Loading...
HomeMy WebLinkAboutCT 99-03; Villages of La Costa Greens; Tributary Channels San Marcos Creek; 2002-08-01APPLICATION FOR FEMA CONDITIONAL LETTER OF MAP REVISION (CLOMR) FOR TRIBUTARY CHANNELS OF SAN MARCOS CREEK WITH PROPOSED LA COSTA GREENS DEVELOPMENT Submitted to City of Carlsbad and Federal Emergency Management Agency Prepared and submitted by Howard H. Chang August 2002 Howard H. Chang Consultants Hydraulic and Hydrologic Engineering Erosion and Sedimentation P. O. Box 9492 Rancho Santa Fe, CA 92067 TEL: (858) 756-9050 FAX: (858) 756-9460 Howard H. Chang Consultants Hydraulic, Hydrologic and Sedimentation Engineering P.O. Box 9492 6001 Avenida Alteras Rancho Santa Fe, CA 92067-4492 (858)756-9050, FAX: (858)756-9460 E-mail: changh(aj.mail.sdsu.edu Web Page: chang.sdsu.edu August 19, 2002 City Engineer City of Carlsbad 1635 Faraday Avenue Carlsbad, CA 92008-7314 RE: APPLICATION FOR FEMA CONDITIONAL LETTER OF MAP REVISION (CLOMR) FOR TRIBUTARY CHANNELS OF SAN MARCOS CREEK WITH PROPOSED LA COSTA GREENS DEVELOPMENT Dear City Engineer: This submittal is a request for a CLOMR from the Federal Emergency Management Agency (FEMA). This package includes two copies of the application package for FEMA CLOMR by Howard H. Chang Consultants dated August 2002. Within this document are a series of FEMA forms that make up the application request. The application covers tributary channels of San Marcos Creek at La Costa Greens. According to FEMA records, Base Flood Elevations (BFE's) of these channels are not yet determined. A study has been made to determine the BFE's and to delineate floodplain boundaries for the stream channels. Please forward this submittal to FEMA to begin the review process. Note that on FEMA Form 1 page 2 there is a signature block for a Community Official of Carlsbad to complete and sign. A detailed technical review will be made by FEMA. It is our understanding that the City does not need to review and comment on the application at this stage. Please copy us on your transmittal to FEMA so we can track the review time. Thank you for your prompt attention to this submittal. Very truly yours, Howard H. Chan Ph.D., P.E. CC. Tim Carroll APPLICATION FOR FEMA CONDITIONAL LETTER OF MAP REVISION (CLOMR) FOR TRIBUTARY CHANNELS OF SAN MARCOS CREEK WITH PROPOSED LA COSTA GREENS DEVELOPMENT TABLE OF CONTENTS PROPOSED LA COSTA GREENS DEVELOPMENT REASONS FOR CLOMR APPLICATION FEMA Forms (MT Forms 1,3, 4, and 7) HYDRAULIC STUDY FOR FEMA CONDITIONAL LETTER OF MAP REVISION (CLOMR) FOR TRIBUTARY CHANNELS OF SAN MARCOS CREEK WITH PROPOSED LA COSTA GREENS DEVELOPMENT HYDROLOGY STUDY FOR LA COSTA GREENS PROPOSED LA COSTA GREENS DEVELOPMENT The proposed La Costa Greens development is along the tributary channels of San Marcos Creek in the City of Carlsbad (See exhibit A). The La Costa Greens development is located within a drainage basin that exits at Alga Road. Grading plans for the development are included in this package. New roads have been proposed. The drainage channels have road crossings at Poinsettia Lane, Alicante Road, and on the north branch channel. Culverts will be used for drainage through the proposed roadway crossings. In addition, a drainage pipe will be used for the lower portion of the north branch. The pipe connecting the proposed berm in the north branch to Poinsettia Lane is about 2,000 feet in length. Strom water collected upstream of the berm will be drained through the pipeline directly to the intersection of Poinsettia Lane and Alicante Road. The hydraulic geometry of each drainage facility was selected in consideration of the impacts on the flood level. The application for a CLOMR is for the conditions of the drainage basin with the La Costa Greens development in place. The proposed Alicante Road and Poinsettia Lane together with the other facilities are parts of the proposed conditions. REASONS FOR CLOMR APPLICATION The hydraulic study is prepared to apply for a Conditional Letter of Map Revision (CLOMR) for tributary channels of San Marcos Creek at La Costa Greens in the City of Carlsbad, San Diego County, California, see Exhibit A. Base flood elevations (BFE's) of these channels are not yet determined according to the FIRM map (Map No. 06073C1032 F, see Exhibit B). The purpose of the study is to determine the BFE's and to delineate floodplain boundaries for the stream channels. FEDERAL EMERGENCY MANAGEMENT AGENCY REVISION REQUESTER AND COMMUNITY OFFICIAL O.M.B No. 3067-0148 Expires April 30. 2001 PUBLIC BURDEN DISCLOSURE NOTICE Public reporting burden for this farm is estimated to average 2.13 hours per response. The burden estimate includes the time for reviewing instructions, searching existing data sources, gathering and maintaining the needed data, and completing and reviewing the farm. Send comments regarding the accuracy of the burden estimate and any suggestions for reducing this burden to: Information Collections Management, Federal Emergency Management Agency, 500 C Street, S.W., Washington DC 20472; and to the Office of Management and Budget, Paperwork Reduction Project (3067-0148), Washington. DC 20503. You are not required to respond to this collection of information unless a valid OMB Control Number is displayed in the upper right comer of this form. 1. REQUESTED RESPONSE FROM FEMA This request is for a: CLOMR A letter from FEMA commenting on whether a proposed project, if built as proposed, would justify a map revision, or proposed hydrology changes (See 44 CFR Ch. 1, Parts 60,65 & 72). LOMR A letter from FEMA officially revising the current NFIP map to show the changes to floodplains, floodway or flood elevations. LOMRs typically decrease flood hazards. (See 44 CFR Ch. 1 Parts 60 & 65.) Other Describe: 2. OVERVIEW 1. The basis for this revision request is (are): (check all that apply) fj3 Physical Change Q Improved Methodology/Data PI Other Describe: Note: A photograph is not required, but is very helpful during review. 