18-13b) Service ecc, Ps( = 0.00 0.00 Ibs Service axial, P„^,| = =' 0.00 G.OO lbs Service wall, PB„ = 2036.25 2205.30 lbs Service, P,= P5,-i-P5„ = 2036.25 2205.30 lbs A„=5M„l//(48E,g 0.54 0.54 in M,t=(^.f,Kd-a/2) 114651 115981 Ib-in A„= 5M„l//(48E,y 6.81 6.83 M«= Mjo-i-Pstex/1, = 19800 27539 M= ^^„-^PsA, = 20088 27973 Ib-in (14-8) A.= = 0.14 0.20 in Allowable A = l„/150 2.90 2.90 in Check that As sAa.|o,„ OK OK Shear at Factored Load: (16-3) (16-4) (16-5) (16-5) (16-7} We<,= 8Mu/(12l,^) 0.00 26.65 34.08 25.22 ^ 30.43 Vu= leW«,/2 = 0.00 482.31 616.88 456,44 650.81 (11-3) tI>V,= 0.75(2>fc"^bd = 7684.33 7684.33 7684.33 7684,33 7684,33 Check that <!)V5 a Vu OK OK OK OK OK PRIME Job: 2.K13-170 STRUCTm-Dai^; EMGiMEERS SM; ^ CONCRETE SLENDER WALL Considering P-Delta Effects (AT LOCATION OF REVEAL) PROJECT*: DESCRIPTION: 2K13-170 Viasat BLDG #10 Wechanical Enclosure 1ST TO ROOF Strength at Factored Load: (16-3) (16-4) (16-5) (16-8) (16-7) Factored ecc, P^f = = 0,00 0,00 0,00 0.00 0.00 ibs Factored axiai, Puaxtai = = 0.00 0,00 0,00 0.00 0.00 lbs Factored wall, P^ = = 2592.00 2592,00 2933.58 1944.00 1602.42 Ibs Factored, P„ = = 2592.00 2592,00 2933,58 1944.00 1602.42 Ibs. As= 0.266 < 0,6p(bd) = 1.453 ...OK (R14.8.3) As.= As-^(Pu/f,)-(h/2d) . 0.292 0.292 , 0,296 0.286 0.282 in^ • a= (Pu-^Asfy)/(0.85f,b) 0.464 0,454 0,463 0.43S • 0.430 in c = a / 0.85 = 0.534 0,534 0.544 0.516 0.505 in (A,.f,)(d-a/2) = 114325 114325 115613 . 111878 110586 ib-in (14-7) l„ = 85,97 • 85,97 86.74 84.48 83.69 in* Ki- Muo-i-PufSX/lc = b 42084 52261 42084 52261 Ib-in (14-4) M„=M„j + P„A„ = 0 52999 67S59 49933 60125 Ib-ir; (14-5) A„ = 0.00 4,21 5.35 4.04 4.91 in = 102893 102893 104051 100690 99527 Ib-in (14-3) Check that c5)M„ 2 OK OK OK OK OK lj= bt^/12 . 561.52 561,52 561.52 561.52 561.52 in* (9-9) ltfl„= 7.5fc"lg/0.5t = 64570 64570 64570 64570 64570 Ib-in (14-2) Chet* that ^K ^ K, OK OK OK OK OK Deflection at Service Load: (16-13a) (16-13b) 0.14 0,20 in Allowable A = lc/150 = 2.90 2,90 in Check that As SA,i!o„ OK OK PRIME Job; SKX3-17I:, SIRUGTUM Da;«:_iczjm2_ ENGINEERSSfei; > CONCRETE SLENDER WALL Considering P-Delta Effects PROJECTS: 2K13-170 DESCRIPTION: Viasat BLDG #10 Mechanical Enclosure 1ST TO ROOF DESIGN CRITERIA: Concrete Weight - Clear Height, /„ = Parapet Height = Wall Thickness, (= h/l^ Depth to Rebar, d=. Vertical Rebar = Spadfig = Steel @ Each Face = Reveal Depth = Reveal to Bottom = d at Reveal = Thk (in) Width ffl) Start fft) End (ft) q1 = 9.00 1.00 0.00 34,00 q2 = 0.00 q3 = q4 = 0.00 q5 = 4000 psi 6O000 psi 150 pcf 34.00 ft 0.00 ft 9,00 in 45.33 6.750 in #5 14.0 in 2 {# layers) 0.75 in 17.00 ft 6.750 in e = Eccentric, Dr = Eccentric, Lr = Add'l From Above, Dr = Add'l From Above. Lr = Girder, Dr = Girder. Lr = 0.00 in 0 plf 0 plf 0.000 kips O.OOO kips 0.000 kips 0.000 kips D Girder Load Eccentric? Min Vertical Steel = Min Horizontal Steel = Max Vert Spacing = <p = 01 = Ec = E, = SDS-- Qs=Fp = Eff. Wind Area = Wind Load, W= 0.0025 0,0025 18,00 in 0,9 0,85 3834 ksi 29000 ksi 7,56 0,003 0,00207 0,0181 0,791 g 0,237 Wp 34 ft' 13,43 psf Muo = At Reveal: Ao = 0,00 37262 46273 37262 46273 17467 24293 1700 17,00 17,00 17,00 1700 17,00 17.00 0,OOE-i-00 6,46E+08 8,02Ei-08 6,46E-f08 8,02E-^08 3,03E-»-08 4.21E-^08 0 37262 46273 37262 46273 17467 24293 O.OOE-i-00 6.46E-t-08 8.02E-I-08 6.46E-I-08 8.02E-I-08 3.03E+08 4.21E-t-08 Ib-in/ft ft /El Ib-in/ft /El LOAD COMBINATIONS (CBC 1605.2.1) (16-3) U = (15-4) U = (16-S) U = (16-6) U = (16-7) U = (16-13a) A = (16-13b) A = 12.4.2.3 E = DESIGN SUMUJARY: 1,20 D 1.20 D 1,35 0 0,90 D 0,74 D 1,00 D 1.08 D QE± Qe± -I- 0.50 L •I- O.SO L •^ 0.50 L -I-1,60 W -^1,00Qe -I- 0.75 L -I- 0.75 L 0.2S|3sD 0.16 D 1-1.60 Lr -1- 0,50 Lr •I-1,00 Qe -1- 0,75 W + 0,53 Qe -»• 1,60 Strength: (16-3) (16-4) (16-5) (16-6) (16-7) <t>M„ = 102,633 102.633 103,768 100,494 99,365 Ib-in M„ = 0 44,417 56,478 42,485 51,545 Ib-in % Over = 0,0% 0,0% 0,0% 0.0% 0,0% At Reveal: OMn = 101,884 101,884 102,911 99,932 98,901 ib-in ft(1U = 0 44,479 56,580 42.518 51,572 !b-in % Over = 0,0% 0,0% 0,0% 0,0% 0,0% Defie&tion: Wind Seismic At Reveal: Wind Seismic 1^/150 = 2.7200 2,7200 .;ir 2 7200 2,7200 in Max A = 0.1097 0,1527 in 0,1097 0.1527 in % Over = 0,0% 0.0% 0.0% : 0.0% :: CONCRETE SLENDER WALL Considering P-Delta Effects PRIME .lob: iK-x^-n ENGINEERS sw; _ PROJECT*; DESCRIPTION: 2K13-170 Viasat BLDG #10 Mechanical Enclosure 1ST TO ROOF Strength at Factored Load: (16-3) (16-4) (16-5) (16-6) (16-7) Factored ecc, P^i = = 0.00 0.00 0,00 0,00 0.00 lbs/ft Factored axial, Pa»ia\ -0,00 0,00 0.00 0,00 0,00 ibs/ft Factored wall, P„„ = 2295.00 2295.00 2597.44 1721,25 1418,81 Ibs/ft Factored, P^ = 2295.00 2295.00 2597.44 1721,25^ 1418,81 Ibs/ft Pu/A5= 24.05 sO.oefc... OK! 21.25 2125 24.05 1S,S4 13,14 psi As= 0.266 S 0.6p(bd) = 1.463 . OK (R14.8.3) A., = As -1- (Pu / f,)-(h / 2d) 0.291 0.291 0.295 0,285 0.281 iil^ a='(Pu-^Asfy)/(0.8Sfeb) 0.447 0.447 0.454 0,433 0,425 in c = a / 0.85 = 0.526 0.526 0.535 0,509 0.501 in El = (Ecu / c) d - Ecu 0.0355 0.0355 0,0349 0,0368 0,0374 st 0.005 For Tension Control OK OK OK OK OK M„= (A,,f,)(d-a/2) 114037 114037 115287 111660 110406 Ib-in (14-7) i„ = nA5,-(d-c)^-i-bc^/3 = 85.91 85.91 86.68 84,43 83,65 in* Mua= P„( ex/I, 0 37262 46273 37262 46273 Ib-in (14-4) M„= M„a-i-P„A„ = 0 44417 56478 42485 51545 Ib-in (14-5) A„ = 0.00 3.12 3.93 3,03 3.72 in <J)M„ = 102633 102S33 103758 100494 99365 Ib-in (14-3) Check that 0M„ 2 Mu OK OK OK OK OK 15= bt^/12 = 729.00 729.00 729.00 729.00 729.00 in* (9-9) M„= 7.5f„''-=lg/0.5t 76843 76843 76843 76843 76843 Ib-in (14-2) Check that 0M„ 2 M„ OK OK OK OK OK Deflection at Service Load: (16-13a) (16-13b) Service ecc, Pjf = = 0.00 0,00 Ibs Service axial, P^KUB! -0.00 0.00 ibs Service wall, P,^ = 1912.50 2071.28 lbs Service, P^- P.f= 1912.50 2071.28 Ibs A„= 5 M„ 1,^/(48 EJg) 0.48 0.48 in M„= (^.fy)(d-a/2) 114037 115287 Ib-in A„= SM„l,2/(48 E,y 6.00 6.01 M„= Mso-^ Psfex/lc = 17467 24293 M= M,,-s-P,A. 17676 24609 Ib-in (14-8) As = 0.11 0.15 in AllowableA= l^/ISO 2.72 2.72 in Check that As sAjai^ OK OK Shear at Factored Load: (16-3) (16-4) (16-5) (16-6) (16-7) We,= •8Mo/(121,= ) 0.00 25.62 32.57 24,50 29,73 Vu= lcWe,/2 0.00 435.46 553.70 415,52 505,34 (11-3) (t>Vc= 0.75(2)fe'°bd = 7684.33 7684.33 7684,33 7684.33 7684,33 Check that cpVc 2: Vu OK OK OK OK OK Jab; 2Ki5i-XTo nyvlUfW. iSsti;*; io-?n-i-5 NQlNEERSsw; „ CONCRETE SLENDER WALL Considering P-Deita Effects (AT LOCATION OF REVEAL) PROJECT* DESCRIPTION; 2K13-170 Viasat BLDG #10 Mechanical Enclosure 1ST TO ROOF Strength at Factored Load: Factored ecc, ?„( = Factored axial, P„,^,= Factored wail, Pu^, = Factored, Pu = (R14.8.3) (14-7) (14-4) (14-5) (14-3) (9-9) (14-2) As = 0,266 < 0.6p(bd) = A.e= As-(-(Pu/fy)-(h/2d) a = (Pu-^Asf,)/(0.85f,b) 0 = a / 0.85 Mn= (As.fy)(d-a/2) 1,463 OK M, ho Puf e X / le Mu. + p., A„ K' A„ = <t)M„ = Check that <DM„ a M^ !,= bt'/12 M„= 7.5 f/-^ I,/0,51 Check thai 0M^ a M« (16-3) (16-4) (16-5) (16-6) (16-7) 0,00 0.00 0.00 0,00 0.00 Ibs 0,00 0,00 0,00 0,00 0,00 lbs 2295,00 2295.00 2597,44 1721,25 1418,81 Ibs 2295,00 2295.00 2597,44 1721.25 1418.81 Ibs 0.289 0,289 0.292 0.283 0.280 in^ 0,447 0,447 0,454 0.433 0,426 in 0.526 0,526 0.535 0.509 0,501 in 113204 113204 114346 111035: 109890 Ib-in 85,29 85,29 85,98 83,96 83.26 in* 0 37262 46273 37262 , 46273 Ib-in 0 44479 56580 42518: 51572 Ib-in 0.00 3,14 3,97 3.05: 3,74 in 101884 101884 102911 99932^ 98901 Ib-in OK OK OK OK OK 561.52 561,52 551,52 561.52 561,52 in* 64570 64570 64570 64570: 64570 Ib-in OK OK OK OK: OK Deflection at Service Load: ^= Allowable A = 1^ /150 Check that A.SA„^ (16-13a) 0,11 2,72 OK (16-13b) 0.15 in 2.72 ih OK FOOTING AT MECH. ENCLOSURE PRIME J0B:2K1M70 STRUCTURAL DATE:JI1:201JL ENGINEERS SHT:_ 11/07/13 GRADE BEAM ANALYSIS PR0GRA14 (4.02) Footing LENGTH Footing WIDTH Footing DEPTH 4.00 ft 1.00 ft 1.50 ft Cone Weight Surcharge Footing -f Surch. 0.15 kef 0.00 ksf 0.23 klf POINT LOADS (k & ft) 1 X 2.42 2.00 MOMENT LOADS (kft & ft) 1 X 3.86 2.00 RESULTANTS CASE (k, ft & ksf) rt X Q max Q min 3.32 0.84 2.64 0. 00 MAXIMUM FORCES (k, kft) CASE 1 V max M max M min 2. 73 3.43 -0.43 FOOTING AT MECH. ENCLOSURE _ PRIME J0B:2K13-170 ^4 STRUCTURAL DATE: Jimi. ENGINEERS SHT:___^/' 11/07/13 GRADE BEAM DESIGN PROGRAM (4.02) DESIGN DATA f'c = 3.00 ksi fy = 60.00 ksi Load Factor = 1.00 b ••= 12.00 in h =• 18.00 in d = 15.00 .in SHEAR DESIGN Vmax - Vn 7 k 2 k Vc = Vs = Av =0.22 si/ft S max = Vs = 0, stirrups are optional 1 i 3 Stirrup § 7.5" 1 § 4 Stirrup @ 7.5" 19. 7 k 0.0 k 7.50 in FLEXURAL DESIGN M+ max = Mn-i- - As str = As Beta 1 = As min = As max - 0.85 0.60 si 2.89 si 3.4 kft M- min - 3.8 kft Mn- 0.05 si As str = 0.07 51 As -0.4 kft -0.5 kft O.Gl si 0.01 si Bottom Steal Top Steel Bar No. Space No. Space # 4 0.3 -0.0 # 5 0.2 0.0 # 6 0.2 0.0 # 7 0.1 0.0 # 8 0.1 0.0 # 9 0.1 0.0 #10 0.1 0.0 #11 0.0 0.0 JJ , 1 '-7 <•/ ^ - / / A- •^x'a ,'1.. ^ yfjcy-ff^^ y.^y^^^ PRIME j*:C SM;mDs-«;_ EHGKEERS m _ mi 6.5.14 Design Wind Load on Solid Freestanding Wails and Solid Signs Per ASCE 7-05 PROJECT: Viasat BLOG #10 DESCRIPTION: MECHANICAL ENCLOSURE l2'-6" high V^falls F=q„GC,A, ,00256 K, Ka Kd V'I Exposure coefficient K^ = Exposure Topography factor Kj, = 1,00 Directionality factor K, = 0,85 Wind Speed V = 85 Impotance factor 1 = 1.00 <ir = 15,72 Gust Effect factor G = 0,86 B/s = 10,64 S/tl = 1,000 Case A & B. Cf = 1,30 Since Bfe > 2 Case C 5f Segment with width = s = 10 Balance, see Fig 6-20 = 8,00 Case C, C( for Region 0 to s, = 3,80 s to 2s, = 2.48 2s to 3s, = 1.88 3s to 4s, = 1,07 4s to 5s, = 1,04 B Horizontal dim of return comer L, when s/h> 0,8, (1.8-s/h) for Lr/s = 2.52, %openning Reduction factor Multiples factor (if applicable) 31,5 ft 0,80 0,60 0,0% 1,00 (6-27) (5-15) (6,5,7.2) (6.5.4.4) (6.5.5), T-6-1 (6.5,8) Fig 6-20 snsidered Vert, tocation of resultant force 6.875 ft from grade 8 = 133.00 ft nt tta Xt^ * aw. . I I Cf=1.30 i CtSiSSP i i ^ I * I *• I :lal*Kri —4—»}•"•—T- '1 aieotts 3 f 11 i 1 ' ' ;l ' • .pi j— F Method A & B Sign h area A, c, F (lbs) Ptiet 12.50 1652,5 1.30 0.57 9,0 9877.5 5.94 Method C Sign h area As c, K. dn F (Ibs) Poet Balance, see Fig 6-20 = 12,60 100.00 1.30 0.57 9,0 475.3 4,75 0 to s, = 12.50 166.25 3.80 J 0.57 9,0 2172.8 13.81 sto2s, = 12.50 156.25 2,48 0.57 9,0 1417.9 9.07 2s to 3s, = 12.50 156,25 1.88 0.57 9,0 1075.2 ft:88 3s to 4s, = 12.50 166.25 1.07 0,67 9,0 609.8 3.90 4s to 5s, = 12,50 166.25 1.04 0,57 9.0 591.5 3.79 Pt,eit.«>x= 13,31 psf / ,f PRIME .U*/, 2KX3-170 STRIICTUSAl Daw: ENGINEERS Sht; _t/iika CONCRETE SLENDER WALL Thk (in^ Width (ft^ Start mi End {fi\ Considering P-Delta Effects ql = 8,00 4,67 0,00 26,00 PROJECTS; 2K13-170 q2 = 8,00 10,00 11,00 26,00 DESCRIPTION; Viasat BLDG #10 q3 = 0.00 ,// _ Mechanical Enclosure 1 .ST TO ROOF ^'3 • DiER AT MECHANICAL q4 = 0,00 ,// _ Mechanical Enclosure 1 .ST TO ROOF ^'3 • DiER AT MECHANICAL q5 = 0.00 DESIGN CRITERIA: 4000 psi 0,00 in Min Vertical Steel = 0.0025 60000 psi Eccentric, Dr = 0 plf Min Horizontal Steel = 0,0025 Concrete Weight = 150 pcf Eccentric, Lr = 0 plf Max Vert Spacing = 18,00 in Add'l From Above, Dr = 0.000 kips Clear Height, 1,. = 26,00 fl Add'l From Above, Lr = 0.000 kips <P = O.S Parapet Height = 0.00 ft Girder, Dr = 0.000 kips 0, = 0,85 Wall Thickness, t = 8,00 in 6/refer, Lr = 0.000 kips Ec = 3834 ksi h/t = 39,00 • Girder Load Eccentric? 29000 ksi ff = 7,55 Depth to Rebar, d = 5,750 in 0,003 VerMcal Rebar = #5 , = 0,00207 Spacing = 13.0 in asp, = 0,0152 Steel @ Each Face = 2 (Slayers) Sc,$ = 0,791 g 0,237 Reveal Depth = 0.75 in Eff, Wind Area = 381 ft' Reveal to Bottom -13,00 ft t*indLos<i, W = 13.91 psf d at Reveal = 5.750 in MM = /^ntjix — At Reveal: Mo-' At,=: (16-3) (16-4) (16-5) (16-6) (16-7) (16-13a) (16-13b) 0,00 70898 58244 70898 58244 33234 30578 13.00 13,00 14,56 13.00 14.SS 13.00 14,66 O.OOE-KOO 7,19E+08 5,69E-f08 7.19e-i-08 S.69E-I-08 3.37t-i-08 2.99E-I-08 Ib-in/ft ft 0 70898 57119 70898 57119 33234 29987 . Ib-in/ft 0,00E-t-00 7,19E-i-08 6,69E-i08 7.19E-f08 5.69E-I-08 3.37E-I-08 2.S8E•^0S /El Wind (1,6 W) Seisinio (1,0 E) LOAD COMStNATIONS (CBC 160S.2.1) (16-3) U = (16-4) U = (16-5) U = (16-6) U = (16-7) U = {16-13a) A = (18-13b) A = 12.4.2.3 E = DESIGN SUMMARY: 1.20 D 1,20 D 1.36 D 0.90 D 0.74 D 1.00 D 1.08 D -I- 0.50 L -I- 0,50 L * 0,50 L -•• 1,60 W -I-1,00 Qe * 0,75 L t- 0,75 t 0,2SosD 0,16 D 1,60 Lr + O.SO lr * 1,00 Qe * 0,75 W •I- 0,53 Qe -I-1,60 30.00 25.00 20.00 15.00 10.00 3.00 0.00 ci / 0' strength: (16-3) (16J() (1S-S) (16-6) (16-7) <PM„ = 101,483 101,483 103,203 98,898 94,287 Ib-in M„ = 0 94,648 79,245 90,189 67,673 Ib-in % Over = 0.0% 0.0% 0.0% 0.0% 0.0% At Reveal: tJ)Mr< = 99.907 99,907 101,753 96,352 94,484 Ib-in Mu = 0 95,143 79,243 88,224 68,104 Ib-ln Over = 0.0% 0.0% 0.0% 0.0% 0.0% Deflection: Wind Seismic At Reveal: Wind Seismic 1,/1S0 = 2.0800 2.0800 in 2.0800 2.0800 in Max A = 0.1754 0.1612 in 0.1754 0,1612 in % Over = 0.0% 0.0% 0.0% 0,0% PRIME .W;:: 2K13-170 ENSINEERS sm; ^ CONCRETE SLENDER WALL Considering P-Delta Effects PROJECTS; DESCRIPTION; 2K13-170 Viasat BLDG #10 Mechanical Enclosure 1ST TO ROOF Strength at Factored Load: (16-3) (16-4) (16-5) (16-6) (16-7) .i^actored ecc, P„( = = 0.00 0.00 0.00 D.OO 0.00 ibs/ft Factored axial, P,„ij,| = = 0,00 0,00 0,00 0.00 0.00 Ibs/fi Factored wail, P„ = = 4900,47 4900,47 5437,98 4095.00 2666.02 lbs/it Factored, P„ = = 4900,47 4900.47 5437.98 4095.00 2566.02 ibs/ft Pu / Ag = 56,65 s COerc,,, OK! = 51.05 51.05 SS.SS 42.66 27.77 psi As= 0,286 S 0.6p(bd) = 1,045 ,,.OK (R14.8.3) A,„= As + (Pu/f,)-(h/2d) 0.343 0.343 . 0.349 0,334 0.317 in^ a= (Pu-^Asfj,)/(0.85 fcb) 0.541 0.541 0,654 0.S21 0.485 in c= a/0.85 = 0.636 0.635 0.652 0,613 0.572 in e, = (Scu/c)d-£eu 0.0241 0.0241 0.0235 0,0251 0.0272 s 0.005 For Tension Control = OK OK OK OK OK M„=(A„fy)(d-a.'2) = 112759 112769 114670 109887 1047S3 Ib-in (14-7) = n-As,-(ti-c)^-t-b-c'/3 68.86 68.86 69.75 67,51 65.05 in* liit,^-»-P„,ex/L 0 70898 58244 70898 58244 Ib-in (14-4) Mu= f4,-t-P„A„ 0 94648 7924S 90189 67673 Ib-in (14-5) A„ = = 0.00 4.85 3.86 4,71 3.54 in £|>M„ = = 101483 101483 103203 98898 94287 ib-in (14-3) Check that tRM„ a M„ OK OK OK OK OK 1^= b.t'/12 = 512.00 S 12.00 512.00 512,00 512.00 in" (9-9) M„= 7,5 r," 15/0.51 = 60716 50716 60716 6071S 5071S Ib-in (14-2) Check that <PM„ a ft/l^, OK OK OK OK OK Deflection at Service Load: (16-13a) (16-13b) Service ecc, P,, = = 0.00 0.00 Ibs Service axial, P^j,, = 0.00 0,00 ibs Service wall, P^ = = 4083.73 3892,03 lbs Service. P, = P,, -^ P,^ = = 4083.73 3892.03 Ibs Ae,= 5M,,l//(48EJ5) = 0.31 0,31 in M„= (A.,f,)(d.a/2) 112759 114670 Ib-in A„= 5 M„ 1,^/(48 E, l„) = 4.33 4,19 M„= M.!,-I-P,,ex/!. = 33234 30578 M=M„ + P,A, = 33950 31205 Ib-in (14-8) = 0.18 0,16 in Allowable A = 1^/150 = 2.08 2,08 in Checic that A, <A.t,<,„, OK OK Shear at Factored Load: (16-3) (16-t) (16-5) (16-6) (16-7) •w„= 8Mu/(12t/) = 0,00 93,34 78.15 88,94 66.74 V,,= icWe,/2 = 0,00 1213:44 1015.96 1156.27 867.60 (11-3) <PVc = 0,75 (2) f c"^ b d = 6545,91 6545,91 6545.91 6545.91 6545.91 Check that ^V^ > V„ OK OK OK OK OK mmm EMGIHEERS S:M; ^ CONCRETE SLENDER WALL Considering P-Delta Effects (AT LOCATION OF REVEAL) PROJECTS; DESCRIPTION; 2K13-170 Viasat BLDG #10 Mechanical Enclosure 1ST TO ROOF Strength at Factored Load: Factored ecc. = Factored axial, Puitr.:- Factored wall, P„^ = Factored, P„ = As = 0,285 S 0.6p(bd) = (R14,8.3) As •»•(?„/fy)-(h/2d) a = (Pu•^Asf,)/(0.85f,b) c = a/0.85 M„ = (A,,fy)(d-a/2) (14-7) M„o-^P„(ex/l, (14-4) M„ = M„,•^P„A^ (14-5) /i.,= <t>M„ = (14-3) Check that 0M„ > M„ '9 = bt^/12 (9-9) M=t = 7,Sf,'=-=^lg/0,St (14-2) Check that *!yi„£M^, 1,045 .OK Deflection at Service Load: A.= Allowable A = 1^/150 Check that As <A,a„„ (16-3) (16~*) (16-S) (16-6) (16-7) 0,00 0,00 0.00 0.00 0.00 Ibs 0.00 0,00 0.00 0.00 COO Ibs 4900.47 4900,47 5545.25 3675.35 3023,57 ibs 4900,47 4900,47 5546.26 3675.35 3029.57 ibs 0,338 0,338 0.344 0.325 0.318 in^ 0,541 0.541 0,657 o.sn 0.495 in 0,635 0.536 0.655 0.601 0.5S2 in 111008 111008 113075 107068 104983 ib-in 67.81 67.81 68.75 65.99 65.01 in* 0 70898 57119 70898 67119 Ib-in 0 95143 79249 88224 68104 Ib-in 0,00 4.95 3.99 4.71 3,63 in 99907 99907 101768 96362 94464 Ib-in OK OK OK OK OK 381,08 381.08 3B1.08 381.08 381.08 in* 49866 49865 49855 49865 49855 Ib-in OK OK OK OK OK (16-13a) (16-13b) 0,18 0.16 in 2,08 2.08 in OK OK PRIME Job: 2Ki3- S'^'RUCTURAl Date;; ENGINEERS Sht: X70 CONCRETE SLENDER WALL Considering P-Delta Effects PROJECT »: DESCRIPTION: DESIGN CRITERIA: 2K13-170 Viasat BLDG #10 Mechanical Enclosure 2-4" PIER AT MECHANICAL ,/ iS-i / 1ST TO ROOF Thk (in) V\/idth ftt) Start fffi End (ft) q1 = 8.00 2.33 0.00 2G.00 q2 = 8.00 9.17 11.00 26.00 q3 = 0.00 q4 = 0.00 q5 = 0.00 Concrete Weight - Clear Height, U = Parapet Heighl = Wall Thickness, t = h./t = Depth to Rebar, d = Vertical Rebar = Spacing = Steel @ Each Face = Reveal Depth = Reveal to Bottom = d at Reveal = 4000 psi 60000 psi 150 pcf 25.00 ft 0.00 ft 8.00 in 39.00 5.750 in #5 11.0 in 2 (# layers) 0.76 in 13.00 ft 5.750 in Eccentric, Dr- Eccentric, Lr = Add'l From Above, Dr = Add'l Frcm Above, Lr = Girder, Dr - Girder, Lr = 0.00 in 0 plf 0 plf 0.000 kips 0.000 kips 0.000 kips 0.000 kips Girder Load Eccentric? Min Verticai Steel = 0.0025 Min Horizontal Stee! - 0.0026 Max Vert Spacing = 18.00 in 0.9 0i = 0.85 E, = 3834 ksi E,= 29000 ksi n = 7.56 = 0.0Q3 £, = 0.00207 0.5p, = •0.0153 Sos -0.7S1 S Qe=Fp = 0.237 Wp Eff. Wind Area = 299 ft' Wind Load. W = 13.91 psf (16-3) (16^) (16-5) (16-6) (16-7) (16-13a) (16-13b) Muo = 0.00 70898 58244 70898 58244 33234 30578 Ib^in/ft ^-.J ft J'-'/y 13.00 13.00 14,56 13.00 14.56 13.00 14.66 Ib^in/ft ^-.J ft J'-'/y Attt« = O.OOE-I-OO 7.19E-I-08 5.69E-I-08 7.19E-I-08 5.69E-!-08 3,37E-i-D8 2.99E-*^08 V 1 .4 \ /El -1 \ * ^. ' At Reveal: ^ A Mo = 0 70898 57119 70898 57119 33234 29987 Ib-in/ft ^ ^ Ao = O.OOE-I-OO 7.19E-M38 5.69E+08 7.19E-t-08 5.69E-I-08 3.37E-(-08 2.98E-I-08 XV /El y " , Wind (1.6 W) LOAD COIVIBINATIONS (0801605,2.1) (16-3) U = (16-4) U = (16-5) U = (16-6) U = (16-7) U = (16-13a) A = (16-13b) A = 12,4,2.3 E = DESIGN SUMMARY: 1.20 D 1.20 D 1,36 D 0,90 D 0.74 D 1.00 D 1.08 D Qe± -f- 0.50 L •f 0.50 L •I-0.60 L •I- 1.60 W -1-1,00 Qe -I- 0,75 L -1- 0,75 L 0,2SosD 0,16 D *• 1,60 Lr •y 0,50 Lr -I-1,00 Qe -^0.75W -I- 0,53 Qe -I- 1,60 W Seismic (1.0 E) r '4, Strength: (16-3) (16-4) (16-5) (16-6) (16-7) • c|>M„ = 124,806 124,806 116,738 112,757 113,820 Ib-in M„ = 0 106.581 75,162 86,501 71.709 Ib-in % Over = 0:0% 0.0% 0.0% 0:0% At Reveal: <PMn = 122,363 122,363 125,187 116,965 114,100 Ib-in Mu = 0 107,634 91,133 96,357 73,004 Ib-in %v0ver = : 0;0%; :: 0,0% o;o% 0,0% 0,0%: Deflection: Wind Seismic AtReveal: Wind Seismic . :W/150 = 2,0800 2:0800 in 2,0800 2,0800 in Max A = 01775 0,1631 in 0,1775 0.1:531 in % Over = 0,0% :i0.0% V ;::0.0%::,:: : ::::o.Q% : . CONCRETE SLENDER WALL Considering P-Delta Effects PRIME J»b; 2K13-170 MSaENGlNEERS SM: ZMJ/ PROJECT*; DESCRIPTION; 2K13-170 • Viasat BLDG #10 Mechanical Enclosure 1ST TO ROOF Strength at Factored Load: (16-3) (16-4) (16-S) (16-6) (16-7) Factored ecc, P„| = 0,00 0.00 0,00 0.00 0.00 Ibsm Factored axiai, Pua4di = 0.00 0.00 0,00 0.00 0.00 Ibsm Factored wall, Pu„ = = .7699.57 7699.57 6115,58 3852.23 4188.82 Ibs/f! Factored,- Pu = 7699.67 7699.57 5115.58 3852.23 4186.82 lbs,'ft Pu/Ag= 80.20 SO.oefc... OK! 80,20 80.20 53;29 40.13 43.63 psi As = 0,338 fS 0.6p(bcl) = 1,057 ,,,OK 43.63 psi (R14.8,3) A,.= As 1- (Pu/fy)-(h / 2d) = 0.427 0.427 0.397 0.383 0,387 in' a= (Pu-i-Asfy)/(0,85fjb) 0.686 0-685 0.623 0.592 0.600 in c = a / 0,86 = 0.807 0.807 0.733 0.696 0,705 in = (£cu/c)d-£cu = 0.0184 0.0184 0.0205 0.0218 0.0214 i 0,005 For Tension Control OK OK OK OK OK M„= (A,„f,){d-a/2) 138674 138674 129709 125285 125467 Ib-in (14-7) ia = nA,,-(d-c)^-t-b;c*/3 81.09 81.09 77.26 75.31 75.83 in* M„a= M„o-^P„fex/l, 0 70893 58244 70898 58244 Ib-in (14-4) M,= Mu,-i-P„Au 0 106581 75162 86501 71709 !b-in (14-5) A„ = 0.00 4.63 3.31 4.05 3.21 in <t>M„ = = 124806 12480S 116738 112757 113820 Ib-in (14-3) Check that m„ a Mu OK OK OK OK OK 1^= bt'/12 512.00 512.00 512.00 512.00 512.00 in* (9-9) M„= 7,5f,"l,/0.5t 60716 60716 60716 60716 60716 ib-in (14-2) Check that <5M„ 2 M„ OK OK OK OK OK Deflection at Service Load: (16-13a) (16-13b) Service ecc, Ps, = 0.00 0.00 Ibs Service axiai, p5„i,i= 0.00 0.00 Ibs Service wall, P^ -6416.31 6115.12 Ibs Service, Ps= Ps,-^P,w = = 6416.31 6115.12 Ibs A,,= 5M,,l//(48E,ls) 0,31 0.31 in Mn= (A,ef,){d-a/2) 138674 129709 Ib-in A„= 5M„l//(48E, l„) = 4.52 4.28 Msa = Kt 1- Pst e X / Ic 33234 30578 M = Msa -r Ps As 34373 31575 Ib-in (14-8) As = 0.18 0.16 in A!lovi«bleA= 1^/150 2.08 2.08 in Check that As sAaiiov,. OK OK . Shear at Factored Load: (16-3) (15-4) (16-5) (16-6) (16-7) w,,= 8Mu/{12l,^) 0.00 105.11 74.12 85.31 70.72 Vu= loW„/2 0.00 1356,42 963.62 1108.93 919,35 (11-3) *V,:= 0.75(2)f,'°bd = 6545:91 6545.91 6546.91 6545.91 • 6545.91 Check that OV^SVu OK OK OK OK OK PRIME J.oh; 2K13-170 CONCRETE SLENDER WALL Considering P-Oelta Effects (AT LOCATION OF REVEAL) PROJECT*: DESCRIPTION: 2K13-170 Viasat BLDG #10 Mechanical Enclosure 1ST TO ROOF Strength at Factored Load: (16-3) (16-4) (16-5) (16-6) (16-7) Factored ecc, Puf = 0.00 o:oo 0,00 0,00 0.00 lbs Factored axial, P^Mi^ = 0.00 0,00 0,00 0,00 0.00 Ibs Factored wall, = = 7699.57 7699.57 8714,22 5774.68 4760.02 lbs Factored, P„ = 7699.57 7699.57 8714,22 5774.68 4760.02 Ibs As = 0.338 & 0,6p(bd) = 1.057 ...OK (R14.8.3) A.,= As •»-(?„/fy) (h/2d) 0.419 0,419 0,430 0.399 0.388 in' a = .(Pu-i-Asfy)/(0.85f,b) 0.686 0,686 0,711 0.639 0.614 in 0 = a / 0.85 0.807 0,807 0.836 0.752 0.722 in M„= (A,,f,)(d-a/2) 135968 136958 139097 12S961 126777 ib-in (14-7) i„ = 79.65 79,55 80,82 77.07 75.72 in* Mu, = Muo-»- Pufex/1,: = 0 70898 57119 70898 67119 Ib-in (14-4) M„= M„,-i-PuAu = 0 107634 91133 96357 73004 Ib-in (14-5) A„ = 0.00 4,77 3.90 441 3.34 in 0M„ = = 122363 122363 125187 116965 114100 Ib-in (14-3) Check that ci)M„>M„ OK OK OK OK OK Sg= bt'/12 381.08 381,08 381.08 381.08 381.08 in* (9-9) M„= 75f/'lj/0.5t 49865 49865 49865 49866 49865 Ib-in (14-2) Check that <I)M„ 2: M„ OK OK OK OK OK Deflection at Service Load: (16-13a) (16-13b) As= = 0.18 0.16 in Altowable a = 1^/150 2,08 • 2.08 in Check that As S Aaiiow OK OK 12'-6" mech enclosure % PRIME J0B:21<lMm STRUCTURAL DATE:j2:2m^ ENGINEERS SHT:^^ 12/70/13 2K13-170 GRADE BEAM AN.UYSIS PR0GRM4 (4.02) Footing LENGTH - 3.50 ft Footing WIDTH = 1.00 ft Footing DEPTH = 1.50 ft Cone Weight = 0.15 kef Surcharge- = 0.00 ksf Footing -i- Surch. = 0.23 klf POINT LOADS (k & ft) 1 X 1.36 1.75 MOMENT LOADS (kft 1 X & ft) 1.87 1.75 RESULTANTS (k, ft & ksf) CASE 1 Pt X Q max Q min 2.15 0. 88 1. 63 0.00 MAXIMUM FORCES (k, kft) CASE 1 V max M max M min 1.51 1. 60 -0.27 12'-6" mech enclosure PRIME J0B:2K13-170 STRUCTURAL BATE: 12-2013 ENGINEERS SHT: Z_ 12/10/13 2K13-170 GRADE BEAM DESIGN PR0GRM4 (4.02) DESIGN DATA f'c =• 4.00 ksi b - 12.00 in fy - €0.00 ksi h = 18.00 in ioad Factor =1.00 d = 15.00 in SHEAR DESIGN Vmax - Vn 1.5 1.8 vc Vs 22.8 k 0.0 k Av = 0.12 si/ft S max = Vs = 0, stirrups are optional 1 # J Stirrup @ 7.5" 1 # 4 Stirrup @ 7.5" ^50 in FLEXURAL DESIGN Beta 1 = 0. 85 As min - 0. 60 si As max = 3. 85 si M-i- max 1.6 kft M-min = -0.3 kft Mn+ 1.8 kft Mn--0.3 kft As str = 0.02 si As 5tr -0.00 sl As = 0.03 si As 0.01 5 J. Bottom Steel Top S teal Bar No. Space No. Space i 4 0.2 0.0 - # 5 0.1 0.0 - # 6 0.1 0.0 - # 7 0.1 0.0 - # 8 0.0 0.0 - t> y If •<„ y y h f y^,L ^^^^^ ••i¥ y? -7 PRIME Job: 2K12- ENGWEERS sht: a 170 CONCRETE SLENDER WALL Considering P-Deita Effects PROJECT #; 2K13-170 DESCRIPTION: Viasat BLDG #10 Trash Enclosure s^' 1ST TO ROOF DESIGN CRITERIA: •• Concrete Weight = Clear Height, U = Parapet Height = Wall Thickness, t = hA = Depth to Rebar, d = Vertical Rebar = Spacing = Steel @ Each Face = Reveal Depth = Reveal to Bottom - d at Reveal ~ Thk (in^ Width (ff) Start (ftl End I'ft) q1 = 6.50 5.00 0.00 12.00 q2 = 0.00 q3 = q4 = 0.00 q6 = / 4000 psi 60000 psi 150 pcf 12.00 fl 0.00 ft 6.50 in 22.16 3.250 in #4 10.0 in 1 (Slayers) 0.75 in 5.00 ft 2.500 in e = Eccentric, Dr = Eccentric. Lr= Add'l From Above, Dr = Add'l From Above, Lr = Girder. Dr- Girder, Lr= 0.00 in 0 plf 0 plf 0.000 kips 0.000 kips O.OQO kips 0.000 kips Girder Load Eccentric? Min Vertical Steel -- Min Horizontal Steel -- Max Vert Spacing - 0 = O.Spt, -. Sos - Eff. W^nd Area = Wind Load, W= 0.0025 0.0025 18,00 in 0.9 0.85 3834 ksi 29000 ksi 7.65 0.003 0.00207 0,0143 0.791 g 0,237 Wp 60 ft= 13,43 psf i^' (16-3) (16-4) (16-5) (16-6) (16-7) (16-13a) (16-13b) 0.00 4642 4163 4642 4163 2176 2186 ^UtiO -6,00 6,00 6.00 6,00 6,00 6,00 6,00 . A^,= O.OOE-i-00 1,00E-i-07 8.99E-I-06 1,00E-t-07 8,99E-i-06 4,70E+06 4,72E-i-06 At Reveal: Mo = 0 4513 4047 4513 4047 2115 2125 Ao = 0,00E-l-00 9,69E-i-06 8,69E-i-08 9,69E-»-06 8,69E-l-06 4,54E-i-06 4.56E-(-06 Ib-in/ft ft /El Ib-in/ft /Et LOAD COMBINATIONS (CBC 1605.2.1) (16-3) U- (16-4) U = (16-5) U = (16-6) U = (16-7) U = (16-13a) A = (16-13b) A = 12,4,2,3 E = DESIGN SUMMARY: 1, 20 D 1.20 D 1.36 D 0,90 D 0,74 D 1.00 D 1,08 D QE± -»- 0,50 L * 0,50 L -^ 0,50 L * 1,60 W + 1.00 Qe -^ 0.75 L + 0.75 L 0;2SosD 0,16 D •I-1.60 Lr •^ 0,50 Lr * 1,00 Qe * 0,75 W -•- 0,53 Qe -1- 1.60 W Wind {1.6W) Seismic (1.0 E) i 14.00 14,00 j 12,00 m 12.00 i m ' ' 10,00 10.00 .1. W ' 10,00 |s \ 8.00 • I 6.00 1 I a.oo , -1 6.00 iB 4,00 , -1 4.00 f • 2.00 • 2.00 \M 0,00 0.00 0,00 St a. a 0.00 rt f-. S.t^ — oi «> T-c 0. er Strengai: (16-3) . (16-4) (16-5) (16-6) (16-7) OM„ = ;: 4i;354:;: 41.354 ::: 41-,5I54: 40,975 40,774 /Ib-in-; M„ = 0 4,779 4,302 4,744 4 239 Ib-in % Over = 0.0% 0.0% 0;0% 0.0% 0.0% AtReveal: 0Mn = ::4:i;39Q 7 41 390 41,595 41.002 40,797 Ib-in Mu = yy^: 4,676 4,214 4,635 4,136 Ib-in %Over = 0 0% 0.0% 0.0% 0.0% 0.0% Defiection: Wind Seismic AtReveal: Wind Seismic 1^/150 = 0.9600 0.9600 in . : 0;960(^ 0.9600 in Max A = 0,0045 0.0045 in 0.0043 ; /:;0;0044 :; ':ii1'/ % Over = 0.0% 0.0% 0.0% 0.0% CONCRETE SLENDER WALL Considering P-Delta Effects PRIME J«b; 2K13-170 ^jtHUCTURAi. Date: ENGINEERS Sht: • ^. PROJECT*: DESCRIPTION; 2K13-170 Viasat BLDG #10 Trash Enclosure 1ST TO ROOF Strength at Factored Load; (16-3) (16-4) (16-5) (15-6) (16-7) Factored ecc, P^j = 0.00 0,00 0,00 0,00 0,00 Ibsfft Factored axial. Pua<jdi = = 0.00 0,00 0,00 0,00 0,00 lbs/ft Factored wall, = = 585,00 585,00 662,09 438.75 361,66 ma Factored, Pu = 585,00 585,00 662,09 438.75 '361.56 Ibs'ft Pu/\ = 8.49 SO.oefc, OK! 7,50 7,50 8,49 5.63 4.64 psi As = 0,240 £ 0,6p(bd) = 0,556 , ,0K (R 14.8.3) As,= As +(Pu/fy)(h/2d) 0,250 0,250 0,251 0.247 0.246 in^ a = {Pu-^Asfy)/(0,85f.b) 0,367 0.367 0,369 0.364 0,362 in 0 = a / 0,85 0,432 0,432 0,434 0,428 0,426 in (Ecu / c) d - £cy = 0,0196 0.0193 0.0194 0,0198 0,0199 0,006 For Tension Control OK OK OK OK OK M„ = (As,f,,)(d-a/2) 45949 45949 46172 45528 45305 Ib-in (14-7) 1„ = nA,'(d-<;)^+b-c^/3 15,32 15,32 15,38 15,21 15,15 in* Mua = Muo -»• Pu( e X / U = 0 4642 4183 4642 4163 Ib-iii (14-4) M„ = Mua-^PuAu 0 4779 4302 4744 4239 Ib-in (14-5) A„= = 0.00 0,23 0,21 0,23 0,21 in *M„ = = 41354 41354 41654 40975 40774 Ib-in (14-3) Check that (PMn 2 Mu OK OK OK OK OK bt^/12 274,63 274.63 274,63 274,63 274.63 in* (9-9) M„ = 7,5f„°-= l,/0,5t 40082 40082 40082 40082 40082 ib-in (14-2) Check that <t)M„ s Ma OK OK OK OK OK Deflection at Service Load: (16-13a) (16-13b) Service eix, F,, = 0,00 0,00 Ibs Service axial, Psaia = = • 0,00 0,00 Ibs Service wall, P,„ = 487,50 527,97 Ibs Service, Pj = Psf Psw = 487,50 527,97 Ibs 5M„l//(48E,l,) = 0,08 0,08 in M„ = (A,efv)(d-a/2) 45949 46172 Ib-in 4,= 5M„U'/(48 E„y 1,69 1,69 M,„ = MSG + PS, e X /15 2176 2186 M = Msa•^P,4 2178 2188 Ib-in (14-8) As = = 0,00 0,00 in Allowable A= 1,/150 0,96 0,96 in Check that A^ s Aajio„ OK OK Shear at Factored Load: (16-3) (18-4) (16-S) (16-6) (16-7) 8Mg/(12l/) 0,00 22,12 19.92 21,96 19.62 Vu = ltW,,/2 0,00 132,74 119,50 131,79 117.75 (11-3) cpV,= 0,75 (2) fc"' b d = 3699,86 3699.66 3699,86 3699,86 3699.88 Check that <»V, a Vu OK OK OK OK OK PRIME Job; 2K13-170 STRUCTURAl DRr«: ENGIMEERS siu; ..fl CONCRETE SLENDER WALL Considering P-Delta Effects (AT LOCATION OF REVEAL) PROJECT*: DESCRIPTION; 2K13-170 Viasat BLDG #10 Trash Enclosure 1ST TO ROOF Strength at Factored Load: (16-3) (16-4) (16-3) (16-5) (16-7) Factored ecc. Puf = 0,00 0,00 0.00 0.00 0,00 Ibs Factored axial, PuxAa\-= 0,00 0,00 0.00 0,00 0,00 ibs Factored wall, Pu„ = = 682,50 682,50 772,44 611,88 421.93 ibs Factored, Pu = = 682.50 682,50 772,44 511,88 421,93 lbs As = 0.240 < 0,6p(bd) = 0,556 ,„0K (R14.8.3) Ase= As (Pu (f.