Loading...
HomeMy WebLinkAboutCT 97-13; Carlsbad Oaks North Phase 3; HYDROLOGY; 2016-08-26_) SECTION 1 SECTION 2 TABLE OF CONTENTS INTRODUCTION PROCEDURE Vicinity I'vfap Intensity-Duration Design Chart Isopluvial Maps 100-Year, 6-IIour 100-Year, 24-Hour San Diego County Soils Interpretation Study Runoff Coefficients Nomograph for Determination ofTc for Natural Watersheds Urban Areas Overland Time of Flow Curves SECTION 3 BASIN 1 Hydrology 100 year Analysis Hydraulics Hydraulic Grade Line SECTION 4 INLET SIZING SECTION 5 TEl\1PORARY DESILTATION BASINS APPENDIX Rancho Carlsbad Channel & Basin Project POCKET The rational method was used to determine flows: Q =CIA, where Q = flow in cubic feet per second C = runoff coefficient, based on land use and soil type. For this project, the soil type is 'B' for the northern half, 'C' for the wetlands and 'D' for the southerly slopes (see Section 2). I = intensity A = area, in acres Phase 1 of this project, including the dovvn-stream pipes for Phases 2 and 3, was designed prior to the adoption of the 2003 San Diego County Hydrology Manual. The 2003 manual states: "This manual should not be used when there is already an established flood flmv." Therefore, the hydrologic analyses are being perforn1ed according to the 1985 San Diego County Hydrology Manual. A Hydraulic Study \vas then done to confirm pipe sizes and eliminate pressure f1ow whenever possible. To be conservative, the diversion of "lo\v-f1o\vs" into pollution basins at diverter boxes was ignored. The advanced Engineering software (AES) Pipeflow Hydraulics computer program \Vas used to calculate the hydraulics of the storm drain pipe system for the ultimate conditions of the proposed site. The program estimates the gradually varying water surface profile by balancing the energy equation at user-specific locations. The AES pipd1ow program analyzes both the supercritical and subcritical flow. From this program the hydraulic grade line, the energy grade line and losses were determined for the ultimate conditions. The head loss computations were based on LACRD, LACFCD, and OCEMA cunent design manuals. The junction analysis was based on the L.A. Thomas equation. SUMMARY The Hydrologic Analysis performed during the Phase 1 pmiion of the project showed that Basin 1 generated 385.5 cfs ofrunoff±iom 112.13 acres. The analysis ofthe same basin for Phase 2 showed an increase in nmoff of 20.4 cfs to 416.4 cfs for Basin 1. The analysis of the same basin for Phase 3 shmved an additional increase of 1.1 cfs for Basin 1. The overall increase in runoff into Agua Hedionda Creek is acceptable due to the previously mentioned detention basin forn1ed by the Faraday Avenue and El Fuerte Street as designed by Rick Engineering Company for the "Rancho Carlsbad Channel & Basin Project" (see Appendix). I: \961 005\HYDROLOGY\PHASE 3\Rpt_Phase3.doc E. 0 r -. -- • I ~-• '- TABLE 2 RUNOFF COEFFICIENTS (RATIONAl HETHOD) DEVELOPED AREAS {URMN) Coefficient, c - Sci) Type ( 1) land Use A 8 c 0 Resident i a I: S i ng 1 e F am i 1 y .40 .45 .so . 55 . Hulti-Units . 45 .so .60 .70 Mob i 1 e homes .45 .so .55 .65 Rural ( 1 ots greater than 1/2. acre) .30 .35 .40 .45 Corrrnerci al (2) . 70 . 75 .80 . 85 &f'h 1 mpe rv i ous Industrial (2) .80 . 85 . 90 .95 90"/o Impervious NOTES: (l)obtain soil type fromAppendices IX-Cl thru IX-C4. ' (2)where actual/conditions deviate siini ficantly from the tabulated impervious- ness values of 80% or 90%. the values given for coefficient C, may be revised by multiplying 80"1.. or 90% by the ratio of actual imperviousness to the tabulated imperviousness. However, in no case shall the final coefficient be less than 0.50. For example: Consider commercial property on 0 soi I. Actual imperviousness ~50% Tabulated imperviousness ; 80% Revised C = SOx 0.85 = 0.53 80 F \ G U R E t 4. 4- III.l99 APPENDIX IX-8 2 PART 2 CONSmUCTION MI'ITERIALS SECT ION 200 -ROCK ~lA Tm.IALS 200-1.1 General Cp. 66) Add: "Alternate Rock Materials-Type "S" as de- ~;cr l bed l n Seer Jon 4 00 may be used, un I ess spec l f l- cally pruhlblted ln Special Provisions". 200-1.6 Stone for Rlprap (p. 69) Add: "The IndIvIdual c I a$Ses of rocks used l n s 1 ope pro·i·ectlon shall conform i·o 1-he following: PEf~CENTAG[ LARGfR DIAN* CLASSEi; Hock 1/2 1/4 No. 2 No. 3 Sizes 2 Ton 1 Ton Ton Ton Backing Backlng 4 Ton 0-5 2 Ton 50-100 0 ,--:; 1 Ton 95-100 50-100 0-5 112 Ton --50-100 0-5 1/•1 Ton 95-100 --50-100 200 lb 95-100 --75 I b 95-100 0-5 25 I b 25-75 0-5 ~i 5 1 b 90-100 25-75 I j[) 90-100 "TIK! arnou nt of rnc1ter I a I srna I I (':r than the srna I I est size I Isi·ed In the table for any class of rock slope protection shall not exceed the percentage llrnlt I I sted In the tab I e dei·errn l ned on a we I ght bas l s. Cornp I I a nee w l th the percen·i·age I I m H shown ln ·t-he table for all other sizes of the lndlv!dual pieces of any class of r·ock slope protec-rl0i1 shall bo do- terrnlned by the ratio of the number of Individual p l eces 1 arger than the srna II est sIze I1 sted l n the- ·t-ar1lte for tha-t class. *200-1.6.1 Selection of Rlprap and Filter Blanket Material Filter Blanket (3) Upper Layer(s) Opt. 1 Opt. 2 Ve 1. Rock Rip rap Sec. Sec • Ft/Sec Class Thick-200 . 400 Opt. 3 (I) (2) ness "T" (4) (4) (5) No. 3 Back- 6-7 l ng .6 3/1611 C2 D. G. No. 2 Back- 7-e lng ].0 1 /4" 83 D. G. Fac- 8-9.5 lng 1. 4 3/8" --D. G· 3/4", ·-· 1 1/2" 9.5-11 Light 2.0 1/2". --P.B. 3/4", 1/4 I 1/2" 11-13 Ton 2. 7 3/4" --P.B. / 3/4", 1/2 1 1/2" 13-15 Ton 3.4 1" --P.B. 15-17 1 Ton 4.3 1 1 /2" --Type B .17-20 2 Ton 5.4 2" --Type 8 3 Lowor Ll!yer (6) -- -- -- -- Sand Sand Sand Scmd Practical use of this table ls limited to situations where "T" ls less than D. (1) Average velocity ln plpe or bottom velocity In energy dlsslpator, whichever Is greater. (2) If dos.lred rlprap and filter blanket class Is not available, uso next larger class. ~ :' __ I Basin 1 Hydrology c605Pl.OUT slope or 'z' of right channel bank= 20.000 Estimated mean flow rate at midpoint of channel 6.898(CFS) Manning's 'N' = 0.015 Maximum depth of channel 1.000(Ft.) Flow(q) thru subarea = 6.898(CFS) Depth of flow= 0.297(Ft.), Average velocity 3.922(Ft/s) channel flow top width = 11.862(Ft.) Flow velocity= 3.92(Ft/s) Travel time 1.70 min. Time of concentration= 6.70 min. critical depth= 0.375(Ft.) Adding area flow to channel Decimal fraction soil group A 0.000 Decimal fraction soil group B 1.000 Decimal fraction soil group c 0.000 Decimal fraction soil group D 0.000 [INDUSTRIAL area type ] Rainfall intensity 6.108(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c 0.850 subarea runoff 10.384(CFS) for 2.000(Ac.) Total runoff= 11.011(CFS) Total area= 2.10(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.000 to Point/Station 106.000 **** SUBAREA FLOW ADDITION **** group A group B group c group D 0.000 1.000 0.000 0.000 6.70 min. J Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type Time of concentration Rainfall intensity Runoff coefficient subarea runoff 6.108(In/Hr) for a 100.0 year storm used for sub-area, Rational method,Q=KCIA, c 9.346(CFS) for 1.800(Ac.) Total runoff = 20.357(CFS) Total area= 3.90(Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.000 to Point/Station 107.000 ,.,,~,;, PIPEFLOW TRAVEL TH1E (User specified size) ;'""-:"'' Upstream point/station elevation = 470.00(Ft.) Downstream point/station elevation = 442.20(Ft.) Pipe length 80.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 20.357(CFS) Given pipe size= 18.00(In.) calculated individual pipe flow 20.357(CFS) Normal flow depth in pipe= 7.10(In.) Flow top width inside pipe= 17.59(In.) critical depth could not be calculated. Pipe flow velocity = 31.40(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 6.74 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.000 to Point/Station 107.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main stream number: 1 in normal stream number 1 Stream flow area= 3.900(Ac.) Page 2 Runoff from this stream Time of concentration Rainfall intensity = c605P1.0UT 20.357(CFS) 6.74 min. 6.083(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 108.000 to Point/Station 109.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type group A group B group c group D Initial subarea flow distance Highest elevation= 487.00(Ft.) Lowest elevation= 486.50(Ft.) 0.000 1.000 0.000 0.000 J 25.00(Ft.) Elevation difference= 0.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.79 m1n. TC = [1.8*(1.1-C)*distanceA.5)/(% slopeA(1/3)] TC = [1.8*(1.1-0.8500)*( 25.00A.5)/( 2.00A(1/3)]= setting time of concentration to 5 minutes Rainfall intensity (I) = 7.377 for a 100.0 year Effective runoff coefficient used for area (Q=KCIA) subarea runoff= 0.063(CFS) Total initial stream area= 0.010(Ac.) 1.79 storm is c = 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 109.000 to Point/Station 107.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ~~~~ Top of street segment elevation= 486.500(Ft.) End of street segment elevation= 454.500(Ft.) Length of street segment 700.000(Ft.) Height of curb above gutter flowline 6.0(In.) width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 24.500(Ft.) slope from gutter to grade break (v/hz) = 0.020 slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) slope from curb to property line (v/hz) 0.020 Gutter width= 1.500(Ft.) Gutter hike from flowline= 1.500(In.) Manning's N in gutter= 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.092(CFS) Depth of flow= 0.081(Ft.), Average velocity= 2.360(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 1.500(Ft.) Flow velocity= 2.36(Ft/s) Travel time= 4.94 min. TC = 9.94 min. Adding area flow to street User specified 'c' value of 0.730 given for subarea Rainfall intensity 4.735(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c 0.730 subarea runoff= 3.284(CFS) for 0.950(Ac.) Total runoff= 3.346(CFS) Total area= 0.96(Ac.) Street flow at end of street= 3.346(CFS) Half street flow at end of street= 3.346(CFS) Page 3 c605Pl. OUT Depth of flow= 0.264(Ft.), Average velocity= 4.257(Ft/s) Flow width (from curb towards crown)= 8.455(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 109.000 to Point/Station 107.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main stream number: 1 in normal stream number 2 Stream flow area = 0.960(Ac.) Runoff from this stream 3.346(CFS) Time of concentration= 9.94 min. Rainfall intensity= 4.735(In/Hr) summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 20.357 6.74 6.083 2 3.346 9.94 4.735 Qmax(l) 1.000 -·-1.000 _,_ 20.357) + 1.000 -·· 0.678 J. 3.346) + 22. 62 5 Qmax(2) 0. 778 " 1. 000 -·-20.357) + 1.000 -·-1.000 -·-3. 346) + 19.190 Total of 2 streams to confluence: Flow rates before confluence point: 20.357 3.346 Maximum flow rates at confluence using above data: 22.625 19.190 Area of streams before confluence: 3.900 0.960 Results of confluence: Total flow rate = 22.625(CFS) Time of concentration 6.742 min. Effective stream area after confluence 4.860(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 107.000 to Point/Station 110.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 441.50(Ft.) Downstream point/station elevation= 441.30(Ft.) Pipe length S.OO(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 22.625(CFS) Given pipe size= 24.00(In.) calculated individual pipe flow 22.625(CFS) Normal flow depth in pipe= 12.00(In.) Flow top width inside pipe= 24.00(In.) critical Depth = 20.34(In.) Pipe flow velocity = 14.40(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 6.75 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 107.000 to Point/Station 110.000 ;,**"~' CONFLUENCE OF MAIN STREAMS "''*ic-~: Page 4 c605Pl. OUT The following data inside Main Stream is listed: In Main Stream number: 1 stream flow area = 4.860(Ac.) Runoff from this stream 22.625(CFS) Time of concentration= 6.75 min. Rainfall intensity= 6.080(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 108.000 to Point/Station 108.100 **** INITIAL AREA EVALUATION **** Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type group A group B group c group D Initial subarea flow distance Highest elevation= 487.00(Ft.) Lowest elevation= 486.50(Ft.) 0.000 1.000 0.000 0.000 J 26.00(Ft.) Elevation difference= 0.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App x-c) = 1.85 min. TC = [1.8*(1.1-C)*distanceA.5)/(% slopeA(1/3)] TC = [1.8*(1.1-0.8500)*( 26.00A.5)/( 1.92A(1/3)]= Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.377 for a 100.0 year Effective runoff coefficient used for area (Q=KCIA) subarea runoff = 0.063(CFS) Total initial stream area = 0.010(Ac.) 1. 85 storm is c = 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 108.100 to Point/Station 110.500 ;,·,;,;, STREET FLOW TRAVEL TH1E + SUBAREA FLOW ADDITION o'd:H Top of street segment elevation= 486.500(Ft.) End of street segment elevation= 454.500(Ft.) Length of street segment 700.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 24.500(Ft.) slope from gutter to grade break (v/hz) = 0.020 slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line lO.OOO(Ft.) slope from curb to property line (v/hz) 0.020 Gutter width= 1.500(Ft.) Gutter hike from flowline= 1.500(In.) Manning's N in gutter= 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.090(CFS) Depth of flow= 0.080(Ft.), Average velocity= 2.344(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 1.500(Ft.) Flow velocity = 2.34(Ft/s) Travel time = 4.98 min. TC = 9.98 min. Adding area flow to street user specified 'c' value of 0.800 given for subarea Rainfall intensity 4.724(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c 0.800 Page 5 c605Pl. OUT subarea runoff= 3.288(CFS) for 0.870(Ac.) Total runoff= 3.351(CFS) Total area= 0.88(Ac.) Street flow at end of street= 3.351(CFS) Half street flow at end of street= 3.351(CFS) Depth of flow= 0.264(Ft.), Average velocity= 4.258(Ft/s) Flow width (from curb towards crown)= 8.460(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 108.100 to Point/Station 110.500 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area= 0.880(Ac.) Runoff from this stream 3.351(CFS) Time of concentration 9.98 min. Rainfall intensity= 4.724(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.510 to Point/Station 110.520 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A 0.000 Decimal fraction soil group B 1.000 Decimal fraction soil group c 0.000 Decimal fraction soil group D 0.000 [INDUSTRIAL area type ] Initial subarea flow distance 100.00(Ft.) Highest elevation = 484.00(Ft.) Lowest elevation = 482.00(Ft.) Elevation difference = 2.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App x-c) = 3.57 m1n. TC = [1.8*(1.1-C)*distanceA.S)/(% slopeA(1/3)] TC = [1.8*(1.1-0.8500)*(100.00A.5)/( 2.00A(1/3)]= 3.57 setting time of concentration to 5 minutes Rainfall intensity (I) = 7.377 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0.850 subarea runoff= 0.314(CFS) Total initial stream area= O.OSO(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.520 to Point/Station 110.530 ''"'*'' IMPROVED CHANNEL TRAVEL Titv1E ,·:-~:-::-:: Upstream point elevation = 482.00(Ft.) Downstream point elevation = 474.00(Ft.) channel length thru subarea 450.00(Ft.) channel base width O.OOO(Ft.) slope or 'z' of left channel bank= 20.000 slope or 'z' of right channel bank = 20.000 Estimated mean flow rate at midpoint of channel Manning's 'N' = 0.015 Maximum depth of channel 1.000(Ft.) Flow(q) thru subarea= 12.573(CFS) Depth of flow= 0.380(Ft.), Average velocity channel flow top width = 15.189(Ft.) Flow Velocity= 4.36(Ft/s) Travel time 1.72 min. Time of concentration 6.72 min. critical depth = 0.477(Ft.) Page 6 12.573(CFS) 4. 360(Ft/s) Adding area flow to channel Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group C Decimal fraction soil group D c605Pl. OUT 0.000 1.000 0.000 0.000 J [INDUSTRIAL area type Rainfall intensity Runoff coefficient subarea runoff 6.096(In/Hr) for a 100.0 year storm used for sub-area, Rational method,Q=KCIA, c 20.261(CFS) for 3.910(Ac.) Total runoff = 20.575(CFS) Total area= 3.96(Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.530 to Point/Station 110.500 "~'**1' PIPEFLOW TRAVEL TifV1E (User specified size) ;'dr"'' Upstream point/station elevation = 465.00(Ft.) Downstream point/station elevation = 444.00(Ft.) Pipe length 60.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 20.575(CFS) Given pipe size = 24.00(In.) calculated individual pipe flow 20.575(CFS) Normal flow depth in pipe = 6.36(In.) Flow top width inside pipe= 21.19(In.) critical Depth= 19.52(In.) Pipe flow velocity = 30.86(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 6.75 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.530 to Point/Station 110.500 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 stream flow area= 3.960(Ac.) Runoff from this stream 20.575(CFS) Time of concentration= 6.75 min. Rainfall intensity= 6.077(In/Hr) summary of stream data: stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 3.351 9.98 4. 724 2 20.575 6.75 6.077 Qmax(l) 1.000 "-1.000 "-3.351) + 0. 777 o. 1.000 -·-20.575) + 19.345 Qmax(2) 1.000 -·-0. 677 ·'-3. 3 51) + 1.000 o. 1.000 "-20. 575) + 22.842 Total of 2 streams to confluence: Flow rates before confluence point: 3.351 20.575 Maximum flow rates at confluence using above data: 19.345 22.842 Area of streams before confluence: 0.880 3.960 Results of confluence: Total flow rate= 22.842(CFS) Page 7 c605Pl. OUT Time of concentration 6.753 min. Effective stream area after confluence = 4.840(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.500 to Point/Station 110.000 ''*** PIPEFLOW TRAVEL TIME (User specified size) '"'*'' Upstream point/station elevation = 443.67(Ft.) Downstream point/station elevation = 441.33(Ft.) Pipe length 44.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 22.842(CFS) Given pipe size = 24.00(In.) calculated individual pipe flow 22.842(CFS) Normal flow depth in pipe = 11.11(In.) Flow top width inside pipe= 23.93(In.) critical Depth = 20.42(In.) Pipe flow velocity = 16.05(Ft/s) Travel time through pipe= 0.05 min. Time of concentration (TC) = 6.80 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.500 to Point/Station 110.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 stream flow area= 4.840(Ac.) Runoff from this stream 22.842(CFS) Time of concentration = 6.80 min. Rainfall intensity = 6.051(In/Hr) summary of stream data: stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 22. 62 5 6.75 6.080 2 22.842 6.80 6.051 Qmax(1) 1.000 ·'· 1.000 ·'· 22.625) + 1.000 ·'· 0.993 ·'· 22. 842) + 45.299 Qmax(2) 0.995 ·'· 1.000 -·-22.625) + 1.000 o. 1.000 -·-22. 842) + 45.360 Total of 2 main streams to confluence: Flow rates before confluence point: 22.625 22.842 Maximum flow rates at confluence using above data: 45.299 45.360 Area of streams before confluence: 4.860 4.840 Results of confluence: Total flow rate= 45.360(CFS) Time of concentration 6.798 min. Effective stream area after confluence 9.700(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Page 8 c605Pl. OUT Process from Point/Station 110.000 to Point/Station ~"'"''1' PIPEFLO\v TRAVEL Tifv1E (User specified size) 1"''1<* Upstream point/station elevation = 441.00(Ft.) Downstream point/station elevation = 432.60(Ft.) Pipe length = 120.66(Ft.) Manning's N = 0.013 No. of p1pes = 1 Required pipe flow 45.360(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow 45.360(CFS) Normal flow depth in pipe= 15.66(In.) Flow top width inside pipe = 22.86(In.) critical depth could not be calculated. Pipe flow velocity= 20.91(Ft/s) Travel time through pipe= 0.10 min. Time of concentration (TC) = 6.89 min. 104.000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 104.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 stream flow area = 9.700(Ac.) Runoff from this stream 45.360(CFS) Time of concentration = 6.89 min. Rainfall intensity= 5.996(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 101.000 to Point/Station 102.000 ""''-:'* INITIAL AREA EVALUATION -;,-;,-;,,, Decimal fraction soil group A 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group c = 0.000 Decimal fraction soil group o = 0.000 [RURAL (greater than 1/2 acre) area type ] Time of concentration computed by the natural watersheds nomograph (App X-A) TC = [11.9*length(Mi)A3)/(elevation change)]A.385 *60(min/hr) + 10 m1n. Initial subarea flow distance 850.00(Ft.) Highest elevation = 540.00(Ft.) Lowest elevation = 448.00(Ft.) Elevation difference = 92.00(Ft.) TC=[(11.9*0.1610h3)/( 92.00)]A.385= 3.31 + 10 min. 13.31 min. Rainfall intensity (I) = 3.923 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0.350 subarea runoff= 18.536(CFS) Total initial stream area= 13.500(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 103.000 1'*1"'' PIPE FLOW TRAVEL TIME (User specified size) ·HH Upstream point/station elevation = 448.00(Ft.) Downstream point/station elevation = 446.00(Ft.) Pipe length = 160.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 18.536(CFS) Given pipe size = 24.00(In.) calculated individual pipe flow 18.536(CFS) Page 9 Normal flow depth in pipe Flow top width inside pipe = critical Depth = 18.60(In.) c605Pl. OUT 15.26(In.) 23.10(In.) Pipe flow velocity= 8.79(Ft/s) Travel time through pipe= 0.30 min. Time of concentration (TC) = 13.61 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.000 to Point/Station 104.000 i:*;,-~, PIPE FLOW TRAVEL TirvlE (User specified size) *"~"'"'' Upstream point/station elevation = 446.00(Ft.) Downstream point/station elevation 432.60(Ft.) Pipe length 335.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 18.536(CFS) Given pipe size= 24.00(In.) calculated individual pipe flow 18.536(CFS) Normal flow depth in pipe= 10.70(In.) Flow top width inside pipe= 23.86(In.) critical Depth= 18.60(In.) Pipe flow velocity= 13.69(Ft/s) Travel time through pipe = 0.41 min. Time of concentration (TC) = 14.02 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.000 to Point/Station 104.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main stream number: 2 Stream flow area= 13.500(Ac.) Runoff from this stream 18.536(CFS) Time of concentration = 14.02 min. Rainfall intensity= 3.793(In/Hr) summary of stream data: stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 45.360 6.89 5.996 2 18.536 14.02 3.793 Qmax (1) 1.000 ~ 1.000 ·'· 45.360) + 1.000 " 0.492 " 18.536) + 54.473 Qmax(2) 0.633 ·'· 1.000 ·'· 45.360) + 1.000 ·'· 1.000 ·'· 18.536) + 47.230 Total of 2 main streams to confluence: Flow rates before confluence point: 45.360 18.536 Maximum flow rates at confluence using above data: 54.473 47.230 Area of streams before confluence: 9.700 13.500 Results of confluence: Total flow rate = 54.473(CFS) Time of concentration= 6.895 min. Page 10 '-_j ~) l _ _j c605Pl.OUT Effective stream area after confluence 23.200(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 111.000 **''* PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 432.10(Ft.) Downstream point/station elevation = 426.83(Ft.) Pipe length 75.34(Ft.) Manning's N = 0.013 N?. of ~ipes = 1 Required pipe flow 54.473(CFS) G1ven p1pe size= 36.00(In.) calculated individual pipe flow 54.473(CFS) Normal flow depth in pipe= 13.73(In.) Flow top width inside pipe= 34.97(In.) critical Depth= 28.77(In.) Pipe flow velocity= 21.99(Ft/s) Travel time through pipe= 0.06 min. Time of concentration (TC) = 6.95 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 111.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area= 23.200(Ac.) Runoff from this stream 54.473(CFS) Time of concentration 6.95 min. Rainfall intensity= 5.965(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 111.100 to Point/Station 111.200 **** INITIAL AREA EVALUATION **** Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type group A group B group c group D Initial subarea flow distance Highest elevation = 461.00(Ft.) Lowest elevation = 459.00(Ft.) 0.000 1.000 0.000 0.000 J 100 . 00 c Ft . ) Elevation difference = 2.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App x-c) = 3.57 min. TC = [1.8*(1.1-C)*distanceA.5)/(% slopeA(l/3)] TC = [1.8*(1.1-0.8500)*(100.00A.5)/( 2.00A(l/3)]= setting time of concentration to 5 minutes Rainfall intensity (I) = 7.377 for a 100.0 year Effective runoff coefficient used for area (Q=KCIA) subarea runoff= 0.314(CFS) Total initial stream area = 0.050(Ac.) 3.57 storm is c = 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 111.200 to Point/Station 111.300 id** IMPROVED CHANNEL TRAVEL TIME '"*'"* Upstream point elevation = Downstream point elevation = Channel length thru subarea 459.00(Ft.) 455.00(Ft.) 200.00(Ft.) Page 11 L_J c605P1.0UT channel base width O.OOO(Ft.) slope or 'z' of left channel bank = 20.000 slope or 'z' of right channel bank= 20.000 Estimated mean flow rate at midpoint of channel 3.543(CFS) Manning's 'N' = 0.015 Maximum depth of channel 1.000(Ft.) Flow(q) thru subarea= 3.543(CFS) Depth of flow= 0.231(Ft.), Average velocity 3.320(Ft/s) channel flow top width = 9.240(Ft.) Flow velocity= 3.32(Ft/s) Travel time 1.00 min. Time of concentration = 6.00 min. critical depth = 0.287(Ft.) Adding area flow to channel Decimal fraction soil group A 0.000 Decimal fraction soil group B 1.000 Decimal fraction soil group c 0.000 Decimal fraction soil group D 0.000 [INDUSTRIAL area type ] Rainfall intensity 6.556(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c 0.850 subarea r~noff 5.740(CFS) for 1.030(Ac.) Total runoff = 6.053(CFS) Total area = 1.08(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 111.300 to Point/Station 111.300 **** SUBAREA FLOW ADDITION **** group A group B group c group D 0.000 1.000 0.000 0.000 6.00 min. J Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type Time of concentration Rainfall intensity Runoff coefficient subarea runoff 6.556(In/Hr) for a 100.0 year storm used for sub-area, Rational method,Q=KCIA, c 5.573(CFS) for 1.000(Ac.) Total runoff = 11.626(CFS) Total area= 2.08(Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 111.300 to Point/Station 111.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 454.00(Ft.) Downstream point/station elevation = 427.00(Ft.) Pipe length 50.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 11.626(CFS) Given pipe size = 18.00(In.) calculated individual pipe flow 11.626(CFS) Normal flow depth in pipe = 4.72(In.) Flow top width inside pipe = 15.84(In.) critical Depth= 15.58(In.) Pipe flow velocity = 31.46(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 6.03 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 111.300 to Point/Station 111.000 **** CONFLUENCE OF MINOR STREAMS **** Page 12 L ___ ) c605Pl.OUT Along Main stream number: 1 in normal stream number 2 stream flow area= 2.080(Ac.) Runoff from this stream 11.626(CFS) Time of concentration = 6.03 min. Rainfall intensity= 6.537(In/Hr) summary of stream data: stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 54.473 6.95 5.965 2 11. 626 6.03 6. 537 Qmax(1) 1.000 ·'· 1.000 •'· 54.473) + 0.912 ·'· 1.000 ·'· 11. 626) + 65.081 Qmax(2) 1.000 ·'· 0.867 ·'· 54.473) + 1.000 -· 1.000 ·'· 11.626) + 58.881 Total of 2 streams to confluence: Flow rates before confluence point: 54.473 11.626 Maximum flow rates at confluence using above data: 65.081 58.881 Area of streams before confluence: 23.200 2.080 Results of confluence: Total flow rate= 65.081(CFS) Time of concentration 6.952 min. Effective stream area after confluence 25.280(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 111.000 to Point/Station 112.500 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 426.50(Ft.) Downstream point/station elevation = 409.00(Ft.) Pipe length 250.02(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 65.081(CFS) Given pipe size= 36.00(In.) calculated individual pipe flow 65.081(CFS) Normal flow depth in pipe= 15.14(In.) Flow top width inside pipe= 35.54(In.) critical Depth= 31.02(In.) Pipe flow velocity= 23.08(Ft/s) Travel time through pipe= 0.18 min. Time of concentration (TC) = 7.13 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.500 to Point/Station ;,-~,*-:' PIPEFLOW TRAVEL TIME (User specified size) ;,;,.;,;, Upstream point/station elevation = 409.67(Ft.) Downstream point/station elevation = 393.00(Ft.) Pipe length 204.33(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 65.081(CFS) Given pipe size = 36.00(In.) calculated individual pipe flow 65.081(CFS) Normal flow depth in pipe= 14.51(In.) Flow top width inside pipe= 35.32(In.) Page 13 112.000 c605Pl. OUT critical Depth = 31.02(In.) Pipe flow velocity 24.40(Ft/s) Travel time through pipe = 0.14 min. Time of concentration (TC) = 7.27 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.500 to Point/Station 112.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main stream number: 1 Stream flow area= 25.280(Ac.) Runoff from this stream 65.08l(CFS) Time of concentration= 7.27 min. Rainfall intensity= 5.794(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 107.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A 0.000 Decimal fraction soil group B 1.000 Decimal fraction soil group c 0.000 Decimal fraction soil group D 0.000 [INDUSTRIAL area type ] Initial subarea flow distance 26.00(Ft.) Highest elevation = 454.65(Ft.) Lowest elevation = 454.15(Ft.) Elevation difference= 0.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App x-c) = 1.85 min. TC = [1.8*(1.1-C)*distanceA.S)/(% slopeA(1/3)] TC = [1.8*(1.1-0.8500)*( 26.00A.5)/( 1.92A(1/3)]= 1.85 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.377 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0.850 subarea runoff= 0.063(CFS) Total initial stream area= 0.010(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 107.000 to Point/Station 1'*** STREET FLOVJ TRAVEL Tirv1E + SUBAREA FLOW ADDITION ;;;;;;;, Top of street segment elevation= 454.150(Ft.) End of street segment elevation= 405.750(Ft.) Length of street segment 660.000(Ft.) Height of curb above gutter flowline 6.0(In.) width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 24.500(Ft.) slope from gutter to grade break (v/hz) = 0.020 slope from grade break to crown (v/hz) = 0.020 street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) slope from curb to property line (v/hz) 0.020 Gutter width= 1.500(Ft.) Gutter hike from flowline= 1.500(In.) Manning's N in gutter= 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown 0.0150 Page 14 112.100 c605Pl. OUT Estimated mean flow rate at midpoint of street = 0.112(CFS) Depth of flow= 0.080(Ft.), Average velocity= 2.957(Ft/s) streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 1.500(Ft.) Flow velocity = 2.96(Ft/s) Travel time= 3.72 min. TC = 8.72 min. Adding area flow to street Decimal fraction soil group A 0.000 Decimal fraction soil group B 1.000 Decimal fraction soil group c 0.000 Decimal fraction soil group D 0.000 [INDUSTRIAL area type ] Rainfall intensity 5.153(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c 0.850 subarea runoff= 6.921(CFS) for 1.580(Ac.) Total runoff= 6.984(CFS) Total area= 1.59(Ac.) Street flow at end of street = 6.984(CFS) Half street flow at end of street = 6.984(CFS) Depth of flow= 0.303(Ft.), Average velocity= 6.067(Ft/s) Flow width (from curb towards crown)= 10.391(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 107.000 to Point/Station 112.100 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 stream flow area= 1.590(Ac.) Runoff from this stream 6.984(CFS) Time of concentration 8.72 min. Rainfall intensity = 5.153(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.400 to Point/Station **** INITIAL AREA EVALUATION **** Decimal fraction soil group A 0.000 Decimal fraction soil group B 1.000 Decimal fraction soil group c 0.000 Decimal fraction soil group D 0.000 [INDUSTRIAL area type ] Initial subarea flow distance 100.00(Ft.) Highest elevation= 443.50(Ft.) Lowest elevation= 441.50(Ft.) Elevation difference = 2.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App x-c) = 3.57 min. TC = [1.8*(1.1-C)*distanceA.S)/(% slopeA(1/3)] TC = [1.8*(1.1-0.8500)*(100.00A.5)/( 2.00A(1/3)]= 3.57 setting time of concentration to 5 minutes Rainfall intensity (I) = 7.377 for a 100.0 year storm 112.300 Effective runoff coefficient used for area (Q=KCIA) is c = 0.850 subarea runoff= 0.627(CFS) Total initial stream area= 0.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.300 to Point/Station 112.200 1'*** IMPROVED CHANNEL TRAVEL TirvlE -lei:** Upstream point elevation = Downstream point elevation = 441. 50(Ft.) 437.00(Ft.) Page 15 '_) c605Pl. OUT channel length thru subarea 300.00(Ft.) channel base width O.OOO(Ft.) slope or 'z' of left channel bank = 20.000 slope or 'z' of right channel bank = 20.000 Estimated mean flow rate at midpoint of channel 5.017(CFS) Manning's 'N' = 0.015 Maximum depth of channel 1.000(Ft.) Flow(q) thru subarea= 5.017(CFS) Depth of flow= 0.278(Ft.), Average velocity 3.251(Ft/s) channel flow top width = 11.110(Ft.) Flow velocity= 3.25(Ft/s) Travel time 1.54 min. Time of concentration= 6.54 min. critical depth= 0.330(Ft.) Adding area flow to channel Decimal fraction soil group A 0.000 Decimal fraction soil group B 1.000 Decimal fraction soil group c 0.000 Decimal fraction soil group D 0.000 [INDUSTRIAL area type ] Rainfall intensity 6.205(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c 0.850 subarea runoff 7.384(CFS) for 1.400(Ac.) Total runoff= 8.012(CFS) Total area= 1.50(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.200 to Point/Station 112.200 **** SUBAREA FLOW ADDITION **** group A group B group c group D 0.000 1.000 0.000 0.000 6.54 min. J Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type Time of concentration Rainfall intensity Runoff coefficient subarea runoff 6.205(In/Hr) for a 100.0 year storm used for sub-area, Rational method,Q=KCIA, c 10.444(CFS) for 1.980(Ac.) Total runoff = 18.455(CFS) Total area = 3.48(Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.200 to Point/Station 112.100 *~'·H PIPE FLOW TRAVEL TH-'lE (User specified size) ~'~"'"'' upstream point/station elevation = 425.00(Ft.) Downstream point/station elevation= 394.80(Ft.) Pipe length 80.