Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
2842 WHIPTAIL LOOP; 101; CBC2018-0468; Permit
rc ity of Carlsbad - Commercial Permit Print Date: 07/31/2019 Permit No: CBC2018-0468 Job Address: 2842 Whiptail Loop, 101 Permit Type: BLDG-Commercial Work Class: Tenant Improvement Status: Closed - Finaled Parcel No: 2091202200 Lot #: Applied: 08/16/2018 Valuation: $251,744.00 Reference U: Issued: 06/11/2019 Occupancy Group: Construction Type: Permit Finaled: U Dwelling Units: Bathrooms: Inspector: Bedrooms: Orig. Plan Check U: Final Plan Check U: - Inspection: 7/31/2019 10:05:27AM Project Title: Description: JON RENAU: INSTALL HIGH PILE STORAGE RACKS Owner: TECHBILT CONSTRUCTION CORPORATION 3575 Kenyon St SAN DIEGO, CA 92110 BUILDING PERMIT FEE ($2000i.) $1,165.60 BUILDING PLAN CHECK FEE (BLDG) $815.92 ELECTRICAL BLDG COMMERCIAL NEW/ADDITION/REMODEL $89.00 FIRE High Piled Storage $733.00 GREEN BUILDING STANDARDS PLAN CHECK & INSPECTION $170.00 MECHANICAL BLDG COMMERCIAL NEW/ADDITION/REMODEL . $55.00 581473 GREEN BUILDING STATE STANDARDS FEE $11.00 STRONG MOTION-COMMERCIAL $70.49 Total Fees: $3,110.01 Total Payments To Date: $3,110.01 Balance Due: $0.00 Please take NOTICE that approval of your project includes the Imposition" of fees, dedications, reservations, or other exactions hereafter collectively referred to as "fees/exaction." You have 90 days from the date this permit was issued to protest imposition of these fees/exactions. If you protest them, you must follow the protest procedures set forth in Government Code Section 66020(a), and file the protest and any other required information with the City Manager for processing in accordance with Carlsbad Municipal Code Section 3.32.030. Failure to timely follow that procedure will bar any subsequent legal action to attack, review, set aside, void, or annul their imposition. - You are hereby FURTHER NOTIFIED that your right to protest the specified fees/exactions DOES NOT APPLY to water and sewer connection fees and capacity changes, nor planning, zoning, grading or other similar application processing or service fees in connection with this project. NOR DOES IT APPLY to any fees/exactions of which you have previously been given a NOTICE similar to this, or as to which the statute of limitation has previously otherwise expired. 1635 Faraday Avenue, Carlsbad, CA 92008-7314 1 760-602-2700 1 760-602-8560 f I www.carlsbadca.gov " (Sec. 7031.5 Business and Professions Code: Any City or County which requires a permit to construct, alter, improve, demolish or repair any structure, prior to its issuance, also requires the applicant for such permit to file a signed statement that he is licensed pursuant to the provisions of the Contractors License Law fChapter 9, commending with Section 7000 of Division 3 of the Business and Professions Code) or that he is exempt therefrom, and the basis for the alleged exemption. Any violation of Section 7031.5 by any applicant for a permit subjects the applicant to a civil penalty of not more than five hundred dollars ($500)). Building Permit Application %c5 j -7L/q OQ Est. Value 1635 Faraday Ave., Carlsbad, CA 92008 CITY OF 760-602-2717/2718/2719 Plan Ck. Deposit Fax 760-602-8558 Date c/fiofic ISwppp I CARLSBAD www.carlsbadca.gov JOB ADDRESS 2842 Whiptail Loop W, Carlsbad, CA 92010 CE #/U ITI 0 i I APN I CT/PROJECT # LOT # PHASE C # BEDROOMS #BATHROOMS BUSINESS NAME CONSTR. TYPE 0CC. GROUP 20 1#0FUNrrS I 17ERMT Jon Renau DESCRIPTION OF WORK: include Square Feet of Affected Area(s) Installation of pallet racks in warehouse. feJetjl 44d-1-PIA '2 /17Y EXISTING USE PROPOSED USE GARAGE (SF) PATIOS (SF) DECKS (SF) FIREPLACE AIRCONDITIONING I YEI N0I1 I YES [—]NO IFIRESPRINKLERS YESI:JN0II APPLICANT NAME (Primary Contact) Warehouse _Solutions, _Inc. APPLICANT NAME (Secondary Contact) ADDRESS ADDRESS 12562 Highway 67 CITY STATE ZIP CITY STATE ZIP Lakside CA 92040 PHONE IFAX PHONE FAX 619.873-4410 _619-449-1710 I EMAIL EMAIL EMAIL karenitwarehousesolutions.com PROPERTY OWNER NAM I. .L 11 CONTRACTOR BUS. NAME Warehouse i1PIA~•1c.j.d,#Cp ______________________________ _Solutions. _Inc. ADDRESS ADDRESS cir_ktvytc:1: 12562 Highway 67 CITY STATE ZIP CITY,,,'- _ S4 ZIP 'A l)?ejo 172410 Lakside CA 92040 PHONE FAX PHONE IFAX 619-873-4410 I 619-449-1710 EMAIL EMAIL karenl(warehousesolutions.com ARCH/DESIGNER NAME & ADDRESS STATE LIC. It STATE LIC.# I CLASS I CITY BUS. LIC# 918115 I_C16!D2411226177 - 0 Plan Cheek Nn rii'.2iiQ —nq/k 0r03° (®?0®0 - Workers' Compensation Declaration: I hereby affirm under penalty of pe4uiy one of the following declarations: EJ I have and will maintain a certificate of consent to self-insure for workers' compensation as provided by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued. IZI i have and will maintain workers' compensation, as required by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued. My workers' compensation insurance carrier and policy number are: Insurance Co. _American Home Assurance Co. Policy No. WCO26182436CA Expiration Date 0110112019 This section need not be completed if the permit is for one hundred dollars ($100) or less. []Certificate of Exemption: I certify that in the rfonnance of the work for which this permit is issued, I shall not employ any person in any manner so as to become subject to the Workers' Compensation Laws of California. WARNING: Failure to secu worke sation overage is unlawful, and shall subject an employer to criminal penalties and civil fines up to oneundrethousand dollars ($100,000), In addition to the cost of compensation a e for i action 3706 of the Labor code, interest and attorney's fees. / / CONTRACTOR SIGNATURE -- 0 AGENT - DATE ®11)01101 00 W06&) - I hereby affirm that lam exempt from Contractor's License Law for the following reason: [J I, as owner of the property or my employees with wages as their sole compensation, will do the work and the structure is not intended or offered for sale (Sec. 7044, Business and Professions Code: The Contractor's License Law does not apply to an owner of property who builds or improves thereon, and who does such work himself or through his own employees, provided that such improvements are not intended or offered for sale. If, however, the building or improvement is sold within one year of completion, the owner-builder will have the burden of proving that he did not build or improve for the purpose of sale). [J I, as owner of the property, am exclusively contracting with licensed contractors to construct the project (Sec. 7044, Business and Professions Code: The Contractor's License Law does not apply to an owner of property who builds or improves thereon, and contracts for such projects with contractor(s) licensed pursuant to the Contractor's License Law). [J I arm exempt under Section Business and Professions Code for this reason: I personally plan to provide the major labor and materials for construction of the proposed property improvement. [:]Yes No I (have! have not) signed an application for a building permit for the proposed work. I have contracted with the following person (firm) to provide the proposed construction (include name address! phone! contractors' license number): I plan to provide portions of the work, butt have hired the following person to coordinate, supervise and provide the major work (include name! address! phone /contractors' license number): I will provide some of the work, butt have contracted (hired) the following persons to provide the work indicated (include name! address! phone! type of work): .PROPERTY OWNER SIGNATURE []AGENT DATE G®Th?Q VC000 oallsvoom (®(D Q(DOOaJ@ 007ø eoay. - Is the applicant or future building occupant required to submit a business an, acutely hazardous materials registration form or risk management and prevention program under Sections 25505, 25533 or 25534 of the Presley-Tanner Hazardous Substance Account Act? J Yes No Is the applicant or future building occupant required to obtain a permit from the air pollution control district or air uality management district? []Yes i:i No Is the facility to be constructed within 1,000 feet of the outer boundary of a school site? [JYes No IF ANY OF THE ANSWERS ARE YES, A FINAL CERTIFICATE OF OCCUPANCY MAY NOT BE ISSUED UNLESS THE APPLICANT HAS MET OR IS MEETING THE REQUIREMENTS OF THE OFFICE OF EMERGENCY SERVICES AND THE AIR POLLUTION CONTROL DISTRICT. eawavocoevoom (GJ®O()® noamov I hereby affirm that there is a construction lending agency for the performance of the work this permit is issued (Sec. 3097 fi) Civil Code). Lender's Name Lender's Address 001? OOOO®I I cer ,thatI have readtheapplication and stabethatthe above informadon is correctand thatthe information onthe pfarisisaccurdte. I agreeto oDmplyvAth all City ordinances and Stotelaws relatingto buildingconstruction. I hereby authorize representative of the City of Carlsbad to enter upon the above mentioned property for inspection purposes. I ALSO AGREE TO SAVE, INDEMNIFY AND KEEP HARMLESS THE CITY OF CARLSBAD AGAINST ALL LIABILITIES, JUDGMENTS, COSTS AND EXPENSES WHICH MAY IN ANYWAY ACCRUE AGAINST SAID CITY IN CONSEQUENCE OF THE GRANTING OF THIS PERMIT. OSHA: An OSHA permit is required for excavations over 69 deep and demolition or construction otslructures over 3stories in height. EXPIRATION: Every permit issued by the Buitdin Official under the provisions of this Code shall expire bylimitation and become null and vold if the building orwork autiJorized by such permit is not commenced within 180 days from the date of such permit i e au by such permit is suspended or abandoned at anytime alter the work is commenced/Ira pe)xI of 180 days (Section 106.4.4 Uniform Budding Code). APPLICANTS SIGNATURE DATE Permit Type: BLDG-Commercial Application Date: 08/16/2018 Owner: TECHBILT CONSTRUCTION CORPORATION Work Class: Tenant Improvement Issue Date: 06/11/2019 Subdivision: Status: Closed - Finaled Expiration Date: 12/18/2019 Address: 2842 Whiptail Loop, 101 Carlsbad, CA 92010-6708 IVR Number: 13248 Scheduled Actual Inspection Type Inspection No. Inspection Status Primary Inspector Reinspection Complete Date Start Date 0612112019 0612112019 BLDG-14 095266.2019 Passed Andy Krogh Complete FramelSteellBoltingl Welding (Decks) Checklist Item COMMENTS . Passed BLDG-Building Deficiency Special inspection report received, Ok to Yes load racks, loads signi add to 3 areas and relocate 2areas, exit signs Ok BLDG-34 Rough 095453.2019 Passed Andy Krogh Complete Electrical Checklist Item COMMENTS Passed BLDG-Building Deficiency Exit signs - Yes BLDG-Final 095267.2019 Failed Andy Krogh Reinspection Complete Inspection Checklist Item COMMENTS Passed BLDG-Building Deficiency Not ready No BLDG-Plumbing Final No BLDG-Mechanical Final No BLDG-Structural Final No BLDG-Electrical Final No 0711812019 0711812019 BLDG-Fire Final 097945.2019 Partial Pass Felix Salcedo Reinspection Incomplete Checklist Item COMMENTS Passed FIRE- Building Final No 0713112019 0713112019 BLDG-Final 099186.2019 Passed Paul Bumette Complete Inspection Checklist Item COMMENTS Passed BLDG-Building Deficiency Not ready Yes BLDG-Plumbing Final Yes BLDG-Mechanical Final Yes BLDG-Structural Final Yes BLDG-Electrical Final Yes BLDG-Fire Final 094523.2019 Scheduled Felix Salcedo Incomplete Checklist Item COMMENTS Passed FIRE- Building Final No Checklist item COMMENTS Passed FIRE- Building Final No July 31.2019 Page lofi BDJ Consulting,inc. A CaIifoma Corporation 17582 Orange Dr. Yorba linda CA 92886 Cell (714) 863-9180 Fax (877) 764-3939 H al, FO CONSULTING, INC. Observation Report and Observation Agreement Job Address Z Z -f 2.. WWI PT L LcKj P .#l 4(L; tYIPenh1ft#a3 c,l Job Name r I Architect / ( rL4 tb4L t( MatedalDescdptton i4 , Engineer DI LJ,<4€j-.4e. .cL4T7 d. Observer f Contractor Samples: X %Quantity= Subcontractor / Description of,WorklObserved: Cl-.ILA L, Art..t 4VtS - 5itA 'T 't744 P - -ftt4i 7 C c,t.A C-4Z'ftE. )( E (v 4 dtc -r, c.s?.. (7.A-1C C ECJI1 CXA. — Cc.iv1 C. Pc4.4.A c, c (c .c_1 rC-C..4i1 dA p N Certification of Compliance By this signature on the this Observation Report. I acknowledge that BDJ Coesuffing, Inc. perfonned the above observation.. Approved by: Z(l Project Supednt t - Foiwnian -Other We hweby cwtly that, it 1w thai of Us obsenatlon, we have obasived all of the above Ivpoftedecatc. mfans othendse noted. Tothe beat of oi,haovdedge and bcte1 wehavehasid this nut to ixniywth the 4parved plans. apedicallmns, and mpkeW section(s) of the Unifonn Blildbig Code, an applicable to The locality where this project Is located. This report cannot be constnud to to recommendation of work of any nature to be peifomied. The performance of cu2 fts .of 1ss2)ecttothetemis and condlitons as descdbedon The revise slab oftian ort. The Oaner or a succassur is bitwost sh field Isratated to1bdXtvcescith1ded'.... Observer LA.fr t.rn J. i, Specialty N6. Agency wwTE-omcEcoPY CN4BY-ACCOUNnN0 COPZ PINK-OBSERVERS COPY, BO1TOMWWTE-JO51ECOPY EsGil A SAFEbuIttCornpany DATE: 6/10/2019 U APPLICANT U JURIS. JURISDICTION: City ofCirlsbad PLAN CHECK #.: CBC2018-0468 SET: III PROJECT ADDRESS: 2842 Whiptail Loop W PROJECT NAME: Storage Racks for Jon Renau The plans transmitted herewith have been corrected where necessary and substantially comply with the jurisdiction's building codes. The plans transmitted herewith will substantially comply with the jurisdiction's codes when minor deficiencies identified below are resolved and checked by building department staff. E The plans transmitted herewith have significant deficiencies identified on the enclosed check list and should be corrected and resubmitted for a complete recheck. LI The check list transmitted herewith is for your information. The plans are being held at EsGil until corrected plans are submitted for recheck. The applicant's copy of the check list is enclosed for the jurisdiction to forward to the applicant contact person. The applicant's copy of the check list has been sent to: * EsGil staff did not advise the applicant that the plan check has been completed. LI EsGil staff did advise the applicant that the plan check has been completed. Person contacted: Telephone #: Date contacted: (by: ) Email: Mail Telephone Fax In Person REMARKS: liCity to filed-verify that the path of travel from the handicapped park)zispaceto )the.rack area and the bathroom serving the rack area comply with all the current disaje i ç 'access requirements. 2jObtain Fire Department approval. J By: David Yao Enclosures: EsGil 6/6/19 9320 Chesapeake Drive, Suite 208 • San Diego, California 92123 • (858) 560-1468 • Fax (858) 560-1576 EsGil A SAFEbuittCompany DATE: 5/30/2019 JURISDICTION: City of Carlsbad PLAN CHECK #.: pc2Oi180T4T8) PROJECT ADDRESS: 2842 Whiptail Loop W PROJECT NAME: Storage Racks for Jon Renau ET:I.I APPLICANT 0 JURIS. LI The plans transmitted herewith have been corrected where necessary and substantially comply with the jurisdiction's codes. LI The plans transmitted herewith will substantially comply with the jurisdiction's codes when minor deficiencies identified below are resolved and checked by building department staff. LI The plans transmitted herewith have significant deficiencies identified on the enclosed check list and should be corrected and resubmitted for a complete recheck. The check list transmitted herewith is for your information. The plans are being held at EsGil until corrected plans are submitted for recheck. fl The applicant's copy of the check list is enclosed for the jurisdiction to forward to the applicant contact person. The applicant's copy of the check list has been sent to: Warehouse Solutions, Inc. LI EsGil staff did not advise the applicant that the plan check has been completed. EsGil staff did advise the applicant that the plan check has been completed. Person contacted: Warehouse Solutions, Inc. Telephone #: 619-873-4410 Date con (by: ) Email: In:- Mail Telephone Fax in '.son LI REMAR S. - By: David Yao Enclosures: EsGil 5/20/19 9320 Chesapeake Drive, Suite 208 • San Diego, California 92123 • (858) 560-1468 • Fax (858)560-1576 City of Carlsbad CBC2018-0468 5/30/2019 NOTE: The items listed below are from the previous correction list. These remaining items have not been adequately addressed. The numbers of the items are from the previous check list and may not necessarily be in sequence. The notes in bold font are current. Please make all corrections, as requested in the correction list. Submit FOUR new complete sets of plans for commercial/industrial projects (THREE sets of plans for residential projects). For expeditious processing, corrected sets can be submitted in one of two ways: Deliver all corrected sets of plans and calculations/reports directly to the City of Carlsbad Building Department, 1635 Faraday Ave., Carlsbad, CA 92008, (760) 602-2700. The City will route the plans to EsGil and the Carlsbad Planning, Engineering and Fire Departments. Bring TWO corrected set of plans and calculations/reports to EsGil, 9320 Chesapeake Drive, Suite 208, San Diego, CA 92123, (858) 560-1468. Deliver all remaining sets of plans and calculations/reports directly to the City of Carlsbad Building Department for routing to their Planning, Engineering and Fire Departments. NOTE: Plans that are submitted directly to EsGil only will not be reviewed by the City Planning, Engineering and Fire Departments until review by EsGil is complete. SET II is not a complete set. The set does not include SED sheets. Please provide the revised SED sheets. City to filed verify that the path of travel from the handicapped parking space to the rack area and the bathroom serving the rack area comply with all the current disabled access requirements . Title 24, Part 2. 