^) (h / 2d) 0.250 0,250 0,251 0,248 0.245 in^ a= (Pu-i-Asfy)/(0.85f,b) 0,370 0,370 0,372 0,365 0,353 in c = a / 0.85 = 0,435 0,435 0,437 0,430 0,427 in M„= (As.fy)(d-a/2) 45989 45989 46216 45557 45330 Ib-in (14-7) l„ = 14,56 14,56 14.61 14,45 14,39 in* Mu8= M„o + Pu,ex/!<, 0 4513 4047 4513 4047 Ib-in (14-4) Mu= Mua-»-P„Au = 0 4676 4214 4635 4138 Ib-in (14-5) A„ = 0,00 0,24 0.22 0,24 0,21 in ct)M„ = 41390 41390 41595 41002 40797 ib-in (14-3) Check that (PM„ 2: Mu OK OK OK OK OK l„= bt'-/12 = 190,11 190,11 190,11 190,11 190,11 in* (9-9) M„= 7.5f,"li,/0,5I 31366 31366 31366 31366 31366 ib-in (14-2) Check thaf 0M„ 2 M^, . OK OK OK OK OK Deflection at Service Load: (16-13a) (16-13b) A,= 0,00 0,00 in Allowable A = lc/150 0,96 0,96 in Check thatAsS A„|„ OK OK AT TRASH ENCLOSURE PRIME J0B:2K13-170 STRUCTUR.4L DATE:j±20i3_ ENGINEERS SHT:. li/07/2J GRADE BEAM .ANALYSIS PROGRm Footing LENGTH • Footing WIDTH Footing DEPTH Cone Weight Surcharge Footing -f Surch. = POINT LOADS (k S ft) 1 X 1. 75 ft 1.00 ft 1.00 ft 0.15 kef 0.00 ksf 0.15 klf (4.02) 0.57 0.88 MOMENT LOADS (kft & ft) 1 X 0.42 0.88 RESULTANTS CASE (k, ft & ksf) Pt X Q max Q min 0.83 0.36 1.52 0.00 MAXIMUM FORCES (k, kft) CASE 1 V ma.K M max M min 0. 67 0.37 -0.06 AT TRASH ENCLOSURE PRIME J0B:2K1MZ0 ^ STRUCTURAL MTE: JMSll. ENGINEERS SHT:. 11/07/13 GRADE BEAM DESIGN PROGRAM (4.02) DESIGN DATA f'c = 3.00 ksi fy = 60.00 ksi . Load Factor =1.00 12.00 in 12.00 in 9.00 in SHEAR DESIGN Vmax = Vh 0. 7 k 0.8 k Vc = Vs = 11.8 .fc 0.0 k Av = 0.12 si/ft 6 max - Vs = Q, stirrups are optional 1 # 3 Stirrup g 4.5" 1 i 4 Stirrup (? 4.5" .50 in FLEXURAL DESIGN Beta 1 = As min - As max = 0.85 0. 36 si 1. 73 si M-t- max = 0.4 kft M- min = -0.1 Jtft Hn-f . = 0.4 kft Mn- = -0.1 kft As str = 0.01 si As str = 0.00 si AS - 0.01 si As = 0.00 si Bottom Steel Bar No. Space #4 0.1 # 5 0.0 Top Steel No. Space 0.0 0.0 •7 - \&cf-y£y y^^-'i"^ yy^kdsJjdJM: j/? ^ ^.-.^x ^vf XA^^' /(I CA ps /W r> / ^ rjiA^^ ^ /f-;,^r /frf .X iy:f^y ^ :l.4 iV^'Wt^ ^ ^ y%8yi'a 4'/ / PRilV^E ,A ENG\EERS'= 1 6.6.14 Design Wind Load on Solid Freestanding Wails and Solid Signs Per ASCE 7-05 PROJECT: Viasat BLDG #10 DESCRIPTION: Secured Parking Enclosure F=qhGC,A, (6-27) q, = .00256 Kj K^ K^ VM (6-15) Exposure coefficient = Exposure | ^i ,^ i Topography factor Kj, = l.OO —' (6.5.7,2) Directionality factor K^, = 0.85 (6.5.4.4) Wind Speed V = 85 Impotance factor 1 = 1.00 (6,5,5), T-6-1 qi= 15.72 K^ Gust Effect factor G = 0,85 (6,5,8) B/s= 12,12 s/h = 1,000 CaseA&B, C, = 1.30 Fig 6-20 Since B/5> 2 Case C must also be considered Total # of Segment with width = s 12 Balance, see Fig 6-20 = 1,00 ft Case C, C, for Region 0 to s, = 3.93 s to 2s, = 2.56 2s to 3s, = 1,96 3s to 4s, = 1.34 4s to 5s, = 1.23 Multiples factor (if applicable) Horizontal dim qf return corner Lr = 50.0 ft when s/h > 0.8, (1.8-s/h) = 0.80 for Lr/s = 6.06, = 0.60 %openning = 0.0% Reduction factor = 1.00 Vert, location of resultant force 4.5375 ft from grade Bi= 100.00 ft ' Cf=1.30 -I' 'I- '1 . 1 i F| r " F F VrtWD I j C&3EB CASEC T F ' F PLAN VIEWS s.'h < 1 &1^» 1 CROSS-SECTION VIEW MethodA&B Sign h area A, c, K, qt, F (Ibs) : Pnet 8.25 825.0 1.30 0.57 9.0 4901.6 5.94 IWethod C Sign h area Aj c, ^^, F (lbs) Pnrt Balance, see Fig 6-20 = 8.25 6.26 1.30 0.57 9.0 39.2 4.75 0 to s, = 8.25 68.06 3.93 0.57 9.0 977,2 14,36 s to 2s, =\ 8.25 68.06 2.56 0.57 9.0 636.1 : 8.35 2s to 3s, = 8.25 68.06 1.96 0.57 9.0 486.8 7.15 3s to 4s, = 8.25 68.06 1.34 0.57 9.0 333.2 4.90 4s to 5s, = 8.26 68.06 1.23 0.57 9.0 306.8 4.61 Piwtmax* 14.36 psf PRIIV^E J=.b; SlBUCTUSAL Dases: ENGINEERS sm: 2K13 -170 CONCRETE SLENDER WALL Thk fin) : Width fft) Start (ft) End (ft) Considering P-Deita Effects q1 = 6.50 1 1.00 0.00 16.50 PROJECT #; 2K13-170 q2 = 0,00 DESCRIPTION: Viasat BLDG #10 q3 = Secured Parking Enclosure 1ST TO ROOF q4i 0 00 q5 = DESIGN CRITERIA: f'c = 4000 psi e = 0,00 in iW/n V4rf!C8/ Steei = 0.Q025 f.j = 60000 psi Eccentric, Dr = D plf Min Horizontal Steel = 0,0025 Concrete Weight - ISO pcf Eccentric, Lr = 0 plf Max Vert Spacing = 18,00 in Add'l From Above, Dr -0,000 kips Clear Height, I= 16.50 ft Add'l From Above, Lr -0,000 kips <p-= 0,9 Parapet Height = 0.00 tt Girder, Dr = 0,000 kips 0, = 0,85 Wall Thickness, t- 6.50 in Girder, Lr = 0.000 kips c -3834 ksi h/t = 30.46 O Girder Load Eccentric? Es = 29000 ksi n = 7,56 Depth io Rebar, d = 3.250 in 0.003 Vertical Rebar = #4 = 0.00207 Spacing = 10.0 in O.SPi, = 0.0143 S(ee/ @ Each Face = 1 {# layers) Sos = 0.7S1 g Qe=Fp = 0.237 V\>p Reveal Depth- 0.75 in Eff. 1 Wind Area = 17 ft' Reveal to Bottom = 7.75 ft Wind Load, W = 14.36 psf d at Reveal = 2,500 in (16-3) (16-4) (16-S) (16-6) (16-7) {16-13a) \ (16-13b) iW^ = 0.00 9353 7871 9383 7871 439S : 4132 Ib-ialt . ,1, * 8.25 8,25 8.25 8.25 8.25 8.25 1 8.25 'i V ft r l : ATOX = O.OOE-I-OO 3,83E«)7 3,21E-l-07 3.83E-I-07 3,21E-t-07 1..30 e-f 07 i 1.69E-1-07 IB U ^ At Reveal; 1 Mo = 0 9348 7842 , 9348 7842 4382 1 4117 Ib-in/ft y Ao = COOE-fOQ 3,81 E+07 3,20E-i-07 3.81E4-07 3,20E-*-07 1.79E-i07i 1.68E-I-07 IB ^ " LOAD COMBINATIONS (GBC 160S.2.1) (16-3) U= 1.20 D 1-0.50L -i-I.eOLr (16-4) U= 1.20 D -I-0.50 L -i-0.50 Lr (16-5) U= 1.36 D -I-0.50 L -H.OOQe (16-S) U= 0.90 D -I-1.60 W (16-7) U= 0.74 D -t-I.OOQe (16-13a) A= 1.00 D •<-0.75L •I-0.75W (16-13b) A= 1.08 D -I-0.75 L -fO.SSQe 12.4.2.3 e= QE± 0.2SOSD = QE± 0.16 D DESIGN SUMMARY: Wind (1.8 W) -I- 1.60 W I 18.0Q 16.00 14.00 12.00 10.00 8.00 6.00 4.00 2.00 D.OO al S e: W Cl Seismic (1.0 E) 18.00 16JJ0 14.00 12.00 SO.CO S.OO 3.oa 4.00 2.00 0.00 C IC ™ SIS. strength: (16-3) (16-4) (16-6) (16-6) (16-7) <J!M„ = 41.923 41,923 42.197 41,402 41,127 tb-in M„ = 0 10,130 8,583 9,938 8,253 Ib-in %Over-0.0% 0.0% 0.0% 0.0% 0.0% AtReveal: 41,778 41,778 42,033 41.293 41,037 !b-in Mu = 0 10,187 8,642 9,970 8,26S Ib-in v< Over = 0.0% 0.0% 0.0% G.0% 0.0% Deflection: Wind Seismic At fteveal: Wind Seismic le/150 = 1.3200 1.3200 in 1.3200 1.3200 in MaxA = 0.0171 0.0151 in 0.0170 0;0160 in % Over = 0.0% 0.0% 0.0% 0.0% PRIME .lob; 2K13-17.S SIRliCTliRAl Dsw; ..^ ENGINEERS si^t _„_^' CONCRETE SLENDER WALL Considering P-Oelta Effects PROJECTS; DESCRIPTIOI^; 2K13-170 Viasat BLDG #10 Secured Parking Enclosure 1ST TO ROOF Strength at Factored Load: (15-3) (16-4) (16-5) 1 (16-6) (16-7) Factoreti ecc, P„,= 0.00 0.00 0,00 0,00 0,00 Ibs/ft Factored axial, Pu,3a-i = 0.00 0,00 COG 0,00 0.00 lbs/ft Factored wall, P^^ = ' 804.38 804,38 910,36 603,28 497.28 lbs/ft Factored, P^, = 804.38 804,36 910,38 603,28 497,28 Ibs/ft Pu/A,= 11,57 SO.oefc... OK! = 10.31 10,31 11.57 7,73 6,33 psi A.,= 0,240 £ 0.6p(bd) = 0,556 ,0K Deflection at Service Load: (R14,8,3) As,= As + (Pu/fy)-(h/2d) 0,253 0,253 0,255 0,250 0.248 in^ a= (Pu-fAsf,)/(0,8Sf,b) 0,373 0,373 0,375 0,368 0.365 in c= a/0,85 = 0438 0,438 0,44-1 0,433 0.430 in Et = (tc<j / c) d - Ecu ' 0,0192 0,0192 0,01 s-j 0,0195 0.0197 2 0,005 For Tension Control OK OK OK OK OK Mt,= (A„fy)(d-a/2) = 46581 46581 46884 46002 45696 Ib-in (14-7) l„ = n-A„(d-<)"-fbc^/3 15.49 15,49 15,57 15,34 15.26 iii* M„a= M„o+Pu,ex/lc = 0 9383 787-i 9383 7871 Ib-in (14-4) K= IWua-^PuA„ 0 10130 8583 9938 8253 Ib-in (14-S) Au = = 0.00 0.93 0,7^ 0.92 0.77 in *M„ = 41923 41923 4219t 41402 41127 Ib-ir, (14-3) Check ttiatq)M„a M„ OK OK Oli OK OK I5S bt^/12 = 274.63 274,63 274,64 274.63 274.63 in'' (9-9) M„=7.5fc°^lg/0,5t 40082 40082 40082 40082 40082 Ib-in (14-2) Check that > M„ OK OK OK OK OK (16-133) (ie-13b) Sen/ice ecc, P,( = = 0.00 0.00 Ibs Service axial, P^^,. = 0.00 0.00 Ibs Service wall, P,„ = 670.31 725.96 Ibs Service, P, = Pt,(-<-P™ = = 670.31 725,95 lbs Ac = 5M„l,'/(4BEcy 0.16 0,16 in M„ = (A„y(d-a/2) = 46SB1 46886 Ib-in A,,= 5 M„ 1.^ /(48 E,.l„) 3.20 3,21 M« = Mt^-^Pmex/t = 4398 4132 M = M^-fPjA, 4410 4144 Ib-in (14-8) A,= O.02 0,02 in Allowable A = 1.32 1,32 in Check that A, SAa„o„ OK OK Shear at Factored Load: 8Mu/(12 1.') (16-3) (16-4) (1S-S) (16-6) (16-7) 8Mu/(12 1.') 0.00 24,81 21.02 24.34 20.21 Vu = Ic W„ / 2 = 0.00 204,65 173.40 200,77 166.72 (11-3) cpVc = 0,75 (2) f c'-'^ b d 3699.86 3699,86 3699,84 3699,85 3699,86 Check that <PVc>V„ OK OK OH OK OK PRIME .k,h: 2K13- CONCRETE SLENDER WALL considering P-Delta Effects •WL6to6F REVEAL) PROJECT*: DeSCRIPTiON; 2K13-170 Viasat BLOG #10 Secured Parking Enclosure 1ST TO ROOF Strength at Factored Load: Factored ecc, P„, = Factored axial, P^,^.= Factored wall, P„„ = Factored, P„ = As = (R14.8.3) (14-7) (14-4) (14-5) (14-3) (9-9) (14-2) 0.240 S 0.6p(bd) = A«= As +(Pu/f.,)-(h/2d) a= {Ptj-*Asfy>/{0.65fcb) c = a / 0.35 Mr = (A«fy)(d-a/2) lc = K> = M„o * Puf e X /1^ M„= M„8-t-P„A„ Au = *M„ = Check that <1>M„ > M„ bt^/12 = 7.5fo"l,/0.5t Check that <PM„ > M„ 0.556 ...OK M Deflection at Service Load: A5 = Allowable A = 1^/150 Check that A, SA„a,.„ (16-3) (16-4) (16-S) (16-6) (16-7) 0.00 0.00 0.00 0,00 • 0,00 lbs 0.00 0.00 0.00 0,00 O.OO Ibs 853.13 853.13 965.56 539,84 527.42 ibs 853 13 853.13 965.55 639,84 527.42 lbs 0.253 0.253 0.254 0,249 0.248 i.'i^ 0.374 0.374 0.377 0,369 0.355 in 0.440 0.440 0.443 0434 0.430 in 46420 46420 46704 45881 45597 Ib-in 14.71 14.71 U.7i 14,57 14.49 in* 0 9348 7842 9348 7842 Ib^in 0 10187 8642 9970 8259 ib-in 0.00 0.98 oM-0.97 0.81 in 41778 41778 42033 41293 41037 ib-in OK OK oH OK OK 190.11 190.11 190,11 190,11 190.11 in- 31366. 31366 313SS 31366 31366 IP-in OK OK 0i< OK OK (16-13a) (16-13b) 0.02 0.02 in 1.32 1.32 in OK OK SECURED PARKING ENCLOSURE 'FOOTING ^ PRIME J0B;2K1MZ0 ^ STRUCTUR.AL DATE;ji2^i3_ SSb ENGINEERS SHT:_^ 12/10/13 'i 2K13-170 GRADE BEA24 ANALYSIS PR0GRA14 Footing LENGTH = 2.25 ft Footing WIDTH = 1.00 ft Footing DEPTH = 1.00 ft Cone fv-eigiit - 0.15 kef Surcharge = 0.00 ksf Footing + Surch. = 0.15 icif POINT LOADS (k & ft) 1 X (4. 02) 0.67 1 .1 3 MOMENT LOADS (k 7 X 0.61 1 .1 3 RESULTANTS (k r CASE 1 r3\ 4' Pt X Q max Q min 1.01 0.52 1.29 0.00 MAXIMUM FORCES CASE 1 {kr kft) V max M max M min 0.76 0.52 -0.08 t » ,: PRIME J0B:2K13-170 WJ^ STRUCTURAL DATE:/L2.EQ13. h ENGINEERS SHT: SECURED PARKING ENCLOSURE FOOTING 12/10/13 2 if IJ- i /'O GRADE BEM DESIGE PROGRAM DESIGN DATA (4.02) f'c - 4.00 >fsi fy = 60.00 ksi Load Factor =1.00 SHEAR DESIGN b = 12.00 in h ~ 12.QO in d = 9. 00 in Vmax Vn Av 0.8 k 0.9 k Vc Vs 0. si/ft iX 13. 7 k 0.0 k 4.50 ir Vs =• 0, stirrups are optional 1 i 3 Stirrup @ 4.5" 1 i 4 Stirrup @ 4.5" FLEXURAL DESIGN Beta 1 = 0 85 As min = 0 36 si As max = 2 31 si M+ max 0.5 A-xt M-min = -0.1 kft Mn-h 0.6 kft Mn --0.1 kft As str ~ 0.01 si As str = 0.00 si As - 0.02 si As — 0.00 si Sottoii! steei Top steel Bar Wo. Space No. Space # 4 0.1 0.0 - # 5 0.1 0.0 - # 6 0.0 0.0 - /fj.o i^t- T^t^^i y 0 y?yy x y "A fx /^^-?- ' fix. 4LH^ ./ / ^ y 'ft t s f) p f t, « v-yt^??'^' -"^ - i. ^.7r / .»/;. ClarkWestern Building Systems CW Tech Support: (888) 437-3244 clarkwestern.com 2007 North American Specification ASD DATE: 11/11/2013 PRIME J0B:2K13-170 STRUCTURAL HATR 11-2013 ENGINEERS SHT: -.n/) . y "f"" SECTION DESIGNATION; 600S162-68 [50] Single Input Properties: Web Height = Top Flange = Bottom Flange = Stiffening Lip = Punchout Width = 6.000 in 1.625 in 1.625 in 0.500 in 1.500 in Design Thickness = Inside Corner Radius = Yield Point, Fy = Fy With Cold-Work, Fya • Punchout Length = Floor Solver Design Data - Sinnple Span Joist Span 6.75 ft Dead load = 29.7 psf Live Load = 148.4 psf Joist Spacing 12.0 in Check Flexure Mmax = 1014 Ft-Lb <- Ma = 3289 Ft-Lb & Ma(distortional) = 2975 Ft-Lb K-phi for Distortionai Buckling = 0 lb*in/in Check Deflection Totai Load Defl Limit: L/180 Total Load Defl. = 0.080 in Live Load Defl Limit; L/240 Live Load Defl. = 0,067 in Check Web Crippling Web Crippling capacity reduced for punchouts Rmax = 601 Ib End Bearing Length = 1.00 in Ra = 845 Ib >= Rmax, stiffeners not required Check Shear Vmax = 601 Ib Shear capacity reduced for punchouts Va = 2879 Ib >= Vmax o:0713in 0.1070 in 50.0 ksi 66.6 ksi 4.000 in Total Load Defl. Ratio = 1/1012 Live Load Defl. Ratio - L/1215! — —^ ^ = ij-J^ Jt,l i • I I I .nJj2i K fss»- _/ 3> ^ / i VP " • ' y) 0c z . ^ 1 I I I I I I 7 C ('Jfc- K; 7*' t Pl 0pr^ f(J-f I I ^c./%y' f%:&^ I ClarkWestern Building Systems CW Tech Support: (888) 437-3244 cla rkwestern.com 2007 North American Specification ASD DATE: 11/11/2013 4.0- PRIME JGB:2K13dI0 IMA, STRUCTURAL DATE:jLb^ ^js^ ENGINEERS SHT:. SECTION DESIGNATION: 12008200-97 [50] Single Input Properties: Web Height = Top Fiange = Bottom Flange = Stiffening Lip = Punchout Width = 12,000 in 2.000 in 2.000 in 0.625 in 1.500 in Design Thickness =, Inside Corner Radius = Yield Point, Fy = Fy Wth Cold-Work, Fya ^ Punchout Length = Floor Solver Design Data - Simple Span Joist Span 14.83 ft Dead Load = 30.0 psf Live Load =135,1 psf Joist Spacing 12.0 in Check Flexure Mmax = 4539 Ft-Lb <= Ma = 11626 Ft-Lb & Ma(distortionai) = 10572 Ft-Lb K-phi for Distortionai Buckling = 0 lb*in/in Check Defiection Total Load Defl Limit; L/180 Totai Load Defl. = 0.201 in Live Load Defl Limit: L/240 Live Load Defl. = 0.164 in Check Web Crippling Web Crippling capacity reduced for punchouts Rmax = 1224 lb End Bearing Length = 1.00 in Ra = 1565 Ib >= Rmax, stiffeners not required Check Shear Vmax = 12241b Shear capacity reduced for punchouts Va = 7411 lb >=Vmax Total Load Defl. Ratio = L/886 Live Load Defl. Ratio = L/1083: 0.1017 in 0,1526 in 50.0 ksi 50.0 ksi 4.000 in ClarkWestern Building Systems CW Tech Support: (888) 437-3244 clarkvi?estern.com 2007 North American Specification ASD DATE: 11112/2013 _ PRIME J0B:2K13-17Q STRUCTURAL &ATE:lH£li ENGINEERS mx^^mn.. U' SECTION DESIGNATION: 1200S200-97 [50] Single Input Properties: I Web Height = Top Flange = Bottom Flange = Stiffening Up = Punchout Wdth = 12.000 in 2.000 in 2.000 in 0,625 in 1.500 in Design Thickness = inside Corner Radius = Yield Point, Fy = Fy With Cold-Work, Fya Punchout Length = Floor Solver Design Data - Simple Span Joist Span 8.50 ft Dead Load = 56.0 psf Live Load = 197.9 psf Joist Spacing 12.0 in Check Flexure Mmax = 2293 Ft-Lb <= Ma = 11626 Ft-Lb & Ma(distortional) = 10572 Ft-Lb K-phi for Distortionai Buckling = 0 lb*in/in Check Deflection Total Load Defl Limit: L/180 Totai Load Defl. = 0.033 in Live Load Defl Limit: L/240 Live Load Defl. = 0.026 in Check Web Crippling Web Crippling capacity reduced for punchouts Rmax = 1079 ib End Bearing Length = 1.00 in Ra = 1565 Ib >- Rmax, stiffeners not required Check Shear Vmax = 1079 lb Shear capacity reduced for punchouts Va = 7411 lb >= Vmax 0.1017 in 0.1526 in 50.0 ksi 50.0 ksi 4.000 in Total Load Defl. Ratio = L/3061 Live Load Defl. Ratio = L/3927 2K13-170 Chiller - BIdg 10 FLOOR ItflOUNTED IVIECHANICAL UNITS ASCE 7-05 (13.3.1) PRIME Job; _ mmm D8te;__ ENGINEERS Ste _ W,, Fl. in. in. in. Wpi= 11100,00 lbs Y= 96,00^ y = 0,00 X = 87,00 Sos = 0,790 ap= 1,00 Rp = 2,50 'p zlh-- 1.00 0,00 pa Roof Curb Wp2= 0,00 X SEiSnfliC DEiWANDS ON NONSTRUCTURAL COIV1PONENT5 - ASCE 7-05 13.3.1 0,4-ap-SDs-Wp-(1 •H2-z/h)/(Rp/lp) = 1.6-SDs'lp'Wp = 0,3-Soslp-Wp = 0,126 Wp F = 1,264 Wp Fp.i-nirt ~ 0,237 Wp 0.237 Wp Fpi = 2630.70 lbs. ^p2 ~ 0.00 lbs. 0,158 Wp 1753,80 ibs. lbs. (ASCE 7-0513,3-1) (ASCE 7^5 13,3-2) (ASCE 7-b5 13.3-3) 0.2-Sos-(Wpi.v>*2) = UPLIFT CHECK (ASD) Pe = 0.7-[Fpv(Y/2-t-y)/X] +0.7*[ Fpv/2] •t-0.7*Fp2'y/2/X= 1629.82 lbs. 0.5Pd,mi, = 5550,00 Ibs. > Pe. NO LOADING CHECK (ASD) Pd,n«x (2/3*Wp)= SumP/1,33=" 1629,82 ibs, 7400.00 Ibs. 6772.37 Ibs, 2/3 * Wp= 7400.000 Ibs DL + LL GOVERNS UPLIFT iff& y % ^-1 <^ n 7-f / AT CHILLER- BLDG #10 PRIME J0B:2K1M20 ENGINEERS SHT:. 11/13/13 2 Kl 3-170 GRADE BEAM ANALYSIS PR0GRA!'4 (4.02) Footing LENGTH = 7.50 ft Footing WIDTH = 24.00 ft Footing DEPTH = j.oo ft Cone Weight = 0.15 kef Surcharge = o.OO ksf Footing + Surch. = 3. e'O Arif POINT LOADS (k & ft) 1 X 11.10 3. 75 MOMENT LOADS (kft & ft) „ 1 X 9.21 3. 75 RESULTANTS CASE' (k, ft & ksf) 1 Pt X Q max Q min 38.10 3.51 0.25 0.17 MAXIMU14 FORCES (k, kft) CASE 1 V max M max M min 7.39 15.01 0. 00 AT CHILLER- BLDG #10 PRIME J0B:2K1M70 STRUCTURAL BATE: 11-2013 ENGINEERS SHT:^^^ 11/13/13 21C13-I70 GRADE BEAM DESIGN PROGRAI'i (4.02) DESIGN DATA f'c = 4.00 ;csi i; = 288.00 in fy = 60.00 ksi h = 12.00 in Load Factor = 1.00 d - 5.-00 in SHEAR DESIGN Vmax - Vn 7.4 k 8.7 k Vc = 327. 9 k Vs = 0.0 k Av =2.88 si/ft S max = 4.50 in ' Vs = 0, stirrups are optional 2 # 4 Stirrups @ 3.3" FLEXURAL DESIGN Beta 1 As min As max 0.85 8.64 si 55. 42 si M-t max = 15.0 icft M- min = 0.0 ;fft Mn+ = 16.7 icft Mn- - 0.0 Jfft As str = 0.37 .si As str = -0.00 si As = 0.49 si As = -0.00 si Bottom Steel Bar No. Space #4 2.5 94,0" Top Steel No. Space -0.0 2K13-170 Chiller-BIdg 11 FLOOR MOUNTED IVIECHANICAL UNITS ASCE 7-OS (13.3.1) Pel \Vl> Fp Pe i 4 pa PRIME,..J.oi>;% SIRUGTUSAl Oate;_ asSbENGlNEERS Ste _ Wpi = 10000.00 lbs. V = 96.00 in. y = 0.00 in. X = 87.00 in. . ap^ 0.790 1.00 2.50 1.00 z/h = 0.00 Roof Curb Wp2= 0.00 lbs. SEISMIC DEMANDS ON NONSTRUCTURAL COMPONENTS - ASCE 7-05 13.3.1 0.4-ap-SDs-Wp.(1+2-z/h)/(Rp/lp) = Fp = 0.126 Wp (ASCE 7-0513.3-1) 1.6SoslpWp = Fp,max ~ 1.264 Wp (ASCE 7-05l3;3-2) 0.3-SDs-ip-Wp = Fp.min ~ 0.237 Wp (ASCE 7-0513.3-3) Fp = 0.237 Wp Fpi = 2370.00 lbs. Fp2 = 0.00 ibs. 0.2-SDS"{WpHwp2) -Fp.v ~ 0.158 Wp Fp,v ~ 1580.00 Ibs. UPLIFT CHECK (ASD) Pe= 0.7-[Fpi-(Y/2-*-y)/X] •t-0.7*[ Fpv/2] -t-0.7*Fp2*y/2/X= 1468.31 Ibs. 0.5Pd.min = 5000.00 Ibs. > Pe. NO UPLIFT LOADING CHECK (ASD) Pe = 1468.31 lbs. Pd.max (2/3*Wp)= 6666.67 lbs. Sum P/1.33= 6101.23 Ibs. 2/3 * Wp= 6666.667 Ibs DL-i-LL GOVERNS "ft AT CHILLER- BLDG ill PRIME'. J0B:2K13-17D '^..J^. STRUCTURAL DATK; 11-2013 Wj0^ ENGINEERS SHT: 11/13/13 2K13-170 GRADE BEM4 ANALYSIS PROGRAM (4.02) Footing LENGTH = 7.50 ft Footing WIDTH = 20.00 ft Footing DEPTH = 1.00 ft Cone Weight = 0.15 kef Surcharge = 0.00 ksf Footing Surch. = 3.00 icif POINT LOADS (k & ft) 1 X 10.00 3. 75 MOMENT LOADS (kft & ft) 1 X 8.30 3. 75 RESULT.!\NTS (k, ft & ksf) CASE 1 Pt X Q max Q min 32.50 3.49 0.26 0.17 MAXIMUM FORCES (k, kft) CASE 1 V max M max M min 6. 66 13.53 0.00 ,.e. |t>6-^; AT CHIiLSR- BLDG #11 PRIME JQB:2K13-170 WA STRUCTURAL DATE:_Lb2m3. 'ises> ENGINEERS SHT:^ - 11/13./13 2K13-170 GRADE BEAM DESIGN PROGRAM (4.02) DESIGN DATA f'c = 4.00 ksi b = 240.00 in fy = 60.00 ksi h = 12.00 in Load Factor =1.00 d = 9.00 in SHEAR DESIGN Vmax Vn 6. 7 k 7.8 k Vc = 273.2 k Vs = 0.0 k Av =2.40 si/ft Smax = 4.50 in Vs ?= 0, stirrups are optional 2 # 4 Stirrups ^4,0" FLEXURAL DESIGN Beta 1 As min As max 0.85 7.20 si 46.18 si Mi- max = 13.5 Jfft M- min = 0.0 ;:ft Mn-i- = 15.0 ;cft Mn- = 0.0 ^ft As str = 0.33 si As str = 0.00 sl As = 0.45 si As = 0,00 si Bottom Steel Bar No. Space # 4 2.2 7S.0" Top Steel No. Space 0.0 0f/4^) '> / ... 'ty .... r' , ;1.- - \ fyn ^ ^/^z^ y'^p^S Jfy #.4 / f if') l^.. I' '7 b. "1 , i 2K13-170 MAU-1 PRIM.E .Uob: STRUCTURAL oa^Z ENGINEERS sfti; ^ FLOOR MOUNTED MECHANICAL UNITS ASCE 7-05 (13.3.1) PP P.1 umt xn Pe pa Wpi = Y = y = x = SDS - 3p = R„ = 'p 2700.00 Ibs. 48.70 in. 12.00 in. 48.50 in. 0.790 1.00 2.50 1.00 1.00 Roof Curt) Wp2= 200.00 ibs. SEISBflIC DEMANDS ON NONSTRUCTURAL COMPONENTS - ASCE 7-0513.3.1 0.4-ap-Sos-Wp-(1+2-z/h)/(Rp/lp) = Fp = 0.379 Wp (ASCE 7-05 13.3-1) 1.6-SDsIp-Wp = 1,264 Wp (ASCE 7-05 13.3-2) 0.3-SDs-lpWp = 0.237 Wp (ASCE 7-0513.3-3) Fp = 0.379 Wp Fpi = 1023.84 Ibs. Fp2 = 75.84 Ibs. 0.2-SDS-(Wpi.«^^2) = ^P.v ~ 0.158 Wp 458.20 ibs. UPLIFT CHECK (ASD) Pe = 0.7-[Fpv(Y/2-i-y)/Xl +0.7*( Fpv/2] -i-0.rFp2*y/2/X= 704.08 Ibs. 0.5P,j,mn = 1450.00 Ibs. > Pe, NO UPLIFT LOADING CHECK (ASD) Pe = P«,^(2/3*Wp)= Sum P/1.33=" 704.08 lbs. 1900.00 Ibs. 1953.06 Ibs. 2/3 * Wp= 1900.000 Ibs DL * SEISMIC GOVERNS 9. m RAM lN!!SN,.-.Ts.-?,!;.! Load Diagram PRIME JOB:. STRUCTURAL DATE: J2^Q1i ENGINEERS SHT:. RAM SBeam vS.O.l Licensed to: Prime Structural Engineers 12/17/13 14:51 ;57 JL Load Dist DL LL+ LL-MaxiTot ft kips kips kips kips Pl 14.340 0.800 0.000 0.000 0.800 P2 21.000 0.363 0.000 0.000 0.363 P3 25.670 0.363 0.000 0.000 0.363 ft k/ft k/ft . k/ft Mt Wl 0.000 0.473 0.138 0.000 0.611 W2 21.170 0.473 0.138 , 0.000 0.611 0.989 0.138 0.000 1.127 W3 . 26.170 0.989 0.138 0.000 Lil 27 0.473 0.138 0.000 0.611 W4 28.670 0.473 0.138 0.000 0.611 m IIJIM Gravity Beam Design ^ RAMSBeamv3.0.1 L{cense(3 to: Prime Structural Engineers ^ PRIME JOB STRUCTURAL DATE; ENGINEERS S,HT: 12-2013 12/17/13 14:49:37 STEEL CODE: AISC LRFD SPAN INFORMATION (ft): I-End (0.00,0.00) J-End (28.67,0.00) Beam Size (User Selected) = WI2X19 Total Beam Length (ft) = 28.67 Distance to Adjacent Beam on Left (ft) = 6.9 Distance to Adjacent Beam on Right (ft) = 6.9 COMPOSITE PROPERTIES (Not Shored): Fy = 50.0 ksi Left Right Conci-ete thickness (in) 3.50 3.50 Unit weight concrete (pcf) 150.00 150.00 fc(ksi) 3.00 3.00 Decking Orientation pei-pendicular perpendicular Decking type ASC 2W ASC 2W beff(in) 82.50 y bar(in) 14.53 Mnf (kip-ft) 253.85 Mn (kip-ft) 178.46 C (kips) 97.12 PNA (in) 10.23 Ieff(in4) 423.05 ltr (in4) 626.25 Stud length (in) 3.50 Stud diam (in) 0.75 Stud Capacity (kips) Qn = 16.2 # of studs: Max = 28 Partial = 12 Actual = 14 Number of Stud Rows = 1 Percent of Full Composite Action = 31.07 Top flange braced by decking. POINT LOADS (kips): Flange Bracing Dist (ft) DL CDL LL CLL Top Bottom 21.000 0.36 0.00 0.00 0.00 Yes No 25.670 0.36 0.00 0.00 0.00 Yes No 14.340 0.80 0.00 0.00 0.00 Yes No LINE LOADS (k/ft): Load Dist (ft) DL CDL LL CLL 1 • 0.000 0.473 0.406 0.138 0.138 28.670 0.473 0.406 0.138 0.138 2 21.170 0.516 0.000 0.000 0.000 26.170 0.516 0.000 0.000 0.000 SHEAR (Ultimate): Max Vu (L2DL+1.6LL) = 15.05 kips 0.90Vn = 77.41 kips MOMENTS (Ultimate): Span Cond LoadCombo Mu @ Lb Cb Phi Phi*Mn kip-ft ft ft kip-ft Center PreCmp+ 1.2DL+1.6LL 72.7 14.3 0.0 1.00 0.90 92.63 InitDL L4DL 58.4 14.3 — — Max+ 1.2DL+1.6LL 98.0 14.6 — — 0l85 i5L69 Controlling 1.2DL+L6LL 72.7 14.3 0.0 1.00 0.90 92.62 i RAM Gravity Beam Design RAM SBearav3.0.1 Licensed to: Prime Structural Engineers REACTIONS (kips): Initial reaction DL reaction Max +LL reaction Max +total reaction (factored) DEFLECTIONS: (Camber = 1-5/8) Initial load (in) Live load (in) Post Comp load (in) Net Total load (in) Left 7.80 7.77 1.98 12.48 Right 7.80 9.90 1.98 15.05 _ PRIME JOE:> 1^, STRUCTUML MTE: 12-2013 m ENGINEERS SHT: ^ . Page 2/2 12/17/13 14:49:37 at 14.48 ft = -1.637 L./D = 210 at 14.48 ft = -0.171 L/D = 2012 at 14.48 ft = -0.424 L/D = ^ 811 at 14.48 ft --0.436 L/D -789 2K13-170 kmm mmm ENGINEERS Bhv. . FLOOR MOUNTED IVIECHANICAL UNITS ASCF 7.n.«; (1^7 4) Wp .'So \y'^ pa 1200.00 Ibs Y = 47.00 in. y = 0.00 in. x = 32.00 in. SDS -0.790 3p = 1.00 Rp = 2.50 1.00 z/h = 1.00 Roof Curb Wp2= 0.00 Ibs. SEJSMIC DEMANDS ON NONSTRUCTURAL COMPONENTS - ASCE 7-05 13.3.1 0.4-ap-Sos'Wp-{1-i-2-z/h)/(Rp/lp) = Fp = 0.379 Wp (ASCE 7-0513.3-1) 1.6-SDslpWp = ' p.max 1.264 Wp (ASCE 7-05 13.3-2) 0.3-SoslpWp = Fp;min ~ 0.237 Wp (ASCE 7-0513.3-3) Fp = 0.379 Wp Fpi = 455.04 lbs. Fp2 = 0.00 Ibs. 0.2-SDS-(WPI.V«P2) = ^p,v ~ 0.158 Wp ^p,v *" 189.60 Ibs. UPLIFT CHECK (ASD) Pe = 0.7-[Fpi-(Y/2-*-y)/X] +0.7*[ Fp,/2J +0.7*Fp2*y/2/X= 300.28 Ibs. 0.5Pd,min = 600.00 Ibs. > Pe. NO UPLIFT LOADING CHECK (/!SD) Pe = P,.™.(2/3*Wp)=_ Sum P/1.33=" 300.28 Ibs. 800.00 Ibs, 825.21 Ibs, 2/3*Wp= 800.000 Ibs DL • SEISMIC GOVERNS YS> ' 't' CJ> / yii.?f/''&Z'^<. , /"*^^£^^c:-^ / ^ y^.^f " 1 4/ yvAs i-y¥-jyi. ./>/ :'«20 •'' JiT ^••/•Jf^y^:. yf.'J^'.'^r,... X ' 6, hyp A/ A iB'y,t~ V /n^ '' /¥/ R^dp- Pl :;: HBzUl /AJa<^ 2.70 lypiiTi t^fy^.- r, , ^ ^ _jyi y /4r p^f^^U > ^/^2f y fo.y^ x2 ^i>,i "S- V /K* U , .'y,A' ay- /y y / yyf-,-, 7 v>y> i O 0 , A :><i 5, a.<r"/2<n9P<; !^2- '-'0. '-^ — /yyffVoy .y¥0p ; .i>;C- '•z./y-!/ f-'fff-j'yy fyfjyy 'J. yy id- y .., o LAJ< efef-^ kz, ]) ^yrt.-\ y/rrm liymr ''I, 'A: •/./ c>.cyic.if'^ iWy" -f- 2/ /. zij^^. f.y/y/tM'')^ !y3>yr-u-2y ^ irr A- ; feS! : Wi' ^ l 2??/50' / ".if / .r.-^ (' :• 1.,.:. t:... -' '^-nc ^ \ ""'^ ^'^'^ ~y> '. S '«;>*^ it? '"S ^ p.,,!