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 18.455(CFS) Given pipe size = 24.00(In.) calculated individual pipe flow 18.455(CFS) Normal flow depth in pipe= 5.91(In.) Flow top width inside pipe= 20.68(In.) Critical Depth= 18.56(In.) Pipe flow velocity= 30.72(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 6.58 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.200 to Point/Station 112.100 **** CONFLUENCE OF MINOR STREAMS **** Page 16 L c605P1.0UT Along Main Stream number: 2 in normal stream number 2 stream flow area= 3.480(Ac.) Runoff from this stream 18.455(CFS) Time of concentration= 6.58 min. Rainfall intensity= 6.179(In/Hr) summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 6.984 8.72 5.153 2 18.455 6.58 6.179 Qmax(1) 1.000 ~ 1.000 ~ 6.984) + 0.834 ~ 1.000 ~ 18.455) 22.376 T Qmax(2) 1.000 ~ 0.755 ~ 6.984) + 1.000 ~ 1.000 -18.455) + 23.726 Total of 2 streams to confluence: Flow rates before confluence point: 6.984 18.455 Maximum flow rates at confluence using above data: 22.376 23.726 Area of streams before confluence: 1.590 3.480 Results of confluence: Total flow rate= 23.726(CFS) Time of concentration 6.581 min. Effective stream area after confluence 5.070(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.100 to Point/Station 112.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 394.50(Ft.) Downstream point/station elevation = 394.00(Ft.) Pipe length 5.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 23.726(CFS) Given pipe size = 24.00(In.) calculated individual pipe flow 23.726(CFS) Normal flow depth in pipe= 9.52(In.) Flow top width inside pipe= 23.48(In.) critical Depth= 20.72(In.) Pipe flow velocity = 20.45(Ft/s) Travel time through pipe = 0.00 min. Time of concentration (TC) = 6.59 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 112.100 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area= 5.070(Ac.) Runoff from this stream= 23.726(CFS) Time of concentration= 6.59 min. Rainfall intensity= 6.177(In/Hr) Program is now starting with Main Stream No. 3 Page 17 112.000 ·~ __ ) c605Pl. OUT ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 110.500 *"'*"' INITIAL AREA EVALUATION '"''** Decimal fraction soil group A 0.000 Decimal fraction soil group B 1.000 Decimal fraction soil group c 0.000 Decimal fraction soil group D 0.000 [INDUSTRIAL area type ] Initial subarea flow distance 26.00(Ft.) Highest elevation= 455.15(Ft.) Lowest elevation = 454.65(Ft.) Elevation difference= 0.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.85 m1n. TC = [1.8*(1.1-C)*distanceA.5)/(% slopeA(1/3)] TC = [1.8*(1.1-0.8500)*( 26.00A.5)/( 1.92A(1/3)]= 1.85 setting time of concentration to 5 minutes Rainfall intensity (I) = 7.377 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0.850 subarea runoff = 0.063(CFS) Total initial stream area= 0.010(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.500 to Point/Station 112.600 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 454.650(Ft.) End of street segment elevation= 405.550(Ft.) Length of street segment 660.000(Ft.) Height of curb above gutter flowline 6.0(In.) width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 24.500(Ft.) slope from gutter to grade break (v/hz) = 0.020 slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) slope from curb to property line (v/hz) 0.020 Gutter width= 1.500(Ft.) Gutter hike from flowline= 1.500(In.) Manning's N in gutter= 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown= 0.0150 Estimated mean flow rate at midpoint of street = 0.078(CFS) Depth of flow= 0.069(Ft.), Average velocity= 2.712(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 1.500(Ft.) Flow velocity = 2.71(Ft/s) Travel time = 4.06 min. TC = 9.06 min. Adding area flow to street Decimal fraction soil group A 0.000 Decimal fraction soil group B 1.000 Decimal fraction soil group c 0.000 Decimal fraction soil group D 0.000 [INDUSTRIAL area type ] Rainfall intensity= 5.029(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c 0.850 subarea runoff 2.052(CFS) for 0.480(Ac.) Total runoff= 2.115(CFS) Total area= 0.49(Ac.) Street flow at end of street 2.115(CFS) Page 18 c605P1.0UT Half street flow at end of street = 2.115(CFS) Depth of flow= 0.219(Ft.), Average velocity= 4.632(Ft/s) Flow width (from curb towards crown)= 6.207(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.500 to Point/Station 112.600 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 1 Stream flow area = 0.490(Ac.) Runoff from this stream 2.115(CFS) Time of concentration 9.06 min. Rainfall intensity= 5.029(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.700 to Point/Station 112.800 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A 0.000 Decimal fraction soil group B 1.000 Decimal fraction soil group c 0.000 Decimal fraction soil group D 0.000 [INDUSTRIAL area type ] Initial subarea flow distance 100.00(Ft.) Highest elevation = 436.00(Ft.) Lowest elevation = 434.00(Ft.) Elevation difference= 2.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.57 min. TC = [1.8*(1.1-C)*distanceA.5)/(% slopeA(1/3)] TC = [1.8*(1.1-0.8500)*(100.00A.5)/( 2.00A(1/3)]= 3.57 Setting time of concentration to 5 minutes Rainfall intensity (I)= 7.377 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0.850 subarea runoff= 0.627(CFS) Total initial stream area= 0.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.800 to Point/Station 112.900 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 434.00(Ft.) Downstream point elevation = 428.00(Ft.) channel length thru subarea 400.00(Ft.) channel base width O.OOO(Ft.) slope or 'Z' of left channel bank = 20.000 slope or 'Z' of right channel bank= 20.000 Estimated mean flow rate at midpoint of channel Manning's 'N' = 0.015 Maximum depth of channel 1.000(Ft.) Flow(q) thru subarea= 13.074(CFS) Depth of flow= 0.398(Ft.), Average velocity channel flow top width = 15.912(Ft.) Flow Velocity= 4.13(Ft/s) Travel time = 1.61 min. Time of concentration = 6.61 min. critical depth= 0.484(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Page 19 13.074(CFS) 4.131(Ft/s) '-.__) c605Pl. OUT group c = 0.000 group D = 0.000 J Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type Rainfall intensity Runoff coefficient subarea runoff 6.159(In/Hr) for a 100.0 year storm used for sub-area, Rational method,Q=KCIA, C 20.785(CFS) for 3.970(Ac.) Total runoff = 21.412(CFS) Total area = 4.07(Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.900 to Point/Station *"''** PIPEFLOVJ TRAVEL Tifv1E (User specified size) ''"'"'"'' Upstream point/station elevation = 415.00(Ft.) Downstream point/station elevation= 396.50(Ft.) Pipe length 80.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 21.412(CFS) Given pipe size= 24.00(In.) calculated individual pipe flow 21.412(CFS) Normal flow depth in pipe = 7.22(In.) Flow top width inside pipe= 22.01(In.) critical Depth = 19.86(In.) Pipe flow velocity= 26.91(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 6.66 min. 112.600 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.900 to Point/Station 112.600 **** CONFLUENCE OF MINOR STREAMS **** Along Main stream number: 3 in normal stream number 2 Stream flow area = 4.070(Ac.) Runoff from this stream 21.412(CFS) Time of concentration = 6.66 min. Rainfall intensity = 6.130(In/Hr) summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 2.115 9.06 5.029 2 21.412 6.66 6.130 Qmax(l) 1.000 ·'· 1. 000 ·'· 2 .115) + 0.820 " 1.000 " 21. 412) + 19.683 Qmax(2) 1.000 ·'· 0.736 ·'· 2 .115) + 1.000 ·'· 1.000 ·'· 21. 412) + 22.968 Total of 2 streams to confluence: Flow rates before confluence point: 2.115 21.412 Maximum flow rates at confluence using above data: 19.683 22.968 Area of streams before confluence: 0.490 4.070 Results of confluence: Total flow rate= 22.968(CFS) Time of concentration 6.663 min. Effective stream area after confluence 4.560(Ac.) Page 20 ' .. J c605Pl. OUT ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.600 to Point/Station 112.000 *"~'*"~' PIPEFLOW TRAVEL TIME (User specified size) ***"~' Upstream point/station elevation = 396.20(Ft.) Downstream point/station elevation = 394.00(Ft.) Pipe length 45.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 22.968(CFS) Given pipe size = 24.00(In.) calculated individual pipe flow 22.968(CFS) Normal flow depth in pipe= 11.41(In.) Flow top width inside pipe= 23.97(In.) critical Depth = 20.46(In.) Pipe flow velocity= 15.58(Ft/s) Travel time through pipe= 0.05 min. Time of concentration (TC) = 6.71 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.600 to Point/Station 112.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main stream is listed; In Main Stream number; 3 stream flow area= 4.560(Ac.) Runoff from this stream 22.968(CFS) Time of concentration= 6.71 min. Rainfall intensity = 6.101(In/Hr) summary of stream data: Stream Flow rate TC Rainfall Intensity NO. (CFS) (min) (In/Hr) 1 65.081 7.27 5.794 2 23.726 6. 59 6.177 3 22.968 6. 71 6.101 Qmax(1) 1.000 o. 1.000 -·-65. 081) + 0.938 _,_ 1.000 0-23. 726) + 0.950 " 1.000 " 22.968) + 109.148 Qmax(2) 1.000 -·-0.906 _,_ 65. 081) + 1.000 _,_ 1.000 _,_ 23. 726) + 1.000 o. 0.981 _,_ 22. 968) + 105.200 Qmax(3) 1.000 _,_ 0.923 -·-65. 081) + 0.988 J. 1.000 o. 23. 726) + 1.000 " 1.000 _,_ 22.968) + 106.472 Total of 3 main streams to confluence: Flow rates before confluence point: 65.081 23.726 22.968 Maximum flow rates at confluence using above data; 109.148 105.200 106.472 Area of streams before confluence: 25.280 5.070 4.560 Results of confluence: Total flow rate = 109.148(CFS) Time of concentration= 7.272 min. Page 21 -_) I __ ) c605Pl. OUT Effective stream area after confluence 34.910(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.000 to Point/Station 113.000 **** PIPEFLOW TRAVEL TIME (User specified size) ""'"'"'' upstream point/station elevation= 392.50(Ft.) Downstream point/station elevation= 386.50(Ft.) Pipe length 42.49(Ft.) Manning's N = 0.013 N9. of ~ipes = 1 Required pipe flow 109.148(CFS) G1ven p1pe size = 42.00(In.) calculated individual pipe flow 109.148(CFS) Normal flow depth in pipe = 15.45(In.) Flow top width inside pipe= 40.50(In.) critical Depth= 37.96(In.) Pipe flow velocity= 33.98(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 7.29 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.000 to Point/Station 113.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area= 34.910(Ac.) Runoff from this stream 109.148(CFS) Time of concentration= 7.29 min. Rainfall intensity= 5.783(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.100 to Point/Station 113.200 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A 0.000 Decimal fraction soil group B 1.000 Decimal fraction soil group c 0.000 Decimal fraction soil group D 0.000 [INDUSTRIAL area type ] Initial subarea flow distance lOO.OO(Ft.) Highest elevation = 456.00(Ft.) Lowest elevation = 454.00(Ft.) Elevation difference = 2.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.57 min. TC = [1.8*(1.1-C)*distanceA.S)/(% slopeA(l/3)] TC = [1.8*(1.1-0.8500)*(100.00A.5)/( 2.00A(1/3)]= 3.57 setting time of concentration to 5 minutes Rainfall intensity (I) = 7.377 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0.850 subarea runoff= 0.627(CFS) Total initial stream area= 0.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.200 to Point/Station 113.300 "'**"' IMPROVED CHANNEL TRAVEL TIME ""''** Upstream point elevation = 545.00(Ft.) Page 22 c605P1.0UT Downstream point elevation = 450.00(Ft.) channel length thru subarea 400.00(Ft.) channel base width O.OOO(Ft.) slope or 'z' of left channel bank= 20.000 slope or 'z' of right channel bank= 20.000 Estimated mean flow rate at midpoint of channel = 5.017(CFS) Manning's 'N' = 0.015 Maximum depth of channel 1.000(Ft.) Flow(q) thru subarea= 5.017(CFS) Depth of flow= 0.165(Ft.), Average velocity 9.160(Ft/s) channel flow top width= 6.619(Ft.) Flow velocity= 9.16(Ft/s) Travel time 0.73 min. Time of concentration= 5.73 min. critical depth= 0.330(Ft.) Adding area flow to channel Decimal fraction soil group A 0.000 Decimal fraction soil group B 1.000 Decimal fraction soil group c 0.000 Decimal fraction soil group D 0.000 [INDUSTRIAL area type ] Rainfall intensity 6.758(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c 0.850 subarea runoff 8.042(CFS) for 1.400(Ac.) Total runoff= 8.669(CFS) Total area= 1.50(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.300 to Point/Station 113.300 **** SUBAREA FLOW ADDITION **** group A group B group c group D 0.000 1.000 0.000 0.000 5.73 min. J Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type Time of concentration Rainfall intensity Runoff coefficient subarea runoff 6.758(In/Hr) for a 100.0 year storm used for sub-area, Rational method,Q=KCIA, c 19.186(CFS) for 3.340(Ac.) Total runoff = 27.856(CFS) Total area= 4.84(Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.300 to Point/Station 113.400 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 440.00(Ft.) Downstream point/station elevation= 433.30(Ft.) Pipe length 70.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 27.856(CFS) Given pipe size = 30.00(In.) calculated individual pipe flow 27.856(CFS) Normal flow depth in pipe= 9.55(In.) Flow top width inside pipe= 27.95(In.) critical Depth= 21.59(In.) Pipe flow velocity= 20.72(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 5.78 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.400 to Point/Station 113.500 Page 23 l ___ ) c605Pl. OUT **i<i< PIPEFLOitJ TRAVEL TIME (User specified size) i<*'"'< Upstream point/station elevation = 433.00(Ft.) Downstream point/station elevation 391.00(Ft.) Pipe length 590.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 27.856(CFS) Given pipe size = 30.00(In.) calculated individual pipe flow 27.856(CFS) Normal flow depth in pipe= 10.32(In.) Flow top width inside pipe= 28.51(In.) critical Depth= 21.59(In.) Pipe flow velocity = 18.63(Ft/s) Travel time through pipe= 0.53 min. Time of concentration (TC) = 6.31 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.400 to Point/Station 113.500 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area= 4.840(Ac.) Runoff from this stream 27.856(CFS) Time of concentration 6.31 min. Rainfall intensity= 6.348(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.400 to Point/Station 113.450 i:><-:d INITIAL AREA EVALUATION ''"''''< user specified 'c' value of 0.850 given for subarea Initial subarea flow distance 46.00(Ft.) Highest elevation = 442.40(Ft.) Lowest elevation= 440.70(Ft.) Elevation difference= 1.70(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.97 min. TC = [1.8*(1.1-C)*distanceA.5)/(% slopeA(1/3)] TC = [1.8*(1.1-0.8500)*( 46.00A.5)/( 3.70A(1/3)]= 1.97 setting time of concentration to 5 minutes Rainfall intensity (I) = 7.377 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0.850 subarea runoff = 0.063(CFS) Total initial stream area= 0.010(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.450 to Point/Station 113.460 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation= 440.700(Ft.) End of street segment elevation = 400.800(Ft.) Length of street segment 660.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 24.500(Ft.) slope from gutter to grade break (v/hz) = 0.020 slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) slope from curb to property line (v/hz) 0.020 Gutter width= 1.500(Ft.) Page 24 c605P1.0UT Gutter hike from flowline= 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street 0.082(CFS) Depth of flow= 0.073(Ft.), Average velocity= 2.541(Ft/s) streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 1.500(Ft.) Flow velocity= 2.54(Ft/s) Travel time = 4.33 min. TC = 9.33 min. Adding area flow to street user specified 'C' value of 0.850 given for subarea Rainfall intensity 4.934(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c 0.850 subarea runoff= 2.558(CFS) for 0.610(Ac.) Total runoff = 2.621(CFS) Total area = 0.62(Ac.) Street flow at end of street= 2.621(CFS) Half street flow at end of street= 2.621(CFS) Depth of flow= 0.238(Ft.), Average velocity= 4.481(Ft/s) Flow width (from curb towards crown)= 7.167(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.460 to Point/station 113.500 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 392.85(Ft.) Downstream point/station elevation= 390.70(Ft.) Pipe length 43.25(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 2.621(CFS) Given pipe size = 18.00(In.) calculated individual pipe flow 2.621(CFS) Normal flow depth in pipe = 4.07(In.) Flow top width inside pipe= 15.05(In.) critical Depth= 7.35(In.) Pipe flow velocity= 8.76(Ft/s) Travel time through pipe= 0.08 min. Time of concentration (TC) = 9.41 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.460 to Point/Station 113.500 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area= 0.620(Ac.) Runoff from this stream 2.621(CFS) Time of concentration 9.41 min. Rainfall intensity = 4.906(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.400 to Point/Station 113.470 **** INITIAL AREA EVALUATION **** user specified 'c' value of 0.850 given for subarea Initial subarea flow distance 46.00(Ft.) Highest elevation = 442.40(Ft.) Lowest elevation = 441.30(Ft.) Elevation difference= 1.10(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 2.28 m1n. TC = [1.8*(1.1-C)*distanceA.5)/(% slopeA(1/3)] Page 25 -,, _j c605Pl. OUT TC = [1.8*(1.1-0.8500)*( 46.00A.5)/( 2.39A(1/3)]= 2.28 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.377 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0.850 subarea runoff = 0.063(CFS) Total initial stream area = 0.010(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.470 to Point/Station 113.480 *~'** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION "'""'"* Top of street segment elevation= 441.300(Ft.) End of street segment elevation = 400.800(Ft.) Length of street segment 600.000(Ft.) Height of curb above gutter flowline 6.0(In.) width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 24.500(Ft.) slope from gutter to grade break (v/hz) = 0.020 slope from grade break to crown (v/hz) 0.020 street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) slope from curb to property line (v/hz) 0.020 Gutter width= 1.500(Ft.) Gutter hike from flowline= 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.090(CFS) Depth of flow= 0.074(Ft.), Average velocity= 2.715(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 1.500(Ft.) Flow velocity= 2.71(Ft/s) Travel time= 3.68 min. TC = 8.68 m1n. Adding area flow to street user specified 'c' value of 0.850 given for subarea Rainfall intensity 5.167(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c 0.850 subarea runoff= 3.865(CFS) for 0.880(Ac.) Total runoff= 3.928(CFS) Total area= 0.89(Ac.) Street flow at end of street = 3.928(CFS) Half street flow at end of street= 3.928(CFS) Depth of flow= 0.262(Ft.), Average velocity= 5.131(Ft/s) Flow width (from curb towards crown)= 8.332(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.480 to Point/Station 113.500 H>'d PIPE FLOW TRAVEL TIME (User specified size) ,·,~'*''' Upstream point/station elevation = 391.25(Ft.) Downstream point/station elevation= 390.70(Ft.) Pipe length 5.25(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 3.928(CFS) Given pipe size = 18.00(In.) calculated individual pipe flow 3.928(CFS) Normal flow depth in pipe= 4.13(In.) Flow top width inside pipe = 15.14(In.) critical Depth = 9.10(In.) Pipe flow velocity = 12.83(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 8.69 min. Page 26 I _j _) c605Pl. OUT ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.480 to Point/Station 113.500 **** CONFLUENCE OF MINOR STREAMS **** Along Main stream number: 2 in normal stream number 3 Stream flow area = 0.890(Ac.) Runoff from this stream 3.928(CFS) Time of concentration = 8.69 min. Rainfall intensity= 5.165(In/Hr) summary of stream data: Stream Flow rate No. (CFS) TC (min) Rainfall Intensity (In/Hr) 1 27.856 2 2. 621 3 3.928 Qmax(l) 6. 31 9.41 8.69 6. 348 4.906 5.165 1.000 * 1.000 _,_ 1.000 0.671 _,_ _,_ 27.856) + 2.621) + 1.000 _,_ 0. 726 _,_ 3.928) + 32.467 Qmax(2) 0. 773 * 1.000 _,_ 27.856) + 1.000 -:~ 1.000 _,_ 2.621) + 0.950 --:{ 1.000 _,_ 3.928) + 27.882 Qmax(3) 0.814 ;': 1.000 _,_ 27 .856) + 1.000 _,_ 0.923 _,_ 2. 621) + 1.000 ;': 1.000 _,_ 3.928) + 29.013 Total of 3 streams to confluence: Flow rates before confluence point: 27.856 2.621 3.928 Maximum flow rates at confluence using above data: 32.467 27.882 29.013 Area of streams before confluence: 4.840 0.620 0.890 Results of confluence: Total flow rate= 32.467(CFS) Time of concentration 6.312 min. Effective stream area after confluence 6.350(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.500 to Point/Station 113.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 390.67(Ft.) Downstream point/station elevation= 387.17(Ft.) Pipe length 70.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 32.467(CFS) Given pipe size = 30.00(In.) calculated individual pipe flow 32.467(CFS) Normal flow depth in pipe= 12.33(In.) Flow top width inside pipe= 29.52(In.) critical Depth= 23.27(In.) Pipe flow velocity= 17.08(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 6.38 min. Page 27 _ _j _ __i c605Pl. OUT ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.500 to Point/Station 113.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area= 6.350(Ac.) Runoff from this stream 32.467(CFS) Time of concentration= 6.38 min. Rainfall intensity= 6.304(In/Hr) summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 109.148 7.29 5.783 2 32.467 6. 38 6. 304 Qmax(l) 1.000 _,_ 1.000 ·'-109.148) + 0.917 _,_ 1.000 ·'-32. 467) + 138.933 Qmax(2) 1.000 _,_ 0.875 n 109.148) + 1.000 _,_ 1.000 _,_ 32. 467) + 127.960 Total of 2 main streams to confluence: Flow rates before confluence point: 109.148 32.467 Maximum flow rates at confluence using above data: 138.933 127.960 Area of streams before confluence: 34.910 6.350 Results of confluence: Total flow rate= 138.933(CFS) Time of concentration 7.293 min. Effective stream area after confluence 41.260(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.000 to Point/Station 114.000 *"~'·~<* PIPE FLOW TRAVEL TIME (User specified size) "~"'"~'' Upstream point/station elevation = 386.00(Ft.) Downstream point/station elevation 373.25(Ft.) Pipe length 218.46(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 138.933(CFS) Given pipe size= 48.00(In.) calculated individual pipe flow 138.933(CFS) Normal flow depth in pipe = 21.12(In.) Flow top width inside pipe= 47.65(In.) critical Depth= 42.00(In.) Pipe flow velocity = 26.08(Ft/s) Travel time through pipe= 0.14 min. Time of concentration (TC) = 7.43 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.000 to Point/Station 114.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Page 28 c605Pl. OUT stream flow area= 41.260(Ac.) Runoff from this stream 138.933(CFS) Time of concentration 7.43 min. Rainfall intensity= 5.713(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 114.100 to Point/Station 114.200 *-;,-;:-~, INITIAL AREA EVALUATION '"*** Decimal fraction soil group A 0.000 Decimal fraction soil group B 1.000 Decimal fraction soil group c 0.000 Decimal fraction soil group D 0.000 [INDUSTRIAL area type ] Initial subarea flow distance 100.00(Ft.) Highest elevation= 409.50(Ft.) Lowest elevation= 407.50(Ft.) Elevation difference = 2.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.57 m1n. TC = [1.8*(1.1-C)*distanceA.5)/(% slopeA(1/3)] TC = [1.8*(1.1-0.8500)*(100.00A.5)/( 2.00A(l/3)]= 3.57 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.377 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0.850 subarea runoff= 0.627(CFS) Total initial stream area = 0.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 114.200 to Point/Station 114.300 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation= 407.50(Ft.) Downstream point elevation = 403.00(Ft.) channel length thru subarea 300.00(Ft.) channel base width O.OOO(Ft.) slope or 'z' of left channel bank = 20.000 slope or 'z' of right channel bank = 20.000 Estimated mean flow rate at midpoint of channel 12.54l(CFS) Manning's 'N' = 0.015 Maximum depth of channel 1.000(Ft.) Flow(q) thru subarea= 12.54l(CFS) Depth of flow= 0.392(Ft.), Average velocity 4.088(Ft/s) channel flow top width = 15.666(Ft.) Flow Velocity = 4.09(Ft/s) Travel time 1.22 min. Time of concentration = 6.22 min. critical depth = 0.477(Ft.) Adding area flow to channel Decimal fraction soil group A 0.000 Decimal fraction soil group B 1.000 Decimal fraction soil group c 0.000 Decimal fraction soil group D 0.000 [INDUSTRIAL area type ] Rainfall intensity 6.406(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c 0.850 subarea runoff 20.692(CFS) for 3.800(Ac.) Total runoff= 21.319(CFS) Total area= 3.90(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Page 29 _j c605Pl. OUT Process from Point/Station 114.300 to Point/Station ,,.,,*.,, PIPEFLOW TRAVEL TIME (User specified size) .,,.,.,,.,, Upstream point/station elevation = 391.10(Ft.) Downstream point/station elevation 374.92(Ft.) Pipe length 48.00(Ft.) Manning's N = 0.011 No. of pipes= 1 Required pipe flow 21.319(CFS) Given pipe size = 24.00(In.) calculated individual pipe flow 21.319(CFS) Normal flow depth in pipe = 6.01(In.) Flow top width inside pipe= 20.79(In.) critical Depth = 19.82(In.) Pipe flow velocity= 34.64(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 6.25 min. 114.000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 114.300 to Point/Station 114.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area= 3.900(Ac.) Runoff from this stream 21.319(CFS) Time of concentration = 6.25 min. Rainfall intensity= 6.391(In/Hr) summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 138.933 7.43 5. 713 2 21. 319 6.25 6. 391 Qmax(l) 1.000 "· 1.000 " 138.933) + 0.894 •'· 1.000 ·'· 21. 319) + 157.990 Qmax(2) 1. 000 "· 0.840 "· 138.933) + 1.000 ·'· 1.000 -·· 21. 319) + 138.081 Total of 2 streams to confluence: Flow rates before confluence point: 138.933 21.319 Maximum flow rates at confluence using above data: 157.990 138.081 Area of streams before confluence: 41.260 3.900 Results of confluence: Total flow rate = 157.990(CFS) Time of concentration 7.432 min. Effective stream area after confluence 45.160(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 114.000 to Point/Station 115.000 ''*** PIPEFLOI'J TRAVEL TIME (User specified size) .,,H* upstream point/station elevation= 372.92(Ft.) Downstream point/station elevation = 354.27(Ft.) Pipe length 329.68(Ft.) Manning's N = 0.013 No. of p1pes = 1 Required pipe flow 157.990(CFS) Given pipe size = 48.00(In.) Page 30 c605Pl.OUT calculated individual pipe flow 157.990(CFS) Normal flow depth in pipe = 22.92(In.) Flow top width inside pipe= 47.95(In.) critical Depth = 43.84(In.) Pipe flow velocity = 26.65(Ft/s) Travel time through pipe= 0.21 min. Time of concentration (TC) = 7.64 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 114.000 to Point/Station 115.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 stream flow area= 45.160(Ac.) Runoff from this stream 157.990(CFS) Time of concentration 7.64 min. Rainfall intensity= 5.613(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.600 to Point/Station 115.350 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group c 0.000 Decimal fraction soil group D 1.000 [INDUSTRIAL area type ] Note: user entry of impervious value, Ap = 0.850 Initial subarea flow distance 100.00(Ft.) Highest elevation= 404.50(Ft.) Lowest elevation= 397.72(Ft.) Elevation difference= 6.78(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.93 m1n. TC = [1.8*(1.1-C)*distanceA.5)/(% slopeA(1/3)] TC = [1.8*(1.1-0.8972)*(100.00A.5)/( 6.78A(1/3)]= 1.93 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.377 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0.897 subarea runoff= 0.331(CFS) Total initial stream area= 0.050(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 115.350 to Point/Station 115.300 ·H*t' STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION -;;-;;-~,* Top of street segment elevation= 397.720(Ft.) End of street segment elevation = 369.260(Ft.) Length of street segment 500.000(Ft.) Height of curb above gutter flowline 6.0(In.) width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 24.500(Ft.) slope from gutter to grade break (v/hz) = 0.094 slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) slope from curb to property line (v/hz) = 0.020 Gutter width= 1.500(Ft.) Gutter hike from flowline = 1.330(In.) Manning's N in gutter= 0.0150 Page 31 c605Pl. OUT Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.480(CFS) Depth of flow= 0.142(Ft.), Average velocity= 3.125(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 3.049(Ft.) Flow velocity= 3.12(Ft/s) Travel time= 2.67 min. TC = 7.67 min. Adding area flow to street Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group c 0.000 Decimal fraction soil group D 1.000 [INDUSTRIAL area type ] Note: user entry of impervious value, Ap = 0.700 Rainfall intensity 5.599(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c 0.739 subarea runoff= 3.724(CFS) for 0.900(Ac.) Total runoff = 4.055(CFS) Total area = 0.95(Ac.) street flow at end of street = 4.055(CFS) Half street flow at end of street= 4.055(CFS) Depth of flow= 0.257(Ft.), Average velocity= 4.830(Ft/s) Flow width (from curb towards crown)= 8.826(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 115.300 to Point/Station 115.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 357.61(Ft.) Downstream point/station elevation = 355.43(Ft.) Pipe length 43.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 4.055(CFS) Given pipe size= 24.00(In.) calculated individual pipe flow 4.055(CFS) Normal flow depth in pipe= 4.59(In.) Flow top width inside pipe = 18.87(In.) Critical Depth= 8.48(In.) Pipe flow velocity = 9.68(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 7.74 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 115.300 to Point/Station 115.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.950(Ac.) Runoff from this stream 4.055(CFS) Time of concentration 7.74 min. Rainfall intensity= 5.565(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.100 to Point/Station 115.250 **** INITIAL AREA EVALUATION '~<"~'*"' Decimal fraction soil group A 0.000 Decima 1 fraction soil group B 0.000 Decimal fraction soil group c 0.000 Decimal fraction soil group D 1.000 [INDUSTRIAL area type J Page 32 c605Pl. OUT Note: user entry of impervious value, Ap = 0.700 Initial subarea flow distance 100.00(Ft.) Highest elevation = 405.90(Ft.) Lowest elevation = 399.35(Ft.) Elevation difference= 6.55(Ft.) Time of concentration calculated by the urban areas overland flow method (App x-c) = 3.47 min. TC = [1.8*(1.1-C)*distanceA.5)/(% slopeA(1/3)] TC = [1.8*(1.1-0.7389)*(100.00A.5)/( 6.55A(1/3)]= 3.47 setting time of concentration to 5 minutes Rainfall intensity (I) = 7.377 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0.739 subarea runoff= 0.164(CFS) Total initial stream area = 0.030(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 115.250 to Point/Station 115.200 -;,·,-;:1, STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION -·--·--·--·- Top of street segment elevation= 399.350(Ft.) End of street segment elevation= 369.700(Ft.) Length of street segment 540.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 24.500(Ft.) Slope from gutter to grade break (v/hz) = 0.094 slope from grade break to crown (v/hz) 0.020 street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) slope from curb to property line (v/hz) 0.020 Gutter width= 1.500(Ft.) Gutter hike from flowline = 1.330(In.) Manning's N in gutter= 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.223(CFS) Depth of flow 0.104(Ft.), Average velocity= 3.071(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 1.500(Ft.) Flow velocity= 3.07(Ft/s) Travel time= 2.93 min. TC = 7.93 min. Adding area flow to street Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group c 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] Note: user entry of impervious value, Ap = 0.700 Rainfall intensity 5.479(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c 0.739 Subarea runoff= 2.955(CFS) for 0.730(Ac.) Total runoff= 3.119(CFS) Total area= 0.76(Ac.) Street flow at end of street= 3.119(CFS) Half street flow at end of street= 3.119(CFS) Depth of flow= 0.240(Ft.), Average velocity= 4.478(Ft/s) Flow width (from curb towards crown)= 7.974(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 115.200 to Point/Station 115.000 **** PIPEFLOW TRAVEL TIME (User specified size) HH Page 33 c605Pl. OUT Upstream point/station elevation= 356.77(Ft.) Downstream point/station elevation= 356.24(Ft.) Pipe length = 5.25(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 3.119(CFS) Given pipe size = 18.00(In.) calculated individual pipe flow 3.119(CFS) Normal flow depth in pipe= 3.72(In.) Flow top width inside pipe= 14.57(In.) critical Depth = 8.06(In.) Pipe flow velocity= 11.84(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 7.94 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 115.200 to Point/Station 115.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main stream number: 1 in normal stream number 3 stream flow area= 0.760(Ac.) Runoff from this stream 3.119(CFS) Time of concentration = 7.94 min. Rainfall intensity = 5.476(In/Hr) summary of stream data: stream Flow rate No. (CFS) TC (min) Rainfall Intensity (In/Hr) 1 157.990 2 4.055 3 3.119 Qmax (1) = 1.000 -·- 1.000 -·- 1. 000 -·- Qmax (2) 0.991 " 1.000 -·- 1.000 -·- Qmax(3) 0.976 -·- 0.984 o. 1.000 " 7.64 7.74 7.94 1.000 -·- 0.987 o. 0.962 -·- 1.000 o. 1.000 " 0.975 -·- 1.000 -·- 1.000 o. 1.000 -·· 5. 613 5.565 5.476 157.990) T 4.055) + 3.119) + 164.992 157.990) + 4.055) + 3.119) + 163.726 157.990) + 4.055) + 3.119) + 161.231 Total of 3 streams to confluence: Flow rates before confluence point: 157.990 4.055 3.119 Maximum flow rates at confluence using above data: 164.992 163.726 161.231 Area of streams before confluence: 45.160 0.950 0.760 Results of confluence: Total flow rate = 164.992(CFS) Time of concentration 7.638 min. Effective stream area after confluence 46.870(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 115.000 to Point/Station 116.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 354.27(Ft.) Page 34 c605Pl. OUT Downstream point/station elevation = 352.00(Ft.) Pipe length 40.47(Ft.) Manning's N = 0.013 No. of p1pes = 1 Required pipe flow = 164.992(CFS) Given pipe size = 48.00(In.) calculated individual pipe flow 164.992(CFS) Normal flow depth in pipe= 23.58(In.) Flow top width inside pipe= 47.99(In.) Critical Depth = 44.36(In.) Pipe flow velocity = 26.87(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 7.66 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 115.000 to Point/Station 116.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area= 46.870(Ac.) Runoff from this stream 164.992(CFS) Time of concentration= 7.66 min. Rainfall intensity = 5.601(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2401.000 to Point/Station 2402.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A 0.000 Decimal fraction soil group B 1.000 Decimal fraction soil group c 0.000 Decimal fraction soil group D 0.000 [INDUSTRIAL area type ] Initial subarea flow distance 100.00(Ft.) Highest elevation = 398.00(Ft.) Lowest elevation= 397.00(Ft.) Elevation difference = 1.