2.Obtain Fire Department approval. 3.Provide a rack layout plan showing the location of all racks. The rack detail (SED 2 of 2) shows rack E and El. The layout sheet does not include E or El. Not Used? The response shows E & El has been removed from SED 2 of 2. No revised SED sheets received. It cannot be verified. Page 8.4 of the calculation shows deck beam at 93 in aisle at landing is C5x6.7 (11). The elevation of the rack (SED 2 of 2) does not reference 11. Please clarify where is C5x6.7? Page 8.6 of the calculation shows 144" main aisle deck beam at 93 in aisle is C7x9.8 (14). The elevation of the rack (SED 2 of 2) does not reference 14. Please clarify where isC7x9.8? The response shows the deck beam has been revised. No SED sheets were received. The jurisdiction has contracted with EsGil, located at 9320 Chesapeake Drive, Suite 208, San Diego, California 92123; telephone number of 858/560-1468, to perform the plan City of Carlsbad CBC2018-0468 5/3012019 review for your project. If you have any questions regarding these plan review items, please contact David Yao at Esgil. Thank you. EsGil A SAFEbulit Company DATE: 8/28/2018 U APPLICANT U JURIS. JURISDICTION: City of Carlsbad PLAN CHECK #.: CBC2018-0468 SET: I PROJECT ADDRESS: 2842 Whiptail Loop W PROJECT NAME: Storage Racks for Jon Renau The plans transmitted herewith have been corrected where necessary and substantially comply with the jurisdiction's codes. The plans transmitted herewith will substantially comply with the jurisdiction's codes when minor deficiencies identified below are resolved and checked by building department staff. Lii The plans transmitted herewith have significant deficiencies identified on the enclosed check list and should be corrected and resubmitted for a complete recheck. The check list transmitted herewith is for your information. The plans are being held at EsGil until corrected plans are submitted for recheck. The applicant's copy of the check list is enclosed for the jurisdiction to forward to the applicant contact person. The applicant's copy of the check list has been sent to: Warehouse Solutions, Inc. EsGil staff did not advise the applicant that the plan check has been completed. EsGil staff did advise the applicant that the plan check has been completed. Person contacted: Warehouse Solutions, Inc. Telephone #: 619-873-4410 Date contacted: '4j9 (by, ) Email: karenl@warehousesolutions.com Mail ephone Fax In Person LI REMARKS: By: David Yao Enclosures: EsGil 8/20/18 9320 Chesapeake Drive, Suite 208 • San Diego, California 92123 • (858) 560-1468 • Fax (858) 560-1576 City of Carlsbad CBC2018-0468 8/28/2018 GENERAL PLAN CORRECTION LIST JURISDICTION: City of Carlsbad PLAN CHECK #.: CBC2018-0468 PROJECT ADDRESS: 2842 Whiptail Loop W DATE PLAN RECEIVED BY DATE REVIEW COMPLETED: ESGIL: 8/20/18 8/28/2018 REVIEWED BY: David Yao FOREWORD (PLEASE READ): This plan review is limited to the technical requirements contained in the International Building Code, Uniform Plumbing Code, Uniform Mechanical Code, National Electrical Code and state laws regulating energy conservation, noise attenuation and disabled access. This plan review is based on regulations enforced by the Building Department. You may have other corrections based on laws and ordinances enforced by the Planning Department, Engineering Department or other departments. The following items listed need clarification, modification or change. All items must be satisfied before the plans will be in conformance with the cited codes and regulations. The approval of the plans does not permit the violation of any state, county or city law. To facilitate rechecking, please identify, next to each item, the sheet of the plans upon which each correction on this sheet has been made and return this sheet with the revised plans. Please indicate here if any changes have been made to the plans that are not a result of corrections from this list. If there are other changes, please briefly describe them and where they are located on the plans. Have changes been made not resulting from this list? L3 Yes L3 No City of Carlsbad CBC2018-0468 8/28/2018 Please make all corrections, as requested in the correction list. Submit FOUR new complete sets of plans for commercial/industrial projects (THREE sets of plans for residential projects). For expeditious processing, corrected sets can be submitted in one of two ways: Deliver all corrected sets of plans and calculations/reports directly to the City of Carlsbad Building Department, 1635 Faraday Ave., Carlsbad, CA 92008, (760) 602-2700. The City will route the plans to EsGil and the Carlsbad Planning, Engineering and Fire Departments. Bring TWO corrected set of plans and calculations/reports to EsGil, 9320 Chesapeake Drive, Suite 208, San Diego, CA 92123, (858) 560-1468. Deliver all remaining sets of plans and calculations/reports directly to the City of Carlsbad Building Department for routing to their Planning, Engineering and Fire Departments. NOTE: Plans that are submitted directly to EsGil only will not be reviewed by the City Planning, Engineering and Fire Departments until review by EsGil is complete. City to filed verify that the path of travel from the handicapped parking space to the rack area and the bathroom serving the rack area comply with all the current disabled access requirements . Title 24, Part 2. 2. Obtain Fire Department approval. Provide a rack layout plan showing the location of all racks. The rack detail (SED 2 of 2) shows rack E and El. The layout sheet does not include E or El. Not Used? The storage rack layout second floor catwalk (MH-005) only shows type A rack. What about other racks?(i.e. type C?) Please clarify. There are several conditions where the catwalk beam connect to the rack with concentrate point load to the rack. Provide detail calculation how you get those number? (i.e. 22801b for A, 5812..etc). Page 8.4 of the calculation shows deck beam at 93 in aisle at landing is C5x6.7 (11). The elevation of the rack (SED 2 of 2) does not reference 11. Please clarify where is C5x6.7? Page 8.6 of the calculation shows 144" main aisle deck beam at 93 in aisle is C7x9.8 (14). The elevation of the rack (SED 2 of 2) does not reference 14. Please clarify where is C7x9.8? Page 16 of the calculation shows type monopost @93" in aisle end. The column requires backer. Provide detail analysis to show the backer connection is adequate and show how do you get the load of 29061b? Provide specification for the grating. What is the allowable load? How the grating connects to the supporting beams? Provide construction details of all the stairways. (i.e. Riser, run, handrail..etc) and structural detail too. Includes how the stairway been supported. City of Carlsbad CBC2018-0468 8/28/2018 11. Provide guard rail detail include the connections. The jurisdiction has contracted with EsGil, located at 9320 Chesapeake Drive, Suite 208, San Diego, California 92123; telephone number of 858/560-1468, to perform the plan review for your project. If you have any questions regarding these plan review items, please contact David Yao at Esgil. Thank you. City of Carlsbad CBC2018-0468 8/28/2018 [DO NOT PAY - THIS IS NOT AN INVOICE] VALUATION AND PLAN CHECK FEE JURISDICTION: City of Carlsbad PLAN CHECK #,: CBC2018-0468 PREPARED BY: David Yao DATE: 8/28/2018 BUILDING ADDRESS: 2842 Whiptail Loop W BUILDING OCCUPANCY: S-i BUILDING PORTION AREA (Sq. Ft.) Valuation Multiplier Reg. Mod. VALUE ($) racks per city 251,744 Air Conditioning Fire Sprinklers TOTAL VALUE 251,744 Jurisdiction Code ICb 1By Ordinance I Bldg. Permit Fee by Ordinance v Plan Check Fee by Ordinance v Type of Review: LI Complete Review Structural Only Repetitive Fee Repeats D Other U Hourly 1Hr. © * EsGil Fee I ) I $711.051 Comments: Sheet of REc,,ED. AUG 162018 truct ural AflCITY JF. SBAD BUILDING DIVISION 'Engi neering £ Design, Inc Am WIN 1815 Wrlghl Ave La Verne, Ca. 91750 Tel: 909-596-1351 Fax: 909-596-7186 Project Name: JON RNAU COMPANY Project Number: LV-041018-5 Date : 08/14/18 Street Address: 2842 WHIPTAIL LOOP W City/State: GALSBAD, CA 92010 Scope of Work: SELECTIVE/PICK MODULE 8/14/2018 T 1 Structural Engineering & Design inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: S.P. Project: JON RENAL) COMPANY Project #: LV-041018-5 TABLE OF CONTENTS TitlePage ................................................................................................................1 Tableof Contents.....................................................................................................2 Design Data and Definition of Components ............................................................3 CriticalConfiguration ...............................................................................................4 SeismicLoads ..........................................................................................................5 to 6 Column....................................................................................................................7 Beamand Connector ................................................................................................8 t09 Bracing................................................................................................................... 10 Anchors...................................................................................................................11 BasePlate ................................................................................................................12 Slabon Grade ..........................................................................................................13 OtherConfigurations ...............................................................................................14 to 20 JON RENAU-TYPE A FICI. MODULE - 48 IN AISLE.xb raeje Z of O 5/1/2018 Structural Engineering & Design inc. 1815 Wright Ave La Verne, CA 91750 Tel:. 909.596.1351 Fax: 909.596.7186 By: S.P. Project: JON RENAU COMPANY Project #: LV-041018-5 Design Data The analyses herein conforms to the requirements of the: 2026 CBCSect'on 2209 AIM MH 16.1-2012 SpecIfications for the Design ofIndustrial Steel Storage Racks "2012 RN! Rae* Design Manual" ASCE7-10, section 15.5.3 Transverse braced frame steel conforms to ASTM A570, Gr.55, with minimum strength, Fy=55 ksl Longitudinal frame beam and connector steel conforms to ASTM A570, Gr.55, with minimum yield, Fy=55 ksi All other steel conforms to ASTM A36, Gr. 36 with minimum yield, Fy= 36 ksi Anchor bolts shall, be provided by installer per ICC reference on plans and calculations herein. All welds shall conform to AWS procedures, utilizing E70xx electrodes or similar. All such welds shall be performed In shop, with no field welding allowed other than those supervised by a licensed deputy inspector. The existing slab on grade is 6" thick with minimum 4000 psi compressive strength. Allowable Soil bearing capacity is 1000 psf. The design of the existing slab is by others. 6) Load combinations for rack components correspond to 2012 RMI Section 11 for ASD level load criteria Definition of Components Column Beam to Column Connector Horizontal Brace Diagonal Brace Frame Height Base Plate and Anchors I Panel Height Front View: Down Aisle (Longitudinal) Frame. Frame Depth Section A: Cross Aisle (Transverse) Frame JON RENAU-TYPE A FICr, MODULE - 48 IN AISLE.xl, PaiSc 3 of 20 5/1/2018 Structural Engineering & Design inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596,1351 Fax: 909.596.7186 By: S.P. Project: JON RENAU COMPANY Project #: LV-041018-5 Configuration & Summary: TYPE A PICK MODULE @48 IN AISLE 3 60' 4- 60" 4ff, Al- 312" 48'• 48" 4- 36" 48" 4 48" **8,40CQLUMNP0I2145 ASD LOADS AXIAL DL= 560/b AXIAL LL= 8,280/b SEISMIC AXIAL Ps=+/- 14397/b BASEMOMEAT= 0 in'Ib Seismic Criteria # Bm Lvls Frame Depth Frame Heightl # Diagonals Beam Length Frame Type Ss=1.041, Fa=1.084 14 48 in 1 312.0 in 1 6 1 96 In Double Row Component Description STRESS Column Fy=55 ksi Hannibal IF3014-3x3x14ga P=8300 lb, M"9595 in-lb 0.58-OK Column & Backer None None None N/A Beam Fy=55 ksl HMH 20160/2" Face x 0.06" thk Lu=96 in Capacity: 1278 lb/pr 0.78-OK Beam Connector Fy=55 ksi Lvi 2: 3 pin OK Mconn=7933 in-lb Mcap= 12691 in-lb 0.63-OK Brace-Horizontal Fy=55 ksl Hannibal 1-1/2x1-1/2x16ga 0.37-OK Brace-Diagonal Fy=55 ksl Hannibal 1-1/2x1-1/2x16ga 0.64-OK Base Plate Fy=36 ksl 8x5x0.375 I Fixity= 0 in-lb 0.98-OK Anchor '2 per Base 0.5' x 3.25" Embed HILT I' HUS EZ ESR 3027 Inspection. Reqd (Net Seismic Uplift=87 lb) 0.417-OK Slab & Soil 6" thk x 4000 psi slab on grade. 1000 psf Soil Bearing Pressure 0.78-OK Level 1 Load** Per Level Beam Spcg Brace Story Force I Transv Story Force I Longit. Column Axial Column Moment Conn. Moment Beam Connector 1 1,000 lb 8.0 In 36.0 in 7 lb 5 lb 8840 lb 4,375 "# 6,145 "# 3 pin OK 2 1,000 lb 22.0 in 48.0 in 27 lb 20 lb 8,300 lb 9,595 "# 7,933 "# 3 pin OK 3 1,000 lb 22.0 in 48.0 in 46 lb 35 lb 7,760 lb 9,483 "# 7,826 hl# 3 pin OK 4 1,000 lb 22.0 in 48.0 in 66 lb 50 lb 7,220 lb 9,289 "# 7,661 "# 3 pin OK 5 1,000 lb 22.0 In 60.0 In 86 lb 65 lb 6,680 lb 9,012 "# 7,990 "# 3 pin OK 6 2,280 lb 26.0 in 60.0 in 233 lb 178 lb 6,140 lb 10,227 "# 9,129 "# 4 pin OK 7 1,000 lb 22.0 in 129 lb 98 lb 4,960 lb 7,676 "# 6,441 "# 3 pin OK 8 1,000 lb 22.0 in 148 lb 113 lb 4,420 lb 7,138 "# 6,035 "# 3 pin OK 9 1,000 lb 22.0 in 168 lb 128 lb 3,880 lb 6,518 "# 5,572 "# 3 pin OK 10 1,000 lb 22,0 in 187 lb 143 lb 3,340 lb 5,815 "# 5,372 "# 3 pin OK 11 2,280 lb 26.0 in 451 lb 344 lb 2,800 lb 5,945 "# 6,043 "# 4 pin OK 12 1,000 lb 22.0 in 230 lb 175 lb 1,620 lb 3,140 "# 3,116 "# 3 pin OK 13 1,000 lb 22.0 in' 250 lb 190 lb 1,080 lb 2,176 "# 2,413 "# 3 pin OK 14 1,000 lb 22.0 in 270 lb 205 lb 540 lb 1,129 "# 1,651 "# 3 pin OK ** Load defined as product weight per pair of beams Total: 2,298 lb 1,750 lb Notes JBEAM 20160 © STD LOAD LVLS, DECK BEAM 36140 @ 48 IN AISLE JON RENAU-TYPE A PICK MODULE - 481W AISLE.x15 Pat3e 4 of 2 . 61112018 Structural Engineering & Design inc. 1815 Wriaht Ave La Verne. CA -91750 Tel: 909.596.1351 Fax: 909.596.7186 By: S.P. Project: JON RENAU COMPANY Project #: LV-041018-5 Seismic Forces Configuration: TYPE A PICK MODULE @ 481W AISLE Lateral analysts Is performed with regard to the requirements of the 2012 RNI ANSI NH 16.1-2012 Sec 2.6 &ASCE 7-10 sec 15.5.3 Ss= 1.041 Transverse (Cross Aisle) Seismic Load .. ... S1= 0.404 V= cs*Ip*Ws=Cs*Ip*0.67*P*Prt+D _______Vt Fars 1.084 Csl= Sds/R . •. Fv= 1.596 = 0.1881 Cs-max * Ip= 0.1881 ... Sds=2/35Ss5Fa= 0.752 Cs2= 0.044*SdS Vffdl= 0.015 . Sd1=2/3*S1*PJ 0.430 = 0.0331 Eff Base Shear--Cs= 0.1881 Ca=0.4*2/3*Ss*Fa= 0.3009 Cs3= 0.5*S1/R Ws= (0.675PLpj * PL)+DL (RMI 2.6.2) (Transverse, Braced Frame Dir.) R= 4.0 = 0.0505 = 12,215 lb Ip= 1.0 Cs max= 0.1881 VtraflsvVt 0.1881 * (1120 lb + 110952 Ib) PRF1 Base Shear Coeff=Cs= 0.1881 Etsnsverse= 2,298 lb Pallet Height--hp= 20.0 in LintItStates Level rawnsverscsel.e'nFcsbearpatup,Igbt DL per Beam Lvl= 80 lb Level PRODUCT LOAD P P*0.67*PRFI DL hi wi*hi Fl FI*(hl+hp/2) 1 1,000 lb 670 lb 80 lb 8 in 6,000 7.1 lb 1284 2 1,000 lb 670 lb 80 lb 30 in 22,500 26.8 lb 1,0724 3 1,000 lb 670 lb 80 lb 52 in 39,000 46.4 lb 2,8774 4 1,000 lb 670 lb 80 lb 74 in 55,500 66.0 lb 5,5444 5 1,000 lb 670 lb 80 lb 96 in 72,000 85.7 lb 9,0844 6 2,280 lb 1,528 lb 80 lb 122 In 196,127 233.3 lb 30,7964 7 1,000 lb 670 lb 80 lb 144 in 108,000 128.5 lb 19,7894 8 1,000 lb 670 lb 80 lb 166 in 124,500 148.1 lb 26,0664 9 1,000 lb 670 lb 80 lb 188 in 141,000 167.8 lb 33,2244 10 1,000 lb 670 lb 80 lb 210 in 157,500 187.4 lb 41,2284 11 2,280 lb 1,528 lb 80 lb '236 in 379,394 451.4 lb 111,0444 12 1,000 lb 670 lb 80 lb 258 in 193,500' 230.2 lb 61,6944 13 1,000 lb 670 lb 80 lb 280 in 210,000 249.8 lb 72,4424 14 1,000 lb 670 lb 80 lb 302 in 226,500 269.5 lb 84,084-# sum: P=16560 lb 11,095 lb 1,120 lb W=12215.2 lb 1,931,521 2,298 lb =499,071 Similarly for longitudinal seismic loads, using Cs1=Sd1/(PR)= 0.1433 Cs2= 0.0331 Cs3= 0.0337 Cs-max= 0.1433 Level PRODUC LOAD P ~ 1.0 I E" ai = 12,215 lb (Longitudinal, Unbmced Dir.) R= 6.0 maxdlp= 0.1433 . T= 0.50 SC Vlong= 0.1433 * (1120 lb + 11095.2 lb) tudlnal= 1,750 lb. Limit St.atcsloveilongi& ssismicthearpsropdght DL hi wi5hl Fl 1 1,000 lb 670 lb 801b 8 i . 6,000 5.41b 2 1,000 lb 670 lb 80 lb 30 In 22,500 20.4 lb 3 1,000 lb 670 lb 80 lb 52 in . 39,000 35.3 lb 4 1,000 lb 670 lb 80 lb 74 in . 55,500 50.3 lb 5 1,000 lb 670 lb 80 lb 96 in 72,000 65.2 lb 6 2,280 lb 1,528 lb 80 lb 122 In 196,127 177.7 lb 7 1,000 lb 670 lb 80 lb 144 in 108,000 97.9 lb 8 1,000 lb 670 lb 80 lb 166 in 124,500 112.8 lb 9 1,000 lb 670 lb 80 lb 188 in . 