<.. "t? ^ / t. :-^^^'*;, ,,^5^ :-4-1 ^. i._,lcy~.y.y'"y 1 y- I.D X^ I"' 2:. ^Z- i -S* -f^ J ... yf... .—• r, / A - •••:•'.. 7 ^-^ilr ' '9 /' r v -t .-.„-r: i4 0<;, i:> V- /•')jx<y ^ ?3 Sis 1:53 0>-i )-i p3 txi ?; w tp O (s3B Roof Diaph. N/S (slpi2vls0b4148TBEftM fiKALYSIS PROGRftM (slp9vls0b4148T SPAN LENGTH =100.00 ft (Sinple Span) tJNIFORM LOADS (k/ft S ft) wd, wl XI X2 1.906 0.000 4.0S1 0.000 4.217 0.000 1.906 0.000 0.00 21.33 50.00 78.67 REACTIONS LOAD (k) LEFT 21.33 50.00 78.67 100.00 RlGHtr IME J0B:2K13-170 CTUM MIR 1Q-2013 ENGINEERS Sffr:_4^ (6. 60) (sOplO. 00hi2v0s0b3' Dead Live Total MAXIMUM FORCES 158.672 0.000 158.672 159.954 0.000 159.954 / Vmax = 159.95 k @ 100.00 ft Vd max = 159.95 k @ 100.00 ft Mmax = 4665.94 kft g 50.38 ft Md max = 4665.94 kft % 50.38 ft '; 7 ,' OA J^#l*<j I DEFLECTIONS LOM} (EI = Defl kin"2) (in) X (ft) y Total8248529376/EI50.06 Live 0/Bl 0.00 Dead 8248515660/El Btidspan TOTAL Defl L / 180 L / 240 L / 360 EI 1237279360 1649705856 2474558720 (s3B Roof Diaph E/W #1 2K13-160 (slpl2vls0b4148TBEAM ANALYSIS PROGRAM (slp9vls0b4148T SPAN LENGTH =112.00 ft (Sickle Span) (s0B|^23/BRIME J0B:2K13-170 STRUCTURAL MTE:jMoiS- ENGfNEERSsBT:, tJNIFORM LOADS (k/ft £ ft) wd wl XI 1.000 2.015 1.569 REACTIONS LOAD 0.000 0.000 0.000 (k) 0.00 28.50 84.00 LEFT 28 .50 84.00 112.00 RIGHT Dead 86.032 98.232 Live 0.000 0.000 Total 86.032 98.232 MAXIMOM FORCES Vmax = 98.23 k @ 112.OC ft Vd max = 98.23 k 8 112.00 ft M max ^ 2867.11 kft @ 57.05 ft iM i«ax = 2867.11 kft @ 57.05 ft DEFLECTIONS LOAD (EI = kin^a) Defl (in) X (ft) Total 63728912~16/EI 56734"" Live O/EI 0.00 Dead S372613548/EI midspan TOTAL Defl L/180 EI 853512192 L / 240 1138016256 L / 360 1707024384 MM (sOplO.OOhl2vOs0b3T Ji-: t<' I H H I I {s3B Roof Diaph. E/W #2 {SO 2K13-160 (Slpl2vls0b4148TaEAM MALYSIS PROGRAM (slp9vls0b4148T RIME J0B:2K13-17 lUCTURAL DATS: JMSIS ENGINEERS SHT:"^ (sOplO'. (30hl2vQsOb3' SPAN LENGTH =102.08 ft (Single Span) UNIFORM LOADS (k/ft & ft) Wd wl XI X2 1.569 0.000 2.015 0.000 1.000 0.000 0.00 18.08 73.58 REACTIONS LOAD (k) LEFT 18.08 73.58 102.08 RIGHT Dead 91.460 77.245 Live 0.000 0.000 Total 91.460 77.245 MAXIMUM FORCES Vmax = 91.46 k § 0.00 ft Vd max = 91.46k @ 0.00ft M niax = 2384,95 kft @ 49.39 ft Md max = 2384.95 kft 8 49.39 ft DEFLECTIONS LOAD (El = kin'^2) Defl (in) X (ft) Total4403804112/El 50.54 Live 0/El 0.00 Dead 4403291427/El midspan TOTAL Defl EI L / 180 L / 240 L / 360 647091712 862788928 1294183424 ^,|-*::«::| X!:tZ |j!:;irj.A:«r. .A*jjKaClJ |..>.:cj ItLJr. pt.- j'Mmk...Kiss!:M.im...ii^i..Lmj^.. id .EANm ULBvAVGN AT LINg. I^fi-'uy '^oy\ ^3 CO m o m O IVS :;j o VIASAT BUILDING 10 3RD FLOOR CENTER OF MASS N/S DIRECTION: -X/Xx"'^- wi (klf) il (ft.) wi*ii xi j wi*ll*xl 3,215 37.08 119.22 81.48 9714.55 3,625 12.92 46.82 56,46 2643.61 3.872 17.67 88.42 41,17 1 2816.57 3.461 11.00 38.07 22.25 1 846.97 3.215 21,33 68.58 10.67 I 731.36 I(wi*li)= 341.1 I(wi*li*xi) y bar = 16753.06 49.11 E/W DIRECTION: wi (klf) 11 (ft.) wi'li xi wi*li*xi 1.487 90.25 134.20 45.13 6055.85 1.943 15.42 29.95 97.96 , 2934.31 1.657 75.67 125.39 143.50 17992.99 1.487 74.67 111.03 218.57 24280.06 0.00 0.00 0.00 0.00 i:(wi*li)= 400.6 I(wi*li*xi)= 51263.21 xbar= 127.97 kT BUILDING 10 - 3RD FLOOR ' DIAPHRAGM ANALYSIS - EAST ; WEST DIRECTION °" ixcg - kc^ Ycg-Ycr= -s;Tm- -O.S R (W/DISTRIBUTION) \7= 819.31 kips Center 127.97 ft Case 1; 5209.59 kip-ft ex = li.^0 n Gravity Y = 49.11 ft Tx = 3370.00 kip-fl ey = S.OO it uenter •)( = 134.4? ft Case?.: tv = -157B4.82 kip-n Lx = 256 ft Rtgidih' Y = 50.00 ft Tx = -4823.13 kip-ft Ly-100 ff CentroiU (ft) stiflness Torsion Y Direction X Y Rx R/Rtot V Vfor1 Vtor2 Vt V'"*:-Vroof 128.00 10D.OO 99.S4 0.00 9984.21 6.00 249605 0.00 0.00 15.05 ^i.54 45.64 : 128.00 Q.OO S9.84 0.00 0.00 Q.OO 243506 0.00 0.00 -15.0.5 46.54 4S.S4 1 ' d.OO 50.00 0.00 36,17 b.b 0.00 663437 'WW 271.75 -14.65 44.35 316.10 SS30.1 t 112.00 33.26 0.00 10.35 0.0 1159.42 5201 0.09 77.78 -0.7b 2.12 78.90 " —^1.2 1.3 153.82 47.58 0.00 24.ij7 0.0 37S1;V4 9344 0.23 184.62 i,44 -4.37 186.05 ^i.f iO 256.00 50.00 0.00 37.95 0.0 9715.3T 561018 0.35 28li6 13,91 -42.09 283.07 :S5.:2-J.'8 199.68 109.04 9984.21 14658.53 1728211.35 i.OO 819.31 0,00 Q.OO 972.20 DtAi^HfWGM AMALYSIS - NO!?TH / SOUTH DIREC T IOM (WDiSTRISU HON) 659.76 ktps Center X = 127.57 ft Case 1; Ty = 4195.06 kip-fi ex -l2.Sb ft Gravity Y = 4S.11 ft Ix = 2713.72 kip-ft ey = 5.00 ft uemer X -• 134.42 ft Case 2; ' Ty = ' -12694.74 kip-ft Rigidity Y ~ SO.OO ft Tx = -3883.66 kio-ft Centroid (ft) Stillness Torsion X Direction X y Ry Ry-X V Vtorl VtorZ Vt Vt—^root . 128.00 lob.oo 99.84 0.00 9984.21 0.00 24§605 0.50 329.88 7,84 -11,22 337.72 128.00 0.00 99.84 0.00 0.00 249605 O.SO " 329.88 -7,84 11.22 S41.ii(i •% SII .1 0.00 50.00 0.00 36,17 0.00 0.00 653437 0,00 b.oo -7.63 10.93 10.93 112.00 33.25 O.OO !0,35 d.bo 1159.42 5201 Q.OQ 0.00 -0.36 0.52 b.S'2:' ' .3 153.92 47.58 0.00 24.S7 0,00 3781.74 9344 0.00 0,00 0,75 -1,08 1.08 tl 256.00 £0.00 0.00 37,8.% 0.00 3715.37 561019 0.00 o.bo 7,2S -10,37 16,3?' 199.68 109.04 9984.21 14656,63 1728211.35 1,00 559,76 0,00 0.00 701.71 PRIME JQE:2K13-170 »^ STRUCTURAL BATE:jiH F^H^ ENGINEERS SHr:_^ :013 VIASAT BUILDING 10 2ND FLOOR (w,' Seismic Distribution) CENTER OF MASS N/S DIRECTION: E/W DIRECTION: wi (kif) li (ft.) wi*n xi wi*|j*xi 1.663 37,08 61.67 81.46 5023.50 1.875 12.92 24.22 58.46 1367.39 2.003 17,67 35.39 41.17 1457.13 •1,790 11,00 19.69 22.25 438.10 1,663 21.33 35.47 10.67 378.31 I(wi*li)= 176,4 I(wi*rxi) = y bar = 8664.43 49.11 ON: wi (klf) li (ft.) wi*li Xi wl*lt*xi 0.769 90,25 69,40 45.13 3131.78 1.005 15,42 15.49 97.96 1517.75 0.856 75,67 64.77 143.50 9295.11 0,769 74,67 67.42 218.67 12556.40 I(wi*ii}= 207,1 Z(wi*li*xi) = X bar = 26501.03 127.97 VIASAT BUILDING 10 - 2ND FLOOR RIGID DIAPHRAGM ANALYSIS • EAST / WEST DIRECTION Xcr5 Ycr= -0,9 (W/ DISTRIBUTION) W v= '• 1026.40 kips Cemef X = 127,97 « Case 1; Ty = 4171.16 kip-ft ex «= 12.80 ft Gravity Y = 49,11 ft Tx = 4214.49 kip-Jt ey = 6,00 ft uenier X =— 136,70 ft Case 2; Ty = -22104.70 kip-ft Lx = ?S6 ft Rigidiiy Y = 50.00 ft Tx --^ -6049.52 kip-ft lt.O ft Centroid (ftJ Stiffness Torsion fto!. Y Direction WALL X Y Ry*X Const. "TOtot V Vtorl fBrJ vt Vt-V3-Vroof LIMA 128.00 100.00 234.38 0.00 23438,04 0.09 58SS5'1.12 0.00 ~' ~C95" 0.00 12.14 -84.3S 64.35 128.00 0.00 234.33 O.OO ITK) 0.00 £85951.12 0.00 -.. .^^^ 0.00 -irii'4 54.3S 64.35 0.00 SO.OO 0.00 81,97 0.00 O.OO 1531834.45 O.OO 0.32 "32333 ""•-im 61.53 385.12 "85.00 112,00 34.25 0.00 2S.18 o.ofi 2331.94 15375.51 coo 0.10 103.35 -0.67 " ies:sff "" 26.88 UMIE6.S 1S3.S2 47.58 0.00 61.35 0.00 9442.94 18182.84 O.OQ 0.24 242,20 1.0S -5.80 243.29 ^ ' 57.24 j LIME U So.oo 0.00 90.S0 Q.OO 23167.42 1267316.24 O.CO 0.35 TS7.S7 -S9.2S 69.4- Sum 468.76 259.9S " iS438.04 35642.30 4025811.26 1.00 1026.40 0.00 0.00 1232.45 RiGSO DIAPHRAGM ANALYSIS - NORTH / SOUTH DrRF.CTlOM /OlSTRIBLJTION) j V= 836.20 kips cemef X = 127.87 tt Gravity Y - 49.11 It Casel: Ty 33S8.23 kip-ft j Tx = 3433.52 kip-ft 3X = 12.80 tl cemef X = 127.87 tt Gravity Y - 49.11 It Casel: Ty 33S8.23 kip-ft j Tx = 3433.52 kip-ft 1 ey- 5.00 ft uemer x = 13S.70 it Rigidity Y = 60.00 it Case 2: Ty = -18008.S8 kip-ft j Tx = •4928.51 kip-ft i uemer x = 13S.70 it Rigidity Y = 60.00 it Case 2: Ty = -18008.S8 kip-ft j Tx = •4928.51 kip-ft i Centroid (ft) Stiffness torsion m. X Direction WkU. X V Rx Rj? Rx*Y Ry-X Const mM •• V VtoH Vtor2 Vt-V3-Vroof LtM£A lie.oo 100.00 234,38 0.00 23438.04 o.OO S8S'SS1.12 O.OO O.SO 418.10 9,99 -ii.W 90,33 UNll 123.00 0.00 234.38 0.00 0,03 O.OO 686961.12 "0,00 0.50 418.10 -9.99 14.3S ""432:«5— 91.30 Lffiei O.OO 50.30 0,00 81.97 0.00 0.00 1531834.45 0.00 0.00 0.00 -3.S6 1S.T2 IXTif owes 112.00 33.25 0,00 26.13 0,00 2931.94 1S«76.S1 0.00 b.oo -O.SS 0,79 ... ^.yg 163.82 47.S8 b,oo 61.35 O.Ob' 9442.94 1818184 0,00 0.00 o.bo 0.90 -1.29 1.29 UN£ -16 isse.oD 50.00 0,00 • 3o,60 o.bd 23167.42 Mmi6.24 0.00 0.00 b.oo 9.21 -13.22 1S.22' 0.00 Sum 468,76 259,99 23438.04 35542,30 4025811,26 1.00 836.50 0.00 b.'o'fi • iBlSCS6 • M COM sdfc:': X") & {Hyx X^ f 'y' /'f-X .i:yyL 5 / yy' r '''y"'P A x^ 1... . ' ^>i,^S.^*• , 'X ^ \y •/ \ y y/xJtiy^'&'. ^'^>?i''7pue: Ijj J - •' * • 11 „ yy n ) J 'Z& 'A^f-'wftiXi,.. ' (y^ •fi.^^t^Hx:y pff^y m,yfX . 0|E:^-:/ .X.f'- XJ.r-"7 ... X t-V-J y :^ / c5! ISO, 'fi^x{^-'ll, yi?ix£- ^4 .rf^'^K^^ •• y A! 1/ Y'z o,y^-,y, '•-' rilX.::..X.X:si~..... i.:!. ifa-^" /t?-Ac - 41 f V • f /-4 7 y A yH ^ i ^ e-/ ^ i^yf. - xf. ^ 7 X xxyi^ xyx''e, ANGLE LEDC5ER DESIGN PER ACI 318-05 Appendix D. with Seismic Appljc:ation PRIME Jotj; . SIRyCIliR&.Oate:. ENGINEERS SM: . Cast-in Headed Stud Anchors DESCRIPTION: Roof Ledger LEDGER CONPIGURATION: ANGLE SIZE =1.3.5x3.5x1/4 BOLT #& SIZE = 1.00 BOLTS 0,525" DIAMETER Hex SPACING = 18,00 INCHES Anchor Material= ASTM F 1554-35 E!V!BEDt>^ENT = 4,50 INCHES fgta = 58.00 ksi WALL THICKNESS = 6,50 INCHES Fy = 36,00 ksi ANGLE LENGTH = 18,00 INCHES k = 0.625 In Sos ~ 0.789 Cracked UNFACTORED LOADS: MATERIAL PROPERTIES: VDEAD = 0,049 KlPS/FT fo= 4,00 KSI VLIVE = 0,070 KiPS^ f,; = 60.00 KSI T SEISMIC, QE = 0,593 KIPS/FT F,, = 36,00 KSI FOR ANGLE T SEISMIC, Qe = 0,83 KIPS FOR STEEL ELEMENTS 1,50 in LIVE LOAD TO BE INCL, WITH COMB. LOADING W/ Qe (1 :YES, 0;NO) 0 CAPACITIES: Yield Mode Q Tension Shear Load Case 1 = 1.00 Stee! Anchor, H^-= 13,11 kips 7,86 kips .oad Case 2 = Ductile Anchor 1.00 Concrete, Hr = 14,49 kips 28,98 kips -osd Case 3 = Ductile Anchor 1.00 <PN„ = 9,83 kips 5,11 kips 0,75'(PN„ = 7.37 kips 0,75'<1>V-, = 3,83 l<ips DESIGN SUmARY: Steel Tension Ase" Nsa = 0,6-n-Ase-futa = 0.226 if 13,11 kips Concrete Pullout Strenpth in Tension Ai„8 = 0,454 in' Np=8-A^.3-fc = 14.53 Kips fcP^ 1.00 n-Np„ = n-M^t,p.Np= 14.53 kips Concfete Breakout in Tension (e'nsQ^ w/o edpe effects n--A„co = 182.25 i"'' A„e = 182.25 il' ^i^ = l^t'^Kf c)-hM''^ = 14.49 kips 'Vt.u- 1.00 (*«:.N)('+'«1,N)(*C,M)(H'.P.N)(N„) = 14.49 kips Steel Shear v«=n-A,A«J0-6*] = 58.00 ksi 7.86 kips Concrete Prvout Strength in Shear i<ep= 2.00 Interaction tensile & shear Load Case 1 Load Case 2 Load Case 3 V„.,= 0.26 0.10 0.05 Hips N„a= 0.46 1.73 1.65 kips N„,/*N„-i-V,a/<fV„= 0,10 0,26 0,24 12,00 5.00 6,00 28,98 kips ANGLE LEDGER DESIGN PER ACl 318-05 Appendix D, with Seismic Application PRIME j^b : ENGIEERS Sht:. Cast-in Headed Stud Anohors DESCRIPTION: Roof Ledger ANCHOR DESIGN ANALYSIS {LRFD METHOD} L0ADCASE1 =1.2D-t-1.6L DEAD LOAO FACTOR = 1.20 LIVE LOAD FACTOR = 1.60 Dalermine Factored Pu; V„ = 0,26 k C= 4,65 k Pu = 4.65 k Angle Check: I Tu = 0,00 k 1.6M>.= 9.72 k-in V ->T C = 39.78'a K M, horiz. leg = 0.74 k-tn OK a = 0.01 in Mrvert.leg = 0.90 k-in OK — C - 0.45 k 0.03 in= -> a Pu = 0.45 k 0,08 in —> Calc Pu for Angle Yieldina; Pc= 145.80 k LTHK= 0.25 in 0.00 V MOM ARM = 3,50 in Z,= 0.28 in* P;2Pj-»-M,/Mcx= 0.09 OK T MOM ARM = 1,50 in Mj= 9,11 k-in LOAD CASE 2 = (1.2-i-0.2SdslD-t-Qe-i-L DEAD LOAD FACTOR = 1.36 LIVE LOAD FACTOR = 0.00 SEISMIC LOAD FACTOR = 1.00 V ->T P<- C-> V MOM ARM = 3,50 in TMOMARM= 1.50 in Determine Factored Pu: V„= 0.10 k T., = 0.89 k C = 39.78*a k a = 0.02 in C = 0.84 k P>.= 1,73 k Calc Pu for Angle Yielding: LTHK= 0,25 in Z«= 0,28 in' M^= 9.11 k-in C = 4.65 k Pu = 5.54 k Angle Check: T^= 1,25 k a = 0.03 in C= 1.11 k 1,6My= 9.72 k-in M, horiz. leg = 0.29 k-in M,vett.leg= 2,22 k-in S,s,= 0,07 in^ , Up= 0,12 in 145,80 k 0.01 P/2Pc-*M^M«= 0,04 OK OK OK LOAD CASE 3 = m,9-0.2SdsVD-i-Qe DEAD LOAD FACTOR = 0.74 LIVE LOAD FACTOR = 0.00 SEISMIC LOAD FACTOR = 1.00 V ->T P< -> ~> C-> VMOMARM=: 3.50 in TMOM ARM= 1.50 in Determine Factored Pu: V„= 0.05 k L = 0.89 k C = 39.78-a k a = 0.02 in P„ = 1.65 k Calc Pu for Angle Yielding: LTHK= 0.25 in Z,= 0.28 in» • Mz = 9.11 k-in C = 4,65 k Pu = 5.54 k Angle Ched;: T„= 1.25 k a = C = 1.6My= 9.72 k-in M, horiz. leg = 0.15 k-in M, vert.leg = 2.06 k-in 0.03 in 1.03 k 0.06 in» 0.12 in Pc= 146.80 k P,^Pc= 0.01 Pr/2P,-i-M/M^,= 0.03 O.K O.K O.K .y> ' •'X -^^'X^ y. .x> -.*; / f ^ P PRIME Job; jHydl muEm She I x(X '1) W-SEA!« EiWDED DESIGM Per AC! 318-05 Appendix D, with Seismic Application CAST-IN HEADED STUD ANCHORS DESCRIPTION: Roof Beams ^0 • QE = 1.71 k 1,52 K 4,15 k 0,"/8S Beam Size = Load Ecc, e = f, = LL to i5e used In LC2? (1:Y, 0:N) = Anchor Materia! = AWS D1.1 - Type B Wl2X 3,00 in 4000 psi OSO 0 Cracked Yield Mode Load Case 1 = Load Case 2 = Ductile WT Load Case 3= Ductile WT fills - 65.00 ksi Bearing Angie = L 2.0 x 2.0 x 3/8 51.00 ksi Angle at Top Si Bottorn # of Studs = 2.00 Studs T&B Angle. Fy = 36,00 ksi Embed = 4. so in Connection = WT4X7,5 Diameter = 0.625 in WT length, h = 9,00 in Embed Plate Width= 8.00 in Tola! Ecc = 4,00 in Tiiickness = 3.'8 in DESIGN SUmARY LCI LC2 LC3 .Mu = 1.81 4,68 432 Kips Vu = 4.48 2,32 1.27 kips Stee! Anchor, N^j. = 39.38 39.88 33.88 kips Concrete, N„ = 20.83 17.44 1744 kips 16,00 Steel Anchor, V,- = 208.37 209.37 20S.37 kips 14.S0 Cono-efe, V^aj = 176.57 178.57 17S.57 kips 14.S0 0N„ (0.75 for LC2 & LC3) = 14,65 9.16 9. IS kips 12.00 <!)V„ -(0.75 for LC2&LC3) = 125.00 0.16 93.75 0.54 93.75 0.S2 kips S1.20 10.00 Z 8,00 Steel Tension LCI LC2 LC3 6,00 A.„ = 0,307 33,88 0.307 39.88 0.307 39.88 In" kips i 4,00 2,00 Concrete Pullout Strength in Tension 0,G0 LCI LC2 LCL3 0,G0 Atxg-0,92 0.92 0,92 in' Np=8Ab.gf,= 29,45 29.45 2S.45 kips 1,00 1.00 1,00 29,45 28.45 29 45 kips Single Bolt Check K OK OK OK n-N„ = n-H'^.p.N,= 58,90 58.90 58,90 kips v«= Concrete Breakout in Tension fe'n=0) w/d edge effects M<;b3 = AuclAna,l'i>^.N){%6.M(%.H)(%,.Hmi>) Nb = k,-V(fJh,,'-^ = 14,49 kips 1,00 AtKO " 182.25 LCI in'' LC2 LQ3 263.25 219.38 2-59,38 in' 20.93 17.44 17,44 kips 0 p 0 50,00 100,00 tpVn Steel Shear Capacity fut<,= 65.00 Fs= 129.60 TA.e f^te-t-Fs = 209.37 Q 1.00 1.00 1.00 150.00 ksi kips Concrete Pryout gtrenqth in Shear kcp = 2.00 n-A>co = 729.00 in' Aflc ~ 438.75 in' N<;bB = 34,88 kips Fp = 108.60 kips I'cp'Ntas •'' Fp = 178.57 kips PRIME SlHllDmD«5e: i£RS S5^t; yx W-BEAM 6MDED DESIGN Per ACI 318-05 Appendix D, with Seismic Application Cast-in Headed Stud Anchors DESCRIPTION: Roof Beams ANCHOR DESIGN ANALYSIS (LRFD METHOD) LOAD CASE 1(1,20-1-1.6U Applied Loads; Pij = 4.48 k Qe= 0.00 k Pj Mom Arm = 4,00 in 0= Mom Arm = 4.50 in C = 8.84 a k - a = 0.20 In T1 = 1.81 k C= 1.81 k Plate; Tension Mu = 0.00 k-in bf = 3.96 in t = 0.00 in Plate: Compression Mu= 1.68 k-in Zreq'd = O.OS in=' t req'd = 0.16 in Plate Yieldino Caics; Actual, t= 0.38 in Actual, Mc= 97,12 k-in C= 10,10 k T1= 10,10 k LOAD CASE 2 = r1,2-^•0,2S;.»)D-^-Qp-^L T2 -4 Applied Loads: Pu = 2,32 k Qg' 1,4= 5.81 k Py Mom Ami = 4-00 in Mom Arm = 4.50 in C = 8,84-a k a = 0,11 in Tl = Tp,-i-Tg = 3,84 k C = 0,93 k T2 = TE-C= 1.97 k' Plate; Tension Mu = 0,00 k-in bf = 3,96 in t = 0,00 in - Piate; Compression Mu = 0,90 k-in Zreq'd = 0,03 in' t req'd = 0,12 in Plate Yieldina Caics; Actual, t = 0,38 in Actual, Mc= 94.11 k-in C = 9.77 k T1 = 1268 k T2= 0.00 k WT Yieldino Calcs: Req'd QE= 7.49 K T1 = 4.68 k T2 = 2.81 k LOAD CASE 3 = (0.9-0.2S,.«)D-i-Qc T2 -^D;:; Applied Loads; Pu - 1.27 k Qs*1.4= 5.81 k Py Mom Arm = 4.00 in Mom Arm = 4,50 in C = 8.84 a k a = 0.06 in .T1 = Tp,-i-Ts= 3.41 k C= 0.51 k T2 = Tg-C= 2.40 k Plate; Tension Mu = 0.00 k-in bf= 3.96 in t = 0.00 in Plate; Compression Mu = 0.50 k-in Zreq'd = 0.02 in^ t req'd = 0.09 in Plate Yieldino Calcs; Actual, t = 0.38 in Actual, Mc = 92.73 k-in C = 9.62 k T1 = 12.53 k T2 = 0.00 k WT Yielding Calcs; Req'd Qg = 8.23 k T1 = 4.62 k T2 = 3.61 k wvyw.hiiti.us Company; Specifier: Address: Phone 1 Fax: E-Mail: PRIME J0B:2K13-170 STRUCTURAL mm ENGINEERS SHT; 10-2013 Page: Project: Sub-Proiectl Pos. No.: Date: Profis Anchar 2.4.3 "1 2K13-170 ViaSat #10 10/30/2013 Specifier's comments; Roof Anchors @ E-3 1 input data Anchor type and diameter: Effective embed.Tient depth: Material: P.'oon Sfsnd-off installation: Anchor plate: Pfoiile Base material: Reinforcement; Seismic loads (cat. C, D, E, or F; Geometry [in.] & Loading pU, in.lt)] AWS D1.1 GR. B 5/S ha, = 5.000 in. desigri .method ,ACl 318-08 / CiP % - 0.000 in. (no stand-ofQ: t - 0.500 in. I, X ly X t = 4.000 in. X 12.000 in, x 0,500 In , (Recoinmended piate Sickness; not calculated) no profile cracked concrete, 4C00, f^' 40Q0 psi: h = S.OOO in. tension: condition B, shear; condition B: edge reinforcement; n-orse -cr •= No, 4 bar yes (0,3,3,5) T: O : 12* \ - -0.5 ESliiilii^S iw data and results musi os isiecKoa for sgrseir.enl v»» ihs sxisiiiig (W.-rditions s^d fo,- piciisibistv "" (-SOFSS Anctxir (c) 2003-2009 Hilli AG, FL-S494 Sshaan H8i is a registered T-sde?:^3* of Hilli AG, Schaan ^^ PRIME J0B:2K13-170 ENGINEERS SHT:. 10-2013 nvww.hilti.us Company; Specifier: Address: Phone I Fax; E-Mail: Profis Anchor 2.4.3 Page: Project: Sub-Project 1 Pos, Na: Date: 2K13-170 ViaSat #10 10/30/2013 2 Load case/Resulting anchor forces Load case: Design loads Anchor reactions {lb] Tension force: (-i-Tensian, -Compression) Anchor Tension fo.-ce Shear force 1 611S 0 2 6115 0 max, concrete compressive strain; max, conaate compressive stress; resulting tension force in •(x/y)=(O,000/0 000); Snear force x Shear force y 0 -(%o] • Ipsii 12230 [ib] resulting compression force in (x/y)=(0.OOC-/C,000); 0 ftoj 3 Tension ioad Load N,,[lb] Steal Strength* Pullout Strengtii' Concrete Breakout Sirensth*' Coni3-ete Side-Face Blowout, direction * anchor having the highest loading •"' • 611,5 6115 12230 N/A anchor group (anchors in tension) Capacity ^^|ib] Utilization = Nua/^n Status 14966 15456 14255 N/A 41 40 85 N/A OK OK OK N/A 3.1 Stee! Strength ^sa = n As<,,fi fuss ^ Ngiet,; a NK, Variables ACI 318-08 Eq, {D-3) ACI 318-08 Eq, {D-1) n fu.ii [psi] 1 0,31 55000 Calculations 19955 Results N«£lbj iJsiGsl 19955 0,750 149SS 3.2 Pultout Strength Np =8 Ateg f; ACI 318-08 Eq, (D-14) ACI 318-08 Eq, (D-15) ACl 318-08 Eq, (D-1) Variables Abr»!in,^] fclpsil [ib| "6115" 1,000 Caiculations 2"9440 " Results N,,„|!b] 0.92 4000 itsE ^.lOiiclucliie 29440 O.700 0,750 1.CG0 15456 6115 Input data antt fBSUIts n^ust be checked fo; agreement with th$ $Kisli,ig t^ondilit^ns and ;crptau:$i£^i!iyi f>ROFIS Anchor (c) 2003-2009 Kilti AG, FL-9494 SiSiaaii HiSi a a rggisiisfaa Trademarit ot Hiili AG. Scfiaan www.hilti.us Company; Specifier: Address: Phone I Fasc: E-Mail: w - /^«: \ <*S ~ \ A"^ I WecN ^f/»i,H '..(cN V 3.3 Concrete Breakout Strength 'Affe> Ate see ACI 31S-08. Part D.5.2.1. Fig. RD.5.2.1(b) ANCO =9h|, 1.0 .... =0.7.0,3 (^). 1.0 ^ =MAx(%2a,l|!k'\<i.o Ns =k<;?.Vfch;;i' Variables hjffin,] 5,000 c,clin,j 0.000 Calculations ANC (in,^! 360,00 Results ec,i„M [in.] 0,DD0 kc 24 27153 225,00 ScSN [in J ""aoco"""" PRIME J0B:2K13-17i mk. STRUCTURAL BM jMQld ENGINEERS SHT:^.j^ Page: Project: Sub-Project I Pos, No,: Date: 1,000 <tl58!i^-I AC! 318-08 Eq, (D-5) ACi 318-08 Eq, (D-1) AC! 31S-08 Eq. (D-6) AC!318-08Eq, (D-9) ACI 318-08 Eq, (D-11) ACI 318-08 Eq, (0-13) AC! 318-06 Eq, (D-7) 12,000 fc [psi] 4000 1,000" 1,000 Profis Anciior 2.4.3 0,700 0,760 1,000 1,000 2K13-170 ViaSat #10 10/30/2013 1.000 Nun [lb] Nt,(lta] 16971 14255" 12230 Input data and results must be checked far agresfr^ii with -ihe exisfeig cwafflons and for plau-siBiliiyi PROFIS AniSKsr •: c) 2003-2005 Hii'j AG, F!.-S4S4 Sdiaan Hiiti is a rsgistsred TrEdsssiarit cf Hits AG, Schaan PRIME J0B:2!Slim ». STRUCTURAL DAT&jm ENGINEERS SHT:. "1 Sim www/.hiiti.us All Profis Anchor 2.4.3 Company; Specifier; Address: Phone I Fax: E-Mail: Page: Project: Sub-Project I Pos, No,: Date: 4 2K13-170ViaSat#10 10/30/2013 4 Shear ioad Load V,„ lib] Steel Strength* Steel failure ("with iever arm)'' Pryout Strength' Concrete edge tailure in direction ** * anchor having the highest loading 5 Warnings N/A N/A N,/A N/A ""anchor group (relevant anchors) Capacity [lb] Utilization fij = 'VJ^V„ "N/A " • N/A Status N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A To avoid feilure of the anchor plate the required thickness can tie calculated'in PROFIS Anchor, Load re-distributions on the anchors due to elastic deformations of the anchor plate are not considered. The anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the loading! Condition A applies when supplementary reinforcement is used. The * factor is increased for non-steel Design Strengths except Pullout StrengOi and Pryout strength. Condition B applies when suppiementary reinforcement is not used and for Pullout Strength and Pryout Strength, Refer to your local standard. Checking the transfer of loads into the base material and the shear resistance are required in aixordance with ACl 318 or the relevant standard! /Vl anchor design approach for structures assigned to Seismic Design Category C, D, E or F is given in ACi 318-08 Appendix D, Part D-3.3.4 that requires the governing deagn strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT tie case. Part D,3.3,5 requires that the attachment that the anchor is connecting to the structure shall be designed so that the attachment will undergo ductile yielding at a load level con-esponding to anchor forces no greater than the controlling design strength. In lieu of D,3.3,4 and 0,3,3,5, the minimum design strength ofthe andiors shail be muitipiied by a reduction factor per D,3,3,6, An alternative anchor design approach to AC! 318-08, Part D.3,3 is given in IBC 2009, Section 1908,1,9, This approach contains "Exceptions" that mav be applied in lieu of D,3,3 for applicaficis !n-,/olving "non-structural components" as defined in ASCE 7, Section 13,4,2, An alternative anchor design approach to AC! 318-08, Part D,3,3is given in IBC 2009, Section 1908,1.9 This approach contains "Exceptions" that may bs applied in lieu of D.3.3 for applications involving "wall out-of-plane forces" as defined in ASCE 7, Equation 12.11-1 or Equation 12.14-10, • It is the responsibility ofthe user when inputting values for brittle reduction factors UMMaaim) different than those noted in ACI 318-08, Part 0,3.3,6 to determine if they are consistent with the design provisions of ACI 316-08, ASCE 7 and the governing building code. Selection of ^i.TOnduoie = 1.0 as a means of satisfying ACI 318-OS. Pan D.3.3.5 assumes the user has designed the attachment that the anchor is connecting to undergo ductile yielding at a fore® level <= the design strengths calculated per ACl 318-08, Part D.3.3.3. Fastening meets the design criterial Input data and results must be cnecKed for aaraament wift Itie exisiins conditions and for plausibiliiy i PROFIS Anctor {c) 2Q03-2CD9 Hiiti AG, FL-9494 Schaan Hilli is a registaisd Trada-nark of ;-^iiii AG, Schaan www.hifti.us Company: Specifier: Address: Phone 1 Fax; E-Mail: Page; Project: Sub-Proisct I Pos, No.: Date: 3 Profis Anchor 2.4.3 2K13-170 ViaSat #10 10/30/2013 6 fnstaiiation data Anchor plate, steei; - Profiie: no profile: 0.000 x 0,000 x 0.000 in. Hole diameter in the fixture: dj = 0.683 in. Plate thit^ness (input); 0.500 in. Recommended plate thickness; not calculated Cleaning: No deaning ofthe drilled hole is required Anchor type and diameter; AWS Dl.l GR. B, 5/3 installation torque- -0,009 in.lb Hole diameter in the base material; - in. Hole depth in the base material: 5.000 in. Minimum thickness ofthe base material: 6.813 in. 2,000 Coordinates Anchor in. Anchor x Ctj, 0,000 0,000 -4,500 4.500 48.000 48,000 48,00¥~ 48.000 12186 21.000 21,000 12000 Input data and resuils must bs checKad for agreaneot vwih 8» exisnna conditions and for plausiSilily! PSOFiS AncSw (c) 20G3-5009 Hiiti AG, FI.-9494 Schaan Hiili is S resistsed Tnademam ot Hilii AG, Schaan r~' CX'' / -r- t ^.6 /' X X' • i 9 c- • 1 r ^ f-^ • -;* y -"y y y^ xH, ANGLE LEDGER DESIGN PER ACI 318-05 Appendix D, with Seismic Application PRME J*: . SMICTURAI Date:. ENGINEERS Sht, Cast-in Headed Stud Anchors DESCRIPTION: Floor Ledger LEDGER CONFIGURATION: ANGLE SIZE = BOLT #& SIZE = SPACING = EMBEDMENT = WALL THICKNESS = ANGLE LENGTH = Sos = L3,5x3,5xi/4 i'Tl 1,00 BOLTS 18,00 INCHES 4.50 INCHES 6,50 INCHES 18,00 INCHES 0,789 UNFACTORED LOADS: VDEAD = VLIVE = T SEISMIC, QE = T SEISMIC, QE = 0.625" DIAMETER Anchor MateriaN f - 'ua. Fy = k = Hex . fSm F 1554-36 58.00 ksi 35.00 ksi 0.625 in Cracked MATERIAL PROPERTIES: 0.233 KIPS/FT fo = 4.00 KSI 0.547 KiPS.'FT f« --- 60.00 KSI ' 0.471 K5PS./Fr F^= 36.00 KSI FOR ANGLE 0.66 KIPS FOR STEEL ELEMENTS 1.50 in LIVE LOAD TO BE INCL. WITH COMB. LOADING W/ Qe (1 :YES, 0:NO) -• CAPAOrmS: Yield Mode fi Tension Shear Load Case 1 = 1.00 Steel Anchor. = 13.11 kips : V,,= 7,86 kips -oad Case 2 = Ductile Anchor 1.00 Concrete, Nr, = 14.49 kips 28.98 kips -oad Case 3 = Ductile Anchor 1.00 ct)N,= 9.83 kips *v„ = 5.11 kips 0,75''<!>N„ = 7.37 kips 0.75**V„ = 3.83 kips DESIGN SUmHARY: Interaction tensile & shear Steel Tension Load Case 1 Load Case 2 Load Case 3 0.226 in'' V„,= 1.73 0.47 0.26 kips Nsa = O.enAsefuta = 13.11 kips N,,= 3.07 2.07 1.69 kips Miia/*Nn*V„a/<DV„= 0.65 0.41 0.30 Concrete Pullout Strength in Tensioo Awg = 0.454 in^ Np=8-AB,g fc= 14.53 kips ^=.p= 1.00 n-Np„ = n-%.p.Np= 14.53 kips Concrete Breakout in Tension (e'ngQ) wlo edoe effects n Ar,<„= 182.25'o' A,„= 182.25 10'' Nb = kc-vXft) h,f'-^ = 14.49 kips '*'c.N= 1.00 Ncbs = Ate/ A^.co (V,. N){*KI,N)(*CW)('*'S,,H)(N=) =^14.49 kipS Steel Shear foB= 58.00 ksi Vsa = n-Ass'futt 50.61 = 7.86 kips Concrate Pryout Strength in Shear kop = 2.00 Ncijg = 14.49 kips 12.00 10.00 6.00 28.98 kips ANGLE 'L.EDGER DESIGN PER ACI 318-05 Appendix D, with Seismic Application PRIME Job: WUR^Oate: Cast-in Headed Stud Anchors OeSCR/PT/OiV; Floor Ledger ANCHOR DESIGN ANALYSIS (LRFD METHOD) LOAD CASE 1 = 1.2D ii.Rl DEAD LOAD FACTOR = 1,20 LIVE LOAD FACTOR = 1.60 I V ->T Q > V MOM ARM = 3.50 in T MOM ARM = 1.50 in Determine Factored Pu; V„= 1.73 k Tu = 0.00 k C = 39.78*a k a = 0.08 in C = 3.07 k P„ = 3.07 k Calc Pu for Angle Yielding: LTHK= 0.25 in Zx= 0.28 in^ Mz= 9.11 k-in C = 4.65 k Pu = 4.65 k Angle Check: 1.6M,= 9.72 k-in M, horiz. leg = 4.93 k-in M, vert.leg = 6.06 k-in Sr^= 0.19 in^' tr8q= 0.20 in .Po= 145.80 k 0.00 P,/2Pc-^M^M„= 0.61 OK OK OK LOAD CASE 2 = (1.2->-0.2Sds)D-i-Qe-'-L DEAD LOAD FACTOR = 1,36 LIVE LOAD FACTOR = 0.00 SEISMIC LOAD FACTOR = 1.00 I V -=>T P<- -> —> C-> V MOM ARM = 3.50 in T MOM ARM = 1.50 in Determine Factored Pu: V„ = 0.47 k T„ = 0.71 k C = 39.78*a k a = 0.03 in C= 1.37 k Pu = 2.07 k Calc Pu for Angle Yielding; L THK =0,25 in Z,= 0.23 in» M^= 9,11 k-in C = 4,65 k Pu = 5.35 k Angle Check: Tu = 0,99 k a = 0.04 in C = 1.68 k 1,6My= 9.72 k-in M, horiz, leg = 1.36 k-in OK M, vert.leg = 3.14 k-in OK Sr«,= 0.10 in* t,«,= o,15in Po= 145.80 k Pr/Pc = 0,01 P^2Pc+M^M„= 0.17 OK LOAD CASE 3 = (0,9-Q,2Sds)D-i-Qe Determine Factored Pu: Angle Check: DEAD LOAD FACTOR = 0,74 V, = 0,26 k Tu = 0.99 k LIVE LOAD FACTOR = 0,00 T„ = 0,71 k a = 0,03 in SEISMIC LOAD FACTOR = 1,00 C = 39,78'a K C= 1.20 k 1 a = 0,02 in 1,6M,= 9.72 k-Jn V ->T P„= 1.69 k Mr horiz, leg = 0,75 k-in O.K M,vert,leg= 2.39 k-in O.K P< —-Sre,= 0,07 in^ ttB,= 0,13 in -> a Calc Pu for Anole Yieldina; C-> L THK =0,25 in Z,= 0,28 in' Pt= 145.80 k 0.01 V MOM ARM= 3,50 in M2= 9,11 k-in PJ2P,mMo:= 0.10 O.K T MOM ARM= 1.50 in C = 4.65 k Pu = 5.35 k .