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.50 min. TC = [1.8*(1.1-C)*distanceA.5)/(% slopeA(1/3)] TC = [1.8*(1.1-0.8500)*(100.00A.5)/( l.OOA(l/3)]= 4.50 setting time of concentration to 5 minutes Rainfall intensity (I) = 7.377 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0.850 subarea runoff= 0.627(CFS) Total initial stream area= O.lOO(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2402.000 to Point/Station 2403.000 -;,-;;-;,,; IMPROVED CHANNEL TRAVEL TIME '~'*** Upstream point elevation= 397.00(Ft.) Downstream point elevation = 390.00(Ft.) channel length thru subarea 330.00(Ft.) channel base width O.OOO(Ft.) slope or 'z' of left channel bank= 20.000 slope or 'z' of right channel bank = 20.000 Estimated mean flow rate at midpoint of channel Manning's 'N' = 0. 015 Maximum depth of channel l.OOO(Ft.) Page 35 3.449(CFS) : _ _j c605Pl.OUT Flow(q) thru subarea= 3.449(CFS) Depth of flow= 0.226(Ft.), Average velocity Channel flow top width = 9.047(Ft.) Flow Velocity= 3.37(Ft/s) Travel time 1.63 min. Time of concentration = 6.63 min. critical depth = 0.283(Ft.) Adding area flow to channel Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group c Decimal fraction soil group D 0.000 1.000 0.000 0.000 J 3. 371(Ft/s) [INDUSTRIAL area type Rainfall intensity Runoff coefficient subarea runoff 6.149(In/Hr) for a 100.0 year storm used for sub-area, Rational method,Q=KCIA, c 4.704(CFS) for 0.900(Ac.) Total runoff = 5.331(CFS) Total area= 1. OO(Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2403.000 to Point/Station 2403.000 **** SUBAREA FLOW ADDITION **** group A group B group c group o 0.000 1.000 0.000 0.000 6.63 min. J Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type Time of concentration Rainfall intensity Runoff coefficient subarea runoff 6.149(In/Hr) for a 100.0 year storm used for sub-area, Rational method,Q=KCIA, c 10.453(CFS) for 2.000(Ac.) Total runoff = 15.784(CFS) Total area= 3. OO(Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2403.000 to Point/Station 2404.000 ,;,:-:de PIPEFLOW TRAVEL TIME (User specified size) ''c-!<'~c-:, Upstream point/station elevation = 380.00(Ft.) Downstream point/station elevation= 372.00(Ft.) Pipe length 450.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 15.784(CFS) Given pipe size = 30.00(In.) calculated individual pipe flow 15.784(CFS) Normal flow depth in pipe = 11.04(In.) Flow top width inside pipe = 28.94(In.) Critical Depth= 16.10(In.) Pipe flow velocity = 9.64(Ft/s) Travel time through pipe= 0.78 min. Time of concentration (TC) 7.41 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2404.000 to Point/Station 2404.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A 0.000 Decimal fraction soil group B 1.000 oeci mal fraction soil group c 0.000 Decimal fraction soil group D 0.000 [INDUSTRIAL area type J Time of concentration = 7.41 min. Page 36 l __ ~ '----' Rainfall intensity Runoff coefficient subarea runoff Total runoff = c605Pl. OUT 5.724(In/Hr) for a 100.0 year storm used for sub-area, Rational method,Q=KCIA, c 15.910(CFS) for 3.270(Ac.) 31.694(CFS) Total area= 6.27(Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2404.000 to Point/Station 2304.000 **"'* PIPEFLOW TRAVEL TIME (User specified size) -;,-;,-;:-;, Upstream point/station elevation= 369.88(Ft.) Downstream point/station elevation = 367.86(Ft.) Pipe length 100.90(Ft.) Manning's N = 0.011 N9. of ~ipes = 1 Required pipe flow 31.694(CFS) G1ven p1pe size= 30.00(In.) calculated individual pipe flow 31.694(CFS) Normal flow depth in pipe = 14.32(In.) Flow top width inside pipe= 29.97(In.) critical Depth = 22.99(In.) Pipe flow velocity = 13.69(Ft/s) Travel time through pipe = 0.12 min. Time of concentration (TC) = 7.53 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2404.000 to Point/Station 2304.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area= 6.270(Ac.) Runoff from this stream 31.694(CFS) Time of concentration 7.53 min. Rainfall intensity= 5.664(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2301.000 to Point/Station 2302.000 "''"""' INITIAL AREA EVALUATION ,,.,.,-;, Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type group A group B group c group D Initial subarea flow distance Highest elevation = 390.00(Ft.) Lowest elevation = 388.00(Ft.) 0.000 1.000 0.000 0.000 J 100.00(Ft.) Elevation difference = 2.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.57 min. TC = [1.8*(1.1-C)*distanceA.5)/(% slopeA(1/3)] TC = [1.8*(1.1-0.8500)*(100.00A.5)/( 2.00A(1/3)]= Setting time of concentration to 5 minutes Rainfall intensity (I)= 7.377 for a 100.0 year Effective runoff coefficient used for area (Q=KCIA) subarea runoff = 0.627(CFS) Total initial stream area = 0.100(Ac.) 3.57 storm is c = 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2302.000 to Point/Station 2303.000 ***"' IMPROVED CHANNEL TRAVEL TIME **'''' Page 37 c605P1.0UT Upstream point elevation = 388.00(Ft.) Downstream point elevation 385.00(Ft.) channel length thru subarea 430.00(Ft.) channel base width O.OOO(Ft.) slope or 'z' of left channel bank = 20.000 slope or 'z' of right channel bank = 20.000 Estimated mean flow rate at midpoint of channel 9.720(CFS) Manning's 'N' = 0.015 Maximum depth of channel 1.000(Ft.) Flow(q) thru subarea= 9.720(CFS) Depth of flow= 0.411(Ft.), Average velocity 2.879(Ft/s) channel flow top width = 16.435(Ft.) Flow velocity= 2.88(Ft/s) Travel time 2.49 min. Time of concentration= 7.49 min. critical depth = 0.430(Ft.) Adding area flow to channel Decimal fraction soil group A 0.000 Decimal fraction soil group B 1.000 Decimal fraction soil group c 0.000 Decimal fraction soil group D 0.000 [INDUSTRIAL area type ] Rainfall intensity 5.685(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c 0.850 subarea runoff 14.013(CFS) for 2.900(Ac.) Total runoff= 14.640(CFS) Total area= 3.00(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2303.000 to Point/Station 2303.000 **** SUBAREA FLOW ADDITION **** group A group B group c group D 0.000 1.000 0.000 0.000 7.49 min. J Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type Time of concentration Rainfall intensity Runoff coefficient subarea runoff 5.685(In/Hr) for a 100.0 year storm used for sub-area, Rational method,Q=KCIA, c 6.378(CFS) for 1.320(Ac.) Total runoff = 21.018(CFS) Total area = 4.32(Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2303.000 to Point/Station 2304.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 375.00(Ft.) Downstream point/station elevation = 368.03(Ft.) Pipe length 42.37(Ft.) Manning's N = 0.011 No. of pipes = 1 Required pipe flow 21.018(CFS) Given pipe size= 24.00(In.) calculated individual pipe flow 21.018(CFS) Normal flow depth in pipe= 7.16(In.) Flow top width inside pipe= 21.96(In.) critical Depth= 19.7l(In.) Pipe flow velocity= 26.71(Ft/s) Travel time through pipe= 0.03 min. Time of concentration (TC) = 7.52 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Page 38 c605Pl. OUT Process from Point/Station 2303.000 to Point/Station 2304.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 stream flow area= 4.320(Ac.) Runoff from this stream = 21.018(CFS) Time of concentration= 7.52 min. Rainfall intensity= 5.672(In/Hr) summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 31.694 7.53 5.664 2 21. 018 7.52 5. 672 Qmax(l) 1.000 -·-1.000 _,_ 31.694) + 0.999 "-1.000 ~ 21. 018) + 52.683 Qmax(2) 1.000 -·-0.998 " 31.694) + 1. 000 -·-1.000 _,_ 21.018) + 52.643 Total of 2 streams to confluence: Flow rates before confluence point: 31.694 21.018 Maximum flow rates at confluence using above data: 52.683 52.643 Area of streams before confluence: 6.270 4.320 Results of confluence: Total flow rate= 52.683(CFS) Time of concentration 7.532 min. Effective stream area after confluence 10.590(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2304.000 to Point/Station 2405.000 ;<"{:-~,;, PIPEFLOW TRAVEL TIME (User specified size)'""""'' Upstream point/station elevation= 367.53(Ft.) Downstream point/station elevation = 354.89(Ft.) Pipe length 252.70(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 52.683(CFS) Given pipe size= 30.00(In.) calculated individual pipe flow 52.683(CFS) Normal flow depth in pipe = 16.30(In.) Flow top width inside pipe= 29.89(In.) Critical Depth= 27.96(In.) Pipe flow velocity= 19.33(Ft/s) Travel time through pipe = 0.22 min. Time of concentration (TC) = 7.75 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2304.000 to Point/Station 2405.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area= 10.590(Ac.) Runoff from this stream 52.683(CFS) Time of concentration= 7.75 min. Rainfall intensity= 5.56l(In/Hr) Page 39 c605Pl.OUT ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2411.000 to Point/Station 2412.000 ''*** INITIAL AREA EVALUATION *''** Decimal fraction soil group A = 0.000 Decimal fraction soil group B 1.000 Decimal fraction soil group c 0.000 Decimal fraction soil group D = 0.000 [INDUSTRIAL area type ] Initial subarea flow distance 93.00(Ft.) Highest elevation= 383.18(Ft.) Lowest elevation = 381.46(Ft.) Elevation difference= 1.72(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C)= 3.54 min. TC = [1.8*(1.1-C)*distanceA.5)/(% slopeA(1/3)] TC = [1.8*(1.1-0.8500)*( 93.00A.5)/( 1.85A(1/3)]= 3.54 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.377 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0.850 subarea runoff= 0.063(CFS) Total initial stream area = 0.010(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2412.000 to Point/Station 2413.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 381.460(Ft.) End of street segment elevation = 366.000(Ft.) Length of street segment 295.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 24.500(Ft.) slope from gutter to grade break (v/hz) = 0.020 slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) slope from curb to property line (v/hz) 0.020 Gutter width= 1.500(Ft.) Gutter hike from flowline= 1.500(In.) Manning's N in gutter= 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.077(CFS) Depth of flow= 0.074(Ft.), Average velocity= 2.373(Ft/s) streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 1.500(Ft.) Flow velocity= 2.37(Ft/s) Travel time= 2.07 min. TC = 7.07 m1n. Adding area flow to street Decimal fraction soil group A 0.000 Decimal fraction soil group 8 1.000 Decimal fraction soil group c 0.000 Decimal fraction soil group D 0.000 [INDUSTRIAL area type ] Rainfall intensity = 5.899(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c 0.850 subarea runoff 2.307(CFS) for 0.460(Ac.) Total runoff= 2.369(CFS) Total area= 0.47(Ac.) street flow at end of street 2.369(CFS) Page 40 J _j c605Pl. OUT Half street flow at end of street= 2.369(CFS) Depth of flow= 0.236(Ft.), Average velocity= 4.145(Ft/s) Flow width (from curb towards crown)= 7.074(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2413.000 to Point/Station 2504.000 *''** PIPEFLOVJ TRAVEL Titv1E (User specified size) *'''~* Upstream point/station elevation = 356.37(Ft.) Downstream point/station elevation = 355.89(Ft.) Pipe length 4.75(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 2.369(CFS) Given pipe size = 18.00(In.) calculated individual pipe flow 2.369(CFS) Normal flow depth in pipe = 3.25(In.) Flow top width inside pipe= 13.84(In.) critical Depth = 6.99(In.) Pipe flow velocity = 10.92(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 7.08 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2413.000 to Point/Station 2504.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.470(Ac.) Runoff from this stream 2.369(CFS) Time of concentration 7.08 min. Rainfall intensity= 5.895(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2411.000 to Point/Station 2414.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A 0.000 Decimal fraction soil group B 1.000 Decimal fraction soil group c 0.000 Decimal fraction soil group D 0.000 [INDUSTRIAL area type ] Initial subarea flow distance 74.00(Ft.) Highest elevation = 383.18(Ft.) Lowest elevation = 381.46(Ft.) Elevation difference= 1.72(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 2.92 min. TC = [1.8*(1.1-C)*distanceA.5)/(% slopeA(1/3)] TC = [1.8*(1.1-0.8500)*( 74.00A.5)/( 2.32A(1/3)]= 2.92 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.377 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0.850 subarea runoff = 0.063(CFS) Total initial stream area= 0.010(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2414.000 to Point/Station 2415.000 **** STREET FLOVJ TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 381.460(Ft.) Page 41 c605P1.0UT End of street segment elevation = 366.000(Ft.) Length of street segment 280.000(Ft.) Height of curb above gutter flowline 6.0(In.) width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 24.500(Ft.) slope from gutter to grade break (v/hz) = 0.020 slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) slope from curb to property line (v/hz) 0.020 Gutter width= 1.500(Ft.) Gutter hike from flowline= 1.500(In.) Manning's N in gutter= 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.075(CFS) Depth of flow= 0.072(Ft.), Average velocity= 2.400(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 1.500(Ft.) Flow velocity = 2.40(Ft/s) Travel time= 1.94 min. TC = 6.94 min. Adding area flow to street Decimal fraction soil group A 0.000 Decimal fraction soil group B 1.000 Decimal fraction soil group c 0.000 Decimal fraction soil group D 0.000 [INDUSTRIAL area type ] Rainfall intensity 5.969(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c 0.850 subarea runoff= 1.928(CFS) for 0.380(Ac.) Total runoff= 1.991(CFS) Total area= 0.39(Ac.) Street flow at end of street= 1.991(CFS) Half street flow at end of street = 1.991(CFS) Depth of flow= 0.224(Ft.), Average velocity= 4.069(Ft/s) Flow width (from curb towards crown)= 6.466(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2415.000 to Point/Station 2405.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 358.03(Ft.) Downstream point/station elevation= 355.89(Ft.) Pipe length 42.75(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 1.991(CFS) Given pipe size = 18.00(In.) calculated individual pipe flow 1.991(CFS) Normal flow depth in pipe= 3.54(In.) Flow top width inside pipe= 14.31(In.) critical Depth= 6.37(In.) Pipe flow velocity= 8.10(Ft/s) Travel time through pipe= 0.09 min. Time of concentration (TC) = 7.03 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2415.000 to Point/Station 2405.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 3 Stream flow area= 0.390(Ac.) Runoff from this stream 1.991(CFS) Time of concentration= 7.03 min. Page 42 c605Pl. OUT Rainfall intensity = summary of stream data: 5. 92l(In/Hr) Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 52.683 7.75 5. 561 2 2.369 7.08 5.895 3 1. 991 7.03 5.921 Qmax(1) 1.000 ""}; 1.000 o. 52.683) + 0.943 o. 1.000 c. 2. 369) + 0.939 o. 1.000 o. 1. 991) + 56.787 Qmax(2) 1.000 c. 0.913 " 52.683) + 1.000 ·'· 1.000 c. 2. 369) + 0.996 J. 1.000 ·'· 1. 991) + 52.470 Qmax(3) 1.000 " 0.907 ·'· 52.683) + 1.000 ·'· 0.993 ·'· 2.369) + 1.000 ·'· 1.000 ·'· 1. 991) + 52.145 Total of 3 streams to confluence: Flow rates before confluence point: 52.683 2.369 1.991 Maximum flow rates at confluence using above data: 56.787 52.470 52.145 Area of streams before confluence: 10.590 0.470 0.390 Results of confluence: Total flow rate = 56.787(CFS) Time of concentration 7.750 min. Effective stream area after confluence 11.450(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2405.000 to Point/Station 116.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 354.39(Ft.) Downstream point/station elevation= 352.50(Ft.) Pipe length 37.79(Ft.) Manning's N = 0.013 N9. of ~ipes = 1 Required pipe flow 56.787(CFS) G1ven p1pe size= 36.00(In.) calculated individual pipe flow 56.787(CFS) Normal flow depth in pipe= 15.40(In.) Flow top width inside pipe= 35.62(In.) critical Depth= 29.31(In.) Pipe flow velocity = 19.67(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 7.78 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2405.000 to Point/Station 116.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main stream number: 2 Stream flow area = 11.450(Ac.) Runoff from this stream 56.787(CFS) Time of concentration= 7.78 min. Page 43 Rainfall intensity = summary of stream data: c605Pl.OUT 5. 546(In/Hr) Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 164.992 7.66 5.601 2 56.787 7.78 5.546 Qmax(1) 1.000 ·'· 1.000 ·'· 164.992) + 1.000 ·'· 0.985 -J; 56. 787) + 220.912 Qmax(2) 0.990 ·'· 1.000 ·'· 164.992) + 1.000 _,_ 1.000 ·'· 56. 787) + 220.150 Total of 2 main streams to confluence: Flow rates before confluence point: 164.992 56.787 Maximum flow rates at confluence using above data: 220.912 220.150 Area of streams before confluence: 46.870 11.450 Results of confluence: Total flow rate = 220.912(CFS) Time of concentration 7.663 min. Effective stream area after confluence 58.320(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 116.000 to Point/Station 116.500 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 351.00(Ft.) Downstream point/station elevation = 341.90(Ft.) Pipe length 218.77(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 220.912(CFS) Given pipe size = 54.00(In.) Calculated individual pipe flow 220.912(CFS) Normal flow depth in pipe= 28.59(In.) Flow top width inside pipe= 53.91(In.) critical Depth= 49.91(In.) Pipe flow velocity = 25.82(Ft/s) Travel time through pipe = 0.14 min. Time of concentration (TC) = 7.80 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 116.000 to Point/Station 116. 500 **** CONFLUENCE OF MINOR STREAMS **** Along ~ain Stream number: 1 in normal stream number 1 Stream flow area= 58.320(Ac.) Runoff from this stream 220.912(CFS) Time of concentration 7.80 min. Rainfall intensity= 5.536(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 115.100 to Point/Station 115.200 *'~<'~<'~< INITIAL AREA EVALUATION ~--·-~-~- Page 44 c605Pl. OUT Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group c 0.000 Decimal fraction soil group D 1.000 [INDUSTRIAL area type ] Note: user entry of impervious value, Ap = 0.850 Initial subarea flow distance 26.00(Ft.) Highest elevation= 369.76(Ft.) Lowest elevation = 369.26(Ft.) Elevation difference= 0.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App x-c) = 1.50 min. TC = [1.8*(1.1-C)*distanceA.5)/(% slopeA(1/3)] TC = [1.8*(1.1-0.8972)*( 26.00A.5)/( 1.92A(1/3)]= 1.50 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.377 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0.897 subarea runoff = 0.066(CFS) Total initial stream area = 0.010(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 115.200 to Point/Station 116.600 -:'"'"""' STREET FLOW TRAVEL TH-1E + SUBAREA FLmv ADDITION t,-:d,, Top of street segment elevation = 369.260(Ft.) End of street segment elevation = 358.870(Ft.) Length of street segment 305.000(Ft.) Height of curb above gutter flowline 6.0(In.) width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 24.500(Ft.) slope from gutter to grade break (v/hz) = 0.094 slope from grade break to crown (v/hz) 0.020 street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) slope from curb to property line (v/hz) 0.020 Gutter width = 1.200(Ft.) Gutter hike from flowline= 1.330(In.) Manning's N in gutter= 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown= 0.0150 Estimated mean flow rate at midpoint of street = O.OSO(CFS) Depth of flow= 0.084(Ft.), Average velocity= 2.082(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.200(Ft.) Flow velocity= 2.08(Ft/s) Travel time= 2.44 min. TC = 7.44 min. Adding area flow to street Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group c 0.000 Decimal fraction soil group D 1.000 [INDUSTRIAL area type ] Note: user entry of impervious value, Ap = 0.850 Rainfall intensity 5.708(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c 0.897 subarea runoff= 2.151(CFS) for 0.420(Ac.) Total runoff= 2.217(CFS) Total area = 0.43(Ac.) street flow at end of street= 2.217(CFS) Half street flow at end of street = 2.217(CFS) Depth of flow= 0.258(Ft.), Average velocity= 3.470(Ft/s) Flow width (from curb towards crown)= 7.463(Ft.) Page 45 c605Pl. OUT ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 116.600 to Point/Station 116.500 ***'< PIPEFLOW TRAVEL TIME (User specified size) i<*** Upstream point/staTion elevation = 344.00(Ft.) Downstream point/station elevation = 343.40(Ft.) Pipe length 5.25(Ft.) Manning's N = 0.013 N9. of ~ipes = 1 Required pipe flow 2.217(CFS) G1ven p1pe size = 18.00(In.) calculated individual pipe flow 2.217(CFS) Normal flow depth in pipe = 3.05(In.) Flow top width inside pipe= 13.50(In.) critical Depth= 6.75(In.) Pipe flow velocity= 11.19(Ft/s) Travel time through pipe= 0.01 min. Time of concentration (TC) = 7.45 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 116.600 to Point/Station 116.500 **** CONFLUENCE OF MINOR STREAMS **** Along Main stream number: 1 in normal stream number 2 stream flow area = 0.430(Ac.) Runoff from this stream 2.217(CFS) Time of concentration= 7.45 min. Rainfall intensity= 5.705(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 220.912 7.80 5.536 2 2. 217 7.45 5.705 Qmax (1) 1.000 -·-1. 000 -·-220.912) + 0.970 -·-1.000 -·-2. 217) + 223.064 Qmax(2) 1.000 o. 0.954 -·-220. 912) + 1.000 o. 1.000 " 2. 217) + 213.063 Total of 2 streams to confluence: Flow rates before confluence point: 220.912 2.217 Maximum flow rates at confluence using above data: 223.064 213.063 Area of streams before confluence: 58.320 0.430 Results of confluence: Total flow rate= 223.064(CFS) Time of concentration 7.805 min. Effective stream area after confluence 58.750(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 116.500 to Point/Station 117.000 "~<**'< PIPE FLOW TRAVEL TIME (User specified size) "~<**'< 341. 90(Ft.) 341. OO(Ft.) Upstream point/station elevation = Downstream point/station elevation = Page 46 c605Pl.OUT Pipe 1en~th 21.58(Ft.) Manning's N = 0.013 No. oT p1pes 1 Required pipe flow 223.064(CFS) Given pipe size = 54.00(In.) calculated individual pipe flow = 223.064(CFS) Normal flow depth in pipe= 28.73(In.) Flow top width inside pipe= 53.89(In.) Critical Depth= 49.99(In.) Pipe flow velocity= 25.91(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 7.82 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 116.500 to Point/Station 117.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 stream flow area= 58.750(Ac.) Runoff from this stream 223.064(CFS) Time of concentration= 7.82 min. Rainfall intensity= 5.529(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2407.000 to Point/Station 2408.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A 0.000 Decimal fraction soil group B 1.000 Decimal fraction soil group c 0.000 Decimal fraction soil group D 0.000 [INDUSTRIAL area type ] Initial subarea flow distance 200.00(Ft.) Highest elevation = 399.00(Ft.) Lowest elevation= 395.00(Ft.) Elevation difference = 4.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 5.05 min. TC = [1.8*(1.1-c)*distanceA.5)/(% slopeA(1/3)] TC = [1.8*(l.l-0.8500)*(200.00A.5)/( 2.00A(l/3)]= 5.05 Rainfall intensity (I) = 7.329 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0.850 subarea runoff = 0.623(CFS) Total initial stream area= O.lOO(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2408.000 to Point/Station 2409.000 '~**1< IMPROVED CHANNEL TRAVEL TIME ·H** upstream point elevation = 395.00(Ft.) Downstream point elevation = 390.00(Ft.) channel length thru subarea 350.00(Ft.) channel base width O.OOO(Ft.) slope or 'z' of left channel bank = 20.000 slope or 'z' of right channel bank= 20.000 Estimated mean flow rate at midpoint of channel Manning's 'N' = 0.015 Maximum depth of channel 1.000(Ft.) Flow(q) thru subarea= 4.361(CFS) Depth of flow= 0.266(Ft.), Average velocity Page 47 4.36l(CFS) 3.082(Ft/s) L_ I c605Pl. OUT channel flow top width = 10.639(Ft.) Flow velocity= 3.08(Ft/s) Travel time 1.89 min. Time of concentration = 6.94 min. critical depth = 0.313(Ft.) Adding area flow to channel Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group c Decimal fraction soil group D 0.000 1.000 0.000 0.000 J [INDUSTRIAL area type Rainfall intensity Runoff coefficient subarea runoff 5.969(In/Hr) for a 100.0 year storm used for sub-area, Rational method,Q=KCIA, c 6.088(CFS) for 1.200(Ac.) Total runoff = 6.711(CFS) Total area= 1.30(Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2409.000 to Point/Station 2410.000 H>'* PIPEFLOW TRAVEL TIME (User specified size) .,,.,,.,., Upstream point/station elevation = 380.00(Ft.) Downstream point/station elevation = 370.00(Ft.) Pipe length 500.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 6.711(CFS) Given pipe size = 24.00(In.) calculated individual pipe flow 6.711(CFS) Normal flow depth in pipe = 7.46(In.) Flow top width inside pipe = 22.22(In.) Critical Depth = 11.01(In.) Pipe flow velocity = 8.06(Ft/s) Travel time through pipe= 1.03 min. Time of concentration (TC) = 7.98 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2410.000 to Point/Station 2410.000 **** SUBAREA FLOW ADDITION **** Decimal fraction soil group A 0.000 Decimal fraction soil group B 1.000 Decimal fraction soil group c 0.000 Decimal fraction soil group D 0.000 [INDUSTRIAL area type ] Time of concentration 7.98 min. Rainfall intensity 5.458(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c = 0.850 subarea runoff 10.206(CFS) for 2.200(Ac.) Total runoff= 16.918(CFS) Total area= 3.50(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2410.000 to Point/Station ''h''* PIPE FLOW TRAVEL TIME (User specified size) >'d*i' upstream point/station elevation = 370.00(Ft.) Downstream point/station elevation = 364.00(Ft.) Pipe length = 750.00(Ft.) Manning's N = 0.010 No. of p1pes = 1 Required pioe flow 16.918(CFS) Given pipe size = 36.00(In.) calculated individual pipe flow 16.918(CFS) Normal flow depth in pipe = 11.43(In.) Flow top width inside pipe= 33.51(In.) Page 48 123.000 '-_j \ ___ ~I c605Pl.OUT critical Depth = 15.78(In.) Pipe flow velocity= 8.78(Ft/s) Travel time through pipe = 1.42 min. Time of concentration (TC) = 9.40 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 123.000 to Point/Station 123.000 **** SUBAREA FLOW ADDITION **** group A group B group c group D 0.000 1.000 0.000 0.000 9.40 min. J Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type Time of concentration Rainfall intensity Runoff coefficient subarea runoff 4.909(In/Hr) for a 100.0 year storm used for sub-area, Rational method,Q=KCIA, c 36.556(CFS) for 8.760(Ac.) Total runoff = 53.474(CFS) Total area = 12.26(Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 123.000 to Point/Station 117.000 ~"''~"' PIPE FLOW TRAVEL Tif\1E (User specified size) ,-c,·,-c,-c Upstream point/station elevation = 354.17(Ft.) Downstream point/station elevation = 342.17(Ft.) Pipe length 60.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 53.474(CFS) Given pipe size= 36.00(In.) calculated individual pipe flow 53.474(CFS) Normal flow depth in pipe = 10.32(In.) Flow top width inside pipe= 32.56(In.) critical Depth= 28.49(In.) Pipe flow velocity = 31.95(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 9.43 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 123.000 to Point/Station 117.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area= 12.260(Ac.) Runoff from this stream 53.474(CFS) Time of concentration = 9.43 min. Rainfall intensity= 4.899(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 115.300 to Point/Station 115.200 *~"'d' INITIAL AREA EVALUATION *~"''* Decimal fraction soil group A Decimal fraction soil group B Decimal fraction soil group c Decimal fraction soil group D [INDUSTRIAL area type Initial subarea flow distance 0.000 1.000 0.000 0.000 J = 26.00(Ft.) Page 49 c605Pl. OUT Highest elevation= 369.76(Ft.) Lowest elevation = 369.26(Ft.) Elevation difference= 0.50(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.85 min. TC = [1.8*(1.1-C)*distanceA.5)/(% slopeA(1/3)] TC = [1.8*(1.1-0.8500)*( 26.00A.5)/( 1.92A(1/3)]= 1.85 setting time of concentration to 5 minutes Rainfall intensity (I) = 7.377 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0.850 subarea runoff= 0.063(CFS) Total initial stream area = 0.010(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 115.200 to Point/Station 121.000 *;,*;, STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ;,<;;;; Top of street segment elevation= 369.260(Ft.) End of street segment elevation= 357.050(Ft.) Length of street segment 330.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 24.500(Ft.) slope from gutter to grade break (v/hz) = 0.020 slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) slope from curb to property line (v/hz) 0.020 Gutter width= 1.500(Ft.) Gutter hike from flowline= 1.500(In.) Manning's N in gutter= 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.083(CFS) Depth of flow= 0.081(Ft.), Average velocity= 2.122(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 1.500(Ft.) Flow velocity= 2.12(Ft/s) Travel time= 2.59 min. TC = 7.59 m1n. Adding area flow to street Decimal fraction soil group A 0.000 Decimal fraction soil group B 1.000 Decimal fraction soil group c 0.000 Decimal fraction soil group D 0.000 [INDUSTRIAL area type ] Rainfall intensity 5.635(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c = 0.850 subarea runoff= 3.113(CFS) for 0.650(Ac.) Total runoff= 3.176(CFS) Total area= 0.66(Ac.) Street flow at end of street= 3.176(CFS) Half street flow at end of street= 3.176(CFS) Depth of flow= 0.268(Ft.), Average velocity= 3.878(Ft/s) Flow width (from curb towards crown)= 8.648(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 121.000 to Point/Station 117.000 **;;-~; PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 344.92(Ft.) Downstream point/station elevation = 342.67(Ft.) Pipe length 42.25(Ft.) Manning's N = 0.013 Page 50 c605Pl. OUT No. of pipes= 1 Required pipe flow 3.176(CFS) Given pipe size = 30.00(In.) calculated individual pipe flow 3.176(CFS) Normal flow depth in pipe= 3.76(In.) Flow top width inside pipe= 19.88(In.) critical Depth = 7.01(In.) Pipe flow velocity = 8.92(Ft/s) Travel time through pipe = 0.08 min. Time of concentration (TC) = 7.67 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 121.000 to Point/Station 117.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main stream is listed: In Main Stream number: 3 stream flow area= 0.660(Ac.) Runoff from this stream 3.176(CFS) Time of concentration = 7.67 min. Rainfall intensity= 5.598(In/Hr) summary of stream data: stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 223.064 7.82 5.529 2 53.474 9.43 4.899 3 3.176 7.67 5.598 Qmax(1) = 1.000 -·-1.000 .. 223.064) + 1. 000 -·-0.829 o. 53.474) + 0.988 -·-1.000 o. 3.176) + 270. 527 Qmax(2) 0.886 .. 1.000 .. 223.064) + 1.000 -·-1.000 -·-53.474) + 0.875 -·-1.000 -·-3 .176) + 253.891 Qmax(3) 1.000 ·'· 0.981 c. 223.064) + 1.000 ·'· 0. 813 ·'· 53.474) + 1.000 -·-1.000 .. 3.176) + 265.509 Total of 3 main streams to confluence: Flow rates before confluence point: 223.064 53.474 3.176 Maximum flow rates at confluence using above data: 270.527 253.891 265.509 Area of streams before confluence: 58.750 12.260 0.660 Results of confluence: Total flow rate= 270.527(CFS) Time of concentration 7.819 min. Effective stream area after confluence 71.670(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 117.000 to Point/Station 118.000 '~'**'~' PIPEFLOW TRAVEL TIME (User specified size) "~'*** upstream point/station elevation = 340.67(Ft.) Page 51 c605Pl. OUT Downstream point/station elevation = 326.46(Ft.) Pipe length 285.56(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 270.527(CFS) Given pipe size = 54.00(In.) Calculated individual pipe flow 270.527(CFS) Normal flow depth in pipe = 30.66(In.) Flow top width inside pipe= 53.50(In.) critical depth could not be calculated. Pipe flow velocity = 29.01(Ft/s) Travel time through pipe = 0.16 min. Time of concentration (TC) = 7.98 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 117.000 to Point/Station 118.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area= 71.670(Ac.) Runoff from this stream 270.527(CFS) Time of concentration 7.98 min. Rainfall intensity = 5.456(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2501.000 to Point/Station 2502.000 **** INITIAL AREA EVALUATION **** User specified 'C' value of 0.850 given for subarea Initial subarea flow distance 100.00(Ft.) Highest elevation = 396.00(Ft.) Lowest elevation = 394.00(Ft.) Elevation difference = 2.00(Ft.) Time of concentration calculated bv the urban areas overland flow method (App x-t) = 3.57 min. TC = [1.8*(1.1-c)*distanceA.5)/(% slopeA(1/3)] TC = [1.8*(1.1-0.8500)*(100.00A.5)/( 2.00A(1/3)]= 3.57 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.377 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0.850 subarea runoff= 0.627(CFS) Total initial stream area= 0.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2502.000 to Point/Station 2503.000 .;,*** IMPROVED CHANNEL TRAVEL TIME *;""' Upstream point elevation = 394.00(Ft.) Downstream point elevation = 389.00(Ft.) channel length thru subarea 300.00(Ft.) channel base width O.OOO(Ft.) slope or 'Z' of left channel bank= 20.000 slope or 'Z' of right channel bank = 20.000 Estimated mean flow rate at midpoint of channel Manning's 'N' = 0.015 Maximum depth of channel 1.000(Ft.) Flow(q) thru subarea= 3.762(CFS) Depth of flow= 0.244(Ft.), Average velocity channel flow top width= 9.779(Ft.) Flow Velocity= 3.15(Ft/s) Travel time 1.59 min. Time of concentration= 6.59 min. Page 52 3.762(CFS) 3.147(Ft/s) c605Pl. OUT Critical depth = 0.293(Ft.) Adding area flow to channel user specified 'c' value of 0.850 given for subarea Rainfall intensity 6.175(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C subarea runoff 5.248(CFS) for 1.000(Ac.) Total runoff= 5.875(CFS) Total area= 1.10(Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2503.000 to Point/Station 2503.000 **** SUBAREA FLOW ADDITION **** user specified 'c' value of 0.850 given for subarea Time of concentration= 6.59 min. Rainfall intensity 6.175(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c 0.850 subarea runoff 12.596(CFS) for 2.400(Ac.) Total runoff= 18.472(CFS) Total area= 3.50(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2503.000 to Point/Station 2504.