141,000 127.7 lb 10 1,000 lb 670 lb 80 lb 210 in 157,500 142.7 lb 11 2,280 lb 1,528 lb 80 lb 236 in 379,394 343.7 lb 12 1,000 lb 670 lb 80 lb 258 in 193,500 175.3 lb 13 1,000 lb 670 lb 80 lb 280 in 210,000 190.3 lb 14 1,000 lb . 670 lb 80 lb 302' in 226,500 205.2 lb sum: 11,095 lb 1,120 lb W=12215.2 lb 1,931,521. 1,750 lb JON RENAU-TYPE A PICK MODULE - 48 IN AlSLE.xls Page 5 of 20 5/1/2018 Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: S.P. Project: JON RENAU COMPANY Project #: LV-041018-5 Downaisle Seismic Loads Configuration: TYPE A PICK MODULE @48 IN AISLE Determine the story moments by applying portal analysis. The base plate is assumed to provide no fixity. Seismic Story Forces l\,pk.jl 1sn,e n,sle Vlong= 1,750 lb Ti-Ibu*syc o(olcimm Vcol=Vlong/2= 875 lb ohtck 1ne 's F1= 5 lb . E:;JE J EJ Typical Frame made F2= 20 lb . - __7 o(fo C011lfl)fls F3= 35 lb ctt'i111 l: 11(-I I I 1 - E1 E [- ETEM --------- 12P NA 96 We View Seismic Story Moments Conceptual System COL Mbase-max= 0 In-lb c=== Default capacity hi-eff= hi - beam clip height/2 Mbase-v= (Vcol5h1eff)/2 = 51n Vcol = 2,188 In-lb <-== Moment going to base Mbase-eff= Minimum of Mbase-max and Mbase-v I = 0 In-lb PINNED BASE ASSUMED M 1-1= [Vcol * hieff]-Mbase-eff M 2-2= [Vcol-(Fi)/2] * h2 = (875 lb * 5 in)-0 in-lb = [875 lb - 10.2 lb]*22 in/2 = 4,375 in-lb = 9,595 in-lb I Mseis= (Mupper+Mlower)/2 Beam to Column Elevation Mseis(1-1)= (4375 in-lb + 9595 In-lb)12 Mseis(2-2)= (9595 in-lb + 9483 in-lb)/2 = 6,985 in-lb = 9,539 in-lb rho= 1.0000 Summary of Forces LEVEL hi Axial Load Column Moment** Mseismic** Mend-fixity Mconn** Beam Connector 1 Sin 8,840 lb 4,375 in-lb 6,985 in-lb 1,794in-lb 6,145-in-lb 3 pin OK 2 22 in 8,300 lb 9,595 in-lb 9,539 in-lb 1,794 in-lb 7,933 in-lb 3 pin OK 3 22 in 7,760 lb 9,483 in-lb 9,386 in-lb 1,794 In-lb 7,826 In-lb 3 pin OK 4 22 in 7,220 lb 9,289 in-lb 9,151 in-lb 1,794 In-lb 7,661 in-lb 3 pin OK 5 22 in 6,680 lb 9,012 in-lb 9,620 In-lb 1,794 in-lb 7,990 in-lb 3 pin OK 6 26 In 6,140 lb 10,227 In-lb 8,952 in-lb 4,090 in-lb 9,129 in-lb 11 pin OK 7 22 In 4,960 lb 7,676 in-lb. 7,407 in-lb 1,794 in-lb 6,441 in-lb 3 pin OK 8 22 in 4,420 lb 7,138 In-lb 6,828 In-lb 1,794 in-lb 6,035 in-lb 3 pin OK 9 22 in 3,880 lb 6,518 In-lb 6,165 In-lb 1,794 In-lb 5,572 in-lb 3 pin OK 10 22 in 3,340 lb 5,815 in-lb 5,880 in-lb 1,794 In-lb 5,372 in-lb 3 pin OK 11 26 in 2,800 lb 5,945 in-lb 4,542 In-lb 4,090 in-lb 6,043 in-lb J' pin OK 12 22 in 1,620 lb 3,140 in-lb 2,658 in-lb 1,794 in-lb 3,116 in-lb 3 pin OK 13 22 in 1,080 lb 2,176 In-lb 1,652 in-lb 1,794 in-lb 2,413 in-lb 3 pin OK 14 22 in 540 lb 1,129 in-lb 565 in-lb 1,794 In-lb 1,651 in-lb 3 pin OK Mconn= (Mseismlc + Mendfi)dty)*0.70*rho Mconn-allow(3 Pin)= 12,691 in-lb **all moments based on limit states level loading JON RENAI.J-TYPE A FlCI(. MODULE - 48 IN s415LE.xls Page (' of 2-0 5/1/2018 Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: S.P. Project: JON RENAU COMPANY Project #: LV-041018-5 Column (Longitudinal Loads) ConfigUration: TYPE A. PICK MODULE @ 48 IN AISLE Section Pronerties Section: Hannibal IF3014-30449a . _.3.000 in Aeff = 0.643 in A2 ly = 0.749 in A4 Kx = 1.7 Ix = 1.130 ln"4 Sy = 0.493 In A3 Lx = 21.0 in Sx = 0.753 inA3 ry = 1.080 in Ky = 1.0 .- 3000 in rx = 1.326 in Fy= 55 ksi Ly = 36.0 in Fop.075 ,r Qf= 1.67 Cmx= 0.85 Cb= 1.0 E= 29,500 ksi I 0.075 in Loads Considers loads at level 2 COLUMN DL= 520115 Cfltical load cases are: RMI Sec 2! COLUMN PL= 7,780 lb Load Case 5:: (1+0.105*5ds)D # 0.75*(L4#0.l4Sds)*8*P + 0.75*(0.7*rbo*E)<= .1.0, ASOMethod Mcol= 9,595 In-lb axial load coeff 0.79029WS *P seismic moment coeff. 0.5625 *Mcol Sds= 0.7523 Load Case 6.-: (!#0.14*Sds)D ., (0.85#0.14Sds)*B*P # (0.7rho*E)<= .1.0, ASOMet/zod 1+0.105*Sds= 1.0790 axial load coeff 0.66873 seismic moment coeffi 0.7 *Mco/ 1.4+0.14Sds= 1.5053 By analysis, Load case 6 governs utilizing loads as such 1+0.14Sds= 1.1053 0.85+0.14*Sds= 0.9553 Axial Load=Pax= 1.105322*520 lb + 0.955322*0.1*7780 lb Moment=Mx= O7*rho*Mcol B= 0.7000 = 5,777 lb = 0.7 *9595 in-lb rho= 1.0000 = 6,717 in-lb Axial Analysis KxLx/rx = 1.7*210/1.3261 KyLy/ry = 1*36/1.081l Fe > Fy/2 = 26.9 = 33.3 Fn= Fy(1-Fy/4Fe) = 55 ksi[1-55 ksi/(4*262 ksl)] Fe= nA2E/(KLJr)maxA2 Fy/2= 27.5 ksi = 52.1 ksl = 262.0ks1 Pa= Pn/flc Pn= Aeff*Ffl Qc= 1.92 = 33509 Ib/1.92 = 33,509 lb = 17,453 lb P/Pa= 0.33 > 0.15 Bending Analysis Check. Pax/Pa + (Cmx*Mx)/(Max*px) :5 1.0 P/Pao + Mx/Max :5 1.0 Pno= Ae*Fy Pao= Pno/Qc Myield=My= Sx*Fy = 0.643 In A2 *55000 psi = 353651b/1.92 = 0.753 inA3 * 55000 psi = 35,365 lb = 18,419 lb . = 41,415 in-lb Max= My/Of Pcr= n'2EI/(KL)max'2 = 41415 in-lb/1.67 = nA2*29500000 psiJ(1*35 1n)A2 = 24,799 In-lb = 168,312 lb px= {1/[1(c*P/Pcr)]}A1 = {1/[i(1.92*5777 lb/168312 lb)]}A_1 = 0.93 Combined Stresses (5777 lb/17453 lb) + (0.85*6717 In-lb)/(24799 in.lb*0.93) = 0.58 <1.0, OK (EQ CS-1) (5777 lb/18419 lb) + (6717 in-lb/24799 in-lb) = 0.58 <1.0, OK (EQC5-2) **por comparison, total column stress computed for load case 51s: 57.0% 90 loads 6709.563289 lb Ax/al andM= 50371n-lb JON RENAU-TYPE A PICK MODULE - 48 IN AISLE.xls Parse 7 of 20 5/1/2018 = Eq. B2.1-4 2.000 In Eq. B2.1-1 0.060 In Beam= HMH 20160/2 Face x 0.06" thk Ix= 10,300 in"4 t=_0.060 in Bend Radius--r=_0.060 in Fy=Fyv= 55.00 ks Fu=Fuv= 65.00 ks E= 295001a top flange=b=_1.750 in bottom flange= 12.750 in Web depth=I"' yl= Ycg-t-r= 1.200 in y2= depth"Ycg= 0.680 in y3= y2-t-r= 0.560 in Structural Engineering & Design inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: S.P. Project: JON RENAU COMPANY Project #: LV-041018-5 BEAM Configuration: TYPE A PICK MODULE @ 48 IN AISLE DETERMINE ALLOWABLE MOMENT CAPACITY 275 In Check compression flange. for local buckling (B2.1) w= c - 2*t 2*r = 1.75 in - 2*0.06 In - 2*0.06 in = 1.510 in w/t= 25.17 [=lambda= [1.0521(k)A0.5] * (wit) * (Fy/E)AO.5 = [1.052/(4)A0.5] * 25.17 * (55/29500)AO.5 = 0.572 <0.673, Flange is fully effective check web for local bucklina oer section b2.3 fl(comp)= Fy*(y3/y2)= 45.29 ks! f2(tenslon)= Fy*(yl/y2)= 97.06 IGI Y= f2/fl Eq. B2.3-5 = -2.143 It= 4 + 2*(1_Y)3 + 2*(1_Y) Eq. B2.3-4 = 72.38 flat depth=w= y1+y3 = 1.760 in w/t= 29.33333333 OK I=iambda [1.052/(k)A0.5] * (w/t) * (f1/E"0.5 = [1.052/(72.38)A0.5] * 1.76 * (45.29/29500)A0.5 = 0.142 <0.673 be=w= 1.760 in b2= be/2 Eq B2.3-2 bl= be(3-Y) = 0.88 in =0.342 bl+b2= 1.222 in > 036 in, Web is fully effective Determine effect of cold working on steel yield point (Fya) per section A7.2 Fya= C*Fyc + (1C)*Fy (EQ A7.2-1) Lcomer=Lc= (p12) * (r + t/2) 0.141 in C= 2*Lc/(Lf+2*Lc) Lflange-top=Lf= 1.510 in = 0.157 in m= 0.192*(Fu/Fy) - 0.068 (EQ A7.2-4) = 0.1590 Bc= 339*(Fu/Fy) - 0.819*(Fu/Fy)A2 - 1.79 (EQ A7.2-3) = 1.427 since fu/Fv= 1.18 < 1.2 and r/t= 1 <7 OK then Fyc= Bc * Fy/(R/t)Am (EQ A7.2-2) = 78.485 ksi Thus, Fya-top= 58.70 ksl (tension stress at top) Fya-bottom= Fya*Ycg/(depth -Ycg) = 113.94 ks! (tension stress at bottom) Check allowable tension stress for bottom flange Lflange-bot=Lfb= Lbottom - 2*r*2*t = 2.510 In Cbottom=Cb= 2*Lc/(Lfb+2*Lc) = 0.101 PV-bottom=Fyb= Cb*Fyc + (1Cb)*Fyf = 57.37 ks! Fya= (Fyatop)*(Fyb/Fyab0ttom) = 29.56 ks! if F= 0.95 Then PMn=PFya*Sx=I7.27 in-k T 2.000 in 2.75 in 1.75 In 1 1.625 In 0.060 in jL Structural Engineering & Design inc. 1815 Wright Ave La VerneCA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: S.P. Project: JON RENAL! COMPANY Project #: LV-041018-5 BEAM Configuration: TYPE A PICK MODULE @ 48 IN AISLE RMI Section 5.2, PT II Section Beam= HMH 20160/2° Face x 0.06° thk Ix=Ib= 0.300 inA4 Sx= 0.259 inA3 t= 0.060 in E= 29500 ksl Fy=Fyv= 55 ksi F= 150.0 Fu=Fuv=65ks1 L=961n Fya= 58.7 ksi Beam Level= 2 P=Product Load= 1,000 lb/pair D=Dead Load= 80 lb/pair Check Bending Stress Allowable Loads Mcenter=F*Mn= W*L*W*Rm/8 WLRFD Load Factor= 1.2*D + 1.4*P+1.4*(0.125)*P RMI2.2, Item 8 FOR DL2% of PL, W= 1.599 Rm= 1 - ((2*PL)/6*E*Ib + 3*PL] 1 - (2*150*96 in)/[(6*29500 kSi*0.3 inA3)+(3*150*96 in)] = 0.701 if F= 0.95 Then PMn=PPya*Sx= 14.44 ink Thus, allowable load per beam pair--W= PMn*8*(# of beams)/(L*Rm*W) = 14.44 in-k *8 * 2/(961n * 0.701 * 1.599) = 2,148 lb/pair allowable load based on 'bending stress Mend= W*L*(1Rm)/8 = (2148 1b12) * 96 in * (1-0.701)/8 = 3,854 in-lb @ 2148 lb max allowable load = 1,794 in-lb @ 1000 lb imposed product load Check Deflection Stress Allowable Loads Dmax= Dss*Rd Rd= 1 - (4*PL)/(5*PL + 10*E*Ib) = 1 - (4*150*96 ln)/((5*150*96 in)+(10*29500 ksi*0.3 jnA4)] = 0.641 in If Dmax= L/180 Based on //180 Deflection Criteria and Dss= 5*W*LA3/(384*E*Ib) 11180= 5*W*LA3*Rd/(384*E*Ib*# of beams) solving for W yields, W= 384*E*I*2/(180*5*LA2*Rd) = 384*0.3 inA4*2/[180*5*(96 in)A2*0.641) = 1,278 lb/pair allowable load based on deflection limits II:::: -. .:.• -..i.• -.-.- -. .Senni Length Allowable Deflection= 1/180. = 0.533 in Deflection at Imposed Load= 0.417 in Thus, based on the least capacity of item 1 and 2 above: Allowable toad= 1,278 lb/pair Imposed Product Load= 1,000 lb/pair IBeamstross= 0.78 Beam at Level 2 Thickness= 0.075 in Impact Factor (a)(1-25%/2)= 1.000 3.750 In LL= 60 DL= 10 Trib width= 2 Eff Product Load= 500 Loads Beam at Level= 1 Beam Type= Step Ix= 1.731 jflA4. Sx= 0.881 in A3 Length=L=. 96.0 in Lu= 96.0 In Fy= 55,000 psi Defl Criteria - L/ 240 1 1.625 in 5 in St tural CO Cepts - ngineering 1200 N. Jefferson Ste, Ste F Anaheim, CA 92807 Tél: 714.632.7330 Fax: 714.632.7763 By: Project: JON RENAIJ Project #: LV.041018-5 Deck Beam 96" DOWN AISLE DECK BEAM TYPE A @ 48 IN AISLE The beam to column connection is assumed to provide partial end fixity for the beam frame. The end moment calculated herein is added to the lateral force force portal moment when analyzing the connection capacity. Section Properties - Beam Member= HMH 36140/3.75' Face x 0.075' thk 2.750 in r7156ln 4 % End Fixity= 10% 0= 0.1 Dist Load=w= 16.9 lb/in Coeff 13= 0.117/0.125 = 0.936 Mcenter= B*(wLA2/8) . Mcenter= Mcenter(simple ends) - ø5Mcenter(f,xed ends) = 0.936*(wLA2/8) = wLA2/8 - (0.1 * wLA2/12) Mends= ø*Mmax(flxed ends) = wLA2/8 - wLA2/120 = (wLA2/12)*0.1 = 0.117 * wLA2 = 0.0083*wLA2 Fb= 0.6 * Fy = 33,000 psi Fb-eff= 33,000 psi Mcenter= 0.117 * wLA2 Mends= 0.0083*wLA2 = 18,223 in-lb = 1,293 in-lb Bending M= 18,223 In-lb fb= (M/Sx)/a fb/Fb= 20684 psi/33000 psi = 20,684 psi = 0.63 <= 1.0, OK Deflection Defl-allow= 1/240 DO= 13 * [5wV4/(384*E*Ix)] = 0.400 in = [5*169 lb/in*(96 in)A4/(384*29.5x1OA6 psi * 1.731 inA4)]*0.936 = 0.343 in <=0.4 in, OK 2or 20 Beam Member= HMH 55140/5.625" Face x 0.075" thk Thickness= 0.075 in• Impact Factor (a)=(1-25%/2)= 1.000 5.625 In LL= 125 DL= 10 Trib Width= 3.875 Eff Product Load= 500 2.750 In 175i In 3 1i Fl II 1.625 In 0.075 in Beam at Level= 1 Beam Type= Step Ix= 4.770 in'4 Sx= 1.656 in A3 Length=L= 96.0 in Lu= 96.0.1n Fy= 55,000 psi Defi Criteria - L/ 240 St tura once ts Engineering 1200 N. Jefferson Ste, Ste F Anaheim, CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 By: S.P. Project: JON RENAU Project #: _L!1018-5 Deck Beam 96' DOWN AISLE DECK BEAM TYPE A @93 IN AISLE The beam to column connection is assumed to provide partial end fixlty for the beam frame. The end moment calculated herein Is added to the lateral force force portal moment when analyzing the connection capacity. Section Properties -. Loads % End Fbdty= 10% 0=0.1 Dist Load=w= 48.8 lb/in Coeff 8= 0.117/0.125 = 0.936 Mcenter= 8*(wLA2/8) = 0.936*(wLA2/8) Mends= Ø*Mmax(fixed ends) = (wL 2/12)*0.1 = 0.0083*wLA2 R,= 0.6 * FY = 33,000 psi Fb-eff= 33,000 psi Mcente= 0.117 * wLA2 = 52,620 in-lb Bending Mcenter= Mcenter(slmple ends) - 08Mcenter(fixed ends) = wLA2/8 - (0.1 * wV2/12) = wL"2/8 - wL"2/120 = 0.117*wV2 Mends= 0.0083*wLA2 = 3,733 in-lb M= 52,620 In-lb fb= (M/Sx)/a fb/Fb= 31775 psi/33000 psi = 31,775 psi , = 0.96 <= 1.0, OK Deflection Defl-allow= L/240 Defl= B * [5wLA4/(384*E*Ix)] = 0.400 in = [5*488 lb/in*(96 in)#4/(384*29.5x10A6 psi * 4.77 lnA4)]*0936 = 0.359 in <= 0.4 In, OK Structural, C onEngineering ts - 1200 N. Jefferson Ste, Ste F Anaheim, CA 92807 Tel: 714.632.7330 Fax: 714.632.7763 By: Project: JON RENAU Project #: LV-041018-6 Deck Beam 96" DOWN AISLE DECK BEAM @ 93 IN AISLE @ LANDING The beam to column connection Is assumed to provide partial end fixlty for the beam frame. The end moment calculated herein is added to the lateral force force portal moment when analyzing the connection capacity. Section Properties Beam Member= Struc C5x6.7 Beam at Level= 1 Beam Type= Structural Thickness= 0.19 in Ix= 7.490 lnA4 Sx= 3.000 in A3 Impact Factora)(1-25%/2)= 1.000 5.000 In S Length=L= 96.0 In d/Af= 8.93 Lu= 48.0 in LL= 125 Fy= 50,000 psi DL= 10 Defi Criteria - 1/ 240 Trib width= 5.875 Eff Product Load= 0 Loads % End Rxity= S % :0= 0.05 Dist Load=w= 66.1 lb/in Coeff 8= 0.121/0.125 = 0.968 Mcenter= 8*(wLA2/8) = 0.968*(wLA2/8) Mends= Ø*Mmax(fjxed ends) = (wLA2/12)*0.05 = 00042*wLI2 Fo= 0.6 * Pi = 30,000 psi Fb-eff= 27,996 psi. Mcenter= 0.121 * wLA2 = 73,710 in-lb Bending Mcenter= Mcenter(simpleends) - O*Mcenter(flxed ends) = wLA2f8 - (0;05 * wLA2/12) = wLA2/8 - wLA2/240 = 0.121*wLA2 Fb = 12,000/(Iu*d/Af) = 12000/c48*8.93 = 27,996 psi Mends= 00042*wLA2 = 2,559 in-lb M= 73,710 in-lb ro= (M/Sx)/a tb/Fb= 24570 psi/27996 psi = 24,570 psi = 0.88 <= 1.0, OK Deflection Defl-allow= L/240 DefI= 8* [5A4/(384*E*)] = 0.400 in = [5*66.1 lb/in*(96 in)A4/(384*29 5x1OA6 psi * 7.49 inA4)]*0.968 = 0.320 in <=0.4 in, OK ..L1.0t 9.0 St tural E ts ngineering 1200 N. Jefferson Ste, Ste F Anaheim, CA 92807 Tel: 714.632.1330 Fax 714.632.7763 By: S.P. Project: JON RENAU Project # Deck Beam 144" MAIN AISLE DECK BEAM TYPE C P 40 "A i'shi The beam to column connection Is assumed to provide partial end fixity for the beam frame. The to the lateral force force portal moment when analyzing the connection capacity. Section Properties Beam Member= Struc C6x8.2 at col locations Beam at Level= 1 \\\J Beam Type= Siictural Thlckness= 0.2 In Ix=. 13.100 mM Sx= 4.380 In A3 Impact Factor (a)=(1-25%/2). 1.000 6.000 In Length=L= 144.0 in d/Af= 9.1 Lu= 48.0 in LL= 125 Fy= 50,000 psi DL= 10 Defi Criteria - L/ 240 Trib width= 4 Eff Product Load= 0 Loads % End Fixity= 15 % 0= 0.15 Dist Load=w= 45.0 lb/in Coeff 8= 0.113/0.125 = 0.904 Mcenter= 6*(wLA2/8) = 0.904*(wLA2/8) Mends= Ø*Mmax(fjxed ends) = (wLA2/12)*0.15 = 0.0125*wLA2 Fb= 0.6 * Fy = 30,000 psi Fb-eff= 27,473 psi Mcenter= 0.113 * wLA2 = 105,443 in-lb Bending Mcenter= Mceflterslmpie ends) - O*Mcenterfix ends) = wLA2/8 - (0.15 * wLA2/12) = wLA2/8 - A2/80 = 0.113 * wV2 Fb' = 12,000/(Iu*d/Af) = 12,000/(48*9.1) = 27,473 psi Mends= 0.0125*wLA2 = 11,664 in-lb M= 105,443 In-lb fb= (M/Sx)/a fb/Fb= 24074 psi/27473 psi = 24,074 psi = 0.88 <= 1.0, OK Deflection Defl-allow= L/240 DO= B * [5A4/(384*E*Ix)] = 0.600 in = [5*45 lb/mn*(144 jfl)A4/(384*295X1OA6 psi * 13.1 inA4)]*0.904 = 0.589 in <= 0.6 in, OK Structural CO ceots WEngineering 1200 N Jefferson Ste, Ste F Anaheim, CA 92807 Tel 714 632 7330 Fax 714 632 7763 By: S.P. Project: JON RENAU Project #: Deck Beam 144" MAIN AISLE DECK BEAM TYPE C @ 93 IN AISLE The beam to column connection is assumed to provide partial end fixity for the beam frame. The end moment calculated herein Is added to the lateral force force portal moment when analyzing the connection capacity. Section Properties Beam Member= Struc C7x9.8 at col locations Beam at Level= 1 Beam Type= Structural Ix= 21.200 in'4 Sx= 6.070 lnA3 Length=L= 144.0 in Lu= 48.0 in Fy= 50,000 psi Defi Criteria - L/ 240 Thickness= 0.21 in Impact Factor (a)=(1-25%/2)= 1MOO d/Af= 9.14 LL= 125 DL= 10 i) Tnb width= 5.875 __________ Eff Product Load= 0 1 Loads % End Flxity= 10 % 0= 0.1 Dist Load=w= 66.1 lb/In Coeff 13= 0.117/0.125 = 0.936 Mcenter= 8*(wLA2/8) = 0.936*(wLA2/8) Mends= O*Mmax(fl,(ed ends) = (A2/12)*01 = 0.0083*wL2 Fb= 0.6 * Fy = 30,000 psi' Fb-eff= 27,352.psi Mcenter= 0.117 * wLA2 = 160,366 in-lb Bending Mcenter= Mcenter(simple ends) - ø*Mcenter(flxed ends) = wLA2/8 - (0.1 * wL'2/12) = wLA2/8 - wLA2/120 = 0.117*wLA2 Fb' = 12,000/(lu*d/Af) = 12,000/(48*9.14) = 27,352 psi Mends= 0.0083*wLA2 = 11,376 in-lb M= 160,366 in-lb fb= (M/Sx)/a fb/Fb= 26419 psi/27352 psi = 26,419 psi = 0.97 <= 1.0, OK Deflection DefI-allow= L/240 Defl= B * [5wLA4/(384*E*Ix)] = 0.600 in = [5*561 lb/in*(I44 jn)A4/(384*295x1OA6 psi * 21.2 ,nA4)j*0.936 = 0.554 in <= 0.6 in, OK 1.200 N. ieffisos. 91e Sit' F Ao4sw, &A 92807 Tth 71.4432.7330 Faia 71.44327763 89: S.P. Plo Iee4 JON RENAL! Projec*# LV.0410185 Beam • 48!' CROSS AISLE BEAM Section Properties Beam Member= HMH 24160/2.5" deep x 0.06" thk Beam at Level= 1 Beam Weight= 4.0 lb/ft Beam Type= Step Thickness= 0.06 in ' Ix= 0.484 lnA4 1 1.6251, Sx= 0.345 in A3 Impact Factor (a)(1-25%/2).. 1.000 II _JL Length=L= 48.0 in 2.5001., Lu= 48.0 in LL= 60 0.0 61., Fy= 55,000 psi DL= 10 J_ [ Deft Criteria - L/ 240 Trib width= 4 Loads % End Fixity= 0% 0=0.0 Dist Load=w= 23.3 lb/in Mcenter= Mcenter(simple ends) = wLA2/8 Bending Fb= 0.6 * Fy = 33,000 psi Fb-eff= 33,000 psi Mcenter= wL"2/8 6,710 in-lb Mends= 0 In-lb M= 6,710 in-lb fb= (M/Sx)/a fb/Po= 19450 psi/33000 psi = 19,450 psi = 0.59 <= 1.0, OK Deflection Defl-allow= L/240 Defl= [5wLA4/(384*E*Ix)] 0.200 In = [5*233 Ib/in*(48 ln)A4/(384*29.5x10A6 psi * 0.484 jnA4)]*1 = 0.113 In <= 0.2 in, OK age c,.,0t 2) 1. L200 N. Jc,'fe.,o,. 