^SflXxsi-.ly u j^. V w K - U X «... f f^/A-'> - 1 - il C.4: ho '(J pr-,,. 43 -* •/ >•: 2-./, 3 p <xpx^T\ \^^>ys__ fq^xl^'xy 2J'-y '^,-yy % w^ yy o ./st / --7 i • X X ly X 2.1:9J' .i- oxi 4<i ' &»Sl* y ? ? ? > Jx > i .P^mp.x 4x41^ XL Ul 0 ,; Cg§t-iii Headed Stud Atlchors DESC'RIPTION: Typical Floor Joist Sest ANGLE LEOGER DESIGN PER ACl 318-05 Appendix D, with Seismic Application PRIME Joi>; ^y X ENGINEERS Sht: ANGLE SIZE = L f 5x4x3/4 LLV BOLT #& SIZE = 3.00 bolts 0,750" diameter SPACING = 10.50 in Anchor Material = AWSD1,1 - TypeB EiVIBEDMENT = 4.50 in futa ~ 85,00 ksi WALL THICKNESS = G,50 in 51,00 ksi ANGLE LENGTH = 24,00 in k = 1,250 in SBS = 0.789 Cracked UNFACTORED LOADS: VDEAD= 5,17 kips V LIVE = 9,95 kips T SEISMIC, Qc = 4 40 j^jpg T SEISMIC, QE = 6,16 kips for steei elements LIVE LOAD TO BE INCL, WITH COMB, LOADING W/Qe {1:YES, 0;NO) • MATERIAL PROPERTIES: 4,00 ksi ki.= 60.00 ksi F-/= 36,00 ksi for angle O 1,C CAPACITIES: Tension Shear Steel Anchor, -86.15 k v« = 86.15 k Concrete, N„ = 37.03 k Vcpg = 74.06 k 25.92 k 4>*V„ = 51.64 k 0.75'tj)'N„ = 19.44 k 0.75*<i>*V,, = 38.88 k DESIGN SUmARY Steel Tension A« = Concrete Pullout Strength in Tension Np=8-A„5-fe n-Np„ = n-H',p.Np= 0.442 86.15 kips 0.765 25,13 kips 1.00 75.40 kips Concrete Breakout in Tension (e'n=Oi w/o edge effects Na,5 = A,-it/A^,„(MJ,c,f;)(HJ,d.N){Vc,NK'^'cp,N)(Nt,)= 37.03 kips n-Afico = 546.75 A„c = 465.75 = kc-V{f^)-h5,'-' = 14.43 kips ^^0..^= 1.00 Steel Shear V»=n-A,,n^ao.6*! = Concrete Pryout Strength in Shear kcp - !^oi« = Vcpg = ktp'Nctg 65.00 ksi 86.15 kips 2.00 37.03 kips 74.05 kips interaction tensile & shear Load Case 1 V„a = KX 22.12 18.57 1.14 30.00 25.00 20.00 Z 15.00 10.00 5.00 0.00 LCI LC2 & LC3 Load Case 2 Load Case 3 11.99 15.17 1.09 a Load 3.84 kips 8.37 kips 0.53 0.00 10.00 20.00 30.00 40.00 50.00 ©Vn ANGLE LEDGER DESIGN PER ACI 318-05 Appendix D. with Seismic Appiication Cast-in Headed Stud Anchors DESCRIPTION: Typical Floor Joist Seat ANCHOR DESIGN ANAL YSIS (STRENGTH DESIGN METHOD) L0ADCASE1 (1.2D-H.6L) DEAD LOAD FACTOR = 1.20 UVE LOAD FACTOR 1.60 1 V ~> T C—> T.= C = V MOM ARM= T MOM /VRM= 22.12 k 0,00 k 26,52*a k 0,70 in 18,57 k 4,00 in 1,00 in LTHK = z- Mz = C = PRIME Job; iMiL SIRIICTUR^ Date; ENGlMERSsht; . a... 0,75 in 3,38 tn^" 109.35 k-ln 23,23 k LOAD CASE 2 = (1.2-i-0.2Sr^!.)O-<-Qi--'-L DEAD LOAD FACTOR = 1,36 v„ = 11,99 k LIVE LOAD FACTOR = 0,50 Tu = 4.40 k SEISMIC LOAO FACTOR = 1,00 C = 26.52*a k 1 a = 0,41 in LTHK = 0.75 in V ~> T 15,17 k Z = 3.38 in' p<.. VMOMARM= T MOM ARM= 4.00 in 1.00 in Mz = C = 109.35 k-in 23.23 k LOAD CASE 3 = (0.9-0.2Sr^<.)O+Qt: DEAD LOAD FACTOR = 0.74 Vo = 3.84 k' LIVE LOAD FACTOR = 0.00 T,= 4.40 k SEISMIC LOAD FACTOR = 1.00 C = 53.04*a k ! a = 0,07 in LTHK = 0,75 in V->T P = 8,37 k Z = 3.38 in' p<.. V MOM ARM= T MOM ARM= 4.00 in 1,00 in Mz = C = 109,35 k-in 22.51 k Cast-in Headed Stud Anchors DESCRIPTION: Typical Floor .joist Seat • ANGLE LEDGER DESIGN PER AC! ^iiOS Append; D , With Seismic Appiication PRIME Job; yP'^' mmm am-. f)X iliir! • ANGLE YIELD LIMIT DESIGN ANALYSIS (LRFD METHOD) LOAD CASE 1 (1.201-1.611 DEAD LOAD FACTOR = 1.20 V„ = 22,12 k LIVE LOAD FACTOR = 1.60 T„ = 0.00 k 1 C = S3,04-a k V->T a = 0,34 in C=: 18.11 k p<.-.. M, vert.leg = 88,50 k-ln O.K -> V h'iOU ARM= 4,00 in —> a T MOM ARM= 1,00 in It 116,64 k-ln C-> Zr.,= 2,73 in» z,= 3,38 in= 0,67 in M,= 109,35 k-in M( horiz. leg = 60,84 k-in O.K Px 583,20 k P,/Pc = 0.00 LOAD CASE 2 = (1.2-^0.2S.-,.iD-<-O.-t-L DEAD LOAD FACTOR = 1.36 V,= 11.99 k LIVE LOAD FACTOR = 0.50 T„ = 6.16 k SEISMIC LOAD FACTOR = 1.00 C = • 53.04-a k 1 a = 0.21 in V ~>T C~ 10.98 k h% vert.leg = 54.14 k-in O.K p< V tvlOM ARM= 4,00 in -> T MOM ARM= 1.00 in 1,6Mj,= 116.64 k-in —> a Zre(i ™ 1.67 in^ Zx = 3.38 in^ v./—•> Veq -0.53 in M.= 109.35 k-in M; horiz. leg = 32.99 k-in O.K 583.20 k • P^P.= 0.01 P,/2P,-|-M,/M„= 0.35 O.K LOAD CASE 3 = (0.9-0.2Sn, )D-^QF DEAD LOAD FACTOR = 0.74 v., = 3.84 k LIVE LOAD FACTOR = 0.00 T, = B.16 k SEtSMlC LOAD FACTOR = 1,00 C = 53.04 a k 1 a = 0,08 in V -> T c = 4,33 k M,, ve!l,leg = 21,51 k-in O.K P< VMOM ARM= 4,00 in -> T MOM ARM= 1,00 in 1,6My = 116.64 k-in ~> a Zjeq — 0.66 in= z,= 3.38 in' C—> ^-e<i~ 0.33 in 109.35 k-in M; horiz, leg = 10.55 k-in O.K Pc = 583,20 k Pr/Pc-0.01 P,/2P,-t-M,/M„= 0,12 O.K I \ y yp^ CM ix i - yi I. !-^.„^ r" ':> ";:>, C; ^•(Dt^yy •y y 2 '-y ''^i^ / yi-e&f..,. \ i - f :i.<c^ . ••ftfft^-"- " y ? •7 ..'y . . . L.l" r :P*^. I.e" ANGLE LEDGER DESIGN PER ACi 316-05 Appendix D. with Seismic Application Cast-in Headed Stud Anchors DESCRIPTION: Floor Joist Seat © Thidien Panel PRIME Job: JL ENGINEERS Shj: I: LEDGER CONFIGURATION: ANGLE SIZE = 16x4x3/4 LLV BOLT #& SIZE = 3.00 bolts 0.750" diameter SPACING = 10.50 in Anchor Msierial = AWS DI .1 - Type B EMBEDMENT = 9.88 in tsa = 65.00 ksi WALL THICKNESS = 16.75 in Fv= 51.00 ksi ANGLE LENGTH = 24.00 In k= 1.250 In 0.789 Cracked UNFACTORED LOADS: mATERIAL PROPERTIES: V DEAD = 5.17 kips •c= 4.00 !<si YUVE = 9.95 kips = 50.00 Ksi T SEISMIC, Qc ~ 11.33 kips Fy = 36.00 ksi for angle T SEISMIC, Qg = 15.86 kips for stee! elaments LIVE LOAD TO BE INCL. WITH COMB. LOADING W/Qe(1:YES, 0:NO) = 1 o 1.5" I.C CAPACITIES: Tension Shear Steel Anchor, N^^ = 86.15 k 88.15 k Concrete, N„ = 75.40 k 160.98 k 0'N„ = 52.78 k cp*V,, = 56.00 k 0.76***N., = 39.68 k 0.75''<!>'V, = 42.00 k DESIGN SUMMARY Steel Tension A,-0.442 m" Ns==n-Ase%ta = 86.15 kips Concrete Pullout Strenoth in Tension Assj -0.785 iir Np=8-A,ig-r,= 25.13 kips 1.00 Interaction ter^sile & shear Load Case 1 V„ = 22.12 18.57 0.75 Load Case 2 Load Case 3 11.99 23.57. 0,88 n-Np„ = n-V;,j..Np 75.40 kips Concrete Breakout in Tension (e'n=Q) w/o edge effects Nc«, = A^.c/AH„(>P,«,„)(^J«^•)^*o,«)(^cp,N)<N„)= 80,49 kips n-A„„„ = 2632,92 ' A„c = 1499,77 Nb = k,-v(f<,)-t),„' -'= 47.10 kips '^-.•„M= 1.00 Steel Shear V«, = nA^*f„,J0,6*l = Concrete Pryout Strent^th in Shear kcp ~ Ncbg - 65.00 ksi 86,15 kips 2,00' 80,49 kips 160,98 kips 60,00 50,00 40,00 2 30,00 20,00 10.00 0,00 3.84 kips 16.70 kips 0,51 LCI j LC2 & LC3 \ \ \ 0 Load Case 2v. \ @ LoadO 1 \ M Load Case 3 1 1 0,00 10.00 20.00 30.00 40.00 50.00 SO.O ANGLE LEDGER DESIGN PER ACI 318-05 Appe.ndix D, with Seismic Application Cast-in Headed Stud Anchors DESCRIPTION: Floor Joist Seat @ Thicker, Panel AiVCHOf? DESIGN ANALYSIS (STRENGTH DESIGN METHOD) LOAD CASE 1 (1.20 •^ 1 .SLI DEAD LOAD FACTOR = 1.20 LIVE LOAD FACTOR = 1,60 V->T p< V„ = Tx VMOMARM= T MOM ARM= 22.12 k 0.00 K 0.70 in 18.57 k 4,00 in 1.00 in LTHK = Z = Mz = C = PRIME Joi>; . STOSWM Date:. ENGINEERS Shl; . 0,75 in 3.38 in' 109.35 k-ln 23.23 k LOAD CASE 2 = 11,2^-0.2Sn.i,)D-'-Qc-i-!, DEAD LOAD FACTOR = UVE LOAD FACTOR = SEISMIC LOAD FACTOR = 1 V ~> T p< -> —> C—> 1,36 Vu = 11,99 k 0,50 T„--= 11,33 k 1,00 C = 26,52*3 k a = 0.46 in LTHK = ,0,75 in 23,57 k I-3,38 in' Mz = 109,36 k-in V MOM ARM= 4.00 in C = 23,23 k T MOM ARM= 1,00 in LOAD CASE 3 = (0,9-0,2Sn^)D-i-Q,T DEAD LOAD FACTOR = LIVE LOAD FACTOR = SEISMIC LOAD FACTOR = V ->T p<-. 0.74 0.00 1.00 C = VMOMARM= T MOM ARM= 3.84 k 11.33 k 53.04*3 k 0.10 in 18.70 k 4.00 in 1.00 in LTHK = Z = Mz = C = 0.75 in 3.38 in' 109.35 k-in 22.61 k Cast-in Headed Stud Anchors DESCRIPTION: ANGLE LEDGER DESIGN PER ACi 318-05 Appendix D, with Seismic Application Floor Joist Seat @ Thicken Panel PRIME Job: SlliCTUM Date: ENGINEERS Stit; {Xtxl ANGLE YIELD LIMIT DESIGN ANALYSIS (LRFD METHOD) LOAD CASE 1 (1.2D-i-1.eL) DEAD LOAD FACTOR = 1.20 v„ = 22.12 k LIVE LOAD FACTOR = 1.60 T,= 0.00 k 1 C = 53.04-a k V -> T a = 0.34 In C = 18.11 k P< M, vert.leg = 88.50 k-in O.K -> V MOM ARM= 4.00 in -> a T MOM ARM= 1.00 in 1.6My = 116.64 k-in C—> Zfeq ~ 2.73 in' 'z,= 3.38 in' tte<l~ 0.67 in M,= 109.35 k-in fv li horiz. leg = 60.84 k-in O.K P= = 583.20 k Pr/Pc = 0.00 LOAD CASE 2 = ^1.2-^0.2Sns)D-^-Q=-^L DEAD LOAD FACTOR = 1,36 v„ = 11.99 k LIVE LOAD FACTOR = 0..50 Tp = 15.86 k SEISMIC L0«3 FACTOR = 1.00 C = 53.04 a k 1 a = 0.24 in V ->T C = 12.98 k M, vert.leg = 63.84 k-in O.K p< V MOM ARM= 4,00 in -> T MOM ARM= 1.00 in 1.6My = 116.64 k-in —> a ZfcQ-1.97 in' z,= 3.38 in' C-> trM = 0.57 in M,= 109.35 k-in ^ % horiz. leg = 32.99 k-in O.K Pc = 583.20 k P,/Pc = 0,03 0.36 O.K LOAD CASE 3 = f0.9-0.2Sn. )D+QF DEAD LOAD FACTOR = 0.74 v„ = 3.84 k LIVE LOAD FACTOR = 0.00 T„ = 15.86 k SEISMIC LOAD FACTOR = 1.00 C = 63.04-a k i a = 0.12 in V ->T C = 6.29 k M, vert.leg = 31.21 k-in O.K p< V MOM ARM= 4.00 in -> T MOM ARM= 1.00 in 1.6My = 116.64 k-in —> a *-req 0.95 in' z,= 3.38 in' C—> trt'q *-0.40 in M^ = 109.35 k-in M, horiz. leg = 10.55 k-in O.K Pc= 583.20 k P,/Pc = 0.03 P/2Pc-^M,/M,,= 0.13 O.K PRIME Job; _ EMGiHEERSsht: . W-BEAM EMDED DESIGN Per ACl 318-05 Appendix D, with Seismic Application CAST-IN HEADED STUD ANCHORS OESCR/PTiOM- Beam .§ Thicken Panel PD = 4,44 k Beam Size W14X PL = 8.53 k Load Ecc, e " 3.00 in Qs = 11.33 k fc = 4000 psi Cracked Sos = 0.789 f '1 = 0.50 LL to be used in LC2? (1;Y, 0;N) = 1 Anchor Material = AWSD1.1 -TypeB 'illll 65.00 kSi Bearing Angle = L 2.0 X 2.0 X 3/3 Fy = 51.00ksi /Vigleat Tops Bottom # of Studs = 200 Studs. T&B Angle, Fy = 36.00 ksi Embed = 8.00 in Connection = Wr4.X7,5 ' Diameter = 0.625 in WT length, h = 9.00 in Embed Plate Width= 8.00 in Total Eoc = 4.00 In Thickness = 3/8 in DESIGN SUMMARY LCI LC2 LC3 Ny = 7.82 12.11 9.26 kips Vu = 18.98 10.29 3.30 kips Steel An^or, = 39.88 39.88 39.88 kips Concrete, H„ -42.93 29.52 29.52 kips Steel Anchor, V^^ = 209.37 209.37 209.37 kips Concrete, V^p,, = 226.86 226,86 228.86 kips <t)N„ -(0.75 for LC2 &LC3) = 2S.91 15,50 15.50 kips (J>V„ (0.75 for LC2&LC3) = 136.09 102.07 102.07 kips N«./<I>N„+V^0V„ = 0.40 0.88 0.63 51.20 c Steel Tension LSI LC2 LC3 e- Asfi-0.307 0.307 0.307 in' ~ n'Asc'futa " 39.88 39.68 39.88 kips Concrete Pullout Strenath in Tension LCI LC2 LC3 Abrj = 0.92 0.92 0.92 in' Np-8-Ai„5fp= 29.45 29.45 29.45 kips 1.Q0 1.00 1.00 Np„ = WJc,p,Np = 29.45 29.45 29.45 kips Single Bolt Check = OK OK OK n-Np„ = n-ip,p,Np = 58.90 56.90 58.90 kips Concrete Brealcout in Tension fe'n=m w/n ftrinn efforts A(jt/AN^{4' s,N)(^ea,N){^e,l« y)Vcp.t4m^) K=K'^{f,)-KX^ 34.35 kips 1.00 Anco "-576.00 in' LCI L£2 LC3 720.00 495.00 495.00 in' 42.93 29.62 29.52 kips 1.00" \~ i.OO" [lh=:| 0 p f 0 0.00 0.00 SO.OO 100.00 150.00 Steel Shear Capacity = 65,00 Fs= 129,60 Vsa = n As^ fuia -I- Fs = 209.37 ksi kips kips Concrete Prvout StrenoMi in Shear kcp " 2.00 n-Aiio. = 2304.00 in' Aa.= 990.00 in' 59.03 kips Fp = 108.80 kips 226.86 kips PRIME J.-b; ENGIHEERS aw; r : y % •Xj W-BEAM EMDED DESIGN Per AC' 318-OS Appendix D, with Seismic Applicalion Cast-in Headed Stud Anchors DESCRIPTION: Beam @ Thicken Panel ANCHOR DESIGN ANALYSIS (LRFD METHOD) LOAD CASE 1 f1.2D-i-1,6L) Appiied Loads: Pu= 18.98 k QE = 0.00 k Pu Mom Ami = 4.00 in Qg Mom Arm = 4.50 jn C = B.84-a k a = 0,88 in Tl = 7,82 k C = 7:82 K Plate; Tension Mu = 0,00 k-in bf = 3.96 in t = 0.00 in Plate; Compression Mu = 5.51 k-in Zreq'd = 0.17 in' t req'd = 0.29 in Plate Yieldina Calcs: Actual, t = 0.38 in Actual. Mc = 125,43 k-in C = 13,20 k T1= 13.20 k LOAD CASE 2 = (1,2-i-0,2Sn^,)D-^Qc-^-L T2 -^G •;:::;::;:: Aopiied Loads: Pu = 10,29 k QE* 1,4= 15.86 k Pu Mom Arm = 4,00 in Oc Mom Arm = 4.50 jn C = 8,84-a k a = 0.47 in T1 =Tpi-<-T== 12.11 k C= 4.18 k T2 = Te-C= 3.75 k Piate; Tension Mu = 0.00 k-in bf= 3,96 in t= 0.00'in' Plate: Compression Mu= 3.52 .k-in Zreq'd =0.11 in' t req'd = 0.23 in Plate Yieldina Calcs: Actual, t = 0.38 in Actual, Mc= 106.49 k-in C= 11.11 k Tl = 19.05 k T2 = 0.00 k WT Yielding Caics; KeqouE = 1.85 K T1 = T2 = 5.12k 0.00 k LUMU t.Mat: = IU.a-U..^ane;ILi-f-Up T2-<RL;:-J; Applied Loads: Pu = 3.30 k QE''1.4= 15,85 k PuMomAnn= 400 in Us Mom mm = 4 50 C = 8,84-a k a = 0,15 in Tl = Tpj-i-Ts = 9.26 k C= 1,32 k T2 = TE -C = 6,61 k Plate; Tension Mg = 0,00 k-in bf = 3.96 in t = 0.00 in Plate: Compression Mu= 1.26 k-in Zreq'd = 0.04 in' t req'd = 0.14 in Plate Yieldina Calcs; Actual, t = 0.38 in Actual, Mc = 95.44 k-in C= 9.91 k Tl = 17.85 k T2 - 0.00 k WT Yieldina Calcs: Req'd Qg = 6.80 k T1 = 4.73 k T2 = 2.08 k FlXypfy "yi^"-: xy \ "^l... /'yik> ylX'i'^y/ 0 -j / C-'i' •— Pli,.,.f'«i sr: I 0 pes; >( 2. c ' r 'V 0. f C^^- I IS 1 ..f- Q »u Yl.\o^' ''^y'^_y>yy£L CM£lyy... T10... i^-f^ B- cf^ X i IQ fsp < v-T.Qi' x:2P.t jc^yp: 411 y «?7 fiiyF' K %€~x- 'r "7^,in^' Kriif-e Z^-Vy M x lb m y r .\ /: X ^- PRIME Job: . •STRUCTURAL Dste:. Et^GIKHERS Sht; . GIRDER Se.AT DESIGN Per ACI 31B-05 Appendix D, -vvith Seismic Application Cast-in Headed Stud Anchors DESCRIPTION: Floor Girder @ 1 /3 PD = 13,42 k Ecc, e ---3,00 in Load Case 1 = 1.2D-I-1.6L P: = 17.5? k h vd.QQ in toad ease 2 = (1,2-r0.2Sos)D-i-fiL-t- QE = 0.71 k ' C 4CO0 psi Load Case 3 = (0.9-0.2Sos)Dt- QE So.-0,789 Cracked include LL in LC2 (1 :YES, 0:NO) = 1 Anchor Material ~ AWS D1.1 •• Type B ^iiia ~ Fy = # Studs = Embed = Diameter = Anchor Spsoing = 65,00 ksi 51.00 ksi 3,00 4,50 in 0,625 in 11,00 ill for Anchor for Anchor studs T&B Bearing Ajigie = L 3.0 x 3,0 x 3/8 Angle at Top Only Fy = Stiff Plate Thk = btin Mate t-y = Embed Plate Width = Embed Plate Thk = Tota^ ecc = 36,00 ksi 0,825 in 36.00 ksi 24,00 in 0,500 in 5.00 in 0,50 1" I Anchor Capacity Steel Anchor, N Concrete, N„ - «N,, = Tension Capacity 58,83 k = 38,10 k 26.67 k 20.00 k u./o-tyv. = Shear Capacity 314,05 k 321.01 k 204,13 k 153.10 k Interartion Tension & Shear Load Case 1 Lqao Case 2 Load Case 3 44.22 27.01 12.39 8.25 NJ^K*yj<i>%= 0.68 0.59 Steel Tension Ns-- = n-As,'fi;a 0.307 59.83 in«2 kips 9.96 kips 3,48 kips 0,24 50,00 100,00 150.00 200,00 260.00 0Vn Steel Shear 0.92 in''2 65.00 ksi Np=6-A«9-fc = 29.45 kips F,= 194.40 kips ^c.P = 1.00 V5a = n-Ase%a-i-F,= 314.05 kips n-N^, = n-M-',p.N,= 88.36 kips Concrete Breakout in Tension fe'n=0) w/o edge effects N=bi, = V/A,,« ('i'»c.N)(^,=i,N)(*c.«)(*=p,^)(!^\,) = 38.10 "Aico = 545,75 in'^2 Arc = 479.25 ^1-^2 Nt, = k<,-V(f J-h,,'" = 14.48 kips Vof= 1.00 Concrete Prvout Strenpth in Shear l<cp ~ 2.00 38.10 kips Fp = 244.80 kips 321.01 kips PRIME J*; . SiySTliRAlDste;. !6!S€ERSsht: . GIRDER SEAT DESIGN Per ACI 318-05 Appendix D. with Seismic Application Cast-in Headed Stud Anchors DESCRIPTION: Floor Girder @ 1/B ANCHOR DESIGN ANALYS^IS (STRENGTH DESIGN METHOD) LQADCASE1 (1.2D-i-1.6L^ LOAO CASE 2 = (1.2-r0.2Sr.,)D-i-Q..t-l T 4- —» Factored Foi-oes Stiff Plate Reo'd Embed Plate Req'd Pu = 44.22 k Mr vei1.leg = 221.08 k-in M= 10,46 k-in QE = 0.00 k . Zreq= 6,82 in' 2rsq=.0.32ln' C = 26.52'a k Stiff PL. tr«j= 0.084 in Wq.= 0.232 in a ~ 0.47 in C = 12,39 k Stiff Plate Provided T= 12,39 k t = 0.625 in Pu Mom Antt = 5,00 in 2x = 50.63 in' QEMo.'nArm= o.OO in -"^t = 1640,3 k-in C = 97,80 k T = 97.80 k 1.6M,,= 1749.6 k-in OK Factored Forces Stiff Piate Rea'd Embed Plate Reo'd Pu = 27,01 k M,vertleg= 135,03 k-in M = 6.83 k-in Qe= 0,71 k 2teq = 0.21 in' C = 26,52*a k Stiff PL. C.051 in *teq= 0.187 in a = 0.28 in C = 7.5-1 k Stiff Plate Provided T= 8,25 k t = 0.625 in Pij Mom Arm = 5.00 in 2x = 50.63 in' Mom Arm = .0.00 jn = 1640.3 k-in C = 97.80 k T = 98,51 k 1,6My= 1749.6 k-in OK LOAD CASE 3 = f0.9-Q.2Sf.g)D-i-Qc Factored Forces Pu = 9.96 k QE = 0.71 k C = 26.52*a k a = 0.10 in c-2.77 k T = 3.48 k Py Mom Arm = 5.00 in QE Mom Arm = 0.00 in Stiff Plate Reo'd U, vert.leg = 49.8O k-in 2ti>q= 1.54 in' Stiff PL, tfo, = 0,019 in Stiff Plate Provided t = 0.625 in 2x = 50.63 in' Mz= 1640.3 k-in C = 97.80 k T = 98.51 k 1,6My= 1749,6 k-in OK Embed Plate Req'd M = 2.68 k-in 2r«!= 0.08 in' PRIME J*:: ENGWEERSsfei; W-BEAM EMDEO OESiGM Per ACI 318-05 Appendix D. with Seismic Application CAST-IN HEADED STUD ANCHORS DESCRIPTION: Floor Girder © 1/D PD = Pi.= QE = Snc — 12.10 k 15.80 k 0.71 k 0.7S9 Beam Size = Load Ecc. e = 3.00 in 400Q pS! 0.50 LL to be used in LC2? (1 ;Y, 0;N) • Anchor Material = AWS 01.1 - Type B f;itii= 65.00 ksi Fy= 51.00 ;-tsi # of Studs = 2.00 Embed = 4.50 in Diameter •= 0.750 in Embed Plate Width= 10.00 In Thickness = 3/8 in Bearing Angle = Angle at Studs T&B Angle, Fy = Connection = WT length, h = Total Ecc = Cracked L 3.0x3,0x3/8 Top & Bottom 36.00 ksi WT4X7.5 21.00 in 4.50 in 1.00" ^ DESIGN SUMMARY LCI LC2 LC3 Nu = 8.23 19,37 2.34 kips Vu = 39,80 24,33 8.38 kips Steel Anchor, N„ = 57.43 57:43 57.43 kips Concrete, N„ = 23.08 23,08 23.08 kips Steel Anchor, V^ = 276.86 275,86 27S.85 kips Concrete, Vjp, = 319.92 319.92 319,92 kips <t>N„ • (0.75 for LC2 & LC3) = 16.15 12,12 12,12 kips «V„ (0.75 for LC2 8, LC3) = 179.96 134,97 134,97 kips N«/<t>N„+VJ0V„= 0.73 1.04 0,26 <1.20 Steel Tension LCI . LC2 ,LC,3 Ase ~ 0.442 0,442 0,442 in' 57.43 57,43 57.43 kips Concrete Pullout Strenath In Tension LCI LC2 .Lc.a Abr3 = 0.79 0,79 0.79 in' Np=8-Ai,5f,= 25.13 26.13 25.13 kips H'c.p = 1.00 1.00 1.00 N,„ = <Pc.p.Np = 26.13 25.13 26.13 kips Single Bolt Check = OK OK OK n-Np„:=n-H'..p.Np = 50.27 50.27 50.27 kips Concrete Breakout in Tension (e'n=0) w/o edae effects ANC/ AingQ Ni, = kc-V(fJh„'-'= 14.49 kips M-'=.M = 1.00 182.25 in' LC1 LC2 LC3 A-,c = 290,25 290.25 290.25 in' 23,08 23.08 23.-^8 kips 1.00" 0 P 0 150.00 200.00 Steel Shear Capacity f„ta= 65.00 ksi Fs= 162,00 kips V3a=n-A.^-f>^-i-Fs= 1276.86 kips Concrete Prvout Strength In Shear kcp= 200 n-A„c(i= 1729.00 in' A„c= ; 729.00 in' Ncba = : 57.96 kips Fp= i 204.00 kips : 319.92 kips W-BEAM mOBD DESIGN Per ACI 318-05 Appendix 0, with Seismic Application Cast-in Headed StusSAnshQra DESCRIPTION: Floor Girder @ 1/D ANCHOR DESIGN ANALYSIS (LRFD METHOD) PRIME J*: xAy mmmxim. X LOAD CASE 1 ;i.2iT-i-1.6L) C :.:.:;•> ja^oliedi^aads; Pu = 39.80 k QE = 0,00 k Py Mom Amt - 4,50 in Qe!silomArm= io,50in C= 11,05-ak a = 0,75 in T1 = 8,23 k C = 8,23 k Piate; Tension Mu = 0,00 k-in b1 = 7,96 in t = 0,00 in Plale: Compression Mu= 5,19 k-in Zrsq'd= 0,19 in' t req'd = 0.28 in Piate Yielding Caics: Actual, I = 0,38 in Actual, Mc = 329,64 k-in C = 15,30 k T1= 15,30 k LOAD CASE 2 = (1,2-i-Q,2SncVD-i-QE-i-L Applied Loads: Pii = 24,33 k QE* 1,4= 0,99 k PgMomAnn= 4,50 in Qg Mom Arm = io,50 In C= 11,05-ak a = 0,45 in Tl = TP,+TE = 5.61 k C = 6.01 k T2 = T=-C - 0.00 k Piate: Tension Mu = 0.00 k-in bf= 7,56 in t = 0,00 in Plate; Compression Mu = 4,25 k-in Zreq'd = Q.13 in' t req'd = 0,23 in Plate Yieldino Caics: Actual, t = 0,38 in Actual, Mc= 293,19 k-ln C= 13.58 k • T1 = 14.08 k T2= 0.00 k WT Yielding Calcs; Req'd QE= io.72k T1 = 10.37 k T2 = 0,35 k LOAD CASE 3 = (0,9-0,2SnOD-i-Qp Aooiied Loads: Pu = 8,98 k Qa* 1,4= 0,99 k Pu Mom Ann = 4,50 In QEMom/^m= io,50in C- 11.05-ak a= 0,17 in Tl = Tc-f-Ts = 2.34 k C= 1,84 k T2 = Ti;-C= O.OQk Plate: Tension Mu= 0,00 k-in bf = 7,9S in t = 0,00 in Plate: Compression Mu = 1,74 k-in Zreq'd = 0,05 in' f req'd = 0.15 in Plate Yielding Calcs; Actual, t= 0,38 in Actual, Mc^ 264,66 k-in C - 12.24 k Tl = 12,73 k T2 = 0,00 k WT Yielding Calcs; Req'd QE= 17,98 k. Tl = 10,83 k T2= 7,15 k . y'X- , ; -ry y^y^y yy yc y>j jr"'" -.---^ ^ ^^n^- --.5., r*"? ^.-'f • y} i ^'^^ 'C^^y^ .'•^**' :^^^^«• itiH 4-. r)<'^n bis —^ X payy cy X yyyy %0 y ^;?! Xi X ..y • •\. lo^fx^:: V y y' y '-^ r ..'71,5 ^-t J c }^nW^iM XjWxayyi P^' \x> y^- - - 'f ;r"»?~ <;^<" r ^)yyi. 2.., /ri^-!^- (x~\xx-~:- ! y..y' y my^'" ;5Wl,/i iX ^ ePC> ,y\\ ft^ <tX^:' ; ^/t V? (if 1 .'-I z. si) ? Is XP y^ U'Ts y^tSftx: -/ .f3~ /i'-X- • O 4iX m 'f?„n., jn-y (•<y.y. 1/ jziM. &sy-0 c-^yr. "p^'y B'yf<y >.€> iX Ft- WS>Ty^ I y.Us 4 & A n>y • -U^'P' Ij.-, 7i4 i f li y> X *XrZ. n U A3, .S-'^^i'y . 17 V'ui & • PRIME 40b; .. mmmoBi0'. ENGINEERS Sht: . DOUBLY AND SINGLY SYMMETRIC MEMBERS SUBJECT TO FLEXURE AND AXIAL FORCE (LRFD DESIGN PER ANSi/A!SC 360-05) DESCRIPTION: 2K13-170 ROOF DRAG BM LINE 5 (E DESIGN PROPERTIES: Shape: Pv = E = A = d = W18X35 50 ksi 2S000 ksi 10,30 in^ 17.70 in '•''0- y 17.30 in 6,00 in 0,30 in 0,43 in J = Cw • 0c = c5>b: 0,506 1140 0.9 0,9 28,67 ft 9,56 ft 9,55 ft (KUr),= 1,00 1.00 48,87 93,93 Zx fx 510.00 in 66.50 in' 57.60 in' 7.04 1.00 1.00 1.51 0,55 c - Cb== hi- K = FLANGE CHECK: bf/2t< = 7.06 Apf= 9,15 Arf - 24.08 COMPACT FLANGE APPLIED LOADS: Loads applied shall be in LRFD Stress Incfesse = 1,00 CROSS SECTION CHECK: Lb= 114.6 in =9.55 ft Lp= 51,7 in =4.31 ft 148.5 in = 12.38 ft NON-COMPACT SECTION Add'l Loads; 'y 15.30 in 8,06 in^ 5.12 in=' 1.22 • P e DL Axiai, Pf = 163.9 k P,= 0.00 k 0,00 k 0.00 in Bending. = 56.9 k-ft = 683 k-in {•f in 3-1 Direction) P2 = 0,00 k 0.00 k 0,00 in Bending, My = 0.0 k-ft = Ok-in (•I- in 4-2 Direction) P3 = 0.00 k 0.00 k 0.00 in P4 = 0,00 k 0.00 k 0.00 in CAPACITY: 0c-Pn = 243.1 k 0b-fvlnx= 185.6 k-ft ^ 0b-!Viny= .30,2 k-ft = 222? k-in 363 k-in {Interpolate AISC Table 4-1) (See AISC Table 3-2) (See AISC Table 3-4) {NTERACTION: Pr/Pc -t-: (8/9)[Mr/Mc] = 0.95 < 1 W18X35... OK! -;,-\ ^/pmr-; Do ' y^ PRIME Job: . STRUCTURAL o«te:. ENGINEERS sbt; . DOUBLY AND SINGLY SYMMETRIC MEMBERS SUBJECT TO FLEXURE AND AXIAL FORCE (LRFD DESIGN PER ANSi/AISC 360-05) DESCRIPTION: 2K13-170 ROOF DRAG BM UNE 6.3 (B-C) DESIGN PROPERTIES: Shape• E = A = W14X22 60 ksi 29000 ksi 6.49 in^ 13.70 in n.3 = kr- ir- 13.40 in 5.00 in 0.23 in 0.34 in J = Cw '• Dc: 0b- 0.208 314 0.9 0.9 ix c = Ct>: = 15.75 ft 7.88 ft 7.88 ft 1.00 1.00 1.27 0.55 (KL/i-)y = Stress Increase = 1.00 1.00 34.12 90,87 1.00 S.: 199.00 in 33.20 in^ 29.00 in= 5.54 7.00 in"* 4.39 in* 2.80 in^ 1.04 FLANGE CHECK: bf/2t, = 7.46 V= 8-15 Arf:= 24.08 COMPACT FLANGE CROSS SECTION CHECK: Ls.= 94.5 in =7.88 ft Lp= 44.1 in =3.67 ft L,= 125.3 in = 10.44 ft NON-COivlPACT SECTIOKi f?te, APPLIED LOADS: Loads applied shall be in LRFD Add'l Loads: CAPACITY: P. *c-Pn = 159.7 k 0b-.Mnx = 94.5 k-ft = cDb-Mny= 16,5 k-ft = 1134 k-in 198 k-in (interpolate AISC Table 4-1) (See AISC Table 3-2) (See AISC Table 3-4) INTERACTION: Pr/Pc ^ (8/9)[Mr/Mc] = 0.81 < 1 W14X22... OK! * P e DL e Axial, Pr = 115.3 k Pi = 0.00 k 0.00 k 0.00 in Bending, = 9.8 k-ft = 118 k-in (•+ in 3-1 Direction) P2 = 0.00 k 0.00 k 0.00 in Bending, My = 0.0 k-ft = 0 k-in (-*- in 4-2 Direction) P3 = 0.00 k 0.00 k 0.00 in 0.00 k 0.00 k 0.00 in V •Xy x<=x! y "/ 2.C /X', Z^X i^-ut y^yi^f y . <X€: <r;, 5., ^ mM:. ^ 4> 21,: ': y X !.2..§ i^c-^ii;- WBM/ '?y^:s) "X h ' •"—;;; f) (^$\y<:ii ^;' !! y^ yyx^ y9 uy^ (y) • c-^fy~' /4 iyX^'- 'iy' lyxx-. XX 0 1 2.0^ %2.ys A . ^ fi y t/>'fc ' XXy .1 "•-•"X if- PRIME Job; . Deie;. ENGIHEERS sht: WIDE FLANGE MEMBERS SUBJECT TO FLEXURE AND AXIAL FORCE (LRFD DESiGN PER AMSi/AISC 360-06) DESCRiPTIOH: 2K13-170 Floor Drag Beam Line 5(8-0) DESIGN PROPERTIES: Shape = E = A = d = W21X50 50 ksi 29000 ksi 14.70 in.^ 20.80 in bf = kr- tf- 20.30 in 6.53 in 0.38 in 0.54 in J^ Oc • 0b ^ 1.14 2570 0.9 0.9 L,= Ly = 28,67 ft 7.17 ft K, •• (KL/r% = (KL/.r)y: 1.00 1.00 42.06 66.18 ix rv 984.00 in^ 110.00 in^ 94.50 in= 8.18 C" Ct> = k,= 1,00 1.0C 1.64 0.57 Stress Increase 1.00 Sy = 24.90 in 12.20 in' 7.64 in^ 1.30 FLANGE CHECK: bf/2tr= 6.1 Ap,= 9,15 Arf = 24.08 COMPACT FLANGE' APPLIED LOADS: Loads applied shall be in LRFD CROSS SECTION CHECK: Lt,= 86.0 in =7.17 ft Lp= 55.1 in =4.59 ft L,= 162.7 in = 13.56 ft NOKi-COMPACT SECTION Add'l Loads; 'P., 8, CAPACITY: Oc-Pn = 480,2 k 0b-Mnx = 365.2 k-ft = 4383 k-in 0b-MnY = 45.8 k-ft = 548 k-in (interpolate AISC Table 4-1) (See AISC Table 3-2) (See AISC Table 3-4) DL LL e Axiai, P, -64.0 k Pi = 0.00 k 0.00 k O.OO in Bending, = 307.7 k-ft = 3692 k-in (+ in 3-1 Direclion) P2 = 0.00 k 0.00 k 0.00 in Bending, Mj, = 0.0 k-ft = 0 k-in {•^ in 4-2 Direction) P3 = 0.00 k 0.00 k 0.00 in P4 = 0.00 k 0.00 k 0.00 in iNTERACTION: Pr/2Pc + [Mr/Mc] = 0.91 < W21X50... OK! ^ PRIfVIE Job ID a D^te:. ENGINEERS Sht; . WIDE FLANGE MEMBERS SUBJECT TO FLEXURE AND AXIAL FORCE (LRFD DESIGN PER ANSI/AISC 360-05) DESCRIPTION: 2K13-170 Fioor Drag Beam Line 6(D-E) DESIGN PROPERTIES: Shape 1 Fy = E^ A: d •• V^/16X26 50 ksi 29000 ksi 7.68 in^ 15.70 in 15.30 in 5.50 in 0.25 in 0.35 in J = 0c- 0b- 0.262 565 0.9 0.9 Lx = LK = 21.33 ft 7.11 ft 7.11 ft (KL/r),= (KL/r),= 1,00 1.00 40.89 76.18 ix Zx Sx 301.00 in 44.20 in^ 38.40 in= 6.26 1.Q0 1.00 1.38 0.53 Stress Increase = 1.00 S„ = 9.59 !n 5.48 in^ 3.49 in^ 1.12 FLANGE CHECK: bf/2t< = 7.97 Apf = 9.15 A,,f = 24.08 COMPACT FLAMGE' CROSS SECTION CHECK: Lt,= 85.3in=7.11ft Lp= 47.5 in =3.96 ft Lr- 134.6 in = 11,21 ft NON-COMPACT SECTION P e ' APPLIED LOADS: Loads applied shall be in LRFD Add'l Loads; CAPACITY: Vicv <l>c-Pn = 226.1 k 0b-Mnx = 137.5 k-ft = 1650 k-in 0h-Mr>Y = 20.6 k-ft = 247 .k-in (Interpolate AISC Table 4-1) (See AISC Table 3-2) (See AISC Table 3-4) DL LL e . Axial, Pr= 26.2 k Pi = 0.00 k 0.00 k 0.00 in Bending, iVi^ ~ 104.2 k-ft = 1250 k-in {+ in 3-1 Direction) P2 = 0.00 k 0.00 k 0.00 in Bending, = 0.0 k-ft 0 k-in (-t- in 4-2 Direction) P3 = 0,00 k 0.00 k 0.00 in P,= 0.00 k 0,00 k 0.00 in INTERACTION; Pr/2Pc [Mr/Mc] = 0.82 < W16X26... OK! PRIME Job; . STRUCTUM Oate:. Sht . LATERAL ANALYSIS • PANEL RIGIDITY AND LOADS VIASAT BUILDING 10 - ROOF Load includes shear wall weight and rho PANELS AT UNE A 208.0 k PANELS AT UNE E 208.0 k PANEL DRIFT R % LOAD PANEL DRIFT B Vi % LOAD E-1 0.2238 4.47 14.69 0.071 W-1 0.2238 4.47 14.69 0.071 E-2 0.0819 12.21 40.13 0.193 W-2 0.0819 12.21 40.13 0.193 E-3 0,1958 5.11 16.79 0.081 W-3 0.1958 5.11 16.79 0.081 E-4 0.1015 9.85 32.38 0.156 W-4 0.1015 9.85 32.38 0.156 E-5 0.1015 9.85 32.38 0.156 W-5 0.1015 9.85 32.38 0.156 E-6 0.1958 5.11 15.79 0.081 W-6 0.1958 5.11 16.79 0.081 E-7 0.0819 12.21 40.13 0.193 W-7 0.0819 12.21 40.13 0.193 E-8 0.2238 4.47 14.69 0.071 W-8 0.2238 4.47 14.69 0.071 SUM 63.28 208.0 1.00 SUM 63.28 208.0 1.00 PANELS AT UNE 1 97,0 k PANELS AT LINE 10 77.2 k PANEL DRIFT R Vi % LOAD PANEL DRIFT R Vi % LOAD N-1 0.0872 11.47 48.53 0.501 N-1 0.0845 11.83 38.62 0.500 N-2 0.0874 11.44 48.42 0.499 N-2 0.0845 11.83 38.62 0.500 SUM 22.91 97.0 1.00 SUM 23.67 77.2 1.00 PANELS AT LINE 5 133.6 k PANELS AT LINE 6.3 127.5 k PANEL DRIFT R Vi % LOAD PANEL DRIFT R % LOAD 1-1 0.1604 6.23 133.64 1.000 1-2 0.0692 14.45 127.50 1.000 SUM 6.23 133.6 1.00 SUM 14.45 127.5 1.00 PRIME Job: ENGII^EERS shL LATERAL ANALYSIS - PANEL RIGIDITY AND LOADS VIASAT BUlLDiNG 10 - 3RD FLOOR Load includes shear wall weight and rho PANELS AT UNE A 232.0 k PANELS AT UNE E 232.0 k PANEL DRIFT R Vi % LOAD PANEL DRIFT R Vi % LOAD E-1 0.1354 7.39 17,16 0.074 W-1 0.1354 7.39 17.16 0.074 E-2 0.0514 19.46 45.21 0.195 W-2 0.0614 19.46 45.21 0.195 E-3 0.1188 8.42 19.56 0.084 W-3 0.1188 8.42 19.56 0.084 E-4 0.0682 14.66 34.07 0.147 W-4 0.0682 14.66 34.07 0.147 E-5 0.0682 14.66 34.07 0.147 W-5 0.0682 14.66 34.07 0.147 E-6 0.1188 8.42 19.56 0.084 W-6 0.1188 8.42 19.56 0.084 E-7 0.0514 19.46 45.21 0.195 W-7 0.0514 19.46 •45.21 0.195 E-8 0.1354 7.39 17,16 0.074 W-8 0.1354 7.39 17.16 0.074 SUM 99.84 232.0 1.00 SUM 99.84 232.0 1.00 PANELS AT LINE 1 244.2 k PANELS AT UNE 10 244.2 k PANEL DRIFT R Vi % LOAD PANEL DRIFT R Vi % LOAD N-1 0.0652 18.12 122.30 0.501 N-1 0.0527 18.98 122.08 0.500 N-2 0.0554 18,05 121.85 0.499 N-2 0.0527 18.98 122.08 0.500 SUM 36.17 244.2 1.00 SUM 37.95 244.2 1.00 PANELS AT LINE 5 •56.4 k PANELS AT UNE 6.3 68.2 k PANEL DRIFT R Vi % LOAD PANEL DRIFT R Vi % LOAD 1-1 0.0966 10,35 -56.44 1.000 1-2 0.0407 24.57 68.22 1.000 SUM 10.35 -56.4 1.00 SUM 24.57 68.2 1.00 PRIME Jofc: - ENGIHEERS SM; . LATERAL ANALYSIS - PANEL RIGIDITY AND LOADS VIASAT BUlLDiNG 10 - 2ND FLOOR PANELS AT UNE A 145.9 k PANELS AT UNE E 145.9 k PANEL DRIFT R Vi % LOAD PANEL DRIFT R. Vi % LOAD E-1 0.0543 18.42 11.46 0.079 W-1 0.0543 18.42 11.46 0.079 E-2 0.0222 46.05 28.03 0.192 W-2 0.0222 45.05 28.03 0.192 E-3 0.0457 21.88 13.62 0.093 W-3 0.0457 21.88 13-.62 0.093 E-4 0.0314 3185 19.82 0.136 W-4 0.0314 31.85 19.82 0.136 E-5 0.0314 31.85 19.82 0.136 W-5 0.0314 31.85 19.82 0.136 E-6 0.0457 21.88 13.62 0.093 W-5 0.0457 21.88 13.62 0,093 E-7 0.0222 45.05 28.03 0.192 W-7 0.0222 45.05 28.03 0.192 E-8 0.0543 18.42 11.46 0.079 W-8 0.0543 18.42 11.46 0,079 SUM 234.38 145.9 1.00 SUM 234,38 145.9 1.00 PANELS AT UNE 1 84.5 k PANELS AT LINE 10 84.5 k PANEL DRIFT R Vi % LOAD PANEL DRIFT R Vi % LOAD N-1 0.0243 41.15 42.43 0.502 N-1 0.0221 45.25 42.26 0.500 N-2 0.0245 40.82 42.08 0.498 N-2 0.0221 ' 45.25 42.26 0.500 SUM 81.97 84.5 1.00 SUM 90.50 84.5 1.00 PANELS AT UNE 5 32.6 k PANELS AT UNE 6.3 64.3 k PANEL DRIFT B Vf % LOAD PANEL DRIFT R Vi % LOAD 1-1 0.0382 26.18 32.61 1.000 !