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 380.00(Ft.) Downstream point/station elevation = 375.00(Ft.) Pipe length 480.00(Ft.) Manning's N = 0.011 No. of pipes= 1 Required pipe flow 18.472(CFS) Given pipe size = 24.00(In.) calculated individual pipe flow 18.472(CFS) Normal flow depth in pipe = 14.47(In.) Flow top width inside pipe= 23.48(In.) critical Depth= 18.58(In.) Pipe flow velocity = 9.33(Ft/s) Travel time through pipe = 0.86 min. Time of concentration (TC) = 7.45 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2504.000 to Point/Station 2504.000 **** SUBAREA FLOW ADDITION **** user specified 'c' value of 0.850 given for subarea Time of concentration= 7.45 min. Rainfall intensity 5.706(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c 0.850 subarea runoff 20.274(CFS) for 4.180(Ac.) Total runoff= 38.746(CFS) Total area= 7.68(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2504.000 to Point/Station **'~d' PIPEFLOW TRAVEL TIME (User specified size) '"*** Upstream point/station elevation = 368.20(Ft.) Downstream point/station elevation = 329.36(Ft.) Pipe length 111.90(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 38.746(CFS) Given pipe size = 30.00(In.) calculated individual pipe flow 38.746(CFS) Normal flow depth in pipe = 8.12(In.) Flow top width inside pipe = 26.66(In.) Page 53 118.500 c605Pl. OUT critical Depth = 25.20(In.) Pipe flow velocity 36.09(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 7.50 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 118.500 to Point/Station 118.000 •'<id* PIPE FLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 329.03(Ft.) Downstream point/station elevation = 328.13(Ft.) Pipe length 45.24(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 38.746(CFS) Given pipe size= 30.00(In.) calculated individual pipe flow 38.746(CFS) Normal flow depth in pipe = 17.95(In.) Flow top width inside pipe = 29.41(In.) critical Depth = 25.20(In.) Pipe flow velocity = 12.63(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 7.56 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 118.500 to Point/Station 118.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main stream number: 1 in normal stream number 2 Stream flow area= 7.680(Ac.) Runoff from this stream 38.746(CFS) Time of concentration= 7.56 min. Rainfall intensity= 5.652(In/Hr) summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 270. 527 7.98 5.456 2 38.746 7. 56 5.652 Qmax(l) 1. 000 _,_ 1.000 -·-270. 527) + 0.965 -·-1.000 " 38.746) + 307.928 Qmax(2) 1.000 -·-0.947 -·-270. 527) + 1.000 " 1.000 "· 38.746) + 294.861 Total of 2 streams to confluence: Flow rates before confluence point: 270.527 38.746 Maximum flow rates at confluence using above data: 307.928 294.861 Area of streams before confluence: 71.670 7.680 Results of confluence: Total flow rate= 307.928(CFS) Time of concentration 7.983 min. Effective stream area after confluence 79.350(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 118.000 to Point/Station 119.000 Page 54 c605Pl.OUT ·~<*** PIPEFLmv TRAVEL TIME (User specified size) ''*''* upstream point/station elevation = 326.13(Ft.) Downstream point/station elevation 301.50(Ft.) Pipe length 310.00(Ft.) Manning's N = 0.013 N~. of ~ipes 1 Required pipe flow = 307.928(CFS) G1ven p1pe size = 54.00(In.) calculated individual pipe flow 307.928(CFS) Normal flow depth in pipe = 28.76(In.) Flow top width inside pipe= 53.89(In.) Critical depth could not be calculated. Pipe flow velocity = 35.77(Ft/s) Travel time through pipe = 0.14 min. Time of concentration (TC) = 8.13 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 118.000 to Point/Station 119.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area= 79.350(Ac.) Runoff from this stream 307.928(CFS) Time of concentration 8.13 min. Rainfall intensity= 5.393(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 121.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group c = 0.000 Decimal fraction soil group D = 0.000 [RURAL (greater than 1/2 acre) area type ] Initial subarea flow distance 65.00(Ft.) Highest elevation = 386.00(Ft.) Lowest elevation = 356.00(Ft.) Elevation difference = 30.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App x-c) = 3.03 min. TC = [1.8*(1.1-C)*distanceA.S)/(% slopeA(1/3)] TC = [1.8*(1.1-0.3500)*( 65.00A.5)/( 46.15A(1/3)]= 3.03 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.377 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff= 0.026(CFS) Total initial stream area = 0.010(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 121.000 to Point/Station 122.000 '"''*'' STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION *'"'"' Top of street segment elevation = 356.000(Ft.) End of street segment elevation = 316.000(Ft.) Length of street segment = 590.000(Ft.) Height of curb above gutter flowline 6.0(In.) width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 24.500(Ft.) slope from gutter to grade break (v/hz) 0.020 slope from grade break to crown (v/hz) 0.020 Page 55 c605Pl. OUT street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) slope from curb to property line (v/hz) 0.020 Gutter width= 1.500(Ft.) Gutter hike from flowline= 1.500(In.) Manning's N in gutter= 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.045(CFS) Depth of flow= 0.057(Ft.), Average velocity= 2.279(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 1.500(Ft.) Flow velocity= 2.28(Ft/s) Travel time= 4.32 min. TC = 9.32 min. Adding area flow to street user specified 'c' value of 0.530 given for subarea Rainfall intensity 4.939(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c 0.530 subarea runoff= 3.795(CFS) for 1.450(Ac.) Total runoff= 3.821(CFS) Total area= 1.46(Ac.) Street flow at end of street= 3.821(CFS) Half street flow at end of street= 3.821(CFS) Depth of flow= 0.260(Ft.), Average velocity= 5.107(Ft/s) Flow width (from curb towards crown)= 8.228(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 122.000 to Point/Station 119.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 305.50(Ft.) Downstream point/station elevation= 304.50(Ft.) Pipe length 42.25(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 3.821(CFS) Given pipe size= 18.00(In.) calculated individual pipe flow 3.821(CFS) Normal flow depth in pipe= 5.96(In.) Flow top width inside pipe= 16.94(In.) critical Depth = 8.96(In.) Pipe flow velocity= 7.49(Ft/s) Travel time through pipe= 0.09 min. Time of concentration (TC) = 9.41 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 122.000 to Point/Station 119.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.460(Ac.) Runoff from this stream 3.821(CFS) Time of concentration 9.41 min. Rainfall intensity = 4.907(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 123.000 to Point/Station 124.000 ,·;;:** INITIAL AREA EVALUATION *-::-~:-:: Decimal fraction soil group A 0.000 Decimal fraction soil group B 1.000 Decimal fraction soil group c 0.000 Decimal fraction soil group D 0.000 Page 56 c605Pl. OUT [RURAL (greater than 1/2 acre) area type ] Initial subarea flow distance 30.00(Ft.) Highest elevation = 372.00(Ft.) Lowest elevation = 356.00(Ft.) Elevation difference = 16.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.96 min. TC = [1.8*(1.1-C)*distanceA.S)/(% slopeA(1/3)] TC = [1.8*(1.1-0.3500)*( 30.00A.5)/( 53.33A(1/3)]= 1.96 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.377 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0.350 subarea runoff = 0.026(CFS) Total initial stream area= 0.010(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 124.000 to Point/Station 125.000 ·H~'* STREET FLOW TRAVEL Tifv1E + SUBAREA FLOW ADDITION '"*''''' Top of street segment elevation = 356.000(Ft.) End of street segment elevation = 316.000(Ft.) Length of street segment 590.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 24.500(Ft.) slope from gutter to grade break (v/hz) = 0.020 slope from grade break to crown (v/hz) 0.020 street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) slope from curb to property line (v/hz) 0.020 Gutter width= 1.500(Ft.) Gutter hike from flowline= 1.500(In.) Manning's N in gutter= 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown= 0.0150 Estimated mean flow rate at midpoint of street = 0.033(CFS) Depth of flow= 0.051(Ft.), Average velocity= 2.107(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 1.500(Ft.) Flow velocity= 2.11(Ft/s) Travel time = 4.67 min. TC = 9.67 m1n. Adding area flow to street user specified 'c' value of 0.860 given for subarea Rainfall intensity 4.822(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c 0.860 subarea runoff= 2.156(CFS) for 0.520(Ac.) Total runoff= 2.182(CFS) Total area= 0.53(Ac.) Street flow at end of street= 2.182(CFS) Half street flow at end of street = 2.182(CFS) Depth of flow= 0.224(Ft.), Average velocity= 4.498(Ft/s) Flow width (from curb towards crown)= 6.434(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 125.000 to Point/Station 119.000 **** PIPEFLOW TRAVEL TIME (User specified size) '''*"''* Upstream point/station elevation = 305.00(Ft.) Downstream point/station elevation = 304.50(Ft.) Pipe length 4.25(Ft.) Manning's N = 0.013 No. of p1pes = 1 Required pipe flow 2.182(CFS) Given pipe size = 18.00(In.) Page 57 c605Pl. OUT calculated individual pipe flow 2.182(CFS) Normal flow depth in pipe = 3.00(In.) Flow top width inside pipe = 13.42(In.) critical Depth = 6.69(In.) Pipe flow velocity = 11.24(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 9.67 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 125.000 to Point/Station 119.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 3 Stream flow area= 0.530(Ac.) Runoff from this stream 2.182(CFS) Time of concentration = 9.67 min. Rainfall intensity = 4.820(In/Hr) summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 307.928 8.13 5.393 2 3.821 9.41 4.907 3 2.182 9.67 4.820 Qmax(1) = 1.000 -·-1.000 " 307.928) + 1.000 -·-0.864 -·-3.821) + 1.000 -:~ 0.840 -·-2.182) + 313.061 Qrnax (2) 0.910 -·-1.000 -·-307.928) + 1.000 _,_ 1.000 -·-3. 821) + 1.000 -!.-0.973 _,_ 2.182) + 286.107 Qrnax(3) 0.894 ·:, 1.000 -·-307.928) + 0.982 ·'· 1.000 " 3. 821) + 1.000 " 1.000 " 2.182) + 281.128 Total of 3 streams to confluence: Flow rates before confluence point: 307.928 3.821 2.182 Maximum flow rates at confluence using above data: 313.061 286.107 281.128 Area of streams before confluence: 79.350 1.460 0.530 Results of confluence: Total flow rate = 313.061(CFS) Time of concentration 8.127 min. Effective stream area after confluence 81.340(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 119.000 to Point/Station 128.000 ·H*>' PIPE FLOW TRAVEL TIME (User specified size) ***'~' Upstream point/station elevation = 301.00(Ft.) Downstream point/station elevation= 295.16(Ft.) Pipe length = 63.92(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 313.061(CFS) Given pipe size = 60.00(In.) calculated individual pipe flow = 313.061(CFS) Page 58 , __ 1, c605Pl.OUT 26.30(In.) 59.54(In.) Normal flow depth in pipe Flow top width inside pipe = critical Depth= 56.58(In.) Pipe flow velocity= 37.80(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 8.16 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 119.000 to Point/Station 128.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area= 81.340(Ac.) Runoff from this stream 313.061(CFS) Time of concentration = 8.16 min. Rainfall intensity= 5.381(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 164.000 to Point/Station 165.000 ,.,.;,~;-~, INITIAL AREA EVALUATION -:'*''"' user specified 'c' value of 0.880 given for subarea Initial subarea flow distance 460.00(Ft.) Highest elevation = 366.00(Ft.) Lowest elevation = 360.00(Ft.) Elevation difference = 6.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App x-c) = 7.77 min. TC = [1.8*(1.1-C)*distanceA.S)/(% slopeA(1/3)] TC = [1.8*(1.1-0.8800)*(460.00A.5)/( 1.30A(1/3)]= 7.77 Rainfall intensity (I) = 5.550 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0.880 subarea runoff = 18.608(CFS) Total initial stream area = 3.810(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 165.000 to Point/Station 132.000 -::-~'''* PIPE FLOW TRAVEL TIME (User specified size) '"'''''' Upstream point/station elevation = 349.88(Ft.) Downstream point/station elevation= 344.33(Ft.) Pipe length 120.60(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 18.608(CFS) Given pipe size = 18.00(In.) calculated individual pipe flow 18.608(CFS) Normal flow depth in pipe = 12.47(In.) Flow top width inside pipe = 16.61(In.) critical depth could not be calculated. Pipe flow velocity= 14.25(Ft/s) Travel time through pipe = 0.14 min. Time of concentration (TC) = 7.91 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 165.000 to Point/Station 132.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Page 59 Stream flow area = Runoff from this stream Time of concentration Rainfall intensity = c605Pl. OUT 3.810(Ac.) 18. 608 (CFS) 7.91 min. 5.486(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 129.000 to Point/Station 130.000 ***"'' INITIAL AREA EVALUATION ''d** user specified 'c' value of 0.850 given for subarea Initial subarea flow distance 570.00(Ft.) Highest elevation= 437.00(Ft.) Lowest elevation= 425.00(Ft.) Elevation difference = 12.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 8.38 min. TC = [1.8*(1.1-C)*distanceA.5)/(% slopeA(1/3)] TC = [1.8*(1.1-0.8500)*(570.00A.5)/( 2.11A(1/3)]= 8.38 Rainfall intensity (I) = 5.286 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0.850 subarea runoff= 18.468(CFS) Total initial stream area= 4.110(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 130.000 to Point/Station 131.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 415.00(Ft.) Downstream point/station elevation= 365.33(Ft.) Pipe length 121.73(Ft.) Manning's N = 0.013 No. of p1pes = 1 Required pipe flow 18.468(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow 18.468(CFS) Normal flow depth in pipe = 6.46(In.) Flow top width inside pipe= 17.27(In.) critical depth could not be calculated. Pipe flow velocity= 32.42(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 8.45 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 131.000 to Point/Station 132.000 .,,.,:-;,* PIPEFLOW TRAVEL TH<1E (User specified size) -::-::-::-:, Upstream point/station elevation = 365.00(Ft.) Downstream point/station elevation = 344.33(Ft.) Pipe length 287.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 18.468(CFS) Given pipe size= 18.00(In.) calculated individual pipe flow 18.468(CFS) Normal flow depth in pipe = 10.63(In.) Flow top width inside pipe= 17.70(In.) critical depth could not be calculated. Pipe flow velocity= 17.01(Ft/s) Travel time through pipe = 0.28 min. Time of concentration (TC) = 8.73 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 131.000 to Point/Station 132.000 Page 60 c605Pl. OUT **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 stream flow area= 4.110(Ac.) Runoff from this stream 18.468(CFS) Time of concentration= 8.73 min. Rainfall intensity= 5.151(In/Hr) summary of stream data: stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 18.608 7.91 5.486 2 18.468 8.73 5.151 Qmax(1) 1.000 ·'· 1.000 o. 18.608) + 1.000 ·'-0.907 ·'-18.468) + 35.357 Qmax(2) 0.939 ·'-1.000 ·'-18.608) + 1.000 ·'-1.000 ·'-18.468) + 35.940 Total of 2 streams to confluence: Flow rates before confluence point: 18.608 18.468 Maximum flow rates at confluence using above data: 35.357 35.940 Area of streams before confluence: 3.810 4.110 Results of confluence: Total flow rate= 35.940(CFS) Time of concentration 8.726 min. Effective stream area after confluence 7.920(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 132.000 to Point/Station 132.100 -::-!dd PIPE FLOW TRAVEL TIME (User specified size) '""H' Upstream point/station elevation = 344.00(Ft.) Downstream point/station elevation= 327.33(Ft.) Pipe length 228.63(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 35.940(CFS) Given pipe size = 24.00(In.) calculated individual pipe flow 35.940(CFS) Normal flow depth in pipe = 13.24(In.) Flow top width inside pipe= 23.87(In.) critical depth could not be calculated. Pipe flow velocity = 20.23(Ft/s) Travel time through pipe = 0.19 min. Time of concentration (TC) = 8.91 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 132.100 to Point/Station 133.000 -!:*** PIPEFLOW TRAVEL TIME (User specified size) **"~'* Upstream point/station elevation= 327.00(Ft.) Downstream point/station elevation = 310.33(Ft.) Pipe length 146.07(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 35.940(CFS) Given pipe size = 24.00(In.) calculated individual pipe flow 35.940(CFS) Page 61 c605Pl. OUT Normal flow depth in pipe 11.58(In.) Flow top width inside pipe= 23.99(In.) critical depth could not be calculated. Pipe flow velocity= 23.95(Ft/s) Travel time through pipe= 0.10 min. Time of concentration (TC) = 9.02 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 132.000 to Point/Station 133.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main stream number: 2 in normal stream number 1 Stream flow area = 7.920(Ac.) Runoff from this stream 35.940(CFS) Time of concentration 9.02 min. Rainfall intensity= 5.044(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 130.000 to Point/Station 134.000 ***"' INITIAL AREA EVALUATION ,.,.,icic Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.630 Decimal fraction soil group c 0.370 Decimal fraction soil group D 0.000 [INDUSTRIAL area type ] Initial subarea flow distance 500.00(Ft.) Highest elevation= 373.00(Ft.) Lowest elevation = 364.00(Ft.) Elevation difference = 9.00(Ft.) Time of concentration calculated by the urban areas overland flow method (Aoo X-C) = 7.66 min. TC = [1.8*(1.1-c)*distanceA:sj/(% s~opeA(1/3)] TC = [1.8*(1.1-0.8685)*(500.00A.5)/( 1.80A(1/3)]= 7.66 Rainfall intensity (I) = 5.603 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0.868 subarea runoff= 20.146(CFS) Total initial stream area= 4.140(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 134.000 to Point/Station 133.000 'H'""'' PIPEFLOVJ TRAVEL TIME (User specified size) ""'"'cic Upstream point/station elevation = 353.80(Ft.) Downstream point/station elevation= 310.50(Ft.) Pipe length 129.60(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 20.146(CFS) Given pipe size = 18.00(In.) calculated individual pipe flow 20.146(CFS) Normal flow depth in pipe = 7.14(In.) Flow top width inside pipe = 17.61(In.) critical depth could not be calculated. Pipe flow velocity = 30.86(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 7.73 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 134.000 to Point/Station 133.000 **** CONFLUENCE OF MINOR STREAMS **** Page 62 I~ c605P1.0UT Along Main Stream number: 2 in normal stream number 2 stream flow area= 4.140(Ac.) Runoff from this stream 20.146(CFS) Time of concentration= 7.73 min. Rainfall intensity= 5.570(In/Hr) summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 35.940 9.02 5.044 2 20.146 7.73 5.570 Qmax(1) 1.000 ~ 1.000 -35.940) + 0.905 * 1.000 ~ 20.146) + 54.181 Qmax(2) 1.000 * 0.857 ~ 35.940) + 1.000 * 1.000 ~ 20.146) + 50.957 Total of 2 streams to confluence: Flow rates before confluence point: 35.940 20.146 Maximum flow rates at confluence using above data: 54.181 50.957 Area of streams before confluence: 7.920 4.140 Results of confluence: Total flow rate = 54.181(CFS) Time of concentration 9.016 min. Effective stream area after confluence 12.060(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 133.000 to Point/Station 137.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 310.00(Ft.) Downstream point/station elevation = 302.60(Ft.) Pipe length 134.3?(Ft.). Manning's N = 0.013 No. of p1pes = 1 Requ1red p1pe flow 54.181(CFS) Given pipe size = 24.00(In.) calculated individual pipe flow 54.181(CFS) Normal flow depth in pipe = 20.16(In.) Flow top width inside pipe= 17.60(In.) critical depth could not be calculated. Pipe flow velocity = 19.25(Ft/s) Travel time through pipe= 0.12 min. Time of concentration (TC) = 9.13 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 133.000 to Point/Station 137.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area= 12.060(Ac.) Runoff from this stream 54.181(CFS) Time of concentration 9.13 min. Rainfall intensity = 5.002(In/Hr) Page 63 ~, i ' ~ I ,_j c605Pl. OUT ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 135.000 to Point/Station **** INITIAL AREA EVALUATION '~'*'~'* Decimal fraction soil group A 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group c = 1.000 Decimal fraction soil group D = 0.000 [RURAL (greater than 1/2 acre) area type ] Initial subarea flow distance 120.00(Ft.) Highest elevation= 407.00(Ft.) Lowest elevation= 355.00(Ft.) Elevation difference= 52.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.93 min. TC = [1.8*(1.1-C)*distanceA.S)/(% slopeA(1/3)] TC = [1.8*(1.1-0.4000)*(120.00A.5)/( 43.33A(1/3)]= 3.93 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.377 for a 100.0 year storm 132.000 Effective runoff coefficient used for area (Q=KCIA) is c = 0.400 subarea runoff = 0.030(CFS) Total initial stream area = 0.010(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 132.000 to Point/Station 136.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ~~~~ Top of street segment elevation= 355.000(Ft.) End of street segment elevation = 314.000(Ft.) Length of street segment 560.000(Ft.) Height of curb above gutter flowline 6.0(In.) width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 24.500(Ft.) slope from gutter to grade break (v/hz) = 0.020 slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) slope from curb to property line (v/hz) 0.020 Gutter width= 1.500(Ft.) Gutter hike from flowline= 1.500(In.) Manning's N in gutter= 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown= 0.0150 Estimated mean flow rate at midpoint of street = 0.057(CFS) Depth of flow= 0.062(Ft.), Average velocity= 2.496(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 1.500(Ft.) Flow velocity= 2.50(Ft/s) Travel time= 3.74 min. TC = 8.74 min. Adding area flow to street user specified 'c' value of 0.550 given for subarea Rainfall intensity 5.146(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c 0.550 subarea runoff= 5.293(CFS) for 1.870(Ac.) Total runoff= 5.322(CFS) Total area= 1.88(Ac.) street flow at end of street = 5.322(CFS) Half street flow at end of street = 5.322(CFS) Depth of flow= 0.281(Ft.), Average velocity= 5.684(Ft/s) Flow width (from curb towards crown)= 9.301(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Page 64 c605Pl.OUT Process from Point/Station 136.000 to Point/Station **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 303.60(Ft.) Downstream point/station elevation = 303.10(Ft.) Pipe len~th 5.25(Ft.) Manning's N = 0.013 No. of p1pes = 1 Required pipe flow 5.322(CFS) Given pipe size = 18.00(In.) calculated individual pipe flow 5.322(CFS) Normal flow depth in pipe= 4.93(In.) Flow top width inside pipe = 16.06(In.) critical Depth = 10.67(In.) Pipe flow velocity= 13.54(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 8.75 min. 137.000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 136.000 to Point/Station 137.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area= 1.880(Ac.) Runoff from this stream 5.322(CFS) Time of concentration 8.75 min. Rainfall intensity= 5.143(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 138.000 to Point/Station 139.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group c 1.000 Decimal fraction soil group D 0.000 [INDUSTRIAL area type ] Initial subarea flow distance 80.00(Ft.) Highest elevation = 360.00(Ft.) Lowest elevation= 355.00(Ft.) Elevation difference= 5.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.75 min. TC = [1.8*(1.1-C)*distanceA.5)/(% slopeA(1/3)] TC = [1.8*(1.1-0.9000)*( 80.00A.5)/( 6.25A(1/3)]= 1.75 setting time of concentration to 5 minutes Rainfall intensity (I) = 7.377 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0.900 subarea runoff = 0.066(CFS) Total initial stream area= 0.010(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 139.000 to Point/Station 140.000 *..:'* STREET FLOW TRAVEL TIME + SUBAREA FLOVJ ADDITION ;,;,.;,;, 10p of street segment elevation= 3)5.000(Ft.) End of street segment elevation = 314.000(Ft.) Length of street segment 560.000(Ft.) Height of curb above gutter flowline 6.0(In.) width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 24.500(Ft.) slope from gutter to grade break (v/hz) = 0.020 Page 65 '--) c605Pl. OUT slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) slope from curb to property line (v/hz) 0.020 Gutter width= 1.500(Ft.) Gutter hike from flowline= 1.500(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.093(CFS) Depth of flow= 0.074(Ft.), Average velocity= 2.822(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 1.500(Ft.) Flow velocity= 2.82(Ft/s) Travel time= 3.31 min. TC = 8.31 min. Adding area flow to street user specified 'c' value of 0.760 given for subarea Rainfall intensity 5.317(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c 0.760 subarea runoff= 3.273(CFS) for 0.810(Ac.) Total runoff= 3.340(CFS) Total area= 0.82(Ac.) street flow at end of street= 3.340(CFS) Half street flow at end of street= 3.340(CFS) Depth of flow= 0.248(Ft.), Average velocity= 5.099(Ft/s) Flow width (from curb towards crown)= 7.640(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 140.000 to Point/Station 137.000 ''*'"'' PIPEFLO'rJ TRAVEL TIME (User specified size) **'H' Upstream point/station elevation = 303.60(Ft.) Downstream point/station elevation = 302.83(Ft.) Pipe length 43.25(Ft.) Manning's N = 0.013 No. of p1pes = 1 Required pipe flow 3.340(CFS) Given pipe size= 18.00(In.) calculated individual pipe flow 3.340(CFS) Normal flow depth in pipe= 5.98(In.) Flow top width inside pipe= 16.96(In.) critical Depth= 8.36(In.) Pipe flow velocity= 6.51(Ft/s) Travel time through pipe= 0.11 min. Time of concentration (TC) = 8.42 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 140.000 to Point/Station 137.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main stream number: 2 in normal stream number 3 Stream flow area = 0.820(Ac.) Runoff from this stream 3.340(CFS) Time of concentration = 8.42 min. Rainfall intensity = 5.272(In/Hr) summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 54.181 9.13 5.002 2 5. 322 8.75 5.143 3 3. 340 8.42 5. 272 Page 66 c605P1.0UT Qmax(1) 1.000 ~ 1.000 ~ 54.181) + 0.972 ~ 1.000 * 5.322) + 0.949 ~ 1.000 ~ 3.340) + 62.525 Qmax(2) 1.000 ~ 0.958 ~ 54.181) + 1.000 ~ 1.000 n 5.322) + 0.976 ~ 1.000 ~ 3.340) + 60.468 Qmax(3) 1.000 ~ 0.922 ~ 54.181) + 1.000 ~ 0.963 ~ 5.322) + 1.000 ~ 1.000 ~ 3.340) + 58.407 Total of 3 streams to confluence: Flow rates before confluence point: 54.181 5.322 3.340 Maximum flow rates at confluence using above data: 62.525 60.468 58.407 Area of streams before confluence: 12.060 1.880 0.820 Results of confluence: Total flow rate= 62.525(CFS) Time of concentration 9.133 min. Effective stream area after confluence 14.760(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 137.000 to Point/Station 128.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 301.60(Ft.) Downstream point/station elevation= 296.50(Ft.) Pipe length 85.4~(Ft.). Manning's N = 0.013 No. of p1pes = 1 Requ1red p1pe flow 62.52S(CFS) Given pipe size= 36.00(In.) calculated individual pipe flow 62.525(CFS) Normal flow depth in pipe = 15.47(In.) Flow top width inside pipe= 35.64(In.) critical Depth = 30.54(In.) Pipe flow velocity= 21.53(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 9.20 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 137.000 to Point/Station 128.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area= 14.760(Ac.) Runoff from this stream 62.525(CFS) Time of concentration = 9.20 min. Rainfall intensity = 4.979(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 126.000 to Point/Station 127.000 **** INITIAL AREA EVALUATION **** User specified 'c' value of 0.860 given for subarea Initial subarea flow distance 630.00(Ft.) Page 67 c605Pl.OUT Highest elevation 327.00(Ft.) Lowest elevation = 315.00(Ft.) Elevation difference = 12.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 8.75 min. TC = [1.8*(1.1-C)*distanceA.5)/(% slopeA(1/3)] TC = [1.8*(1.1-0.8600)*(630.00A.5)/( 1.90A(1/3)]= 8.75 Rainfall intensity (I) = 5.143 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0.860 subarea runoff= 22.867(CFS) Total initial stream area = 5.170(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 127.000 to Point/Station -!:;'*"~' PIPEFLO\v TRAVEL TIME (User specified size) "~""'~'·' Upstream point/station elevation = 302.70(Ft.) Downstream point/station elevation = 297.86(Ft.) Pipe length 48.60(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 22.867(CFS) Given pipe size = 24.00(In.) calculated individual pipe flow 22.867(CFS) Normal flow depth in pipe= 9.34(In.) Flow top width inside pipe= 23.40(In.) critical Depth = 20.42(In.) Pipe flow velocity = 20.22(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 8.79 min. 128.000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 127.000 to Point/Station 128.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 stream flow area= 5.170(Ac.) Runoff from this stream 22.867(CFS) Time of concentration= 8.79 min. Rainfall intensity= 5.128(In/Hr) summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 313.061 8.16 5.381 2 62.525 9.20 4.979 3 22.867 8.79 5.128 Qmax(l) = 1.000 '!~ 1.000 ·'· 313. 061) + 1.000 ·'· 0.887 ·'· 62.525) T 1.000 * 0.928 o. 22. 867) + 389.716 Qmax(2) 0.925 i-r 1.000 o. 313. 061) + 1.000 ·'· 1.000 ... 62.525) + 0.971 * 1.000 o. 22. 867) + 374.394 Qmax(3) 0.953 o. 1.000 o. 313.061) + 1.000 * 0.955 J. 62.525) + 1.000 o. 1.000 ... 22. 867) + 380.940 Page 68 c605P1.0UT Total of 3 main streams to confluence: Flow rates before confluence point: 313.061 62.525 22.867 Maximum flow rates at confluence using above data: 389.716 374.394 380.940 Area of streams before confluence: 81.340 14.760 5.170 Results of confluence: Total flow rate= 389.716(CFS) Time of concentration 8.155 min. Effective stream area after confluence 101.270(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 128.000 to Point/Station 144.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 294.83(Ft.) Downstream point/station elevation= 283.50(Ft.) Pipe length 273.71(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 389.716(CFS) Given pipe size = 60.00(In.) calculated individual pipe flow 389.716(CFS) Normal flow depth in pipe = 38.25(In.) Flow top width inside pipe = 57.69(In.) critical depth could not be calculated. Pipe flow velocity= 29.50(Ft/s) Travel time through pipe= 0.15 min. Time of concentration (TC) = 8.31 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 128.000 to Point/Station 144.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area= 101.270(Ac.) Runoff from this stream 389.716(CFS) Time of concentration 8.31 min. Rainfall intensity= 5.316(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 141.000 to Point/Station 142.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group c 1.000 Decimal fraction soil group D 0.000 [INDUSTRIAL area type ] Initial subarea flow distance 420.00(Ft.) Highest elevation = 346.00(Ft.) Lowest elevation = 338.00(Ft.) Elevation difference = 8.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 5.95 min. TC = [1.8*(1.1-C)*distanceA.5)/(% slopeA(1/3)] TC = [1.8*(1.1-0.9000)*(420.00A.5)/( 1.90A(1/3)]= 5.95 Rainfall intensity (I) = 6.593 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0.900 Page 69 c605Pl. OUT subarea runoff = 20.471(CFS) Total initial stream area= 3.450(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 142.000 to Point/Station 143.000 **"'"" PIPEFLOW TRAVEL TIME (User specified size) **''ci< Upstream point/station elevation= 327.97(Ft.) Downstream point/station elevation= 289.50(Ft.) Pipe length 130.30(Ft.) Manning's N = 0.013 N9. of ~ipes = 1 Required pipe flow 20.471(CFS) G1ven p1pe size= 18.00(In.) calculated individual pipe flow 20.471(CFS) Normal flow depth in pipe= 7.45(In.) Flow top width inside pipe = 17.73(In.) critical depth could not be calculated. Pipe flow velocity= 29.64(Ft/s) Travel time through pipe= 0.07 min. Time of concentration (TC) = 6.03 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 143.000 to Point/Station 144.000 ,.,.,.;c-:, PIPEFLOW TRAVEL TIME (User specified size) ,·c-:,H Upstream point/station elevation = 287.17(Ft.) Downstream point/station elevation = 286.17(Ft.) Pipe length 42.50(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 20.471(CFS) Given pipe size = 24.00(In.) calculated individual pipe flow 20.471(CFS) Normal flow depth in pipe= 13.27(In.) Flow top width inside pipe= 23.87(In.) Critical Depth = 19.48(In.) Pipe flow velocity= 11.50(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 6.09 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 143.000 to Point/Station 144.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area= 3.450(Ac.) Runoff from this stream 20.471(CFS) Time of concentration = 6.09 min. Rainfall intensity = 6.498(In/Hr) summary of stream data: stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 389.716 8.31 5. 316 2 20.471 6.09 6.498 Qmax(1) 1.000 o. 1.000 ·k 389. 716) + 0.818 * 1.000 "· 20. 471) + 406.462 Qmax(2) 1.000 ·'· 0. 732 * 389.716) + 1.000 "· 1.000 * 20. 471) + 305.922 Page 70 • _j . J c605Pl. OUT Total of 2 streams to confluence: Flow rates before confluence point: 389.716 20.471 Maximum flow rates at confluence using above data: 406.462 305.922 Area of streams before confluence: 101.270 3.450 Results of confluence: Total flow rate = 406.462(CFS) Time of concentration 8.310 min. Effective stream area after confluence 104.720(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 144.000 to Point/Station 147.000 ·Hid PIPEFLOW TRAVEL TIME (User specified size) ***'' Upstream point/station elevation = 283.17(Ft.) Downstream point/station elevation= 279.50(Ft.) Pipe length 72.13(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 406.462(CFS) Given pipe size= 60.00(In.) calculated individual pipe flow 406.462(CFS) Normal flow depth in pipe= 36.70(In.) Flow top width inside pipe= 58.48(In.) critical depth could not be calculated. Pipe flow velocity= 32.29(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 8.35 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 144.000 to Point/Station 147.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 stream flow area = 104.720(Ac.) Runoff from this stream 406.462(CFS) Time of concentration 8.35 min. Rainfall intensity= 5.301(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 167.000 to Point/Station 125.