9Ie, Sic' F Av kii A qzsol Tth 71.4432.7330 Faa 71.4.632.7763 69: s.f. ?pDjee4. JON RENAU' Proje4-# LV-041018$ Beam 93" CROSS AISLE BEAN - Section Properties Beam Member= HMH 55140/5.625° deep x 0.075° thk Beam at Level= 1 Beam Type= Step Ix= 4.770 jA4 Sx= 1.656 inA3 Length=L= 93.0 in Lu= 93.0 in Fy= 55,000 psi Detl Criteria -1/ 240 Beam Weight= 4.0 lb/ft Thickness= 0.075 in Impact Factor (a)=(1-25%/2)= 1.000 5.625 In LL= 125 DL= 10 Tribwidth= 4 In Loads % End Fixity= 0 % 0= 0.0 Dist Load=w= 45.0 lb/in Mcenter= Mcenter(simple ends) = wLA2/8 Fb= 0.6 * FY = 33,000 psi Fb-eff= 33,000 psi Mcenter= wLA2/8 Mends= 0 in-lbS = 48,651 In-lb Bending M= 48,651 in-lb fb= (M/Sx)/a . fb/Fb= 29378 psi/33000 psi = 29,378 psi = 0.89 <= 1.0, OK Deflection Defl-allow= 1/240 Defl= [5wLA4/(384*E*Ix)] = 0.388 in - = [5*45 Ib/in*(93 jn)A4/(384*295X1OA6 psi * 477 ifl4)]*1 = 0.311 in <= 0.388 in, OK Structural Engineering & Design Inc. IRIS Wright Ave Le Verne, CA 91750 Tel: 9O9..59R.151 Fex: 90959R.7188 By: S.P. Project: JON RENAU COMPANY Project #: LV-041018-5 3 Pm Beam to Column connection TYPE A PICK MODULE @ 48 IN AISLE me Deam end moments snown herein snow me result or the maximum inaucea nxeci end monems torm. seismic + static ioaas and Me coae mandated minimum value of 1.5%(DL+PL) Mconn max= (I4seismic + Mendtlxity)*0.70*Rho = 7,933 in-lb Load at level 2 rho= 1.0000 Connector Type= 3 Pin Shear Capacity of Pin Pin Dlam= 0.44 in Fy= 55,000 psi Ashear= (0.438 in)A2 * Pi/4 = 0.1507inA2 Pshear= 0.4 * Fy * Ashear = 0.4 * 55000 psi * 0.15071n A2 = 3,315 lb Bearing Capacity of Pin tcol= 0.075 In Fu= 65,000 psi Omega= 2.22 a= 2.22. Pbearing= alpha * Fu * diam tcol/Omega = 2.22 * 65000 psi * 0.438 in 0.075 in/2.22 = 2,135 lb <3315 lb Moment Capacity of Bracket Edge Distance=E= 1.00 in Pin Spacing= 2.0 in C= P1+P2+P3 tclip= 0.18 in P1+PL*(2.5174.5")+P1*(0.Sf/4.51') = 1.667 * P1 Mcap= Sdlp * Fbendlng = 0.127 in A3 * 0.66 * Fy = 4,610 in-lb C*d= Mcap = 1.667 Fy= 55,000 psi Sclip= 0.127 in A3 d= E12 = 0.50 in Pdip= Mcap/(1.667 * d) = 4610.1 in-lb/(1.667 * 0.5 in) Thus, P1= 2,135 lb = 5,531 lb Mconn-allow (pj*45U+p1*(2511/4 511)*25fl+p1*(o5Iy45fl)*Q5U] = 2135 LB*[4.5'+(2.5f/4.5')*2.51 + (0.51/4.5n)*0.5] = 12,691 In-lb I > Mconn max, OK JON RENAU-TYPE A PICK MODULE -48 IN AI5LE.x15 Page of 5/1/2018 Pallow= Pn/Q = 4806 lb /1.92 = 2,503 lb Pn/Pallow= 0.64 <= 1.0 OK Structural Engineering & Design inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596,1351 Fax: 909.596.7186 By: S.P. Project: JON RENAU COMPANY Project #: LV-041018-5 Transverse Brace Configuration: TYPE A PICK MODULE. @ 48 IN AISLE Section Properties Diagonal Member= Hannibal 1-1/2x1-1/2x16ga Horizontal Member= Hannibal 1-1/24-1/246ga Area= 0.273 in A2 1.500 in .j Area= 0.273 in A2 r min= 0.496 In r min= 0.496 In JO .5 in Fy= 55,000 psi Fy= 55,000 psi in 1.0 II 1.500 in K= 1.0 Cc= 1.92 II I 1 1 0.25 in 0.25 In Frame Dimensions Bottom Panel Height--H= 54.0 in Clear Depth=D8*2= 42.0 in Frame Depth=D= 48.0 In X Brace= NO Column Width=B= 3.0. In rho= 1.00 Load Case 6: : (ij jaus) .i0.14Sds)*5*P# !0.7mo*EJ<= 1.0, ASO Method 0 Vfransverse= 2,298 lb VbVtransv*0.7*rh9= 2298 lb * 0.7 * 1 = 1,609 lb Ldiag= [(DB*2)A2 + (1-16")A2]A1/2 = 638 in Pmax= V*(Ldiag/D) * 0.75 = 1,604 lb • ax/a/load on diagonal brace member Pn= AREA*Fn = 0.273 In A2 * 17605 psi = 4,806 lb Vb (kl/r)= (k * Ldlag)/r mm = (1x63.81n/0.496in) = 128.6 in Fe= piA2*E/(kl/r)A2 = 17,605 psi Since Fe <Fy12, 3" typ Fn= Fe B4. = 17,605 psi Idiag //Pmax Horizontal brace Vb=Vtransv*0.7*rh9= 1,609 lb (kl/r)= (k * Lhorlz)/r min Fe= plt*2*E/(kl/r)A2 Py/2= 27,500 psi = (1 x 48 in) /0.496 in = 31,072 psi = 96.81n Since Fe>Fy/2, Fn=Fy*(1fy/4fe) Pn= AREA*Fn Pallow= Pn/Qc = 30,661 psi . = 0.273inA2*30661 psi = 8371 lb /1.92 = 8,371 lb = 4,360 lb Pn/Pallow= 037 <= 1.0 OK JON RNAU-TYPE A PICK MODULE - 48 IN AI-9LE.xIs Page of 5/1/2018 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.5961351 Fax 909.596.7186 By: S.P. Project: JON RENAL! COMPANY Project #: LV-041018-5 )ON RENAl) COMPANY LV-041018-5 Overturning for Rigidly Connected Back to Back Units Configuration: TYPE A PICK MODULE @ 48 IN AISLE 1) RMI Sec 2.2, Item 7: (0.9-0.2Sds)D + (0.9.0.20Sds)*B*Papp - E*rho Vtrans=V=E=Qe= 2,298 lb DEAD LOAD PER UPRIGHT=D= 1,120 lb PRODUCT LOAD PER UPRIGIIT=P= 16,560 lb Papp=P*0.67= 11,095 lb :1=Wst1=(0.749545D + 0.74954*Papp*1)= 9,155 lb LC2=Wst2=(0.74954*D + 0.749545Papp)= 9,155 lb Product Load Top Level, Ptop= 1;000 lb Seismic Ovt based on E, E(Fi5hi)= 499,071 In-lb height/depth: ratio= 6.3 in Row spacer Length=R= 12.0 in hp T I 4Elf "I4 JR Dt -------- Owl STOF PIFVATTflN Sds= 0.7523 (0.9-0.2Sds)= 0.7495 (0.9-0.2Sds)= 0.7495 8= MONO- MIMI R' rho='.90 gm Sgl Frame Depth=D= 48.0 in. I1top-lvl=H= 302.0 in # Anchors/Base= 2 hp= 20.0 in Fully Loaded Rack (2 Tied Frames) id case 1: Movt= [E(FI*hl)*E*rho] * 2 Mst= [Wstl * 2 * Dt/2] = 998,142 in-lb = (9155 lb * 2* 108 in/ = 988,740 in-lb T= (Movt-Mst)/Dt =. (998142 in-lb - 988740. in-lb)/108 in = 87 lb Hot Uplift per Column Net Seismic 87 lb case 1: V1=Vtop= Cs * Ip * Ptop >= 350 lb for H/D >6.0 = 0.1881 * 1000 lb * 2 = 376 lb Vleff= 376 lb Critical Level= 14 V2=VDL= Cs*Ip*D Cs*Ip= 0.1881 = 421 lb Mst= (0.74954*1120 lb +0.74954*1000 lb*1) * 2 * 108 in/2= = 171,615 In-lb Movt= [V1*h + V2 * H/2]*0.7*rho = 126,698 In-lb T= (Movt-Mst)JDt = (126698 in-lb - 171615 in-lb)/108 in = -416 lb No Uplift Net Seismic -416 lb ncnor Check (2) 0.5" x 3.25 Embed HILTI HUS EZ anchor(s) per base plate. Special inspection is required per ESR 3027. Pullout Capacity=Tcap= 1,100 lb L.A. City Jurisdiction? NO Tcap*Phl= 1,100 lb Shear Capacity=Vcap= 1,250 lb Phi= 1 Vcap*Phi= 1,250 lb Fully Loaded: (43 lb/1100 lb)A1 + (574 lb/1250 lb)M = 0.50 <= 1.2 OK Top Level Loaded: (0 lb/1100 lb1 + (47 lb/1250 lb1 = 0.04 <= 1.2 OK Ii s— Structural Engineering & Design inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: S.P. Project: JON RENAU COMPANY Project #: LVL.0410185 Base Plate Configuration: TYPE A PICK MODULE @48 IN AISLE Section Baseplate= 8x5x0.375 EffWidth=W = 6.60 in a = 2.30 in Eff Depth=D = 500 In Anchor c.c. =2*a=d = 4.60 in Column Width=b = 3.00 in N= Anchor/Base= 2 Column Depth=dc = 3.00 in Fy = 36,000 psi 1=1.80 in H IbhLF - w Plate Thickfless=t = 0.375 In Downalsie Elevation Down Aisle Loads Làad Case 5: : (1#O.105*Sds)D O.75*1(L440.14Sds)*B*P + O.75*TO.7*rno*Ek= 1.0, ASOMetliod COLUMN DL= 560 lb Axial=P= 1.0789915 * 560 lb + 0.75 * (1.505322 * 0.7 *8280 lb) COLUMN P1= 8,280 lb = 7,148 lb Base Moment= 0 in-lb Mb= Base Moment*0.75*0.7*rho 1+0.105*Sds= 1.0790 = 0 in-lb * 0.75*0.7*rho 1.4+0.14Sds= 1.5053 = 0 in-lb B= OOOQ Axial Load P = 7,148 lb MbaseMb = 0 in-lb I Axial stress=fa = P/A = P/(D*W) MI= wLA2/2= th*LA2/2 = 217 psi = 351 in-lb Moment Stress=fb = M/S = 6*Mb/[(D*BA2] Moment Stress=fb2 = 2* fb * 1/'N = 0.0 psi = 0.0 psi Moment Stress=fbl = fb-fb2 M2= thl*LA2)/2 = 0.0 psi = 0 in-lb M3 = (1/2)*fb2*L*(2/3)*L = (1/3)*fb2*LA2 Mtotal = M1+M2+M3 = 0 in-lb = 351 in-lb/In S-plate = (1)(tA2)/6 Fb = 0.75*Fy = 0.023in'3/in = 27,000 psi fb/Fb = Mtotal/[(S-plate)(Fb)] Fp= 0.7*Pc = 0.55 OK = 2,800 psi OK Tanthor = (Mb(PLapp*0.75*0.46)(a))/[(d)*N/2] Tallow= 1,588 lb OK = -4,578 lb No Tension ads Check uplift load on E Check uplift forces on baseplate with 2 or more anchors per RMI 7.2.2. Mtan the base plate configuration consists of two anchor boils located on eIther side the column and a net uplift force ethos, the minimum base plate thickness Pseismlc= Movt/Frame Depth Isha1l be determined based on a design bending moment In the plate equal = 5,459 lb. Ito the uplift force on one anchor times 1/2 the distance from he centerlIne of the anchor to the nearest edge of the rack column' T fc*4 I Ta 4 4 ElevaUon Uplift per Column= 87 lb Qty Anchor per BP= 2 Net Tension per anchor=Ta= 44 lb C= 1.801n Mu=Moment on Baseplate due to upllft= Ta*c/2 = 39 in-lb Splate= 0.117 in A3 Pstatic= 7,148 lb Movt*0.75*0.7*rho= 262,012 in-lb Frame Depth= 48.0 in. P=Pstatic+Pseismic= 12,606 lb I b =Column Depth= 3.00 In L =Base Plate Depth-Col Depth= 1.80 in fa = P/A = P/(D*W) = 382 psi. Sbase/in = (1)(tA2)/6 = 0.023 inA3/in fb/Fb = M/((S-plate)(Fb)] = 0.98 OK M= wLA2/2= fa*LA2/2 = 619 in-lb/in Fbase = 0.75*Fy = 27,000 psi JON RENAU-TYPE A FlC. MODULE - 48 IN AISLE.xls Fage )';2- of 2_ti 5/1/2018 slab I : 1._a ••••1 b e X. ' i Down Baseplate Plan View Concrete f'c 4,000 psi lab=t= 6.0 in Cross : teff= 6.0 in Aisle 1 F--'- soil ftoll= 1,000 psi Movt= 349,350 In-lb Frame depth= 48.0 In Sds= 0.752 y 4 L Structural Engineering & Design Inc. 1.815 Wriàht Ave La Verne. A91750I el: 909.696.1351 Fax: 909.596.7186 By: S.P. Project: JON RENAU COMPANY Project#: LV-041018-5 Slab on Grade Configuration: TYPE A PICK MODULE @48 IN AISLE Base Plate 0.2*SdS 0.150 Effec Baseplate width-B= 6.60 In width=a= 300 In Effec. Baseplate Depth=D= 5.00 in depth=b= 3.00 in l=B/D= 1.320 midway dlst face of column to edge of plate=c= 4.80 in PcA0.5= 63.20 psi Column Loads midway dist face of column to edge of plate=e= 4.00 in DEAD LOAD=D= 560 lb per column Load Case 1) (1.2+0.2Sds)D + (1.2+0.2Sds)*B*P+ rho*E RMI SEC 2.2 EQTh S un!actoredASD load = 1.35046 * 560 lb + 1.35046 * 0.7 * 8280 lb + 1 * 7278 lb PRODUCT LOAD=P= 8,280 lb per column = 15,862 lb unfactoredA5D load Load Case 2) (0.9-0.2Sds)D + (0.90.2Sd5)*B*Papp + rho*E RMI SEC 2.2 EQTN7 Papp= 5,548 lb per column = 0.74954 * 560 lb + 0.74954 * 0.7 * 5547.6 lb + 1 * 7278 lb P-seismic=E= (Movt/Frame depth) = 10,608 lb = 7,278 lb per column Load Case 3 .1.2*D + 1.4*P RMI SEC LZ EQTh 1,2 unfactoredLimit State load = 1.2*560 lb + 1.4*8280 lb B= ME' RANNO I'llO0f = 12,264 lb rho= ACI3Ia4I&,C92 ,lJn9-5 Load case 4) 1 2*D + 1 0*P + 1.015 Sds= 07523 = 16,230 lb 1.2 + 0.2*Sds= 1.3505 Effective Column Load=Pu= 16,230 lb per column 0. 9- 0.20Sds= 0.7495 Puncture - Apunct= ((c+t)+(e+t)]*2*t = 249.60 inA2 Fpuncti= (4/3 + 8/(3*p)]*.*(PcA0.5) fv/Pv= Pu/Apunct*Fpunct = 127.2 psi = 0.645 <1 OK Fpunct2= 2.66 * X * (F'cA0.5) = 100.9 psi Fpunct eff= 100.9 psi Slab Bending Pse=DL+PL+E= 16,230 lb Asoil= (Pse*144)/(fsoil) 1= (Asoll)A0.5 y= (c*e)A0.5 + 2*t = 2,337 in A2 = 48.34 in = 16.4 in x= (L-y)/2 M= w*x/2/2 S-slab= 1*teffA2/6 = 16.0 in = (fsoll*xA2)/(144*2) = 6.0 in A3 p= 5*(phj)*(f'c)A0.5 = 886.7 in-lb fb/Fb= M/(Sslab*Fb) = 189.74 psi = 0.779 <1,0K JON RJ!NAU-T'i'PE A PICI. MODULE - 48 IN ,JSLE.xI, Pac )3 of 20 5/1/2018 Structural. Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: S.P. Project: JON RENAU COMPANY Project #: LV-0410.18-5 Configuration & Summary: TYPE A. PICK MODULE 093 IN AISLE -'- 312" 48" 48 48" _4:_. 93" ASO LOADS AKI4LDL= 560/b AXL4LLL= 9,412/b SEISI'IIC AXIAL Ps=+/- 11,708/b B.4SEMOMEMr= 0/n-/b Seismic Criteria # Bm Lvls I Frame Depthl Frame Heightl # Diagonals Beam Length Frame Type El Ss=1.041, Fa=1.084 14 1 48 in 1 312.0 in 1 6 96 in I Double Row Component, Description STRESS Column Py=55 ksi Hannibal IF3013-3x3x13ga P=9632 lb, M=10806 in-lb 0.57-OK Column & Backer None None None N/A Beam Fy=55 ksl HMH 2016012" Fate x 0.06" thk Lu=96 in Capacity: 1278 lb/pr 0.47-OK Beam Connector Fy=55 ksi LVI 2: 3 pin OK Mconn=8293 in-lb Mcap=15230 in-lb 0.540K Brace-Horizontal Fy=55 ii Hannibal 1-1/2x1-1/2x16ga 0.41-OK Brace-Diagonal Fy=55 ksi . Hannibal 1-1/2x1-1/2x16ga 0.72-OK Base Plate Fy=36 ksl 8x5x0.375 I Fixity= 0 In-lb 0.93-OK Anchor 2 per Base 0.5"x 3.25" Embed HILTI HUS EZ ESR 3027 Inspection Reqd (Net Seismic Uplift=116 lb) 0.475-OK Slab & Soil 6" thk x 4000 psi slab on grade. 1000 psf Soil Bearing. Pressure 0.93-OK Level ' Load Per Level Beam Spcg . Brace Story Force Transv I Story Force Longit. Column Axial Column Moment Conn. I Moment Beam Connector 1 6001b 80 in 36.0 in 41b 3 lb 9,972 lb 4,920 "8 6,257 "# 3 pin OK .2 600 lb 22.0 in 48.0 in 16 lb 12 lb 9,632 lb 101806 "# 8,293 "8 3 pin OK 3 600 lb 22.0 in 48.0 in 28 lb 22 lb 9,292 lb 10,738 "8 8,228 "8 3 pin OK 4 600 lb 22.0 in 48.0' In 40 lb 31 lb 8,952 lb 10,619 "# 8,128 "8 3 pin OK 5 600 lb 22.0 in 60.0 in 52 lb 40 lb 8,612 lb 10,451 "# 8,644 "8 3 pin OK 6 5,812 lb 26.0 in 60.0 In 546 lb 416 lb 8,272 lb 12,093 "8 14,312 "8 A pin OK 7 600 lb 22.0 In 78 lb 60 lb 5,326 lb 7,945 "8 6,200 "# 3 pin OK 8 600 lb 22.0 in 90 lb 69 lb 4,986 lb 7,618 "# 5,954 "# 3 pin OK 9 600 lb 22.0 in 102 lb 78 lb 4,646 lb 7,241 "# 5,672 "# 3 pin OK 10 600 lb 22.0 in 114 lb 87 lb 4,306 lb 6,813 "# 5,759 "# 3 pin OK 11 5,812 lb 26.0 In 1,056 lb 805 lb 3,966 lb 7,488 "8 10,589 "# 4pin OK 12 600 lb 22.0 in 140 lb 107 lb 1,020' lb 1,911 "8 1,886 "# 3 pin OK 13 600 lb 22.0 In 152 lb 116 lb 680 lb 1,324 "8 1,457 "# 3 pin OK 14 600 lb 22.0 In 164 lb 125 lb 340' lb 688 "# 994 "8 3 pin OK ** Load defined as product weight'per pair of beams Total: 2,583 lb 1,968 lb Notes IBEAM 24160 © STD LOAD LVLS, DECK BEAM 55140 @93 IN AISLE JON KENAU-TWE A PICK MODULE - 3 IN AI5ULxI5 PaSe ILI of 20 6/1/20 16 Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596. 1351 Fax: 909.596.7186 By: S.P. Project: JON, RENAU Project #: .LV-041018-5 Configuration & Summary., TYPE. C MAIN AISLE BAY n. 26 312 22" -, 48 48 - Seismic Criteria I # Bm Lvls IlFrame Depthl Frame Height *Diagonals *Diagonnisl Beam Length I Frame Type Ss=1041, Fa=1.084 1 14 1 48 In 1 312.0 in 1 6 1 144 in I Double Row Component. Description STRESS Column Fy=55 ksi Hannibal IF3013-3x3x13ga P=10230 lb, M=11386 in-lb 06-OK Column & Backer None None None N/A Beam Fy=50 ksi Struc C6x8.2 wl(2) front to back brace(s) Lu=47.5 In capacity: 16670 lb/pr 0.42-OK Beam Connector Fy=50 ksi Lvi 6: 4 pin OK J Mconn=9046 In-lb Mcap=27197 in-lb 0.33-OK Brace-Horizontal Fy=55 ksl I Hannibal 1-1/24-1/246ga 0.44-OK Brace-Diagonal Fy=55 ksi Hannibal 1-1/24-1/2x16ga 0.76-OK Base Plate Fy=36 ksl 8x5x0.375 Fixity= 0 in-lb 1-OK Anchor 2 per Base 0.5" x 3.25 Embed HILTI HUS EZ ESR 3027 Inspection Reqd (Net Seismic Uplift=0 lb) 0.45-OK Slab & Soil 6" thk x 4000.psislab on grade. 1000 psf Soil Bearing, Pressure 0.98oK Level Load Per Level Beam Spcg Brace Story Force I Transv Story Force Longit. Column Axial Column Moment, Conn. Moment Beam Connector 6 6,960 lb 26.0 in 60.0 in 643 lb 490 lb 9,070 lb 12,881 "# 9,046 °# 4 pin OK 11 6,960 lb 26.0 in 1,244 lb 948 lb 4,390 lb 8,080 "# 5,062 "# 4 pin OK ** Load defined as product weight per pair of beams Total: 2,721 lb 2,073 lb Notes lINT MAIN AISLE BAY JON RENAU-TYPE C MAIN PJSLE.xb Page I of Ck 6 Qi/2O 18 Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: $.P Project: JON RENAU COMPANY Project #: LV.041018-5 Configuration It Summary: TYPE MONOPOST 0 93 IN AISLE END $ I"II III• ___________________ Seismic Criteria # Bm I Frame Depthl Frame Height # Diagonals Beam Length Frame Type Ss=1.041, Fa=1.084 2 1 48 in 1 312.0. in 1 6 1 96 in Single Row Component Description STRESS Column Fy=55 IGi Hannibal IF3013-3x3x13ga P=2986 lb, M=34279 In-lb 0.41-OK Column & Backer To Level 2 Hannibal IF3013-3013 - 3x3x13ga/3x3x13ga p= 2986 lb, M= 34279 in-lb 0.63-OK Beam Fy=55 li HMH 55140/5.625" Face x 0.075" thk Lu=96 In Capacity: 10477 lb/pr 0.28-OK Beam Connector Fy=55 ksi Lvl 1: 4 pin OK Mconn=16558 in-lb Mcap=27197 In-lb 0.61-OK Brace-Horizontal Fy55 ksi Hannibal 1-112x1-1/2x16ga 0.12-OK Brace-Diagonal Fy=55 ksi Hannibal 1-1/2x1-1/2x16ga .0.21-OK Base Plate Anchor . Fy=36 ksi 8x8x0.375 I Flxity= .0 in-lb 032-OK 4 per Base 0.5" x 3.25" Embed HILT! HUS EZ ESR 3027 Inspection Reqd (Net Seismic Uplift---1828 lb),.0.408-OK Slab & Soil 6" thk.x 4000 psi slab on grade. 1000 psf Soil Bearing Pressure 0.2-OK Level Load** Per Level Beam Sp" I Brace Story Force Transv Story Force I Longit Column Axi I Column Moment Conn. Moment Beam Connector 1 2,906 lb 122.0 in 36.0 in 262 lb 199 lb 2,986 lb 34,279 "# 16,558 "# 4 pin OK £,VO IU iL.0 In 'W.V In bUZ ID 48.0 in 48.0 in 60.0 in 60.0 in 1 ID 1,493 lb 10,693 "# 4,560 "# 4pin OK Load detined as product weight per pair of beams Total: 763 lb 581 lb Notes ILOAD FROM 1/2 AISLE WIDTH CONSIDERED. BACKER TO 240 IN BEAMS FOR HAND RAIL WILL ADD TO STABILITY FOR MONOPOST IN LONGI1'UDINAL DIRECTION. JON RENAU-TYPE A PICK MODULE -93 IN AISLE END MONOF I, of Cl 1/2018 * 4* Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: S.P. Project JON RENAU COMPANY Project #: LV-041018-5 Configuration & Summary: TYPE B SELECTIVE RACK 192 192" Seismic Criteria # Bm Lvls I Frame Depthl Frame "eightl # Diagonals Beam Length Frame Type Ss=1.041, Fa=1.084 3 1 48 in 1 192.0 in 1 4 1 96 in I Single Row Component Description STRESS Column Fy=55 ksl Hannibal 1F3014-3x3x149a P=3870 lb, M= 17997 in-lb 0.73-OK Column & Backer None None None N/A Beam Fy=55 ksl HMH 30160/3" Face x 0.06" thk Lu=96 In Capacity: 2719 lb/pr 0.92-OK Beam Connector Fy=55 ksi LvI 1: 3 pin 01< Mconn=11686 In-lb Mcap=12691 inIb 0.92-OK Brace-Horizontal Fy=55 ksi• I Hannibal 1-1/2x1-1/2x16ga 0.16-OK Brace-Diagonal Fy=55 ksl Hannibal 1-1/2x1-1/2x169a 0.28-OK Base Plate Fy=36 ksl 8x5x0.375 I Fixity= 5000 in-lb 0.6-OK Anchor 2 per Base. 0.5° x 3.25" Embed'HILTI HUS EZ ESR 3027 Inspection Reqd (Net Seismic Uplift=1416 lb) 0.7-OK Slab •& Soil 6" thk x 4000 psi slab on grade. 