-2 0.0163 61.35 64.25 1.000 SUM 26.18 32.6 1.00 SUM 61.35 64.3 1.00 171 € ^ py ' ox-" . . ; rmBiiffl ^ 4.p ,--LfA STRUCTUM BffiijHoll.' 2,^ /T' _^;s.a;; ^tjJi- ..j^g.^. ^-•S*^—-##~— —w§*—'^^^^—4 V ^ ir, ,ex 1 -,ji^j5...s:i! Ji^jfjaa fc^;.;. m;....:^ .^K - 1 •;. 5 i.:ii'^ SMf^'': t.3 31i^i< iiS^i i ...0^^....^.,.^^^ g^-.-r:w,.„„,.,.4»f.f^ ^^}. —iaS^il™—^.-•^.^ '^'^''•yj^ 1^!^. ••-fes^ ^•, -1^ IMfc- : I i i e5 I 3.5 6.5 5.5 S.S (.5 5,5 5: | • ._^^SL..„,^5^]. ,JR5Si s a 6,S S I 6 & : 6,5 i.*aai., LCS, S.?ASC'Z RMirt? la^ LC 3.0,r42D*£ X/eclSfi ftuaclicn units it and K-ft PSE 2K13-170 E-1 0.742D + E SK-1 Nov 13, 2013 at 9:30 AM untilied,r2d ftssails i*f LC 0 742Q B ^ -^SrffiAwi ii«Jf,.a«' ir .wid k-ft i i 5 5 y-^iii 5,5.:'^Siq t.^JlSi^ iiSi-ifif; (j ;.}i^i>: iS.^rjVet-i S.S^SIJr; 5 Elil-iii^ rit:^ :Y:M — ^«—^r^t: —rr^' I4 \ 8.5 S5 : • s,5 es ;^*- 35 65 I<*-----^- 6 3' i S.i • ! ; I i ; s,5 i i ! I' 5S 54 a? use- PSE 2K13-170 . E-1 0.742D - E SK-2 Nov 13, 2013 at 9:30 AM i/ntitled.r2d I I I I I I I I I I I I I I I 1 'iyy I I I PROJECT #; DESCRIPTION: CONCRETE SHEAR WALL DESIGN (PER CBC 2010 & ACl 318-08 CH 21) 2K13-170 VIASAT BUILDING #10 PANEL E-1 PRIME .lob. Snt; •rt' i|; [ Ju 4 GEOMETRY Lo = L, = L2 = L,^ U'- H3 = HD = '• 5.00 ft 5.00 ft 10.00 ft 5.00 ft 5.00 ft 15.00 ft 29.00 ft 42.00 ft 9.00 ft 3.00 ft 6.00 ft 3.00 ft 6.00 ft Hp = 4.00 ft LOADS: Unfactored Uniform Loads: Unfactored Point Loads: Panel Thickness: WDR= 0.171 klf XA = 0,00 fl 0.00 ft TYPICAL = 6.50 in WLR= 0.213 klf PADR = 0,00 kips FBDR -0.00 kips PIER 1 = 6.50 in WD3 = 0.555 klf PALR= 0,00 kips 0.00 kips PIER 2 = 6.50 in = 1.067 klf PAD3 = 0,00 kips PBD3 -0.00 kips PIER 4 = 6.50 in WD2 = 0.555 klf PAL3 = 0,00 kips PBL3 ~ 0.00 kips • PIER 5 = 6.50 in Wi.2= 1.067 klf PAO2 = 0,00 kips PBD2 ~ 0.00 kips PIER 7 = 8.00 in PALS = 0,00 kips Pgj_j = 0.00 kips PIER 8 = 8,00 in Parapet = 6,50 in DESIGN PROPERTIES: Reveal in Piers: pt= 0.0025 fc= 4,00 ksi HA = TRUE SDS= 0.789 fY= 60,00 ksi He = TRUE Ca= 5,00 Cone, Wt, = 150 pof HE = TRUE 1= 1,00 d)v= 0,S p = 0,6 RISA OUTPUT; LOAD COMBINATIONS: Shear (Neoative to Left): Coupling Beam Shear LC1:U= 1,20D -H.SOL PIER 1 = -7,00 k CB 1 = 7,00 kips LC2:U= 1.36 D •^ 0,50 L PIER 2= -7,10 k CB3= 21.30 kips LC3:U= 0,74 0 -H.OOQe PIER 4= -16,10 k • CB 5 = 36.00 kips E= QE± 0.2SDSD PIER 5=-15,80 k QE± 0.16 D PIER 7 = -19.80 k Story Drift: PIER 8 = -23.50 k 2ND = 0.0188 in 1- 0.50 Lr •H.OOQe PROJECTS: DESCRIPTION: CONCRETE SHEAR WALL DESIGN (PER CBC 2010 & ACS 318-08 CH 21) 2K13-170 VIASAT BUlLDiNG #10 PANEL E-1 PRIME Job: . SMICTURAl Date;. ENGIHEERS SM; . .4J- rk4 CALCULATION OF FACTORED AXIAL FORCES AND MOMENTS ON WALL PIERS: PIER PDF PDW Sow PL SEISMIC PE Mi E 2,57 k 0.00 ft 13,41 k 0.00 ft 0.00 k O.OOft RIGHT -7.0kip -21.0 k-ft 1 2.57 k 0,00 ft 13,41 k O.OOft 0.00 k O.OOft LEFT 7.0 kip 21.0 k-ft 2,57 k 0,00 ft 13,41 k 0,00 ft 0.00 k O.OOft RIGHT 7.1 kip 21.3 k-ft £ 2.57 k 0,00 ft 1341 k O.OOft 0.00 k O.OOft LEFT -7.1 kip -21.3 k-ft 4 10.89 k 0.00 ft 25.59 k O.OOft 16.01 k O.OOft RIGHT -28.3 kip ; 48,3 k-ft 4 10,88 k 0.00 ft 25.59 k O.OOft 18-01 k -O.OOft LEFT 28.3 kip -48.3 k-ft 5 10,89 k 0,00 ft 25.59 k O.OOft 16.01 k O.OOft RIGHT 28.3 kip 47.4 k-ft 5 10,89 k 0.00 ft 25.59 k O.OOft 16.01 k 0.00 ft LEFT -28.3 kip -47.4 k-ft 7 19.22 k 0.00 ft 40.41 k O.OOft 32.01 k O.OOft RIGHT -64.3 kip : -1782 k-ft 7 19.22 k • 0.00 ft 40.41 k O.OOft 32.0Tk 0.00 ft LEFT 64.3 kip 178.2 k-ft 8 19.22 k 0.00 ft 40.41 k O.OOft 32.01 k O.OOft RIGHT 64.2 kip 211.5 k-ft 8 19,22 k 0,00 ft 40.41 k 0.00 ft 32.01 k O.OOft LEFT -64.2 kip -211,5 k-ft mn AXIAL MAXAXfAL CRITICAL PIER MD Mt Pu Mu Pu Mu Pu Mu 0Mn % Over 1 G.0 0.0 4,9 k -21,0 14.7 k -21.0 4.9 -21.0 : -217,70 OK 1 0.0 0.0 18.9 k 21.0 28.7 k 21.0 4.9 -21.0 : -217,70 OK 2 0.0 0.0 19.0 k 21,3 28.8 k 21,3 4.8 -21.3 \ -217.49 OK 2 0.0 0.0 4.8 k -21.3 14.6 k -21.3 4.8 -21.3 \ -217.49 OK 4 0.0 0:0 -1.2 k 48.3 29.2 k 48.3 -1.2 48.3- ; 204.30 OK 4 0.0 0.0 55:4 k • -48:3 86.8 k -48,3 -1.2 48.3- ; 204.30 OK S 0.0 0,0 55.4 k 47.4 85.8 k 47.4 -1.2 -47.4 -204.30 OK S 0.0 0,0 -1.2 k -47.4 29.2 k -47.4 -1.2 -47.4 -204.30 OK 7 0,0 0,0 -20.1 k -178.2 32,7 k -178.2 -201 -178.2 : -361.89 OK 7 0,0 0,0 108.5 k 178.2 161.3 k 178.2 -178.2 : -361.89 OK 8 0,0 0,0 108.4 k 211.5 161.2 k 211.5 -20 0 -211.5 -362.10 OK 8 0,0 0,0 -20.0 k -211.5 32.8 k -211.6 -211.5 -362.10 OK INTERACTION DIAGRAMS: Piers 1,4,7 1000.0 -2C0.0 T •400.0 Piers 2,5,8 10000 1S00.0 -1500,0 1000.0 T 1SO0.O COTOiililLLOffl PROJECT #; DESCRIPTION: (PER CBC 2010 & ACl 318-08 CH 21) 2K13-170 VIASAT BUILDING #10 1 P:RIME Job; . SlllGiyM Dale;. SHEAR CALCULATIONS: PIER1 PIER 2 PIER 4 PIER 5 PIER 7 PIERS Effective Thickness = 5.75 in 5,75 in 5.75 in 5,75 in 7,25 in 7.25 in Pier Length = 5.00 ft 5,00 ft 5,00 ft 5,00 ft 5.00 ft 5.00 ft L/t = 10.43 10.43 10,43 10,43 8,28 8.28 H / L.= 1,20 1,20 1.20 1,20 1.80 1.80 Wall Pier (Y=1:N=0) = 0 0 0 0 0 0 v = 7.0 kips 7,1 kips 16,1 kips 15,8 kips 19.8 kips 23.5 kips v,= N/A N/A N/A N/A N/A N./A Vu = 7,0 kips 7,1 kips 15,1 kips 15,8 kips 19.8 kips 23.5 kips Acv = 345,0 in^ 345,0 in^ 345,0 in^ 345,0 in^ 435.0 in^ 435.0 in= 2*Acv-\'(f c) = 43.64 in 43,6 k 43,6 k 43,6 k 55.0 k 55.0 k ' Curtain Reinf, Req'd = NO NO NO NO NO NO ac = 2.00 2,00 2,00 2.00 2.00 2.00 p,min = 0.00250 0.00250 0,00250 0,00250 0.00250 0.00250 8 s Vu / 0AcV\'(f c) = 0.53 0.64 1.23 1,21 T.20 1.42 OK OK OK OK OK OK As.req (per ft) = 0.195 in» 0.195 in' 0.195 in^ 0.195 in' 0.240 in« 0.240 in' Max Horiz Spacing = 12.00 in 12.00 in 12.00 in 12.00 in 12:00 in 12.00 in — , „ _,..J .yy y ..^ Avf = V / (0*fy*p) = 0.73 in^ 0.87 in' X-Ai .yy y #4 dowels @ slab = 4 6 SPECIAL BOUNDARY ELEMENT REQUIREMENT PER AC! 318 §21.9.6.2: PIER1 PIER 2 PIER 4 PIER 5 PIER 7 PIERB Elastic Disp. = 0.020 in 0.020 in 0.043 in 0.043 in 0.062 in 0.062 in 5u = 0.008 ft 0.008 ft 0.018 ft 0.018 ft 0.026 ft 0,026 ft L / [600*(5u/h)] = 14.29 in 14.29 in 14.29 in 14.29 in 14.29 in 14.29 in Pu. critical = 28.7 k 28.8 k 85,8 k 85.8 k 161,3 k 161.2 k Max Neutral Axis, c.= 5.03 in 5.04 in 8.02 in 8.02 in 11.58 in 11.58 in Bound. Mem. Req'd = NO NO NO NO NO NO y COUPLING BEAM CHECK PER ACI 318 §21.9.7: Flexural Steer Diag. Reinf Rea'd** #3 HOOD Soac. Vu h j d L/h Vu/bh^'ffc) Flexural Steer Diag. Reinf Rea'd** #3 HOOD Soac. CBI 7,0 kip 95.00 in 92.00 in 1.25 0.18 N/A NO N/A 08 3 21.3 kip 96.00 in j 92.00 in 1.25 0.54 N/A NO N/A CBS 36.0 kip 108.00 in 1 104.00 in 1.11 0,81 N/A NO N/A = Area of flexural steel req'd at both top 8^ bottom of coupling beam, CONCRETE SHEAR WALL DESIGN (PER GBC 2010 & ACI 318-08 CH 21) PROJECT*: 2K13-17G DESCRIPTION: VIASAT BUILDING #10 PANEL E-1 PR.1ME Job: . S^lifCTURW-.Date;. ENGINEERS Sht: . iM'i ,f\; REBAR LAYOUT: d PIER1 PIER 4 PIER 7 2" 1 #5 1 #5 2 #5 6" 1 #5 1 #5 2 #5 22" 1 #4 1#4 2#4 38" 1 #4 1 #4 2#4 54" 1 #5 1 #5 2 #5 58" 1 #5 1 #5 2 #5 10-00 0.00 0.00 10.00 20.00 1-0.00 ,0,00 o.co 10.00 20.00 10.00 0.00 8 e 0.00 10.00 20.00 30.00 40 00 50.00 30.00 40.00 60.00 60.00 in 30.00 40 00 , 50,00 • 60 0-3 m 7i 70,00 m 70,00 2 m 70,00 10,00 d PIER 2 PIERS PIER 8 2" 1 #5 1#5 2 #5 6" 1#5 1 #5 2 #5 22" 1 #4 1 #4 2 #4 38" 1 #4 1 #4 2#4 54" 1 #5 1 #5 2#o 58" 1 #5 1 #5 2 #5 I « e 0.00 10,00 0.00 10.00 20;00 30.00 40.00 0.00 10.00 -- 10.00 20.00 40.00 O.CO laoo 20.00 50.00 60.00 50.00 SO.OO 30,00 40 00 : 50,00 60;0& 2 m 33 70.00 2 m 71 cn 70.00 m CO 70.00 ! 6.5 6.5 ; S.5 6 5 S5 : 65 ; 65 6 6 i 6.5 i . 6.6 8 5 i 5.5 : 6.5 : 6.6 a3Jg*--..?.?p.....s5|^_i2pv__2i^ 2Si^ 2im,_ 2zm 6 5 i B.6 5 6 6.6 8.6 5.6 ;2pl 22^..._Mi^_2:i^J!J^ 5,5 i 65 i 6,5 I 6.5 . 6,5 6.5 i S.S ' 6.5 I is I 6,6 I 85 ; 6.S I 6 5 i 6.6 15 i 6.5 ; 6 6 6.5 6,5 6,6 i 6,5 3 5 i 6.5 6,i _ .V ^ ^^:-— xM.\ 8.5 e.5 ; 6.6 .•/79K.j...^6;ft ,i^^7ji,.;._:!.^: 6-6 \ 6-S ; 66 : 6.5 ; 6.6 i 8.5 ; 6-5 igi ?-51|^j 2.S1^: 2M^: 2-S1jfci 2-51g|^i 2.51j|. 6,5 ! $5 i -6,5 6,5 ; 6-6 6,5 ;6 i 6.5 ; 6 5 , 5-6 6-5 i 6.5 i'l 6.6 i 5S ' 6:6 : 6.5 : 6.5 6-6 ; 66 : 6.S \ 6.6 i 6.5 2 5!^i 2-61g^l l.S'.^l 2.S0. ^ 6-6 6-5 5.5 6,5 6.5 6-5 2661; 6* S,S 6,5 •H....10±...J.0J>-. 1,^'* I m. \4S;ih .i^Sm I0>i li^Zi i.^7k !|j7i....J.^ZL--J.^7L..J.^7!l,,,,,iJ5m ..^..7791,....^ 6-6 : C-i i SS ' 6.5 : 6.6 6S ; 6 8 ! 6-5 : 6-5 5-5 i 8-5 i 6-6 S-6 i 6.5 ! 3 6.6 ; 6-5 ! 9 y Mr 5.5 ' 6.5 ; 6-6 • 6.6 65 9 ; 6-5 ; 6-5 i 6-5 ; 6:5 6-5 i 6-6 i 6-S y ' '^ t 'I 9 ; 6.5 i 6,6 Loads; LC2. SEISMIC Results lorLC 2: SEISMIC PSE 2K13-170 E-2 SEISMIC ONLY SK-1 Nov 13, 2013 at 10:26 AM E-2,r2d I y-t\y 8.5 : 6.5 i 6-5 i 8.5 ! 6.6 I 6.5 ; 6.5 j 6 5 i.5 : 6-5 i 6 5 J-5 i 6-5 i 6-6 , ^ , , . . - - . ^ . - " i 7pf%^t5p4^!2fife|l4%^ 15k 6.5 6.5 5-5 6-5 ; 6.6 6.S j 65 : 6-6 ; 6.6 : 6.5 : 65 i 65 i 6.5 ! 6-6 I 65 ! 6-5 515kM<X3k-1iS3k V, \ 6,5 -f ;2W-fe2i*6ll^^^^ s <i . e a «c : c c I o c ; c t : c i «! a c ; c . «i 6,5 j 6,5 I S,6 ! 6,6 i 6,6 •! c I «« ; ! £m•'i€x^^ €mr'\ sosit-i sceki-i^eit-i IOSN-I ^ski^i soak 65 i 6.5 j 6-5 i 6.6 6 5 6 S 6 6 6.6 { 6.6 .6 6 i 6.5 1 6.5 I 6.6 6 5 65 66 • S.5 . 6.6 -.3-52k 1 fC3kh1 SS3kf,1 «CSk|.l ^SkM lOSk 65 i 6,5 I 6,5 i 6-S i 6,5 -I6a3ki 6 6 ! 6.5 i 6.5 i 6$ i 6-5 -.515k 1 tfSki-1 ^ki-16001^1 gSesjl <^^^ fOSki-l ^ISM-I <»k-1 i03l4-1 USkrl SIGI^I SB^I tfX3kr1 £CSk[l sCSkM ^»k 35 ^ 65 : e 55 : 6-6 i B 6.6 i 68 ; 6-S ! 6-6 ; 8 65 ; 9 i 9 ^•3-52.1c •l603k 6,6 st; 28-7 66 i 8,5 i 6-5 ; 6-6 i S ^^^^^^^y ' ^ ' * \XMX i S (^_^yy^ 6.5 : 6.5 64 -2 28 107.4 0. V'y , ^^ ^y ox-" -?y / 7^ U\1 \—- I I I y ,^d,^" Lo3Cls:LC4.0,7«D-E Results tor tc -1.0.742D. E Y-airecfiori Reaction units ate It aiid K-H PSE 2K13-170 E-2 0.742D - E SK-3 Nov 13, 2013 at 10:53 AM E-2.r2d -.159kt4p? 1.112k22ilg; 65 I 5.3 6.5 ; 6.6 i 6.5 i 55 6-5 ; 6-i I 65 i 6. 6.6 i 6.5 6,5 ; S-5 : 65 6 5 ; 6-6 i 5-5 S5 i-5 i S-5 ; 6-5 ! S-6 6.5 ; 8.5 I 6,6 i 6.6 6.5 i 6.6 ! 5.5 i 6-5 5-5 : 65 - 65 ; 6-5 ; 6,5 6 5 ; 6.5 -.51541 tfKBk-l my, tfffiki^l sC»k-1 SBkM SBkhsCBk-1 sOSkU SBk 2EEK1|e.S\gjg.5t^.5^.5^^.S1^.51^.51^.5^ig.5-i^.5-\^.S^!g..5 1 1ieki-1^k^ieCeikH^i4l(a3l«-1ea3k 6.5 !56k f 5,6 1 6;5 6,5 6-5 • 6 5 i 6-6 ; 6-3 6,6 b-6 65 I 6,6 i 6-5 ! 6-5 3 5 i 5-5 i 6-5 i 6 6 6 I 8 6,6 : 6- --3,.52k -,515k-1 ^Bk-1 S»k-1 ^kMSMktlaKk^'isOSkhtfak;-1 CS3k^1 slBkhcek-1 flMi^l^Sk^1 tf»kM£GkMSSki-1 tCSkj-lseSk 6,5 ,779lt,5i7l^ .^pkl.Spkl ,^$7Ki,5,^7kl,^^7kl -5,^7ki ,5,i^7kl .qpk! ,5|7kl•q$7ki ,5,|7kl ,S^pkt,5^;^7kl ,5^7^ ,5,^7k1 ,gS7k ,|79k f a 6,6 ! 6.5 a : 8 1 6-5 X.....J. 1 1 i _.. 6,5 -X. 61. 9 9 65 6.6 9-9 e.5 6,5 & 9 9 9 6.5 6,6 4 X ^ lj&— 127.3 ^ ->-y L03<ls: LC 3.0.742D - E Re.'Sults for LC 3, D 742D • E Y.direction Reaclion units are K and l(,ft PSE 2K13-170 E-2 0.742D + E SK-2 Nov 13, 2013 at 10:53 AM E-2,r2d CONCRETE SHEAR WALL DESIGN (PER CBC 2010 & ACI 318-08 CH 21) PROJECT #: 2K13-170 DESCRIPTION: VIASAT BUILDING #10 PANEL E-2 PRIME Job; mky STRUCTURAL Deie: ENGIMEERS snt; i -xf GEOMETRY: Lo = 5.00 ft Ll = 5.00 ft L3= 10.00 ft L3 = 5.00 ft 10.00ft Ls = 5 00 ft Ls = 5.54 ft »2= 15.00 ft H3 = 29.00 ft HR = 42.00 ft HA = 9.00 ft Hg = 3.00 ft Hc= 6.00 ft HO= 3.00 ft HE = 6.00 ft HF = 4.00 ft _ 39 8 k < > ^ 27.8 k H^ PIER1 PIER 4 PIER 7 L, (A) CB1 IP CB2 • BP. PIER 2 PIER 3 CBS P A3 CB4 PiERS 83 PIERS CB5 A2 T CB6 P a: •.PIER 8. PIER 9 LOADS: Unfactored Uniform Loads: Unfactored Point Loads: Panel Thickness: WDR = 0.171 klf XA = O.OOft XB = 32.50 ft TYPICAL = 6,50 in PIER 7 -8.00 in WLR = 0.231 klf PADR ~ 0.00 kips PBDR ~ 3.16 kips PIER 1 = 6,50 In PIER 8 = 8.00 in Wo3 = 0.555 klf PALR== 0.00 kips PSLR" 2.55 kips PIER 2 = 6,50 in PIER 9 = 9.00 in WL3 = 1.067 klf PADS -0.00 kips Peoi -4,05 kips PIER 3 = 6,50 in Parapet = 6.50 in Wo3 = 0.555 klf PALS = 0.00 kips PBL3 -6,89 kips • PIER 4 = 6,50 in WL2 = 1.067 klf PAD2 -6.00 kips PBO2 ~ 4,05 kips PIER 5 = 6.50 in PAL2 = 0.00 kips P8U = 6,89 kips PIER 6 = 6.50 in LOAD COMBINATIONS: LC1:U= 1.20 0 -I-1.60 L -i-0,50 Lr LC2:U= 1,36 0 -t-0,50 L -i-I.OOQe LC3;U= 0,74 D -i-I.OOQe E= QE± 0,2SDSO =QE± 0,16 D Reveal in Piers: HA= TRUE He = TRUE HE = TRUE DESIGN PROPERTIES: RISA OUTPUT: fc = 4.00 ksi Shear (Neoative to Left): CouDlina Beam Shear Storv Drift; fY= 60,00 ksi PIER1 = 10.10 kips CB 1 = 9.50 kips 2ND = 0.0223 in Cone, Wt. = 150 pcf PIER 2= 19.60 kips CB2= 10.00 kips 3RD = 0.0225 in <Pv = 0,6 PIER 3= 10.10 kips CB3= 29.10 kips ROOF = 0.0168 in M= 0,6 PIER 4= 21.80 kips CB 4 = 30.50 kips pt= 0.0025 PiER 5 = 40.80 kips CB 5 = 47.50 kips Si^= 0.789 PIER 6 = 23.00 kips CB 6 = 50.90 ktps Cd= 5.00 PIER 7= 34.60 kips 1= 1.00 PIER 8 = 43.30 kips H/L= 1.314 PIER 9 = 35,50 kips CONCRETE SHEAR WALL DESIGN (PER CBC 2010 & AC! 318-08 CH 21) PROJECTS: 2K13-170 DESCRIPTION: VIASAT BUILDING #10 PANEL E-2 PRIME Job; , S^yCTURM. Date;. ENGiMEERS Sht: , I'-Xj CALCULATION OF FACTORED AXIAL FORCES AND MOMENTS ON WALL PIERS: PIER PDF 6DF PDW PL SEISMIC PE ME i 2,6 k O.OOft 15.8 k 0,00 ft 0.0 k O.OOft RIGHT -9.5 kip -30,3 k-ft 1 2.6 k O.OOft 15.8 k 0,00 ft 0.0 k O.OOft LEFT 9.5 kip • 30,3 kip 2 2.6 k O.OOft 15.8 k 0,00 ft 0.0 k O.OOft RIGHT -0.6 kip -58,8 k-ft 2.6 k O.OOft 15.8 k 0,00 ft 0.0 k O.OOft LEFT 0,6 kip 58,8 kip •a 5.8 k 0.12ft 19.5k 0,69 ft 0.0 k 0.27 ft RIGHT 10,1 kip : 31,8 k-ft 5.8 k 0.12ft 19.5 k 0.69 ft 0.0 k 0.27 ft LEFT -10,1 kip -31.8 kip 4 10.9 k O.OOft 28.0 k 0,00 ft 16.0 k 0.00 ft RIGHT -38,6 kip -65,4 k-ft 4 10.9 k O.OOft 28.0 k 0,00 ft 16.0 k O.OOft LEFT 38,6 kip 65,4 kip 5 10.9 k O.OOft 28.0 k 0.00 ft 15.0 k O.OOft RIGHT -1.9 kip ; -122,4 k-fi 5 10.9 k O.OOft 28.0 k O.OOft 16.0 k O.OOft LEFT 1.9 kip 122.4 kip e 18.5 k 0.16 ft 35.6 k 0.98 ft 23.5 k 0,19 ft RIGHT 40.4 kip 69,0 k-ft u 18.6 k 0.16ft 35.6 k 0,98 ft 23.5 k 0,19 ft LEFT -40.4 kip -69,0 kip 7 19.2 k O.OOft 42.8 k 0.00 ft 32.0 k 0.00 ft RIGHT -86.1 kip -103.8 k-ft 7 19,2 k O.OOft 42.8 k 0,00 ft 32,0 k O.OOft LEFT - 86.1 kip 103.8 kip 8 19.2 k 0.00 ft 42.8 k 0,00 ft 32,0 k O.OOft RIGHT -5,1 kip -129,9 k-ft 8 19.2 k O.OOft 42.8 k 0,00 ft 32,0 k O.OOft LEFT 5.1 kip 129,9 kip 9 31.2 k 0.17ft 55.8 k 1.07 ft 46,9 k 0.19 ft RIGHT 91.3 kip ^ 319.5 k-ft 9 31.2 k 0.17 ft 55.8 k 1.0? ft 46,9 k 0.19 ft LEFT -91.3 kip i -319.5 kip MIN AXIAL MAX AXIAL CRITICAL PIER MD ML Pu Mu Pu Mu Pu <l>Mn % Over 1 0.0 0.0 4.2 k -30.3 15,5 k -30.3 4,16 -30.30 : -216.22 OK 1 0.0 0.0 23.2 k 30.3 34,5 k 30.3 4,16 -30.30 : -216.22 OK 2 0,0 0.0 13.1 k -58.8 24,4 k -58.8 13.06 -58.80 -235.25 OK 2 0.0 0.0 14.3 k 58.8 25,6 k • 58.8 13.06 -58.80 -235.25 OK 3 -14.1 0.0 28,9 k 21,4 44,4 k 12,7 24.25 -50.91 \ -282.25 OK 3 -14.1 0.0 3,7 k . -42.2 24.2 k -50.9 . 24.25 -50.91 \ -282.25 OK 4 0.0 0.0 -9,7 k • -65.4 22.3 k -65.4 -9,71 -65.40 -185 26 OK 4 0,0 0.0 67,5 k 65.4 99.5 k 66.4 -9,71 -65.40 -185 26 OK S 0.0 0.0 27,0 k -122.4 69,0 k -122.4 26:99 -122,40 ; -265.03 OK S 0.0 0.0 30.8 k 122.4 62.8 k 122.4 26:99 -122,40 ; -265.03 OK 6 -38.1 -4.5 80,6 k 40.7 125,6 k 15.0 -0,24 -97,29 -229.90 OK 6 -38.1 -4.5 -0,2 k -97.3 44,8 k -123.0 -0,24 -97,29 -229.90 OK 7 0.0 0.0 -40,0 k -103.8 14.2 k -103.8 -40.04 -103.80 \ -319,16 OK 7 0.0 0,0 132,2 k 103.8 186.4 k 103.8 -40.04 -103.80 \ -319,16 OK 8 0.0 0.0 41,0 k -129.9 95.2 k -129,9 40,96 -129,90 -490.37 OK 8 0.0 0.0 512 k 129.9 105.4 k 129,9 40,96 -129,90 -490.37 OK 0 -64.9 -9.0 155.9 k 271.4 232.9 k 227,0 -Pfi 711 -367.64 -396.06 OK 3 -64.9 -9.0 -26,7 k -367.6 50.3 k -412,0 -367.64 -396.06 OK CONCRETE SHEAR WALL DESIGN (PER CBC 2010 & ACI 318-08 CH 21) PROJECT #: 2K13-170 DESCRIPTION: VIASAT BUILDING #10 PANEL E-2 PRIME Job; Myllx i Dale;. ENGWEERS sw: I rnx INTERACTION DIAGRAMS: Piers 1,4,7 1000.0 Si«f.7 -15000 -1000.0 -500. Piers 2,S,8 -1500.0 -1000-0 Piers 3,6,9 -1500-0 1000-C 1500.0 -200.0 ^ -iODO O -: BISLS- -4O0.(S'l*?'i 1200.0 1500.0 PROJECT #: DESCRIPTION: CONCRETE SHEAR WALL DESiGN (PER CBC 2010 & ACi 318-08 CH 21) 2K13-170 VIASAT BUILDING #10 PANEL E-2 PRIME Job; S'RUCTURAL Date: ENGIHEERS Sht; SHEAR CALCULATIONS: PIER 1 PIER 2 PIER 3 PIER 4 PIER 5 PIER 6 PIER 7 PIERS PIER 9 Effective Thickness 5.76 in 5.75 in 5.75 in 5,75 in 5.75 in 5.75 in 7,26 in 7,25 in 8.25 in Pier Length = 5.00 ft 5.00 ft 5.00 ft 5,00 ft 5,00 ft 6,00 ft 5.00 ft 5,00 ft 6,00 ft LIX = 10.43 10.43 10.43 10,43 10.43 10,43 8,28 8,28 7.27 H/L = 1.20 1.20 1.20 1.20 1.20 1,20 1.80 1,80 1.80 Wall Pier(Y=1; N=0) 0 0 0 0 0 0 0 0 0 V = 10.10 k 19.60 k 10.10 k 21.80 k 40.80 k 23.00 k 34.50 k 43,30 k 36.50 k Ve = N/A N/A N/A N/A N/A N/A N/A N/A N/A V. = 10.10 k 19.60 k 10,10 k 21.80 k 40.80 k 23.00 k 34.60 k 43,30 k 35.50 k Acv -345.0 in' 345.0 in' 345.0 in' 345.0 in' 345,0 in' 345.0 in' 435.0 In' 435,0 in' 495.0 in' 2*Acv*V(fc) = 43.6 k 43.6 k 43,6 k 43,6 k 43,5 k 43.6 k 65.0 k 55.0 k 62.5 k 2 Curtain Reinf. Req'd NO NO NO NO NO NO NO NO NO ac = 3.00 3.00 3.00 3,00 3.00 3.00 2,40 2.40 2.40 p.min 0,00250 0.00250 0.00250 0,00250 0,00250 0,00250 0,00250 0.00250 0.00250 8 > Vu / cPAcv*V(f c) 0.77 1.50 0,77 1.67 3.12 1,76 2,10 2.62 L89 OK OK OK OK OK OK OK OK OK As.req (per ft) = 0.195ln' 0.195 in' 0.195 in' 0.195 in' 0.196 in' 0.195 in' 0.240 in' 0.240 in' 0.270 in' Max Horiz Spacing = 12.00 in 12.00 in 12.00 in 12.00 in 12.00 in 12,00 in 12,00 in 12.00 in 12.00 in Avf = Vu / (0'fy*p) = #4 dowels @ slab = 1,28 in' 1.60 in' 1,31 in' 7 9 7 SPECIAL BOUNDARY ELEMENT REQUIREMENT PER ACI 318 §21.9.6.2: PIER1 PIER 2 PIER 3 PiER 4 PIER 5 PIER 6 PIER 7 PiERS PiER 9 Elastic Disp, = 0,017 in 0.017 in 0.017 in 0.039 in 0.039 in 0.039 in 0.052 in 0.052 in 0.062 in Qu = 0.007 ft 0,007 ft 0.007 ft 0.016 ft 0,016 ft 0.016 ft 0.026 ft 0,026 ft 0.026 ft L/[600*(5u/h)] = 14,29 in 14,29 in 14.29 in 14.29 in 14.29 in 14.29 in 14.29 in 14.29 in 14.29 in Pu,critic8l = 34,5 k 25,6 k 44.4 k 99.5 k 62.8 k 125.6 k 186.4 k 105.4 k 232.9 k IVlax Neutral Axis, c = 5.27 in '4,90 in 6.32 in 8.83 in 6.72 in 11.01 in 12.76 in 9.00 in 13.78 in Bound, Mem, Req'd = NO NO NO NO NO NO NO NO NO COUPLING BEAM CHECK PER ACI 318-05 §21.7.7 (ACl 318-05 §21.9.7): Flexural Steel* Diag. Reinf Req'd*' #3 Hoop Soac. Vu h d L/h Vu/bh%'(fc) Flexural Steel* Diag. Reinf Req'd*' #3 Hoop Soac. CBI 9.5kip 96.00 in 92.00 in 1.25 0.24 N/A NO N/A CB2 10.0 kip 96.00 in 92.00 in 1.25 0.26 N/A NO N/A CB.3 29.1 kip 86.00 in 92.00 in 1.25 0.74 N/A NO N/A CB4 30.5 kip 96.00 in 92.00 in 1.25 077 N/A NO N/A CBS 47.5 kip 108.00 in 104.00 in 1.11 1.07 N/A NG N/A CB6 50.9 -kip 108.00 in 104,00 in 1,11 1.15 N/A NO N/A ' = Area of flexural stee! req'd at both top & bottom of coupling beam, " = If flexural steel can be satisfied, diagonal reinforcement is not required. If Hoop Spacing = N/A, typical reinforcement governs. PROJECT*: DESCRIPTION: CONCRETE SHEAR WALL DESIGN (PER CBC 2010 & ACl 318-08 CH 21) 2K13-170 ViASAT BUlLDiNG #10 PANEL E-2 PRIME Job: STRUCTUM Dale; I I d PIER1 PIER 4 PIER 7 2" 1 #5 1 #5 2 #5 6" 1 #5 1 #5 2 #5 22" 1#4 1 #4 2 #4 38" 1 #4 1 #4 2 #4 54" 1 #6 1#5 2 #5 58" 1 #5 1 #5 2 #5 •IQ-OO d PIER 2 PIER 5 : PiERS 2" 1 #5 1 #5 2 #5 6" 1#5 1#5 2 #5 22" 1 #4 1 #4 2 #4 38" 1 #4 1 #4 2#4 54" 1 #6 - 1 #5 2 #5 58" 1 #6 1 #5 2 #5 d ; PIER 3 PIER 6 PIERS 2" 1#5 1 #5 2 #6 6" 1 #5 1 #5 2 #5 18" 1 #4 1 #4 2#4 30" 1 #4 1 #4 2 #4 42" 1#4 1 #4 : 2 #4 54" 1#5 1#5 2 #5 58" 1 #5 1 #5 2 #6 0.00 ooo io:(X! 20.00 5000 60.00 10.00 ooc-1000 30.00 30.00 40-00 50-00 50-CO 10-00 0-00 0.0-0 10,00 20:0Q 10-00 30,00 in 40,00 50,0-0 SO.OO 0 00 0.00 io:oo 20.00 30.00 40.00 so.co 60.30 10 00 0-0-3 10-00 000 • « 10 CO 0-00 0.00 10.00 20.00 30.00 40.00 50.00 6000 10.00 0-00 0-00 10.00 2D.C-0 30.00 .„ 40.00 50.00 60.00 I « • m 30 70.00" 2 m :3! 70.&0 T3 m ::o 70-00 2 rn 30 70-00 2 m JO cn 2 m 73 cs 70.!X! m 73 70. Mi 13 fn 70-fro 3 .J> y. a y \iX)X:^' X \ &,:;5 9.25 9-5-5 9 26 i 9.2s 9,25 9.2b i S25 i 9-26 : -: 9 26 9.25 9 55 62S 1 9-25 S,2S 9-25 i 925 i 9-26 i : 9.25 8 26 9-25 1 625 i 5-25 9-26 925 : 9-26 \ S-2S \ r; y Cr/^' : S.26 S25 9-26 : S25 • s :'5 926 9-25 i 5.26 \ 9-25 : - §.25 9-26 9-2.-! i -9 26 9-25 3-25 1 9.25 : 9.25 1 S.25 ; 9.25 i as e.25 ; 9.25 : 3.25 \ •f'- ' 9-26 j 9.25 i 9.26 i S.26 : 9.26 i 9-25 f '\ir- '• R«5Ul55 lot LC 1. RlGIDiTV PSE 2K8-110 "If - y^y,, ay S25 9,23 i 9.26 C'^ 9.26 8-26 9 25 9-S5 S.2E : c JS. • I 6.5 i 6.5 ' 925 9-26 ,926 S-26 8-26 : 9.25 9.2S 9.25 i 9-25 9-2S 926 <1 65 ' i. b5 ! 65 9-26 9-25 9.26 925 9.25 : 9-2 6 5 • b,i ; S.S 9.26 9-26 9.26 9 25 9.26 j 9^' • : ! : 0.6 9.26 9-26 9-26 9.55 S-2'-9-25 9-26 9-25 9-25 i S-2' 9!5 9-26 3-26 926 9.26 I 926 S-26 •3 25 9-25 9,26 S-25 i 9.26 :|6,6 \ 6.5 1 3.25 9-25 S2S 9-25 9 25 i 9-25 6 5 i 6.6 9.26 9;26 9-25 9;?s 9 25 i 9-25 6.5 • \ 6-4 6-5 S2S 8.26 926 6,26 • -3-25 j 9-25 6-6 : 1 8.5 i--.^ i 6-5 9.25 9-25 9-26 S-26 923 i S-25 66 j ^-^ i 925 S-25 S.25 9-26 9-25 9-26 9.26 9.25 925 9,26 9-25 9,26 1. 926 •i26 9-26 '7.^::'' ' " 9,26 9.25 i S25 5 25 9-25 3-25 9-25 3 26 : 9.25 3.25 9.25 9-25 V Xo f)" A - r y^ I H fZ •X A y(z -& . ^x>J ' .. £>2..o '7 E-3 SK-1 Nov 13; 2013 at 12:15 PM E-3.r2d S-25 • 9.26 - 9-26 J-25 i 9.25 : 9.25 . 9.26 ; 9.26 ! 9-25 i S,25 : 9.ZS i 9 25 . 9,25 j 9.26 j 9.25 \ 9.25 ; 3 25 .938866^1...e6^1_8^|j^^^ ^331^ ' 9.25 ; 9.25 ; 9 25 I 9.25 1 S,25 i 9.25 i 9-26 ! 9-26 9S5 i 0.2S : 9.26 | 9.25 : 9-2S i 9:26 \ 8-25 9.26 : 5,26 sa : 6.2S i -1.2 i 9.25 i 9.26 ; 9.25 925 i 9.26 ; 9.26 S.2S : 9.25 ! 9.26 9.25 I 9.25 I 9.25 | 65 : 0.5 ; 6.5 | 9.25 i 9.26 i 9 25 -.042kj-;gp^:Xip<!riK3R;"0S3kf"-:0^ \ 6.26 9.26 S25 5.6 66 6-S .: 9.26 9.2S 9.25 : i 9.26 j™ 9,26 9 25 \ 6.5 6-5 6.5 , 9.25 8.25 9.2S 1 1 i S.25 9,26 9.25 \ 6.5 8-5 6.5 3.25 9.25 9.25 j i 1 S.2S 9,26 S.2S \ 9;25 9.26 9.25 1 9.25 ; 9:26 : . 9.26 3.25 i 9.26 ! 9.26 i 9.26 i 9.25 : S.25 \ 6.5 : 6 5 -.042kb383r . ,,---,i3-.083lf;:083k"-:0B3k •757i6j|.t?;.|pji|i!3|^¥^k^i i 9,26 a.26 1 9,25 ! 6-6 : 6S S.25 ; 9.25 • 9.25 : 6 6 6.5 9.25 i 9.25 ; 9.26 6.5 I 8.25 i 9.26 -:g83i(F083r:083RF;D42)^ as : 9,25 i 9S5 i 8-2S 925 i 925 i 9-25 9-25 i 9-M 9-26 i 2-26 i 9.26 S.25 ; 9.25 54 2 9.25 i 9.25 I 5 26 too<l5; LC 3.0.7<2D • E Results for LC 3,0.7420 « E Y-dL'ceion Resction units ars k ano K-ft (9 1/ ••••4, 8,5 ^y PSE 2K8-110 23.7 9;25 ! 