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group c 1.000 Decimal fraction soil group D 0.000 [INDUSTRIAL area type ] Initial subarea flow distance 25.00(Ft.) Highest elevation= 317.00(Ft.) Lowest elevation= 316.50(Ft.) Elevation difference= O.SO(Ft.) Time of concentration calculated by the urban areas overland flow method (App x-c) = 1.43 min. TC = [1.8*(1.1-C)*distanceA.S)/(% slopeA(1/3)] TC = [1.8*(1.1-0.9000)*( 25.00A.5)/( 2.00A(1/3)]= 1.43 Setting time of concentration to 5 minutes Rainfall intensity (I)= 7.377 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0.900 Page 71 ___ I --~1 c605Pl.OUT subarea runoff = 0.066(CFS) Total initial stream area = 0.010(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 125.000 to Point/Station 148.000 >d** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION *1'** Top of street segment elevation= 316.500(Ft.) End of street segment elevation = 292.000(Ft.) Length of street segment 410.000(Ft.) Height of curb above gutter flowline 6.0(In.) width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 24.500(Ft.) slope from gutter to grade break (v/hz) = 0.020 slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) slope from curb to property line (v/hz) 0.020 Gutter width= 1.500(Ft.) Gutter hike from flowline= 1.500(In.) Manning's N in gutter= 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown= 0.0150 Estimated mean flow rate at midpoint of street = 0.079(CFS) Depth of flow= 0.073(Ft.), Average velocity= 2.511(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 1.500(Ft.) Flow velocity= 2.51(Ft/s) Travel time= 2.72 min. TC = 7.72 m1n. Adding area flow to street Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group c 1.000 Decimal fraction soil group D 0.000 [INDUSTRIAL area type ] Rainfall intensity 5.574(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c 0.900 subarea runoff= 1.956(CFS) for 0.390(Ac.) Total runoff= 2.023(CFS) Total area= 0.40(Ac.) Street flow at end of street= 2.023(CFS) Half street flow at end of street= 2.023(CFS) Depth of flow= 0.223(Ft.), Average velocity= 4.21l(Ft/s) Flow width (from curb towards crown)= 6.396(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 148.000 to Point/Station 147.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 283.17(Ft.) Downstream point/station elevation = 282.67(Ft.) Pipe length 4.75(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 2.023(CFS) Given pipe size = 18.00(In.) calculated individual pipe flow 2.023(CFS) Normal flow depth in pipe = 2.98(In.) Flow top width inside pipe= 13.37(In.) critical Depth = 6.43(In.) Pipe flow velocity= 10.58(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 7.73 min. Page 72 c605P1.0UT ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 148.000 to Point/Station 147.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.400(Ac.) Runoff from this stream 2.023(CFS) Time of concentration= 7.73 min. Rainfall intensity= 5.570(In/Hr) summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 406.462 8.35 5.301 2 2.023 7.73 5.570 Qmax(1) 1.000 ~ 1.000 -406.462) + 0.952 n 1.000 -2.023) + 408.387 Qmax(2) 1.000 * 0.926 n 406.462) + 1.000 ~ 1.000 ~ 2.023) + 378.386 Total of 2 streams to confluence: Flow rates before confluence point: 406.462 2.023 Maximum flow rates at confluence using above data: 408.387 378.386 Area of streams before confluence: 104.720 0.400 Results of confluence: Total flow rate= 408.387(CFS) Time of concentration 8.347 min. Effective stream area after confluence 105.120(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 147.000 to Point/Station 149.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 279.17(Ft.) Downstream point/station elevation= 277.43(Ft.) Pipe length 34.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 408.387(CFS) Given pipe size = 60.00(In.) calculated individual pipe flow 408.387(CFS) Normal flow depth in pipe= 36.75(In.) Flow top width inside pipe = 58.46(In.) critical depth could not be calculated. Pipe flow velocity= 32.40(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 8.36 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 147.000 to Point/Station 149.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 105.120(Ac.) Page 73 c605Pl. OUT 408.387(CFS) 8.36 min. Runoff from this stream Time of concentration = Rainfall intensity = Program is now starting 5. 294(In/Hr) with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 150.000 to Point/Station 151.000 ~'*** INITIAL AREA EVALUATION *~'~'* User specified 'c' value of 0.400 given for subarea Initial subarea flow distance 40.00(Ft.) Highest elevation = 360.00(Ft.) Lowest elevation = 340.00(Ft.) Elevation difference= 20.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 2.16 min. TC = [1.8*(1.1-C)*distanceA.5)/(% slopeA(1/3)] TC = [1.8*(1.1-0.4000)*( 40.00A.5)/( 50.00A(1/3)]= 2.16 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.377 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0.400 subarea runoff= 0.030(CFS) Total initial stream area= 0.010(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 151.000 to Point/Station 152.000 ~,~,-:,-:: STREET FLOW TRAVEL TIME + SUBAREA FLmv ADDITION "··'--'·"· Top of street segment elevation = 340.000(Ft.) End of street segment elevation = 322.000(Ft.) Length of street seqment 900.000(Ft.) Height of curb abov~ gutter flowline 6.0(In.) width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 24.500(Ft.) slope from gutter to grade break (v/hz) = 0.020 slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) slope from curb to property line (v/hz) 0.020 Gutter width= 1.500(Ft.) Gutter hike from flowline= 1.500(In.) Manning's N in gutter= 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown= 0.0150 Estimated mean flow rate at midpoint of street = 0.066(CFS) Depth of flow= 0.083(Ft.), Average velocity= 1.593(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 1.500(Ft.) Flow velocity= 1.59(Ft/s) Travel time = 9.42 min. TC = 14.42 min. Adding area flow to street User specified 'c' value of 0.590 given for subarea Rainfall intensity 3.726(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c 0.590 subarea runoff= 5.496(CFS) for 2.500(Ac.) Total runoff= 5.526(CFS) Total area= 2.51(Ac.) Street flow at end of street= 5.526(CFS) Half street flow at end of street= 5.526(CFS) Depth of flow= 0.340(Ft.), Average velocity= 3.502(Ft/s) Flow width (from curb towards crown)= 12.274(Ft.) Page 74 c605Pl. OUT ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 152.000 to Point/Station 153.000 **** PIPEFLOW TRAVEL TIME (User specified size) i:i:*"~< Upstream point/station elevation = 314.60(Ft.) Downstream point/station elevation = 314.10(Ft.) Pipe length 5.25(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 5.526(CFS) Given pipe size = 18.00(In.) calculated individual pipe flow 5.526(CFS) Normal flow depth in pipe= 5.03(In.) Flow top width inside pipe = 16.15(In.) critical Depth = 10.87(In.) Pipe flow velocity = 13.68(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 14.42 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 152.000 to Point/Station 153.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 stream flow area= 2.510(Ac.) Runoff from this stream 5.526(CFS) Time of concentration 14.42 min. Rainfall intensity= 3.725(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 154.000 to Point/Station 155.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group c 0.000 Decimal fraction soil group D 1.000 [INDUSTRIAL area type ] Initial subarea flow distance 30.00(Ft.) Highest elevation = 340.60(Ft.) Lowest elevation = 340.00(Ft.) Elevation difference= 0.60(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.17 min. TC = [1.8*(1.1-C)*distanceA.5)/(% slopeA(1/3)] TC = [1.8*(1.1-0.9500)*( 30.00A.5)/( 2.00A(1/3)]= 1.17 setting time of concentration to 5 minutes Rainfall intensity (I) = 7.377 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0.950 subarea runoff = 0.070(CFS) Total initial stream area= 0.010(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 155.000 to Point/Station 156.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLO\'/ ADDITION ***"~< Top of street segment elevation = 340.000(Ft.) End of street segment elevation = 322.000(Ft.) Length of street segment 1000.000(Ft.) Height of curb above gutter flowline width of half street (curb to crown) Page 75 6.0(In.) 26.000(Ft.) c605P1.0UT Distance from crown to crossfall grade break 24.500(Ft.) slope from gutter to grade break (v/hz) = 0.020 slope from grade break to crown (v/hz) = 0.020 street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) slope from curb to property line (v/hz) 0.020 Gutter width= 1.500(Ft.) Gutter hike from flowline= 1.500(In.) Manning's N in gutter= 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown= 0.0150 Estimated mean flow rate at midpoint of street= 0.103(CFS) Depth of flow= 0.100(Ft.), Average velocity= 1.709(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 1.500(Ft.) Flow velocity= 1.71(Ft/s) Travel time= 9.75 min. TC = 14.75 min. Adding area flow to street Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group c 0.000 Decimal fraction soil group D 1.000 [INDUSTRIAL area type ] Rainfall intensity 3.671(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c 0.950 subarea runoff= 3.279(CFS) for 0.940(Ac.) Total runoff= 3.349(CFS) Total area= 0.95(Ac.) Street flow at end of street = 3.349(CFS) Half street flow at end of street = 3.349(CFS) Depth of flow= 0.300(Ft.), Average velocity= 2.983(Ft/s) Flow width (from curb towards crown)= 10.254(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 156.000 to Point/Station 153.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 314.70(Ft.) Downstream point/station elevation= 313.60(Ft.) Pipe length 55.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 3.349(CFS) Given pipe size= 18.00(In.) calculated individual pipe flow 3.349(CFS) Normal flow depth in pipe= 5.82(In.) Flow top width inside pipe = 16.84(In.) critical Depth = 8.37(In.) Pipe flow velocity = 6.78(Ft/s) Travel time through pipe = 0.14 min. Time of concentration (TC) = 14.89 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 156.000 to Point/Station 153.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.950(Ac.) Runoff from this stream 3.349(CFS) Time of concentration = 14.89 min. Rainfall intensity= 3.650(In/Hr) summary of stream data: stream Flow rate TC Rainfall Intensity Page 76 ~-J c605Pl.OUT NO. (CFS) (min) (In/Hr) 1 5.526 14.42 3. 725 2 3.349 14.89 3.650 Qmax(1) 1.000 ·'· 1.000 o. 5. 526) + 1.000 ·'· 0.969 ·'· 3.349) + 8. 770 Qmax(2) 0.980 o. 1.000 ·'· 5. 52 6) + 1.000 ·'· 1.000 ·'· 3. 349) + 8.762 Total of 2 streams to confluence: Flow rates before confluence point: 5.526 3.349 Maximum flow rates at confluence using above data: 8.770 8.762 Area of streams before confluence: 2.510 0.950 Results of confluence: Total flow rate= 8.770(CFS) Time of concentration 14.422 min. Effective stream area after confluence 3.460(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 153.000 to Point/Station 157.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation = 313.27(Ft.) Downstream point/station elevation = 305.33(Ft.) Pipe length 296.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow 8.770(CFS) Given pipe size= 18.00(In.) calculated individual pipe flow 8.770(CFS) Normal flow depth in pipe = 9.1l(In.) Flow top width inside pipe = 18.00(In.) critical Depth= 13.75(In.) Pipe flow velocity = 9.78(Ft/s) Travel time through pipe= 0.50 min. Time of concentration (TC) = 14.93 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 157.000 to Point/Station 169.000 ''"'"''"' PIPEFLOVJ TRAVEL TIME (User specified size) H,•;-~, Upstream point/station elevation = 305.00(Ft.) Downstream point/station elevation = 291.00(Ft.) Pipe length 241.53(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 8.770(CFS) Given pipe size = 18.00(In.) calculated individual pipe flow 8.770(CFS) Normal flow depth in pipe= 7.31(In.) Flow top width inside pipe= 17.68(In.) Critical Depth = 13.75(In.) Pipe flow velocity= 13.01(Ft/s) Travel time through pipe = 0.31 min. Time of concentration (TC) = 15.24 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 169.000 to Point/station 160.000 Page 77 --, ' c605Pl. OUT ·~<**'~' PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 290.67(Ft.) Downstream point/station elevation 287.00(Ft.) Pipe length 105.70(Ft.) Manning's N = 0.013 N9. of ~ipes = 1 Required pipe flow 8.770(CFS) G1ven p1pe size = 18.00(In.) calculated individual pipe flow 8.770(CFS) Normal flow depth in pipe = 8.44(In.) Flow top width inside pipe= 17.97(In.) critical Depth = 13.75(In.) Pipe flow velocity= 10.77(Ft/s) Travel time through pipe = 0.16 min. Time of concentration (TC) = 15.40 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 169.000 to Point/Station 160.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 stream flow area= 3.460(Ac.) Runoff from this stream 8.770(CFS) Time of concentration 15.40 min. Rainfall intensity= 3.571(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 158.000 to Point/Station 152.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group c 1.000 Decimal fraction soil group D 0.000 [INDUSTRIAL area type ] Initial subarea flow distance 30.00(Ft.) Highest elevation = 322.60(Ft.) Lowest elevation = 322.00(Ft.) Elevation difference= 0.60(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.57 min. TC = [1.8*(1.1-C)*distanceA.5)/(% slopeA(1/3)] TC = [1.8*(1.1-0.9000)*( 30.00A.5)/( 2.00A(1/3)]= 1.57 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.377 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0.900 subarea runoff= 0.066(CFS) Total initial stream area= O.OlO(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 152.000 to Point/Station 159.000 '~<i<** STREET FLOW TRAVEL TIME + SUBAREA FLO\'V ADDITION '~'"'""' Top of street segment elevation = 322.000(Ft.) End of street segment elevation = 295.000(Ft.) Length of street segment 650.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 24.500(Ft.) slope from gutter to grade break (v/hz) 0.020 slope from grade break to crown (v/hz) 0.020 Page 78 c605Pl. OUT Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) slope from curb to property line (v/hz) 0.020 Gutter width= 1.500(Ft.) Gutter hike from flowline= 1.500(In.) Manning's N in gutter= 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown= 0.0150 Estimated mean flow rate at midpoint of street = 0.130(CFS) Depth of flow= 0.094(Ft.), Average velocity= 2.481(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 1.500(Ft.) Flow velocity= 2.48(Ft/s) Travel time= 4.37 min. TC = 9.37 min. Adding area flow to street user specified 'c' value of 0.570 given for subarea Rainfall intensity 4.921(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c 0.570 subarea runoff= 5.414(CFS) for 1.930(Ac.) Total runoff= 5.480(CFS) Total area= 1.94(Ac.) street flow at end of street= 5.480(CFS) Half street flow at end of street= 5.480(CFS) Depth of flow= 0.306(Ft.), Average velocity= 4.612(Ft/s) Flow width (from curb towards crown)= 10.568(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 159.000 to Point/Station 159.000 **** SUBAREA FLOW ADDITION **** user specified 'c' value of 0.580 given for subarea Time of concentration= 9.37 m1n. Rainfall intensity 4.921(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c 0. 580 subarea runoff 2.740(CFS) for 0.960(Ac.) Total runoff= 8.220(CFS) Total area= 2.90(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 159.000 to Point/Station 160.000 -:.,·,H: PIPEFLOW TRAVEL TIME (User specified size) *-:;-:,-:, upstream point/station elevation = 286.27(Ft.) Downstream point/station elevation= 285.90(Ft.) Pipe length 5.24(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 8.220(CFS) Given pipe size = 18.00(In.) calculated individual pipe flow 8.220(CFS) Normal flow depth in pipe = 6.69(In.) Flow top width inside pipe= 17.40(In.) critical Depth = 13.32(In.) Pipe flow velocity= 13.74(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 9.37 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 159.000 to Point/Station 160.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area 2.900(Ac.) Runoff from this stream= 8.220(CFS) Page 79 _j Time of concentration Rainfall intensity = c605Pl. OUT 9.37 min. 4.919(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 158.000 to Point/Station 156.000 **i--* INITIAL AREA EVALUATION **';;' Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type group A group B group c group D Initial subarea flow distance Highest elevation= 322.60(Ft.) Lowest elevation = 322.00(Ft.) 0.000 0.000 1. 000 0.000 J 30.00(Ft.) Elevation difference = 0.60(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C)= 1.57 min. TC = [1.8*(1.1-C)*distanceA.5)/(% slopeA(1/3)] TC = [1.8*(1.1-0.9000)*( 30.00A.5)/( 2.00A(1/3)]= Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.377 for a 100.0 year Effective runoff coefficient used for area (Q=KCIA) subarea runoff = 0.066(CFS) Total initial stream area = 0.010(Ac.) 1. 57 storm is c = 0.900 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 156.000 to Point/Station 161.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ~hhh Top of street segment elevation = 322.000(Ft.) End of street segment elevation = 295.000(Ft.) Length of street segment 680.000(Ft.) Height of curb above gutter flowline 6.0(In.) width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 24.500(Ft.) slope from gutter to grade break (v/hz) = 0.020 slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) slope from curb to property line (v/hz) 0.020 Gutter width= 1.500(Ft.) Gutter hike from flowline= 1.500(In.) Manning's N in gutter= 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.088(CFS) Depth of flow= 0.081(Ft.), Average velocity= 2.208(Ft/s) streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 1.500(Ft.) Flow velocity = 2.21(Ft/s) Travel time= 5.13 min. TC = 10.13 min. Adding area flow to street Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group c 1.000 Decimal fraction soil group D 0.000 [INDUSTRIAL area type ] Rainfall intensity = 4.678(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c 0.900 subarea runoff= 2.694(CFS) for 0.640(Ac.) Page 80 : - c605Pl.OUT Total runoff= 2.761(CFS) Total area 0.65(Ac.) street flow at end of street= 2.761(CFS) Half street flow at end of street= 2.761(CFS) Depth of flow= 0.256(Ft.), Average velocity= 3.856(Ft/s) Flow width (from curb towards crown)= 8.029(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 161.000 to Point/Station 160.000 ''*** PIPEFLOV/ TRAVEL TIME (User specified size) **''* Upstream point/station elevation= 287.50(Ft.) Downstream point/station elevation= 285.50(Ft.) Pipe length 55.26(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 2.761(CFS) Given pipe size = 18.00(In.) calculated individual pipe flow 2.761(CFS) Normal flow depth in pipe= 4.52(In.) Flow top width inside pipe= 15.61(In.) critical Depth= 7.57(In.) Pipe flow velocity = 7.94(Ft/s) Travel time through pipe = 0.12 min. Time of concentration (TC) = 10.25 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 161.000 to Point/Station 160.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 3 stream flow area= 0.650(Ac.) Runoff from this stream 2.761(CFS) Time of concentration = 10.25 min. Rainfall intensity = 4.644(In/Hr) summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 8. 770 15.40 3. 571 2 8. 220 9.37 4.919 3 2.761 10.25 4.644 Qmax(l) 1.000 " 1.000 " 8. 770) + 0. 726 o. 1.000 ·'· 8. 220) + 0.769 " 1.000 ·'· 2. 761) + 16.861 Qmax(2) 1.000 " 0.609 "· 8. 770) + 1.000 o. 1.000 "· 8. 220) + 1.000 ·'· 0.915 ·'· 2.761) + 16.083 Qmax(3) 1.000 "· 0.665 * 8. 770) + 0.944 ·'· 1.000 o. 8.220) + 1.000 o. 1.000 J, 2. 761) + 16.357 Total of 3 streams to confluence: Flow rates before confluence point: 8. 770 8.220 2.761 Maximum flow rates at confluence using above data: 16.861 16.083 16.357 Area of streams before confluence: 3.460 2.900 0.650 Page 81 c605Pl. OUT Results of confluence: Total flow rate = 16.86l(CFS) Time of concentration 15.399 min. Effective stream area after confluence 7.010(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 160.000 to Point/Station 149.000 **** PIPEFLOW TRAVEL TIME (User specified size) "''**"~' Upstream point/station elevation = 284.80(Ft.) Downstream point/station elevation = 280.00(Ft.) Pipe length 92.50(Ft.) Manning's N = 0.013 No. of p1pes = 1 Required pipe flow 16.861(CFS) Given pipe size = 18.00(In.) calculated individual pipe flow 16.861(CFS) Normal flow depth in pipe= 11.14(In.) Flow top width inside pipe= 17.48(In.) critical depth could not be calculated. Pipe flow velocity= 14.67(Ft/s) Travel time through pipe = 0.11 min. Time of concentration (TC) = 15.50 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 160.000 to Point/Station 149.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area= 7.010(Ac.) Runoff from this stream 16.861(CFS) Time of concentration= 15.50 min. Rainfall intensity= 3.555(In/Hr) summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 408.387 8.36 5.294 2 16.861 15.50 3.555 Qmax(l) 1. 000 ·'· 1.000 " 408.387) + 1.000 ·'· 0. 539 ...,·:: 16. 861) + 417.484 Qmax (2) 0. 672 ·'· 1.000 ·'· 408. 387) + 1.000 " 1.000 ·'· 16. 861) + 291.148 Total of 2 main streams to confluence: Flow rates before confluence point: 408.387 16.861 Maximum flow rates at confluence using above data: 417.484 291.148 Area of streams before confluence: 105.120 7.010 Results of confluence: Total flow rate= 417.484(CFS) Time of concentration 8.365 min. Effective stream area after confluence 112.130(Ac.) Page 82 c605P1.0UT ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 149.000 to Point/Station 162.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 277.43(Ft.) Downstream point/station elevation = 268.42(Ft.) Pipe length 175.80(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 417.484(CFS) Given pipe size = 60.00(In.) calculated individual pipe flow 417.484(CFS) Normal flow depth in pipe= 37.27(In.) Flow top width inside pipe = 58.21(In.) critical depth could not be calculated. Pipe flow velocity= 32.57(Ft/s) Travel time through pipe= 0.09 min. Time of concentration (TC) = 8.45 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 162.000 to Point/Station 163.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 268.00(Ft.) Downstream point/station elevation = 230.10(Ft.) Pipe length 324.30(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 417.484(CFS) Given pipe size= 60.00(In.) calculated individual pipe flow 417.484(CFS) Normal flow depth in pipe = 28.90(In.) Flow top width inside pipe = 59.96(In.) Critical depth could not be calculated. Pipe flow velocity = 44.62(Ft/s) Travel time through pipe = 0.12 min. Time of concentration (TC) = 8.58 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 163.000 to Point/Station 168.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 229.10(Ft.) Downstream point/station elevation= 227.00(Ft.) Pipe length 167.87(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 417.484(CFS) Given pipe size = 66.00(In.) NOTE: Normal flow is pressure flow in user selected pipe size. The approximate hydraulic grade line above the pipe invert is 7.686(Ft.) at the headworks or inlet of the pipe(s) Pipe friction loss= 2.594(Ft.) Minor friction loss 7.192(Ft.) K-factor = 1.50 critical depth could not be calculated. Pipe flow velocity= 17.57(Ft/s) Travel time through pipe= 0.16 min. Time of concentration (TC) 8.73 min. End of computations, total study area= 112.13 (Ac.) Page 83 Basin 1 Main Line Hydraulics C605P1.RES ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering software (aes) ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue west, suite 100 carlsbad, CA 92008 Tel: 760-931-7700 Fax: 760-931-8680 ************************** DESCRIPTION OF STUDY ************************** * CARLSBAD OAKS PHASE 3 * PROPOSED BASIN I -MAIN LINE * I:\961005\Hydrology\Phase3\hydraulics\C605P1.0UT ************************************************************************** FILE NAME: C605P1.DAT TIME/DATE OF STUDY: 08:42 01/31/2008 ****************************************************************************** NODE NU~1BER 168.00- } 163.10- } 163.00- } 162.10- } 162.00- } 149.00- } 147.10- } 147.00- } 144.10- } 144.00- } 128.10- } 128.00- } 119.10- } 119.00- } 118.10- } 118.00- } 117.10- GRADUALLY VARIED FLm•l AN,L\LYSIS FOR PIPE SYSTE~1 NODAL POINT STATUS TABLE (Note: ""'" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN MODEL PRESSURE PRESSURE+ FLOW PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) FRICTION JUNCTION FRICTION JUNCTION FRICTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION JUNCTION FRICTION 14.40* 31488.93 2.87 } HYDRAULIC JU~-'lP 14.89 32222.42 11.77 4.90 DC 4.91 DC 4.90 De 4.89 DC 4.89 De 4.89 DC 5.80 4.87 De 9.05 4.71 DC 4.40 DC 4.40 De 6.60 4.33 De 28563.23 20226.54 20226.56 19481.37 19481.14 19327.53 19327. 53 19034.84 17999.34 17697.12 12617.13 13750.19 13750.18 13234.29 11091.87 Page 1 2.51"' 3. 20"' 3.21"' 3. 3 5 -;, 3.41"' 3. 39"' 3. 55''' 3. 26"' 3. 47"' 2.42* 2.51"' 3.53* 2.76* 4.15"' PRESSURE+ MOMENTUM(POUNDS) 27941. 34 35130.91 34927.01 26566.54 26490.39 25412.83 23992.49 23935.19 22954. 30 22879.91 21641.00 21623.96 20801. 36 20738.32 15051. 52 14651.43 11137.35 } JUNCTION 117.00- } FRICTION 116.55- } JUNCTION 116.50- } FRICTION 116.10- } JUNCTION 116.00- } FRICTION 115.05- } JUNCTION 115.00- } FRICTION 114.10- } JUNCTION 114.00- } FRICTION 113.10- } JUNCTION 113.00- } FRICTION 112.10- } JUNCTION 112.00- } FRICTION 112.51- } JUNCTION 112.50- } FRICTION 111.10- } JUNCTION 111.00- } FRICTION 104.10- } JUNCTION 104.00- } FRICTION 110.10- } JUNCTION 110.00- } FRICTION 107.00- 7.06 6.44 6. 57 4.16 DC 5.46 3.70 DC 3.98 3.65 De 4. 72 3.50 DC 4.79 3.16 De 4.01 2.59 De 2.59 DC 2.59 DC 3.36 2.40 DC 1. 97 DC 1. 97*Dc 8. 25''' 7. 78"' C605Pl. RES 10839.96 10222.42 10235.08 8058.06 6910.09 5682.80 5404.68 5320.31 5110.59 4394.25 4024.67 3116.91 2268.72 1752.67 1752.68 1752.67 1634.27 1361.83 1465.54 1465. 54 1736.06 1644.39 2.58* 2. 53"~' 3.19* 2. 07'< 2 .13"' 1. 96"' 2.30* 1. 84* 2. 61"' 1. 76"' 2. 40"' 1.21"' 1. 29"' 1. 28"' 1.67"' 1. 3 5''' 1. 36"' 1. 97''DC 1. 25 1. 69 DC rvlAXHJJU,"'J NUrv1BER OF ENERGY BALANCES USED IN EACH PROFILE = 25 10973.26 10866.49 10900.47 8912.20 8385.71 8127.25 8223.26 6922. 12 6890.53 4923.29 4581.70 3437.37 3147.92 2934.43 2958.27 2214. 52 2196.08 1977.27 1836.95 1465.54 550.21 487.23 NOTE: STEADY FLmv HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE ~<lOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. ****************************************************************************** DOWNSTREAf'-1 PIPE FLOW CONTROL DATA: NODE NUMBER= 168.00 FLOWLINE ELEVATION = 227.00 PIPE FLOW= 417.50 CFS PIPE DIAMETER= 66.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 241.400 FEET NODE 168.00 : HGL = < 241.400>;EGL= < 246.195>;FLOWLINE= < 227.000> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 163.10 168.00 TO NODE 163.10 IS CODE = 1 ELEVATION = 229.10 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 417.50 CFS PIPE DIAMETER 66.00 INCHES Page 2 PIPE LENGTH = 167.87 FEET C605Pl. RES fV1ANNING Is N HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ===> NORMAL PIPEFLOW IS PRESSURE FLOW 0. 01300 NORMAL DEPTH(FT) = 5.50 CRITICAL DEPTH(FT) = 5.24 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.37 ============================================================================== GRADUALLY VARIED FLOW PROFILE COi'-1PUTED INFORMATION: DISTANCE FROi'-1 CONTROL(FT) 0.000 38.215 76.670 115.403 154.460 167.870 FLOW DEPTH (FT) 2.368 2.483 2. 597 2. 712 2.827 2.866 VELOCITY (FT/SEC) 42.658 40.090 37.805 35.762 33.928 33.347 SPECIFIC PRESSURE+ ENERGY(FT) 30.642 27.455 24.804 22. 584 20.712 20.144 MOMENTUM(POUNDS) 35130.91 33125.13 31352.68 29780.54 28381.65 27941. 34 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 14.40 ============================================================================== PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FRO!'v1 PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 14.400 17.573 19.195 31488.93 167.870 14.895 17.573 19.690 32222.41 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ 1 PRESSURE+MOMENTUi'-1 BALANCE OCCURS AT 104.02 FEET UPSTREA!'vl OF NODE 168.00 I DOWNSTREAM DEPTH =14.707 FEET, UPSTREAM CONJUGATE DEPTH= 2.559 FEET I NODE 163.10 : HGL = < 231.468>;EGL= < 259.742>;FLOWLINE= < 229.100> ****************************************************************************** 163.10 TO NODE 163.00 IS CODE= 5 FLOW PROCESS FROM NODE UPSTREAM NODE 163.00 ELEVATION = 230.10 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER UPSTREAM DOWNSTREAfV1 LATERAL #1 LATERAL #2 (CFS) (INCHES) 417.50 60.00 417.50 66.00 0.00 0.00 0.00 0.00 ANGLE (DEGREES) 0.00 FLOWLINE ELEVATION 230.10 229.10 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY= (Q2*V2-Q1 *V1 *COS (DEL TAl) -Q3*V31'COS (DEL TA3)- CRITICAL DEPTH (FT.) 4.90 5.24 0.00 0.00 Q4*V4*COS (DEL TA4)) / ( (Al+A2) "'16 .1) +FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.10172 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.10429 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.10301 JUNCTION LENGTH 4.00 FEET VELOCITY (FT/SEC) 42.360 42.671 0.000 0.000 FRICTION LOSSES 0.412 FEET ENTRANCE LOSSES 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES= ( 0.729)+( 0.000) = 0.729 NODE 163.00 : HGL = < 232.608>;EGL= < 260.471>;FLOWLINE= < 230.100> ****************************************************************************** Page 3 C605Pl. RES FLOW PROCESS FROM NODE 163.00 TO NODE 162.10 IS CODE= 1 UPSTREAM NODE 162.10 ELEVATION = 268.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 417.50 CFS PIPE DIAMETER= 60.00 INCHES PIPE LENGTH= 324.30 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 2.41 CRITICAL DEPTH(FT) = 4.90 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.20 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORfV1ATION: DISTANCE FROf\1 FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 3.205 31. 394 18. 518 26566.54 4.714 3.173 31.760 18.846 26836.46 9.735 3.141 32.136 19.187 27114.82 15.092 3.109 32. 522 19.543 27401.88 20.818 3. 077 32.920 19.915 27697.93 26.951 3.046 33.328 20.304 28003.28 33.536 3.014 33.748 20.709 28318.24 40.623 2.982 34.179 21.133 28643.14 48.273 2.950 34.623 21.576 28978.34 56.558 2.918 35.080 22.039 29324.19 65.561 2.886 35.550 22. 523 29681.08 75.388 2.854 36.034 23.029 30049.42 86.162 2. 822 36.532 23.558 30429.63 98.042 2.790 37.045 24.113 30822.16 111.223 2.759 37.573 24.694 31227.47 125.960 2. 727 38.117 25.302 31646.06 142.588 2.695 38.678 25.939 32078.46 161.559 2.663 39.257 26.608 32525.22 183.511 2.631 39.853 27.309 32986.91 209.373 2.599 40.468 28.045 33464.14 240.590 2.567 41.103 28.818 33957.58 279. 582 2.535 41.758 29.629 34467.88 324.300 2.508 42. 347 30.371 34927.01 ------------------------------------------------------------------------------ NODE 162.10 HGL = < 271. 205>; EGL= < 286.518>;FLOWLINE= < 268.000> ****************************************************************************** FLOW PROCESS FROM NODE 162.10 TO NODE 162.00 IS CODE= 5 UPSTREAM NODE 162.00 ELEVATION = 268.42 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 (CFS) (INCHES) 417.50 60.00 417.50 60.00 0.00 0.00 0.00 0.00 ANGLE (DEGREES) 0.00 FLOWLHJE ELEVATION 268.42 268.00 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLO'tJ JUNCTION FORMULAE USED: DY= (Q2*V2-Ql"<V1 *COS (DEL TAl) -Q3 '"V3 *COS (DEL TA3)- CRITICAL DEPTH(FT.) 4.90 4.90 0.00 0.00 Q4*V4*COS (DEL TA4)) / ( (A1+A2) .,.,16 .1) +FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE= 0.04637 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04675 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.04656 JUNCTION LENGTH 4.00 FEET VELOCITY (FT /SEC) 31.300 31.404 0.000 0.000 FRICTION LOSSES 0.186 FEET ENTRANCE LOSSES 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) Page 4 C605P1.RES JUNCTION LOSSES= ( 0.328)+( 0.000) = 0.328 NODE 162.00 : HGL = < 271.634>;EGL= < 286.847>;FLOWLINE= < 268.420> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 149.00 162.00 TO NODE 149.00 IS CODE= 1 ELEVATION= 277.43 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 417.50 CFS PIPE DIAMETER= 60.00 INCHES PIPE LENGTH= 175.80 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 3.11 CRITICAL DEPTH(FT) = 4.90 ~============================================================================= UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.35 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOitJ DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) Mm•1ENTUM(POUNDS) 0.000 3.353 29.812 17.163 25412.83 8.270 3.343 29.911 17.245 25484.60 16.944 3.334 30.012 17.328 25557.05 26.056 3.324 30.113 17.413 25630.21 35.650 3.314 30.214 17.498 25704.05 45.770 3.304 30.317 17.585 25778.61 56.473 3.294 30.420 17.673 25853.88 67.821 3.284 30.525 17.762 25929.88 79.888 3. 274 30.630 17.852 26006.60 92.762 3.264 30.736 17.943 26084.05 106. 547 3.255 30.843 18.035 26162.25 121.369 3.245 30.951 18.129 26241. 20 137. 383 3.235 31.060 18.224 26320.90 154.779 3. 225 31.169 18.320 26401. 36 173.799 3. 215 31.280 18.417 26482.60 175.800 3. 214 31.290 18.427 26490.39 ------------------------------------------------------------------------------ NODE 149.00 HGL = < 280.783>;EGL= < 294.593>;FLOWLINE= < 277. 430> ********~********************************************************************* 149.00 TO NODE 147.10 IS CODE= 1 FLOW PROCESS FROM NODE UPSTREAM NODE 147.10 ELEVATION = 279.17 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 408.40 CFS PIPE DIAMETER = 60.00 INCHES PIPE LENGTH= 34.00 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 3.06 CRITICAL DEPTH(FT) = 4.89 ============================================================================== UPSTREM-1 CONTROL ASSUMED FLOWDEPTH(FT) = 3. 41 ============================================================================== GRADUALLY VARIED FLOW PROFILE COf\1PUTED INFORi'-1ATION: DISTANCE FROM FLOVJ DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 3.410 28.619 16.136 23992.49 7.672 3.396 28.750 16.239 24083.62 15.740 3.382 28.882 16.343 24176.00 24.239 3.368 29.016 16.450 24269.64 33.211 3.355 29.151 16.558 24364.56 34.000 3.353 29.162 16. 567 24372.51 NODE 147.10 : HGL = < 282.580>;EGL= < 295.306>;FLOWLINE= < 279.170> Page 5 C605Pl. RES ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 147.00 147.10 TO NODE 147.00 IS CODE= 5 ELEVATION= 279.50 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 (CFS) (INCHES) 406.50 60.00 408.40 60.00 1. 90 18.00 0.00 0.00 ANGLE (DEGREES) 0.00 FLOIIJLINE ELEVATION 279.50 279.17 90.00 282.67 0.00 0.00 QS 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCE1v1A FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-QFVFCOS(DELTA1)-Q3*V3*COS(DELTA3)- CRITICAL DEPTH(FT.) 4.89 4.89 0. 