1000 psf Soil Bearing Pressure 0.24-OK Level Load** - Per Level Beam Spcg Brace Story Force I Transv Story Force • Longit. Column Axia Column I Moment Conn. I Moment Beam Connector 1 2,500 lb 64.0 in 36.0 in 165 lb 126 lb 3,870 lb 17,997 "# 11,686 "# 3 pin OK 2 2,500 lb 64.0 in 48.0 in 330 lb 251 lb 2,580 lb 10,053 °# 7,499 °# 3 pin OK 3 2,500 lb 64.0 in 48.0 in 495 lb . 377 lb 1,290 lb 6,032 "# 3,980 "# 3 pin OK 48.0 in "Load defined as product weight per pair of beams Total: 990 lb 754 lb Notes I JON RENAU-TYPE B SELECTIVE RACK.X15 Pace I ? of Zx GI 1/2018 Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: S.P. Project: JON RENAU COMPANY Project #: LV-041018-5 Configuration & Summary: TYPE E SELECTIVE RACK TY. N + IM, H:_ 192" 64" 1 192" -I- 45" -I- 48" Seismic Criteria # Bm Lvts I Frame Depthl Frame HeIghtl # Diagonals Beam Length Frame Type Ss=1.041, Fa=1.084 3 48 in 192.0 in 4 4516 Single Row Component Description STRESS Column Fy=55 ksi Hannibal IF3014-3x3x14ga P=3870 lb, M=17997 in-lb 0.73-OK Column & Backer None None None N/A Beam Fy=55 ksi HMH 30160/3' Face x 0.06" thk Lu=45 in Capacity: 5770 lb/pr 0.43-OK Beam Connector Py=55 ksi Lvi 1: 3 pin OK Mconn=10295 In-lb Mcap=12691 in-lb 0.81-OK Brace-Horizontal Fy=55 ksi Hannibal 1-1/24-1/2x16ga 0.16-OK Brace-Diagonal Fy=55 ksl Hannibal 1-1/2x1-1f246ga 0.28-OW— Base Plate Fy=36 ksi 8x5x0.375 I Fixity= 5000 In-lb 0.6-OK Anchor 2 per Base 0.5" x 3.25" Embed HILT! HUS EZ ESR 3027 Inspection Reqd (Net Seismic Uplift=1416.1b) 0.7-5K Slab & Soil 6" thk x 4000 psi slab on grade. 1000 psf Soil Bearing Pressure 024-OK Level Load** Per Level Beam Spcg Brace Story Force Transv Story Force Longit. Column Axial Column Moment Conn. I Moment Beam Connector 1 2,500 lb 64.0 In 36.0 in 165 lb 126.1b 3,870 lb 17,997 "# 10,295 "# 3 pin OK 2 2,500 lb 64.0 in 48.0 in 330 lb 251 lb 2,580 lb 10,053 "# 6,107 "# 3 pin OK 3 2,500 lb 64.0 in 48.0 in 495 lb 377 lb 1,290 lb. 6,032 "# 2,589 °# 3 pin OK 48.0 in ** Load defined as product weight per pair of beams Total: 990 lb 754 lb Notes I JON RENAU-TYPE E SELECTIVE RACK.x15 Paie 1 of 2.. 1/2016 Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186, By: S.P. Project: JON RENAU COMPANY Project #: LV-041018-5 Configuration & Summary: TYPE El SELECTIVE RACK 48" 48" 192" 1 48" 36" _j'_ —4— L~] I ASD LOADS AXI4LDL= 60/b AXIAL LL= 2,500/b SEISI'IICAXIAL Ps=+/- 2,603/b BASEMOMENT= 0//?-/& -I- 45'• -I- L Seismic Criteria # Sm Lvls Frame Depth Frame Height *Diagonals I Beam Length Frame Type Ss=1.041, Fa=1.084 2 48 in 1. 1910 In 1 4 1 45 in I Single Row Component Description STRESS Column Fy=55 ksi Hannibal IF3014-3x3x14ga P=2580 lb, M=21378 in-lb 0,88-OK Column & Backer None None None I N/A Beam Fy=55 ksl HMH 30160/3" Face x 0.06" thk Lu=45 in capacity: 5770 lb/pr 0A3-OK Beam Connector Fy=55 ksl Lvi 1: 3 pin OK Mconn=11098 in-lb Mcap=12691 in-lb 0.87-OK Brace-Horizontal Fy=55 lc. Hannibal 1-1124-1/246ga 0.11-OK Brace-Diagonal Fy=55 ksl Hannibal 1-1/2x1-1/2x16ga 0.18-OK Base Plate Fy=36 li 8x5x0.375 I Fixlty= 0 in-lb 0.42-0K Anchor 2 per Base 0.5" x 3.25" Embed HILT! HUS EZ ESR 3027 Inspection Reqd (Net Seismic Uplift=1288 lb) 0.6-OK Slab &SoiI 6" thk x 4000 psi slab on grade. 1000 psf Soil Bearing, Pressure 0.18-OK Level Load** Per Level Beam Spcg Brace Story Force Transv . Story Force Longit. Column Axial Column Moment Conn. Moment Beam Connector 1 2,500 lb 88.0 in 36.0 in 207 lb 158 lb 2,580 lb 21,378 "# 11,098 "# 3 pin OK £,UU 10 W't.0 In 90.0 In 'fbi ID i9 ID 1,290 ID 5j967 "# 3,616 "# 3 pin OK 48.0 In 48.0 in ** Load defined as product weight per pair of beams Total; 660 lb 503 lb JON RENAU-TYFE El SELECTIVE RACK.xls Page I ct of cQQ) GI 1/2018 Structural Engineering & Design inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: S.P. Project: JON RENAU COMPANY Project #: LV-041018-5 Configuration & Summary: TYPE F SELECTIVE RACK 30" 120" 36" 96" -F--- 48" Seismic Criteria # Bm Lvls I Frame Depth Frame Height # Diagonals Beam Length Frame Type Ss=1.041, Fa=1.084 4 48 in 120.0 In, 1 3 1 Win— Single Row Component Description STRESS Column Fy=55 ksl Hannibal IF3014-3x3x149a P=5160 lb. M=I3581 in-lb 0.57-OK Column & Backer None None None N/A Beam Fy=55 ksl 'HMH 30160/3" Face x 006" thk Lu=96 in Capacity: 2719 lb/pr 0.92-OK Beam Connector Py=55 ksi Lvl 1: 3 pin OK I Mconn=8999 In-lb Mcap=12691 in-lb 0,71-OK Brace-Horizontal Fy=55 ksi Hannibal 1-112x1-1/2xl6ga 0.21-OK Brace-Diagonal . Fy=55 ksl Hannibal 1-1/2x1-1/2x16ga 0.37-OK Base Plate Fy=35 ksi 8x5x0375 I Fixity= 0 in-lb 0.7-OK Anchor 2per Base. 0.5" x 3.25" Embed HILTI HUS 'El ESR 3027 Inspection Reqd (Net Seismic Uplift--256 lb) 0.317-OK Slab & Soil 6" thk x 4000 psi: slab on grade. 1000 psf Soil Bearing. Pressure 0.28-OK Level Load** Per Level Beam Spcg Brace Story Force I Transv Story Force Longit. Column Axial Column Moment Conn. Moment Beam Connector 1 2,500 lb 30.0 in 24.0 in 132 lb 101 lb 5,160 lb 13,581 "# 8,999 "# 3 pin OK 2 2,500 lb 30.0 In 36.0 In 264 lb 201 lb 3,870 lb 6,791 "# 6,094 "# 3' pin OK 3 2,500 lb 30.0 in 48.0 In 396 lb 302 lb 2,580 lb . 5,282 "# 4,774 "# 3-pin OK 4 2,500 lb 30.0 In 528 lb 402 lb 1,290 lb 3,018 "# 2,925 "# 3 pin OK " Load defined as product weight per pair of beams Total: 1,320 lb 1,006 lb Notes I JON RENAU-TYFE F SELECTIVE R,ACKxb Pace ko of 1/2018 -4 Structurat Engineering & Design Inc. 1815 Wright Ave., La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.593.8561 I Project: JON RENAL! COMPANY 2842 WHIPTAIL LOOP W Project #: LV-012419-2 CARLSBAD, CA 92010 Date: 06/03/19 Plan Review Responses CORRECTIONS: 3. SEE TYPE El & E2 NOW REMOVED FROM SED I & SED 2. SEE SED 2 OF 2 TYPE A PICK MODULE @ 93" AISLE ELEVATION REFERENCING DETAIL #11 ON SED I OF 2 WHERE INTLK ROLL FORM BEAM 65Q IS NOW USED IN PLACE OF BEAM C5X6.7. SEE SED 2 OF 2 TYPE C MAIN AISLE BAY ELEVATION REFERENCING DETAIL #10 ON SED I OF 2 WHERE INTLK ROLL FORM BEAM 903 IS USED IN PLACE OF BEAM C7X9.8. PLEASE FEEL FREE TO CALL WITH ANY QUESTIONS YOU MAY HAVE REGARDING THE ABOVE MATTERS. NCERELY,.. ENHAOZHANG RECEIVED JUN 0 9 2019 >a CITY OF CARLSBAD BUILDING DIVISION Structural Engineering £ Design, Inc 1815 Wright Ave La Verne, Co. '01750 Tel: 909-596-1351 Fox: 900-596-7186 Project Name: JON RENAU COMPANY Project Number: LV-012419-2 !ate: 06/05119 Street Address: 2842 WHIPTAIL LOOP W City/State: CALSSA, CA 92010 Scope of Work: STORAGE RACK 6/6/2019 Structural Engineering & Design Inc. 1815 Wriaht Ave La Verne. CA 91750 Tel: 909.596.1351 Fax 909.596.7188 By: S.P. Project: JON RENAL! COMPANY ProJect#: LV-012419-2 TABLE OF CONTENTS TitlePage ..............................................................................................................1 Tableof Contents...................................................................................................2 Design Data and Definition of Components ..........................................................3 CriticalConfiguration .............................................................................................4 SeismicLoads .......................................................................................................5 to 6 Column..................................................................................................................7 Beam and Connector ............................................................................................8 to 9 Bracing..................................................................................................................10 Anchors.................................................................................................................11 BasePlate .............................................................................................................12 Slabon Grade .......................................................................................................13 Other configurations .............................................................................................14 to JON ENAU-TYPE A FICI. MODULE - 48 IN AI5L-MCAWX.xI3 Face 2. of 2-1 3/25/2019 Column Diagonal Brace Horizontal Brace Base Plate and Anchors learn to Column onnector T Panel Height 1 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750TeI: 909.596.1351 Fax: 909.596.7186 By: S. P. Project: JON RENAL! COMPANY Project #: LV-01 2419-2 Design Data The analyses herein conforms to the requirements of the: 2016 CBCSctlon 2209 I4NSIMH 16.1-2012 Spedflcatlons for the Design ofIndustila/ Steel Storage Racks "2012 RMI Rack Design Manual" ASCE 7-1 0, section 15.5.3 Transverse braced frame steel conforms to ASTM A570, Gr.55, with minimum strength, Fy=55 ksl 3. Longitudinal frame beam and connector steel conforms to ASTM A570, Gr.55, with minimum yield, Fy=55 ksl All other steel conforms to ASTM A36, Gr. 36 with minimum yield, Fy= 36 ksl Anchor bolts shall be provided by installer per ICC reference on plans and calculations, herein. All welds shall conform to AWS procedures, utilizing E70xx electrodes or similar. All such welds shall be performed In shop, with no field welding allowed other than those supervised by a licensed deputy Inspector. The existing slab on grade is 6" thick with minimum 4000 psi compressive strength. Allowable Soil bearing capacity is 1000 psf. The design of the existing slab Is by others. Load combinations for rack components correspond to 2012 RMI Section 2.1 for ASD level load criteria Definition of Componenta Front View: Down Aisle (Longitudinal) Frame Section A: Cross Aisle (Transverse) Frame JON RNAU-TYPEA PICK MODULE -48 IN AI5Lf-MALUX.xl5 Page 3 of .21 3i25/20I 9 48" -4 48" Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel: 909.596.1351 Fax 909.598.7186 By: S.P. Project: JON RENAU COMPANY Project #: LV-012419-2 Configuration & Summary: TYPE A PICK MODULE @ 48 IN AISLE MECALUX 22" ___________ **CKWLUMNRE4QNS 24 22" - - ______________ 64" ASD LOADS 22" - - ____________ . _____ AXIAL DL- 560/b 26" - - 64" . AXIAL 11 8,280 lb = •.• ••• . -I SEISMIC AXIAL Ps=+/- 10,397/b 22" - - 64" SASEMOMENT= 0/n-lb 312 312 seismic criteria # Bm Lvls Frame Depth Frame Height # Diagonals Beam Length Frame Type Ss=1.041, Fa=1.084 14 1 48 In 1 312.0 in 1 6 1 96 In Double Row Component Description STRESS Column Fy=55 ksl Mecalux 314 3.0"x2.69"x0.070" P=8300 lb, M=9595 In-lb 0.77-OK Column & Backer None None None N/A Beam Fy=55 ksi Intik 27E 2.75Hx2.75W4.059"Thk Lu=96 in Capacity: 2356 lb/pr 0.42-OK Beam connector Fy=55 ksi Lvi 2: 3 tab OK I Mconn=7635 in-lb Mcap=10266 In-lb 0.74-OK Brace-Horizontal Fy=55 ksi Mclx C458 Sgi 1.781x1.375x14ga 0.39-OK Brace-Diagonal Fy=55 ksl Mdx C458 Sgl 1.781x1.375x14ga 0.98-OK Base Plate Fy=36 ksi 7.283x5.118x0.375 I Fixity= 0 in-lb 0.98-OK Anchor 2 per Base 0.5" x 3.25" Embed HILTI HUS EZ ESR 3027 Inspection Reqd (Net Seismic Uplift=87 lb) 0.417-OK Slab & Soil 6" thk x 4000 psi slab on grade. 1000 psf Soil Bearing Pressure 0.78-OK Level Load** Per Level Beam 5pcg Brace Story Force Transv Story Force Longit. Column Axi I Column Moment Conn. I Moment I Beam Connector 1 1,000 lb 8.0 In 24.0 In 7 lb 5 lb 8,840 lb 4,375 "# 5,847 "# 3 tab OK 2 1,000 lb 22.0 In 24.0 In 27 lb 20 lb 8,300 lb 9,595 "# 7,635 "# 3 tab OK 3 1,000 lb 22,0 in 54.0 In 46 lb 35 lb 7,760 lb 9,483 "# 7,528 "# 3 tab OK 4 1,000 lb 22.0 in 64.0 In 66 lb 50 lb 7,220 lb 9,289 "# 7,363 "# 3 tab OK 5 1,000 lb 22.0 In 64.0 in 86 lb 65 lb 6,680 lb 9,012 "# 7,691 "# 3 tab OK 6 2,280 lb 26.0 In 64.0 In 233 lb 178 lb 6,140 lb 10,227 "# 8,450 "# 4 tab OK 7 1,000 lb 22.0 in 129 lb 98 lb 4,960 lb 7,676 "# 6,143 "# 3 tab OK 8 1,000 lb 22.0 in 148 lb 113 lb 4,420 lb 7,138 "# 5,737 "# 3 tab OK 9 1,000 lb 22.0 in 168 lb 128 lb 3,880 lb 6,518 "# 5,274 "# 3 tab OK 10 1,000 lb 22.0 In 187 lb 143 lb 3,340 lb 5,815 "# 5,074 "# 3 tab OK 11 2,280 lb 26.0 in 451 lb 344 lb 2,800 lb 5,945 "# 5,363 "# 4 tab OK 12 1,000 lb 22.0 In 230 lb 175 lb 1,620 lb 3,140 "# 2,818 "# 3 tab OK 13 1,000 lb 22.0 In 250 lb 190 lb 1,080 lb 2,176 "# 2,114 "# 3 tab OK 14 1,000 lb 22.0 in 270 lb 205 lb 540 lb 1,129 "# 1,353 "# 3 tab OK " Load defined as product weight per pair of beams Total: 2,298 lb 1,750 lb Notes JBEAM 27E © STD LOAD LVLS, DECK BEAM 40E @48 IN AISLE JON RENAU-TYPE A FICi. MODULE -48 IN A151f-MEALUX.xi5 Page of 2.( 3/25/2019 Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: S.P. Project: JON RENAU COMPANY Prolect #: LV-012419-2 Transverse (Cross Aisle) Seismic Load S1= 0.404 V= cs*Ip*Ws=Cs*Ip*(0.67*P*Prf+D) vt Fa= 1.084 Cs1= Sds/R Fv= 1.596 = 0.1881 Cs-max * Ip= 0.1881 Sds=2/3*Ss*Fa= 0.752 Cs2= 0.044*Sds V= 0.015 Sdl=2/3*S1*Fv= 0.430 = 0.0331 Eff Base Shear=Cs= 0.1881 TMI, ifon Ca=0;4*2/3*Ss*Fa= 0.3009 Cs3= 0.5*S1/R Ws= (0.67*PL 1 * PL)+DL (RMI 2.6.2) Crransveme, Biaced Frame Dir.) R= 4.0 = 0.0505 = 12,215 lb Ip= 1.0 Cs-max= 0.1881 Vtransv=Vt= 0.1881 * (1120 Ba R40 lb + I1095.21b) ~-illl IM se Shear coeffCs 01881 Etransverse= 21298 lb Pallet Height=hp= 20.0 In Limit Slates Level Transverse seismic shearper upn'ght 'DL per Beam Lvl= 80 lb Level PRODUCT LOAD P P*O.67*PRFI DL hi wl*hl 19 Fl*(hl+hp/2) 1 1,000 lb 670 lb 80 lb 8 in 6,000 7.1 lb 1284 2 1,000 lb 670 lb 80 lb 30 In 22,500 26.8 lb 1,0724 3 1,000 lb 670 lb 80 lb 52 In 39,000 46.4 lb 2,8774 4 1,000 lb 670 lb 80 lb 74 In 55,500 66.0 lb 5,5444 5 1,000 lb 670 lb 80 lb 96 In 72,000 85.7 lb 9,0844 6 2,280 lb 1,528 lb 80 lb 122 In 196,127 233.3 lb 30,7964 '7 1,000 lb 670 lb 80 lb 144 in 108,000 128.5 lb 19,7894 8 1,000 lb 670 lb 80 lb 166 In 124,500 148.1 lb 26,0664 9 1,000 lb 670 lb 80 lb 188 in 141,000' 167.8 lb 33,2244 10 1,000 lb 670 lb 80 lb 210 in 157,500 187.4 lb 41,2284 11 2,280 lb 1,528 lb 80 lb 236 In 379,394 451.4 lb 111,044-# 12 1,000 lb 670 lb 80 lb 258 In 193,500 230.2 lb 61,6944 13 1,000 lb 670 lb 80 lb 280 In 210,000 249.81b 72,4424 14 1,000 lb 670 lb 80 lb 302 In 226,500 2695 lb 84,0844 sum: P=16560 lb 11,095 lb 1,120 lb W=12215.2 lb 1,931,521 2,298 lb 1=499,071 Similarly fOr longitudinal seismic loads, using R6.0 Cs1=Sd1/(PR)= 0.1433 Cs2= 0.0331 Cs3= 0.0337 Cs-max= 0.1433 Level PRODUC LOAD P + = 12,215 lb (Longitudinal, Unbraced Dir.) R= 6.0 max5Ip 0.1433 T= 0.50 sec Vlong= 0.1433 * (1120 lb + 11095.2 Ib) tudlnal= 1,750 lb limit States Level longiL seismic shear per iiprigM 57*p12 DL hi wl*hi Fl Front View 1 1,000 lb 670 lb 80 lb 8 In 6,000 5.4 lb 2 1,000 lb 670 lb 80 lb 30 In 22,500 20.4 lb 3 1,000 lb 670 lb 80 lb 52 In 39,000 35.3 lb 4 1,000 lb 670 lb 80 lb 74 In 55,500 50.3 lb 5 1,000 lb 670 lb 80 lb 96 In 72,000 65.2 lb 6 2,280 lb 1,528 lb 80 lb 122 in 196,127 177.7 lb 7 1,000 lb 670 lb 80 lb 144 in 108,000 97.9 lb 8 1,000 lb 670 lb 80 lb 166 in 124,500 112.8 lb 9 1,000 lb 670 lb 80 lb 188 In 141,000 127.7 lb 10 1,000 lb 670 lb 80 lb 210 In 157,500 142.7 lb 11 2;280 lb 1,528 lb 80 lb 236 in 379,394 343.7 lb 12 1,000 lb 670 lb 80 lb 258 in 193,500 175.3 lb 13 1,000 lb 670 lb 80 lb 280 In '210,000 190.3 lb 14 1,000 lb 670 lb 80 lb 302 in 226,500 205.2 lb sum: 11,095 lb 1.120 lb W=12215.2 lb 1.931,521 1,750 lb JON RNAU-TYPEA PICA MODULE - 48 IN A15L-MALUX.xI5 Page _5 of a 1 3/25/2019 ofackfiainc " -E3 ER1E4Ea1F=3:iEER~ -E3 E41EI:EiIE~E4~ Typical rMlfle'Iflade of two columns Top Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: S.P. Project: JON RENAU COMPANY Project #: LV-012419-2 Downalsie Seismic Loads Configuration: TYPE A PICK MODULE @48 IN AISLE MECALUX Determine the story moments by applying portal analysis. The base plate Is assumed to provide no fixity. Seismic Story Forces Typical Iiame made Vlong= 1,750 lb Totbuta atea oftwocc!umns - Vcol=Vlong/2= 875 lb F1= 5 lb F2= 20 lb F3= 35 lb Seismic Story Moments ConceDluel Svstena col. Mbase-max= 0 'in-lb <=== Default capac14' hl-eff= hi - beam dip height/2 Mbase-v= (Vcol*hleff)/2 = 5 in Vcol = 2,188 in-lb <=== Moment going to base Mbase-eff= Minimum of Mbase-max and Mbase-v = 0 in-lb PINNED BASEASSIIMED N 1-1= [Vcol * hleff]-Mbase-eff M 2-2= [Vcol-(F1)/2] * h2 = (875 lb * 5 in)-0 in-lb = [875 lb - 10.2 lb]*22 In/2 = 4,375 in-lb = 9,595 In-lb Mseis= (Mupper+Mlower)j2 Beam to Column Msels(1-1)= (4375 In-lb + 9595 in-lb)/2 Msels(2-2)= (9595 in-lb + 9483 In-lb)/2 Elevation = 6,985 In-lb = 9,539 in-lb rho= 1.0000 Summary of Forces LEVEL hi Axial Load Column Moment** Mselsmlc** Mend-fixity Mconn** Beam Connector 1 8 in 8,840 lb 4,375 In-lb 6,985 In-lb. 1,368 in-lb 5,847 in-lb 3 tab OK 2 22 in 8,300 lb 9,595 in-lb 9,539 in-lb 1,368 In-lb 7,635 in-lb 3 tab OK 3 22 in 7,760 lb 9,483 In-lb 9,386 In-lb 1,368 in-lb. 7,528 In-lb 3 tab OK 4 22 In 7,220 lb 9,289 In-lb 9,151 in-lb 1,368 in-lb 7,363 In-lb 3 tab OK 5 22 In 6,680 lb 9,012 In-lb 9,620 in-lb 1,368 in-lb 7,691 In-lb 3 tab OK 6 26 In .6,140 lb 10,227 In-lb 8,952 In-lb 3,119 in-lb 8,450 In-lb 4 tab OK 7 22 in 4,960 lb 7,676 in-lb 7,407 in-lb 1,368 in-lb 6,143 in-lb 3 tab OK 8 22 in 4,420 lb 7,138 in-lb 6,828 In-lb 1,368 In-lb 5,737 In-lb 3 tab OK 9 22 in 3,880 lb 6,518 in-lb 6,166 in-lb 1,368 in-lb 5,274 in-lb 3 tab OK 10 22 in 3,340 lb 5,815 in-lb 5,880 in-lb 1,368 in-lb 5,074 in-lb 3 tab OK 11 26 In 2,800 lb 5,945 In-lb 4,542 in-lb 3,119 In-lb 51363 in-lb 4 tab OK 12 22 In 1,620 lb 3,140 In-lb 2,658 in-lb 1,368 in-lb 2,818 in-lb 3 tab OK 13 22 in 1,080 lb 2,176 in-lb 1,652 In-lb 1,368 in-lb 2,114 in-lb 3 tab OK 14 22 in 540 lb 1,129 in-lb 565 in-lb 1,368 in-lb 1,353 In-lb 3 tab OK Mconn= (Mseismlc + MendfIxity)*0.70*rho Mconn-allow(3 Tab)= 10,266 in-lb **all moments based on limit states level loading JON gcNAU-Tyre A PICK MODULE - 48 IN AI5Le-MCALUX.xls Page of .2. 