88.2 E-3 0.742D + E SK-2 Nov 13, 2013 at 12:28 PM E-3.r2d PROJECT #: DESCRIPTION: CONCRETE SHEAR WALL DESIGN (PER CBC 2010 & ACI 318-08 CH 21) 2K13-170 VIASAT BUILDING #10 PANEL E-3 PRIME Job; . STRUCTURE Date: ENGINEERS mt GEOMETRY: Lo = 0.00 ft L, = 6.50 ft Lz = 7.00 ft L3 = 6.50 ft L4 = 0.00 ft Hj: 15.00 ft 29.00 ft 42.00 ft HA HB He Ho O.OOft 3.00 ft 6.00 ft 3.00 ft HE= 6.00 ft Hp = 6.00 ft HE HD IP CBI PIER- ® IP < 6R PIER 2 IF. A3 CBS PIER 4 PIER 5 Xp •P A2 08 5 It 1 62 PiER 7 Ll PIERS LOADS: Unfactored Unifonn Loads: Unfactored Point Loads: Panel Thickness: WDR= 0,016 klf XA = 0.00 ft XB = 0,00 ft TYPICAL = 6.50 in Wi.R = 0.020 klf PADR = 0.00 kips PBDR ~ 0,00 kips PIER 1 = 9.25 in Wc,3 = 0.052 kif PALR= 0.00 kips PBLH ~ 0.00 kips PIER 2 = 9.25 in Wi.3= 0.100 klf PADS = 0.00 kips PBD3 -0,00 kips PIER 4= 9.25 in W02 = 0.052 klf PAL3 = 0.00 kips Psu ~ Q OO kips PIER 5 = 9.25 in Wu= 0.100 klf PAD2 = 0.00 kips PBD2 -0.00 kips PIER 7 = 9.25 in PAL2 = 0.00 kips Pats -0.00 kips PIER 8 = 9.25 in Parapet = 9.25 in DESIGN PROPERTIES: Reveal in Piers: pt = 0.0025 fc= 4.00 ksi HA = FALSE SDS= 0.789 fy 60.00 ksi He = FALSE Ci - 5.00 Cone. Wt. = 150 pcf Hg = FALSE != 1.00 0v = 0.6 M= 0.6 RISA OUTPUT: LOAD COMBINATIONS: Shear (Neaative to Left): CouDlino Beam Shear LC1:U= 1.20 D -H.eOL PIER 1 = -8.40 k CB 1 = 9-40 kips LC2:U= 1.36 D i-0.50 L PIER 2 = -8.40 k CB 3 = 26,20 kips LC3;U= 0.74 D -I-I.OOQe PIER 4= -18.10 k CB 5 = 43,00 kips E = QE ± 0,2SosD PIER 5= -18.10 k QE± 0.16 D PIER 7= -26.10 k Storv Drift: PIER 8= -25.10 k 2ND= 0,0181 In 3RD = 0.0233 in ROOF = 0.0207 in 0.60 Lr + 1.00 Qe CONCRETE SHEAR WALL DESIGN (PER CBC 2010 & ACI 318-08 CH 21) PROJECT #: 2K13-170 DESCRIPTION: VIASAT BUILDING #10 PANEL E-3 PRIME Job: . SIRlfCTUm Dale:. ENGIffEERS Sht; CALCULATION OF FACTORED AXIAL FORCES AND RSOMENTS ON WALL PIERS: PiER PDF epF PDW Sow PL ^L SEISMIC PE M E 1 0,16 k 1.75 ft 18,33 k 1.10ft 0.00 k 1,75ft RIGHT -9.6 kip--25 ,2 k-ft 0.16 k 1.75 ft 18,33 k 1.10ft 0.00 k 1,75 ft LEFT 9.6 kip 25.2k-ft J 0,16 k -1,75 ft 18,33 k -1,10ft 0.00 k -1,75 ft RIGHT 9,4 kip 28,2 k-ft i. 0,16 k -1,75ft 18,33 k -1,10fl 0.00 k -1,75ft LEFT -9,4 kip -28,2 k-ft A 0,56 k 1.75 ft 31,12 k 1,02 ft 1.00 k 1,75 ft RIGHT -36.6 kip -64,3 k-ft •r 0.68 k 1.76 ft 31.12 k 1.02 ft 1.00 k 1,75 ft LEFT 35.8 kip 64.3 k-ft C 0.68 k -1,75 ft 31.12 k -1,02ff 1.00 k -1,75ft RIGHT 35.8 kip .54,3 k-ft 0,68 k -1,76 ft 31,12k -1,02 ft 1.00 k -1,75ft LEFT -35.8 kip -54.3 k-ft 7 1.20 k 1,75 ft 44.96 k OSSft 2.00 k 1,75 ft RIGHT -7S.a kip: -22S.9k-ft f 1.20 k 1,75 ft 44.96 k 0,99 ft 2.00 k 1.75 ft LEFT 78.8 kip ; 225,9 k-ft 8 1,20 k -1,75ft 44,96 k -0.99 ft 2.00 k -1,76 ft RIGHT 78,8 kip 225.9 k-ft 8 1,20 k -1,75 ft 44,96 k -0.99 ft 2.00 k -1,75 ft LEFT -78,8 kip -226,9 k-ft mn AXIAL MAX AXIAL CRITICAL PiER Mo Pu Mu Pu Mu Pu Mu : <PMn % Over * -20.5 0,0 4.1 k -40.4 16,5 k -53.1 15.6 -63,1 : -769,77 OK i -20.5 0.0 23,3 k 10.0 34.7 k -2,7 15.6 -63,1 : -769,77 OK 2 20,5 0.0 23,1 k • 43.4 34.5 k 56,1 34,6 56,1 822,24 OK 2 20,5 0,0 4,3 k -13.6 15,7 k -0.3 34,6 56,1 822,24 OK 4 -32,8 -1.8 -12,2 k -78:6 7,9 k -99.7 7,9 -99,7 : -748,09 OK 4 -32,8 -1.8 69.4 k 30.0 79.5 k 8:9 7,9 -99,7 : -748,09 OK 6 32,8 1.8 59.4 k 78.6 79,5 k 99,7 79,5 99,7 : 940,61 OK 6 32,8 1.8 -12.2 k -30.0 7.9 k -8,9 79,5 99,7 : 940,61 OK 7 -46.5 -3.5 -44.5 k •-2S0.4 -15,1 k -290,8 -2604 : -535.93 OK 7 -46,5 -3.5 113.1 k 191.4 142;5:k 161,0 -2604 : -535.93 OK 8 46.5 3,5 113,1 k 260.4 142,5 k 290,8 -44 5 -191.4 : -405.99 OK 8 46.6 3,6 -44.5 k -191.4 -15,1 k -161.0 , -191.4 : -405.99 OK INTERACTION DIAGRAIWS: 1600,0 - '.A^mn . PlerT 1200,0 • Pier 4 1000 0 • • SG0,0 600,0 - 400.0 Piers 1,4,7 -2500.0-2000.0-1500.0-1000.0 -ItXicP dio y^.Q 1000.0 1500.0 2000,0 2500.0 -2oS> ! -400.0 H>Mfi Piers 2,5,8 1S00.0 ; Plsrg CONCRETE SHEAR WALL DESIGN (PER CBC 2010 & ACI 318-08 CH 21) PROJECTS: 2K13-170 DESCRIPTION: VIASAT BUILDING #10 PANEL E-3 PRIME Job; SllfCTyRAL Due ENGIHEERS s-t: SHEAR CALCULATIONS: Avf = V / {0*fy'ii) - #4 dowels @ slab = PIER1 PiER 2 PIER 4 PIERS PIER 7 PIER 8 Effective Thickness = 9,25 in 9.25 in 9.25 in 9.25 in 9.25 in 9.25 in Pier Length = 5.50 ft 6.50 ft 6.50 ft 6.50 ft 5.50 ft 6.60 ft U/t = 8.43 8.43 8.43 8.43 8.43 8,43 H/L = 0.92 0.92 0.92 0.92 1.38 1.38 Wall Pier (Y=1; N=0) = 0 0 0 0 0 0 V = 8.4 kips 8.4 kips 18.1 kips 18,1 kips 25.1 kips 25.1 kips v,= N/A N/A N/A N/A N/A N/A Vu = 8.4 kips 8.4 kips 18.1 kips 18.1 kips 25.1 kips 25.1 kips Acv = 721.5 in' 721.5 in' 721.5 in' 721.5 in' 721.5 in' 721.5 in' 2*AcvN(f c) = 91.26 in 91.3 k 91.3 k 91.3 k 91.3 k 91.3 k 2 Curtain Reinf. Req'd = NO NO NO NO NO NO ac = 2.00 2.00 2.00 2.00 2.00 2.00 p.min = 0.00260 0.00250 0.00250 0.00250 0.00250 0.00250 8 2 Vu / <DAcv*N'(f c) = 0.31 0.31 0.66 0.66 0.92 0.92 OK OK OK OK OK OK As.req (per ft) = 0.278 in' 0,278 in' 0.278 in' 0.278 in' 0.278 in' 0.278 in' Max Horiz Spacing = 15.60 in 15.60 in 15.60 in 15.60 in 15.60 in 15.60 in 0.93 in' 0.93 in' 5 S SPECIAL BOUNDARY ELEMENT REQUIREMENT PER ACl 318 §21.9.6.2: PIER1 PIER 2 PIER 4 PiERS PIER 7 PIERS Elastic Disp. = 0.021 in 0.021 in 0.044 in 0,044 in 0,062 in 0,052 in 6u = 0.009 ft 0.009 ft 0,018 ft 0,018 ft 0,026 ft 0,026 ft L / t600*(6u/h)] = 18.57 in 18.57 in 18.57 in 18,57 in 18,57 in 18,67 in Pu.critical = 15.5 k 15.7 k 79.6 k 79,5 k 142,5 k 142,6 k Max Neutral Axis, c = 6.54 in 6,55 in 6.68 in 6,68 in 9.12 in 9.12 in Bound. Mem. Req'd = NO NO NO NO NO NO COUPLING BEAM CHECK PER ACi 318 §21.9.7: ' = Area of flexural stee! req'd at botti top & bottom of coupling beam, ** = If flexural stee! can be satisfied, diagonal reinforcement is not required, - If Hoop Spacing = N/A, typical reinforcement governs. Flexural Steel* Diag. Reinf Rea'd** #3 HOOD Soac. Vu h d L/h Vu/bhV(fc) Flexural Steel* Diag. Reinf Rea'd** #3 HOOD Soac. est 8.4 kip 120.00 in 116.00 in 070 0:13 N/A NO N/A CB3 26.2 kip 96.00 in 92.00 in 0.88 0.66 N/A NO N/A CBS 43.0 kip 108.00 in 104.00 in 0.78 0.97 N/A NO N/A X' CONCRETE SHEAR WALL DESIGN (PER CBC 2010 & AGf 31S-08 CH 21) PROJECT*: 2K13-170 DESCRIPTiON; VIASAT BUILDING #10 PANEL E-3 PRIME Job: . SIHUtTUm Dale:. EWGIHEERS sw: . REBAR UYOUT: (} RER1 : PiER 4 PIER 7 2" 2 #7 2 #7 2 #7 14.33" 2 #4 2 #4 2#4 26.67" 2#4 2#4 2#4 39" 2#4 2 #4 2#4 51.33" 2 #4 2#4 2#4 63.67" 2#4 2 #4 2#4 76" 2 #5 2 #5 2 #6 10-00 0-00 0,00 10-00 20-00 30 00 40,00 50,00 ' 60,00 TOGO 80.00 in 10-OG 0-00 m BC'CO T3 rfi » -0,00 10-00 20,00 30,00 40,00 50,00 60,00 ?0:0D SOOO in 0,00 IQ-OO 20.00 30,00 ^0.00 5000 60.00 70.00 90.00 m 73 •Nl SO.CK) 10-00 d PIER 2 PIER 5 PIER 8 2" 2#5 2 #5 2#5 14.33" 2 #4 , 2#4 2#4 26.67" 2 #4 2 #4 2#4 39" 2#4 2#4 2#4 51.33" 2#4 2#4 " 2 #4 63.67" 2#4 2 #4 2 #4 76" 2 #7 2 #7 2 #7 0,00 2 m 73 M 0,QO 10,00 20.00 30.00 40.00 50.00 60.00 70,00 8000 SO, 00 10,00 ro 73 (tx 0.00 1000 20.00 30.0) 40.00 50.00 60.00 70.00 80.00 30,00 in 10.00 •V m 73 CO 0.00 0.03 10.00 20.00 SO.OQ 40.00 50,00 60,00 70,00 60,00 in 9-0,0 iB) (6) f I.; f -,^ ^^^^ ' TYP, li-O-N- .i:i»iRF£SP>.)«TTP . , y !>5 5"Y^-^''' \izi^"h?'X rz - i^;;-.,„. 0 1 16-76 I 15,75 18,75 j 16 76 16-76 i 1675 Mi 16-76 i 16-5 16-75 i 16 rs 16-75 i 16.75 16.76 12-? |6,7S 15-7S 'X 1S-75 16.75 I W 16.75 ! 6 . S : 8 B ! 6 0 e ; » : a j 8 1 698|J,2,^k ^i349k_J 16,75 1 1S.75 i 8.T5 : 16.76 | ; 13.75 ; ,<f;;. 1 H-.. ; 13 76 : f f fe .t o r- 16.76 1675 16.76 I 16.75 16.75 i 16.75 1S.76 t 16.76 •826K1^k_l|52k_j]652k 4^ !6 76 ! 16.76 16.75 ; 16.75 IS. "r-6 i 16,75 i875 i 16.75 nxi-yi He' 16-76 t 1675 16-75 16-75 ! iB-76 16-75 ; 18-75 16.76 16.76 i 16-75 i TS,7S : 16-75 4/ nC4 16,'?6 i 16.75 i6.75 i !6;76 i 15,76 i 13-76 : I^p 16.75 j 16.75 i 16;76 I 16.75} i 16-75 : 1S.75 ! 16.76 16.75 3-76 i 16.76 .L/ji.4 fi Xo f't'i i ie,75 i !S,75 i /~,y 16,75 16.75 18.76 : 16.7S 13.75 i 13:76 <y : 167S i 16.76 ; 13.76 '' 13.75 |Di|.i| £y>'^ - Losds, LC 2, SEISMIC R»su«s for LO 2, SEISMIC PSE 2K13-170 E-4 SEISMIC ONLY SK-1 Nov 13, 2013 at 1:09 PiVI E-4,r2d I I I I I I I I I I I I I I I I I I I A -2.521kj -.352k; -,362id -.352k; 362k --352ki-.362N-.352ki -.352ki-.352k.352k -,352k: -,176k 34a^6k^^8k_,„^98L_^98i<..^498i^^ ^2ASk_j -3,581k 1,42k8: 1,1-52ki-1,152!« -1,152k -1,152k -1,152kil,152Nl,152ki1,152i*1,152Bl,152k:-1,162k -.576k Ik 2,^k 2^9k 2ffi9k 2,^9k2,8^^k2,8;||k2,8:^k2,8^8.S3|i 2,^9k ^2kJ -3,581k -1.152k-1,152K ,e26kliS2k 1.^S2k -1,152k -1.152k ••1.152kl.152K1.152V^1.l52l*1.152ki.152k-1.152k -.576k ,652k j.6S2k j,652k1,i52k1,g52k1,^2kl,g52k,6p2k 1i6S2k ^.B2Bk j -82.5, 55.7 27.7 •' A4«^y^ 2ty'^. 1 ^- V 5j€|;i;|?0 122.8 u^C"' y Loads; LC 3,0.7420 + E ' , ^ Results (Of LC 3.0.7«D . E A < r-dirficson RfiaclieMi units am k and k-li '^ SK-2 PSE E-4 Nov13, 2013 at2;20 PM 2K13-170 0.742D + E E-4.r2d -2.169k -2.4291^ • i i..i52k j.3o2k .352k 1352k i352k .352k l352k^352k i352kL352k l352k lATm 1,152k j1,152k !1,152k il,152k|l,152k(l.152kjl.152kil.15a.l52k ll52k '.576k -2.429k' ;82i?'"'':T:^k:ra :1.152k 1,152k !l,152k il.1S2k j1,152k!1,152kjl.152kil,152kil.152it,152k kl52k i576k J £ 133.6 yiMf A I My U,3 Loads, LC 4,0,•7420. E ResuSs fa- LC 4,0,7420 - E Y-atfeclion Reaction unHs are k and li-s PSE 2K13-170 * a •/ ^ 'ytf-r,.x^'o XMj-yx., i-s,. E-4 0.742D - E SK-3 Nov 13.2013 at 2:21 PM E-4.r2d PROJECTS: DESCRIPTION: GEOMETRY: Lo = 0.00 ft L, = 5.54 ft L2= 10.00 ft L3 = 5.00 ft L4 = 5,00 ft Ls = 2,00 ft L6= 6,00 ft Ha= 15,00 ft H3= 29,00 ft HR = 42,00 ft HA= 12,00 ft Hg = 0,00 ft Hc= 9,00 ft HD= O.OOft HE = 9.00 ft Hp= 10.00 ft LOADS: CONCRETE SHEAR WALL DESIGN (PER CBC 2010 & ACI 318-08 CH 21} PRIME Job: C-Dli'^THDi^ Dale:. ENGIHEERS Sht; . 2K13-170 VIASAT BUILDING #10 PANEL E-4 PIER 7 Ll © I CB i"^ P AR CB2 i P PfER1 PIER 2 PIER 3 I P' CBS • Ci3 4 PIER 4 PIER 5 ^ PIER 6 I p CBS . A2 PIERS CB 5 02 PIER 9 Le Unfactored Uniform Loads: Unfactored Point Loads: Panel Thickness: vi^OR= 0.171 klf XA = O.OO ft XB = O.OOft TYPICAL = 16.75 in PIER 7 = 16.76 in Wi.R = 0,231 klf PADR= 3.16 kips PsDR ~ 0.00 kips PiER 1 = 16.75 in PIER 8 = 16.75;in Wo5 = 0,565 klf PALR= 2.55 kips PBLR-0.00 kips PIER 2 = 16.75 in PIER 9 = 13.75 in W1.3 = 1,067 klf PADS = 4.06 kips PBD3 -0.00 kips PIER 3 = 13.75 in Parapet = 8.00 in w?02 = 0,555 klf' PAL3 = 6.89 kips PBL3 = 0.00 kips PIER 4 = 16.76 in Wi2= 1.067 klf PAO2 = '* 05 kips PBD2 -0.00 kips PIER 5 = 16.75 in PAL2 = 8.89 kips PgLS ~ 0.00 kips PIER 6 = 13.75 in LOAD COMBINATIONS: Reveal in Piers: LC1:U= 1.20 D -^ 1,60 L + 0.50 Lr HA = FALSE LC2:U= 1.36 D •I- 0,50 L + 1.00 Qe Hc = FALSE LC 3: U = 0.74 D •^ 1,00 Qe HE = FALSE E = QE ± 0,2SDSD = QE± 0.16 D DESIGN PROPERTIES: RiSA OUTPUT: fc= 4,00 ksi Shear (Neoative to Left): CouDlina Beam Shear Storv Drift: fy = 60,00 ksi PIER1 = -12.80 kips CBI = 20.20 kips 2ND = 0.0244 in Cone, Wt, = 150 pcf PIER 2= -17.20 kips CB2 = 0.30 kips 3RD = 0.0232 in 0v = 0,6 PIER 3= -2.40 kips CB3 = 38.20 kips ROOF = 0.0145 in p = 0,6 PIER 4 = -23.50 kips CB4 = 26.80 kips pt = 0.0025 PIER 5 = -35.40 kips CB5 = 30.80 kips Sos= 0,789 PIER 6 = -7.50 kips CB6 = 33.70 kips Cs= 5,00 PIER 7 = -38.70 kips i= 1,00 PIER 8 = -40.90 kips H/L= 1,888 PIER 9 = -8,70 kips CONCRETE SHEAR WALL DESIGN (PER CBC 2010 & ACi 318-08 CH 21) mm in. hh: . mmmPL Date:. ENGIMEERS sw; PROJECT*: DESCRIPTION: 2K13-170 VIASAT BUlLDiHG #10 PANEL E-4 CALCULATION OF FACTORED AXIAL FORCES ANO MOMENTS ON WALL PIERS: PIER POF Pow PL ©L SEISMIC Pe ME 5.0 k -0.86 ft 27.5 k 1,34 ft 0,0 k 2.50 ft RIGHT -20.4 kip: -57.6k-ft 5.0 k -0.86 ft 27.6 k 1,34 ft 0.0 k 2.60 ft LEFT 20,4 kip \ 67.6 kip 2 2.Tk -1.25ft 29.1 k -0,75 ft 0,0 k -1.26ft RIGHT 20.1 kip -77.4 k-ft 2.1 k -1.25ft 29,1 k -0,75 ft 0,0 k -1.25ft LEFT -20.1 kip 77.4 kip 3 1.8 k 1,75 ft 22.0 k 1.11ft 0,0 k 1.75 ft RIGHT 0.2 kip -10.8 k-ft i 1.8 k 1.75 ft 22,0 k 1.11ft 0.0 k 1.75ft LEFT -0.2 kip 108 kip 4 14,9 k -0.06 ft 49.1 k 1.31ft 18.1 k 0.50 ft RIGHT -58.6 kip -105.8 k-ft 14.9 k -0.06 ft 49.1 k 1,31 ft 18,1 k 0.50 ft LEFT 58.6 kip 105.8kip 5 9.1 k -1.25ft 51.5 k -0,74 ft 13,3 k -1;25ft RIGHT 31.6 kip ^ -159,3 k-ft 9.1k -1.25ft 51,5 k -0.74 ft 13.3 k -1.25 ft LEFT -31,6 kip 159.3 kip: 7.6 k 1.75 ft 45.1 k 1.80 ft 11.2 k 1.75 ft RIGHT 27.2 kip ; -33.8 k-ft : 7.6 k 1,75 ft 45,1 k 1.80 ft 11.2k 1.75 ft LEFT -27.2 kip ' 33.6 kip 7 24;8k 0.10 ft 69,6 k 1.16 ft 36.3 k 0.50 ft RIGHT -89.4 kip i -464,4 k-^ft: f 24.8ik 0,10 ft 69.6 k 1.16ft 36,3 k 0.50 ft LEFT 89.4 kip i 464.4 kip fl ' 16.0 k -1.25ft 72.0 k -0.67 ft 26,7 k -1.25ft RIGHT 28.5 kip i -49Q.8,k-ft o 16.0 k -1.25ft 72.0 k -0,67 ft 26.7 k -1.25ft LEFT -28.6 kip ; 490,8 kip Q 13.5 k 1:76 ft : 61.3 k 1.88ft 22.4 k 1.75 ft RIGHT 60.5 kip : -104.4*fti 9 13:5 k 1.75 ft 61.3 k 1.88ft 22.4 k 176 ft LEFT -60.9 kip i : 104:4 kip : MIN AXIAL 1 MAX AXIAL CRITICAL PIER MD ML Pu Mu Pu My Pu Mu (DMn % Over 1 1 -32.6 0.0 3.6 k -81.8 23.8 k -1019 23,84 -101:92 \ -770,35 OK 1 -32v6 0.0 44.6 k 33,4 64,6 k 13.3 23,84 -101:92 \ -770,35 OK 24.6 0.0 43.3 k -59,2 52.5 k -44.1 22.33 110.73 693,81 OK 24.5 0.0 3,1 k 95.6 22.3 k 110.7 22.33 110.73 693,81 OK -27,5 oo: 17,8 k -31,2 32.5 k -48,2 32 47 -48.16 -264,66 OK 4 -27.5 0.0 17,4 k ' - -9,6 32.1k -26,6 -48.16 -264,66 OK A -53.6 -9.0 -11,1 k -153,0 37.3 k -196.7 37 31 -196.67 -803,63 OK -53.6 -9.0 106.1 k 58,5 164.5 k 14.8 -196.67 -803,63 OK e 49:6 . 18.7 76.6 k -122,5 120,7 k -83.6 57 48 234.96 671.36 OK 49.6 1S.7 13.4 k 196,1-57,5 k 235-0 234.96 671.36 OK -94,6 -19.6 56.3 k -104.0 104,4 k -172,1 104 39 -172,11 -321.59 OK o -94.6 -19.6 11,9k -36.4 50;0 k -104.6 -172,11 -321.59 OK T -83.6 -18.1 -19,3 k -526,4 56.9 k -5869 -19 34 -526.44 -661.33 OK ( -83.6 -18.1 159.5 k 402,4 235.7 k 341.9 -526.44 -661.33 OK 8 68.1 33.3 93,8 k -440.3 161,4 k -381.7 36 84 641.31 626.21 OK 8 68:1 33.3 36,8 k 541.3 104,4 k 599,9 641.31 626.21 OK -139.0 -<39.2 116,3 k •207,6 173.6 k -312,7 173 53 -312.73 -372,38 OK -139.0 -39,2 -5.5 k 1.2 51.7 k -103.9 -312.73 -372,38 OK CONCRETE SHEAR WALL DESIGN (PER CBC 2010 & ACI 318-08 CH 21) PROJECT*: 2K13-170 DESCRIPTION; ViASAT BUILDING #10 PANEL E-4 PRIME Job; mzmm. Dc:;e; ENGIHEERS SH; iNTERACTION DIAGRAMS: -3000-0 -2000.0 -1000.0 0|{l^ 1000,0 2000.0 3000.0 -SOO.aPMn Piers 2,5,8 2000.0 2500.0 -2000-0 -1800-0 -1000.0 .SOO.O\^iO ySOO.O 1O00.O 1500.0 2000.0 2S00.0 •5'X>.i3l>*iln Piers 3,6,9 000.0 800.0 -i 800 0 400 0 -i \ 200.0 \ / M 6 y CONCRETE SHEAR WALL DESiGN |Pl!!i!MllJlllHUscH2i, PRIME Job; , S'RljCTyRA;. Date: -'/'- PROJECT*: DESCRIPTION: 2K13-170 VIASAT BUILDING #10 PANEL £-4 SHEAR CALCULATIONS: PiER1 PIER 2 PIER 3 PIER 4 PiERS PIER 6 PiER 7 PIER 8 PIERS Effective Thickness = 16,75in 15.75 in 13.75 in 16,75 in 16;76 in 13,76 in 16.75 in i 16.75 in 13.75 in Pier Length = 5,54ft 5.00 ft 2.00 ft 5.54 ft 5.00 ft 2,00 ft 6.54 ft 5.00 ft 2;00ft L n = 3,97 3,58 1.76 3.97 3.58 1.76 3.97 • 3.58 -1.75 H/L = 1,62 1,80 4.50 1.62 . 1.80 4.50 2.17 2.40 6,00 Wall Pier(Y=1; N=0) = 0 0 0 0 0 0 1 1 0 v = 12.80 k 17.20 k 2.40 k 23.50 k 35.40 k 7.50 k 38.70 k 40.90 k 8:70 k N/A N/A N/A N/A N/A N/A 99.46 k i 81.06 k N/A v,= 12,80 k 17,20 k 2.40 k 23.50 k 35.40 k 7.50 k 99.46 k 81,05 k 8.70 k Acv = 1113,5 in' 1005.0 in' 330-0 in' 1113.5 in' 1006.6 in' 330.0 in' 1113.6 in* 1005.0 in' 330.0 in' 2*Acv*-v'(f c) = 140.9 k 127.1 k 41.7 k 140.9 k 127.1 k 41,7 k 140.S k : 127.1 k 41.7k 2 Curtain Reinf. Req'd = NO NO NO NO HO NO NO NO NO ac = 2.22 2.22 2:00 2.22 - 2.22 2.00 2.00 \ 2.00 2.00 p.min = 0,00250 0.00250 0.00250 0,00250 0;00260 0.0025O 0.00250 ^ 0.00250 0;00250 8 2;Vu7«>Acv''V(fc) = 0.30 0.45 0.19 0.56 0.93 0,60 2.35 ; 2.13 0.59 OK OK OK OK OK OK OK OK OK COL --i Max s per AC! 316-05 §21.4,4 Avf = Vu/(<t>*fy*p) = #4 dowels @ slab = SPECIAL BOUNDARY ELEMENT REQUIREMENT PER ACi 318 §21.9.6.2: COUPLING BEAM CHECK PER ACl 318-05 §21.7.7 (ACI 318-05 §21.9.7): Flexural Diag. Reinf #3 Vu h d L/h Vu/bh\(fc) Steel' Req'd** HOOD Soac. CBI 20.2 kip 168.00 in 164:00 in 0.71 0.24 N/A NO N/A CB2 0.3 kip 168.00 in 164.00 in 0.36 0,00 N/A NO N/A CB3 38.2kip 60.00 In 56.00 in 2.00 0.60 N/A NO ! N/A CB4 26,8 kip 60.00 in 56,00 in 1.00 0,42 N/A NO N/A CB5 30.8 kip 36.00 in 32.00 in 3.53 0,81 1.79 in^a NO 8.00 in PIER1 PIER 2 PIERS PIER 4 PIERS PIER 6 PIER 7 i PIERS PIER9 Elastic Disp. = 0.015 in 0.015 in 0.015in 0.038 in 0.038 in 0.038 in 0,062 in \ 0.(^2 in 0.062 in 5u = 0.006 ft 0.006 ft 0.006 ft 0.016 ft 0.016 ft 0.016 ft 0.026 ft i 0.026 ft 0.026 ft : L/[600*(6u/h)l = 15.83 in 14.29 in 5.71 in 15.83 in 14,29 in 5.71 in 15.83 in i 14.29 in : 5,71 ill Pu.critical = 23:8 k 22,3 k 32.1k 154.5 k 120.7 k 50.0 k 235:7 k i 104.4 k 173.5 k Max Neutral Axis, c = 4.26 In 3,83 in 3.79 in 5.04 in 4,71 in 4.09 in 6.68 in i 5.53 in 6.23 in Bound. Wtem, Req'd = NO NO NO NO NO NO NO NO NO As.req (per ft) = 0.S03 in' 0.503 if^' 0,413 in' 0.503 in' 0.503 in' 0.413 in' 0.503 in* 0.503 in' 0.413 in' Max Horiz Spacing = 13.30 in 12.00 in COL 13.30 in 12.00 in COL . S.OO in 6,00 in : COL 1.43 in' 1.51 in' 0.32 in' 8 8 . 2 PROJECT #: DESCRIPTION; CONCRETE SHEAR WALL DESIGN (PER CBC 2010 & AC! 318-08 CH 21) 2K13-170 VIASAT BUILDING #10 PRIME Job; Li,- S^yCTURAl Date: GINEERS Sht: PANEL E-4 d P!ER1 PIER 4 PIER 7 2" 2 #8 2 #8 2 #8 17.53" 2 #5 2 #5 2 #6 33.25" 2 #5 2 #5 2 #5 48.88" 2#5 2 #5 2 #5 64.5" 2 #5 2 #5 2 #5 20 DO d PiER 2 PIERS PIERS 2" 2#5 2 #6 2 #5 16" 2 #5 2 #5 2 #5 30" 2 #5 2 #5 2 #5 44" 2 #5 2 #5 2 #5 68" 2 #7 2 #7 2 #7 0-00 0,00 20-00 0-00 20-00 0,00 2000 )-00 Q-QO 20-00 0,00 0.00 ).00 j-00 20.00 30.00 in 40.00 50.00 80.00 000 10C0 20-00 30-00 („ 40.00 60.00 60.00 10.00 20.00 3000 • in 40.00 SO.OO 60.00 j.OO t 10.00 ISjC 20.00 25.00 5.00 1000 15,gO 20 00 3500 S.OO 10.00 ISjftO 20.00 2500 70.00 3 m 70.00 TO m 73 KJ 70.00 2 m Oi 70.00 m 73 ca 70.00 Tf fri 73 SO.OO 22 m 73 Oi SO-DO •o fri 73 30.00 PRIME JOB:2K13-170 ENGINEERS SHT-.T^C t=^'^'fri"~--r--'i"'Fr—^-^ ^ ! -iL. "I X 5. 70 p "7 A''- A 6.6 ; S-5 i 65 I 6-6 S6 S-S «s : 5"k3^0m.3^3|^3J33i3M^^ \ 65 i 5.5 : 6 5 i 6.5 : =6 i 6.5 I 6.5 I 6-6 i 6-5 i ks \ 6-5 -j-- ^lisMy^Joislks^ J !- 6.6 ; 6,6 i S 3-5 g.5 65 : 66 6,5 ^•^ 6 6 I 5-6 i i 6-5 & S 5-6 1 6-6 8 8 - S 3 >-5 65 : 6-5 6.5 6.6 65 6.5 i ^-^ 66 i i 6.5 i 6.6 1 r--^ i/i !!.9,iA.n'"> !ig>'-'i 6.5 6.6 8.6 i 6-5 : 5-S 6-6 i ss - -1 »=- S-^ I «S I 6 5 I i 6.6 i 6.5 65 8.5 6.5 6.6 i 8 6 5 6.5 ii ! 6.5 I 6.6 6-5 i 66 : ^.5 i 5-6 : 6-6 6.6 .4^ 8.5 ; 6.6 1-326k2|521^52k 2|52k 2^2y 6.6 s 6.6 : 3 6 8.6 i 6.5 vi.'i 6.6 6.5 ! 8 I S 6.5 6.5 \ 6 S 6.6 6.5 8 1 S : 6 f 8 S i52k2j52k2J5|k2i52k_2l^^ 6.5 6.6 1.5 I 6.5 : • 8 '¥ ir 0.4 S 1 6 6.5 6.5 I 4.5 i 6.5 Z. ' 6.6 326k 8 1 -l?L! 7^' O v - y^ , .J), c 7 Loads LC 2, SEISMIC Results for LC 2. SgiSMIC PSE 2K.13-170 N-1 SEISMIC ONLY SK-1 Nov 20, 2013 at 8:56 AM N-1.r2d y. - -- • \/ ' -.052K 1.517k3 -. 1041^ -. 1041^-.1 Wki -. 104k-. 1041^-. 104kF^^ -.104N-.104kl-.104kl-.104ki-.104k; -.104k-i3.183k -104M-.104k ,^33k3l|33kl.J)33k3^ i5i7k •.476ki -.476k! ..Am -.476W -,476ki •••-t9-.4-5614- 476N -,476k -,238k -.476k -,476k --476k 3.8221644k7.6<0k7.6^4k7,6.^^k7.6'0k7.6'^k7.6'^4k7.6^4k7.6'|^4^^^ -:238k -.476k -.476kj-.476ki - :476k :;M37,1 •i9:455k- •.476k-.476k-.476k-.476k . i-.476k--476k:-.476ki-.475k!-.803k -.476k5 -.238k 1.326k2|l2k2i52k2,i52k2^^^^^ -.476ki-,4761^-.803ki -.476k -,238ki -49 t -12.5 18,1 -32,1 2, i '^'f £:-, -45,3 110,1 14,4 i 186,3 Loads: LC 3, 0,7420 • E J Results for-LC 3,0,7420 E ' Y-tlifBction Reaction units are k anrf k-ft PSE it^-i-a-iTn N-1 SK-2 Nov 20, 2013 at 9:12 AM -.104 ki--104k ,104ki ,104k-,104l« -,104ki-3,183k •,052ki -, 104k -, 104k -, 104k -, 104kj -, 104k 104k -^1 Sk -104i^ "'^•^ -f.5|7l3rol3k3,ofe^^^ 7K •.238k •.476k -.476^-.476k-.47Ski-.476k I -3.8^'F"-f^44!a^44!?7^'4^ -.476k -.476k --476N 476H-,476ki-,476k-,476kl •,803k -,476k -,238i<- #:4SSfc •.238k -,476k -;476H -,476k| ,,476ki-,476k -.476k -,476k -,476k ..t,— »». Ss i„__._---i^_ .... f l'3^k2ll2it2l|2i«Z6S2k2,6§2k2J52k2:6p« -,476k| -,476k -.476ki -,476ki -,803k ~,476k —,c'"""^™r'~ ----i*—:-- •;- S«— V -.238k: .2!ria52k-1,326k 63,7 i -64,6! 131.3 j 14,8 114.8 20.2 181.9 ''-1472s 64.8 * 0 ZXi- i 6 Loads- LC 4. 0 7420 - E .=!05Ult5 !<it LC 4, 0.,74JD - E Y-cirectiori Reactton units are k ano K-fl PSE 2K13-170 N-1 0.742D - E SK-3 Nov 20, 2013 at 9:15 AM N-1,r2d CONCRETE SHEAR WALL DESIGN (PER CBC 2010 & ACI 318-08 CH 21) Pf!8JKfl: MUld DESCRIPTION: VIASAT BUILDING #10 PANEL N-1 PRIME Job; . ENGINEERS sw; GEOMETRY: Lo = 5.00 ft L, = 5.00 ft L2= 10.00 ft L3 = 5.00 ft L4= 10.00 ft Ls = 5.54 ft L6= O.OOft »2-- HR = 15.00 ft 29,00 ft 42.00 ft HA = 9.00 ft He = 3.00 ft He = 6.00 ft HD= 3.00 ft HE = 6.00 ft HF= 4.00 ft PIER -7 Li ® ® CB 1 CB2 E P BR PIER1 PIER 2 PIERS CB3 Tl p A3 I P CB4 83 PIER 4 ' PiERS PIER 6 CB 5 • AS CBS "^62 PIERS L4 PIER 9 Ls LOADS: Unfactored Uniform Loads; WDR = 0.066 klf Wu„= 0.070 klf WD3= 0.257 klf WL3 = 0.475 klf W02 = 0.257 klf W/L2= 0.476 klf LOAD COMBINATIONS: LC1; U = LC 2: U = LC 3: U = E = 1.20 D 1.36 D 0.74 D Qpi Unfactored Point Loads: XA= 21.33 ft PAOR= 6.14 kips P.i^i.H= 3.56 kips P.ii03= 12.10 kips PAL3= 15.80 kips PAD2= 12-10 kips PAL2= 15.80 kips + 1.60L -^0.50Lr •t-0.50L -i-I.OOQe + 1.00 Qe 0.2SDSD - QE ± Xe = 37.77 ft PBOR = 4.22 kips PBLR= 3.16 kips PBDS = 0.44 kips PBL3 = 0.67 kips PBD2 = 0:44 kips PBL2 = 0.67 kips Panel Thickness: TYPICAL = 6.60 in PIER 1 = 6.50 in PIER2= 8.00 in PIER 3= 6.50 in PIER 4 = 6.50 in PIER 5 = 3-00 in PIER 6 = 6.50 in PIER 7= 8.00 in PIER 8 ~ 8.00 in PIER 9 - 8.00 in Parapet = 6.50 in 0.16 D Reveal in Piers: HA = TRUE He == TRUE HE = TRUE DESIGN PROPERTIES: fc= 4.00 ksi fY= 60.00 ksi Conc.Wt = 150 pcf <£>v = 0.6 M= 0.6 pt = 0.0025 RISA OUTPUT: Shear (Neoative to LeitY PIER 1 = -10,80 kips PIER 2= -25,10 kips PIER 3= -12,70 kips PiER 4= -41,10 kips PIER 6 = -85,90 kips Coupling Beam Shear CB 1 = 8,60 kips CB 2 = 12,60 kips CB 3 = 53,40 kips CB 4 = 54,30 kips CB 5 = 95,20 kips Storv Drift; 2ND = 3RD = ROOF = 0.0256 in 0.0267 in 0,0283 in PROJEGT«: DESCRIPTION: CONCRETE SHEAR WALL DESIGN (PER CBC 2010 & ACi 318-08 CH 21) 2K13-170 VIASAT BUILDING #10 PANEL N-1 PRIME Job: : STRUCTURAL Da?e;. ENGNEERS sw; . CALCULATION OF FACTORED AXIAL FORCES AND MOMENTS ON WALL PIERS: PIER PDF ©DF PDW PL SL SEISMIC PE ME •i 0.8 k 0,00 ft 16.8 k 0,00 ft 0,0 k 0,00 ft RIGHT -11.5 kip -48.5 k-ft 0,8 k 0,00 ft 15.8 k 0,00 ft 0,0 k 0,00 ft LEFT 11.6 kip 48.6 kip 6,2 k . 3,31 ft 17.1 k 0,00 ft 0,0 k 0,00 ft RIGHT -1.1 kip -75.3 k-ft £. 6,2 k , 3,3tft 17.1 k 0,00 ft 0,0 k 0,00 ft LEFT 1.1 kip 75.3 kip 3 6.6 k 1,83 ft 12.1 k -1.94 ft 0,0 k -2.50 ft RIGHT 12,7 kip -38.1 k-ft 3 5.6 k 1,83 ft 12.1 k -1.94ft 0,0 k -2.50 ft LEFT -12.7 kip 38.1 kip A 4.7 k 0,00 ft 28.0 k O.OOft 7,1 k O.OOft RIGHT -64.9 kip -185.0 k-ft *f 4.7 k 0,00 ft 28.0 k O.OOft 7,1 k O.OOft LEFT 64.9 kip 186.0 kip e 20.5 k 2,95 ft 30.6 k O.OOft 20,8 k 2.62 ft RIGHT -2,0 kip -257.7 k-ft 20.5 k 2,95 ft 30.6 k O.OOft 20.8 k 2.52 ft LEFT 2.0 kip 267.7 kip 6 10,4 k -1,22 ft 21.7 k -1.88 ft 7.8 k -4.27 ft RIGHT 67.0 kip -131.1 k-ft 6 10,4 k -1,22 ft 21.7 k -1.88ft 7,8 k -4,27 ft LEFT -67.0 kip 131.1 kip 7 8.6 k 0,00 ft 42.8 k O.OOft 14,3 k 0.00 ft RIGHT -160.2 kip: -570,6 k-ft 7 8,6 k 0,00 ft 42.8 k 0,00 ft 14,3 k O.OOft LEFT 160.2 kip 670,6 kip 8 34,9 k 2.89 ft 45.4 k 0,00 ft 41,6 k 2.52 ft RIGHT -3.7 kip -699.3 k-ft 8 34,9 k • 2,89 ft 45.4 k 0,00 ft 41,5k 2.62 ft LEFT 3.7 kip 699.3 kip 9 15.1 k -2.36 ft 33.6 k -1,78 ft 15,6 k -4.27 ft RIGHT 163.9 kip ^ -648.0 k-ft 9 15,1 k -2,36 ft 33.6 k -1,78ft 16,6 k --4.27 ft LEFT -163.9 kip: 648.0 kip MIN AXIAL MAX AXIAL CRITICAL PIER MD ML Pu Mu Pu Mu Pu Mu <DMn % Over 1 0.0 0.0 0.9 k -48,6 11,2k -48.6 23.88 48.60 289.09 OK 1 0.0 0,0 23.9 k 48,6 34,2 k 48.6 23.88 48.60 289.09 OK 2 -20.4 0,0 16.1 k -90,4 30,4 k -103.0 30.44 -102.98 : -857.61 OK 2 -20.4 0,0 18.3 k 60,2 32,6 k 47.6 30.44 -102.98 : -857.61 OK 3 13.3 0,0 25.9 k -28,3 35,8 k -20.1 11.40-56.12 572,15 OK 3 13.3 0,0 0.5 k 47,9 11,4 k 55.1 • 11.40-56.12 572,15 OK 4 0,0 0,0 -40.6 k -185,0 -16,9 k -185.0 -40.61 -184,95 -369.06 OK 4 0,0 0,0 89.2 k 185,0 112.9 k 186.0 -40.61 -184,95 -369.06 OK 5 -60,6 -52,5 35.9 k -302,7 77.8 k -366.2 77.76 -366.17 -938.42 OK 5 -60,6 -62,6 39,9 k 212,7 81.8 k 149.2 77.76 -366.17 -938.42 OK 6 • 53,4 33,2 90,8 k -91,5 114,4 k -42.0 -19.68 220.18 502,47 OK 6 53,4 33,2 -43,2 k 170,7 -19,6 k 220.2 -19.68 220.18 502,47 OK 7 0,0 0,0 -122,1 k -570,6 -83,3 k -570.6 -122 06 -570.50 -640.66 OK 7 0,0 0,0 198,3 k 570.6 237.1 k 670.5 -570.50 -640.66 OK 8 -100.7 -104,9 55,8 k -774,1 126,1 k -888.6 126 06 -888.56 -1016,86 OK 8 -100.7 -104.9 63,2 k 624,5 133,6 k 510.0 -888.56 -1016,86 OK 9 95,6 66,4 200.1 k -5770 237,9 k -484.9 -89 89 811.05 870.99 OK 9 95,6 66.4 -127,7 k 719,0 -89,9 k 811.1 811.05 870.99 OK CONCRETE SHEAR WALL DESIGN (PER CBC 2010 & ACi 318-08 CH 21) PROJECTS 2K13-170 DESCRIPTiON: ViASAT BUILOiNG #10 PANEL N-1 PRIME Job; SIRyCTURALo^te: ENGtMEERS Sht: INTERACTION DIAGRAMS; Piers 1,4,7 -1500. Piers 2,5,8 -1500.0 -1000.0 Piers 3,6,9 -4O0.fJ»i'^n loao.o 1200.0 PiprQ 10000 800,0 PiPt? ^ 600 0 t^leiiK 400 0 200 0 -2000.0 -1500.0 •1000.0 1000.0 1500.0 10000 1500 0 1500,0 20GC.Q -400.0 -I •60O.fl!>iKn CONCRETE SHEAR WALL DESIGN (PER CBC 2010 & ACl 318-08 CH 21) PROJECT*: 2k13-170 DESCRIPTION: VIASAT BUlLDiNG #10 PANEL N-1 PRIME Job; IL Date; ENGINEERS sm; SHEAR CALCULATIONS: PIER1 PIER 2 PIERS PiER 4 PIERS PIER 6 PiER 7 : PIERS PiERS Effective Thickness = 5.75 in 7.25 in 5.75 in 5.75 in 7.25 in 5.76 in 7.25 in i 7.26 in 7.25 in Pier Lengtli = 5.00 ft 5.00 ft 5.54 ft O.OOft 5.00 ft 5.54 ft 5.00 ft : 6.00 ft 5.54 ft Lit 10.43 8.28 11.56 10.43 8.28 11.55 8.28 ^ 8.28 9.17 H/L = 1.20 1.20 1.08 1.20 1.20 1.08 1.80 : 1.80 1.62 Wall Pier(Y=1; N=0) = 0 0 •0 0 0 0 0 0 0 V = 10.80 k 25.10 k 12.70 k 41.10 k 85.90 k 43.70 k 63.40 k i 77.70 k 72.00 k Ve N/A N/A N/A N/A NIA N/A N/A • N/A N/A V. 10.80 k 25.10 k 12.70 k 41.10k 85.90 k 43.70 k 63.40 k ; 77.70 k 72.00 k Acv = 345.0 in^ 435.0 in* 382.3 in' 346.0 in^ 435.0 in' 382.3 in=^ 435.0 in': 435.0 in' 482.0 in' 2'AcvN(fc) 43.6 k 55 0 k 48.4 k 43.6 k 5-6,a|: 48.4 k 65Ak ^ 5mk §iM' 2 Curtain Reinf Req'd NO NO NO NO / YESj NO C YESj: ( YES ) { VESj ac = 3.00 3.00 3.00 3.00 ••3:00 3,00 2.40 i 2:4"6 2.75 p.min 0.00250 0,00250 0,00250 0.00250 0.00250 0.00250 0.00250 \ 0.00250 0.00250 8>Vu/OAcv*V(fc) = 0.82 1.52 0.88 3.14 5.20 3.01 3.84 i 4.71 3.94 OK OK OK OK OK OK OK OK OK As.req (per ft) = 0.195 in» 0.240 in' 0.1SS in\/ 0.195 in' 0.240 in' /0.195in' i / 0.240 in»; 0.240 in' /0.240 in' Max Horiz Spacing = 12.00 in , ' 12.00 in 13.30 in 12,00 irt>'* 12,00 inv' 13.30 in'«1 12.00 in ' 12.00 in >/ 13,30 in Avf = Vu / («t>*fy*p) '• #4 dowels @ slab =i j 2.36 in' ! 2,88 in' 2,57 in' j 12 16 14 SPECIAL BOUNDARY ELEMENT REQUIREMENT PER ACl 318 §21.3.6.2: PiER 1 PiER 2 , PIER 3 PIER 4 PIER 5 : PIER 6 PIER 7 ^ PIER 8 PiER9 Elastic Disp, = 0,028 in 0.028 in • 0,028 in 0,055 in 0,055 in 0,055 in 0.081 in ; 0,081 in 0.081 in 5u = 0.012 ft 0,012 ft 0.012 ft 0.023 ft 0,023 ft 0,023 ft 0.034 ft i 0,034 ft 0.034 ft L/[600*(5u/h)] = 14,29 in 14,29 in 15.83 in 14.29 in 14.29 in 15,83 in 14.29 in : 14.29 in 16.83 in Pu,critical = 11.2k 32,6 k 11,4k 112,9 k 81.8 k 114.4 k 237.1 k i 133.5 k 237.9 k Max Neutral Axis, c = 7.40 in 8,72 in 8,38 in 8,36 in 10.52 in 9,27 in 12.29 in i 12.81 in 13.31 in Bound, Mem, Req'd = NO NO NO NO NO NO NO NO NO COUPLING BEAM CHECK PER ACI 318-05 §21.7.7 (ACI 318-05 §21,9.7): Flexural Steel* Diag. Reinf Rea'd** \ #3 HOOD Scac. Vu h d L/h Vu/bh-v'{fc) Flexural Steel* Diag. Reinf Rea'd** \ #3 HOOD Scac. C81 8,6 kip 96.00 in 92.00 in 1.25 0.22 N/A NO ^ N/A CB2 12.5 kip 96.00 in 92.00 in 1,25 0.32 N/A NO N/A CBS 53.4 kip 96.00 in 92.00 in 1.25 1.35 N/A NO \ N/A CB4 54.3 kip 96.00 in 92.00 in 1.25 1.38 N/A NO N/A CBS 98.2 kip 108.00 in 104.00 in 1.11 2.14 N/A NO i N/A CB6 96.9 kip 108.00 in 104.00 in 1,11 2.18 N/A NO N/A * = Area of flexural steel req'd at both top & bottonn of coupling beam. ** = If flexural steei can be satisfied, diagonal reinforcement is not required. - If Hoop Spacing = N/A, typical reinforoement governs. CONCRETE SHEAR WALL DESIGN (PER GBC 2Q10 & AC! 318-08 CH 21) PROJECT #: 2K13-170 DESCRIPTiON: VIASAT BUILDING #10 PANEL N-1 PRIME Job; . SMICTUl^l Dafe;, ENGIHEERS sw; . d ; PIER 1 PIER 4 PiER 7 2" 1 #8 1 #8 2 #8 6" 1 #8 1 #8 2 #8 22" 1 #5 1 #6 2 #5 38" 1 #5 1 #5 2 #5 54" 1 #5 1 #5 2 #5 58" 1 #6 1 #6 2 #5 d P1ER2 PIERS PiERS 2" 2 #9 2#9 2 #9 13.2" 2#5 2#5 2 #5 24.4" 2 #5 2#5 2 #5 36.6" 2 #5 2 #6 2 #6 46.8" 2 #6 2 #5 2 #5 58" 2#9 2 #9 2 #9 d PIER 3 PIER 6 PIERS 2" 1#5 1 #5 2 #5 6" 1#5 1 #5 2 #5 19.63" 1 #5 1 #5 2 #5 33.25" 1#5 1 #6 2 #6 46.88" 1 #5 1 #5 2#6 50.5" 1 #8 1 #8 2#8 64.5" 1#8 1 #8 2 #8 10.00 )00 10.00 20.00 30-00 in 40.00 50,00 6C,-30 0,00 0,00 10-00 20,00 50.00 50.00 -[0.00 0.00 » a 0.00 10.00 10.00 0.00 20.00 30.00 40.00 50.00 60.00 O.CO 10.00 20.00 30.00 in 40.00 SOOO eo.oo 10.00 0.00 0.00 10.00 20.00 3000 . 