2. Roodina Source: Tributary Channels of San 3 Project Name/identifier. Tributary Channels of San 4. FEMA zone designations affected: Zone A D Floodway Revision Marcos Creek Marcos Creek at La Costa Greens (example: A, AH, AO, A1-A30, A99, AE, V, V1-V30, VE, B, C, D, X) 5. The NFIP map panel(s) affected for all impacted communities is (are): Community No. Community Name Ex: 480301 Katy, City 480287 Ham's County 060285 City of Carlsbad. San Dieao C State Map No. Panel No. Effective Date TX 480301 0005D 02/08/83 TX 48201 C 0220G 09/28/90 :ounty CA 060285 1032 6/19/97 6. The area of revision encompasses the following types of flooding and structures. Check all that apply. Types of Flooding Struc g Riverine D D Coastal D D Alluvial fan H n Shallow Flooding (e.g. Zones AO and AH) D D Lakes D D Other (describe) D tures Channelization Levee/Floodwall Bridge/Culvert Dam Fill Other (describe) PLEASE REFER TO THE INSTRUCTIONS FOR THE APPROPRIATE MAILING ADDRESS FEMA Form 81-89 Revision Requester and Community Official Form MT-2 Form 1 Page 1 of 2 4. ENCROACHMENT INFORMATION 1. Does the State have jurisdiction over the floodway or its adoption by communities participating in the NFIP? D Yes K3 No If Yes, attach a copy of a letter notifying the appropriate State agency of the floodway revision and documentation of the approval of the revised floodway by the appropriate State agency. 2. Does the development in the floodway cause the 1% annual chance (base) elevation to increase at any location by more than 0.000 feet? D Yes Q No 0 N/A 3. Does the cumulative effect of all development that has occurred since the effective SFHA was originally identified cause the base flood elevation to increase at any location by more than one foot (or other increase limit if community or state has adopted more stringent criteria - even if a floodway has not been delineated by FEMA)? Q Yes 0 No If the answer to either items is Yes, please attach documentation that all requirements of Section 65.12 of the NFIP regulations have been met, regarding evaluation of alternatives, notice to individual legal property owners, concurrence of CEO, and certification that no insurable structures are impacted. 5. MAINTENANCE RESPONSIBILITY The community is willing to assume responsibility for operation plans of the O performing Q overseeing compliance with the maintenance and flood (Name) control structure. If not performed promptly by an owner other than the community, the community will provide the necessary services without cost to the Federal government. Operation and maintenance plans are attached. Q Yes O No Q N/A 6. REVIEW FEE The review fee for the appropriate request category has been included. Q Yes Fee amount: $ OR TJiis request is Based on S rederalTy sponsofeci frood-contror project where 50 percent or fflOfe Of me projects cost Is federally sponsored, or the request is based on detailed hydrologic and hydraulic studies conducted by Federal, State, or local agencies to replace approximate studies conducted by FEMA and shown on the effective FIRM; thus the project is fee exempt. O Yes Please see Instructions for Fee Amounts 7. SIGNATURE Note: 1 understand that (toy signature indicates that all information submitted in/subpQrt of this request is correct Signature of Revision Requester Howard H. Chang, President Printed Name and Title of Revision Requester Howard H. Chang Consultants Company Name (858) 756-9050 9/1/02 Telephone No. Date CERTIFICATION BY REGISTERED PROFESSIONAL ENGINEER . AND/OR .AND SURVEYOR This certification is in accb79^n< e with 44 CFR Ch. 1, Sect 65.2 ^ 'Signature* ""7 Howard H. Chang, Consultant Printed Name and Title of Revision Requester ReaistrNo22649 Expires (Dal2 f 3 1 / ° 5 State CA Tyoe of License/Expertise: Civil Engineer Note: Signature indicates that the community understands, from the revision requester, the impacts of the revision on flooding conditions In the community. Signature of Community Official Printed Name and Title of Community Official Community Name Telephone No. Date Check which forms have been included with this request Form Name and (Number) Reauired if H Hydrologic (3) new or revised discharges 0 Hydraulic (4) new or revised water-surface elevations O Mapping (5) floodplain/floodway changes LT) Channelization (6) channel is modified g Bridge/Culvert (7) addition/revision of bridge/culvert Levee/Floodwall (8) addition/revision of levee/floodwall D Coastal (9) new or revised coastal elevations O Coastal Structures (1 0) addition/revision of coastal structure L~H Dam (11) addition/revision of dam D Alluvial Fan (12) structures proposed on