3/25/2019 Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: S. P. Project: JON RENAU COMPANY Project #: LV-012419-2 Column (Longitudinal Loads) Configuration: TYPE A PICK MODULE @ 48 IN AISU Section Properties SectIon: Mecalux 314 3.0"x2.69"x0.070" : Aeff = 0.538 in A2 ly = 0.464 InA4 Kx = 1.7 x Ix = 0.765InA4 Sy = 0.307lnA3 Lx = 20.6 in . Sx = 0.510 in A3 ry = 0.928 In Ky = 1.0 - 2G90 in rx= 1.190in Fy=.55ks1 Ly= 24.0 in .1•J' flf= 1.67 Cmx= 085 cb= 1.0 P 070 in E= 29,500 ksi o.oi5 in .... LULUMN UL= bZU io critical ioaa cases are: I?l"ilseczi COLUMN PL= .7,780 lb Load Case 5. : (1#0.105*Sds)D + 0.75*(1.4#0.1.4Sds)*B*P # 0.75*('0J*mo*E,= 1.0, ASP ,fet/1od Mcol= 9,595 In-lb axial load coeff 0.79029405 * P seismic moment coeff. 0.5625 * Mcv/ Sds= 0.7523 Load case 6:: (1+0.14*Sds)D 1- (0.85+0.14Sds)*B*P.,l (0.7*r/io*E)<= 1.0, ASP Method 1i0.105*Sds= 1.0790 axla/Ioadcoeffi 0.65873 se/smlc moment coeffi 0.7*Mcol 1.4+0.14Sds= 1.5053 By analysis, Load case 6 governs utilizing loads as such 1+0.14Sds= 1.1053 0.85+0.14*Sds= 0.9553 Axial Load=Pax= 1.105322*520 lb + 0.955322*0.7*7780 lb Moment=Mx= 0.7*rho*Mcol B= 0.7000 = 5,777 lb = 0.7 * 9595 in-lb rtio= 1.0000 = 6,717 in-lb Axial Analysis kxLxfrx = 1.7*20.625/1.19 KyLy/ry = I*24/0.9284u Fe > Fy/2 = 29.5 = 25.9 Fn= Fy(1-Fy/4Fe) 55 ksi"[1-55 ksl/(4*335.4 ksl)] Fe= rY'2E/(KL/r)max"2 Fy/2= 27.5 ksi = 52.7 ksl = 335.4ks1 Pa= Pn/Qc Pn= Aeff*Fn Qc= 1.92 = 28372 lb/1.92 = 28,372rlb = 14,777 lb P/Pa= 0.39 > 0.15 Bending Analysis Check: Pax/Pa + (Cmx*Mx)/(Max*px) :5 1.0 P/PaD + Mx/Max --~ 1.0 Pno= Ae*Fy Pao= Pno/flc Myieid=My= Sx*Fy = 0.538 In A2 *55000 psi = 295851b/ 1.92 = 0.51 In A3 * 55000 psi = 29,585 lb = 15,409 lb = 28,050 in-lb Max= My/Of Pcr= n'2E!/(KL)max"2 = 28050 in-lb/1.67 = nA2*29500 ksi/(1.7*20.625 ln)A2 = 16,796 In-lb = 181,175 lb px= {1/[1(Qc*P/Pcr)]}1 = {1/[1(1.92*5777 lb/181175 lb)]}'-1 = 0.94 Combined Sbesses (5777 lb/14777 lb) + (0.85*6717 In-lb)/(16796 inlb*0.94) = 0.75 < 1.0, OK (EQ C5-1) (5777 lb/15409 lb) + (6717 in-lb/16796 in-lb) = 0.77 < 1.0, OK (EQ C5-2) "For comparison, total column stress computed for load case 51s: 74.0% p loads 6709.563289/b Ax/al and M= 5037 in-lb JON RNAU-TYPEA PICK M0DUL - 48 IN A15L-MCALUX.xl5 Page ) of at 3/25/2019 Eq. B2.1-4 Eq. B2.1-1 I 1 25 In 2.750 In ..•. ..... 59 In Beam= Intik 27E 2.75Hx2.75Wx0.05 OK Eq B2.3-2 1tr_7/ dope (EQ A7.2-3) 'rqj yl L Z yl= Ycg-t-r= 1.697 in y2= depth-Ycg= 0.935 in y3= y2-t-r= 0.817 In Ix= 0.627 In .Sx= 0.410 In Ycg=_1.815 in t= 0.05915 Bend Radius=r= 0.059 In Fy=Fyv=_55.00 k Fu=Fuv= 65.00 k top flange=b= 11.750 in bottom flange= 2.750 in Web depth= ['" fi(oomp) f2Ø000lon) Structural Engineering & Design Inc. 1815 Wriaht Ave La Verne. CA 91750 Tel: 909.5961351 Fax: 909.596.7186 By: S.P. Project: JON RENAU COMPANY Project #: LV-012419-2 BEAM c0nt1gurat10n: TYPE A PICK MODULE @ 48 IN AISLE MECALUX DETERMINE ALLOWABLE MOMENT CAPACITY 2.751n Check compression flange for local buckling (82.1) 1.75 in . w= c-2t-2"r = 1.75 In - 2*0.059 In - 2*0.059 in = 1.514 in w/t= 25.66 l=lambda= [1.052/(k)A0.5] * (wit) * (Fy/E)AO.5 = [1.052/(40.5] * 25.66 * (55/29500)AO.5 = 0.583 <0.673, Flange Is fully effective check web for local buckling cer section b2.3 fl(comp)= Fy*(y3/y2)= 48.06 ksl f2(tenslon)= Fy*(yl/y2)= 99.82. ksi Y= f2/f1 Eq. B2.3-5 = -2.077 k= 4 + 2*(1Y)A3 + 2*(1Y) Eq. B2.3-4 = 68.42 flat depth=w= y1+y3 = 2.514 In w/t= 42.61016949 i=iambda= [1.052/(k)A0.5] * (w/t) * (fl/E)A0.5 = [1.052/(68.42)AO.5] * 2.514 * (48.06/29500)AO.5 = 0.219 <0.673 be=w= 2.514 in b2= be/2 bl= be(3-Y) = 1.26 in = 0.495 bI+b2= 1.755 in > 0.817 In, Web Is fully effective Determine effect of cold working on steel yield point (Fva) cer section A7.2 Fya= C*Fyc + (1c*Fy (EQ A7.2-1) Lcorner=Lc= (p12) * (r + 1/2) 0.139 in C= 2*Lc/(Lf+2*Lc) Lflange-top=Lf= 1.514 in = 0.155 in m= 0.192*(FuiFy) -0.068 (EQ A7.2-4) = 0.1590 Bc= 3.69*(Fu/Fy), - 0.819*(Fu/Fy)A2 - 1.79 = 1.427 since fu/Fv= 1.18 < 1.2 and r/t=1 <70K then Fyc= Bc * Fy/(Rit)"m (EQ A7.2-2) = 78.485.ksi Thus, Fya-top= 58.64 ksi (tension stress at top) Fya-bottom= Fya*Ycg/(depth -Ycg) = 113.84 ksi (tension stress at bottom) Check allowable tension stress for bottom flanae Lflange-bot=Lfb= Lbottom - 2*r*2*t = 2.514 In cbottom=cb= 2*Lci(Lfb+2*Lc) = 0.100 Fybottom=Fyb= Cb*Fyc, + (1Cb)*Fyf = 57.34 ksl Fya= (Fyatop)*(FybiFya.bottom) = 29.54 ksl __________ If F= 0.95 Then PMn=F*Fya*Sx=I11.51 In-k Structural Engineering & Design Inc. = 1815 Wright-Ave La Verne. CA 91750 Tel: 909.598.1351 Fax: 909.596.7186 By: S.P. Project: JON RENAU COMPANY Project #: LV-012419-2 BEAM Contlguratlon: TYPE A PICK MODULE (cP 48 IN AISLE MECALUX RMI Section 5.2, PT II Section Beam= IntIk 27E 2.75Hx2.75Wx0.059"Thk Ix=Ib= 0.627 lnA4 275 In Sx= 0.410 jA3 :. . t= 0.059 In E= 29500 ksl :. . .4r 1.75 in 3 Fy=Fyv= 55 ksl F= 200.0 ...... . .... . . 65 ksi L= 96 In .. - 1.. . Fya= 58.6 ksl Beam Level= 2 . •••. •1• 1.625 in P=Product Load= 1,000 lb/pair ;. ......... H: D=Dead Load= 80 lb/pair 1. Check Bending Stress Allowable Loads Mcenter=PMn= W*L*W*Rm/8 + P DL2% of PL, 2.750 In :. .• ••. 0.059 In Rm= 1 - [(2*F*L)/(6*E*Ib + 3*F*L)] 1 - (2*200*96 in)/[(6*29500 ksl*0.627 lnA3)+(3*200*96 in)] = 0.772 If F= 0.95 Then F*Mn=F*Fya*Sx= 22.84 in-k Thus, allowable load per beam palr=W= PMn*8*(# of beams)/(L*Rm*W) = 22.84 in-k * 8 * 2/(961n * 0.772 * 1.599) = 3,084 lb/pair allowable load based on bending stiiess Mend= W*L*(1Rm)/8 = (3084 lb/2) * 96 in * (1-0.772)/8 = 4,219 in-lb © 3084 lb max allowable load = 1,368 in-lb @ 1000 lb Imposed product load 2. Check Deflection Stress Allowable Loads Dmax= Dss*Rd Rd= 1 - (4*F*L)/(5*F*L + 10*E*Ib) Allowable Deflection= 1/180 = j - (4*90*9 in)/((5*200*96 ln)+(10*29500 ksl*0.627 lnA4)] = 0.533 In = 0.727 In Deflection at imposed Load= 0.226 in if Dmax= 1/180 Based on 4/180 Deflection Qiterla and Dss= 5*W*LA3/(384*E*Ib) 1/180= 5*W*LA3*Rd/(384*E*Ib*# of beams) solving for W yields, W= 384*E*I*2/(180*5*LA2*Rd) = 384*0.627 in4*2/[180*5*(96 in)A2*0.727) = 2,356 lb/pair allowable load based on deflection limIts Thus, based on the least capacity of item 1 and 2 above: I Allowable load= 2,356 lb/pair Imposed Product Load= 1,000 lb/pair Beam Stress= 0.42 Beam at Level 2 Loads Thickness= 0.059 in Impact Factor (a)=(1-25%/2)= 1.000 LL.= 60 DL= 10 Trib width= 2 Eff Product Load= 500 Section Properties Beam Member= Intik 40E 4Hx2.75Wx0.059"Thk Beam at Level= 1 Beam Type= Step Ix= 1.552 InA4 Sx= 0.779 inA3 Length=L= 96.0 In Lu= 96.0 In Fy= 55,000 psi Defi Criteria- 1/ 240 2.750 In 4L75Oin 4 1.625 T.:. in 4.000 In 0.059 In Structural Engineering & Design Inc. JAIS Wright Avp I a VAmP. CA 9178in Tal gg SAR 11 Fr gpg 598 7IRR By: S.P. Project: JON RENAU COMPANY Project #: W. 0121q— 2. Deck Beam 96" DOWN AISLE. DECK BEAM TYPE A @ 48 IN AISLE The beam to column connection is assumed to provide partial end fixity for the beam frame. The end moment calculated herein Is added to the lateral force force portal moment when analyzing the. connection capacity. % End Fixity= 10% 0 = 0.1 Dist Load=w= 16.9 lb/in Coeff:13= 0.117/0.125 = 0.936 Mcenter= 6*(wL2/8) Mcenter= Mcenter(simple ends) - ø*Mcenter(flxed ends) = 0.936*(wLA2/8) = wl"2/8 - (0.1 * wLA2/12) Mends= Ø*Mmax(fixed ends) = wV2/8 - wLA2/120 = (wlt2/12)*0.1 = 0.117 * wLA2 = 0.0083*wL2 Fb= 0.6 * FY = 33,000 psi Fb-eff= 33,000 psi Mcenter= 0.117 * wLA2 Mends= 0.0083*wLA2 = 18,223 in-lb = 1,293 In-lb Bending M= 18,223 In-lb fb= (M/Sx)/a fb/Fb= 23393 psl/ 33000 psi = 23,393 psi = 0.71 <= 1.0, OK Deflection Defl-allow= 1./240 Defl= 13 * [5wL4/(384*E*Ix)] = 0.400 in = [5*169 Ib/in*(96 ln)/4i(384*29.5x106 psi * 1.552 inA4)]*0.936 = 0.382 in <= 0.4 In, OK mi Structural Engineering & Design IflC: 1815 Wright Ave Le Verne, CA 91750 Tel: 9QCI-59R 1151 Fax- qnfl5967lRR By: S. P. Project: JON RENAU COMPANY Project #: LV-012419-2 3 Tab Beam to Column Connection TYPE A PICK MODULE @48 IN AISLE MECALUX The tieam end moments shown herein show the result or the maximum inciuceu tixea end monents form seismic + static ioaos and the coae mandated minimum value ot 1.5%(DL+PL) Mconn max= (Mselsmlc + Mend-fixity)'0.7011tho = 7,635 In-lb Load at level 2 ho=0 Connector Type= 3 Tab Shear Capacity of Tab Tab Length= 0.44 in Fy= 55,000 psi Ashear= 0.438 in* 0.1793 In = 0.0785 inA2 Pshear= 0.4 * Fy * Ashear = 0.4 * 55000 psi * 0.0785in"2 = 1,727 lb Bearing Capacity of Tab tool= 0.070 In Fu= 65,000 psi Omega= 2.22 a= 2.22 Pbearing= alpha Fu tab length ' tool/Omega = 2.22 65000 psi ' 0.438 in 0.07 in/2.22 = 1,993 lb .> 1727 lb Moment Capadty of Bracket Edge Distance=E= 1.00 in TabSpadng= 2.0 in C= P1+P2+P3 tclip= 0.18 in = P1+P1*(2.511/4.5h')+P1*(0.5/4.5") = 1.667 * P1 Mcap= Sdip * Fbendlng = 0.127 jA3 * 0.66 * Fy = 4,610 In-lb C*d= Mcap = 1.667 Fy= 55,000 psi Sdip= 0.127 lnA3 d= E/2 = 0.50 In Pcllp= Mcap/(1.667 * d) = 4610.1 in-lb/(1.667 * 0.5 In) Thus, P1= 1,727 lb = 5,531 lb Mconn-allow= [P1*4.5+P1*(2.51/4.5')*2.5u+P1*(0.5hh/4.5h')*0.5h'] = 1727 LB*[4.51'+(2.5/4.50)*2.5f1 (0.5'/4.5')*0.5n] = 10,266 In-lb > Mconn max, OK JON RffNAU-TYPEA FiCI( MODULE -48 IN A15L-MCALUX.xi5 Page I of al 3/2512019 Structurai Engineering & Design Inc. By: S.P. Project: JON RENAL! COMPANY Project #: LV-012419-2 Transverse Brace Configuration: TYPE A PICK MODULE © 48 IN AISLE MECALUX Section Properties Diagonal Member= Mdx C458 Sgl 1.7814.37544ga Area= 0.317 in A2 r min= 0.446 In Fy= 55,000 psi K=1.0 1.92 Horizontal Member= Mdx C458 Sgl 1.781x1.375x14ga Area= 0.317 in"2 1.781 in 1.781 in r min= 0.446 in Fy= 55,000 psi D 1.375 in K= 1.0 fl 1.375 in ' Lk Frame Dimensions . . Bottom Panel Height=H= 64.0 in. Clear Depth=DB*2= 42.6 in Frame Depth=D= 48.0 in X Brace= NO Column Wldth=B= 2.7 in rho= 1.00 Load Case 6: : + !O.7*rno*EJc= .1.0, .450 Method Vtransverse= 2,298 lb Vb=VtransvI0.7*rho= 2298 lb * 0.7 * 1 1,609 lb LdIag= ((DB*2)A2 + (H6h')A2]A1/2 = 72.0 In Pmax= V*(Ldiag/D) * 0.75. = 1,810 lb ax/a/load on diagonal brace member Pn= AREA*Fn = 0.317 inA2 * 11177 psi = 3,543 lb (kl/r)= (k * I.diag)/r min = (1 x 72 In /0.446 in = 161.4 In Fe= piA2*E/(kl/r)A2 = 11,177 psi Since FecFy/2, Fn= Fe = 11,177 psi Vb 1L T LdI9 MIN 3 typ Tvolcal Panel cQnflon Pallow= Pn/Q = 3543 lb /1.92 = 1,845 lb Pn/Pallow= 0.98 <= 1.0 OK Horizontal brace Vb=Vtransv*0.7*rho= 1,609 lb (kl/r)= (k * thorlz)/r min Fe= piA2*E/(ki/r)A2 Fy/2= 27,500 psi = (1 x 48 in) /0.446 in = 25,148 psi = 107.6 In Since Fe<Fy/2, .Fn=Fe Pn= AREA*Fn Pallow= Pn/flc = 25,148 psi = 0.317in.2*25148 psi = 7972 lb /1.92 = 7,972 lb = 4,152 lb Pn/Pallow= 0.39 <= 1.0 OK JON RNAU-TYPE A PICK MODULE -48 IN AIsLr-MCALUX.xIs Page of a 1 3/25/2019 Structural Engineering & Design Inc. 1111 Wright Ayp I a \/mm CA 91mn Tl gq 5AR 1351 Fe gg 551A 71 AR By: S.P. Project: JON RENAU COMPANY Project #: LV-012419-2 Configuration: TYPE A PICK MODULE @ 48 IN AISLE ME( for Rigidly Connected Back to Back Units Critical Load case(s): 1) RMI Sec 2.2, Item 7: (0.9-0.2Sds)D + (0.90.20Sds)*B*Papp - E*rho Vtrans=V=E=Qe= 2,298 lb DEAD LOAD PER UPRIGHT=D= 1,1201b PRODUCT LOAD PER UPRIGHT=P= 16,560 lb Papp=P*0.67= 11,095 lb t=Wst1=(0.74954*D+ 0.74954*Papp*1)= 9,155 lb £2=Wst2=(0.74954*D + 0.74954*Papp)= 9,155 lb Product Load Top Level, Ptop= 1,000 lb Seismic Ovt based on E, E(Fl*hi)= 499,071 in-lb height/depth ratio= 6.3 in Row spacer Length=R= 12.0 In Dt= 108.0 In 31 VA hp I 11 14 Dt SIDE ELEVATION Sds=. 0.7523 (0.9-0.2Sds)= 0.7495 (0.9-0.2Sds)= 0.7495 B= 4'.QUUO rho= Sgl Frame Depth=D= 48M in Htop-lvi=H= 302.0 in # Anchors/Base= 2 hp= 20.0 in Fully Loaded Rack (2 Tied Fran d case 1: Movt= IE(FI*hi)*E*IhO] * 2 = 998,142 in-lb Mst= [Wstl * 2 * Dt/21 = (9155 lb * 2 * 108 In/ = 988,740 in-lb 1= (Movt-Mst)/Dt = (998142 in-lb - 988740 in-lb)/108 ,in = 87 lb Net Uplift per Column Net Seismic 87 lb oaa case 1: VI=Vtop= Cs * Ip * Ptop >= 350 lb for H/D >6.0 Movt= [V1*h + V2 * H/2]*0.7*rho = 0.1881 * 1000 lb * 2 = 126,698 in-lb = 376 lb T= (Movt-Mst)/Dt Vleff= 376 lb Critical Level= 14 = (126698 In-lb - 171615 In-lb)/108 in V2=V6L= Cs*Ip*D Cs*Ip= 0.1881 = -416 lb No Uplift = 421 lb Mst= (0.74954*1120 lb + 0.74954*1000 lb*1) * 2 * 108 In/2= = 171 flcin-Ih Check (2) 0.5" x 3.25 Embed IlILTI MUS ez ancnors per nase plate. Spedal Inspection Is required per ESR 3027. Pullout Capacity=Tcap= 1,100 lb L.A. City Jurisdiction? NO Tcap*Phi= 1,100 lb Shear Capaclty=Vcap= 1,250 lb Phi= 1 Vcap*phl= 1,250 lb Fully Loaded: (43 lb/1100 lb)M + (574 lb/1250 lb)"l = 0.50 <= 1.2 OK Top Level Loaded: (0 lb/1100 lb)"l + (47 lb/1250 lb)M = 0.04 <= 1.2 OK Structural Engineering & Design Inc. 1815 Wriaht Ave La Verne, CA 91750 Tel: 909596.1351 Fax: 909.596.7186 By: S.P. Project: JON RENAU COMPANY Project#: LV-012419-2 Base Plate Configuration: TYPE A PICK MODULE @48 IN AISLE MECALUX Section 4— Baseplate= 7.2834.1180.375 EffWldth=W = 6.60 in a = 2.30 in Mb Eff Depth=D = 5:00 in Anchor cc. =2*a=d = 4.60 In Column Wldth=b = 3.00 In N=# Anchor/Base= 2 I b L Column Depth=dc = 2.69 In Fy = 36,000 psi 1= 1.80 in Plate Thickness=t = 0.375 in Downaisle Elevation Down Aisle Loads Load Cases: : (1+0.105*Sds)D 1- 0.75*1(1.40.14Sds)*B*P# O.75*[O.7*mo*E1<.= JO, ASD Method COLUMN DL= 560 lb Axlal=P= 1.0789915 * 560 lb + 0.75 * (1.505322 * 0.7 * 8280 Ib) COLUMN PL= 8,280 lb = 7,148 lb Base Moment= 0 in-lb Mb= Base Moment*0.75*0.7*rho 1+0.105*Sds= 1.0790 = 0 In-lb * 0.75*07*rho 1.4+0.14Sds= 1.5053 = 0 In-lb Axial Load P = 7,148 lb Mbasa=Mb = 0 in-lb Axial stress=fa = P/A = P/(D*W) M1= wLA2/2= fa*LA2/2 = 217 psi = 351 In-lb Moment Stress=tb = M/S = 6*Mb/[(D*BA2] Moment Stress=fb2 = 2 * fb * 1/Vu = 0.0 psi = 0.0 psi Moment Stress=tbl = fb-fb2 M2= fbl*LA2)/2 F = 0.0 pSi = 0 In-lb M3 = (1/2)*fb2*L*(2/3)*L = (1/3)*fb2*LA2 Mtotal = M1+M2+M3 = 0 in-lb = 351 in-lb/In S-plate = (1)(tA2)/6 Fb = 0.75*Fy = 0.023 ln'3/ln = 27,000 psi fb/Fb = Mtotal/[(S-plate)(Fb)] Pp= 0.7*Fc = 0.55 OK = 2,800 psi OK Tanchor = (Mb(PLapp*0.75*0.46)(a))/[(d)*N/2] Tallow= 1,100 lb OK = -4,578 lb No Tension Cross Aisle Loads ORkaI*adceseR!4!Sec2d, Rem *(JHISut)OL ( J4SOS'O.7S#EL'R75i4 AWMIW Check uplift load on Baseplate on baseplate with 2 or more anchors per hen the base plate configuration consists of two anchor boils locat on either side the column and a net uplift force exists, the minimum base plate thickness nil be determined based on a design bending moment in the plate equal the uplift forte on one anchor times 1/2 the distance from, centerline of the anchor to the nearest edge of the rack column 1+- Ta +f , I Ill a.. Elffiffitic Uplift per Column= 87 lb Qty Anchor per BP= 2 Net Tendon per anchor=Ta= 44 lb c= 1.80 in Mu=Moment on Baseplate due to uplift= Ta*q2 = 39 In-lb Splate= 0.117 lnA3 Pstatic= 7,148 lb Movt*0.75*0.7*rho= 262,012 In-lb Pseismic= Movt/Frame Depth Frame Depth= 48.0 In = 5,459 lb P=Pstatic+Pseismic= 12,606 lb b =Column Depth= 2.69 In I =Base Plate Depth-Col Depth= 1.80 in fa = P/A = P/(D*W) M= wLA2/2= fa*L.2/2 = 382 psi = 619 in-lb/In Sbase/lri = (1)(tA2)/6 Fbase = 0.75*Fy = 0.023 ln'3/ln = 27,000 psi fb/Fb = M/((S-plate)(Fb)] = 0.98 OK JON RNAU-TYPE A ricic MODULE - 48 IN AI5LC-MecALUX.x15 Page 12, of . 3/25/2019 Structural Engineering & Design Inc. 1815 Wriaht Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: S.P. Project: JON RENAU COMPANY Project#: LV-012419-2 Slab on Grade Configuration: TYPE A PICK MODULE @48 IN AISLE MECALUX y 4 L Base Plate slab Concrete Fb f'c= 4,000 psi ¶ tslab=t=. 6.0 In cross: tefi!=6.0 in I ----p Aisle 4 B fsoll= 1,000 psf Down Aisle Movt= 349,350 In lb Frame depth= 48.0 in Baseolate Plan VISW Sds= 0.752 0.2*Sds= 0.150 Effec. Baseplete sldth=8 6.60 in width=a= 3.00 in __________ Effec. Saseplate DepthD= 5.00 in depth=b= 2.69 In p=B/D= 1.320 midway dist face of column to edge of plate=c= 4.80 In F 'CA O.5= 63.20. psi Column Loads mldwaydist face of column to edge of piate=e= 3.85 in DEAD LOAD=D= 560 lb per column Load Case 1) (1.2+0.2Sds)D + (1.2+0.25ds)*B*PI rho"E RMI SEC-2-2 Eqrii S unfadoredASO load 1.35046 * 560 lb + 1.35046 * 0.7 * 8280 lb + 1 * 7278 lb PRODUCT LOAD=P= 8,280 lb per column = 15,862 lb unfactoradASD load Load Case 2) (0.9-0.2Sds)D + (090.2Sds)*B*Papp + rho*E RMI SEC 2.2 EQTN 7 Papp= 5,548 lb per column = 0.74954 * 560 lb + 0.74954 * 0.7 * 5547.6 lb + 1 * 7278 lb P-seismic=E= (MovtlFrame depth) = 10,608 lb = 7,278 lb per column Load Case 3) 1.2*D + 1.4*13 nro SEC 2.2 EQTN 1,2 unfadored 1/mit State load = 1.2*560 lb + 1.4*8280 lb B=O.. rho=Load = 12,264 lb Case 4) 1 2*13 + 1 0*P + 1 OE iiisa.z.i e*s Sds= 0.7523 = 16,230 lb 1.2 + 0.2*Sds= 1.3505 Effective Column Load=Pu= 16,230 lb per column 0.. 