52 0.00 VELOCITY (FT/SEC) 28.715 28.628 3.500 0.000 Q4*V4'"COS (DEL TA4)) I c (A1+A2)"'16 .1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03795 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE= 0.03759 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03777 JUNCTION LENGTH 4.00 FEET FRICTION LOSSES 0.151 FEET ENTRANCE LOSSES 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES= ( 0.384)+( 0.000) = 0.384 NODE 147.00 : HGL = < 282.887>;EGL= < 295.691>;FLOWLINE= < 279.500> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 144.10 147.00 TO NODE 144.10 IS CODE= 1 ELEVATION= 283.17 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 406.50 CFS PIPE DIAMETER= 60.00 INCHES PIPE LENGTH= 72.13 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 3.06 CRITICAL DEPTH(FT) = 4.89 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.55 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 7.009 14.411 22.240 30.537 39.348 48.727 58.736 69.447 72.130 FLOW DEPTH (FT) 3.548 3.528 3.509 3.489 3.469 3.450 3.430 3.411 3.391 3.387 VELOCITY (FT/SEC) 27.277 27.440 27.607 27.776 27.948 28.122 28.300 28.480 28.663 28.707 SPECIFIC ENERGY(FT) 15.108 15.228 15.350 15.476 15.606 15.738 15.874 16.014 16.157 16.191 PRESSURE+ MOMENTUM(POUNDS) 22954.30 23065.28 23178.43 23293.80 23411.43 23531.34 23653.58 23778.19 23905.21 23935.19 NODE 144.10 : HGL = < 286.718>;EGL= < 298.278>;FLOWLINE= < 283.170> ****************************************************************************** FLOW PROCESS FR01v1 NODE UPSTREAM NODE 144.00 144.10 TO NODE 144.00 IS CODE = 5 ELEVATION= 283.50 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) Page 6 ' ~J UPSTREAM DOVJNSTREAM LATERAL #1 LATERAL #2 Q5 389.70 60.00 406.50 60.00 16.80 24.00 0.00 0.00 0.00===Q5 EQUALS C605P1.RES 0.00 283.50 283.17 90.00 286.17 0.00 0.00 BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- 4.87 4.89 1. 48 0.00 Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03863 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03356 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03609 JUNCTION LENGTH 4.00 FEET 28.696 27.285 6.752 0.000 FRICTION LOSSES 0.144 FEET ENTRANCE LOSSES 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES= ( 1.273)+( 0.000) = 1.273 NODE 144.00 : HGL = < 286.765>;EGL= < 299.551>;FLOWLINE= < 283.500> ****************************************************************************** 144.00 TO NODE 128.10 IS CODE= 1 FLOW PROCESS FROM NODE UPSTREAM NODE 128.10 ELEVATION = 294.83 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 389.70 CFS PIPE DIAMETER= 60.00 INCHES PIPE LENGTH= 273.71 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 3.19 CRITICAL DEPTH(FT) = 4.87 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.47 ============~================================================================= GRADUALLY VARIED FLOW PROFILE C0fv1PUTED INFOR~i!ATION: DISTANCE FROM FLm'l DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 3.467 26.812 14.637 21641.00 8.071 3.456 26.907 14.705 21703.17 16.545 3.445 27.004 14.775 21766.04 25.460 3.434 27.102 14.846 21829.62 34.855 3. 422 27.200 14.918 21893.92 44.778 3.411 27.299 14.991 21958.94 55.284 3.400 27.399 15.065 22024.68 66.436 3.389 27.501 15.140 22091.17 78.308 3.378 27.603 15.216 22158.40 90.987 3.366 27.706 15.293 22226.37 104.579 3.355 27.810 15. 372 22295.11 119.209 3.344 27.915 15.451 22364.62 135.033 3.333 28.020 15.532 22434.89 152.241 3. 322 28.127 15.614 22505.95 171.075 3.310 28.235 15.697 22577.80 191.847 3.299 28.344 15.782 22650.45 214.965 3.288 28.454 15.868 22723.91 240.984 3. 277 28.565 15.955 22798.18 270.682 3.266 28.677 16.043 22873.28 273.710 3.265 28.687 16.051 22879.91 ------------------------------------------------------------------------------ NODE 128.10 HGL = < 298.297>;EGL= < 309.467>;FLOWLINE= < 294.830> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 128.00 128.10 TO NODE 128.00 IS CODE= 5 ELEVATION= 295.16 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: Page 7 ' ~--__) C605Pl. RES PIPE FLOW DIAMETER ANGLE FLO\tJLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 313.10 60.00 0.00 295.16 4. 71 DOWNSTREAM 389.70 60.00 294.83 4.87 LATERAL #1 56.10 36.00 90.00 296.83 2.43 LATERAL #2 20.50 24.00 90.00 297.83 1. 62 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*Vl"<COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4''COS (DEL TA4)) / ( (A1+A2) ''16 .1) +FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE= 0.07260 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE= 0.03274 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.05267 JUNCTION LENGTH 4.00 FEET 34.723 26.820 9.152 7.503 FRICTION LOSSES 0.211 FEET ENTRANCE LOSSES 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES= ( 6.755)+( 0.000) = 6.755 NODE 128.00 : HGL = < 297.500>;EGL= < 316.221>;FLOWLINE= < 295.160> ****************************************************************************** 128.00 TO NODE 119.10 IS CODE= 1 FLOW PROCESS FROM NODE UPSTREAM NODE 119.10 ELEVATION = 301.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 313.10 CFS PIPE DIAMETER = 60.00 INCHES PIPE LENGTH= 63.92 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 2.19 CRITICAL DEPTH(FT) = 4. 71 ==~=========================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.42 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) fV10MENTUM(POUNDS) 0.000 2.417 33.283 19.629 20801.36 6.015 2.408 33.443 19.786 20893.22 12.326 2.399 33.605 19.946 20986.03 18.961 2.390 33.768 20.107 21079.81 25.949 2.381 33.933 20.272 21174.56 33.325 2. 372 34.099 20.438 21270. 30 41.130 2.363 34.267 20.608 21367.04 49.410 2.354 34.436 20.780 21464.79 58.219 2.345 34.607 20.954 21563.57 63.920 2.340 34.712 21.061 21623.96 ------------------------------------------------------------------------------ NODE 119.10 HGL = < 303.417>;EGL= < 320.629>;FLOWLINE= < 301.000> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 119.00 119.10 TO NODE 119.00 IS CODE = 5 ELEVATION= 301.50 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER UPSTREAfV1 DOWNSTREAM LATERAL #1 LATERAL #2 (CFS) (INCHES) 307.90 54.00 313.10 60.00 3.30 18.00 1. 90 18.00 ANGLE (DEGREES) 0.00 FLOWLINE ELEVATION 301.50 301.00 90.00 304.00 90.00 304.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== Page 8 CRITICAL DEPTH(FT.) 4.40 4.71 0.69 0. 52 VELOCITY (FT /SEC) 33.728 33.294 4.142 3.500 C605Pl. RES LACFCD AND OCErJJA FLOW JUNCTION FORMULAE USED: DY=(Q2"'V2-Ql *Vl"'COS (DEL TAl) -Q3*V3 ''COS (DEL TA3)- Q4*V4''COS (DEL TA4)) / ( (A1+A2) *16 .1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.06811 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.06485 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.06648 JUNCTION LENGTH 4.00 FEET FRICTION LOSSES 0.266 FEET ENTRANCE LOSSES 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.047)+( 0.000) = 1.047 NODE 119.00: HGL = < 304.012>;EGL= < 321.677>;FLO\IJLINE= < 301.500> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 118.10 119.00 TO NODE 118.10 IS CODE = 1 ELEVATION= 326.13 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 307.90 CFS PIPE DIAMETER= 54.00 INCHES PIPE LENGTH= 310.00 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 2.40 CRITICAL DEPTH(FT) = 4.40 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.53 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 3.532 22.982 11.739 15051. 52 3.171 3.487 23.276 11.905 15189.57 6. 621 3.442 23.583 12.083 15335.61 10.374 3.396 23.903 12.274 15489.90 14.461 3.351 24.237 12.478 15652.73 18.917 3.305 24.585 12.696 15824.42 23.783 3.260 24.947 12.929 16005. 31 29.106 3. 214 25.324 13.179 16195.77 34.942 3.169 2 5. 717 13.445 16396.17 41. 3 56 3.123 26.127 13.729 16606.96 48.429 3.078 26.554 14.033 16828.57 56.256 3.032 26.998 14.358 17061.50 64.955 2.987 27.462 14.705 17306.26 74.672 2.942 27.946 15.076 17563.41 85.593 2.896 28.450 15.473 17833.57 97.956 2.851 28.977 15.897 18117. 37 112.076 2.805 29.526 16.351 18415. 51 128.379 2.760 30.100 16.837 18728.74 147.464 2.714 30.700 17.358 19057.88 170.208 2.669 31.327 17.917 19403.78 197.973 2.623 31.982 18. 516 19767.40 233.040 2.578 32.668 19.159 20149.75 279.689 2.532 33.386 19.851 20551.93 310.000 2.512 33.718 20.177 20738.32 ------------------------------------------------------------------------------ NODE 118.10 HGL = < 329.663>;EGL= < 337.869>;FLOWLINE= < 326.130> ****************************************************************************** FLOW PROCESS FROM NODE 118.10 TO NODE 118.00 IS CODE = 5 UPSTREAM NODE 118.00 ELEVATION = 326.46 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) Page 9 UPSTREAM DOVINSTREAM LATERAL #1 LATERAL #2 QS 270.50 54.00 307.90 54.00 37.40 30.00 0.00 0.00 0.00===Q5 EQUALS C605Pl. RES 0.00 326.46 326.13 60.00 328.13 0.00 0.00 BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY= (Q2*V2-Ql"'Vl'~'COS (DEL TAl) -Q3 *V3"'COS (DEL TA3)- 4.33 4.40 2.07 0.00 Q4*V4*COS(DELTA4))/((Al+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE= 0.03941 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02666 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03303 JUNCTION LENGTH 4.00 FEET 26.499 22.989 8.608 0.000 FRICTION LOSSES 0.132 FEET ENTRANCE LOSSES 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES= ( 2.251)+( 0.000) = 2.251 NODE 118.00 : HGL = < 329.216>;EGL= < 340.120>;FLOWLINE= < 326.460> ****************************************************************************** 118.00 TO NODE 117.10 IS CODE= 1 FLOW PROCESS FROM NODE UPSTREAM NODE 117.10 ELEVATION = 340.67 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 270.50 CFS PIPE DIAMETER= 54.00 INCHES PIPE LENGTH= 310.82 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 2.63 CRITICAL DEPTH(FT) = 4.33 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 4.15 ============================================================================== GRADUALLY VARIED FLOVJ PROFILE COMPUTED INFORfv1ATION: ------------------------------------------------------------------------------ DISTANCE FROf\1 FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 4.153 17.629 8.982 11137.35 1. 242 4.092 17.806 9.018 11171.95 2.839 4.031 18.000 9.064 11215.73 4.804 3.969 18.209 9.121 11268. 58 7.157 3.908 18.434 9.188 11330.53 9.928 3.847 18.676 9.267 11401.66 13.150 3.786 18.934 9.356 11482.12 16.867 3. 725 19.209 9.458 11572.13 21.133 3.664 19.501 9.573 11671.96 26.012 3.603 19.810 9.701 11781.92 31. 582 3.542 20.139 9.843 11902.37 37.942 3.481 20.486 10.001 12033.74 45.210 3.420 20.853 10.176 12176.49 53.538 3.358 21.242 10.369 12331.14 63.116 3.297 21.652 10.582 12498.28 74.191 3.236 22.086 10.815 12678.54 87.091 3.175 22.544 11.072 12872.62 102.259 3.114 23.028 11.354 13081.31 120.321 3.053 23.540 11.663 13305.45 142.193 2.992 24.082 12.002 13545.98 169.299 2. 931 24.654 12.375 13803.93 204.027 2.870 25.260 12.784 14080.45 250.857 2.809 25.902 13.233 14376.77 310.820 2.756 26.491 13.660 14651.43 ------------------------------------------------------------------------------ NODE 117.10 HGL = < 344.823>;EGL= < 349.652>;FLOWLINE= < 340.670> ****************************************************************************** Page 10 C605Pl. RES 117.10 TO NODE 117.00 IS CODE= 5 FLOW PROCESS FROM NODE UPSTREAM NODE 117.00 ELEVATION = 341.00 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 (CFS) (INCHES) 223.10 54.00 270.50 54.00 44.70 36.00 2.70 30.00 ANGLE (DEGREES) 0.00 FLOWLINE ELEVATION 341.00 340.67 90.00 342.17 90.00 342.67 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2"'V2-Q1 *VI"' COS (DEL TAl) -Q3 *V3*COS (DEL TA3)- CRITICAL DEPTH(FT.) 4.17 4.33 2.18 0. 54 Q4 "'V4*COS (DEL TA4)) / ( (A1+A2) "'16 .1) +FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03374 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE= 0.01640 AVERAGED FRICTION SLOPE IN JUNCTION ASSU1¥1ED AS 0. 02507 JUNCTION LENGTH 4.00 FEET VELOCITY (FT /SEC) 23.900 17.635 8.132 0.864 FRICTION LOSSES 0.100 FEET ENTRANCE LOSSES 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES= ( 2.777)+( 0.000) = 2.777 NODE 117.00 : HGL = < 343.558>;EGL= < 352.428>;FLOWLINE= < 341.000> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 116.55 117.00 TO NODE 116.55 IS CODE= 1 ELEVATION = 341.90 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 223.10 CFS PIPE DIAMETER= 54.00 INCHES PIPE LENGTH= 21.58 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 2.40 CRITICAL DEPTH(FT) = 4.17 =~============================================================================ UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.58 ============================================================================== GRADUALLY VARIED FL0\'1 PROFILE COMPUTED INFORMATION: DISTANCE FROfv1 FLOVI DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.583 23.612 11.246 10866.49 6.104 2.576 23.696 11.300 10898.20 12.506 2. 568 23.780 11.354 10930.19 19.232 2.561 23.865 11.410 10962.48 21. 580 2.558 23.893 11.428 10973.26 NODE 116.55 : HGL = < 344.483>;EGL= < 353.146>;FLOWLINE= < 341.900> ****************************************************************************** 116.55 TO NODE 116.50 IS CODE= 5 FLOW PROCESS FROM NODE UPSTREAM NODE 116.50 ELEVATION = 341.90 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 (CFS) (INCHES) 220.90 54.00 223.10 54.00 2.20 18.00 0.00 0.00 ANGLE (DEGREES) 0.00 FLOWLINE ELEVATION 341.90 341.90 90.00 343.40 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: Page 11 CRITICAL DEPTH(FT.) 4.16 4.17 0.56 0.00 VELOCITY (FT /SEC) 24.009 23.620 1. 655 0.000 C605Pl. RES DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE= 0.03435 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03272 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03354 JUNCTION LENGTH = 1.00 FEET FRICTION LOSSES 0.034 FEET ENTRANCE LOSSES 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES= ( 0.233)+( 0.000) = 0.233 NODE 116.50 : HGL = < 344.428>;EGL= < 353.379>;FLOWLINE= < 341.900> ****************************************************************************** 116.50 TO NODE 116.10 IS CODE= 1 FLOW PROCESS FROM NODE UPSTREAM NODE 116.10 ELEVATION = 351.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 220.90 CFS PIPE DIAMETER = 54.00 INCHES PIPE LENGTH= 218.77 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 2.38 CRITICAL DEPTH(FT) = 4.16 ~============================================================================= UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 3.19 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FRGr-1 FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT /SEC) ENERGY(FT) ~-1Gr~ENTUM (POUNDS) 0.000 3.187 18.337 8.411 8912.20 3.525 3.155 18. 540 8.495 8975.14 7.325 3.123 18.749 8.584 9040.92 11.426 3.091 18.964 8.678 9109.62 15.859 3.058 19.186 8. 778 9181.31 20.656 3.026 19.414 8.882 9256.11 25.859 2.994 19.649 8.993 9334.09 31. 511 2.962 19.891 9.110 9415.38 37.668 2.930 20.141 9.233 9500.06 44.393 2.898 20.398 9.362 9588.26 51.762 2.866 20.662 9.499 9680.10 59.868 2.834 20.935 9.643 9775.70 68.822 2.801 21.217 9.796 9875.20 78.765 2.769 21. 507 9.956 9978.73 89.874 2.737 21.806 10.125 10086.43 102.375 2.705 22.115 10. 304 10198.47 116.568 2.673 22.433 10.492 10315.01 132.860 2.641 22.762 10.691 10436.22 151.819 2.609 23.102 10.901 10562.28 174.278 2.576 23.452 11.122 10693.38 201.533 2.544 23.814 11. 356 10829.73 218.770 2.528 24.001 11.479 10900.47 ------------------------------------------------------------------------------ NODE 116.10 HGL = < 354.187>;EGL= < 359.411>;FLOWLINE= < 351.000> ****************************************************************************** 116.10 TO NODE 116.00 IS CODE = 5 FLOW PROCESS FROM NODE UPSTREAM NODE 116.00 ELEVATION = 352.00 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER UPSTREAM DOWNSTREAM LATERAL #1 (CFS) (INCHES) 165.00 48.00 220.90 54.00 55.90 36.00 ANGLE (DEGREES) 0.00 FLOWLINE ELEVATION 352.00 351.00 353.00 90.00 Page 12 CRITICAL DEPTH(FT.) 3.70 4.16 2.42 VELOCITY (FT/SEC) 25.093 18.342 9.133 LATERAL #2 Q5 C605Pl. RES 0.00 0.00 0.00 0.00 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql *Vl *COS (DEL TAl) -Q3*V3.,'COS (DEL TA3)- 0.00 Q4.,'V4.,'COS (DEL TA4)) I c (A1+A2) *16 .l)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04677 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE= 0.01747 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03212 JUNCTION LENGTH 4.00 FEET 0.000 FRICTION LOSSES = 0.128 FEET ENTRANCE LOSSES 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 4.439)+( 0.000) = 4.439 NODE 116.00 : HGL = < 354.073>;EGL= < 363.85l>;FLOWLINE= < 352.000> ****************************************************************************** 116.00 TO NODE 115.05 IS CODE= 1 FLOW PROCESS FROM NODE UPSTREAM NODE 115.05 ELEVATION = 354.43 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 165.00 CFS PIPE DIAMETER= 48.00 INCHES PIPE LENGTH= 40.47 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 1. 93 CRITICAL DEPTH(FT) = 3.70 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.13 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROf\1 FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT /SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.133 24.199 11.232 8127.25 4.683 2.125 24.317 11.313 8161. 52 9.601 2.117 24.436 11. 395 8196.18 14.776 2.109 24.557 11.478 8231.24 20.233 2.100 24.678 11.563 8266.71 25.999 2.092 24.801 11.649 8302.60 32.105 2.084 24.925 11.737 8338.91 38.589 2.075 25.051 11.826 8375.63 40.470 2.073 25.085 11.851 8385.71 NODE 115.05 : HGL = < 356.563>;EGL= < 365.662>;FLOWLINE= < 354.430> ****************************************************************************** 115.05 TO NODE 115.00 IS CODE= 5 FLOW PROCESS FROM NODE UPSTREAM NODE 115.00 ELEVATION = 354.99 (FLOVJ IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER UPSTREAr>1 DO\/'JNSTREAf\1 LATERAL #1 LATERAL #2 (CFS) (INCHES) 158.00 48.00 165.00 48.00 4.00 18.00 3.00 18.00 ANGLE (DEGREES) 0.00 FLOWLINE ELEVATION 354.99 354.43 90.00 355.43 90.00 356.24 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-QFVl*COS(DELTA1)-Q3*V3*COS(DELTA3)- CRITICAL DEPTH (FT.) 3.65 3.70 0. 77 0.66 Q4"'V4*COS (DEL TA4)) / ( (A1+A2) ,.,16 .1) +FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05195 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE= 0.04252 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.04723 Page 13 VELOCITY (FT/SEC) 25.822 24.206 2.420 4.018 C605Pl. RES 10.03 FEET JUNCTION LENGTH FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES 0.474 FEET ENTRANCE LOSSES 0.000 FEET (DY+HV1-HV2)+(ENTRANCE LOSSES) ( 1.641)+( 0.000) = 1.641 NODE 115.00 : HGL = < 356.949>;EGL= < 367.303>;FLOWLINE= < 354.990> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 114.10 115.00 TO NODE 114.10 IS CODE= 1 ELEVATION= 372.92 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 158.00 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH= 329.68 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 1. 93 CRITICAL DEPTH(FT) = 3.65 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.30 ============================================================================== GRADUALLY VARIED FLO'tJ PROFILE COMPUTED INFOR.NlATION: DISTANCE FROM FLmv DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.303 21.089 9. 213 6922.12 4.005 2.288 21.255 9.308 6966.11 8.241 2. 273 21.424 9.405 7011.02 12.728 2.258 21.596 9. 505 7056.87 17.490 2.244 21.771 9.608 7103.67 22.555 2. 229 21.948 9.714 7151.45 27.955 2. 214 22.129 9.823 7200.23 33.727 2.199 22.313 9.935 7250.03 39.913 2.184 22. 501 10.051 7300.88 46.566 2.170 22.691 10.170 7352.79 53.745 2.155 22.885 10.292 7405.78 61. 526 2.140 23.083 10.419 7459.90 69.998 2.125 23.283 10. 548 7515.15 79.274 2.110 23.488 10.682 7571.57 89.494 2.096 23.696 10.820 7629.17 100.840 2.081 23.908 10.962 7688.00 113.551 2.066 24.124 11.109 7748.07 127.953 2.051 24.344 11.260 7809.43 144.499 2.036 24. 568 11.415 7872.08 163.854 2.022 24.797 11.575 7936.08 187.052 2.007 25.029 11.740 8001.45 215.822 1. 992 25.266 11.911 8068.23 253.405 1.977 25.508 12.087 8136.44 307.089 1. 962 25.754 12.268 8206.13 329.680 1. 959 25.814 12. 313 8223.26 ------------------------------------------------------------------------------ NODE 114.10 HGL = < 375.223>;EGL= < 382.133>;FLOWLINE= < 372. 920> ****************************************************************************** 114.10 TO NODE 114.00 IS CODE= 5 FLOW PROCESS FROM NODE UPSTREAM NODE 114.00 ELEVATION = 373.25 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 (CFS) (INCHES) 138.90 48.00 158.00 48.00 19.10 24.00 0.00 0.00 ANGLE (DEGREES) 0.00 FLmvLINE ELEVATION 373.25 372.92 90.00 374.92 0.00 0.00 QS 0.00===Q5 EQUALS BASIN INPUT=== Page 14 CRITICAL DEPTH(FT.) 3.50 3.65 1. 57 0.00 VELOCITY (FT /SEC) 24.582 21.096 7. 211 0.000 C605Pl. RES LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*V1*COS (DEL TAl) -Q3"'V3 "'COS (DEL TA3)- Q4 1'V4"'COS (DEL TA4)) / ( (A1+A2) *16. 1) +FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04972 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE= 0.03048 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.04010 JUNCTION LENGTH 4.00 FEET FRICTION LOSSES = 0.160 FEET ENTRANCE LOSSES 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES= ( 2.341)+( 0.000) = 2.341 NODE 114.00 : HGL = < 375.092>;EGL= < 384.474>;FLOWLINE= < 373.250> ****************************************************************************** 114.00 TO NODE 113.10 IS CODE= 1 FLOW PROCESS FROM NODE UPSTREAM NODE 113.10 ELEVATION = 386.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 138.90 CFS PIPE DIAMETER= 48.00 INCHES PIPE LENGTH= 218.46 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 1. 76 CRITICAL DEPTH(FT) = 3.50 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.61 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.610 15.990 6.582 4923.29 2.090 2.576 16.233 6.670 4970.36 4.366 2. 542 16.484 6.764 5020.09 6.848 2.508 16.745 6.864 5072. 59 9.556 2.474 17.015 6. 972 5127.96 12.515 2.440 17.296 7.088 5186.33 15.753 2.406 17.587 7. 212 5247.83 19.303 2. 372 17.889 7.344 5312. 59 23.205 2.338 18.203 7.486 5380.75 27.504 2.304 18.529 7.638 5452.49 32.256 2.270 18.868 7.801 5527.95 37.527 2.236 19.220 7.976 5607.33 43.399 2.202 19. 586 8.163 5690.80 49.973 2.168 19.968 8.363 5778. 58 57.379 2.134 20.365 8. 578 5870.87 65.781 2.100 20.778 8.808 5967.93 75.398 2.066 21. 209 9.055 6069.98 86.525 2.032 21.659 9. 321 6177.32 99.577 1. 998 22.128 9.606 6290.22 115.162 1.964 22.618 9. 913 6409.01 134. 223 1. 930 23.131 10.243 6534.02 158.340 1. 896 23.666 10. 598 6665.62 190.478 1.862 24.226 10.981 6804.20 218.460 1.842 24.574 11.224 6890.53 ------------------------------------------------------------------------------ NODE 113.10 HGL = < 388.610>;EGL= < 392.582>;FLOWLINE= < 386.000> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 113.00 113.10 TO NODE 113.00 IS CODE = 5 ELEVATION= 386.33 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLQ\.</LINE CRITICAL VELOCITY Page 15 C605Pl. RES (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT /SEC) UPSTREAIV1 109.10 48.00 0.00 386.33 3.16 DOWNSTREAM 138.90 48.00 386.00 3.50 LATERAL #1 29.80 36.00 45.00 387.00 1.77 LATERAL #2 0.00 0.00 0.00 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCE~A FLOW JUNCTION FORMULAE USED: DY=(Q2'''V2-Ql *VFCOS (DEL TAl) -Q3*V3*COS (DEL TA3)- Q4"'V4 "'COS (DEL TA4)) I c (Al+A2) "'16 .1) +FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE= 0.03612 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01617 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02615 JUNCTION LENGTH 5.00 FEET 20. 510 15.995 6.876 0.000 FRICTION LOSSES 0.131 FEET ENTRANCE LOSSES 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES= ( 2.038)+( 0.000) = 2.038 NODE 113.00 : HGL = < 388.088>;EGL= < 394.62l>;FLOWLINE= < 386.330> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 112.10 113.00 TO NODE 112.10 IS CODE= 1 ELEVATION= 391.16 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 109.10 CFS PIPE DIAMETER= 48.00 INCHES PIPE LENGTH= 75.00 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 1. 50 CRITICAL DEPTH(FT) = 3.16 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.40 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLO\>J DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT /SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.402 13.839 5.378 3437.37 1. 437 2.366 14.092 5.452 3473.34 3.023 2.330 14.355 5.532 3511.82 4. 772 2.294 14.630 5.620 3552.93 6.703 2.258 14.916 5.715 3596.78 8.836 2. 222 15.214 5.818 3643.53 11.194 2.186 15.525 5.931 3693.30 13.805 2.150 15.849 6.053 3746.26 16.703 2.114 16.188 6.185 3802.57 19.925 2.078 16.542 6. 329 3862.42 23.518 2.041 16.912 6.485 3925.99 27. 539 2.005 17.299 6.655 3993.49 32.056 1. 969 17.704 6.839 4065.16 37.156 1. 933 18.129 7.040 4141.24 42.947 1.897 18.574 7.258 4222.00 49.569 1. 861 19.041 7.494 4307.74 57.207 1. 825 19.532 7.752 4398.75 66.112 1. 789 20.047 8.033 4495.40 75.000 1. 758 20.504 8.291 4581. 70 ------------------------------------------------------------------------------NODE 112.10 HGL = < 393.562>;EGL= < 396.538>;FLOWLINE= < 391.160> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 112.00 112.10 TO NODE 112.00 IS CODE = 5 ELEVATION= 392.16 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: Page 16 __ j C605Pl. RES PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT /SEC) UPSTREAM 65.10 36.00 0.00 392.16 2.59 24.279 DOWNSTREAM 109.10 48.00 391.16 3.16 13.843 LATERAL #1 22.30 24.00 90.00 393.16 1. 68 7.897 LATERAL #2 21.70 24.00 90.00 393.16 1. 67 7.763 QS 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2"<V2-Ql *Vl*COS (DEL TAl) -Q3*V3"''COS (DEL TA3)- Q4*V4*COS(DELTA4))/((Al+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.08043 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01274 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.04659 JUNCTION LENGTH 4.00 FEET FRICTION LOSSES= 0.186 FEET ENTRANCE LOSSES= 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES= ( 5.989)+( 0.000) = 5.989 NODE 112.00 : HGL = < 393.374>;EGL= < 402.527>;FLOWLINE= < 392.160> ****************************************************************************** FLOW PROCESS FROM NODE 112.00 TO NODE 112.51 IS CODE= 1 UPSTREAM NODE 112.51 ELEVATION= 408.67 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 65.10 CFS PIPE DIAMETER= 36.00 INCHES PIPE LENGTH = 201.82 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 1. 21 CRITICAL DEPTH(FT) = 2.59 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.29 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INF0Rf'.1ATION: DISTANCE FROJ'v1 CONTROL(FT) 0.000 2.907 5.950 9.142 12.496 16.028 19.757 23.704 27.894 32.356 37.126 42.247 47.769 53.759 60.296 67.487 75.469 84.429 94.628 106.450 120.491 137.747 160.086 191.706 201.820 FLOVJ DEPTH (FT) 1. 286 1. 283 1.280 1.277 1. 274 1.271 1. 267 1. 264 1. 261 1. 258 1. 255 1. 252 1.249 1.246 1. 243 1. 239 1. 236 1. 233 1.230 1. 227 1. 224 1. 221 1. 218 1.215 1. 214 VELOCITY (FT/SEC) 22.480 22.552 22. 62 5 22.698 22.771 22.845 22.919 22.994 23.069 23.145 23.221 23.298 23.375 23.453 23.531 23.609 23.688 23.768 23.848 23.929 24.010 24.091 24.173 24.256 24.272 Page 17 SPECIFIC ENERGY(FT) 9.138 9.186 9.233 9.282 9.330 9.380 9.429 9.480 9.530 9. 581 9.633 9.686 9.738 9.792 9.846 9.900 9.955 10.011 10.067 10.123 10.181 10.239 10.297 10.356 10.367 PRESSURE+ MOMENTUM(POUNDS) 2934.43 2942.96 2951.55 2960.20 2968.90 2977.67 2986.49 2995.37 3004.32 3013. 32 3022. 39 3031. 51 3040.70 3049.96 3059.27 3068.65 3078.10 3087.61 3097.18 3106.83 3116.53 3126.31 3136.15 3146.07 3147.92 --, C605Pl. RES NODE 112.51 : HGL = < 409.956>;EGL= < 417.808>;FLOWLINE= < 408.670> ****************************************************************************** 112.51 TO NODE 112.50 IS CODE= 5 FLOW PROCESS FROI'v1 NODE UPSTREAM NODE 112.50 ELEVATION = 409.00 (FLOVJ IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 (CFS) (INCHES) 65.10 36.00 65.10 36.00 0.00 0.00 0.00 0.00 ANGLE (DEGREES) 0.00 0.00 0.00 FLOWLINE ELEVATION 409.00 408.67 0.00 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY= (Q2"'V2 -Ql*Vl"'COS (DEL TAl) -Q3"'V3"'COS (DEL TA3)- CRITICAL DEPTH(FT.) 2. 59 2.59 0.00 0.00 VELOCITY (FT /SEC) 22.689 22.487 0.000 0.000 Q4"'V4*COS (DEL TA4)) / ( (A1+A2) '''16 .1) +FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE= 0.06685 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.06525 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.06605 JUNCTION LENGTH 4.00 FEET FRICTION LOSSES 0.264 FEET ENTRANCE LOSSES 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.463)+( 0.000) = 0.463 NODE 112.50 : HGL = < 410.278>;EGL= < 418.27l>;FLOWLINE= < 409.000> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 111.10 112.50 TO NODE 111.10 IS CODE= 1 ELEVATION= 426.50 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 65.10 CFS PIPE DIAMETER= 36.00 INCHES PIPE LENGTH= 250.02 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 1. 26 CRITICAL DEPTH(FT) = 2.59 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.67 ============================================================================== GRADUALLY VARIED FLOW PROFILE COI'v1PUTED INFOR~J1ATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.668 16.122 5.706 2214.52 1. 932 1. 652 16.318 5.789 2235.20 3.995 1. 635 16. 519 5.875 2256.56 6.202 1.619 16.725 5.965 2278.63 8. 566 1.603 16.937 6.060 2301.43 11.105 1. 587 17.154 6.159 2324.98 13.838 1. 570 17.377 6.262 2349.32 16.785 1. 554 17.607 6.371 2374.46 19.973 1. 538 17.842 6.484 2400.44 23.433 1.522 18.084 6.603 2427.28 27.201 1. 505 18.332 6.727 2455.01 31.320 1.489 18.588 6.857 2483.67 35.845 1.473 18.850 6.994 2513.29 40.843 1. 456 19.120 7.137 2543.90 46.397 1.440 19. 398 7.287 2575.54 52.616 1. 424 19.684 7.444 2608.24 59.644 1.408 19.979 7.609 2642.06 67.673 1. 391 20.282 7.783 2677.02 76.976 1. 375 20.594 7.965 2713.19 Page 18 C605Pl. RES 87.950 1. 359 20.916 8.156 2750. 59 101.211 1. 343 21.247 8.357 2789.29 117.794 1. 326 21. 589 8.568 2829.33 139.636 1. 310 21.941 8.790 2870.78 171.092 1. 294 22. 305 9.024 2913.69 226.133 1. 278 22.680 9.270 2958.12 250.020 1. 278 22.682 9.271 2958.27 NODE 111.10 : HGL = < 428.168>;EGL= < 432.206>;FLOWLINE= < 426.500> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 111.00 111.10 TO NODE 111.00 IS CODE = 5 ELEVATION = 426.83 (FLO\v IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER UPSTREAfVl DOWN STR EAI\'1 LATERAL #1 LATERAL #2 (CFS) (INCHES) 54.50 36.00 65.10 36.00 10.60 18.00 0.00 0.00 ANGLE (DEGREES) 0.00 90.00 0.00 FLOWLINE ELEVATION 426.83 426.50 428.00 0.00 QS 0.00===05 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2"'V2-QFV!"'COS (DEL TAl) -Q3,.'V3"'COS (DEL TA3)- CRITICAL DEPTH(FT.) 2.40 2.59 1. 25 0.00 VELOCITY (FT /SEC) 19.963 16.127 6.735 0.000 Q4 "'V4'''COS (DEL TA4)) / ( (Al+A2) "'16 .1) +FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05366 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE= 0.02682 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.04024 JUNCTION LENGTH 4.00 FEET FRICTION LOSSES 0.161 FEET ENTRANCE LOSSES 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.042)+( 0.000) = 2.042 NODE 111.00 : HGL = < 428.060>;EGL= < 434.248>;FLOWLINE= < 426.830> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 104.10 111.00 TO NODE 104.10 IS CODE= 1 ELEVATION = 431.60 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 54.50 CFS PIPE DIAMETER= 36.00 INCHES PIPE LENGTH= 75.34 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 1.18 CRITICAL DEPTH(FT) = 2.40 =~============================================================================ UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.35 ============================================================================== GRADUALLY VARIED FLOvJ PROFILE COMPUTED INFORiVlATION: DISTANCE FROM CONTROL(FT) 0.000 2.413 4.955 7.637 10.473 13.477 16.668 20.065 23.692 27.578 31.757 FLOW DEPTH (FT) 1. 349 1. 342 1. 33 5 1. 328 1. 321 1. 314 1. 307 1. 300 1.293 1. 287 1. 280 VELOCITY (FT /SEC) 17.682 17.801 17.922 18.044 18.168 18.294 18.421 18.550 18.680 18.813 18.947 Page 19 SPECIFIC ENERGY(FT) 6.207 6.266 6.326 6. 387 6.450 6. 514 6. 580 6.647 6.715 6.786 6.857 PRESSURE+ MOMENTUM(POUNDS) 1977.27 1988.53 1999.96 2011.57 2023.36 2035.33 2047.48 2059.83 2072.36 2085.09 2098.02 C605Pl. RES 36.269 1. 273 19.083 6.931 2111.15 41.164 1. 266 19.221 7.006 2124.49 46.504 1. 259 19.360 7.083 2138.04 52.366 1. 252 19.502 7.161 2151.80 58.852 1. 245 19.646 7.242 2165.78 66.092 1. 238 19.792 7.324 2179.99 74.266 1.231 19.939 7.409 2194.41 75.340 1. 230 19.956 7.418 2196.08 NODE 104.10 : HGL = < 432.949>;EGL= < 437.807>;FLOWLINE= < 431.600> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 104.00 104.10 TO NODE 104.00 IS CODE= 5 ELEVATION = 432.60 (FLO\tJ IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER UPSTREAf\1 DOVJN STR EAf\1 LATERAL #1 LATERAL #2 (CFS) (INCHES) 45.40 24.00 54.50 36.00 9.10 24.00 0.00 0.00 ANGLE (DEGREES) 0.00 FLOWLINE ELEVATION 432.60 431.60 90.00 433.10 0.00 0.00 Q5 0.00===05 EQUALS B.A.SIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY= (Q2 "'V2-Ql-:'VFCOS (DEL TAl) -Q3 "'V3'""COS (DEL TA3)- CRITICAL DEPTH(FT.) 1.97 2.40 1. 08 0.00 VELOCITY (FT /SEC) 19.910 17.688 5. 277 0.000 Q4"'V4 -:'COS (DEL TA4)) I c (Al+A2) "'16 .1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.06172 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03861 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.05017 JUNCTION LENGTH 4.00 FEET FRICTION LOSSES 0.201 FEET ENTRANCE LOSSES 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES= ( 2.311)+( 0.000) = 2.311 NODE 104.00 : HGL = < 433.963>;EGL= < 440.118>;FLOWLINE= < 432.600> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 110.10 104.00 TO NODE 110.10 IS CODE= 1 ELEVA Tim~ = 441.00 (FLOVJ IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 45.40 CFS PIPE DIAMETER= 24.00 INCHES PIPE LENGTH = 120.66 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 1. 31 CRITICAL DEPTH(FT) = 1. 97 ============================================================================== UPSTREAf\1 CONTROL ASSUMED FLOI,IJDEPTH(FT) = 1. 97 ============================================================================== GRADUALLY VARIED FLOW PROFILE COi>1PUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.162 0. 594 1. 253 2.123 3.200 4.487 5.995 7.738 9.739 FLOW DEPTH (FT) 1.971 1.944 1. 918 1.891 1.864 1.838 1.811 1. 784 1. 758 1. 731 VELOCITY (FT/SEC) 14.490 14.561 14.653 14.761 14.884 15.022 15.174 15.338 15.516 15.707 Page 20 SPECIFIC ENERGY(FT) 5.233 5.239 5.253 5.276 5.307 5.344 5.388 5.440 5.498 5.564 PRESSURE+ MOMENTUM(POUNDS) 1465. 54 1466.61 1469.49 1473.89 1479.68 1486.76 1495.08 1504.63 1515.39 1527.36 C605Pl. RES 12.024 1. 704 15.911 5.638 1540. 56 14.628 1. 678 16.129 5. 720 1555.00 17.596 1. 651 16.360 5.810 1570.72 20.983 1. 