alluvial fan FEMA Form 81-89 Revision Requester and Community Official Form MT-2 Form 1 Page 2 of 2 FEDERAL EMERGENCY MANAGEMENT AGENCY HYDROLOGIC ANALYSIS O.M.B No. 3067-0148 Expires April 30, 2QQ1 PUBLIC BURDEN DISCLOSURE NOTICE Public reporting burden for this form is estimated to average 3.67 hours per response. The burden estimate includes the time for reviewing instructions, searching existing data sources, gathering and maintaining the needed data, and completing and reviewing the form. Send comments regarding the accuracy of the burden estimate and any suggestions for reducing this burden to: Information Collections Management, Federal Emergency Management Agency, 500 C Street, S.W., Washington DC 20472; and to the Office of Management and Budget, Paperwork Reduction Project (3067-0148), Washington, DC 20503. You are not required to respond to this collection of information unless a valid OMB Control Number is displayed in the upper right corner of this form. Note: Fill out one form for each flooding source studied Community Name: Flooding Source: _ City of Carlsbad. California Tributary Channels of San Marcos Creek Project Name/Identifier Tributary Channels of San Marcos Creek at La Costa Greens 1. REASON FOR NEW HYDROLOGIC ANALYSIS 03 No existing analysis D Alternative methodology D Improved data D Proposed Conditions (CLOMR) D Changed physical condition of watershed D Other For the reason stated above, please attach a detailed explanation. If a computer program/model was used in revising the hydrologic analysis, please provide a diskette with the input files for the same flood recurrence intervals contained in the FIS for that stream; and at least for the 1% annual chance (base) flood where no detailed study exists. Explanation provided: |2 Yes D No Diskettes provided: D Yes 0 No 2. METHODOLOGY FOR NEW ANALYSIS Indicate Method Q Statistical Analysis of Gage Records O Regional Regression Equations Fjp Precipitation/Runoff Model D Other Required Data Form 3 - Attachment A Form 3 - Attachment C Form 3 - Attachment D Back-up computations and supporting data Data Included D Yes D No D Yes D No 0 Yes D No D Yes D No 3. APPROVAL OF ANALYSIS The hydrologic analysis has already been approved by a local, state, or Federal Agency. Q Yes D No D Not Required If Yes, attach evidence of approval. Q Approval attached. , If No, attach explanation, (g] Explanation attached. 4. COMPARISON OF BASE FLOOD DISCHARGES Location Drainage Area (SqMi) FlS(cfs)Revised (cfs) /Vote: When revised discharges are not significantly different than the FIS discharges, FEMA may require a confidence limits analysis (see attachment B) at a later date to complete the review. If only a portion of a detailed study area was revised please attach an explanation describing the transition from the proposed discharges to the effective discharges. Q Explanation Included 0£) Explanation Not Required 5. HISTORICAL FLOODING INFORMATION If historical data are available for the flooding source please provide: Location, peak discharges/water-surface elevations and dates, and source of information. D Data Attached Q Data Not Available PLEASE REFER TO THE INSTRUCTIONS FOR THE APPROPRIATE MAILING ADDRESS FEMA Form 81-89B Hydrologic Analysis Form MT-2 Form 3 Page 1 of 5 ATTACHMENT D: PRECIPITATION/RUNOFF MODEL 1. Method or mode! used: Version: Date: 2. Source of rainfall depth: 3. Source of rainfall distribution: 4. Rainfall duration: 5. Area! adjustment to precipitation (%): 6. Maximum overland flow length 7. Hydrograph development method: 8. Loss rate method: Source of soils information: Source of land use information: 9. Channel routing method: 10. Reservoir routing: If Yes, explain below how baseflow was determined: FIS: Revised: HEC-1 August 1990 County Hydrology'IManaal County Hydrology Manual 6 hours NA 2.55 miles Unit hydrograph ARS Soil Surrey Development plan Storage routing S Yes D No D Yes Q No D Yes j£| No D Yes D No 12. Snowmelt considerations: 13. Model calibration: If Yes, explain below how calibration was performed D Yes S No D Yes D No D Yes El No D Yes D No 14. Future land use condition: 13 Yes D No Q Yes D No If Yes, explain why below Future land use is based on proposed development plan of La Costa Greens 1 5. Attach precipitation/runoff model, hydrologic model schematic, curve number calculations, time of concentration calculations, and supporting maps, delineating the watershed boundary and drainage area divides. Information and Maps provided? El Yes D No NOTE: FEMA policy is to base flooding on existing conditions FEMA Form 81-89B Hydrologic Analysis Form MT-2 Form 3 Page 5 of 5 htUtKAL EMERGENCY MANAGEMENT AGENCY RIVERINE HYDRAULIC ANALYSIS O.M.B No. 3067-0148 Expires April 30, 2001 PUBLIC BURDEN DISCLOSURE NOTICE Public reporting burden for this form is estimated to average 2.25 hours per response. The burden estimate includes the time for reviewing instructions, searching existing data sources, gathering and maintaining the needed data, and completing and reviewing the form. Send comments regarding the accuracy of the burden estimate and any suggestions for reducing this burden to: Information Collections Management, Federal Emergency Management Agency, 500 C Street, S.W., Washington DC 20472; and to the Office of Management and