40.00 50.00 60,00 10-SO 0 00 10-00 2000 30.00 ,„ 40.00 : so.oo 60.00 3.00 m 73 7000 2 m a? 4a> 70 00 •V m 73 ••4 7000 2 m 33 70.00 u ii m 0,00 10-00 20.00 30.00 ;„ 40.00 50.00 60.00 10.00 0.00 0.00 10.00 20.00 30.00 . 40.00 50,00 60,00 in 10,00 0,00 0,00 10.00 20.00 30.00 40,00 isaoo 60,00 70,00 fiii 73 <» 70.0Q T3 rfi na w 70,00 TO m 50 70.00 2 (0 70,00 (c) 1-21 •d^ zhp.. IX 0 fry, -tl— -!£J:-<32> TP y 6.^''^^?'-^^^ /Ay.L___-7H^' ^ ^ |L^'^?-l1 PRIME J0B:2K13-170 STRUCTUm MK: ji^oii„ ENGINEEESSHT: ix^y IA ^ A? LIISIS O 1 ! 1,.,. 1 ! \ '•••yyV AT LINS (B) (2 x-i ^PJL.- I 1 ^ /-z. 7i:>p^:r AI.'T kj^z- ioep^p ^ n..i?7^,-. f(>ipL^ (g.. ?^fJ6L- - y? .no >\ i. 1Q,277M2rp27|g)27^,27|g;y^7p,2ggO .7/ 4 I "C- •-isSTM^i^ 1 k^TsSTfi'3lTk4;i41 358:* IF ^VS-- i-- i^:4;3lTi^4;a4!Tir::4'3^ ! 8 !• 0 !'4'7- .f?yy 2.SQ8k2,|08k2,608k2.i08k5.608k2.tok2.,S08k 2,50Sk 2^48k ^Solk 2-508k 2j.608k '4508k ^ ? ^ 6 i B 1 IF ---1^';; fl 0^^ Loads; UC 2, SEISMIC Results for LC 2. SEISItilC 0 • SK -1; 1 PSE 1-1 Nov 20; 2013 at 9:53 AM | 2K8-110 SEISMIC ONLY 1-1,r2d : 1 -10,93k-,089k-,089k-,089k-,089k-,089k-,089k -,089k -,089k --089k --089k -,089k -,319k 10,277kO.|77M,|77Sgj77|0 j77kg|^ 8 S 8 5 -26.837ki |-.3#7ki-.3^7ki-.3|7k;-.3#7k-.3#7k-.3#7k -.347k -.347k -.%17i^ -.?47k -.:|47i^-1.-^19ki -4.3^k4.338k4.3Mk4.3Mk-4.3p"k4.338k4.33lM^^ -25,837K: 3^7ki-,3f7^-,3^7ki-,3#7k-,3#7k|-,^7k -.347k -.347k 2,508k2,y8k2.^08k2.|08k2.ff08k2.|08k2.i08k2^08k2^08k 2»508k |508k |508k ^S08k J, -;:|47ki -.Wki -.^471^-1.^19k i-.- i. -51 i 26 i •r-8,2 ~y 21,2 61,9 72.8: Loads; LC 3,0 7420 •>£ Resuils for LC 3. 0.742D » E -(-•Oireclion Reaction umis are it and k.f SK-2 PSE i-1 Nov 20, 2013 at 9:53 AM 2K8-110 0,742D ^ E . — —„ i-1.r2d ; -10.93k..089k-.089k-.089k-.089k-.089k-.089k -.089k -.089k -,089k -.089k -.Q89k -,319k L -U-- I H/"'^ ia27fSp7fO,p7fo:p7pf7^ 8 8 S 6 -26.8371c y.,.,.,\y^^f '^^'^^'^^-'^'^^-'^^^--^'^^ --347k -,347k; 4,338k4J38k4j38.l<4J38k4^38 -,Wki -,:j47ki -,347ki-1,|19k S3M!L4338k_.S338k_4j,338k_J s s -26,837k |,3^7l<j-,3^7!^-.3^7ki-,3#7k-,3^7k-,3il7!^ ..347k -.347^ -,;|47k| -,:|47kj -,|47k|-U19k| !f-S^Sif 3piS5fek2:5fek2lfe ^Og^ :'>:=>i8:8i8i8s8!SlRia!»i.i ': S 8 106,6 i 252,3 Loads: LC 4,0,7420 - E .Results lot LC 4.0.742D - E Y^lireciion Readion uniis ate k snti k-fl X PSE 2K8-110 ~H? - ^.Ib 1*1. 1-1 0.742D - E SK-3 Nov 20^2013 at 9:54 AM i-1.r2d PROJECT!: DESCRIPTION: COniTiffiilLLOiiail (PER CBC 2010 & ACI 318-08 CH 21) 2K13-170 VIASAT BUILDING #10 III!; PRIME Job; . mXm Date;, iGilERS GEOMETRY; L(5 = 0,00 ft Li = 11,42ft L2= 4.17 ft L3 = 9,00 ft U = 0,00 ft H2= 15,00 ft H3 = 29.00 ft HR = 42,00 ft HA = 7.00 ft HB = 0,00 ft He = 7,00 ft Ho= O.OOft HE = 7,00 ft Hp = 0,00 ft LOADS: _^-133.7 8 < > HF t_. HE H., CBI PERI IP . BR PIER 2 TP, A3 CB3 PER 4 -P CB5 PIER 7 Ll PIER 5 Ip" 82 PIERS L4 I I Unfactored Uniform Loads: Unfactored Point Loads: Panel Thickness: WBR= 0,120 klf XA = 0,83 ft % = 24.58 ft TYPICAL = 8,00 in WLR= 0,160 klf PADR= 14,51 kips PBD,<? = 0,31 kips PIER 1 = 8,00 in = 0,468 klf PALR= 8,70 kips PBLR~ 0.33 kips PIER 2 = 8,00 in = 0.867 klf PADS = 35,70 kips 1.04 kips PIER 4 = 8,00 in Vi^D2= 0.468 klf PAL3 = 50,30 kips PBL3 ~ 2.11 kips PIER 5 = 8,00 in WfL2 = 0.867 klf PAD2 = 35,70 kips PBD2 -1,04 kips PiER 7-8,00 in P,xci = 50.80 kips PBU- = 2,11 kips PIER 8 = 8,00 in Parapet = 8.00 in DESIGN PROPERTIES: Reveal in Piers: pt = 0.0025 fc= 4,00 ksi HA = FALSE SDS= 0,789 fY= 60,00 ksi He-: FALSE Cd= 5,00 Cone, Wt, = 150 pcf FALSE != 1.00 0v =0,5 M= 0,6 RISA OUTPUT: LOAD COMBINATIONS: Shear (Neoative to Leftl: CouDlina Beam Shear LC1:U = 1,20 D * 1,60 L PIER 1 = -75;80 k CBI = 71,50 kips LC 2: U = 1,36 D * 0,50 L PIER 2 = -67.90 k CB 3 = 76-30 kips LC 3: U = 0,74 D 1.00 Qe PIER 4 = -43.90 k CB5= 61.00kip.$ E = QE± 0.2SDSO PIER 6 = -33,20 k = QE± 0.16 D * 0.50 Lr * 1.00 Qe CONCRETE SHEAR WALL DESIGN (PER CBC 2010 & ACl 318-08 CH 21) PROJECT #: 2K13-170 DESCRIPTION: ViASAT BUILDING #10 PANEL 1-1 CALCULATION OF FACTORED AXIAL FORCES AND MOMENTS ON WALL PIERS: PRIME Job; JJHy^^ mimm. Oaie:___ ENGHEERS Sht; iy\p^ PiER PDF ©OF pw PL SEISMIC M E 16.23 k -4,29 ft 16.10 k 0.52 ft 0.00 k 1.04 ft RIGHT -71.3 kip; -530.6 k-ft 16.23 k -4,29 ft 15.10k 0.52 ft 0.00 k 1.04 ft LEFT 71.3 kip 530.6 k-ft 2 1,64 k 0.01 ft 12.95 k -0.53 ft 0.00 k -1.04ft RIGHT 71.5 kip -405.3 k-ft 1.64k 0.01 ft 12.95 k -0.53 ft 0.00 k -1.04ft LEFT -71.5 kip: 406.3 k-ft A 58.25 k -4.07 ft 33.54 k 0.56ft • 62.51 k -3.77 ft RIGHT -149.6 kip -307.3 k-ft 68.25 k -4,07 ft 33.54 k 0.65 ft 62.51 k -3.77 ft LEFT 149.5 kip 307,3 k-ft g 7.87 k -0.09 ft 27.01 k -0.56 ft 11.72 k -0.04 ft RIGHT 147.8.kip: -232.4 k-ft 7.87 k -0,09 ft 27.01 k -0.56 ft 11.72 k -0.04 ft LEFT -147,8 kip 232,4 k-ft 7 100.27 k -4.04 ft 52.34 k 0.56 ft 126.02 k -3.77 ft RIGHT -2088 kip -416,5 k-ft 100.27 k -4.04 ft 52,34 k 0,66 ft 125.02 k -3.77 ft LEFT 208,8 kip; 416.5 k-ft 8 14.09 k -0.10 ft 42,18 k -0.57 ft 23.44 k -0.04 ft RIGHT 208.3 kip^ -352.1 k-ft 8 14.09 k -0.10 ft 42.18 k -0.67 ft 23.44 k -0.04 ft LEFT -208.8 kip; 352.1 k-ft MIN AXIAL MAX AXIAL CRITICAL PIER MD ML Pu Mu Pu • Mu Pu Mu <t»Mn % Over 1 61.1 0.0 -47:3 k -485.2 -27.4 k -447.6 116.2 613.6 ; 1713.11 OK 1 61.1 0-0 95.3 k 676,0 115.2 k 613.6 116.2 613.6 ; 1713.11 OK 0 6,9 0.0 82.3 k -400,2 91.3 k -395.9 82.3 -400.2 : -1082.87 OK 6.9 0.0 -60.7 k 410.4 -51.7 k 414.7 82.3 -400.2 : -1082.87 OK 4 218.8 235,6 -81.4 k -144.9 6.4 k 107.6 306.4 722.2 i 2608.92 OK 218.8 235.6 217.6 k 469.7 305.4 k 722.2 306.4 722.2 i 2608.92 OK 5 15.7 0.5 173.7 k -220.7 201.0 k -210.8 -121.9 244,1 i 895.94 OK 5 16.7 . 0,5 -121.9 k 244.1 -94.6 k 264.0 -121.9 244,1 i 895.94 OK 7 376,1 471,1 'S5.6k -136.1 60.9 k 328.3 1161,3 i 3349.11 OK 7 375.1 471.1 322.1 k 694.9 478.6 k 1161.3 1161,3 i 3349.11 OK 8 26,7 1.0 250.6 k -333.0 295.9 k -316.7 -1R7 n 371.2 706.50 OK 8 25.7 1.0 -167.0 k 371.2 -120.7 k 387.5 371.2 706.50 OK INTERACTION DIAGRAMS: Piers 1,4,7 2500.0 Pi6t7 -6000.0 .4000.0 6000.0 -500.0 -i Piers 2,5,8 2000.0 1 Pitra f=ier5 : ^ 'iSOQ.O iooo:o 500.0 -i -4CO0O -3G-00.0 -2000.0 .1000.0^ lo 2000.0 30O0.O 4000 0 I I PROJECT #: DESCRIPTION; TKi:i*>WVv*-»s.; CONCRETE SHEAR VVALL DESIGN (PER CBC 2010 a AC! 318-08 CH 21) 2K13-170 VIASAT BUILDING #10 PANEL 1-1 PRIME Job;\ilk_ EHGIMEERS sw: tdM yp SHEAR CALCULATIONS: PiER1 PiER 2 PiER 4 PiERS PIER 7 PIERS Effective Thickness -8.00 in 8.00 in 3.00 in 8-00 in 8,00 in 8,00 in Pier Length = 11;42ft 9.00 ft 11.42ft 9,00 ft 11,42ft 9,00 ft L/t = 17.13 13.50 17.13 13,60 17,13 13.50 H/L = 0.61 0.78 0:51 • 0,78 0.61 0.78 Wall Pier(Y=1;N=0) = 0 0 0 0 0 0 V = 75.8 kips 57.9 kips 43.9 kips 33,2 kips 59.5 kips 50.3 kips v,= N/A N/A HI A. N/A N/A N/A V,= 75.8 kips 57.9 kips 43.S kips 33,2 kips 59,5 kips 50,3 kips Acv = 1096.3 in' 864.0 in' 1096,3 in» 864,0 in' 1096,3 in' 864,0 in' 2''Acv*V(fc) = 133.67 in 109.3 k 138.7 k 109,3 k 138,7 k 109.3 k 2 Cuitain Reinf. Req'd = NO NO NO NO NO NO ac = 2,58 2,58 2.58 2,58 2,68 2,58 p.min = 0.00250 0.00250 0:00250 0,00250 O.00260 0,00250 8 s Vu / ct>Acv*V(f c) = 1.82 1.77 t,06 1,01 1,43 1,53 OK OK OK OK OK OK As.req (per ft) = 0,240 in' 0.240 in' 0.240 in' 0.240 in' 0.240 in' 0.240 in' Max Horiz Spacing = 18.00 in 18.00 in 18,00 in 18,00 in 18,00 in 18,00 in Avf = V / (cp-fy'M) = #4 dowels @ slab = [ 2,20 in' 1.86 in' j 12 10 SPECIAL BOUNDARY ELEMENT REQUIREMENT PER AC! 318 §21,9.6.2: PIERI PIER 2 PIER 4 PIERS PIER? PiERS Elastic Disp, = 0.072 in 0,072 in 0,132 in 0.132 in 0.172 in 0.172 in 6u = 0,030 ft 0.030 ft 0.056 ft 0.055 ft 0.072 ft 0.072 ft L / [600*(5u/h)] = 32,63 in 25.71 in 32.63 in 26.71 in 32.63 in 25.71 in Pu.critical = -27,4 k 91.3 k 305.4 k 201.0 k 478.5 k 296.9 k iUiax Neutral Axis, c = 12.23 in 10,60 in 17.24 in 13.90 in 23.73 in 17.20 in Bound. Mem. Req'd = NO NO NO NO NO NO COUPLING BEAM CHECK PER ACi 318 §21.9.7: Flexural Steel* Diag. Reinf; Req'd** #3 HOOD SD3C< Vu h d L/h Vu/bhv'{fc) Flexural Steel* Diag. Reinf; Req'd** #3 HOOD SD3C< CBI 71.5 kip 72,00 in 68,00 in 0:69 1.96 N/A NO N/A CBS 76.3 kip 84 00 in 60.00 in 0.60 1.80 N/A NO N/A CBS 61.0 kip 96.00 in 92.00 in 0.52 1.26 N/A NO N/A * = Area of flexural steel req'd at both top & bottom of coupling beam, ** = If flexural steel can be satisfied, diagonal reinforcement is not required, - if Hoop Spacing = N/A, typical reinforcement governs. CONCRETE SHEAR WALL DESIGN (PER CBC 2010 & ACl 318-08 CH 21) PROJECT*: 2K13-170 DESCRIPTION: VIASAT BUILDING #10 PANEL 1-1 PRIME .,iob: yyyy SmUCTURAL oate: ENGINEERS Sht: _Ldi£ REBAR LAYOUT: d PiER1 PiER 4 PIER 7 2" 1 #8 1 #8 1 #8 6" 1 #8 1 #8 1#8 10" 1#8 1 #8 1 #8 14" 1 #8 1 #8 1 #8 26,5" 1 #5 - 1 #5 1 #6 39" 1 #5 - 1 #5 1 #6 51,5" 1#5 1 #5 1 #6 64" 1 #5 1 #5 1 #5 76.6" 1 #6 1 #6 1 #5 89" j 1 #5 1 #5 1#5 101.6" 1 #6 1 #5 1 #5 114" 1 #6 1 #5 1 #5 129" 1 #5 1 #6 1 #5 133" 1 #5 1 #5 1 #5 d PIER 2 PIER S PIER 8 2" 1#5 1 #5 1 #6 6" 1#6 1 #5 ; i#5 18,5" 1 #5 1 #5 1 #5 31" 1#6 1 #5 1#5 43.5" 1 #5 1 #6 1 #5 56" 1#5 1 #5 1#5 68.5" 1 #5 1 #5 1 #5 81" 1#5 ] 1 #5 1 #5 94'^ 1#8 1 #8 1 #6 98" 1 #8 1 #8 1 #8 102" 1 #8 1#8 1 #8 O.QD 20.00 40.00 60 00 m 73 80.00 100.00 120.00 140.C-0 15000 0-00 •«•« 8 a e « » • • • • • 0-QC 20-00 40.00 60.00 tC-OO 0.00 OOG 20.00 40,00 60.00 1C,00 0,00 10-00 D-GO 0,00 m p. 80,00 100-GO 120-GO 140,00 160,00 TJ iri 33 8000 100,00 120-00 140,00 160,00 in TJ m » OO 20,00 40.00 60.00 In 80.00 100.00 120.00 • & » » 8 « • • • PIER 6 00 20,00 4o:oo 60.00 fn 80,00 100.00 120.00 PIERS « • • c • tt • 0 • • • PIERS 0.00 20.00 40.00 60.00 80.00 100.00 120.CO in -.475k -,089k -.089k -,089k -,089k -.089k -,089k - 089k - 089k •iiiii-iiiiigiiiii^ 089k -,089k -m m L9S||19^.?Si7J6i7^^^ X X ! X : X X I X i V • •• • \ - ^-^ \ X \ A >:' •; V i V A i X j X :x; I X 1 x: X ! yx ••;.;- • \ : A X j X -X \ X X : X X i X , X : v; -2.351kj -,347ki -.3*7ld -.MTU -.3471^ -.3*7k' - 347kl - -^rrid" - WlJ '547i<i -^i^vJ i/rrJ -,.,.„ X-jcJ 4,269k4^S^9U^,i2^U^,^ 6;0-l61^- -.347k! X A ! A i ---v i X X X ; X X I X ^ X ; X y i \' X X N ; -X- X 1 X ! X ; X X- X i X ; X i X X : X i X < i X j X X \ X ,>v : X X is:oiBKr X-X I X . J:}:^^^^:'^^ '•'^^ "-^'^ y^^^ -'^^ --^^^ "-py^ X i -.3^7kl -,347k -.UrU -,347^ -,M7k -.347k -3^6k 4.019k 4^9kAft1-?k_4^31gk.4,g^^ -> X X X ; X i X i X XX : y X I X X I X X X i X ; X ; X X X i X v X i X X : X X ! X i X i X A X i X X X ! X XX 1 X I X .X -207,S y X : X X i X y \ y y X ; X i X 't -164.2 339 Loa!ls;LC3,0,742D + E tiesulls for LC 3,0,7*20 • £ PRIME J0B:2K13-170 STRUCTUSAL BATi: 11 -2013 ENGINEERS mUySS. < v'X"" , g.AN|iL_iLevATlg>N>[ AT ^IMp HZ) I y M-w - 54" X r'X ^ t^'XtPi.; ' O tXC-s- \y, ID xsot yi- X. !,x^-' -yx •/ ;/ z. /' - / ~. X • y ti- • /> ,.y •L, ^^A^ i^v xo C -D y '€~y y fc' r A f W':u k:-iD - X r j >'y A-/ r.! i-, -ycsoF yf^4 (feofy ^ XXe^^z-X pX;. f t"-Vl\„'i (!ii|,XX y ] y'y X a' X*-^ 1;^ —- : t~~. ' f '•—?• < "-y i^'-j Pyy X io ' X X ••"X x5^^^ \ '..F' 9 |Xy)^' X: <^""X 0 y jpZ ' i3zh^^y....!£Si.. „-,,! zyi,J^:j i.,.y y^. t-r , .'i? / yy.. y ' . Z X" ?7 p X X><^c- \ l>t~ * t> Q :^ 3 - 4 ^ T"f!\*^ PTC X^ x±:^fLiJIMx ! s; PRIME Job: SMKTUm Dale: El^GlNEERS shv. '••-XXZ. .A XL •x\y GRADE BEAM AT VIASAT BLDG 10 - UNE 1 ASD DESIGN: SOIL BEARING CHECK UNIFORM LOAD D + L + Lr (1.0 + 0.14SDS)O + L (0.9-0.14SDS)D 12.09 12.85 6.96 W2 = 25.56 26.34 12.21 W3 = 9.88 9.97 5.53 W4 = 0.00 0,00 0.00 W5 = 0.00 0.00 0.00 Pi = 0.00 0,00 0.00 ; 0.00 0.00 0.00 Pel/1.4 = 128.66 PB2/1.4 = 0.00 Pe3/1.4 = 0.00 Pe4/1,4 = 0.00 Pe5/1,4 = 0.00 Pe6/1.4 = 0.00 LRFD DESIGN: GRADE BEAM UNIFORM LOAD \ 1.4D + 1.7L (1.2 + 0.2Sos)D + f,L (0.9 - 0.2SDS)D Wl I 17.54 13.50 6.54 W2 = 37.24 ' 25!58 li.48 W3 = 13.46 10.70 5.29 W4 = 0.00 0.00 0.00 W5 = 0.00 0.00 0.00 Pl = 0.00 0.00 0.00 P2 = 0.00 0,00 0.00 0.789 Pe1 = 180,12 0,00 Pe3 = • ^ 0^00 Pe4 = 0.00 Pe5 = 0.Q0 Pee = 0.00 LINE 1 (ASD) GRADE BEAM ANALYSIS PROGRAM Footing LENGTH Footing WIDTH Footing DEPTH Cone Weight Surcharge = Footing -f Surch. = 100.00 ft 5,00 ft 3.50 ft 0.15 kef 0.00 ksf 2.63 klf (4.02) 11/22/13 2K13-170. PRIME JOB:2K13-170 STRUCTURAL DATE: 11-2013 ENGINEERS SHTCIHE UNIFORM LOADS (k/ft & ft) 1 2 3 4 S XI X2 12 090 12 850 12 850 6 .960 6 960 5.00 10.00 25 560 26 340 26 340 12 .210 12 210 20.00 25.00 9 880 9 970 9 970 5 .630 5 630 35.00 40. 54 9 880 9 970 9 970 5 .630 5 630 60.54 66.08 25 560 26 340 26 340 12 .210 12 210 76 .08 . 81.08 12 090 12 850 12 850 6 . 960 6 960 91.08 96.08 POINT LOADS (k & ft) 1 2 3 4 5 X 0 .00 128 .66 -128. 66 128, 66 -128 .66 5.00 0 .00 -128 .66 128. 66 -128. 66 128 .66 40.54 64 .40 67 .78 67. 78 24 . 14 24 .14 50.00 0 . 00 128 .66 -128. 66 128. 66 -128 . 66 60.54 0 . 00 -128 .65 128 . 66 -128. 66 128 .66 96.08 RESULTANTS CASE • (k, 1 ft & ksf) 2 Pt 812.87 832.65 X 50.32 39.34 Q max 1.66 2.73 Q min 1.59 0.60 832.65 540.72 540.72 61.31 33.34 67.17 2.80 2.16 2.20 y 0.54 0.00 0. 00 MAXIMUM FORCES CASE 1 (k, kft) 2 V max 53.74 167.00 175.14 147.19 151.34 M max 372.89 1486.85 1450.00 1338.08 1232.53 M min -123.10-1346.34-1543.87-1382.84-1547.50 <X^i' /H*X •7 3i lyz V max = 175. X4 k M max = 1486.85 kft M min =-1547.50 kft LINE I(IRFD) GRADE.BEAM ANALYSIS PROGRAM Footing LENGTH = 100.00 ft Footing "WIDTH = 5.00 ft Footing DEPTH = 3.50 ft Cone Weight = 0.15 kef Surcharge = 0.00 ksf Footing -(• Surch. = 2.63 klf UNIFORM LOADS (k/ft & ft) 11/21/13 2K13-170 (4.02) PRIME J0B:2K13-170 STRUCTURAL SATK: 11-2013 ii; ENGINEERS SHT: Xdll 1 2 3 4 5 XI X2 17.540 13 .500 13 .500 6 540 6 .540 5.00 10 .00 37.240 25 .580 25 .580 11 .480 11 .480 20.00 25 .00 13.460 10 .700 10 .700 5 290 5 .290 35.00 40 .54 13.460 10 .700 10 .700 5 290 5 .290 60.54 66 .08 37.240 25 .580 25 .580 11 480 11 .480 76.08 81 .08' 17.540 13 .500 13 .500 6 540 6 .540 91.08 96 .08 POINT LOADS (k & ft) 1 2 3 4 5 X 0. 00 180.12 -180.12 180. 12 -180. 12 5 00 0. 00 -180.12 180.12 -180. 12 180. 12 40 54 98. 91 58.02 58.02 22. 69 22. 69 50 00 0. 00 180.12 -180.12 180. 12 -180. 12 60 54 0. 00 -180.12 180.12 -180. 12 180. 12 96 08 RESULTANTS (k, ft & ksf) CASE 1 2 4 Pt 1058.35 X 50.36 Q max -— g™^^^ ™,2'-ir07~ MAXIMDM FORCES CASE 1 829.88 34.90 (k, kft) 2 829.88 65.76 —^23- 524.00 25.81 -^96- 524.00 74.68 —-^^7-6- GT6Q"- Vmax 79.42 216.93 225.18 207.56 212.13 Mmax 534.58 1922.68 1839.87 2332.37 2225.96 M min -190.30-1933.35-2183.91-1589.97-1776.80 V max = 225.18 k M max = 2332.37 kft M min =-2183.91 kft LINE I(IRFD) GRADE-BEAM DESIGN PROGRAM (4.02) 11/21/13 2K13-17 PRIME J0B:2K13-170 STRUCTURAL DATE; 11-2013 ENGINEERS SHT: xf(#? DESIGN DATA f'c = 4.00 ksi fy = 60.00 ksi Load Factor = 1, 00 b h d 60.00 in 42.00 in 39.00 in SHEAR DESIGN Vmax = 225.2 k Vn = 264.9 k Vc = 296.0 k Vs = 0.0 k Av =0.60 si/ft S max = 19/50 in Vs = 0, stirrups are optional .y 1 # 3 Stirrup 8 4.4" 2 # 3 Stirrups @ 8.8" 1 # 4 Stirrup ? B.O" 2 # 4 Stirrups @ 16.0" FLEXURAL DESIGN Beta 1 = 0 .85 As min = 7 .80 si As max = 50 .03 si M-4- max = 2332 kft M-min = -2184 kft Mn-f 2592 kft Mn = -2427 kft As str = 14.03 si As str = 13.09 si As 14.03 si As 13.09 si Bottom Steel Top Steel Bar No. Space No. Spac # 6 31.9 -29.8 1.8 # 7 23.4 2,3" 21.8 2.5 # 8 17.8 3.0" 16.6 3.2 # 9 3.9" 13.1 3.9 #10 11.0 4.5" 10.3 4.9 #11 9.0 6.0" 8.4 6.0 yy\ yE/^'Og-^ ^&yy, (i, (yy y (ffj xy K4 yd, /- X 1 I I 7/ 9 X '' y7.... x "A3S--y > r- ^'l x-4£ ' Working Stress Wall Footing Design {vl .3) I Z A FOOTING AT LINE : VIASAT BLDG, #10 LINE A & E JOB#: 2K13-170 Geom, Loads Seismic Consts INPUT: b = h = d-h = d= LW = ODIST = OMAX = WALL WT. RDL = RLL = FDL = FLL = VI = HI = V2 = H2 = Q = fc = fy = WC = LDF = 42,00 30,00 3 27.0 256,00 10,00 10.00 4,460 0,171 0.213 1,150 2,130 148.60 42.00 219.60 29.00 3,00 4 60 0.15 1.33 IN, WIDTH OF FTG IN, HEIGHT OF FTG IN, CLEAR COVER FLEXURAL STEEL @ TOP & BOTTOM 7,0 -#5 4.9 -#6 3.6 -#7 FT, LENGTH OF WALL FT, dist to OMAX fm q.Max FT, MAX OPENING KLF, PNL WT PER FT KLF, ROOF DEAD LOAD KLF, ROOF LIVE LOAD KLF, FLOOR DEAD LOAD KLF, FLOOR UVE LOAD KIP. SEISMIC ROOF LOAD, (rho)Eh/1,4 FT, DIST F!V1 TOP OF FTG TO V1 KiP, SEISMIC FLOOR LOAD, (rho)Eh/1.4 FT, DIST FM TOP -OF FTG TO V2 KSF, SOIL BEARING PRESSURE KSI . fc= 1,80 KSI KS! fs= 24.00 KSI KCF n= 8.04 Es/Ec 2,8 -#8 2.2 -#9 Stirrups where req'd #3 '0' @ #4 'U' @ Smax= 0.0 in, 0,C, 0,0 in, 0.,C. 13,5 in. O.G. OU-mUT: VOLUME= 82.96 CUBIC YDS .OF CONC. IN FTG. FTGWT.= 1.31 KLF 0.38 KSF, wc*b-h/144, wc*h/12 D-f-L-i-Lr= 8.12 KLF, (RDL-i-RLL+FDL-i-FLL-f-WALL WT) [Dt-L-i-LR] (12-12) FTG WIDTH REQ'D = 37.1 IN, < fa ======> O.K. (D-f-L-!-Lr)/(Q-FTG WT.) [D-t-L-+E/1.4](12-13) w= 9.2 KLF, (WALL WT.-i-FTG WT.-i-RDL-i-FDL-i-FLL) [D-i-L] OTM= 13530.1 KIP-FT. (V1''(H1-i-h}+V2'*(H2-t-h)) RIV1= 302235.6 K-FT,(0,5*w*L'^2)= 22,3 *OTM P= 2361.2 KIPS, (w*L) a' 122,3 FT, (RM - OTMI'P e== 5,7 FT, {L'2-a)<L/6, O.K. MlDDl^E THIRD q,MAX= 2.99 KSF. < Qa=4.'3''0 =--.-^==:=r:==:=::> o.K, X' q,MiN= 2.28 KSF, P/(fa*L)*(1-6*e/L) CHECK AT OPENING M=w1*0MAX*2/11, V=w1'"0MAX/2, vc=1.1*sqrt(fc), v=V/(b*d*LDF) w1=b''q/.85- 12,19 KLF, VALUE OF q AT OPENING PER 1926.2.3 M= 110.86 KIP-FT vc= 69.57 psi V= 60.97 KIP v= 40.43 psi Av/s= 0.000 in''2/in vs= 0.00 psi Shsar Reinforcement Optio.nal! As,Min= 3.78 in^2, 200*b*d/fy (1910.5.1) As,Bal= 16.00 in^2, b*d/[2*fs/fc*{1-i-fs/(n*fc)}] As,req'd= 1,63 ln''2, 12*!«/(fs''j*d*LDF) USE: 2.17 in^2, (4/3)'As req'd rx £^ PRIME JQB:2K13-170 STRUCTURAL DATE: 11-2013 ^« ENGINEERS sm: .^.^ AT LiKiS ( S;i ix't-^. ?<3p«p- ^--7x• Ul 1,0 D PCs:: !7, c? ., 2, , -70 LA & ly cp' j n z 1q f^f-i&L P^.y ^ 42. •f-"L£>0|( ^2. 5" fa' P<-- c:y%.^ y !i X 1,4 • P 3X2. i sc; X. X / i ,X" X ;, X IAX X^ - ^ • 'S' ^ X ' y,-^-ncoyzj^" y. C3. X - . Bt= lr: — X 3 JX «?• \oxi¥-^x- J I I \0 XX X 5^" ! X.- 1-10 , y',y^ Z£y- LINE 6.3 (ASD) GRADE BEAM ANAL'XSIS PROGKAM Footing LENGTH Footing WIDTH Footing DEPTH = 54.58 ft 6.50 ft 3.50 ft (4.02) 11/21/13 2K13-17Q PRIME J0B:2K13-17D STRUCTURAL 8ATR; 11-2013 ENGINEERS SHT:iXL& Cone Weight = 0.15 kef Surcharge = 0.00 ksf Footing -^ Surch. = 3.41 klf UNIFORM LOADS (k/ft & ft) 1 2 3 4 5 XI 7.140 7.570 7.570 4.150 4.150 12.00 POINT LOADS (k & ft) 1 2 3 4 5 X 16.46 16.53 16.53 4.67 4.67 12.00 25.36 25.55 25.55 7.56 7.56 42.58 48.77 46.69 46.69 16.38 16.38 29,67 0.00 200.36 -200.36 200.36 -200.36 12.00 0.00 -200.36 200.36 -200.36 200.36 42.58 RESULTANTS (k. ft & ksf) CASE 1 2 3 4 5 Pt 495.19 506.51 506.51 341.77 341.77 X 27.80 15.69 39.88 9.61 •45.46 Q max • 1.47 3.31 3.53 3.65 3.84 Q min 1.32 0.00 0.00 0.00 0.00 MAXIMUM FORCES (k, kft) CASE 1 2 3 4 5 V max 72.68 184.45 197.17 184.42 193.IL M max 943.31 1172.57 1258.03 1225.03 1315.93 M min 0.00 -238.86 -245,39 -245.70 -245.70 V max = 197 .17 k M max = 1315 .93 kft H min = -245 .70 kft X2 42.58 y. LINE 6.3(LRFD) GRADE BEAM ANALYSIS PROGRAM (4.02) 11/22/13 2K13~170 .PRIME J0B:2K13-170 STRUCTURAL DATE: 11-2013 ENGINEERS SHT:xdM Footing LENGTH = 54.58 ft Footing WIDTH = 5.50 ft Footing DEPTH = 4.00 ft Cone Weight Surcharge Footing + Surch. 0.15 kef 0.00 ksf 3,90 klf UNIFORM LOADS (k/ft & ft) 1 2 3 4 5 XI 10.310 S.OOO 8.000 3 .900 3 .900 12 . 00 POINT LOADS (k & ft) 1 2 3 4 5 X 25.22 13.02 13 .02 4 .39 4.39 12 . 00 38.76 20.45 20.45 7 .10 7.10 42 .58 69.26 39 . 99 39.99 15.39 15.39 29.67 0. 00 280.50 -280.50 280.50 -260.50 12.00 0.00 -280.50 280.50 -280.50 280.50 42.58 RESULTANTS (k, ft Sc ksf) CASE 1 2 3 4 5 X2 Pt X -©-max- 661.38 530.96 530.96 359.00 359.00 27.85 11.53 43.84 3.61 51.40 • ^— S-r-e-? ~*<@.rar^-" j^^^-^g-, 42.58 MAXIMUM FORCES CASE 1 (k, kft) 2 V max 105.62 257.74 275.01 317.96 322.77 M max 1351.67 1674.27 1827.57 2777.48 2924.59 M min -0.00 -280.80 -280.80 -280.80 -280.80 V max = 322.77 k M max = 2924.59 kft M min = -280.80 kft LINE 6.3(LRFD) GRADE BEAM DESIGN PROGPvAM (4.02) 11/22/13 2K13-170 PRIME JOB:2K13-170 STRUCTURAL DATE: 11-2013 ENGINEERS SHT: DESIGN DATA f'c = 4.00 ksi fy = 60.00 ksi Load Factor = 1.00 b = 78.00 in h = 48.00 in d = 45.00 in SHEAR DESIGN Vmax = 322.8 k Vn = 379.7 k Vc Vs 444.0 k 0.0 k Av =0.78 si/ft S max = Vs = 0, stirrups are optional 1 # 3 Stirrup ® 3.4" 2 # 3 Stirrups ® 6.8" 1 # 4 Stirrup @ 6.2" 2 # 4 Stirrups ® 12.3" 22.50 in FLEXURAL DESIGN Beta i = 0 85 As min = 11 70 si As max = 75 04 si M-i- max = 2925 kft M-rain = -281 kft Mn-i-= 3250 kft Mn---312 kft As Str = 15.01 si As str = 1.39 si As = 15.01 si As = 1.86 si Bottom Steel Top Steel Bar No. Space No. Space # 4 75 . 0 -9.3 7.2" # 5 48 .4 -xa.-OJ^ # 6 34 .1 2.1" 4.2 14 .4" # 7 25.0 2.9" 3 .1 18.0" # 8 19.0 3.8" 2.3 24 . 0" # 9 _™_15,..JL™ 4:™,B" 1.9 36.0" #10 #11 11.8 9.6 6.0" 7.2" 1. 5 1.2 36 . 0" 36 .0" ^y X-D ^T^-KitJx - Mfi^ %.. 4y y^'i^ yx x-£>|;i-&. -f .4-, iDopcxx '2.1 K yji ft /%o' ^1A C" gJ 2. -7 \x:& X O 4- 110 Y^y z^'U '•/. lx6%/& • • X V ZZ U X ^ ••7 te.^ P d.Tpy Xo f*, ' '1yV j:a -J 2.1=^ LINE 5(ASD) GRADE BE AIM ANALYSIS PROGRAM 11/22/13 2K13-170 (4.02) PRIME J0B:2K13-170 STRUCTURAL DATE: 11-2013 ENGINEERS m-lTrUl Footing LENGTH Footing WIDTH Footing DEPTH Cone Weight Surcharge Footing -i- Surch. = 48.58 ft 6.50 ft 4.00 ft 0.15 kef 0.00 ksf 3.90 klf UNIFORM LOADS 1 2 (k/ft & ft) 3 XI X2 8. 060 8.310 ,8.530 8.780 8.530 8 .780 4 .600 4.730 4 ,600 4.730 14.00 29.58 POINT LOADS (k & ft) 12 3 Q max Q min 3 .91 1.28 MAXIMUM FORCES CASE 1 2.69 , 2.5»~ (k, kft) 2 "572^----^2.23 " ""0.58 3.24 0.00 V max 154.20 194.35 145.73 126.61 80.66 M max 591.94 1272.52 378.13 936.76 335.61 M min -526.20 -617.65 -640.93 -407.96 -346.04 V max = 194.35 k M max = 1272.52 kft M min = -640.93 kft 25.42 38.58 196.31 197 .11 197. 11 67 . 91 67 . 91 14 .00 6 .94 6 . 87 6. 87 1 . 89 1 . 89 38 .58 258.91 263 .15 263. 15 89 . 10 89 . 10 43 .50 0 .00 135 .24 -135. 24 135 .24 -135 .24 14 .00 0.00 -135 .24 135. 24 -135 .24 135 . 24 38 .58 RESULTANTS (k, ft & ksf) CASE 1 2 3 4 5 Pt 818 .44 833. 01 833 .01 443 .46 443 .46 X 28 .40 24. 44 32 .43 19 .54 34 .53 x^ ; (iy.^c(zy~- %4 :-Sx~ lAi % : LINE 5(LRFD) GRADE BEAM ANALY.SIS PROGRAM (4.02) 11/22/13 2K13-17Q£Wjfc> PRIME J0B;2K13-170 STRUCTURAL DATE: 11-2013^ ENGINEERS mJZr^ Footing LENGTH Footing WIDTH Footing DEPTH 48.58 ft 6.50 ft 4.00 ft Cone Weight = 0.15 kef Surcharge = 0.00 ksf Footing -i- Surch. = 3.90 klf UNIFORM LOADS 1 2 (k/ft & ft) 3 XI X2 11.650 12.010 •8.940 9.200 8.940 9.200 4 .330 4 .440 4.330 4 .440 14.00 29 . 58 25.42 38.58 POINT LOADS 1 (k & ft) 2 3 X 293.13 167 .58 167.58 63 . 84 63 , 84 14 ,00 10.52 5 .36 5.36 ,77 1. 77 38 .58 392.30 222.14 222.14 83 .76 83, 73 43 .50 0 .00 189 .34 -189.34 189 .34 -189. 34 14 .00 0.00 -189.34 189.34 -189 .34 189. 34 38 .58 RESULTANTS (k. ft & ksf) CASE 1 2 3 4 5 Pt 1126.52 769.42 769 ,42 428. 24 428 .21 • X 28 . 83 22.09 34 , 19 16. 09 37 . 83 -g—max-4....,Q,g„ „Q.,„-mi-n-, „„„..,„.i..,.sa.. —..O-.-OA,,. -,.-0-0-- MAXIMUM FORCES (k, kft) CASE 1 2 3 4 5 V max 235.05 210.00 150 .67 157. 80 104 .45 M max 860.13 1510.50 391 ,96 1188. 63 583 .23 M min -825.15 -581,01 -499 ,26 -551. 20 -382 .20 V max = 235.05 k M max = 1510.50 kft M min = -825.15 kft LINE 5(LRFD) GRADE -BEAM DESIGN PROGRAM (4.02) 11/22/13 A PRIME iOB:2K13-170 ""STRUCTURAL DATE: ENGINEERS SHT 11-2013 il DESIGN DATA f'c = 4.00 ksi fy = 60.00 ksi Load Factor = 1, 00 b h d 78.00 in 48.00 in 45.00 in SHEAR DESIGN Vmax = 235.0 k Vn = 276.5 k Vc = 444.0 k Vs = 0.0 k Av =0,78 si/ft S max = 22.50 in Vs = 0, stirrups are optional 1 # 3 Stirrup ® 3.4" 2 # 3 Stirrups @ 6,8" 1 # 4 Stirrup @ 6.2" 2 •# 4 Stirrups ® 12.3" FLEXURAL DESIGN Beta 1 = 0. 85 As min = 11. 70 si As max = 75 . 04 si M-t- max = 1511 kft M-min = -825 kft Mn-i- = 1678 kft Mn-= -917 kft As str = 7.60 si As str = 4.12 si As 10.14 si As = 5.49 si Bottom Steel Top Steel Bar No. Space No. Space • # 4 50.7 -27.4 2.6" # 5 32.7 2.2" 17.7 4.0" # 6 23.0 3.1" 12.5 5.5" # 7 16.9 4^2" 9.1 7.2" # 8 12 . 8 5.5" l,.0-3,il:. # 9 10.1 6.5" 5.5 12.0" #10 8.0 9.0" 4.3 14 .4" #11 6.5 10.3" 3.5 18.0" - 1/ Sales Team Coinments ¥i®S8t Wgir? s," Tar saxs :gl Csmstto sieaS QuantilY San Olsgss feta Oifics Mode! Numbe-TncM is .!t>; f ntoCsi rumSjar s^ail sLJz sc: this tsssis. i wominai tonnage isa ton Capacitv' 3,73.60 tons [ i Unit sound package Starsdsrci Ruii part ioad sound Tss J t Agengy listing yt and C803di®H Startup allowance Ujslt startup fey Trans : 1 ASHRAE 90,1/CSA Efficiency li.2 EER i i Gompiiance versions compitant i IPLV 18.7 EER WPLV &S.3 g£Il 1 1 Refrig (HFC-134a) - ckfc \ \ Rafris (HFC-i34a} - ckt \ Oil charge - ckt 1 11.40 gsl OH .charge - cS<t 2 •il.4a gal i 1 Drive cooling charge -2.03 gsl Drive cooling ciiarqe • 2.47 sal , i j dti: i ' ck^ 2 j Siiipping weight 10833,0 lis Operating weight ii0is.eib .^i-—- j ! Lengb'i 283.62S In Widtii 87.81S i ! Heiglit 95.7S0 in Rated cai?ac!ts' (AHRI) Isa.lO tons i j Rated efficiency (AHRIj ll.S EER AHRI certification AHRI certified ! i AHRI certified selection AHSI certified ASHRAE certified ASHRAE all versions \ selection selection \ 1 TOPSS version number iS6 I Evaporator appiica-tion Standard cooling (^e- Evap leaving temp Evap flow rate \ evaporator fluid type \ Evao pressure drop I Min evap flow r^te ! Max evap flow rate I saturated evap temp - I ckti i Flow switch 6SF) 42,00 F Water 7.40 ft. H20 202.00 gpm 742.00 gpm 38.80 F Flow switch water - 35 cm/s- Evaporator configurBtions Evap entering temp Evap fouling factor -Pressure vessel code Evap fluid freeze point Press drop min evap fiow Press drop max evap flow Saturated evap temp - ckt 2 2 pass evapsrjjtc. i S6.