625 16.606 5.909 1587.75 24.860 1. 598 16.866 6.018 1606.13 29.321 1. 571 17.141 6.136 1625.91 34.491 1. 545 17.432 6.266 1647.15 40.536 1. 518 17.739 6.407 1669.91 47.696 1.491 18.064 6. 561 1694.27 56.317 1.465 18.406 6. 729 1720.28 66.942 1.438 18.768 6.911 1748.06 80.479 1. 412 19.150 7.109 1777.68 98.632 1. 385 19.553 7.325 1809.25 120.660 1. 363 19.903 7. 518 1836.95 ------------------------------------------------------------------------------ NODE 110.10 HGL = < 442.971>;EGL= < 446.233>;FLOWLINE= < 441. 000> ****************************************************************************** 110.10 TO NODE 110.00 IS CODE= 5 FLOW PROCESS FROM NODE UPSTREAM NODE 110.00 ELEVATION = 441.33 (FLOifJ IS AT CRITICAL DEPTH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER UPSTREAfv1 DOWNSTREAf\-1 LATERAL #1 LATERAL #2 (CFS) (INCHES) 22.60 24.00 45.40 24.00 22.80 24.00 0.00 0.00 ANGLE (DEGREES) 90.00 90.00 0.00 FLOWLINE ELEVATION 441.33 441.00 441.33 0.00 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2 '''V2-QFVFCOS (DEL TAl) -Q3 ''V3 '''COS (DEL TA3)- CRITICAL DEPTH (FT.) 1. 69 1. 97 1. 70 0.00 Q4 ''V4 ''COS (DEL TA4)) / ( (A1+A2) 1'16. 1) +FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00998 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03655 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02326 JUNCTION LENGTH 4.00 FEET VELOCITY (FT/SEC) 7.194 14.495 7.257 0.000 FRICTION LOSSES 0.093 FEET ENTRANCE LOSSES 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 4.149)+( 0.000) = 4.149 NODE 110.00 : HGL = < 449.579>;EGL= < 450.382>;FLOWLINE= < 441.330> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 107.00 110.00 TO NODE 107.00 IS CODE= 1 ELEVATION = 441.85 (FLO\v IS UNDER PRESSURE) CALCULATE FRICTION PIPE FLOW LOSSES(LACFCD): 22.60 CFS PIPE DIAMETER= 24.00 INCHES 5.25 FEET MANNING'S N 0.01300 22.60)/( 226.218))**2 = 0.00998 PIPE LENGTH SF=(Q/K) *''2 = ( ( HF=L *SF = ( 5.25)*(0.00998) = 0.052 NODE 107.00 : HGL = < 449.631>;EGL= < 450.435>;FLOWLINE= < 441.850> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER= 107.00 FLOWLINE ELEVATION= 441.85 ASSUMED UPSTREAM CONTROL HGL = 443.54 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS D Page 21 C2129L.RES ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) Copyright 1982-2001 Advanced Engineering software (aes) ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue west, suite 100 carlsbad, CA 92008 Tel: 760-931-7700 Fax: 760-931-8680 ************************** DESCRIPTION OF STUDY ************************** * CARLSBAD OAKS PHASE 3 * STA 21+29 LT WHIPTAIL * I:\961005\Hydrology\Phase3\Hydraulics\C2129L.OUT ************************************************************************** FILE NAME: C2129L.DAT TIME/DATE OF STUDY: 10:15 01/31/2008 ****************************************************************************** GRADUALLY VARIED FLOI.'J NODAL POINT (Note: "~'" indicates UPSTREAM RUN ANALYSIS FOR PIPE SYSTEM STATUS TABLE nodal point data used.) DOWNSTREAM RUN NODE NUrvlBER 117.00- } 123.10- MODEL PRESSURE PRESSURE+ PROCESS HEAD(FT) MOMENTUM(POUNDS) 2.40 DC 1327.31 FLOW DEPTH ( FT) 1. oo-:, PRESSURE+ MOMENTUM(POUNDS) 2758.59 FRICTION 2.38"'DC 1327.12 2. 38"'DC MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACFCD WSPG COMPUTER PROGRAM. 1327.12 ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 117.00 FLOWLINE ELEVATION = 342.17 PIPE FLOW= 53.50 CFS PIPE DIAMETER= 36.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 344.570 FEET NODE 117.00 : HGL = < 343.166>;EGL= < 353.742>;FLOWLINE= < 342.170> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 123.10 117.00 TO NODE 123.10 IS CODE= 1 ELEVATION= 354.17 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 53.50 CFS PIPE DIAMETER= 36.00 INCHES PIPE LENGTH = 60.00 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 0.86 CRITICAL DEPTH(FT) = 2.38 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.38 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 FLOW DEPTH (FT) 2.376 VELOCITY (FT/SEC) 8.908 Page 1 SPECIFIC ENERGY(FT) 3.609 PRESSURE+ MOMENTUM(POUNDS) 1327.12 C2129L.RES 0.018 2. 315 9.136 3.612 1328. 39 0.074 2.255 9.385 3.623 1332.29 0.174 2.194 9.654 3.642 1339.01 0.323 2.134 9.947 3.671 1348.73 0.529 2.073 10.265 3.710 1361.67 0.799 2.012 10.610 3.762 1378.09 1.144 1. 952 10.986 3. 827 1398.28 1.577 1.891 11.394 3.908 1422.56 2.112 1. 830 11.840 4.008 1451.32 2.769 1. 770 12.326 4.130 1485.00 3.570 1. 709 12.858 4.278 1524.11 4.547 1. 648 13.442 4.456 1569.24 5.735 1. 588 14.084 4.670 1621.09 7.185 1. 527 14.792 4. 927 1680.48 8.961 1.467 15.575 5.236 1748.40 11.151 1. 406 16.445 5.608 1826.01 13.876 1. 345 17.416 6.058 1914.72 17. 311 1. 285 18. 504 6.604 2016.24 21. 713 1. 224 19.728 7. 271 2132.66 27.489 1.163 21.115 8.091 2266. 57 35.329 1.103 22. 695 9.106 2421.20 46.539 1.042 24. 509 10.375 2600.66 60.000 0.996 26.091 11.572 2758. 59 ------------------------------------------------------------------------------ NODE 123.10 HGL = < 356.546>;EGL= < 357.779>;FLOWLINE= < 354.170> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER= 123.10 FLOWLINE ELEVATION= 354.17 ASSUMED UPSTREAM CONTROL HGL = 356.55 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 0 Page 2 BOBCAT.RES ****************************************************************************** PIPE-FLOW HYDRAULICS CDr•1PUTER PROGRAM PACKAGE (Reference: WSPG COJ'v1PUTER J'v10DEL HYDRAULICS CRITERION) (c) copyright 1982-2001 Advanced Engineering software (aes) ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West, suite 100 carlsbad, CA 92008 Tel: 760-931-7700 Fax: 760-931-8680 ************************** DESCRIPTION OF STUDY ************************** ,., CARLSBAD OAKS PHASE 3 ~- -;, PROPOSED BOBCAT CT. * I:\961005\Hydrology\Phase3\Hydraulics\BOBCAT.RES ************************************************************************** FILE NAME: BOBCAT.DAT TIME/DATE OF STUDY: 09:10 01/31/2008 ****************************************************************************** GRADUALLY Vl'-.RIED FLO'd NODAL POINT (Note: "-:'" indicates UPSTREAM RUN ANALYSIS FOR PIPE SYSTEM STATUS TABLE nodal point data used.) DOWNSTREM-1 RUN NODE NUMBER 116.00- } 2405.50- } 3405.00- } 2304.00- MODEL PRESSURE PRESSURE+ PROCESS HEAD(FT) MOMENTUM(POUNDS) 2.44 DC 1443.04 FLOW DEPTH(FT) 1. 3 5-:, PRESSURE+ MOMENTUM(POUNDS) 2141.45 FRICTION 2.44 De 1443.04 1. 39-:' JUNCTION 2.33 De 1461.16 1.40"' FRICTION 2.33*Dc 1461.16 2. 33"'DC MAXIMUM NU~IJBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COJ'v1PUTATIONS BASED ON THE J'v'lOST CONSERVATIVE FORMULAE FROJ'v1 THE CURRENT LACFCD WSPG COJ'v1PUTER PROGRAfv1. 2067.96 2013.75 1461.16 ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER= 116.00 FLOWLINE ELEVATION= 352.50 PIPE FLOW = 56.80 CFS PIPE DIAMETER = 36.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 354.900 FEET *NOTE: ASSUMED DOVINSTREAM CONTROL DEPTH ( 2. 40 FT.) IS LESS THAN CRITICAL DEPTH( 2.44 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 116.00 : HGL = < 353.847>;EGL= < 359.142>;FLOWLINE= < 352.500> ****************************************************************************** 2405.50 IS CODE = 1 FLOW PROCESS FROM NODE UPSTREAM NODE 2405.50 116.00 TO NODE ELEVATION = 354.39 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 56.80 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH= 37.79 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 1. 28 CRITICAL DEPTH(FT) = Page 1 2.44 BOBCAT.RES ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.39 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 2.870 5.881 9.044 12.375 15.888 19.604 23.544 27.734 32.205 36.992 37.790 FLOW DEPTH (FT) 1. 390 1. 386 1. 382 1.377 1. 373 1. 369 1. 365 1. 360 1. 356 1. 352 1. 348 1. 347 VELOCITY (FT/SEC) 17.716 17.787 17.858 17.930 18.002 18.075 18.149 18.223 18.298 18.373 18.449 18.461 SPECIFIC ENERGY(FT) 6.267 6.302 6.337 6. 372 6.409 6.445 6.482 6.520 6.558 6.597 6.636 6.642 PRESSURE+ MOMENTUM(POUNDS) 2067.96 2074.89 2081.89 2088.96 2096.09 2103.28 2110.55 2117.88 2125.28 2132.74 2140.28 2141.45 NODE 2405.50 : HGL = < 355.780>;EGL= < 360.657>;FLOWLINE= < 354.390> ****************************************************************************** FLOW PROCESS FROM NODE 2405.50 TO NODE 3405.00 IS CODE = 5 UPSTREAM NODE 3405.00 ELEVATION = 354.89 (FLmv IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 (CFS) (INCHES) 52.70 30.00 56.80 36.00 2.20 18.00 1. 90 18.00 ANGLE (DEGREES) 0.00 FLOWLINE ELEVATION 354.89 354.39 90.00 355.89 90.00 355.89 QS 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- CRITICAL DEPTH (FT.) 2.33 2.44 0. 56 0. 52 Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE= 0.04575 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE= 0.03770 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.04173 JUNCTION LENGTH 4.00 FEET VELOCITY (FT/SEC) 18.686 17. 722 3.655 3.500 FRICTION LOSSES 0.167 FEET ENTRANCE LOSSES 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.052)+( 0.000) = 1.052 NODE 3405.00 : HGL = < 356.287>;EGL= < 361.709>;FLOWLINE= < 354.890> ****************************************************************************** FLOW PROCESS FROM NODE 3405.00 TO NODE 2304.00 IS CODE = 1 UPSTREAM NODE 2304.00 ELEVATION= 367.53 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 52.70 CFS PIPE DIAMETER= 30.00 INCHES PIPE LENGTH = 252.70 FEET MANNING'S N 0.01300 NORMAL DEPTH(FT) = 1. 36 CRITICAL DEPTH(FT) = 2.33 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.33 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ Page 2 BOBCAT.RES CONTROL(FT) (FT) (FT /SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.331 11.05 5 4.230 1461.16 0.074 2.292 11.176 4.233 1461.95 0.298 2.253 11.310 4. 241 1464.27 0.673 2. 214 11.457 4.254 1468.10 1.206 2.176 11.618 4. 273 1473.44 1. 909 2.137 11.792 4.297 1480.30 2.795 2.098 11.980 4.328 1488.73 3.882 2.059 12.182 4. 364 1498.75 5.190 2.020 12. 398 4.408 1510.42 6.746 1. 981 12.629 4.459 1523.80 8.584 1.942 12.875 4. 518 1538.98 10.743 1. 903 13.139 4.585 1556.03 13.273 1.864 13.419 4.662 1575.05 16.238 1. 825 13.718 4.749 1596.15 19.717 1. 787 14.036 4.848 1619.45 23.815 1. 748 14.375 4.958 1645.08 28.669 1. 709 14.736 5.083 1673.20 34.466 1. 670 15.122 5. 223 1703.97 41.470 1. 631 15.532 5.379 1737.58 50.069 1. 592 15.970 5.555 1774.23 60.864 1. 553 16.439 5.752 1814.17 74.867 1. 514 16.939 5.973 1857.64 93.972 1. 475 17.475 6.220 1904.94 122.445 1. 437 18.049 6.498 1956.40 173.970 1. 398 18.665 6.811 2012.38 252.700 1. 397 18.680 6. 819 2013. 75 ------------------------------------------------------------------------------ NODE 2304.00 HGL = < 369.861>;EGL= < 371.760>;FLOWLINE= < 367.530> ****************************************************************************** UPSTREArv1 PIPE FLOitJ CONTROL DATA: NODE NUMBER= 2304.00 FLOWLINE ELEVATION= 367.53 ASSUMED UPSTREAM CONTROL HGL = 369.86 FOR DOWNSTREAM RUN ANALYSIS =~============================================================================ END OF GRADUALLY VARIED FLOW ANALYSIS 0 Page 3 2415.RES ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) copyright 1982-2001 Advanced Engineering software (aes) ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue west, suite 100 carlsbad, CA 92008 Tel: 760-931-7700 Fax: 760-931-8680 ************************** DESCRIPTION OF STUDY ************************** * CARLSBAD OAKS PHASE 3 ~ * PROPOSED BOBCAT CT INLET (SOUTH) * I:\961005\Hydrology\Phase3\Hydraulics\2415.res ************************************************************************** FILE NAME: 2415.DAT TIME/DATE OF STUDY: 09:25 01/31/2008 ****************************************************************************** GRADUALLY VARIED FLOW NODAL POINT (Note: ""'" indicates UPSTREAM RUN ANALYSIS FOR PIPE SYSTEM STATUS TABLE nodal point data used.) DOWNSTREAM RUN NODE NUr<1BER 2405.00- } 2415.00- MODEL PRESSURE PRESSURE+ PROCESS HEAD(FT) MOMENTUM(POUNDS) 1.20* 56.66 FLOW DEPTH(FT) 0. 30 PRESSURE+ MOMENTUM(POUNDS) 32.09 FRICTION } HYDRAULIC JUMP 0.53*Dc 21.55 0.53-:'DC MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FRml! THE CURRENT LACFCD WSPG COVJPUTER PROGRAM. 21.55 ****************************************************************************** DOWNSTREAr<1 PIPE FLOW CONTROL DATA: NODE NUMBER= 2405.00 FLOWLINE ELEVATION= 355.89 PIPE FLOW= 2.00 CFS PIPE DIAMETER= 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 357.090 FEET NODE 2405.00 : HGL = < 357.090>;EGL= < 357.117>;FLOWLINE= < 355.890> ****************************************************************************** FLOW PROCESS FROM NODE 2405.00 TO NODE 2415.00 IS CODE= 1 UPSTREAfv1 NODE 2415.00 ELEVATION = 358.03 (HYDRAULIC JUr<1P OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 2.00 CFS PIPE DIAMETER= 18.00 INCHES PIPE LENGTH= 42.75 FEET MANNING'S N 0.01300 HYD~4ULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0. 30 CRITICAL DEPTH(FT) = 0.53 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.53 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ Page 1 2415.RES CONTROL(FT) (FT) (FT /SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0. 533 3.552 0. 729 21. 55 0.007 0. 524 3.640 0.730 21.56 0.031 0. 514 3.732 0.731 21.60 0.072 0.505 3.828 0.732 21.66 0.134 0.495 3.929 0.735 21.74 0.217 0.486 4.035 0.739 21.86 0.326 0.476 4.146 0.743 22.00 0.463 0.467 4.263 0.749 22.17 0.633 0.457 4. 386 0.756 22.37 0.839 0.448 4.516 0.765 22.61 1. 088 0.438 4.653 0. 775 22.88 1.387 0.429 4.797 0.786 23.19 1.742 0.419 4.949 0.800 23.54 2.166 0.410 5.110 0.815 23.92 2.671 0.400 5.281 0.834 24.36 3.274 0. 391 5.462 0.854 24.84 3.998 0.381 5.654 0.878 25.37 4. 872 0. 372 5.859 0.905 25.96 5.940 0. 362 6.077 0.936 26.61 7.266 0.353 6. 310 0.971 27.32 8.945 0.343 6.558 1. 012 28.10 11.143 0.334 6.825 1. 058 28.95 14.165 0.324 7.111 1.110 29.89 18.704 0. 315 7.419 1.170 30.92 26.975 0.305 7.751 1. 239 32.05 42.750 0. 305 7.761 1. 241 32.09 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS =~~==~======================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.20 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0. 513 1. 023 1. 532 2.037 2.539 3.038 3.533 4.024 4. 510 4.991 5. 465 5.931 6. 389 6.838 7.274 7.698 8.105 8.493 8.857 9.194 9.497 9.757 9.964 10.103 10.155 42.750 FLOW DEPTH (FT) 1. 200 1.173 1.147 1.120 1. 093 1. 067 1.040 1.013 0.987 0.960 0.933 0.907 0.880 0.853 0.827 0.800 0. 773 0.747 0.720 0.693 0.667 0.640 0.613 0. 587 0. 560 0.533 0.533 VELOCITY (FT /SEC) 1. 319 1. 348 1. 379 1.413 1.449 1.488 1. 529 1. 574 1.622 1. 674 1. 730 1. 790 1. 856 1. 926 2.003 2.086 2.177 2. 276 2.385 2.504 2.636 2.781 2.942 3.123 3.324 3.552 3.552 Page 2 SPECIFIC ENERGY(FT) 1. 227 1. 202 1.176 1.151 1.126 1.101 1.076 1. 052 1. 027 1. 003 0.980 0.956 0.933 0.911 0.889 0.868 0.847 0.827 0.808 0.791 0. 774 0.760 0.748 0.738 0.732 0.729 0. 729 PRESSURE+ MOMENTUM(POUNDS) 56.66 54.27 51.95 49.70 47.51 45.40 43.35 41.38 39.48 37.66 35.92 34.27 32.69 31.21 29.81 28.51 27.30 26.19 25.18 24.28 23.49 22.83 22.29 21.89 21.64 21.55 21.55 2415.RES ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ 1 PRESSURE+MOMENTUM BALANCE OCCURS AT 6.12 FEET UPSTREAM OF NODE 2405.00 I I DOWNSTREAM DEPTH= 0.869 FEET, UPSTREAM CONJUGATE DEPTH= 0.305 FEET I NODE 2415.00 : HGL = < 358.563>;EGL= < 358.759>;FLOWLINE= < 358.030> ****************************************************************************** UPSTREAM PIPE FLOI<i CONTROL DATA: NODE NUMBER= 2415.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 358.03 358.56 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS [J Page 3 2413. RES ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: WSPG COMPUTER MODEL HYDRAULICS CRITERION) (c) copyright 1982-2001 Advanced Engineering software (aes) ver. 8.0 Release Date: 01/01/2001 License ID 1423 Analysis prepared by: o'Day consultants, Inc. 2710 Loker Avenue west, suite 100 carlsbad, CA 92008 Tel: 760-931-7700 Fax: 760-931-8680 ************************** DESCRIPTION OF STUDY ************************** * CARLSBAD OAKS PHASE 3 ~ * PROPOSED BOBCAT CT INLET (NORTH) * I:\961005\Hydrology\Phase3\Hydraulics\2413.res ************************************************************************** FILE NAME: 2413.DAT TIME/DATE OF STUDY: 09:20 01/31/2008 ****************************************************************************** GRADUALLY VARIED FLOW NODAL POINT (Note: "•<" indicates UPSTREAM RUN ANALYSIS FOR PIPE SYSTEM STATUS TABLE nodal point data used.) DOWNSTREAM RUN NODE NUMBER 2405.00- } 2413.00- MODEL PRESSURE PRESSURE+ PROCESS HEAD(FT) MOMENTUM(POUNDS) 1.20* 58.91 FLOW DEPTH(FT) 0. 36 PRESSURE+ MOMENTUM(POUNDS) 36.95 FRICTION } HYDRAULIC JUMP 0.59*Dc 27.21 0. 59"'DC r·1AXIrv1U~·1 NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 2 5 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROrv1 THE CURRENT LACFCD WSPG COMPUTER PROGRM-1. 27.21 ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL NODE NUMBER= 2405.00 PIPE FLOW= 2.40 CFS DATA: ASSUMED DOWNSTREAM CONTROL HGL = FLOWLINE ELEVATION = PIPE DIAMETER= 18.00 357.090 FEET 355.89 INCHES NODE 2405.00 : HGL = < 357.090>;EGL= < 357.129>;FLOWLINE= < 355.890> ****************************************************************************** 2413.00 IS CODE= 1 FLOW PROCESS FROM NODE UPSTREAM NODE 2413.00 2405.00 TO NODE ELEVATION = 356.37 (HYDRAULIC JUi'1P OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW 2.40 CFS PIPE DIAMETER= 18.00 INCHES PIPE LENGTH = 4.75 FEET MANNING'S N 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.27 CRITICAL DEPTH(FT) = 0. 59 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.59 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOitJ DEPTH VELOCITY SPECIFIC PRESSURE+ Page 1 _j CONTROL(FT) 0.000 0.006 0.023 0.055 0.101 0.165 0.249 0.356 0.488 0.651 0.849 1.089 1.377 1. 724 2.141 2.644 3.254 4.001 4.750 (FT) 0.586 0. 574 0. 561 0. 548 0.536 0.523 0. 511 0.498 0.486 0.473 0.461 0.448 0.435 0.423 0.410 0.398 0. 385 0.373 0.362 2413. RES (FT/SEC) ENERGY(FT) 3.750 0.805 3.861 0.805 3.978 0.807 4.102 0.810 4.233 0.814 4.371 0.820 4.519 0.828 4.676 0.838 4.842 0.850 5.020 0.865 5.211 0.882 5.414 0.903 5.632 0.928 5.867 0.958 6.119 0.992 6.392 1.033 6.686 1.080 7.006 1.135 7.286 1.187 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.20 MOMENTUM(POUNDS) 27.21 27.24 27.30 27.41 27.57 27.78 28.04 28.36 28.74 29.19 29.70 30.30 30.97 31.74 32.60 33.56 34.65 35.86 36.95 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.200 1.583 1.239 58.91 0.229 1.175 1.615 1.216 56.75 0.456 1.151 1.649 1.193 54.66 0.681 1.126 1.686 1.170 52.63 0.905 1.102 1.725 1.148 50.65 1.127 1.077 1.766 1.126 48.74 1.347 1.053 1.811 1.104 46.89 1.565 1.028 1.858 1.082 45.11 1.780 1.004 1.909 1.060 43.39 1.993 0.979 1.964 1.039 41.75 2.202 0.954 2.022 1.018 40.17 2.408 0.930 2.085 0.997 38.68 2.609 0.905 2.152 0.977 37.25 2.806 0.881 2.224 0.958 35.91 2.997 0.856 2.302 0.939 34.64 3.182 0.832 2.385 0.920 33.46 3.361 0.807 2.476 0.902 32.37 3.531 0.783 2.573 0.885 31.37 3.691 0.758 2.679 0.870 30.46 3.841 0.733 2.794 0.855 29.65 3.977 0.709 2.919 0.841 28.94 4.098 0.684 3.055 0.829 28.35 4.200 0.660 3.205 0.819 27.87 4.280 0.635 3.369 0.812 27.51 4.332 0.611 3.550 0.807 27.29 4.352 0.586 3.750 0.805 27.21 4.750 0.586 3.750 0.805 27.21 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ 1 PRESSURE+MOMENTUM BALANCE OCCURS AT 3.77 FEET UPSTREAM OF NODE 2405.00 I I DOWNSTREAM DEPTH= 0.745 FEET, UPSTREAM CONJUGATE DEPTH= 0.454 FEET I NODE 2413.00 : HGL = < 356.956>;EGL= < 357.175>;FLOWLINE= < 356.370> ****************************************************************************** Page 2 2413. RES UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2413.00 FLOWLINE ELEVATION 3 56. 37 ASSUMED UPSTREAM CONTROL HGL = 356.96 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 0 Page 3 Basin lA Hydrology 96051A.OUT Information entered for subchannel number 1 : Point number 'X' coordinate 'y' coordinate 1 0.00 1.00 2 50.00 0.00 3 100.00 1.00 Manning's 'N' friction factor 0.040 sub-channel flow 4.233(CFS) flow top width = 30.032(Ft.) velocity= 0.939(Ft/s) area= 4.510(Sq.Ft) Froude number = 0.427 Upstream point elevation= 397.000(Ft.) Downstream point elevation 395.800(Ft.) Flow length = 150.000(Ft.) Travel time 2.66 min. Time of concentration= 7.66 min. Depth of flow= 0.300(Ft.) Average velocity = 0.939(Ft/s) Total irregular channel flow= 4.233(CFS) Irregular channel normal depth above invert elev. Average velocity of channel(s) = 0.939(Ft/s) sub-channel No. 1 0. 213 (Ft.) 0.300(Ft.) critical depth critical flow critical flow critical flow top width velocity= area 21. 2 8 9 ( Ft . ) 1.868(Ft/s) 2.266(Sq.Ft) Ad~ing area flow to channel Dec1mal fraction soil group A Decimal fraction soil group B Decimal fraction soil group c Decimal fraction soil group D 0.000 1.000 0.000 0.000 J [INDUSTRIAL area type Rainfall intensity Runoff coefficient subarea runoff 5.601(In/Hr) for a 100.0 year storm used for sub-area, Rational method,Q=KCIA, c 4.999(CFS) for 1.050(Ac.) Total runoff = 5.940(CFS) Total area= 1. ZO(Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.000 to Point/Station 3.000 **** SUBAREA FLOW ADDITION **** group A group B group c group D 0.000 1.000 0.000 0.000 7.66 min. J Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type Time of concentration Rainfall intensity Runoff coefficient subarea runoff 5.601(In/Hr) for a 100.0 year storm used for sub-area, Rational method,Q=KCIA, c 3.809(CFS) for 0.800(Ac.) Total runoff = 9.748(CFS) Total area= Z.OO(Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.000 to Point/Station 4.000 *''** PIPEFLOW TRAVEL TIME (User specified size) ''*''"' upstream point/station elevation = Downstream point/station elevation = Page 2 387.80(Ft.) 385.55(Ft.) 96051A.OUT Pipe length 225.00(Ft.) Manning's N = 0.013 N9. of ~ipes 1 Required pipe flow = 9.748(CFS) G1ven p1pe size= 24.00(In.) calculated individual pipe flow 9.748(CFS) Normal flow depth in pipe = 11.02(In.) Flow top width inside pipe = 23.92(In.) Critical Depth = 13.41(In.) Pipe flow velocity= 6.93(Ft/s) Travel time through pipe= 0.54 min. Time of concentration (TC) 8.20 min. End of computations, total study area= 2.00 (Ac.) Page 3 Node#2413 (STA 9+38.45 LT) Calculated Flo\nate Q = 2.4 cfs CapacitY of Curb Inlet Sump: Q = 3.87L(HY'3/2 IfL = 4'. H = 0.29' OK USE 5' TYPE 'B' C.I. Nocle#2415 (STA 9+38.45 Rll Caiculatcd Flo\nate Q == 2.0 cfs Q =-~ 0.7L(a+;'}"13/2 (a= 0.333') S = 6.90% (Approaching street) y = 0.22' Q/L = 0.288 L = 6.94' USE 8' TYPE 'B-1' C.I. INLET SIZING Temporary Desilting Basin Calculations Carlsbad Oaks North J.N. 961005/5 Prepared By: O'DAY CONSULT ANTS, INC. 2710 Loker Avenue \Vest, Suite 100 Carlsbad, CA 92008 ,--, ___ ) SECTION l 2 4 5 DESILTING BASIN CALCULATIONS DESCRIPTION Surface Area Calculations Explanation Soil Loss Calculations Explanation Dewatering Calculation Explanation Basin Sizing, Soil Loss, & Outlet Works Calculation Spreadsheets Exhibits _I SECTION 1 ~-1 , ___ j ~! ' __ ) Surface Area Calculations According to the Fact Sheet for Water Quality Order 99-08-DWQ issued by the State Water Resources Control Board (SWRCB), sediment basins shall, at a minimum, be designed and maintained as follows: Option 1: Pursuant to local ordinance for sediment basin design and maintenance, provided that the design efficiency is as protective or more protective of water quality than Option 3. OR Option 2: Sediment basin(s), as measured from the bottom of the basin to the principal outlet, shall have at least a capacity equivalent to 3,600 cubic feet of storage per acre draining into the sediment basin. The length of the basin shall be more than twice the width of the basin. The length is determined by measuring the distance between the inlet and the outlet; and the depth must not be less than three feet nor greater than five feet for safety reasons and for maximum efficiency. OR Option 3: Sediment basin(s) shall be designed using the standard equation: As= 1.2QNs \Vhere: As is the minimum surface area for trapping soil particles of a certain size; Vs is the settling velocity of the design particle size chosen; and Q=CxixA where Q is the discharge rate measured in cubic feet per second; C is the runoff coefficient; I is the precipitation intensity for the 1 0-year, 6-hour rain event and A is the area draining into the sediment basin in acres. The design particle size shall be the smallest soil grain size determined by wet sieve analysis, or the fine silt sized (0.01 mm) particle, and the V, used shall be 100 percent of the calculated settling velocity. The length is determined by measuring the distance between the inlet and the outlet; the length shall be more than twice the dimension as the width; the depth shall not be less than three feet nor greater than five feet for safety reasons and for maximum efficiency (two feet of storage, two feet of capacity). The basin(s) shall be located on the site where it can be maintained on a year- round basis and shall be maintained on a schedule to retain the two feet of capacity; OR Option 4: The use of an equivalent surface area design or equation~ provided that the design efficiency is as protective or more protective of water quality than Option 3. Sediment basins for Carlsbad Oaks were designed to satisfy the requirements of Om.tion 1., using the following parameters: Appendix II-A-4 of the San Diego County Hydrology J\tanual gives the precipitation for a 10-year, 6-hour stonn as 1.9 inches for this project. (See Exhibit "A") P = 1.9 inches/6 hours I= 0.32 avg. inches/hour (per Goldman et al., p. 8.16) Appendix IX of the San Diego County Hydrology Manual gives the runoff coefficients for this project as C=0.35 to C=0.45. (See Exhibit "B") Table 8.1 of the Erosion and Sediment Control Handbook (See Exhibit "C") gives the settling velocity for a 0.01 mm sized particle as Vs = 0.00024 feet/second. The San Diego County Soils Interpretation Study gives the soil classification for this project as "B'\ "C'', and "D". (See Exhibit "D") FOR BASIN C4.LCULATION SU/v/Jl!ARY SPREADSHEET SEE SEC110N 4 SECTION2 SECTION 5.31, PAGES 5.27 TO 5.28 LISTS A STEP BY STEP PROCEDURE FOR USING THE UNIVERSAL SOIL LOSS EQUATION (SEE EXIDBIT "G") FOR SOIL LOSS CALCULATION SUil'fiYfARY SPREADSHEET SEE SECTION 4 SECTION 3 SECTION 4 <-asin A -Lot 20 Oesiltation Basin Calculations Oavg = C X iavg X A C= 0.45 ia·;g = P6/6 hr. p6 = 1.9 in. (per 10 yr.-6 hr. I so pluvial) iavg = 0.32 in ./hr Pad A= 1.89 a c. Slope A= 0.28 a c. Total A= 2.17 a c. Oavg = 0.308979 cfs As= 1.20Ns Vs = 0.00024 ft/sec min. As= 1545 sf actual As= 2619 sf ~oil Loss Calculations A = R X K X LS X c X p R =16.55(p)22 p= 1.4 in. (per 2yr.-6 hr. lsopluvial) R = 34.70 Standpipe Calculations Q=CxlxA Tc = 5 min. (see Desilting Basin Tributary Area Exhibit) I = 7.64 in./hr. 0 = 7.2 cfs h = 1 ft. Case 1 Case 2 0 = CPh312 0 = CA(2gh) 112 C= 3.0 C= 0.67 P= 2.40074 ft A= 1.34 ft2 d= 0.76 ft d= 1.31 ft 24" pipe K = 0.24 (CIE2, CmE2, & CnG2 soils-per Table 5-2) C = 1.0 (Bare areas-per Table 5-5) P= 1.0 (Packed & Smooth-per Table 5-6) Area Use %Area Length** Slope/ Grade Slope 13.1% 45 2:1 Pad 86.9% 300 2% d = See Desliting Basin Tributary Area Exhibit *** = Per Figure 5-5 Avg. LS = 1.81 A= 15.07 tn/yr/ac ~oil Loss= 32.7 tn/yr = 594 cf LS*** 12 0.28 Basin Dewatering Calculations Ao = A5 (2H) 112 3600(T)Cd(g) 112 H= 2 ft T= 40 hr Ca = 0.6 g= 32.2 ttl sec A0 = 0.010684 ftL = 1.54 in2 Basin G • Lot 23 (SOUTH) Desiltation Basin Calculations Standpipe Calculations Oavg "' C X lavg X A O=CxlxA C= 0.45 Tc = 10 min. (see Deslltlng Basin TributaJY Area Exhibit) le.vg = Psf6 hr. I = 4.89 in.lhr. Ps= 1.9 in. (per 10 yr.-6 hr. lsopluvial) 0 = 31.4 cfs lavg = 0.32 in./hr h = 1 ft. Pad A= 12.85 ac. [] Slope A=== 0.00 a c. Total A= 12.85 a c. l Case 1 Case2 0 = CPh312 Q = CA(2gh) 112 Oavg = 1.83113 cfs C= 3.0 C= 0.67 P= 10.4646 ft A= 5.84 ft2 As= 1.20Na d= 3.33 ft d= 2.73 fl V5 = 0.00024 ft/sec 42" pipe min. As = 9156 sf actual A,= 9216 sf Soil Loss Calculations A = A X K X LS X c X p A =16.55(p):o.2 p = 1.4 in. (per 2yr.·6 hr. lsopluvial) A= 34.70 K = 0.24 (CIE2, CmE2, & CnG2 soils-per Table 5-2) [] C= 1.0 (Bare areas • per Table 5-5) j [J J P= 1.0 (Packed & Smooth· per Table 5-6) Area Use %Area Length·· Slope/ Grade Ls··· Slope 0.0% 0 2:1 0 [] •• = See OesJitlng Bastn Tributary Area ExhtbJt · J ... = Per Figure 5·5 Pad 100.0% 1350 2% 0.43 .. . . Avg. LS = 0.43 A = 3.58 tn/yrfac Soil Loss = 46.0 tn/yr = 837 cf Basin Dewatering Calculations A0 = A5(2H) 112 3600(T)C0(g) 112 H= 2 ft T::: 40 hr Cd= 0.6 g= 32.2 ftlsec Ao = 0.037603 ff ::: 5.41 in2 j j J J j J J J J ,, j J ] J J J J J I l:i:J L l ( · ~asin I-Lot l~ Oesiltation Basin Calculations Oavg = C X iavg X A C= 0.45 iavg :: P6/6 hr. p6:: 1.9 in. (per 10 yr.-6 hr. lsopluvial) iavg :: 0.32 in./hr Pad A= 3.55 a c. Slope A= 0.52 a c. Total A= 4.07 a c. Oavg = 0.579975 cfs A5 = 1.20N8 V5 = 0.00024 ft/sec min. A5 = 2900 sf actual As= 3655 sf Soil Loss Calculations .. = R X K X LS X c X p R =16.55(p)22 p= 1.4 R = 34.70 in. (per 2yr.-6 hr. lsopluvial) Standpipe Calculations Q=CxlxA Tc = 5 min. (see Desilting Basin Tributary Area Exhibit) I= 7.64 in./hr. Q= 15.5 cfs h= ft. Case 1 Case 2 Q = CPh 312 Q = CA(2gh) 112 C= 3.0 C= 0.67 P= 5.182967 ft A= 2.89 ft2 d= 1.65 ft d= 1.92 ft 24" pipe K = 0.24 (CIE2, CmE2, & CnG2 soils-per Table 5-2) C = 1.0 (Bare areas -per Table 5-5) P= 1.0 (Packed & Smooth -per Table 5-6) Area Use %Area Length** Slope/ Grade Slope 12.8% 55 2:1 Pad 87.2% 440 2% ** = See Des1lting Basin Tributary Area Exh1bit *** = Per Figure 5-5 Avg. LS = 1.97 A= 16.38 tn/yr/ac Soil Loss= 66.7 tn/yr :: 1212 cf LS*** 13.21 0.32 Basin Dewatering Calculations A0 = A5 (2H) 112 3600(T)Cct(9) 112 H= T= 2 ft 40 hr cd = o.6 g = 32.2 ft/sec Aa:: 0.014910 ftL = 2.15 in2 MODIFIED TYPE 'F' TYPE 'F' CATCH BASIN CAPACITY OUTLET PIPES O'Day Consultants Inc. 2710 Loker Avenue vJest, Suite 100 Tel: Carlsbad, (760) 931-7700 CA 92008 Fax: (760) Insleie Dlameter 24.00 in.) * * * * * * * AAAAAAAAAAAAAAAAAAAAA * VJa ter * * * * * * * * * * Circular Channel Section Flo·.vrate ................. . Velocity ..... Pipe Diameter Depth of Flow Depth of Flo·.-1 Critical Depth Depth/Diameter Slope of Pipe . X-Sectional Area (D/d) Wetted Perimeter ......... . AP.A (2/3) Mannings 'n' ............. . Min. Fric. Slope, 24 inch Pipe Flowing Full ..... . 15.700 12.641 24.000 10.020 0.835 1.430 0.418 2.600 1.242 2.810 0.721 0. Oll 0.345 931-8680 10.02 in.) 0.835 ft.) '! CFS fps inches inches feet feet % sq. ft. feet % 0 1 Day Consultants Inc. 2710 Loker Avenue Vlest, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 Fax: (760) 931-8680 * * Inside Diameter 24.00 in.) * * * * * -AAAAAAAAAAAAAAAAAAAAA A * ~·later * * * * * * * * * * Circular Channel Section Flowrate ......... . Velocity ......... . Pipe Diameter Depth of Flmv Depth of Flow Critical Depth ....... . Depth/Diameter (D/d) Slope of Pipe .... X-Sectional Area Wetted Perimeter ......... . rvrannings 1 n 1 •••••••••••••• Min. Fric. Slope, 24 inch Pipe Flor,ving Full ..... . 7.600 7.331 24.000 8.758 0.730 0.985 0.365 1.000 1.037 2.594 0.563 0.011 0.081 8.76 in.) 0.730 ft.) v CFS fps inches inches feet feet % sq. ft. feet % 0 1 Day Consultants Inc. 2710 Loker ll~venue Hest, Suite 100 Carlsbad, CA 92008 Te 1 : ( 7 6 o) 9 3 1-7 7 o o Fax: ( 7 6 0) 9 31-8 6 8 0 Inside Diameter 18. 00 in.) * * * * * * * * ~·later * * * * * * * * * * Circular Channel Section Flowrate ..... . Velocity ..... . Pipe Diameter Depth of Flow .... . Depth of FlO'Il ............ . Critical Depth ......... . Depth/Diameter Slope of Pipe . X-Sectional Area (D/d) Wetted Perimeter ..... . Mannings 1 n 1 ••••••••••••• Min. Fric. Slope, 18 inch Pipe Flowing Full ..... . 17.300 11.325 18.000 14.518 1.210 Greater than 0.807 2.000 1.527 3.346 0.905 0. 011 1.941 14.52 in.) 1.210 ft.) v CFS fps inches inches feet Pipe Diameter 0 15 sq. ft. feet % 0 1Day Consultants Inc. 2710 Loker Avenue ~·Jest, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 Fax: (760) 931-8680 * Inside Diamecer 24.00 in.) -AAAAAAAAAAAAAAAAAAAAA A \·Jater * * * * * * Circular Channel Section Flo·.-lrate ..... . Velocity ..... Pipe Diameter Depth of Flo•/1 .. Depth of Flow .. Critical Depth Depth/Diameter Slope of Pipe . X-Sectional Area (D/d) Wetted Perimeter ......... . ARA (2/3) ................. . fvlannings 1 n 1 Min. Fric. Slope, 24 inch Pipe Flo~ing Full ..... . 30.400 30.902 24.000 8.424 0.702 1.867 0.351 18.500 0.984 2.536 0.523 0. 011 1. 2 93 i 8.-±2 in.) 0.702 ft.) CFS fps inches inches feet feet % sq. ft. feet % ·.·./ <:: ;,'·':, ! __ ,,\ ---~ j ----_ ) rr ) 0 1 Day Consultants Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 Fax: (760) 931-8680 Inside Diameter 24.00 in.) * * * * * * AAAAAAAAAAAAAAAAAAAAA * \·later * * * * * * * * * * Circular Channel Section Flo·:1rate ................. . Velocity ................. . Pipe Diameter Depth of Flow ............ . Depth of Flow ............ . Critical Depth Depth/Diameter (D/d) Slope of Pipe ............ . X-Sectional Area Wetted Perimeter ......... . AR"' (2/3) tvJannings 1 n 1 •••••••••••••• Min. Fric. Slope, 24 inch Pipe Flowing Full ..... . 29.700 22.089 24.000 10.639 0.887 1.862 0.443 7.500 1.345 2. 914 0.803 0.011 1.234 10.64 in.) 0.887 ft.) v CFS fps inches inches feet feet % sq. .c~ L L. feet % O'Day Consultants Inc. 2710 Loker Avenue vJest, Suite 100 Carlsbad, CA_ 92008 Tel: (760) 931-7700 Fax: (760) 931-8680 Inside Diameter 24.00 ' \ ln. 1 * * * * * * * -AAAAAAAAAAAAAAAAAAAAA A * Water * * * * * * * * * * Circular Channel Section Flo~rate ......... . Velocity ......... . Pipe Diameter Depth of Flow ............ . Depth of Flow ........ . Critical Depth Depth/Diameter (D/d) Slope of Pipe ............ . X-Sectional Area ......... . Wetted Perimeter A_R" (2/3) t•Iannings 'n' Min. Fric. Slope, 24 inch Pipe Flowing Full ..... . 15.500 12.598 24.000 9.949 0.829 1.424 0.415 2.600 1.231 2.798 0.712 0. 011 0.336 9.95 in.) 0.829 ft.) v CFS fps inches inches feet feet c -6 sq. ft. feet % ! I SECTION 5 ('\, \. \ D \. ··, J ! ~ i " -!' --··· If'\ I .L> : fJ.u .uci . \10) Slope LS VWWlli for following 11lope length.s l, ft·~m) radient 10 20 30 •iO 50 60 70 80 90 100 s, % (3.0) (6.1) (9.1} (12.2} (16.2) (18.3) (21.3) (24..4) (27.4} (30.5) 0.5 0.06 0.07 0.07 0.09 0.10 0.12 0.14 0.18 0.20 0.21 0.26 0.08 0.10 0.15 0.22 0.28 0.08 0.11 0.16 0.23 0.30 0.09 0.11 0.17 0.25 0.33 0.09 0.12 0.18 0.26 0.35 o.os ·o.o9 0.12 0.12 0.19 0.19 0.27 0.28 0.37 0.38 0.10 0.12 0.20 0.29 0.40 l. 0.08 2---.. 0.10 3 0.14 4 0.16 5 0.17 0.24 . 0.29 0.30 0.37 0.37 0.45 0.44 0.54 0.52 0.64 0.34 0.43 0.52 0.63 0.74 0.3S 0.48 0.58 0.70 0.83 0.41 0.52 0.64 0.77 0.91 0.45 0.56 0.69 0.83 0.98 0.48 0.60 0.74 0.89 1.05 0.51 0.64 0.78 0.94 1.11 0.53 0.67 0.82 0.99 1.17 6 0.21 7 0.26 8 0.31 9 0.37 10 ll 12.5 15 16.7 20 22 25 30 33.3 35 40 4.5 50 55 57 60 66.7 70 75 so 85 90 95 100 la.