Budget, Paperwork Reduction Project (3067-0148), Washington, DC 20503. You are not required to respond to this collection of information unless a valid OMB Control Number is displayed in the upper right corner of this form. Note: Fill out one form for each flooding source studied Community Name: Floodina Source: Project Name/Identifier: City of Carlsbad, Tributary Channels Tributary Channels California of San Marcos of San Marcos Creek Creek at La Costa Greens 1. REACH TO BE REVISED Describe the limits of the revision OR submit a copy of the FIRM with the revision area clearly highlighted. Copy of FIRM(s) attached depicting area of the revision (highlighted, or circled)? §3 Yes Downstream Limit: Upstream Limit: Algra Road La Costa Development Boundary 2. MODELS SUBMITTED Requirements: for areas which nave detailed flooding: Full input Qf\d output listings along with TStes on diskette for tsai*h of ttit± models listsd~ - below (items 1-4) and a summary of the source of input parameters used in the models must be provided. The summary must include a description of any changes made from model to model (e.g., Duplicate Effective model to Corrected Effective model). At a minimum, the Duplicate Effective (item 1) and the Revised or Post-Project Conditions (item 4)' models must be submitted. See instructions for directions on when other models may be required. for areas which do not have detailed flondinT Only-the- 400-year (Booo) flood profile- ia required. A hydraulic model is not required for areas which do not have detailed flooding; however, BFEs may not be added to the revised FIRM. If a hydraulic model is developed for the area, items 3 and 4 described below must be submitted. If hydraulic models are not developed, hydraulic analyses (Including all calculations) for existing or pre-project conditions and revised or post-project conditions must be submitted. 1. Duplicate Effective Model Q Natural File Name D Floodway File Name Copies of the hydraulic analysis used in the effective FIS, referred to as the effective models (10-, 50-, 100-, and 500-year multi-profile runs and the floodway run) must be obtained and then reproduced on the requester's equipment to produce the Duplicate Effective model. This is required to assure that the effective models input data has been transferred correctly to the requester's equipment and to assure that the revised data will be integrated into the effective data to provide a continuous FIS model upstream and downstream of the revised reach. 2. Corrected Effective Model D Natural File Name D Floodway File Name The Corrected Effective model is the model that corrects any errors that occur in the Duplicate Effective model, adds any additional cross sections to the Duplicate Effective model, or incorporates more detailed topographic information than that used in the currently effective model. The Corrected Effective model must not reflect any man-made physical changes since the date of the effective model. An error could be a technical error in the modeling procedures, or any construction in the floodplain that occurred prior to the date of the effective model but was not incorporated into the effective model. 3. Existing or Pre-Proiect Conditions Model Q Natural File Name Floodway File Name The Duplicate Effective model or Corrective Effective model is modified to produce the Existing or Pre-Project Conditions model to reflect any modifications that have occurred within the floodplain since the date of the Effective model but prior to the construction of the project for which the revision is being requested. If no modification has occurred since the date of the effective model, then this model would be identical to the Corrected Effective model or Duplicate Effective model. 4. Revised or Post-Project Conditions Model 0 Natural File Name ALGA D Floodway File Name The Existing or Pre-Project Conditions model (or Duplicate Effective model or Corrected Effective model, as appropriate) is revised to reflect revised or post-project conditions. This model must incorporate any physical changes to the floodplain since the effective model was produced as well as the effects of the project. When the request is for the proposed project this model must reflect proposed conditions. 5. Other - Please attach a sheet describing all other models submitted along with the file names. Q Natural d Floodway PLEASE REFER TO THE INSTRUCTIONS FOR THE APPROPRIATE MAILING ADDRESS FEMAForm81-89C Riverine Hydraulic Analysis Form MT-2 Form 4 Page 1 of 2 3. STARTING WATER-SURFACE ELEVATIONS Explain how they were determined. Normal depth Explanation Attached? @ Yes Q No NOTE: If the effective study is an approximate study, the slope/area method is recommended. For detailed analysis studies, using a known water-surface elevation is recommended. 