9 - 0.20Sds= 0.7495 Puncture Apunct= [(c+t)+(e+t)]*2*t = 247.74 In A2 Fpunctl= [(4/3 + 81(3*13)1 * *(IAØ5) fv/Fv= Pu/(Apunct*Fpunct) = 127.2 psi = 0.649 <1 OK Fpunct2= 2.66 * I * (Pc''0.5) = 100.9 psi Fpunct eff=• 100.9 psi Slab Bending Pse=DL+PL+E= 16,230 lb Asoll= (Pse*144)/(ftoll) L= (Asoll)A0.5 y= (c*e)AO.5 + 2*t = 2,337 in"2 = 48.34 In = 16.3 In x= (L-y)/2 M= w*x2/2 S-slab= 1*teffA2/6 = 16.0 In = (fsoll*xA2)I(144*2) = 6.0 lnA3 Fb= 5*(phi)*(fc)A05 = 891.5 in-lb fb/Fb= M/(Sslab*Fb) = 189.74 psi = 0.783 <1, OK JON ReNAU-TYPEA PICK. ,MODUL - 48 IN AI5L-MCALUX.xIs Page 1.3 of , 3/25/201.9 Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.598.1351 Fax: 909.596.7188 By: S.P. Project: JON RENAU COMPANY Project #: LV-0 1241 -2 Configuration IN Summary: TYPE A PICK MODULE @93 IN AISLE MECALUX 22"- ___________ ..... **RACK COLUMN RMONS 22' - - - 56" ASD LOADS AXIAL DL = 560 lb 26" - - ..,. AXIAL LL= 9,412 lb 22" _____________ 48' SEISMIC AXIAL Ps=*/ 11,385/b 22" ___________ BASE MOMENT- 0 In-/b 22" 312" - = 31? ' 2 : : 24" 22" - -. - 24" 22' 22" 24" .96"-- 48" - Seismic criteria # Bm Lvls Frame Depth I Frame Helghtj # Diagonals I Beam Length Frame Type Ss=1.041, Fa=1.084 14 48 in 1 312.0 In 1 7 1 961n Double Row Component Description STRESS Column Fy=55 ksl Mecalux 312 3.06"x2.69"x0.1O5" P=9632 lb, M=10806 In-lb 0.61-OK Column & Backer None None None N/A Beam Fy=55 ksl IntIk 27E 2.5Hx2.75Wx0.059"Thk Lu=96 In -Capacity: 2356 lb/pr 0.25-OK Beam connector Fy=55 ksl Lvl 2: 3 tab OK I Mconn=8115 In-lb I Mcap=10266 In-lb 0.79-OK Brace-Horizontal Fy=55 ksl Mclx C458 sql 1.781x1.375x14ga 0.44-OK Brace-Diagonal Fy=55 ksi Mdx C458 Sgl 1.781x1.375x14ga 0.96-OK Base Plate Fy=36 ksi 7.283x5.1184.375 I Fixity= 0 in-lb 0.8-OK Anchor 2 per Base 0.5" x 3.25" Embed HILTI HUS EZ ESR 3027 Inspection Reqd (Net Seismic Upllft=0 lb) 0.433-OK Slab & Soil 6" thk x 4000 psi slab on grade. 1000 psf Soil Bearing Pressure 0.92-OK Level Load** Per Level Beam Spcg Brace Story Force Transv Story Force I Longit. Column Axi I Column Moment Conn. I Moment Beam Connector 1 6001b 8.0 in 24.0 In 4 lb 3 lb 9,972 lb 4,920 "# 6,079 "# 3 tab OK 2 600 lb 22.0 in 24.0 In 16 lb 12 lb 9,632 lb 10,806 "# 8,115 "# 3 tab OK 3 600 lb 22.0 In 24.0 In 28 lb 22 lb 9,292 lb 10,738 "# 8,050 "# 3 tab OK 4 600 lb 22.0 In 24.0 in 40 lb 31 lb 8,952 lb 10,619 "# 7,949 "# 3 tab OK 5 600 lb 22.0 In 48.0 in 52 lb 40 lb 8,612 lb 10,451 "# 8,465 "# 3 tab OK 6 5,812 lb 26.0 In 56.0 in 546 lb 416 lb 80272 lb 12,093 "# 12,579 "# Stab OK 7 600 lb 22.0 In 56.0 In 78 lb 60 lb 5,326 lb 7,945 "# 6,022 "# 3 tab OK 8 600 lb 22.0 In 90 lb 69 lb 4,986 lb 7,618 "# 5,775 "# 3 tab OK 9 600 lb 22.0 In 102 lb 78 lb 4,646 lb 7,241 "# 5,494 "# 3 tab OK 10 600 lb 22.0 in 114 lb 87 lb 4,306 lb 6,813 "# 5,580 "# 3 tab OK 11 5,812 lb 26.0 In 1,056 lb 805 lb 3,966 lb 7,488 "# 8,855 "# 5 tab OK 12 600 lb 22.0 In 140 lb 107 lb 1,020 lb 1,911 "# 1,707 "# 3 tab OK 13 600 lb 22.0 in 152 lb 116 lb 680 lb 1,324 "# 1,279 "# 3 tab OK 14 600 lb 22.0 in 164 lb 125 lb 340 lb 688 "# 815 "# 3 tab OK * Load defined as product weight per pair of beams Total: 2,583 lb 1,968 lb Notes IBEAM 27E @ STD LOAD LVLS, DECK BEAM 65E © 93 IN AISLE JON RENAU-TYrE A riCK MODULE - 93 IN AiSL-MCALUX. .xi5Page I 11 1 2/15/2019 Structural Engineering & Design Inc. 181 Wright Ava I a Vamp (A 9175fl Tal 909596 11 Far 095911 71 AR By: S.P. Project: JON RENAU COMPANY Project #: LV-G I2$ I q 2 Deck Beam 96" DOWN AISLE DECK BEAM TYPE A @93 IN AISLE The beam to column connection is assumed to provide partial end fixity for the beam frame. The end moment calculated herein is added to the lateral force force portal moment when analyzing the connection capacity. Section Proeeitles Beam Member= Intik 65E 6.54Hx2.75Wx0.059T1Thk 2.750 In Beam at Level= 1 Beam Type= Step Thickness= 0.059 In Ix= 5.434 lnA4 ::: ij 1.625 In Sx 1.608 inA3 Impact Factor (a)=(1-25%/2)= 1.000 : --• Length=L= 96.0 In 6.540 In Lu= 96.0 in LL= 125 p Fy= 55,000 psi DL= 10 - I Dell Criteria 1/ 240 Trib width= 3 875 I ) I Eff Product Load= 300 ' .J... Loads % End Fixity= 10% 0 = 0.1 Dist Load=w= 46.7 lb/in Coeff 8= 0.117/0.125 = 0.936 Mcenter= B*(wLA2/8) Mcenter= Mcenter(simple ends) - ø*Mcenter(fixed ends) = V. 0.936*(w2/8) = wLA2/8 - (0.1 * wLA2/12) Mends= 0*Mmax(fixed ends) = wL'2/8 - wLA2/120 = (wLA2/12)*0.1 = 0.117 * wV2 = 0.0083*wL/2 Fb= 0.6 * FY = 33,000 psi Fb-eff= 33,000 psi Mcenter= 0.117 * wL"2 Mends= 0.0083*wLA2 = 50,355 in-lb = 3,572 in-lb Bending M= 50,355 in-lb fb= (M/Sx)/a fb/Fb= 31315 psl/33000 psi = 31,315 psi = 0.95 <= 1.0,0K Deflection Defl-allow= 11240 Defi= B * [5wLM/(384*E*Ix)] = 0.400 in = (5*46.7 Ib/ln*(96 in)4/(384*29.5x106 psi * 5.434 inA4)]*0.936 = 0.302 in <= 0.4 in, OK Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: S.P. Project: JON RENAU COMPANY Project #: LV-0 1241q-2. Configuration & Summary: TYPE C MAIN AISLE BAY MECALUX **cK COLUMN REAC77ONS 22" 561, - .: ASD LOADS 22" 28" : 56I N . AXIAL DL= 560/b 22' - AXIAL LL= 9,960/b 22" , - , _____ "N SEISMIC AXIAL Ps=#/- 11,934 lb 312" - - ___7 BASE MOMENT= 0 In-/b 312" 24' - - __________________ ..4 26" 24 22' T - " 22' - - 2411 8" _ 144!' -F 48" -:4'- 48° 4- eusmuc criteria # Urn Lvls I Frame Depth I Frame HeIghtl # Diagonals I Beam Length I Frame Type Ss=1.041, Fa=1.084 14 1 48 In 312.0 In 1 7 1 144 In I Double Row Component Description STRESS Column Fy=55 ksl Mecalux 312 3.061 x2.69114.105° 11=9070 lb. M=12881 In-lb 0.64-OK Column & Backer None None None N/A Beam Fy=55 ksl Intik 901/8.165'deepx2.75"xo.084" I Lu=144 In CapacIty: 17404 lb/pr 0.4-OK Beam Connector Fy=55 ksi LA 6: 4 tab OK f Mconn=7818 in-lb Mcap= 18333 In-lb 0.43-OK Brace-Horizontal Fy=55 ksl Mclx C458 Sgi 1.781x1.375x149a 0.46-OK Brace-Diagonal Fy=55 ksl Mdx C458 Sgl 1.781x1.375x149a 0.88-OK Base Plate Fy=36 ksl 7.283x5.1184.375 I Flxity= 0 in-lb 0.84-OK Anchor 2 per Base 0.5° x 3.25" Embed HILTI HUS EZ ESR 3027 inspection Reqd (Net Seismic Uplift=0 lb) 0.45-OK Slab & Soil 6" thk x 4000 psi slab on grade. 1000 psf Soil Bearing Pressure 0.99-OK Level Load** Per Level Beam Spcg Brace . Story Force Transv Story Force Longit. Column Axial Column Moment Conn. Moment Beam Connector 1 8.0 in 24.0 In 4 lb 3 lb 10,520 lb 4,146 "4/ 2 22.0 in 24.0 In 14 lb 11 lb 10,230 lb 11,386 "# 3 22.0 In 24.0 in 24 lb 18 lb 9,940 lb 11,328 "4/ 4 22.0 In 24.0 in 34 lb 26 lb 9,650 lb 11,228 "4/ 5 22.0 in 48.0 in 44 lb 34 lb 9,360 lb 11,085 # 6 6,960 lb 26.0 in 56.0 in 643 lb 490 lb 9,070 lb 12,881 "# 7,818 "4/ 15 tab OK 7 22.0 In 56.0 In 66 lb 51 lb 5,550 lb 8,205 "4/ 8 22.0 in 77 lb 58 lb 5,260 lb 7,927 "# 9 22.0 in 87 lb 66 lb 4,970 lb 7,606 "4/ 10 22.0 in 97 lb 74 lb 4,680 lb 7,242 "4/ 11 6,960 lb 26.0 In 1,244 lb 948 lb 4,390 lb 8,080 "# 3,834 "# 5 tab OK 12 22.0 in 119 lb 91 lb 870 lb 1,624 "4/ 13 22.0 in 129 lb 98 lb 580 lb 1,125 "# 14 22.0 in 139 lb 106 lb 290 lb 584 °# * Load defined as product weight per pair of beams Total: 2,721 lb 2,073 lb Notes I - -. JON RNAU-V1' C - MAIN A15L AY.xis Page J , of 1/24/2019 Structural' Engineering & Design Inc. lATh Wright Ave Le Verne, CA imo Tel: 9095151 Fax- 9O9.967186 By: S. P. Project: JON RENAU COMPANY Project #: LV-I 124 i....2. Deck Beam 144" MAIN AISLE DECK BEAM TYPE C @ 48 IN AISLE The beam to column connection is assumed to provide partial end fixity for the beam frame. The end moment calculated herein is added to the lateral force force portal moment when analyzing the connection capacity. Section Properties Beam Member= Intik 901/8.165"deepx2.75"xo.084" at col locations Beam at Level= 1 . i Beam Type= Step Thickness= 0.084 In 1.625 In Ix= 15.420 lnA4 Sx= 4.340 in A3 Impact Factor (a)=(1-25%/2)= 1.000. 8.165 In Length=L= 144.0 in I O.0B4iu Lu= 144.0 In LL= 125 . Fy= 55,000 psi DL= 10 . Defi Criteria - 1/ 240 Trib width= 4 Eff Product Load= 0 Loads % End Flxlty= 5% 0=0.05 Dist Load=w= 45.0 lb/in Coeff 6= 0.121/0.125 = 0.968 Mcenter= 13*(wLA2/8) Mcenter= Mcenter(slmple ends) - Ø*Mnter(fixed ends) = 0.968*(wLA2/8) = wLA2/8 - (0.05 * wLA2/12) Mends= ø*Mmax(flxed ends) = wLA2/8 - wLA2/240 = (wL.2/12)*0.05 = 0.121 * wLA2 = 0.0042*wLA2 Fb= 0.6*Fy 33,000 psi Fb-eff= 33,000 psi Mcenter= 0.121 * wLA2 - Mends= 0.0042*wLA2 = 112,908 in-lb = 3,919 in-lb Sending M= 112,908 In-lb fb= (M/Sx)/a fb/Fb= 26016 psi/33000 psi = 26,016 psi = 0.79 <= 1.0, OK Deflection Defl-allow= 1/240 Defl= 6 * [5wLM/(384*E*Ix)] = 0.600 in = [5*45 Ib/In*(144 In)M/(384*29.5x10F6 psi * 15.42 inA4)]*0.968 = 0.536 In <= 0.6 in, OK or Std onceots ural Engineering 1200 N. Jefferson Ste, Ste.F Anaheim, CA 92807 Tel: 714:632.7330 Fax: 714.632.7763 By: S.P. Project: JON RENAU Project #: 01 r - Z. Deck Beam 144" MAIN AISLE DECK BEAM TYPE C @93 IN AISLE - The beam to column connection is assumed to provide partial end fixity for the beam frame. The end moment calculated herein Is added to the lateral force force portal moment when analyzing the connection capacity. Section Properties Beam Member= IntIk 903/9.54"deepx2.75x0.084" at col locations Beam at Level= 1 Beam Type= Step Thickness= 0.084 in •. Ts in Ix= 21.890 lnA4 . Sx= 5.030 In"3 Impact Factor.(a)=(1-25%/2)= 1.000 9.540 Length=L= 144.0 In . I. 0.084 in Lu= .144.0 In Fy= 55,000 psi LL= 125 / DL= 10 Dell Criteria - 1./ 240 TrIb width= 5.875 Eff Product Load= 0 Loads % End Fixity= 10% 0=0.1 Dist Load=w= 66.1 lb/in Coeff 13= 0.117/0.125 = 0.936 Mcenter= 6*(wLs2/8) Mcenter= Mcenter(slmple ends) - Ø*Mcenter(flxed ends) = 0.936*(wLi2/8) = wLA2/8 - (0.1 * wLA2/12) Mends= Ø*Mmax(fixed ends) = wLA2/8 - wL"2/120 = (wLA2/12)*0.1 = 0.117 * wL"2 = 0.0083*wLA2 Fb= 0.6 * Fy = 33,000 psi Fb-eff= 33,000 psi Mcenter= 0.117 * wLA2 Mends= 0.0083*wLA2 = 160,366 in-lb = 11,376 in-lb Bending M= 160,366 in-lb b= (M/Sx)/a fb/Fb= 31882 psi/33000 psi = 31,882 psi = 0.97 <= 1.0,0K Deflection Defl-allow= L/240 Defi= 13 * [5wL/'.4/(384*E*Ix)] = 0.600 in = [5*661.lb/in*(144 in)A4/(384*29.5x10A6, psi * 21.89 InF%4)]*0.936 = 0.536 In <= 0.6 in, OK Structural Engineering & Design inc. 1R1 S WrightAVA I a Vprnp CA Q1mn Tpl qg 1.51 Fnx: gpg !iclR 718R By: S.P. Project: JON RENAU COMPANY Project #: LV-O 124 iq... Deck Beam 96" DOWN AISLE DECK BEAM @93 IN AISLE © LANDING The beam to column connection Is assumed to provide partial end fixity for the beam frame. The end moment calculated herein is added to the lateral force force portal moment when analyzing the connection. capacity. Section Properties Beam Member= Intik 65Q 6.54Hx2.75WxO.084"Thk r175i 2.75O In In 3 Beam at Level= 1 Beam Type= Step Thickness= 0.084 in 11 Ix= 7.474 In"4 . ft 1.625 In Sx= 2.215 inA3 Impact Factor (a)=(1-25%/2)= 1.000 Length=L= 96.0 in 6.540 in Lu= 96.0 In LL= 125 C~- Eff - .0.ose In Fy= 55,000 psi DL= 10 Defi Criteria - 1/ 240 Trib.width= 5.875 Product Load= 0 :. . Loads % End Flxlty= 10% 00.1 Dist Load=w= 66.1 lb/in Coeff 8= 0.117/0.125 = 0.936 Mcenter= 6*(wLA2/8) Mcenter= Mcenter(slmple ends) - 0*Mcenter(fixed ends) = 0.936*(wL%2/8). = wL"2/8 - (0.1 * wLA2/12) Mends= Ø*Mm(flxod ends) = WL"2/8 . wL"2/120 = (wLA2/12)*0.1 = 0.117 * wL"2 = 0.0083*wL2 Fb= 0.6*Fy = 33,000 psi Fb-eff= 33,000 psi Mcenter= 0.117 * wL"2 Mends= 0.0083*wLA2 = 71,274 In-lb = 5,056 In-lb Bending M= 71,274 in-lb fb= (M/Sx)/a fbfFb= 32178 psi/33000 psi = 32,178 psi = 0.98. <= 1.0, OK Deflection Defl-allow= 1/240 Defl= B * [5wLA4/(384*E*Ix)] = 0.400 in = [5*661 Ib/in*(96 in)4/(384*29.5x10#\6 psi * 7.474 inA4)]*0.936 = 0.310 in <= 0.4 in, OK Structural Engineering. & Design I 1815 Wrioht.Aye La Verne. CA91750ThI: 90Q 595.1351 Fax- 9095987158 By: S.P. Project: .JON RENAL! COMPANY Project #: LV-012 Ao 1-2_ Beam 93" CROSS AISLE BEAM Section Properties Beam Member= Intik 65E 6:54Hx2.75Wx0.059"Thk Beam at Level= 1 Beam Weight= 4.0 lb/ft Beam Type= Step Thickness= 0.059 In Ix= 5.434 in A4 Sx= 1.608 InA3 Impact Factor (a)=(1-25%/2)= 1.000 Length=L= 93.0 in 1 6.540 In Lu= 93.0 in LL= 125 . U II 0.059 In Fy= 55,000 psi DL= 10 Defi Criteria - 1/ 240 Trib width= 4 Loads % End Fixlty= 0 % 0 = 0.0. DISt Load=w= 45.0 lb/in Mcenter= Mcenter(slmple ends) = wL'2/8 Fb= 0.6 * Fy = 33,000 psi Fb-eff= 33,000 psi Mcenter= wLA2/8 = 48,651 in-lb Bending M= 48,651 In-lb b= (M/Sx)/a = 30,255 psi Mends= 0 In-lb fb/Fb= 30255 psi/33000 psi = 0.92 <= 1.0, OK Deflection Def1-allow= [/240 Defl= [5wLA4/(384*E*Ix)] 0.388 In = [5*45 lb/in*(93 in)A4/(384*295x10A6 psi * 5.434 inA4)]*1 = 0.273 In <= 0.388 in, OK Structural Engineering & Design inc. 1815 Wriaht Ave La Verne. CA 91750 Tel: 909.596.1351 Fax: 909 596,7186 - By: S.P. Project: JON RENAU COMPANY Project #: LV-04 241 cl -. 2. Confiouration & Summary: TYPE MONOPOST @93 IN AISLE END MECALUX 312" 56 48" 312 24 . 24" 24" **p4CK COLUMN REACTIONS ASD.LOADS AXIAL DL= 80/b AXIAL 11= 2,906/b SEISMICAAL Ps+/- 3,252/b BASEMOMENT= 0/n-/b tim 96"48" Seismic Criteria # Bm Lvls Frame Depth I Frame HeIghtl # Diagonals I Beam Length I Frame Type Ss=1.041, Fa=1.084 2 48 in 1 312.0 In 1 7 1 96 In I Double Row Component Description STRESS Column Fy=55 ksl Mecalux 312 3.06"x2.69"x0.105" P=2986 lb. M=34279 In-lb 0.49-OK Column & Backer To Level 2 Mecalux 312+312 3.06"x2.69"xo.105" p= 2986 lb, M= 34279 in-lb 0.8-OK Beam Fy=55 ksl IntIk 65E 6.54Hx2.75Wx0.063'1hk Lu=96 In CapacIty: 10032 lb/pr 0.29-OK Beam Connector Fy=55 ksl Lvi 1: 4 tab OK I Mconn= 15972 in-lb Mcap=18333 In-lb 0.87-OK Brace-Horizontal Fy=55 ksl Mclx C458 SgI 1.781x1.375x149a 0.13-OK Brace-Diagonal Fy=55 ksi Mclx C458 Sgl 1.781x1.375x14ga 0.25-OK Base Plate Fy=36 ksl 8x8x.375 I Fixity= 0 in-lb. 0.26-OK Anchor 4 per Base 0.5" x 3.25" Embed HILTI HUS EZ ESR 3027 Inspection Reqd (Net Seismic Uplift=0 lb) 0.125-OK Slab & Soil 6" thk x 4000 psi slab on grade. 1000 psf Soil Bearing Pressure I 0.21-OK Level Load** l PerLevell Beam Spcg I Brace Story Force I Transv Story Force I Longit. Column I Axial Column Moment I Conn. Moment I Beam Connector 2,906 lb 122.0 In 24.0 in 262 lb 199 lb 2,986 lb 34,279 "# 15,972 "# 5 tab OK 2,906. lb 112.0 In 24.0 In 502 lb 24.0 in 24.0 in 48.0 in 56.0 in 56.0 in 382 lb 1,493 lb 10,693 "# 3,974 "# 5 tab OK ** Load defined as product weight per pair of beams Total: 763 lb 581 lb Notes IBEAMS FOR HANDRAIL TO ADD STABILITY TO MONOPOST IN LONGITUDINAL DIRECTION. 13ic ic e.J & c) 2 Z 0 C"4 '-") + io _s5 '). •? ;; # I4.5 \- / JON RNAU-TYPEMONOPOST - 93 IN AiSLe END.As Page of , 1 1/24/2019 Structural Engineering & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.5967186 By: S.P. Project: JON RENAU COMPANY Project #: LV-012419-2 Column (Longitudinal Loads) Configuration: TYPE 4ONOPOST @ 93 IN AISLE ENI Section Properties Section: Mecalux 312 3.06"x2.69"xo.105" :. Aeff= 07821n"2 Iy= 0636lnA4 Kx= 17 x Ix = 1.132 In A4 Sy = 0.422 in"3 Lx = 108.7 In Sx = 0.740 rn'3 ry = 0.902 In Ky = 1.0 2G90 in rx= 1.203 in Fy= 55ksi Ly=24.0.in .Qf= 1.67 Cmx= 085 th= 1.0 I0JJ_ E= 29,500 ksi 075 in Loads Considers toads at level 2 COLUMN DL= lb Qitical load cases are: RN! Sec 21 COLUMN PL 1,453 lb Load case 5:: (1+0.105*5d51)D + 0.75*(1.4+0.14Sds)*8*P # o.75*(o.7*mo*E)<.= 1. 0, ASD Method Mcol 10,693 in-lb ax/a/load coefi 0.79029405 * P se/sm/c moment coeffi 0.5625 * Mco/ Sds= (1)5 Load Case 6: : (l+0.14*Sdsfl) + (0.85+0.l4Sds)*B*P + (o.7*mo*E)<= 1. 0, ASO Method 1'i0.105*Sds= 1.0790 axIal load coeff 0.66873 se/sm/c moment coeffi 0.7*Mco/ 1.4+0.14Sds= 1.5053 By analysis, Load case 5 governs utilizing loads as such 1+0.14Sds= 1.1053 0.85+0.144Sds= 0.9553 Axial Load=Pax= i.0789915'40 lb. 0.75 * 1.505322 * 0.7w 1403W Moment=Mx= 0.75*0.7*rlto*Mc0I B= 0.7000 = 1,191 lb = 0.525* 10693 in-lb rho= 1.0000 = 5,614 in-lb Axial Analysis KxLx/nc = .L7*108.73*/1.203" KyLy/ry = 1*24f/0.9021' Fe <Fy/2 = 153.7 = 26.6 Fn= Fe = nA2f(KL/r)maxA2 Fe= n2E/(KL/r)maxA2 Fy/2= 27.5 ksi = 12.3 ksl = 12.3ks1 Pa= Pn/Qc Pn= Aeff4Fn .flc= 1.92 = 9642 lb/1.92 = 9,642 lb = 5,022 lb P/Pa= 0.24 > 0.15 Bending Analysis Check: Pax/Pa + (Crnx*Mx)/(Max*px) 1.0 P/Pao + Mx/Max :5 1.0 Pno= Ae*Fy Pao= Pno/Qc Myield=My= Sx*Fy = 0.782 In A2 *55000 psi = 429991b/1.92 = 0.74 in'3 * 55000 psi = 42,999 lb •= 22,395 lb = 40,689 In-lb Max= My/ff Pcr= n"2EI/(KL)max'2 = 40689 in-lb/1.67 = nA2*29500 ksi/(1.7*108.73 in)A2 = 24,365 in-lb = 9,646 lb px= {1/[1-(Qc4P/Pcr)]}"-1 = {1/[1_(1.92*1191 lb/9646 lb)]}" -1 = 0.76 Combined Stresses (1191 lb/5022 lb) + (0.85*5614 In-lb)/(24365 lnlb*0.76) = 0.49 <1.0, OK (EQ CS-i) (1191 lb/22395 lb) + (5614 In-lb/24365 In-lb) = 0.28 < 1.0, OK (EQ C5-2) ** For compan'son, total column stress computed for load case 6/5: 18.0% loads 1015.8708862/b Axial and M= 7485 In-lb JON RENAU-TYPEMONOP05T - 93 IN AGLE END.Ar, Page al. 2of s I 3/2G/2019 Structural Engineering & Design Inc. = 1815 Wriaht Ave La Verne, CA 91750 Tel: 909.598.1351 Fax: 909.596.7186 By: S.P. Project: JON RENAU COMPANY Project #: LV.012419-2 Column (Longitudinal Loads) Configuration: TYPE MONOPOST @ 93 IN AISLE END MECALUX Section Properties -. Section: Mecalux 312+312 3.06"x2.69'x0.105 Aeff = 1.567 ln"2 ly = 4.239 lnA4 Kx = 1.7 k 1-I Ix = 2.249 inA4 Sy = 1.469 In A3 Lx = 118.7 In 0.105 in .:U 2.690 In Sx= 1;470ln'3 ry= 1.6441n Ky= 1.0 rx= 1.198 in Fy= 55 Its! Ly=24.oln u(:. flf= 1.67 Cmx= 0.85 Cb= 1.0 1k 0.105 in U 2.690 in . E= 29,500 ksi Y L O.750inS Considers Indc t level j .. : WLUI9PJ L)LU bU ciiticaiIoaa cases are: l?MI5eC 21 COLUMN UVE LOAD=P 2,906 lb Load Case 5. : (1#0.105*Sds)D # O.75*(L4#O.l4Sds)*8*P ~ 0.75*(0.7*rno*E)<= 1., AS f'let/iod Mcol 34,279 In-lb ax/al load coeff 0.79029405 * P seIsmic moment coeffi 0.5625 * Mcvi Sds= .7 3 Load Case 6:: (1#0.14*Sds)D + (0.85,0.145ds)*8*P.., (0.7*mo*E)<= .1.0, ASD Method 1+0.105*Sds= 1.0790 ax/a/load coeffi 0.66873 seismIc moment coeffi 0.7 *f14co/ 1.4+0.14Sds= 1.5053 By analysis, Load case 6 governs utilizing loads as such 1+0.14Sds= 1.1053 0.85+0.14*Sds= 0.9553 Axial=Pax= 1.105322'80 lb + 0.955322*O.7S2906 lb Moment=Mx= 0.7*rho*Mcol = 2,032 lb = 0.525*34279 in-lb rho= = 23,995 In lb Axial Analysis KxLx/rx = 1.7*118.73f/1.1978n KyLy/ry = 1*24/1.644- Fe <Fy/2 = 168.5 = 14.6 Fn= Fe Fe= nA2E/(KLIr)maxA2 Fy/2= 27.5 ksl = nA2E/(KL/r)maxA2 = 10.3ksi . = 10.3. ksl Pa= Pn/2c Pn= AeffFn flc= 1.92 = 16067 lb/1.92 = 16,067 lb = 8,368 lb P/Pa= 0.24 > 0.15 Bending Analysis cHECK: Pax/Pa + (Q*Mx)/(Max*px) < 1.0 P/Pao + Mx/Max < 1.0 Pno= AeFy Pao= Pno/flc Myleld=My= SX*Fy = 1.567 in A2 *55000 psi = 861851b/1.92 = 1.47 in A3 * 55000 psi = 86,185 lb = 44,888 lb = 80,850 In-lb Max= My/Qf = 80850 in-lb/1.67 = 48,413 In-lb px= {1/[1_(Qc*P/Pcr)]}A_1 = {1/[1(1.92*2032 lb/16073 lb)]}"-1 = 0.76 Combined Stresses P0= nFs2EI/(KL)maxA2 = ri2*29500 ksi/(1.7*118.73 in)'2 = 16,073 lb (2032 lb/8368 lb) + (0.85*23995 in-lb)/(48413 inlb*0.76) = 0.80 < 1.0, OK (EQ C5-1) (2032 lb/44888 lb) + (23995 in-lb/48413 In-lb) = 0.54 <1.0, OK (EQ C5-2) ** For companson, total column stress computed for load case 51s: 73.0% ads 2382.9138293 lb AjdalandM- 17996 in-lb JON RNAU-TYPEMONOFOST - 93 IN AI5LE END.As Fa6e AZ I . of Q I 3/2G/2019 43015 Blackdeer Loop #205, Temecula, CA 92590 Phone: (951) 296-FIRE / Fax: (951) 296-3473 Email: proactive.fd@verizon.net C-16#952372 Jon Renan Lot #20 Whiptail Loop Carlsbad, CA 92010 11 HIGH PILE STORAGE TECHNICAL REPORT July 2, 2018 Report Prepared By: Dont14,Wctitc, NICETCERT#70305 - - C-16#952373 CBC20I8-0468 2842 Whiptail LOOP JON RENAU: INSTALL HIGH PILE STORAGE RACKS 2091202200 5/15/2019 CBC20I 8-0468 TABLE OF CONTENTS INTRODUCTION . 