©S F j O.OSOie hr-sc| fl;-slaB } f/8t« i ASUS, pressure I vesssi code I 32.00 F I 3.40 It «2e I f 44.46 ft H2G ^ j 4®. 20 F i Unit application Standard ambie«l: Condenser fm options ^aiisimifsiira fins with ] silts : Ambient air temp 0S.OG F Eievation ft | Saturated cond temp - i23.7S F Saturated cond temp - 124.46 F : cktl ckt2 1 Fan speed - ckt 1 026 rpm Fan speed - ckt 2 920 rpm j Unit hertz Trsnsfonner 6© hertz Uo transformer Incoming power line connection Sfiort circuit withstand rating Unit power Compressor speed - ckt S17B ^pm I number of condenser fans j RLA - condenser fan j (each) I RLA - comp B - AFD Sfngte p0}st-power High Bm» 5179 rpin 3,Q.:0© feC-tl B.m Esch Unit voltage Compressor starter Power line connection type line voltage iiarmonic Compressor power Compressor spe«d - ctct 3'17B rpm 468 ¥Olt 3 ptoses f Variable spaad : \ CB high faiift rat€^ j 0«e reactors (wSO^ j TDD) iS8.28&W :! 4.7§ liW Fan motor pov^er RiA-COmpA-AFD input Siogte point power i^CA 3SS.S8.A oiiiini 1! IliLy rating iOi^^^iJvil^^i^ A-weig*ntao souna 101 dBA A-weigiitsd 75% sound 97 dBA powe;' - A-weighted 50% sound f s dm A-weigiited 2S% sound mmk : power povsfer \ A-weighted sound 73 dBA .^.-weigtited 75% sound i pressure pressure 1 A-weighted 50% sound A-wetghted 25% sound ©i dBA 1 pressure pressure } Model/type Factory charge RTAE Refrigerant charge mC-1348, Manufacturing location PMebfo, CO Tracer TD7 Dlsplav* nsuiat Remote communications options 0.75" csniBioRscatfotf j Change monlixjring None Appearance optons !»BVsr®§ panels iNCOfvUNG GUSTO MgR pOViER ?7/rXS13/1S' RIGHT SIDE VIEW ADQ -l/IO'f-SR SHJE TOWBTHQF UNIT FOR i-OUVHR P-Wa OPTION, 85 &M" l_J_16ffl5: •• y^ --J^ ,::::--,5,<;^> .—_ y^ .... ... , , . / ><'. """-^ '^/•'•'v I f y\ /^""^^t" If^fiy.—'^LAJX OUTLgT WATER /CONNECTION IfJlET V*TgP, /CONNKCTICN K! 3? v/a'^ -48 Mim- : 87 13/10"- 17 SS" 18 as a" 2 IS,/ END VIEW NON CONTROL PANEL END -a" m S-ROMT CF CXJNTROL PANEL NO OBSTRUCTIONS «)OVl; UNIT 23&'8'-TUBERHMOVAL CLeAR«>!C£ FO S isor-i eoT, HO etEARAMCG IS ReQUI,^D FOR 2&0-3C0r UN!TS, "OP VIEW lerles ^1 {TW TifW Name Addrass Sales Team Comments 62iS El Camino Real Sars Diego Main Office Quantity Hosei Numoer rer© IS not s moaai tsum&er ayatfabje et this time. I Nominal tonnage i Unit sound package I Agengy iisOng I ASHRAE 9Q.1/CSA I compliance 1 IPLV Refrig (HFC-1343) - ckt 1 Oil Charge - ckt 1 Drive cooling charge - ckt 1 Shipping weight Length Height RaiBd efficiency (AHRI) AHRI certified selection standard UL and Camiimn versisns compllas^t 1S.4 ES& 17a.© m 1.S2 gel 9SS8.S lb SS.750 In ii.5 SER AHRt certM&4 selection TOPSS version number iSS Capacity Run part ioad sound Startup allowance Efficiency NPLV Refrig (HFC-134.g) - ckt 2 Oi! Charge - ckt 2 Drive cooling charoe - ckt 2 Operating weight Width Rated capadty (AHR!) AHRI certificayon ^ ASHRAE certified selection i3S.S0 ta-ns Yes Un'& startup by 1"rane #.§ EER 172.0 lb ' 11.^0 gal 2.27 S®i 0984.0 " S7.S3,3 Irs 145.10 tons AMRi: certified ASHRAE ail versions Evaporator application Evap leaving temp Evap flow rate Evaporator fluid type Evap pressure drop Min evap ftOvv rate I Max evap flov.; rate ! Saturated evap temp • ' cktl Flow switch Standard cooling (40- SSF) 42.00 F 171.00 Qpm 626.00 spm 3S.90F Flow switcli water - 4S vm/B Es/aporator configurations Evap entering temp £vap fouling factor Pressure vessel coda Evap fluid freeze point Press drop min evap flow Press drop max evsp Bow Saturated evap temp - ckt 2 "2 pass evaporator ^.00 F F/BJu ^SMg pressiira vesss! cod® 32.60 F 3.50 ft H2Q «.40 ft H20 40.38 F i Ambient air temp I Saturated cond temp 1 cktl i Fan speed - ckt l 95.00 F sar fin options Bevation Saturated cor?d temp - ckt 2 Fan speed - ckt 2 Unit hertz i Transformer j Incoming power Sine i connection ) Short circuit w;5thstand ! rating ; Unit power : Compressor speed - ckt 1 Number of condenser fans I -RLA - condenser fan j (each) I RLA - romp B - AFD SO tertz f4f> trans^rmsr Single point fsower Higis amp 149.30 kW 4I,SS rpm B.m BBch B.IQ Each J.24.30 A Unit voltage Comprsssor starter Power line connection type Line voltaae harmonic Compressor power Compressor speed - ckt 4S,SS rpw 2 Fan motor power tl.&Q kW RLA - comp A - AFD 124.30 A input Single point power MCA M7.Q& A Aluminum fins witti slits ©.00 ft S24.se F S20 rpm 430 voft 3 phsssss compressors CB high faa{t ratssi Une reactors C<v30% TOO) 135.10 W input Single point power i»10P ' 400.08 A ; .A-weighted sound iOQ dBA : povrer ! A-weignted 50% sotmd 8S dBA I power j A-weighted sound 72 dsa 1 pressure i A-weighted 50% sound 60 dBA i pressure Short circuit current .•-ating A-weighted 75% souna pov.'er A-weighted 25% sound 89 dB.a power A-\*^eight6d 75% sound €7 Mk pressure A-weignted 25% sound SS, dBA. pressure <-x:] i. i ,^5 ' r i inoael/type i Factory charge. RTAE Rsf rsgerant charg HFC-134.B Manuracturma location P«eblo, CO *,:XA. -^w * « it Water connections Grooves pme insulstron Factor/ ifssalation - i Unit operator interface tracer TD7 ZSispiay Remote communications Options No reraol:® digits! o8n^miis55€atl©n: :\,^i,:S,-i,.?«Ii„l:Si^iffl«i: .j; ..• ^ Slope Charge monstonng Appearance optons 'ojvared psnsi:- lNC0li,»ieCU6T0?^ieR /POWER ?y/8-?(9 13/1S" RIGHT SIDE VIEW AOO l;W"Pf:i! sioi; TOV-^iii j iiOi- yNiT i'OR LOUV-^;!:! P AMHi. OFI iO«, m0t 1 15/16 i OUTterVMTH? 'CONNECTION INtET WA'TER ...--'CONNECTION END VIEW HON CONTROL PANEL END •UNIT CLEARANCE 40" IN FaCNT 01= a)NT,'?OLPAMEl NO OBSTRUCTIOHS ASOVi- UNT 1 f 23 W TUBS REMOVE. CLEARANCSFORlSW-mT. NO CLEARAHCE IS REQUlfiED FOR 2Q0,3C0T UNITS. TOP ViEW /y " / Raytherm - Type H Hydronic Heating Boilers Model OPTIONAL ONE PASS 5-1/4—j- 7-7/8- 32-1/2—- H I /, H - OUTLET H - INLET (OPPOSITE SIDE) 1 27-3/4 -T Yxyzzz. 45 3/4 M GAS 14 11-1/8 PUMP (OPTIONAL) -5.-J/S I COMBUSTIBLE FLOOR SHIELD i.1.1/8 (OPTIONAL) -^S 11-3/4^- ELEC, CONN, i (vl-BOX) MODELS H 926-1758 Dimensions (Inches) Electrical Rating Approx. Shipping Weight (Lbs.) Model No. MBTU Natural Gas (c) Width A Gas Conn. G Water Conn. H Electrical Rating Approx. Shipping Weight (Lbs.) Model No. Input Output Width A Gas Conn. G Water Conn. H With Pump Without Pump Approx. Shipping Weight (Lbs.) H-926 926.0 759.0 52-3/8 1 2-1/2 (b) Less than 10 amps at - Less than 4 amps at 120V 785 H-1083 1083,0 888.0 59-1/4 1(a) 2-1/2 (b) Less than 10 amps at - Less than 4 amps at 120V 865 H-1178 1178.0 956,0 63-5/8 1 (a) 2-1/2 (b) Less than 10 amps at - Less than 4 amps at 120V 925 H-1287 1287.0 1055,0 68-5/8 1-1/4 2-1/2 (b) Less than 10 amps at - Less than 4 amps at 120V 980 Less than 10 amps at - Less than 4 amps at 120V H-1571 1570.0 1287.0 81-1/8 1-1/4 -J ~Y t'* •* 2-1/2 (b) 1130 NOTE: Ratings shown are for elevations up to 2,000 feet. For elevations over 2,000 feet, reduce ratings at the rate of 4% for each 1,000 feet above sea level. (a) 1" or 1-1/4", depending on tjoiler type or code requirements (b) 3" NPT on single-pass option (c) Propane input/output is 95.5% of stated values BOILER RATE OF FLOW AND PRESSURE DROP NOTES: • Maximum acceptable flow through heat exdianger tubes is 90 GPM for two-pass and 200 GPM for single-pass systems. • In closed loop heating systems, GPM may increase by 10% and pressure drop by 21 %. • Single-pass heat exchangers should be used only when flow rates exceed maximum acceptable rates for two-pass. Raypak, Inc. • 2151 Eastman Avenue, Oxnard, CA 93030 ' (805) 278-5300 • Fax (800) 872-9725 • vww.raypak.com Catalog No.; 2000.220 Effective; 04-15-10 Replaces; 12-01-07 Raythernn - Type H Hydronic Heating Boilers Model OPTIONAL ONE PASS 5-1/4- 7-7/8- y y H - OUTLET '^^^H-INLET (OPPOSITE SIDE) "19-1/2- PUMP ^::i] r T 1 I i / (OPTIONAL) • I —yy H { r"" ' I • i i 14-1/2 I , • il1-3/4~"^ ELEC. 1 CONN. COMBUSTIBLE FLOOR SHIELD 1-1/8 (OPTIONAL) j f (J-BOX) sU„, • MODELS H 926-1758 Dimensions (Inches) Electrical Rating ApproK. Shipping Weight (Lbs.) Model No. MBTU Natural Gas (c) Width A Gas Conn. G Water Conn. H Electrical Rating ApproK. Shipping Weight (Lbs.) Model No. Input Output Width A Gas Conn. G Water Conn. H With Pump Without Pump ApproK. Shipping Weight (Lbs.) H-926 926.0 759.0 52-3/8 1 2-1/2 (b) amps at 785 i H-1083 1083.0 888.0 59-1/4 1 (a) 2-1/2 (b) amps at 865 I H-1178^ amps at *H-1287[-1287.0 1055.0 68-5/8 1-1/4 2-1/2 (b) amps at 980 H-1414S amps at H-1571 1570.0 1287.0 81-1/8 1-1/4 2-1/2 (b) amps at 1130 H-1758 1758.0 1441.5 89-3/8 1-1/4 2-1/2 (b) amps at 1160 NOTE: Ratings shown are for elevations up to 2,000 feet. For elevations over 2,000 feet, reduce ratings at the rate of 4% for each 1,000 feet above sea level. (a) r or 1-1/4", depending on boiler type or code requirements (b) 3' NPT on single-pass option (c) Propane input/output is 95.5% of stated values BOILER RATE OF FLOW AND PRESSURE DROP Model No. ICAT ZCAT 30°AT AQOAT Minimum Flow Maximum Flow Model No. GPM AP FT GPM AP FT GPM AP FT GPM AP FT GPM AP FT AT GPM AP FT AT H-926 77 8.0 51 3.5 40 2.2 40 go 11.0 17 H-1083 90 12.0 60 -5.3 45 3.1 45 3.1 40 90 12.0 20 ^ H-1178 49 3.8 49 3.8 40 90 12,6 22 i Wo- PASS H-1287 ' 53 4,5 53 4.5 40 90 13.2 24 i Wo- PASS H-1414 Exceeds IVIaximum Flow 78 10.5 58 5.8 58 5.8 40 90 14.0 26 H-1571 87 13.5 65 7,5 65 7.5 40 90 14.5 29 H-1758 73 10.0 73 10.0 40 90 15.4 32 H-926 152 • 5,7 90 2,1 17 200 9.7 8 H-1083 178 8.2 90 2.3 20 200 10.3 9 ONE- PASS H-1178 193 10.3 97 2.7 Less than Minimum Flow 90 2.4 21 200 11.0 10 ONE- PASS H-1287 106 3.4 Less than Minimum Flow 90 2.5 23 200 11.7 11 ONE- PASS H-1414 116 4,2 90 2.7 26 200 12.2 12 H-1571 129 5.6 90 2.8 29 200 13,0 13 H-1758 144 7.3 98 3.4 90 3.0 32 200 14.7 14 NOTES: • Maximum acceptable flow through tieat exchanger tubes is 90 GPM for two-pass and 200 GPM fpr single-pass systems. • In closed loop heating systems, GPM may increase by 10% and pressure drop by 21 %. • Single-pass heat exchangers should be used only when flow rates exceed maximum acceptable rates for two-pass. Raypak, Inc. • 2151 Eastman Avenue, Oxnard, CA 93030 • (805)278-5300 • Fax (800) 872-9725 • www.raypak.com Catalog No.; 2000.220 Effective: 04-15-10 Replaces; 12-01-07 Bell & Gossett Submittal: B-226.2E jj./f 4, I if'} fifx^Ji' Page 1 of 1 Series 1510 2E Centrifugal Pump Submittal B-226.2F FLANGE DIMENSIONS IN INCHES (MM) SIZE THICKNESS CD. Discharge 2" 7/8 !23) 6-1/4 (159) Suction 3" 1-1/8(29) 8 (203) DIMENSIONS • Inches (mm) FLANGES ARE 125# ANSI - STANDARD 250# ANSI • AVAILABLE STANDARD SEAL 1510,1510-F MOTOR FRAME HA HB HC MAX HD 2HE HF, HF, HH HL HM MAX HO HP Y Z MOTOR FRAME "S" FRAME 182T 16 (406) 42-1/4 (1073) 34 (864) 14 (356) 14 (356) 32-l,/4 (819) 16-1/8 (410) 7/8 (22) 6-1/2 (165) 19-1/4 (489) 22 (559) 5 (127) 5-1/2 (140) 6-1/2 (165) 184T 16 (406) - 42-1/4 (1073) 34-3/4 (883) 14 (356) 14 (356) 32-1.'4 (819) 16-1/8 • (410) 7/8 (22) 6-1/2 (165) 19-1/4 (489) 22 (559) 5 (127) 5-1/2 (140) 6-1/2 (165) 213T IS (406) 42-1/4 (1073) 37-1/4 (946) 14 (356) 14 (356) 32-1/4 (819) 16-1/8 (410) 7/8 (22) 6-1/2 (165) 19-7/8 (505) 22 (559) 5^ (127) 5-1/2 (140) 6-1/2 (165) • 215T 16 (406) 42-1/4 (1073) 38-3/4 (984) 14 (356) 14 (356) 32-1/4 (819) 16-1/8 (410) 7/8 (22)1 .6-1/2 (165) 19-7/8 (505) 22 (559) 5 (127) 5-1/2 (140) 6-1/2 (165) 254T 16 (406) 42-1/4 (1073) 42-1/2 (1080) 14 (356) 14 (356) 32-1.'4 (819) 16-1/8 (410) 7/8 (22) 6-1/2 (165) 20-7/8 (530) 22 (559) 5' (127) 5-1/2 (140) 6-1/2 (165) "L" FRAME 286TS 15 (406) 46-1/2 (1181) 49 (1245) 14 (356) 14 (356) 36-1/2 (927) 18-1/4 (464) 7/8 (22) 4-1/8 (105) 22 (559) 22 (559) 5 (127) 5-1/2 (140) 6-1/2 (165) 324TS 16 (406) 51-3/4 (1314) 50-7/8 (1292) 14 (358) 14 (356) 41-3/4 (1060) 20-7/8 (530) 7/8 (22) 4-1/8 (105) 23-1/8 (587) 22 (559) 5 m) 5-1/2 (140) 5-1/2 (165) 326TS 16 (406) 51-3/4 (1314) 52-3,'8 (1330) 14 (356) 14 (356) 41-3/4 (1060) 20-7/8 (530) 7/8 (22) 4-1/8 (105) 23-1/8 (587) 22 (559) 5 (127) 5-1/2 (140) 6-1/2 (165) 364TS 24 (610) 56 (1422) 54-1/4 (1378) 16-1/2 (419) 21-1/2 (546) 44 (1118) 22 (559) 1 (25) 4-3/4 (121) 26-3/4 (679) 24-1/2 (622) 6 (152) 5-1/2 (140) 6-1/2 (165) 365TS 24 (610) 56 (1422) 54-7/8 (1394) 16-1/2 (419) 21-1/2 (546) 44 (1118) 22 (559) 1 (25) 4-3/4 (121) 26-3/4 (679) 24-1/2 (6Z2) 6 (152) 5-1/2 (140) 6-1/2 (155) STUFFING BOX 1510-PF, 1510-S, 1510-D MOTOR FRAME HA HB HC MAX HD 2HE HF, HFj HH HL HM MAX HO HP; Y Z . MOTOR FRAME "S" FRAME 182T 16 (406) 42-1/4 (1073) 37-5/8 (956) 14 (356) 14 (356) 32-1/4 (819) 16-1/8 (409) 7/8 (22) 6-1/2 (165) 19-1/4 (489) 22 (559) 5 (127) 5-1/2 (140) 6-1,''2 (165) 184T -16 (406) 42-1/4 (1073) 38-3/8 {975) 14 (356) 14 (355) 32-1/4 (819) 16-1/8 (409) 7/8 (22) 6-1/2 (165) 19-1/4 (489) 22 (559) 5 (127) 5-1/2 (140) 6-1/2 (165) 213T 16 (406) 42-1/4 (1073) 40-7/8 (1038) 14 (356) 14 (356) 32-1/4 (819) 16-1/8 (409) 7/8 (22) 6-1/2 (165) 19-7/8 (505) 22 (559) 5 (127) 5-1/2 (140) 6-1/2 (165) 2151 16 (406) 42-1/4 (1073) 42-3/8 (1076) 14 (356) 14 (356) 32-1/4 (819) 16-1/8 (409) 7/8 (22) 6-1/2 (165) 19-7/8 (505) 22 (559) 5 ^ (127) 5-1/2 (140) 6-1/2 (165) 254T 16 (406) 42-1/4 (1073) 46-1/8 (1171) 14 (356) 14 (356) 32-1/4 (819) 16-1/8 (409) 7/8 (22) 6-1/2 (165) 20-7/8 (530) 22 (553) 5 (127) 5-1/2 (140) 6-1/2 (165) "L" FRAME 286TS 16 (406) 51-3/4 (1314) 51-3/8 (1305) 14 (356) 14 (356) 41-3/4 (1060) 20-7/8 (530) 7/8 (22) 4-1/8 (105) 22 (559) 22 (559) 5 (127) 5-1/2 (140) 6-1/2 (165) 324TS 16 (406) 51-3/4 (1314) 53-3/8 (1356) 14 (356) 14 (355) 41-3/4 (1060) 20-7/8 (530) 7/8 (22) 4-1/8 (105) 23-1/8 (587) 22 (559) 5 (127) 5-1/2 (140) 6-1/2 (165) 326TS 16 (405) 51-3/4 (1314). 54-7/8 (1394) 14 (356) 14 (356) 41-3/4 (1060) 20-7/8 (530) 7/8 (22) 4-1/8 (105) 23-1/8 (587) 22 (559) 5 (127) 5-1/2 (140) 6-1/2 (165) 364TS 24 (610) 56 (1422) 56-5/8 (1438) 16-1/2 (419) 21-1/2 (546) 44 (1118) 22 (559) 1 (25) 4-3/4 (121) 26-3/4 (679) 24-1/2 (622) 6 (152) 5-1/2 (140) 6-1/2 (165) 365TS 24 (610) 56 (1422) 57-3/8 (1457) 16-1/2 (419) 21-1/2 (546) 44 (1118) 22 (559) 1 (25) 4-3/4 (121) 26-3/4 (679) 24-1/2 (622) 6 (152) 5-1/2 (140) 6-1/2 (165) Dimensions are subject to change. Not to be used for construction purposes unless certified. , / Bell & Gossett Submittal: B-224.7G Series 15101-1/280 Centrifugal Pump Submittal 014CHAROE •—;» V— SUCT!<W HC . ; i-,<3AUSeTM»PtN08 -2-1/ BOLJINO" j. OA -rt ^ ! I i - ,^3^. HM t HH i I OA NOZZLE SIZES Discharge 1-1/2" M.P.T. Suction 2" N.P.T. Page 1 of 1 B-224.71 Jpdo 11 DIMENSIONS - Inches (mm) STANDARD SEAL 1510,1510-F MOTOR FRAME HA HB HCMAX HD 2HE HFj HH HL HMMAX HO HP Y Z MOTOR FRAME "S" HIAME 143T 14-5/8 (371) 31 (787) 28-3/8 (721) 10-3/4 (273) 12-7/8 (327) 25 (635) -3/4 (19) 1-11/1e (43) 14-1/2 (368) 17-1/4 (438) 3 (76) 3-1/6 (79) 5-3,'4 (146) 1451 14-5/8 (371) SI (787) 29-3/8 (746) 10-3/4 (273) 12-7/8 (327) 25 (835) -3/4 (19) 1-11/16 (43) 14-1/2 (368) 17-1,-4 (438) 3 (76) 3-1/8 (79) 6-3/4 (145) 182T 14-5/8 (371) 31 (787) 32-1/8 (816) 10-3/4 (273) 12-7/8 (327) 25 (635) -3/4 (19) 1-11/16 (43) 16 (406) 17-1/4 (438) 3 (76) 3-1/8 (79! 5-3/4 (146) 184T 14-5/8 (371) 31 (787) 32-7/8 (835) 10-3/4 (273) 12-7/S (327) 25 (635) -3.'4 (19) 1-11/15 (43) 16 (406) 17-1/4 (438) 3 (76)" 3-1/8 (79) 5-3.'4 (146) 213T 1750 RPM 14-5/8 (371) 34-5,'8 (879) 36-7/8 (937) 10-3/4 (273) 12-7/8 (327) 28-5/8 (727) -• 3/4 (19) 1-11/16 (43) 16-5/8 (422) 17-1/4 (438) 3 (76) 3-1 .'8 (79) S-3/4 (146) Z15T 1750 RPM 14-5/8 (371) 34-5/a (879) 36-7/8 (937) 10-3/4 (273) 12-7/8 (327) 28-5/8 (727) -y.A (19) 1-11/16 (43) 15-5(8 (422) 17-1/4 (438) 3 (76) 3-1/8 (79) 5-3/4 (146) "L" FRAME 213T 3500 RPM 14-5/8 (371) 39-3/8 (1000) 41-1/4 (1048) 10-3/4 (273) 12-7/8 (327) 33-3/8 (848) -3/4 (19) 1-11/16 (43) 16-S/8 (422) 17-1/4 (438) 3 (76) 3-1/8 (79) 5-3/4 (146) 215T 3500 RPM 14-5ffl (371) 39-3,*8 (1000) 41-1/4 (1048) 10-3/4 (273) 12-7/8 (327) 33-3/8 (848) -3/4 (19) 1-11/16 (43) 16-a/8 (422) 17-1/4 (438) 3 (76) 3-1/8 (79) 5-3/4 (146) a54T 18 (406) 46-1/2 (1181) 45 (1143) 12 (305) 14 (356) 36-1/2 (927) 1&-1/4 (464) 7/S (22) 2-13/16 (71) 18-7/8 (479) 18-1/2 (470) 5 : (127) 3-1/8 (79) 5-3/4 (146) 2S6T 16 (406) 46-1/2 (1181) 45 (1143) 12 (305) 14 (356) 36-1/2 (927) 18^1/4 (464) 7/8 (22) 2-13/16 (71) 18-7/8 (479) 18-1/2 (470) 5 • (127) 3-1/8 (79) 5-3.'4 C>*6) 284TS IS (406) 46-1/2 (1181) 46-3/4 (1187) 12 (305) 14 (356) 36-1/2 (927) 18-1/4 (464) 7/8 (22) 2-13/16 (71) 18-7/8 (479) 18-1/2 • (470) 5 : (127) 3-1/8 (79) 5-a'4 (M6) 286TS 16 (406) 46-1/2 (1181) 45-1/8 (1172) 13 (330) 14 (356) 36-1/2 (927) 18-1/4 (464) 7/8 (22) 2-13/16 (71) 21 (533) 19-1/2 (495) • 5 (127) 3-1/8 (79) 5-3/4 (146) 324TS 16 (406) 46-1/2 (1181) 47-5/8 (1210) 13 (330) 14 (356) 36-1/2 (927) 18-1/4 (464) 7/8 (22) 2-13/16 (71) 21 (533) 19-1/2 (495) (127) 3-1/8 (79) 5-3/4 (146) 326TS 16 (406) 46-1/2 (1181) 49-5/8 (1260) 12 (305) 14 (356) 36-1/2 (327) 18-1/4 (464) 7/8 (22) -2-13/16 (71) 21-1/8 (537) 18-1/2 (470) 5 (127) 3-1/8 (73) S-a''4 (146) STUFFING BOX 1510-PF, 1510-S, 1S10-D MOTOR FRAME HA HB HCMAX HD 2HE HF, HFj HH HL HMMAX HO HP Y Z MOTOR FRAME "S" FRAME 1«T 14-5/8 (371) 34-5/8 (879) 32 (813) 10-3/4 (273) 12-7/8 (327) 28-5/8 (727) -3/4 (19) 1-11/16 (43) 14-1/2 (368) 17-1/4 (438) 3 (76) 3-1/8 (79) 5-3.'-4 (146) 14ST 14-5/8 (371) 34-5/8 (879) 33 (838) 10-3/4 (273) 12-7/8 (327) 28-5/8 (727) -3/4 (19) 1-11/16 (43) 14-1/2 (368) 17-1/4 (438) 3 (76) 3-1/8 (79) 5-3/4 (145) 182T 14-5/8 (371) 34-5/8 (879) 35-3/4 (908) 10-3,'4 (273) 12-7/8 (327) 26-sm (727) -3/4 (19) 1-11/16 (43) 16 (406) 17-1/4 (438) 3 (76) 3-1.'8 (79) 5-3/4 (145) 184T 14-5/8 (371) 34-5;'8 (879) 36-1/2 (927) 10-3/4 (273) 12-7/8 (327) 28-5/8 (727) -3/4 (19) 1-11/16 (43) 16 (406) 17-1/4 (438) 3 (76) 3-1/8 (79) 5-3/4 (146) 213T 1750 RPM 14-5/8 (371) 39-3/8 (1000) 40-1/2 (1029) 10-3/4 (273) 12-7/8 (327) 33-3/8 (848) -3/4 (19) 1-11/16 (43) 16-5/8 (422) 17-1/4 (438) 3 (76) 3-1/8 (78) 5-3;'4 (146) 215T 1750 RPM 14-5/8 (371) 39-3/8 (1000) 40-1/2 (1029) 10-3/4 (273) 12-7/8 (327). 33-3/8 (848) -3/4 (19) 1-11/16 (43) l6-5,/8 (422) 17-1/4 (438) 3 (76) S-I* (79) 5-3/4 (146) "L" FRAME 213T 3500 RPM 16 (406) 46-1/2 (1181) 43-3/4 (111) 12 (305) 14 (356) 36-1/2 (927) 18-1/4 (464) 7/8 (22) 2-13/16 (71) 17-7.'8 (454) 18-1/2 (470) 5 (127) 3-1/8 (79) 5-3/4 (146) 215T 3500 RPM 16 (406) 46-1/2 -(1181) 43-3/4 (111) 12 (305) 14 (356) 36-1/2 (927) 18-1/4 (464) 7/8 (22) 2-13/16 (71) 17-7.'8 (464) 18-1/2 (470) 5 (127) 3-1/8 (79) 5-3/4 (146) 254T 16 (406) 46-1/2 (1181) 43-3/4 (1111) 12 (305) 14 (356) 36-1/2 (927) 18-1/4 (464) 7/8 (22) 2-13,'16 (71) 17-7,'8 (454) 18-1/2 (470) 5 (127) 3-1/S (79) 5-3/4 (146) 256T 16 (406) 51-3/4 (1314) 47-1/2 (1207) 12 (305) 14 (356) 41-3/4 (1060) 20-7/8 (530) 7/8 (22) 2-13/16 (71) 18-7/8 (47S) 18-1/2 (470) 5 : (127) 3-1/8 (79) S-3/4 (146) 284TS 16 (406) 51-3/4 (1314) 49-1/4 (1251) 12 (305) 14 (356) 41-3/4 (1060) 20-7/8 (530) 7.'a (22) 2-13/16 (71) 18-7/8 (479) 18-1/2 (470) 5 (127 ) 3-1/8 (79) 5-3/4 (146) 286TS 16 (406) 51-3/4 (1314) 48-1/2 (1232) 13 (330) 14 (356) 41-3/4 (1060) 20-7/8 (530) 7/8 (22) 2-13/16 (71) 21 (533) 19-1/2 (495) 5 (127) 3-1/8 (79) 5-3/4 (146) 324TS 16 (406) 51-3/4 (1314) 50 (1270) 13 (330) 14 (356) 41-3/4 (1060) 20-7/8 (530) 7/8 (22) 2-13/16 (71) 21 (533) 19-1/2 (495) 5 (127) 3-1/8 (79) 5-3/4 (146) 326TS 16 (406) 51-3/4 (1314) 52 (1321) 12 (305) 14 (356) 41-3/4 (1060) 20-7/8 (530) 7/8 (22) 2-13/16 (71) 21-1/8 (537) 18-1/2 (470) 5 : (127) 3-1/8 (79) 5-3/4 (146) Dimensions are subject to change. Not to l>e used tor construction purposes unless certitted. Kttr Bell & Gossett Submittal; B-226.2E t-4Xf/ xy Pase 1 of 1 Series 1510 2E Centrifugal Pump Submittai B-226.2F (L FLANGE DIMENSIONS IN INCHES (MM) SIZE THICKNESS O.D. Discharge 2" 7/8 (23) 8-1/4 (159) Suction 3" 1-1/8(29) 8(203) DIMENSIONS - inches (mm) FLANGES ARE 125# ANSI - STANDARD 250# ANSI • AVAILABLE STANDARD SEAL 1510,1510-F MOTOR FRAME HA HB HCMAX HD 2HE HF, HFj HH HL HM MAX HO HP j Y Z MOTOR FRAME "S" FRAME 182T 16 (406) 42-1/4 (1073) 34 (864) 14 (356) 14 (356) 32-1/4 (819) 16-1/8 (410) , 7/8 (22) 6-1/2 (165) 19-1,'4 (489) 22 (559) 5 (127) 5-1/2 (140) 6-1/2 (165) 184T 16 (406) 42-1/4 (1073) 34-3/4 (883) 14 (356) 14 (356) 52-1/4 (819) 16-1/8 (410) 7/8 (22) 6-1/2 (165) 19-1/4 (489) 22 (559) 5^ (127) 5-1/2 (140) 6-1,/2 (165) 213T 16 (406) 42-1/4 (1073) 37-1/4 (946) 14 (356) 14 (356) 32-1/4 (819) 16-1/8 (410) 7,/8 , (22) 5-1/2 (165) 19-7/8 (505) 22 (559) 6 • (127) 5-1/2 (140) 6-1/2 (165) 16 (406) 42-1/4 (1073) 38-3/4 (984) 14 (356) 14 (356) 32-1/4 (819) 16-1/8 (410) 7/8 (22) 6-1/2 (165) 19-7/8 (505) 22 (559) 5 (127) 5-1/2 (140) 6-1/2 (165) 254T 16 (406) 42-1/4 (1073) 42-1/2 (1080) 14 (356) 14 (356) 32-1/4 (819) 16-1/8 (410) 7/8 (22) J 6-1/2 (165) 20-7/8 (530) 22 (559) 5: (127) 5-1/2 (140) 6-1/2 (165) "L" FRAME 286TS 16 (406) 46-1/2 (1181) 49 (1245) 14 (356) 14 (356) 36-1/2 (927) 18-1/4 (464) 7/8 (22) 4-1/8 (105) 22 (559) 22 (559) 5 (127) 5-1/2 (140) 6-1/2 (165) 324TS 16 (406) 51-3/4 (1314) 50-7/8 (1292) 14 (356) 14 (356) 41-3/4 (1060) 20-7/8 (530) 7/8 (22) 4-1/8 (105) 23-1/8 (587) 22 (559) 5 (127) 5-1,'2 (140) 6-1/2 (165) 326TS 16 (406) 51-3/4 (1314) 52-3/8 (1330) 14 (356) 14 (356) 41-3/4 (1060) 20-7/8 (530) 7/8 (22) 4-1/8 (105) 23-1/8 (687) 22 (559) 5 : (127) 5-1/2 (140) 6-1/2 (165) 364TS 24 (610) 56 (1422) 54-1/4 (1378) 16-1/2 (419) 21-1/2 (546) 44 (1118) 22 (559) 1 (25) 4-3/4 (121) 26-3/4 (679) 24-1/2 1622) 6 (152) 5-1/2 (140) 6-1/2 (165) 365TS 24 (610) 56 (1422) 54-7/8 (1394) 16-1/2 (419) 21-1/2 (546) 44 (1118) 22 (559) 1 (25) 4-3/4 (121) 26-3/4 (679) 24-1/2 (622) • 6 (152) 5-1 ,'2 (140) 6-1/2 (165) STUFFING BOX 1S10-PF, 1510-S, 1510-D MOTOR FRAME HA HB HCMAX HD 2HE HF, HF^ HH HL 1 HM MAX HO 1 HP Y Z MOTOR FRAME "S" FRAME 182T 16 (406) 42-1/4 (1073) 37-5/8 (956) 14 (356) 14 (356) 32-1/4 (819) 16-1/8 (409) 7/8 (22) 6-1/2 (165) 19-1/4 (489) 22 (559) 5 (127) 5-1/2 (140) 6-1/2 (165) 184T 16 (406) 42-1/4 (1073) 38-3/8 (975) 14 (356) 14 (358) 32-1/4 (819) 16-1/8 (409) 7/8 (22) 6-1/2 (185) 19-1/4 (489) 22 (559) 5 (127) 5-1/2 (140) 6-1/2 (165) 213T 16 (406) 42-1/4 (1073) 40-7/8 (1038) 14 (356) 14 (356) 32-1/4 (819) 16-1/8 (409) 7/8 (22) 6-1/2 (165) 19-7/8 (505) 22 (559) 5 : (127) 5-1 ,'2 (140) 6-1/2 (165) 215T 16 (406) 42-1/4 (1073) 42-3/8 (1076) 14 (356) 14 (356) 32-1/4 (819) 16-1/8 (409) 7/8 (22) 5-1/2 (165) 19-7/8 (505) 22 (559) 5 (127) 5-1/*2 (140) 6-1/2 (165) 254T 16 (406) 42-1/4 (1073) 46-1/8 (1171) 14 (356) 14 (356) 32-1/4 (819) 16-1/8 (409) 7/8 (22) 6-1/2 (165) 20-7/8 (530) 22 (559) 5 (127) 5-1/2 (140) e-1/2 (165) "L" FRAME 286TS 16 (406) 51-3,'4 (1314) 51-3/8 (1305) 14 (356) 14 (356) 41-3,'4 (1060) 20-7,'8 (530) 7/8 (22) 4-1/8 (105) 22 (559) 22 (559) 5 (127) 5-l,/2 (140) 6-1,/2 (165) 324TS 16 (406) 51-3/4 (1314) 53-3/8 (1356) 14 (356) 14 (356) 41-3/4 (1060) 20-7/8 (530) 7/8 (22) 4-1/8 (105) 23-1/8 (587) 22 (559) 5 (127) 5-1/2 (140) -6-1/2 (165) 326TS 16 (406) 51-3/4 (1314) 64-7/8 (1394) 14 (356) 14 (356) 41-3/4 (1060) 20-7/8 (530) 7/8 (22) 4-1/8 (105) 23-1/8 (587) 22 (559) 5 (127) 5-1/2 (140) 6-1/2 (165) 364TS 24 (610) 56 (1422) 56-5/8 (1438) 16-1/2 (419) 21-1/2 (546) 44 (1118) 22 (559) 1 (25) 4-3/4 (121) 26-3/4 (679) 24-1/2 (622) 6 (152) 5-1/2 (140) 6-1/2 (165) 365TS 24 (610) 56 (1422) 57-3/8 (1457) 16-1/2 (419) 21-1/2 (546) 44 (1118) 22 (559) 1 (25) 4-3/4 (121) 26-3,'4 (679) 24-1/2 (622) 5 (152) 5-1/2 (140) 6-1/2 (1S5) 0lmensfons are subject to change. Not to be used for construction purposes unless certifted. Bell & Gossett Submittal: B-229.1 C0'Z..:)f Series 1510 3G Centrifugal Pump Submittal •yX.. SUCTION H:- :; : -i :••-[-}- ,ilu=jn! .1^ Page 1 of 1 B-229.1 E (3 •/ yy FLANGE DIMENSIONS IN INCHES (MM) SIZE THICKNESS O.D, Discharge 3" (76) 1-1/8(29) 8 (203) Suction 4"(1Q2) 1-1/4(321 10(254) \ HH DIA, FLANGES ARE 125# ANSI - STANDARD 2S0# ANSI-AVAILABLE DIMENSIONS - Inches (mm) STANDARD SEAL 1510,1510-F MOTOR HA HB HCMAX HD 2HE HF, HF, HH HL HM MAX HO HP y Z FRAME "L" FRAME 2131 16 (406) 46-1/2 (1181) 41-1/8 (1045) 14 (356) 14 (356) 36-1/2 (927) 18-1/4 (464) 7/8 (22) 4-1/8 (105) 19-7/8 (505) 23-1/2 (597) 5 (127) 5-5/8 (143) 8 (203) 215T 16 (406) 46-1/2 (1181) 42-5,/8 (1083) 14 (356) 14 (355) 36-1/2 (927) 18-1/4 (464) 7/8 (22) 4-1/8 (105) 19-7/8 (505) 23-1/2 (597) 5 (127) 5-5/8 (143) 8 (203) 254T 16 (406) 46-1/2 (1181) 46-3/8 (1178) 14 (356) 14 (356) 36-1/2 (927) 18-1/4 (464) 7/8 (22) 4-1/8 (105) 20-7/8 (530) 23-1/2 (597) 6 • (127) 5-5/8 (143) 8 (203) • 256T 16 (406) 46-1/2 (1181) 48-1/8 (1222) 14 (356) 14 (356) 36-1/2 (927) 18-1/4 (464) 7/8 (22) 4-1/8 (105) 20-7/8 (530) 23-1/2 (597) 5 (127) 5-5/8 (143) 8 (203) 2847 16 (406) 5l-3.'4 (1314) 48-7/8 (1241) 14 (356) 14 (356) 41-3/4 (1050) 20-7/8 (530) 7/8 (22) 4-1/8 (105) 22 (559) 23-1/2 (597) 5 (127) 5-5/8 (143) 8 (203) 286T 16 (406) 51-3/4 (1314) 50-5/8 (1286) 14 (35S) 14 (356) 41-3/4 (1060) 20-7/8 (530) 7/8 (22) 4-1/8 (105) 22 (559) 23-1/2 (597) 5 : (127) 6-5/8 (143) 8 (203) 324T 16 (406) 51-3/4 (1314) 52-5/8 (1337) 14 (356) 14 (356) 41-3/4 (1060) 20-7/B (530) 7/8 (22) 4-1/8 (105) 23-1/8 (587) 23-1/2 (597) 5 (127) 5-5/8 (143) 8 (203) STUFFING BOX 1510-PF, 1510-S, 1510-D MOTOR HA HB HC MAX HD 2HE HF^ HFJ HH HL HMMAX HO HP V Z FRAME "L" FRAME 213T 16 (406) 46-1/2 (1181) 43-1/2 (1105) 14 (356) 14 (356) 36-1/2 (927) 18-1/4 (464) 7/8 (22) 4-1/8 (105) 19-7/8 (505) 23-1/2 (597) 5 (127) 5-5/8 (143) 8 (203) 215T 16 (406) 46-1/2 (1181) 45 (1143) 14 (356) 14 (356) 36-l.'2 (927) 18-1/4 (464) 7/8 (22) 4-1/8 (105) • 19-7/3 (505) 23-1/2 (597) 5 (127) 5-5/8 (143) 8 (203) 254T 16 (406) 51-3/4 (1314) 48-3/4 (1238) 14 (356) 14 (356) 41-3/4 (1060) 20-7/8 (530) 7/8 (22) 4-1/8 (105) 20-7/8 (530) 23-1/2 (597) 5 • (127) 5-5/8 (143) 8 (203) 256T 16 (406) 51-3/4 (1314) 50-1/2 (1283) 14 (356) 14 (356) 41-3/4 (1060) 20-7/8 (530) 7/8 (22) 4-1/8 (105) 20-7/8 (530) 23-1/2 (597) 5 (127) 5-5/8 (143) 8 (203) 284T 16 (406) 51-3/4 (1314) 51-1/4 (1302) 14 (356) 14 (356) 41-3/4 (1060) 20-7/8 (530) 7/8 (22) 4-1/8 (105) 22 (559) 23-1/2 (597) 5 (127) 5-5/8 (143) 8 (203) 285T 16 (406) 51-3/4 (1314) 53 (1346) 14 (356) 14 (356) 41-3/4 (1060) 20-7/8 (530) 7/8 (22) 4-1/8 (105) 22 (559) 23-1/2 (597) 5 ^ (127) 5-5/8 (143) 3 (203) 324T 16 (406) 51-3/4 (1314) 55 (1397) 14 (356) 14 (356) 41-3/4 (1060) 20-7/B (530) 7/8 (22) 4-1/8 (105) 23-1/8 (587) 23-1/2 (597) 5 (127)^ 5-5/8 (143) 3 (203) Dimendtdns are subject to change. Not to be used tor construction purposes unless certified.