4. RESULTS (from the model used to revise the 100-year water surface elevations) If the results indicate any of the following, attach an explanation - to this form, or to the hydraulic model printout- as to the reasonableness of the situation. El Supercritical depth fj Critical Depth Q Drawdowns Q Negative Floodway Surcharges Q Floodway Surcharges Greater Than Maximum Allowed by Community/State D Water surface elevations higher than the end points of cross sections. Q Floodway discharge is different than the Natural 100-year (base) flood discharge. D Project causes 100-year floodplain or floodway elevations to increase (state if increases are located off the requester's property) Explanation attached with Form Q Explanation provided on attached printout jg] If Hydraulic model used Is HEC-2, has it been checked with FEMA'S CHECK-2 computer program? D Yes D No (see instructions for information on how to obtain CHECK-2) 5. REVISED FIRM/FBFM AND FLOOD PROFILES 1. Profile Transition NA a. 100-Year Water-Surface Elevations - indicate the difference in water surface elevations where the project 100-year elevations tie into the existing 100-year water surface elevations at each end of the project. Downstream End within Crass-Section # .(feet)Upstream End. Cross-Section # within .(feet) b. Floodway Elevations - indicate the difference in water surface elevations where the project floodway elevations tie into the existing floodway water surface elevations at each end of the project Downstream End within Cross-Section # .(feet)Upstream End. Cross-Section within .(feet) c. Floodway widths - indicate the difference in floodway widths where the project floodway widths tie into the existing floodway width at each end of the project. Downstream End within .(feet)Upstream End. Cross-Section ft within . (feet) Cross-Section # 2. Profile Checklist (check box if information has been provided on profile) The following information (unless in parentheses) must be included at the same scale as the existing profiles for this project: Corporate Limits labeled Streambed profiled 100-year elevs profiled* Low Chord Elevations [3 Stream Name Q Community Name n Confluences labeled Q Channel Stationing n Horizontal/Vertical Scales indicated Q Road Crossings d Labeled *AII recurrence intervals in the effective study must also be profiled. Floodway Data Table Attach a Floodway Data Table for each cross section listed in the published Floodway Data table in the FIS report. Floodway Data Table Attached D Yes 0 Not Required D Study limits labeled D Cross Sections labeled D Top of Road Elevations FEMAForm 81-89C Riverine Hydraulic Analysis Form MT-2 Form 4 Page 2 of 2 FEDERAL EMERGENCY MANAGEMENT AGENCY BRIDGE/CULVERT O.M.B. Burden No. 3067-0148 Expires April 30. 2001 PUBLIC BURDEN DISCLOSURE NOTICE Public reporting burden for this form is estimated to average 2 hours per response. The burden estimate includes the time for reviewing instructions, searching existing data sources, gathering and maintaining the needed data, and completing and reviewing the form. Send comments regarding the accuracy of the burden estimate and any suggestions for reducing this burden to: Information Collections Management, Federal Emergency Management Agency, 500 C Street, S.W., Washington. DC 20472; and to the Office of Management and Budget, Paperwork Reduction Project (3067-0148), Washington, DC 20503. _____^__ You are not required to respond to this collection of information unless a valid OMB Control Number is displayed in the upper right corner of this form. _^ Community Name: Flooding Source: _ City of Carlsbad. California Tributary Channels of San Marcos Creek Project Name/identifier: Tributary Channel? of San Marcos Creek at La Costa Greens 1. IDENTIFIER 1. Name of structure (roadway, railroad, etc.): Roadway 2. Location of bridge/culvert along flooding source (in terms of stream distance or cross-section identifier): On main branch: Sees. 0.7 to 1.8, Sees 44.4 to 45.2 _ On north branch: Sees. 97.7 to 117.3 3. This revision reflects (check one of the following): 53_ New bridge/culvert not modeled in the FIS D Modified bridge/culvert previously modeled in the FIS n New analysis of bridge/culvert previously modeled in the FIS 4. Hydraulic model used to analyze the structure (e.g., HEC-2 with special bridge routine, WSPRO, HY8) HEC-RAS _ _ If different than hydraulic analysis for the flooding source, justify why the hydraulic analysis used for the flooding source could not analyze the structure(s). (Attach justification) Justification attached Q Yes Q No N/A PLEASE REFER TO THE INSTRUCTIONS FOR THE APPROPRIATE MAILING ADDRESS FEMAForm81-89F Bridge/Culvert Form MT-2 Form 7 Page 1 of 2 2. DRAWING CHECKLIST Attach plans of the structure(s) certified by a registered professional engineer. The plan detail and information should include the following (check the boxes if the Information has been provided): EJ Dimensions (height, width, span, radius, length) 0 Shape (culverts only) El Material 12 Beveling or Rounding fjj Wing Wall Angle (3 Low Chord Elevations - Upstream and Downstream 13 Top of Road Elevations - Upstream and Downstream (3 Structure Invert Elevations - Upstream and Downstream 13 Stream Invert Elevations - Upstream and Downstream 0 Skew Angle C9 Cross-Section Locations (2 Distances Between Cross Sections 12 Erosion Protection 3. SEDIMENT TRANSPORT CONSIDERATIONS If there is any indication from historical records that sediment transport (including scour and deposition) can affect the 100-year (base flood) water-surface elevations; and/or based on the stream geomorphology, vegetative cover, development of the watershed and bank conditions, there is a potential for debris and sediment transport (including sewer and deposition) to