3 SUMMARY TABLE............................................................................................................4 BUILDING CONSTRUCTION, DESIGN, AND OCCUPANCIES .................................5 3.1 BUILDING CONSTRUCTION & DESIGN.......................................................................5 32 OCCUPANCIES ..........................................................................................................5 33 COMMODITIES....................................................................................................................5 3.4 STORAGE ARRANGEMENT .............................................................. ...................................5 4, STORAGE REQUIREMENTS ..........................................................................................6 4.1 AUTOMATIC FIRE SPRINKLER SYSTEM ..........................................................6 4.2 ALARM/MONITORING ................................................................................................ 6 4.3 BUILDING ACCESS/DOORS .......................................................................................6 4.4 SMOKE AND HEAT VENT'S ............................................. ....................................... .6 5. CONCLUSION..................................................................................................................7 Jon Rencu flProActive Fire Design & Consultingfl Lot #2OWhiptaiILoop Page 1 2 Carlsbad, CA 92010 INTRODUCTION The following is a high piled combustible storage code compliance report for Jon Renau. This report does not include the office area or any hazardous materials. This report is intended to help both the owners and the fire department in expediting plan review and effectively determining the requirements necessary to meet the Fire Code. This report is based on the 2016 Edition of the California Fire Code and Building Code, and the 2016 Edition of NFPA 13, Standardfor the Installation of Fire Sprinkler Systems. DISCLAIMER This report is the property of ProActive Fire Design and Consulting and was prepared exclusively for use by Jon Renau for the storage and occupancy conditions described in this report. Jon Renau conditions and operations addressed herein are based on information provided to the report by Jon Renau. Discrepancies between the information presented herein and actual conditions and conditions presented on plans are the sole responsibility of Jon Renau. Copies of this report retained by Jon Renau shall be utilized only by Jon Renau for the storage and occupancy conditions and the 2016 California Fire Code conditions and requirements addressed in this report. This report shall not be used for the purpose of construction for this project or any other project or for any other purpose. Jon Renau flProActive Fire Design & Consultingil Lot #20 Whiptail Loop Pag e 3 Carlsbad, CA 92010 2. SUMMARY TABLE TOPIC CODE SECTION CRITERIA/REQUIREMENTS Construction Type New concrete tilt up building - Open web steel joists w/ Plywood Deck Maximum Roof Height 331-0" Square Footage High Pile Storage Area: Approx. 18,713 sq. ft. Non-Public Accessible Haz/Materials N/A Not Applicable. Not part of the scope of this report. Storage Commodity NFPA Table A5.6.3 Commodities: Wigs hair Extensions Cartoned Unexpanded Group A Plastics. All products are cartoned and nonencapsulted Occupancy Classified as Cartoned Unexpanded Group A Plastic Max Storage Height to 261-0" Commodity Class CFC Table 3206.2 High Hazard 2,501 —300,000 sq. ft. Nonpublic accessible Storage Method NFPA 3.9.3.7.1 Single Row Racks Open Shelfs NFPA 3.9.3.7.7 Minimum 4'-0" Aisles Automatic Sprinkler CFC Table 3206.2 Required for High Hazard Commodities 2,501 —300,000 Protection sq. ft. All Non-Public Accessible. Fire Detection System CFC Table 3206.2 Not Required for High Hazard Commodities 2,501 - 300,000 sq. ft. All Non-Public Accessible. Building Access CFC Table 3206.2 Required for High Hazard Commodities 2,501 —300,000 sq. ft. All Non-Public Accessible. Smoke and Heat Removal CFC Table 3206.2 Required for High Hazard Commodities 2,501 - 300,000 sq. ft. All Non-Public Accessible. Jon Renau ProActive Fire Design & Gonsultingfl Lot #20 Whiptail Loop Page 1 4 Carlsbad, CA 92010 3. BUILDING CONSTRUCTION AND OCCUPANCY 3.1 BUILDING CONSTRUCTION Jon Renau will be occupying a new warehouse with concrete tilt up walls, with a plywood deck on open web wood trusses framed onto open web steel beams. The high point of the roof is 33'-0". 3.2 OCCUPANCIES Jon Renau is a distributor of wigs and hair extensions. The finished products are received in the warehouse and stored on racks for shipping and distribution. 3.3 COMMODITIES The commodities consist of natural human hair as well as synthetic modacrylic fibers. They are packaged in plastic envelopes and then inside boxes similar to a shoe box. All commodities are unexpanded, cartoned and unencapsulated. The cartons are stored on open shelves for hand stocking and includes two levels of open steel grating walkways that are at least 70% or more open. There will be no storage on the mezzanine walk ways except for misc. stocking. The facility will be protected for 26'-0" of Cartoned Nonexpanded Group A with a 33'-0" roof. 3.4 STORAGE ARRANGMENT Area: 18,713 square feet 'Commodities: Cartoned Nonexpanded Group A Plastics Method: Single Row Racks as defined by NFPA 3.9.3.7.7 Aisles: Minimum 4'-0" Shelves: Open Shelves Flue Spaces: CFC Table 3208.3 Storage > 25' No longitudinal flue spaces are required for single row racks. 3" Transverse Spaces are required NFPA 13 Section 17.1.10.1.1 requires nominal 6" flue spaces at rack uprights and between loads. Since there are no pallet loads there will need to be 6" transverse flue spaces that maximize the loads to no more than 20 square feet. The new racks will be equipped with a 3" wide yellow durable vinyl tape with the words "Keep Clear" in red placed on each beam at each transverse flue space. Storage Height: The proposed maximum storage height is 26'-011. Deflector Distance: A minimum of 36" clearance will be maintained between the top of storage and sprinkler deflectors. Jon Renau ProActive Fire Design & Consultingfl Lot #20 Whiptail Loop Page IS Carlsbad, CA 92010 4. STORAGE REQUIREMENTS 4.1 AUTOMATIC FIRE SPRINKLER SYSTEM The building will be new and the sprinkler system will be designed to meet the following requirements. Storage Area Ceiling Sprinkler Design ESFR Cartoned Unexpanded Group A over 25'-0" in height: Protection Criteria: Table 17.3.3.1 Design Criteria: Maximum Storage Height 301-0" Maximum Roof Height 331-0" 12 ESFR K-25.2 Pendant sprinklers at 20 psi with no in rack sprinklers or sprinklers below the grated walkways. Hose Allowance: 250 gpm combined inside and outside per Table 12.8.6 4.2 FIRE DETECTION Per Table 3206.2 Fire Detection is not required for High Hazard 2,501 - 300,000 sq. ft. Nonpublic Accessible. Per CFC 903.4, all valves and risers will have monitoring to meet this standard. 4.3 BUILDING ACCESS/DOORS Per Table 3206.2 Building access is required for High Hazard 2,501 - 300,000 sq. ft. Nonpublic Accessible. The building design and permit is to allow high pile storage will require access doors in all walls that face required fire department access roads such that lineal distance between adjacent access doors does not exceed 100 feet. 4.4 SMOKE AND HEAT VENTS Per Table 3206.2 Smoke and heat Vents are required for High Hazard 2,501 - 300,000 sq. ft. Nonpublic Accessible. Footnote J allows for the smoke and heat vents to be eliminated when exit travel distance is less than 250' which this will be and when protected by.ESFR sprinklers as this will be. Jon Renau flProAclive Fire Design & Consulting Lot #20 Whiptail Loop Page 16 Carlsbad, CA 92010 5. CONCLUSION' The new sprinkler system shall be designed based on 12 K-25.2 ESFR pendant sprinklers at 20 psi. There shall be access doors spaced at a maximum 100' lineal distance. High Pile Storage and Fire sprinkler plans shall be submitted for review based on the storage requirements outlined to meet CFQ Chapter 32 and NFPA 13. Please feel free to call with any questions. Jon Renau ProActive Fire Design & Consulting ,Lot #2OWhiptaiILoop Page 17 Carlsbad, CA 92010 SAN DIEGO REGIONAL ORDID# OFFICE USE ONLY REC QUESTIONNAIRE BP DATE I I HAZARDOUS MATERIALS PLANCHECK# f-I I Business Name UIness Contact ., Telephone # Yor pu )oh RyaucsLJ, Project Addres ity C Slate Zip Code ZZL.I2. NhqI-0iI Loôe soc 92c, 4PIan i-izo 2a-Oo Zip Code File# Mailing Address City Ikvtu t)j' questions RN I I 1-]Kr DbPARTIVICNT -HAZARDOUS MATE(tIALS DIVISION: OCCUPANCY CLASSIfICATION: (not required for prolects wlthl the Cliv of Sp Indicate by circling the item, whether your business will use, process, or store any or the Following hazardoUs materials. If any or the items are circled, applicant must contact the Fire Protection Agency with jurisdiction prior to plan submittal. Occupancy Rating: Facility's Square Footage (Including proposed project): Explosive or Blasting Agents 5. Organic Peroxides 9. Water Reactives 13. Corrosives Compressed-fiases. 6. Oxidizers 10. Cryogenics 14. Other Health Hazards ustible Liquids 7. Pyrophorlcs 11. Highly Toxic or Toxic Materials 15. None of These. 4. Flammable Solids 8. Unstable Reactives 12. Radloactives . .'iu r ei1Vu,WrliV,i P P5P.. flMI Ill - Ft,LMKUUU MATesqALsDIV1SION WIND): If the answer to any of the quesions Is yes, applicant must contact the County of San Diego Haza_dous Materials DivIsion, 6500 OJlgnd Avenue,,tfte ilo, San Diego, CA 92123. Call (858) 505-6700 prior to the Issuance of a building permit. 4K pro pOIflL.- S, 1rw - 57 C) +19 FEES ARE REQUIRED Project Completion Dale: 00000 Expected Dale of 0ccupancy, 00000 0 CaiARP Exempt YES NO . (for new construction or remodeling projects) / 0 [",,4r yàur business listed on the reverse side of this form? (check all that apply). Date Initiate [1. I3Wiit your business dispose of Hazardous Substances or Medical Waste In any amount? 0 [Y JMf your business store or handle Hazardous Substances in quantities greater than or equal to 65 gallons, 600 0 CalARP Required a9WII unds and/or 200 cubic Feet? 0 iI your business store or handle carclnogenskeproduclive toxins In any quantity? DaLe Initials 5.0 your business use an existing or install an underground storage tank? 0 19'1VY1 your business store or handle Regulated Substances (CalARP)? . 0 CaIARP Complete 0 IYftVlll your business use or install a Hazardous Waste Tank System (Title 22, Article 10)? 0 [lj( Will your business store petroleum in tanks or containers at your facility with a total facility storage capacity equal to Date Initials or greater than 1,320 gallons? (California's Aboveground Petroleum Storage Act). PART Ill: SAN DIEGO COUNTY AIR POLLUTION CONTROL DISTRICT (APCD), The following questions are lnjende&to-ldentlfythejiiajoijiy of aj(p911yJi0n. Issues at the planning stage. Your project may require additional measures not Identified by these questions. Some r$ldenlial roJq% çqgyj,e erceijljfl frpmPtD requirements. For more comprehensive requirements, please contact APCD at aocdcomndllsdcounty,ca.gov; (868) 586-2650 orTo'124 U OR,WR6ad, San Diego, CA 92131 I PAID YES MY - 0 E',Wiii the project disturb 160 square feet or more of existing building materials? 0 LV Willany load supporting structural members be removed? If yes, contact APCD prior to Issuance ala building or 1iLnennit A notification may be required at least 10 working days prior to commencing demolition. 0 0 (ANSWER ONLY IF QUESTION 1 or 2 IS YES) Has an asbestos survey been performed? , C3 0 (ANSWER ONLY IF QUESTION I or 2 IS YES) Based on the survey results, will the project disturq'aySkbesLos containing material? If yes. çgntact APCD prior to the issuance of a building or demolition permit. A notification may be requirei'f tft:10 working days prior to ommencIng asbestos removal. . 1:RIDIT: Vl.tA i' 0 Lii" Will the projector associated construction equipment emit air contaminants? Seethe reverse side of (waw,sdapcd.orqlinfolIactslpermits.pdt) For typical equipment requiring an APCD permit. IF yes, contact APCD prior to the Issuance of a building permit. - 0 0 (ANSWER ONLY IF QUESTION 5 IS YES) Will the project or associated construction equipment be located within 1.000 feet of a school Briefly describe business activities: ... I declare under penalty of perjury that to the best of ray knowledge and belief We responses made herein eijirue aiii correct. Name of Owner or Authorized Agent Signature of Owner or Authorized Agent Date FOR OFFICAL USE ONLY: FIRE DEPARTMENT OCCUPANCY CLASSiFtCATIbN:_________________________________________________________________ BY: DATE: I / EXEMPT OR NO FURTHER INFORMATION REQUIRED RELE WILDING PERMIt BUT NOT FOR OCCUPANCY , RELEASED FOR OCCUPANCY COUNTY-HMO . . APCD APCD COUNTY-HMD APCD '•4 SIGNAt4I*L 4 . A stamp In this box only exempts businesses From comp ing or U blifto a Hadrdaus Materials Business Plan. Other permitting requirements may stili apply. HM-9171 (08/15) County of San Diego - DEH - Hazardous Materials Division oM {J YIaF o G* v1. RECFI Vb High Pile Storage (HPS) Required lnformatio,ITY AUG 16 2018 The following infOrmation shall be completed and copied onto WI4PSiG D!ln!D, plans: - Commodity Classification: 0 I 0 ii 0 lii 0 IV Q High Hazard Q Group A plastic Commodity detailed natural human hair and modacrylic fiber wigs and hair extensions For Group A Plastics where the commodity classification Is not High Hazard complete the following: Expanded plastic: Percent by volume:_%. Percent by weight:/6 Non-expanded plastic: Percent by weight:% Packaging consist of: B Cartoned 0 Free flowing W Non-expanding 0 Encapsulated Non-encapsulated Other The maximum storage height (solid pile ____________rack 26' ) The following storage methods are employed at this facility (mark all that apply): OSolid pile storage OPalietized [Single row rack ODouble row rack DMulti-row rack DOther Rack storage shelf: 0 N/A 0 Load beam only 0 Wire mesh []Wood slates 0 Plywood 0 Other (Describe): The area designated In the building and used for high piled storage Is 1 R,71-3 square feet. CLASS grp commodlty, 18,713 sq ft CLASS commodity, sq ft. CLASS commodity, sq ft. [R Smoke vents required IJ No 0 Yes Fusible link degree F. Footnote J ESFR 0 Draft Curtains Required? 0 Yes ENO The overhead lire sprinkler system utilizes the following heads: BESFR: K_25_2 at 20 PSI with 14 F° heads Standard Coverage Heads: K 0 Pndant 0 Upright _____ degree with a density ofqpm over _______square feet spaced at a maximum of______ square feet per lire sprinkler. NFPA 13 Design Table: 173 3 .1 Curve: Minimum distance between top of storage and sprinkler deflector 3 Feet In-rack sprinklers required 0 Yes No 0 There is/are ____level(s) of in-rack fire sprinkler protection. Aisle width: 4 feet. Q Fire access doors required? ll Yes (Maximum distance of 100 lineal feet) ONo Flue spaces required? I Yes []No Flue space between racks shall be maintained a minimum of: Transverse 6 "clear. 0 Must be vertically aligned (for storage >25') Longitudinal pJp "clear Column protection required? 0 Yes lNo Pallet Stops Required? DYes LNo Longitudinal pallet stop configuration: Chain Link 0 Roll Form 0 C" Channel 0 Other:____________________ Transverse Flue Pallet Stop configuration: D Mechanical means (flue keepers, etc.) (5d Load beam markings "Keep Clear" Hand Stack? 0 No M Yes # of tiers: 3 Chain link required [N No 0 Yes 06 ja(11f 4111064/a