~11d from 0.43 0.61 0.75 0.87 0.50 0.71 0.86 1.00 0.61 0.86 1.05 1.22 0.81 1.14 1.40 1.62 0.96 1.36 1.67 1.92 1.29 Ul2 2.23 ~Ui8 1.51 2.13 2.61 3.02 UJ6 2.63 3.23 3. 73 2.51 3.56 4.36 5.03 2.98 4.22 5.17 5.96 0.97 1.06 1.12 1.22 1.36 1.49 1.81 1.98 2.15 2.36 1.15 1.22 1.30 1.37 1.32 1.41 1.50 1.58 1.61 1. 72 1.82 1.92 2.14 2.29 2.43 2.56 2.54 . 2. 72 2.88 3.04 2.88 3.16 3.41 3.65 3.87 4.08 3.37 3.69 3.99 4.27 4.53 4.77 4.16 4.56 4.93 5.27 5~59 5.89 5.62 6.16 6.65 7.11 7.54 7.95 6.67 7.30 7.89 8.43 8.95 9.43 3.23 4.57 5.60 6.46 7.23 7.92 8.55 9.14 9.70 10.!!2 4.00 5.66 6.93 8.00 8.95 9.80 10.59 11.32 12.00 12.65 4.il1 6.80 8.33 9.61 10.76 11.77 12.72 13.60 14.42 15.20 5.64 7.97 9.76 11.27 12.60 13.81 14.91 15.94 16.91 17.82 6.48 9.16 11.22 12.00 14.48 15.87 17.14. 18.32 19.-4.3 20.48 6.S2 9.64 11.80 13.63 15.24 16.69 18.03 19.28 20.45 21.55 7.32 10.35 12.68 14.64 16.37 17.93 19.37 20.71 21.96 23J.5 1:1.44 11.93 14.61 16.88 18.87 20.67 22.32 23.87 25.31 26.68 8.98 12.70 15.55 17.96 20.08 21.99 23.75 25.39 26.93 28.39 9.7CI 13.83 16.94 19.56 21.87 23.95 25.87 27.66 29.3•1 30.92 10.55 14.93 18.28 21.11 23.60 25.S5 27.93 29.85 31.66 33.38 11.30 15.98 19.58 22.61 25.27 27.69 29.90 31.97 33.91 35.'/4 12.02 17.00 20.82 24.04 26.88 29.44 31.80 34.00 36.06 38.01 12.71 17.97 22.01 25.41 28.41 31.12 33.62 35.94 38.12 40.18 13.36 18.89 23.14 26.72 29.87 32.72 35.34 37.78 40.08 42.24 i li5.41 X .~ 4.5li )( s ) ( l )"' 1...:s2~+-l-O-,U-O-O + 'V'/? + 10,000 + O.OOfi -72.-5 LS ~ topo""aphic factor I • slope len{th, !t (Ill X 0.3048) s .. alope ateepn111111, m .. exponent depondent upon &lope aleepnw (0.2 for alopea < 1 'f., 0.3 for &lapu 1 to 3%, 0.4 [or alopu 3.5 to 4.5%, and 0.5 for &lopea > 5%) i I i .,\ '' j, I I' .,. ' I I { LS valWlll for followiug &lope lengths L, ft (m) 150 200 250 300 350 400 450 500 600. 700 800 (46) (61} (76) (91) (10'1) (122} (137) (152) (183) (213) (244) 0.10 0.11 0.11 0.12 0.12 0.13 0.13 0.13 0.14 0.14. 0.14 0.15 0.16 0.16 0.16 0.17 0.17 0.18 0.23 0.25 0.26 0.28 0.29 0.30 0.32: 0.33 0.34 .0.32 0.35 0.38 0.4.0 0.42 0.4.3 0.45 0.46 0.49 0.4.7 0.53 0.58 0.62 0.66 0.70 0.73 0.76 0.82 O.GG 0.76 O.SS 0.93 1.00 1.07 1.13 1.2Q 0.82 0.95 1.06 1.16 1.26 1.34 1.43 1.50 1.01 1.17 1.30 1.43 1.54 1.65 1.75 Ul4 1.21 1.40 1.57 1.72 1.85 1.98 2.10 2.22 1.44 1.66 l.SS 2.03 2.19 2.35 2.49 2.62 1.68 1.94 2.16 2.37 2.56 2. 74 2.90 3.06 1.93 2.23 2.50 2.74 2.95 3.16 3.35 3.53 2.35 2.72 3.04 3.33 3.59 3.84 4.08 4.30 3.13 3.62 4.05 4.43 4.79 5.12 5.43 5.72 3.72 4.30 4.81 5.27 5.6\) 6.08 6.•&5 6.80 1.31 1.65 2.02 2.43 2.87 3.35 3.87 4.71 6.27 7.45 0.14 0.14 0.18 0.19 0.36 0.37 0.51 0.54 0.87 0.92 1.42 1.78 2.18 2.62 3.10 3.62 4.18 5.08 6.77 8.04 1.51 1.90 2.33 2.80 3.32 3.87 4.47 5.43 7.24 8.60 900 (274) 0.15 0.19 0.39 0.55 0.96 1.60 2.02 2.47 2.97 3.52 ·~.11 4.7•l 5.76 7.68 9.12 1000 (3.05) 0.15 0.20 0.'&0 0.57 1.00 1.69 2.13 2.61 3.13 3.71 4.33 4.99 s.os 8.09 9.62 5.00. 5.77 6.45 7.06 7.63 ·8.16 8.65 9.12 9.99 10.79 11.54 12.24 12.90 5.84 6. 75 7.54 8..26 8.92 9.54 10.12 10.67 11.68 12.62 13.49 14.31 15.08 7.21 8.33. 9.31 10.20 11.02 11.78 12.49 13.17 14.43 15.58 16.66 17.67 18.63 9.74 11.25. 12.57 13.77 14.88 15.91 16.87 17.78 19.48 21.04 22.49 23.86 25.15 11.55 13.34 14.91 16.33. 17.64 18.86 20.00 21.09 23.10 24.95 26.67 28.29 29.82 12.52 1·'-46 16.16 17.70 19.12 20.44 21.68 22.86 25.04 27.04 28.91 30.67 32.32 15.50 17.89 20.01 21.91 23.67 25.30 26.84 28.29 30.99 33.48 35.79 37.96 .40.01 1s.s2 21.60 u.o3 26..33 28.44 ao.-4.0 a2.24 33.99 37.23 40.22 -12.00 4s.so 4S.o7 21.83 25.21 28.18 30.87 33.34 35.65 37.81 39.85 43.66 47.16 50.41 53.47 56.36 25.09 28.97 32.3!) 36.~ 38.32 40.97 43.45 45.80 50.18 64.20 57.94 61.45 64.78 26.40 30.48 34.08 37.33 40.32 43.10 45.72 48.19 52.79 57.02 60.96 64.66 68.15 28.35 32.74 36.60 40.10 43.31 46.30 49.11 51.77 56.71 61.25 65.48 69.45 73.21 32.68 37.74 42.19 46.22 49.92 53.37 56.60 59.66 65.36 70.60 75.47 80.05 84.38 34.77 40.15 44.89 49.17 53.11 56.78 60.23 63.48 69.54 75.12 80.30 85.17 89.78 37.87 43.73 48.89 53..56 57.S5 6l.S5 65.60 69.15 75.75 81.82 87.46 92.77 97.79 40.88 47.20 52.77 57.81 62.44 66.75 70.80 74..63 81.76 88.31 94..41 100.13 105.55 43.78 50.55 56.51 61.91 66.87 71.48 75.82 79.92 87.55 94.57 101.09 107.23 113.03 46.55 53.76 60.10 65.84 71.11 76.02 80.63 84.99 93.11 100.57 107.51 114.03 120.20 49.21 56.82 63.53 69.59 75.17 80.36 85.23 89.84 98.4.2 106.30 11.3.64. 120.54 127.06 51.74 59.74 66.79 73.17 79.03 84.4.9 89.61 94..46 103.48 111.77 119.48 126.73 133.59 /' £.xr!I81T E ' ' -- ---· Sample Soil Loss Calculation; Step-by-Step Pra.cedu.re 1. 2. 3. 4. 5. a. 7. Determine the R factor. Based on soil sample particle size analysis, determine the K value from the nomograph (Fig. 5.6). Repeat if you hava more than one soil sample. Divide the site into sections of uniform slope gradient and length. Assign an LS value to each section (Table 5.5). Choose the C valua(s) to represent a seasonal average of the effect of mulch and vegetation (Table 5.6). Set the P factor based on ths final grading practice applied to the slopes (Table 5.7). Multiply the five factors together w obtain per acn soil lou. Multiply soil loss per acre by the acreage to find the total volum.e of sediment. If the soil loss prediction shows excessive volume lost from the site, consider · (a) working only a portion of the site at one time, (b) altering the slope length and gradient, or (c) increasing mulch application rate or seeding. '. RANCHO C.4.RJ.;SHA,D CHAJ.~NEL & BASIN PROJEC-r (Job Number 13182) June 30, 1998 Prepared for: City of Caris bad 2075 Las Palrnas Drive Carlsbad, California 92009-1576 R.C.E. #32838 Exp. 6/02 Rick Engineering Company \Vater Resources Division 5620 Friars Road <10\ /Ci1 'l f~ -· _!. ~-' / ·-~-.!._ .: • __ I Introduction This report has been prepared to summarize the hydrologic and hydraulic studies conducted by Rick Engineering Company for the City of Carlsbad as part of the Rancho Carlsbad Channel and Basin Project. Rancho Carlsbad Mobile Home Park (RC11HP) is located north ofEl Camino Real midway between College Boulevard and Tamarack Avenue. See the Vicinity Map on the next page. RCMHP contains portions of both Agua Hedionda and Calaveras Creeks. Agua Hedionda Creek flows westeriy through the southern portion ofRCMHP. Calaveras Creek flows southwesterly along the northern property boundary. Calaveras Creek confluences with Agua Hedionda Creek within RCMHP approximately 300 feet upstream ofEl Camino Real. The Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) shows that a large portion of RCMHP is inundated by the 1 00-year storm. See the FIRM in Map Pocket 1. The purpose of this study is to provide recommendations for minimizing the 1 00-year flooding in RCMHP. These recommendations include upstream detention basins to decrease the peak flow and on-site creek improvements to increase the creek capacities. Hydrologic Methodology Hydrologic analyses were prepared to detennine the 100-year peak discharge within RCMHP and to analyze proposed detention scenarios. Two hydrologic analyses using the U. S. Army Corps of Engineers' HEC-1 flood hydrograph program are included in this report. The flrst analysis modeled the existing detention facilities and ultimate development. Ultimate development was assumed in order to account for the maximum anticipated discharge in the watershed. The results of the first analysis confirmed that the creeks in RCivlHP are inadequate to convey the 1 00-year Prepared By: Rick Engineering Company-Viator Resources Division DCB:MDL:emlliReportJJ-13182.001 07/01/98 '_j storm. Therefore, additional analyses were performed in order to study detention scenarios. The HEC-1 analysis containing the most desirable detention scenario is included in this report and is based on the existing and four proposed detention facilities and ultimate development within the entire watershed. Tne HEC-1 input and methodology are discussed below. The HEC-1 results are discussed in the following section. Prior to preparing the HEC-1 input, previous studies (listed in "References") for RC11HP were reviewed and site visits were performed. The site visit objectives were to verify the watershed boundary and major flow paths of both Agua Hedionda and Calaveras Creeks, determine existing detention locations, and review proposed detention locations. Prior to the site-Visits, the watershed boundary and flow paths were delineated on the United States Geological Survey's (USGS) quadrangle maps. The watershed was divided into sub-basins in order to obtain peak flows at existing and proposed detention facility locations and at locations listed in the current Flood Insurance Study. The watershed boundary, flow paths, and sub-basin boundaries were verified during the site visits and adjusted appropriately. See Map Pocket 2 for the RCMHP watershed bOlmdary map. During the site visits, existing detention facilities such as dams and road embankments were noted. Two dams exist within the RCMHP watershed: Calaveras and Squires. Of these two, only Calaveras dam provides significant detention. It is located within Calaveras Creek and detains the upstream creek flows. On the other hand, Squires Dam is located at the upper end of a drainage basin and provides minimal detention. The plans for Calaveras Dam were obtained from the Division of Safety of Dams (DSOD) and the outlet works and storage capacity were modeled in the hydrologic analyses. Prepared By: Rick Engineering Company-Water Rcsour·:es IJivisicn 3 DCB::VIDL:cmrl1RepJrrJJ-13182.00 1 07t 01198 Furthermore, the following road embankments \vere identified as potential existing detention facilities: Business Park Drive (south of Park Center Drive), Sycamore Avenue (north of Grand Avenue), ShadoVvridge Drive (north of Antiqua Drive), Melrose Drive (north of Cannon Road), and Melrose Drive (south of Aspen \Vay). As-built plans for these road crossings were obtained from the appropriate agencies. The culverts and storage capacities of the Sycamore A venue, ShadoVvTidge Drive, and Melrose Drive (Cannon Road) facilities were modeled in the hydrologic analyses. The Business Park Drive and Melrose Drive (Aspen Way) crossings were not modeled because the culverts at these locations are large enough to convey most of the upstream flows with minimal detention. Two main criteria were considered in selecting potential proposed detention basin sites. First, the facilities listed in the Master Drainage Plan were considered. Second, existing or proposed road crossings were considered. Detention basin construction at road crossings provides several benefits. Road crossings create a natural location for detention. They are cost-effective because the road emban..lanent is used for detention. They do not create a significant increase in environmental impacts. The above-mentioned sub-basins and detention facilities were modeled in the HEC-1 progra..'ll. The progra.rn parameters include sub-basin area, rainfall distribution, lag time, a11d curve number. These para..meters were determined as follows: The sub-basin area was obtained from the USGS watershed boundary map. The rainfall distribution was based on storm duration and frequency, as \Vell as the sub-basin's geographic location. The lag time was based on sub-basin characteristics such as topography, basin shape, vegetative cover, existing development, and stom1 duration. Both rainfall distribution and lag time were generated by utilizing the criteria outlined in Preo:1red Bv: Rick Engin • .:ering Company-Wat~r Resuurces o:vision 4 DCB·:VfDL·cmniRepcrtd-131 32 01) l 07.0L 98 Appendix 1 contains the 1 00-yea:r, 24-hour HEC-1 analysis for the RCMHP watershed with the existing detention facilities and ultimate development. The second HEC-1 analysis modeled both existing and proposed detention facilities and ultimate development. Several proposed detention scenarios were investigated and it was determined that the most feasible scenario was the combination of four detention basins, all located at proposed road crossings. Two of the proposed detention facilities are listed in the 1994 Master Drainage Plan as Detention Basins BJB and BJ. These facilities are located immediately upstream ofRCNfHP in Calaveras Creek. Both oft1'1e detention basins were designed as flow-by facilities. A flow-by facility detains the higher creek flows, while allowing lower flows to pass through the ·r basin relatively undetained. The other two detention basins are further upstream in Agua Hedionda Creek at the proposed road extensions ofMelrose Drive (southof Aspen \Vay) and Faraday Avenue. Both of the Agua Hedionda detention basins are flow~through.types where all of the creek flow is detained. All proposed detention facilities were designed to be outside DSOD's jurisdictional limits, i.e., less than 50 acre-feet of storage volume and less than 25 feet high. Appendix 2 contains the HEC-1 analysis of the 1 00-year, 24-hour storm for the RCMHP watershed with both existing and proposed detention facilities and ultimate development. Table 1 summarizes the results of both HEC-1 analyses. The table shows that with the proposed detention basins, the peak discharge at RCMHP decreased by approximately 10 to 15 percent. Preliminary design of the proposed detention facilities are discussed below. Prepared By: Rick Engineering Company. \Vater Resources Division 6 DCB:~!DL-:mn, ReportJJ-13 i82.001 Q7,0L98 Preliminary designs were performed for each proposed detention facility to determine the outlet works required to achieve maximum detention, while maintaining the height and storage volume below DSOD jurisdictional limits. The preliminary design of each detention facility and the results for each detention facility design are described below. The most upstream proposed detention facility in Agua Hedionda Creek is at Melrose Drive. This facility will be a flow-through detention basin. Melrose Drive runs north-south and currently ends just south of Aspen Way near the Carlsbad Corporate boundary. Future plans call for the extension of Melrose Drive to Palomar Airport Road. An existing reinforced concrete box (RCB) culvert conveys flow under Melrose Drive and is 10 feet wide by 7 feet high. The existing Melrose Drive emban..lanent provides minimal detention because of the RCB's large capacity. Hydrologic calculations show that a 36-inch diameter opening at this location will detain the peak flow discharge from approximately 450 cubic feet per second (cfs) to 180 cfs. There are two alternatives for creating the 36-inch opening. One is to replace the existing culvert with a 36-inch RCP and the other is to construct a concrete barrier at the inlet vvith a 36-inch diameter opening. The resultant storage volume and ponded water surface elevation (WSEL) with the new outlet works will be approximately 41 acre-feet and 329 feet, respectively. This will create an inundation area of approximately seven acres. The estimated outlet velocities for the first and second alternative will be 25 and 13 feet per second (fps), respectively. The velocity under the first alternative is greater than the maximum desired velocity of 20 fps. The velocity calculation assumed that the proposed 36-inch RCP was constructed at the slope of the existing culvert, which is one percent. If this alternative is selected, the final culvert design should analyze methods for reducing the outlet velocity, such as placing the culvert at a t1atter slope or using multiple small diameter culverts. A Prcp:1rd By Rick Engineering Company· W atcr Resources Divis ion 8 DCB:\!DL:emniReport'J·lJ 182.00 I 07/0lr98 conceptual plan for the second alternative is included in Map Pocket 3. The other detention facility proposed for Agua Hedionda Creek is the Faraday Avenue flow- through detention basin. Currently, Faraday Avenue runs east-west and ends at Orion Street. The extension of Faraday Avenue to Park Center Drive in the city of Vista is plan_ned as part of Carlsbad Oaks North Business Park. The hydrologic calculations and preliminary design in this report were based on the proposed embankment and topographic information shown on the Tentative Map for Carlsbad Oaks North Business Parkby O'Day Consultants, dated 1\pril 6, 1998. The calculations show that a single 6-foot wide by 7-foot high RCB culvert \vill detain approximately 49 acre feet of storage volume and will pond up to an elevation of 240 feet. The inundation area will be approximately seven acres. The 1 00-year peak discharge of 1,050 cfs entering the detention has in will be detained down to approximately 780 cfs. The approximate calculated outlet velocity will be 19 fps. A conceptual plan for this detention facility is included in Map Pocket 4. The two proposed detention facilities in Calaveras Creek are located just upstream of RCMHP and were designed as flow-by basins. The first facility, Detention Basin BJB, is located north of RCMHP at the proposed College Road extension and west of the proposed Cannon Road extension. College Boulevard currently ends at El Camino Real. North ofRCMHP, the proposed College Boulevard extension runs roughly east-west. College Boulevard intersects the proposed Cannori Road extension at the northeast comer of RCivfHP. Cannon Road currently ends east of Interstate 5 at Paseo Del Norte. The proposed Cannon Road extension alignment will be parallel to Calaveras Creek and immediately north of RCMHP. The detention basin design consists of an earthen embankment, outlet works, and a small berm. The embankment will have a 1 0-foot top width and a 76-foot crest elevation with 2:1 (horizontal:vertical) side slopes. The outlet works Prepared By: Rick Engineering Company-Wat~r Resources Division 9 DCB:MDL:emn!ReportJJ.J3182.00 1 07/0 l/98 ' ( consist of a single 10-foot wide by 7-foot high RCB and a 48-inch RCP. The 48-inch RCP joins the RCB downstream of the embankment. The RCB then extends to Calaveras Creek. An emergency spillway is also provided. The small berm will run parallel to the creek for approximately 1,200 feet. The berm will have an approximate 74-foot crest elevation, 10-foot top width, 2:1 (horizontal:vertical) side slopes, and a weir section. The weir section, located near the embankment, will allow flow to enter the basin at an approximate WSEL of 73 feet. Hydrologic calculations show that with the outlet works described above, a storage volume of approximately 49 acre feet will be attained. The resultant ponded \VSEL will be approximately 7 5 feet and the inundation area will be approximately 15 acres. The peak discharge of 1,570 cfs entering the basin will be detained down to 1,200 cfs. The approximate outlet velocity will be 19 fps for the RCB. See Map Pocket 5 for a copy of the conceptual design ofDetention Basin BJB. The other Calaveras Creek detention facility, Detention Basin BJ, is located northeast of RCMHP at the proposed College Boulevard extension and east of the proposed Cannon Road extension. The earthen embankment will have a crest elevation of approximately 81 feet, a top width of 10 feet, and 2:1 side slopes. An emergency spillway will be provided. Approximately 600 feet of channel improvements upstream of the proposed embankment are necessary. The channel improvements include grading the creek as follows: Trapezoidal-shaped grass-lined channel with a 3-foot bottom -..,vidth, 4-foot depth, and 2:1 side slopes. The hydrologic calculations showed that a 6-foot wide by 3-foot high RCB would detain the peak flow of 670 cfs down to approximately 350 cfs. The inundation area is approximately eight acres and the ponded WSEL is approximately 76 feet. The detention basin stores approximately 48 acre feet of water. The calculated outlet velocity will be approximately 19 fps. See Map Pocket 6 for the conceptual plans for Detention Basin BJ. Prepared By: Rick Engineering Company ·Water Resources Division 10 DCB::V!DL:emrvRoport!J-!3182.00 l 07'0 li98 As discussed above, with the addition of the proposed detention facilities, the peak disct1arge at RCMHP is decreased by approximately 10 to 15 percent. All four of the proposed detention facilities were designed to fall below DSOD's jurisdictional limits. Also, all the facilities are located at existing or proposed road crossings and at least one foot of freeboard is maintained at the road emban.lanents. The results are summarized in Table 2, which contains results such as outlet works, velocity, peak flow discharge into and out of the basin (Qin and OouJ, storage volume, ponded \VSEL, and surface area. Prepared By: Rick Engineering CompCJ.ny-\\"ater Resources Division 1 1 DCB:;\!DL:cmrJReportJJ-13182.00 l 07;0 L98 Table 2 Summary of Proposed Detention }facilities Rancho Carlsbad Cl}anncl and Basin Project 100-ycar, 24-hour Storm Event Facility Nmne Qin' cfs Q~uucfs Outlet Works ' Ponded W$:EL,n . !Storagj!, ~~--ft $tlrfa~c.·· ·· · · · ·· · · · Area, ac .. ·· •.. ·1 Ori~i~t ........... . ··+··· :·:· . . . Melrose (south of Aspen Way) Faraday BJB BJ Pr~parcJ By: 450 1,050 1,560 670 Kick Engin~~ring Company -Water Rcsomces Division 180 780 1,200 350 36" RCP 6'x7' RCB 1-1 O'x7' RCB &48" RCP 6'x3' RCB 329 41 240 49 75 49 76 48 12 7 7 15 8 ·Velocity; fps 13 (Alt. 2) 25 (Alt. 1) 19 19 19 DCll:MDL:cmn/ReportJJ-131 82.00 l 07/01/98 Hydraulics Hydraulic analyses were performed to determine the amount of silt removal and re-grading required to minimize the 1 00-year flooding at RCMHP. In order to effectively analyze flood levels in both Agua Hedionda and Calaveras Creeks, the U.S. Army Corps of Engineers HEC-2 Water Surface Profiles program was used. The program is intended for calculating \VSELs for steady gradually varied flow in natural or man-made channels. The effects of various obstructions such as bridges and culverts may be considered in the computations. The program also has capabilities available for assessing the effects of channel improvements. The input parameters vvere based on channel and overban..l( rougrn1esses, 1 00-year discharge, downstream \VSEL, and topography. The channel and overbank roughnesses were determined by field observations. The 1 00-year discharge was obtained from the HEC-1 analysis in Appendix 2 modeling both existing and proposed detention facilities. The downstream WSEL was estimated in the HEC-2 analysis by using the slope-area method. FEMA-approved HEC-2 cross-sections for the area downstream of the site were included in the analysis. The 1 00-year discharge for the downstream area was obtained using the split-flow analysis from the Flood Insurance Study. The existing topography was based on June, 1995 topographic maps by Manitou Engineering. The topography was used to prepare cross-sections of both creeks, as well as the overbank areas. Since prior studies showed that the creeks were under-capacity, the original grading plans for RCMHP ·were obtained and modeled in the HEC-2 a.J.J.alysis by using the channel improvement option. The original grading plans were prepared October 15, 1969 and approved by the City on 1v1arch 24, 1971. The original design consisted of a trapezoidal channel with an overall iength of approximately 1.2 miles and included both Agua Hedionda and Calaveras Creeks within Prepared By· Rick Engineering Cc"~rr~rJ.ny -\Vetter Resources Division 13 DCB:\!DL:emniRcportiJ-13182 001 07/0 L98 RCMHP. The side slopes were 2:1 (horizontal:vertical) and the approximate bed slopes were 0.15 and 0.30 percent in Agua Hedionda Creek and Calaveras Creek, respectively. The bottom width of Agua Hedionda Creek varied from 58 feet at the El Camino Real bridge to 44 feet upstream of the confluence. The approximate channel depth was 11.5 feet. The bottom width and channel depth of Calaveras Creek were four feet and nine feet, respectively. A HEC-2 analysis was performed based on the original design. The HEC-2 results showed that a large portion of RCMHP remained inundated by the 1 00-year flood. In order to increase channel capacity, additional channel improvements were modeled in the HEC-2 analysis for the downstream sections of both creeks. At the El Camino Real bridge, the bottom width was widened to 87 feet. 'Within the next 1,400 feet upstream of the bridge, the bottom width then tapered down to the original design bottom ·width of 44 feet in Agua Hedionda Creek and four feet in Calaveras Creek. The results of the hydraulic study are contained in Appendix 3. The results are also depicted on the RCMHP 100-year Floodplain Map in Map Pocket 7. The map shows that with the proposed detention facilities and channel improvements discussed above, a majority of RCMHP will be outside of the 1 00-year floodplain. lYiaintenance Plan This Maintenance Plan contains maintenance requirements for Aqua Hedionda and Calaveras Creek within RCMHP. This plan also contains requirements for the four upstream detention basins. It is vital that the creeks and detention basins be maintained on a regular basis to ensure an acceptable level of flood protection for RCMHP. It is recommended that the maintenance described Prepared By: Rick Engineering Comp:my -Water Resources Division 14 DCB:MDL:emn/Report/J-13182.001 07/01/98 below be performed annually prior to the rainy season and after any storm event exceeding the 10- year peak discharge. Aqua Hedionda and Calaveras Creek must be maintained to prevent adverse siltation in each creek. Siltation \-..,111 reduce the flow capacity of the creeks and increase the likelihood of inundation within the mobile home park. The first step is to devise a system for monitoring the silt level in each creek. This can be done using metal posts with markings placed si.x inches apaJ.'i. The posts should be placed vertically in each creek at intervals not exceeding 500. feet. The posts should extend at least two feet above the creek bed and must be embedded deep enough so that they will not be moved by large creek flows. A geotechnical engineer should be consulted for the required embedment depth. Once the posts are installed, the silt level can be easily monitored by maintenance personnel. As the silt level reaches one foot, the silt should be removed by maintenance crews to the design elevations. The topographic maps have been reviewed to determine the siltation that has occurred in both creeks over the past few years. The design of the creeks within the mobile home park is shown on the grading plan for RCMHP approved March 24, 1971. The creek bed elevations on the grading plan served as the base elevations in determining the amount of siltation in each creek. A comparison of the grading plan with a June 1995 topographic map indicates that the silt in Aqua Hedionda and Calaveras Creek raised the creek beds as much as seven and five feet, respectively. Therefore, siltation has occurred in Agua Hedionda and Calaveras Creek at a rate of up to 0.3 and 0.2 feet per year. Using these rates and an acceptable silt level of one foot indicates that portions of the creeks could require maintenance approximately once every three to five years. It is important to point out that this is a rough approximation because the creek siltation will depend on the PrepareJ By: Rick Engineering Compny-W:Jter Resources Divisicn 15 DCB:i\1DL:~mr"'Repvr'Lil·l31 82.001 07/01/98 ~-.:::.:~2 ~I:<E C•? .?:c'.r3?_7\.G2 ?!...::·~'! !?0?. :-!...""..Y..I~·'r!...:~-': P:::?~!O~ '71"' C•T'!-.1 • ~~-·..--or-... • ll.!•1t:; ...... ....,_ __ ~•·tu,-1 0? STATION FLOti C:E?..K 6-EOU"R. 24-i-iOUR 7 2 -HOu'3. .J. ..... i:(.E..!i SW.GS i·Lll...X ST.~G2 2744. 10. 53 1·~53 S9C 576 " . 3 4 P.OUT::::D TO 2i2C2 2743. 10.53 1453 537. 575 4 • 3"<; 404 .02 10.58 3SNdC2 357. 10.00 169 69. 66. .55 2 CC~·13I~2D P..T 304:3. 10.50 1619. 666 642 . 8 3 ROUTZD TO RTBC3 3028. 10.53 1619. 664 6~0. . 8 9 385 .09 10 .sa hl:UP.OG?-~.PH AT 3S~f3C3 7B. 10.00 353 145. 140. 1 .18 2 C0~·1BIN2D AT BC2&EC3 3E33. 10.50 1959. 509. 779. 6 .07 P-Ol.TTED TO RT?C4 1549. 10.53 1963 80S. 77h .07 36"1 7.J 1.0 .53 HYDROGRAPH AT BSN3C4 184 10.00 85. 35 33 . 31 2 CO~lBINED AT .DC3&BC4 3798. 10.50 2052 240 809 . 6 . 3 8 HYDROGRAPH AT AHl l8Cl2. 10.17 881. 363 34 9. 2 83 D2TSYC 1736. 10.25 sal 362 3?9 2 83 372 .32 10 '25 2 CO~·GIHED AT 2C&-JI_'Y:l 5526-10.50 2931. 12 02. 1158 9 . 21 5235. 10. 7 s 2892 llSS. :141. 9 . 21 313 99 10 75 516. 10. co 2·13 :oc 35. '33 b)l.fTSD TO DE':'S1--LZ'..DQ .;;oo. 10. 17 243 lOO. 36. .83 351 95 10 17 457. 10.50 2~3 :oo ')6. .83 321 .25 lQ .50 ?52 73/. "u .OIJ 367 j.SO. 144 . ~l .OL1. .ss ~ -~ 3 s :·!3 ~ l3Sl. ll .~5 OL;s :;_.] • b I ::-;: 2 _:_.:.z -~ ~ _,_j j..;_ "" . 4 5 233 ·J a lQ s"f ; c::: ~" ~ 'C -·--...:...) -=-~ JC ~ 77. J-5": .27 " ; ., j c -"'- 2 CO!<!BINED A7 CGN3INE 1290. 10.08 654. 274. 264. 2.35 ROtiTED TO 1265 .. 10.25 664. -273-263. 2.35 161.74 10.25 HYDROGRAPH A7 AHS 177. 10.00 83. 34. 33. .31 ROUTED TO AHB-7 174. 10.00 83. 34. 33. . 31 160.24 10.00 H'{DROGRA.PH A7 iU-!7 512. 10.08 240. 98. 94. 1.. 12 4 COMBINED AT COMBINE 7995. 10 .. 58 4455. 1831. 1764. 15.23 P.OUTED TO AH7-i'39 7663. 10.83 4443. 1821.. 1754. 15 .. 23 103.49 10.83 1-lYDROGRAPH AT 500. 10.08 235. 96. 92. l. 00 2 CON'BINED AT CO!'-'.BINE 7987. 10.75 4671. 1916. 1846. 16.23 ROUTED TO AH9-10 7874. 10.92 4669. 1997. 1941. 16.23 hrDROGRA.PH AT i'..HlO 338. 10.00 156. 64. 61.. .66 2 COHBINED AT co:wra;: 8025 .. 10.32 4615. 2060. 2002. 1.6. 89 ROUTED TO l'..H10-RCA 8025. 11.00 4815. 2053. 1997. 16.89 49.72 11.00 HYDROGRAPrt AT RCA 54-10.QO 24. 10. 10. .11 2 COMBINED AT CO!<!BINE 8049. 11.00 4833. 2063 .. 2007 .. 17.00 1--fYDROGRAPH AT C1 531 .. 10.00 249. 102 .. 98. .87 ROUTED TO DETNHSLR 528. 10.00 249. 102. 98. .. 87 335.95 10.00 ROUTC:D TO Cl-C2 373 .. 10 .. 67 236. 99. 95 .. .87 241.02 10.67 HYDROGRAPH AT C2 1545. 10.25 761.. 311. 300. 2.72 2 COI·lB INED AT cor-rnrN~ 1830. 10.25 992 .. 411. 395. 3.59 ROUTED TO DETCi'..LA 1401. 11.00 748. 293. 282. 3.59 218.82 11.00 ROUTED TO C2-C3 1373. 11.17 745. 291. 281. 3.59 100.25 11. 17 hYDROGRAPH i'.T C3 4.~8-10.00 209. 85 .. 82. .32 2 COMBINED AT COM3INE 1560. 11. OB 976. 377. 3 63. 4.41 HYDROGRA.PH AT C4 667. 10.03 315. 129. 124. l. 24 2 COr·1BI~"""ED AT C0~1BI~'E 1836. 10.67 1153. 505 .. 487. 5.65 RO!JTED TO C3&-RCC 1375. 11.03 1153. 503. 135. 5.65 46.63 11.03 EYDR.OGRAPH .;;.T i' .. CC 13. U. GO 33. 14. 13. .15 2 CO~-GIN2D AT 1S:06. 11. 1] 3 1133. 517. .;:;3. 5.3Q 2 CO:-fBINED AT Cm•!3INE 9348. ll . 0 0 bOla. 2585. 2505. 22.80 Appendix 2 100-year, 24-hour HEC-1 Analysis for Rancho Carlsbad Mobile Home Park Ultimate Development with Existing and Proposed Detention Basins (File Name: rccbpr.hcl) Prepared By: Rick Engineering CornpGny -Water Resources Division DCB:~1DL:emn!Report/J-13182.001 07/0 L98 ( RICK El'JGINEERING , COI\11PANY San Diego • i{iwrsidc February 11, 2004 Mr. Glen Van Peski GYP Consultants 3764 Cavern Place Carlsbad, California 92008-6585 Orange • Phoenix • Tucson Huter Rewurn'\ J)il'ision SUBJECT: CHANGES TO OUTLET STRUCTURES AT PROPOSED MELROSE AND FARADAY DETENTION BASINS (RICK ENGINEERING COMPANY JOB NUMBER 13182-D) Dear Mr. Van Peski: Rick Engineering Company has completed revisions to the hydrologic analysis for the watershed tributary to Agua Hedionda Creek within the Rancho Carlsbad Mobile Home Park in the City of Carlsbad, California. These revisions resulted in changes to the geometry of the outlet structures at the proposed Melrose and Faraday detention basins. This letter specifies the revised geometry of each outlet structure. Modifications to the HEC-1 hydrologic model included the following: • Basin factors were reevaluated and changed appropriately based on the impact of new environmental regulations and their restrictions on the ultimate development of the watershed. Lag times were recalculated based on the modified basin factors. e Manning's roughness coefficients in the stream routing were reevaluated and modified in the HEC-1 where appropriate based on the impact of new environmental regulations and their restrictions on the ultimate development in the watershed. o The storage routing rating curve for the proposed Melrose detention basin was revised based on the grading plans titled "Carlsbad Raceway" Project No. C.T. 98-10, Drawing No. 409-1 A, Sheet 4 of 14, dated September 2002. • The storage routing rating curve for the proposed Faraday detention basin was revised based on the grading plans titled "Carlsbad ,Oaks North El Fuerte Street" Project No. C.T. 97-13, Drawing No. XXX-XA, Sheet 3 of7, dated April2003, and grading plans titled "Carlsbad Oaks North Faraday Avenue" Project No. C.T. 97-13, Drawing No. XXX-XA, Sheets 9 and 10 of 19, dated March 2003. Mr. Glen Van Peski February 11, 2004 Page 2 The geometry of the Melrose outlet structure was specified on the above-mentioned plans as a 36" reinforced concrete pipe (RCP) placed within the existing 10'x7' reinforced concrete box (RCB). The RCP would maintain the existing flowline elevation, and a concrete wall would be constructed to block the void. The modified geometry consists of an orifice plate with a rectangular opening of 5.6' wide by 4' tall in place of the 36" RCP. The existing flowline elevation of 308 ft is maintained. This opening allows approximately 489 cfs out of the basin. The ponded water surface elevation within the basin is 330.5 ft, which results in approximately 49.3 ac-ft of storage. On the above-mentioned grading plans, the geometry of the Faraday outlet structure was designated as a 6' by 7' RCB with a flowline elevation of 221.84 ft. The modified geometry specifies a 4.3' wide by 5.7' tall RCB in place of the 6' by 7' RCB. The existing flowline elevation of221.84 ft is maintained. This opening allows approximately 642 cfs out of the basin. The ponded water surface elevation within the basin is 241.4 fl, which results in approximately 49.8 ac-ft of storage. The hydraulics of the outlet structures are so sensitive that even the slightest change in the dimensions results in significant fluctuations in storage volume. Ifthe structures are constructed with standardized dimensions (whole or half foot increments) they will not function properly. If the outlet is too large it under-utilizes the available storage and increases the flow rate downstream. If it is too small the basin will store too much and exceed the 50 ac-ft maximum volume limit per the regulations of the Division of Safety of Dams (DSOD). Please forward this infonnation· to the appropriate consultants so the grading plans can be modified to reflect the new outlet structure geometries. ff you have any questions regarding this letter please contact me at (6l9) 291-0707. Sincerely, Dennis C. Bowling, M . ...___~ R.C.E.#32838,Exp.06/06 Principal DCB:KH:jc.OOl