affect the base flood elevations, then provide the following information (Check the box if provided): Q Estimated sediment load CD Method used to estimate sediment transport d Method used to estimate scour and/or deposition Q Method used to revise hydraulic or hydrologic analysis (model) to account for sediment transport FEMAForm81-89F Bridge/Culvert Form MT-2 Form 7 Page 2 of 2 HYDRAULIC STUDY FOR FEMA CONDITIONAL LETTER OF MAP REVISION (CLOMR) (CLOMR) FOR TRIBUTARIES OF SAN MARCOS CREEK WITH PROPOSED LA COSTA GREENS DEVELOPMENT Prepared for O'Day Consultants 5900 Pasteur Court Suite 100 Carlsbad, CA 92008-7317 Prepared by Howard H. Chang, Ph.D.,P.E. August 2002 Howard H. Chang Consultants Hydraulic and Hydrologic Engineering Erosion and Sedimentation P. O. Box 9492 Rancho Santa Fe, CA 92067 TEL: (858) 756-9050 FAX: (858) 756-9460 TABLE OF CONTENTS SECTION I HYDRAULIC STUDY FOR FEMA CONDITIONAL LETTER OF MAP REVISION (CLOMR) FOR TRIBUTARY CHANNELS OF SAN MARCOS CREEK WITH PROPOSED LA COSTA GREENS DEVELOPMENT SECTION II CHANNEL CROSS-SECTIONAL PROFILES SECTION III HEC-RAS LISTINGS FOR THE HYDRAULIC MODEL SECTION IV WATER-SURFACE AND CHANNEL-BED PROFILES FOR THE STREAM CHANNELS LIST OF EXHIBITS EXHIBIT A TOPOGRAPHIC MAPS SHOWING PROPOSED LA COSTA GREENS DEVELOPMENT EXHIBIT B ENGINEERING PLANS FOR CULVERTS AT THREE LOCATIONS EXHIBITC EFFECTIVE FLOOD INSURANCE RATE MAP (Map No. 06073C1032 F) EXHIBIT D PROPOSED FLOOD INSURANCE RATE MAP PANEL 766 EXHIBIT E DISKETTE CONTAINING THE HEC-RAS FILES SECTION I HYDRAULIC STUDY FOR FEMA CONDITIONAL LETTER OF MAP REVISION (CLOMR) FOR TRIBUTARY CHANNELS OF SAN MARCOS CREEK WITH PROPOSED LA COSTA GREENS DEVELOPMENT HYDRAULIC COMPUTATIONS FOR FLOODPLAIN DELINEATION Hydraulic computations were made using the HEC-RAS program for the water-surface profiles of the drainage channels. The 100-yr flood for the proposed conditions of La Costa Greens was used as the base flood. Hydraulic computations were made to determine: (1) water surface elevations, (2) flow velocities, and (3) floodplain boundaries. The floodplain map is subject to the requirements, regulations and policy by the Federal Emergency Management Agency (FEMA). Locations of cross sections used in this study are listed in Table 1; they are also shown in the topographic map attached to the report. Cross-sectional data for those sections are based on the most recent survey. Proposed Drainage Facilities at Road Crossings - The drainage facility at the Alicante Road crossing on the east branch channel has the following features: Location of facility: Section 44.40 to Section 45.20 Type of facility: Triple 12 feet by 6 feet reinforced concrete box culverts Length of culvert: 80 feet Invert elevation at exit: 98 feet Invert elevation at entrance: 99 feet Low chord elevation at entrance: 105 feet Design discharge (100-yr discharge): 1,400 cfs Computed 100-yr water-surface elevation at entrance: 104.6 Computed velocity in culvert: 7.5 fbs The drainage pipe from the berm on the north branch to the Alicante RoaoVPoinsettia Lane intersection has the following features: Location of facility: Section 97.70 to Section 117.30 Type of facility: Single 84-inch reinforced concrete pipe Length of culvert: 1,950 feet Invert elevation at exit: 99 feet Invert elevation at entrance: 139 feet Design discharge (100-yr discharge): 600 cfs Computed 100-yr water-surface elevation at entrance: 152.1 feet Computed velocity in culvert: 15.6 fps Hydraulic computations were made using the HEC-RAS program for the hydraulic design of these facilities. The hydraulic design is subject to the requirements, regulations and policy by the Federal Emergency Management Agency (FEMA), including (1) conveyance of the base (100-yr) flood and (2) backwater on adjacent properties to be limited to one foot. These facilities have the capacity for the 100-yr flood. The backwater caused by them do not extend outside the property boundary of La Costa Greens. Table 1. List of cross sections and computed water-surface elevations Cross section 100 ft Location Computed 100-yr water surface, ft Main drainage channel (River 1, Reach 2) 0.01 0.70 0.71 1.80 3.80 7.20 10.80 13.60 17.40 21.50 26.20 31.80 36.40 39.40 Downstream limit Exit of culverts under Alga Road Inlet of culverts under Alga Road 60.3 59.2 60.8 62.2 62.8 63.6 68.8 69.9 73.8 82.0 85.5 88.4 92.1 94.5 Cross section 100ft 42.30 44.40 45.20 Location Downstream face of Alicante Road Upstream face of Alicante Road East branch channel (River 1, Reach 1) 47.20 48.80 50.40 54.00 57.60 60.20 62.90 66.30 69.40 Upstream property boundary at east branch Computed 100-yr water surface, ft 100.2 102.9 104.6 105.4 105.4 105.4 107.8 110.8 113.4 116.8 120.9 125.9 North branch channel (River 2, Reach 1) 96.0 97.70 117.30 119.30 121.70 122.45 123.10 126.10 129.10 132.55 Downstream section Outlet of 84-inch RCP Inlet of 84-inch RCP Property boundary at north branch 105.5 108.9 150.7 150.9 151.9 158.3 160.4 160.3 172.4 179.6 Plotted cross-sectional profiles for the stream channels are given in Section II. Computer listings are included in Section III. Water-surface and channel-bed profiles for the steam channels are shown in Section IV. Results of the HEC-RAS computations are described below. Based on the computed water-surface elevations, the areas subject to inundation during the 100-yr flood were delineated as shown on the topographic map included as an attachment to this report. Capacity of Drainage Facilities under Alga Road - The drainage facilities under Alga Road consists of three 7-foot diameter RCP's and an arch culvert for golf cart passage. Based on the results of the HEC-RAS computation, these facilities are sufficient to pass the 100-yr flood and the roadway surface of Alga is not subject to overtopping. Impacts on Adj acent Properties - The proposed improvements in the drainage channel will not impact adjacent properties for the following reasons. (1) The Alicante Road crossing in the east branch channel causes backwater effect in tfte upstream channel area. However, the backwater effect is totally within the property boundary of La Costa Greens. (2) The proposed berm in the north blanch channel causes backwater effect in the upstream channel area. However, the backwater effect is totally within the property boundary of La Costa Greens. (3) At the upstream property boundary of the east branch channel, the proposed road embankment for Poinsettia Lane is just outside the floodplain. Since the computed 100-yr flood level only touches the toe of the road embankment, the road embankment has no effect on the flood level. MATERIALS SUBMITTED WITH THIS APPLICATION Supporting materials for the hydraulic study are submitted with this application, including the following items: (1) Topographic maps of La Costa Greens and cross section locations along stream channels (2) Profiles of the 100-yr water-surface of stream channels for the proposed conditions (4) Cross-sectional profiles covering all sections. Each cross-sectional profile also has the flood level for the 100-yr flood. (4) Printouts (including full input and output listings) from the HEC-RAS model (5) Flood Insurance Rate Map (6) A diskette with the model input/output files (7) Hydfo-l&gy study for the development. SECTION II. CHANNEL CROSS-SECTIONAL PROFILES g^+3CO CO oinCD ooCO oinin oo -S .o "ca So ooinCNOCM («) UOUBA9I3 LL CL CO O 'SCO CN OO OinCD ooco oinm ooin oin • oo CN-* .0 "ca co UOIJBA3I3 TJC00)<u T—u_Q- i 1 -o -2c CO E * c oooo oo ooCO oo o- o. -t oo li- OLi CO g "S•*-•CO oCN CO CO CM aoO co1 o COo COo S INO OO Ooao oo ooco ooin oo o- o- co oo CO™05 o (y) UOU8A9I3 UOIJBA9|3 Q_ CO SCO 2 gh- oo oin CO ooco oinm ooin oin oo •oc0at0) T_ u. Q- i CO 5 -o Sc CO 3 •.* u 5 o "55 co or OCO ooco ooin oo-t ooen • oo .0 Sco CO CM CMCMCMCM O 00 CO rj- CMT- O O O O UOUBA9I3 •o <B O)Q> U.Q- is GroundAJS it: CO f|.t m oo00 oo(^ og ooin oo•* o- oro •ocVD)0) T— u_Q. i CO •o 2C CO 3 • V*S*c W 3 ooo coo s T1- CNO i I r OO g "ro co ^ oo^en o co•<- o S S 111 i 11 111 i CN O OOo o en o in o in oO oen CO $e c to co (y) UOHBA9H Q- 1 •o -2c co oooo oo oo(O O CO Oin -.£=ra Q. CO 3CO o c_caa. •a E ii ~ CO c K ooCO CO -iU COO) oegin o in ooin oen .g SCO - or1 i > ' i ' i ' > i i ' i i i i i i i i i i i i i i i i i | o O 00 CO ^ CN O OO ^•»— o o o o o en (y) UOI1BA8I3' — X— 9 L n ' ' ' i ' ' 'o oo co•*- o o (y) u( .„.,,. «»:.*»«r* - 0i i ii i i i 1 1 1 1 i i i i i 1 oo ^t CM O 00 Tr o o o en 3HBA3I3 •ac0)D) 5 •**- u.a_ , i -a 2C CO3 •_*2 1 0 (§ •a a>O)m u.Q- , CO5 ? % 1-| ^ ™ g SCO s oIOCO ooCO oinin oo .1 "re • o- o • oi- m • oo CO01 COO) UOJVBA3H (y) .173 co ^ co UOI1EA3I3 UOI1BA9I3 LL. D- i sco oOen CO ooCD s OO oa O> (0CO C JO CL- COo .0 '5CO co T05 ' oo CMen 03CQ O COO) S3 CO T CN490 03 CO o CO COc- Ooo ooen oo CO ou o CO o- o oo CO f g "co 55 UOJ1BA9I3 (y) ooCO oo o=8 CO -^ o- o. CM ooIf)en n CMm en O1cn Co CO 000000000000000 (y)(y) (y) C CO flu m oo -S CO •a § I u.Q- < CO T3 I"0 Ineff•Bank Stao CO 00 oinin s s a-* o1CO UOHBA9I3 o<o. m ots o - CM. in o- o o- oo o- CO CM O CO CD Tt-^fcp co >o in in O OO CO t^ CO CO S tN OCO <0 S o CO COin UOI}BA9|3 T»C0) Dl ^S ^_ U. D. CO -o SC CO3 , v.S • c 0 CD omCO § oinin in oin oo • o- in • o OO(D IDCO Tf CD CN CO O(D COin in 4=: co •2co (y)(y) o=8 CO -iS cg CO CO Tf CMCO CO CO (y)(y) to o•J5m CO (y) uoi •a oO) 3 ^~ LL0- ii Ground•Bank StaQ- co •o -tsC CO en CO •* CM GO CO COT— V=- T* omCO ooCO omm g S om oo oinm Oo co — o Is- o- o CO o •8 g co• OO CD ^ CMI*. h_ i*. r*-oCO o CO 10 oo•<*• ooPI o08in CO (y) •O CO0) u. Q- i COs. -0 3c CO 2*1CD ^CD ooh- oin CO oo CO oinin ooin om • O-o a> CO i—'—r~m •^•CO CO —i—i—i—i—i—i—i—i—i—i—i—i CO CM T- O O> OO .23CO • o Is-« or O L8CO 1-8in o- om o- in o- o o- inco ooo00mtootoin UOI}BA9|3 (y) •n a>en0) LUQ § -a Sc CO o *r»3 ra CD o iCO O c_raa. — II COen 00 "* §in 8 Sin om ooin OJcr> COO5 COO) o1CO oin ao•<*•CN UCM}BA8|3 (y) 1 55 s sCO ooCO oinin ooin 18 •oc0Dl01 ^U-a. CO -o SC CO tn coCD o«=-SCO - o- in- co • oomCOoCOininin oCO inin —I—r Oin oo ooCO og 8 oo oo o m •aca O)0) .,_ LLn , S •a 3C CO <5 1 E 55 S CN O« COs CMOin 8 in »= en coen CO CD CO CO CM -5 COoin sin L o o co om •«ja 03 WO) GOO) coo>o co T- O coo CMO §co'*a> (y) D- M T3 CO • Jt: TJ C«o>3 ,_ U- Q-co •a £c CO3 »_* S • c 0 m cooin CMoin oin ooin CO coc> o co ^ CNin om 00 CO CM O coo coo CO-oin O C- O Oin wre o> "- O)•t CO - O) - O) CMo oo 00 I1 O3 UOI1BA3I3 («) UOIJBA9J3 .1 (y) 1 s !•£ CO COo o ^ro CO•g CMOin g o o • OO 0> SECTION HI HEC-RAS LISTINGS FOR THE HYDRAULIC MODEL * *. LL. Q. JB O 0. iszora0)Cd -gto0) Q£ ,_ a:LU Q£ d> 01 •c R 03 CLI M LU I "P , liiwtef ei! ta £ 1 u. c ^? $ ., ffiii, C/5-# •^*" S JC c 5 '^ ,2 Qf> 1 1 QC « «P EF-S I ^s >«,*f'^»*•—* c*i> w - coin o co CD CM 5 moCM oo CM 00COin CM 00oo inCM 0oq CM 0o oCMoo 1cp I SJ-£ ooo o CO N; inO5 inin " •tin 00 o CM 0000 0 CM 0O od 0o 0CMoo Q ^Q"SO- -5 s s 0 C5 O5O5 cn in CM CMin in co T— 0CO CO o CO oo o CM00 1 im & O5CO O Oin co O5 CMin CO CM CO CO CO co COco CO 0in T- C30 OCM00 1 •*- SJOJ CO o N.m CMCOCM inCO CMooCM 05 CDC-4 O T— OO o o0 O)o CTO Oco00 1 -*&• d's O) o 1 ss m CO CO S o coiv.o oP 0 oo o 1 5 rtj & ino 0 co inO5 co 05co COm o CM S co ino o CDO CDO 0COoo I s w?£ COoo P COto O5 oCON- oo 0 COco ino oin cn O5 oo 0cooo 1 Ss. coo o ooq COoin ooCD T— CO 00coo coCO ino 0o O5 O5 oco00 O -1m3}£E u_ Q. JD P Q. CMi1 %cu ocacuo: LJJ 5 0> Q. JS -0(1)•cOQ. cm Q. I 0III I "f*s *f r*a £ •AM. 1 - - £ 5 >r &w c/j 5 js S f a OU CO feif?ti. QCOa>u_ :S •fef' — 4? *«•*•*« sti- **HH "w*1 s en*tf* o o T— 00CO in co § CMO CMCD ^> 0 Oo enen o0 0o CM?r*s rf EM ctjED IE cueny § nl* XT CM 1 0CO o ooo ooco COin enao CMO o0 00en § oo $ ^*$> 1^>m , inao 0 coin enon inCM 05 8 OOt— CMCM OO o0 coen oo oo g gtj f fy 1SJj0 ft- ^j. in 0 CO0 a> in0 « 3 en ^-en oin CMen oo o :o && CO CM 1 , OCM O CMCO I*CO inCM IS en on0 CMen o 0en 0o oo 0 CO CM 4030tt ,_ CO o omenmCM 0 CM 09 ooco COco coao oCM coCO 0o oo 8 1^t£ CO o 05 en CO oo 'Ss T—in in 00 o0 CO o0 ooco Cl €QCM CM 1mJ§ti, |V. co o o COin co CO00 CO en T—ao CO05 T—ao o0 oo o0 0oco O w» CM s CQ .ftIL COm o CO CO ^ mCM 8 S |s« 1^- cof"- 0in ^ 0o o0co i N- s ro j&";- ^CM 0 CO cocoCM CDco CM §enCD coCO oh- 0o CDco 0o 8co mCO V* 1CD flj8* (S. CM o in in COCO mco CO § CD CMCO COCO 0oo CMco oooCO 8 CD •t-» s0CO Jj*0% ^J. CD o CM T~CM in co 3 coCO coCD coCO 0in enin 0o § tMr** 1CO -SUS ,_ T~ O jj; CD CM ^ C§ 0CO yfoo CMco 0o COin 0ooCON- otx> CO Ieg 1*5QL CNco o s £ enCD ^j- CM CMCD OCOs oo oCD T-cu •t— CM €Sf$Q. CM O inCM P; 8 co inenenin in r- CMco o CO in § oCO ocu«*• 1•8©9< t* COC3) OQ C§If5 •^ CM JE0SJ /&Qt. enCM o in £ CDen 0oo oco 0CO oin 0o oCO ^_ ^« O CM CO. !>wQi ^J. T— o co05 p; o CM ^j. 1^- 0co 0CO om 0o oCO h*« o 1 . mCM o £ en fO CO0 00in in CMco 0co oooin 0ooCO ~t£*f © 3c LU Q. .2 0n T- * COCO Qtt oCOCOQi LU cc co QL JO CL r0Q. CO E rn in LLIr sS *€-.TSt I• •-!&& 1 1 *** «S LT _e O rf ,-ti Q *£ ty cri i a-S i &a I CD S JS QL. f ^s ^ <Jr *<-»JS _ S- <?". & J~ S•~ ' CMCO o r*- dC- T— Oco dcoCM CO CM 5 cd r_ co O3 o l*~ oo SCO LO g •ft--» w S oo •<- 00O) CO10 T— ^J. CM •^ — O)0) Tf t— ^_ ^J- £ oCO r^ oo CO o CN isttt fi h-CO o CO10 coo enO) oCM CO03 CN OJto CN COoCO 0oq IO ooo§ T— CD •*•*4 S CD0 o •r- id CO ^- CDIO oo T- 1^. CO oco oCD IO oo 0oco o S r is& ,_ 0 T— CO 00 ^J. S CMo IOCM S LOCM ooIO 0o coIO oo 0§ $ S f1 K 1^ T— o 00 CMCM mco 00 CO co 1— oo 03 o03 io 0o ori oo 0oco g T*- C4 "«^4 S. CMo 0 10CO d CO ,_ dCOCO T— ooCM 0 T— 03 IO op CN 0o Sco S Q* ••§ \ 55 IT CM o 0CM 1^-CM p: r»- oo CO S § CDCO 0oo0co ° £ T^1enCDK CM o ^ o03 CO o 00 ^ 00 id (V.co§ § 03CO S§co 01CM £ IT-I nj 1 CD d i r*1, rp 1 10IO o r*-' CDco S CMco 03 03co ooo o0 enO3 0oo0co o Si v*- 0$S oo T- o T— O3 CO CMIO <5f 00 CO0 ooCO coo oo CDO3 oo 10 CO en CO TT-iCO Of CMo o CMo cdoco enCM CNoo"•" oCO o O3 03 CO 100 oCO COen oo 10 CO CO itttCD HEC-RAS Version 3.0.1 Mar 2001 U.S. Army Corp of Engineers Hydrologic Engineering Center 609 Second Street, Suite D Davis, California 95616-4687 (916) 756-1104 X X X XXXXXX X X X X xxxxxxx xxxx X XX X XX X X XXXXXX xxxx X X X X X xxxx xxxx XX xxxx XXX X X X X xxxx X X X X X X X X XXXXXX X X X -- X X X xxxx X X xxxxx PROJECT DATA Project Title: Alga Project File : alga.prj Run Date and Time: 8/7/02 6:40:14 AM Project in English units Project Description: UNNAMED TRIBUTARY OF SAN MARCOS CREEK ABOVE ALGA AT LA COSTA GREENS THROUGH O'DAY CONSULTANTS JULY 1998 UNNAMED TRIBUTARY OF SAN MARCOS CREEK ABOVE ALGA AT LA COSTA GREENS THROUGH O'DAY CONSULTANTS JULY 1998 UNNAMED TRIBUTARY OF SAN MARCOS CREEK ABOVE ALGA AT LA COSTA GREENS THROUGH O'DAY CONSULTANTS JULY 1998 UNNAMED TRIBUTARY OP SAN MARCOS CREEK ABOVE ALGA AT LA COSTA GREENS THROUGH O'DAY CONSULTANTS JULY 1998 PLAN DATA Plan Title: Imported Plan 04 Plan File : C:\Program Files\hec\ras 3.0\alga.p04 Geometry Title: Imported Geora 04 Geometry File : C:\Program Files\hec\ras 3.0\alga.g04 Flow Title Flow File Plan Summary Information: Number of: Cross Sections Culverts Bridges Imported Flow 04 C:\Program Files\hec\ras 3.0\alga.f04 39 1 2 Mulitple Openings Inline Weirs Computational Information Water surface calculation tolerance = 0.01 Critical depth calculaton tolerance = 0.01 Maximum number of interations = 20 Maximum difference tolerance = 0.3 Flow tolerance factor = 0.001 Computation Options Critical depth computed only where necessary Conveyance Calculation Method: At breaks in n values Friction Slope Method: Average Conveyance Computational Flow Regime: Mixed Flow only IV-4 FLOW DATA Flow Title: Imported Flow 04 Flow File : C:\Program Files\hec\ras 3.0\alga.f04 Flow Data (cfs) River RIVER-1 RIVER-1 RIVER-1 RIVER-1 RIVER-1 RIVER-1 RIVER-2 RIVER-2 RIVER-2 RIVER-2 Reach Reach-1 Reach-1 Reach-2 Reach-2 Reach-2 Reach-2 Reach-1 Reach-1 Reach-1 Reach-1 RS 69.40 57.50 45.2 42.30 26.2 10.ao 132.55 132.45 97. 69 96 PF 1 820 860 1400 1400 1600 1-760 600 600 675 675 Boundary Conditions River Reach RIVER-1 RIVER-1 RIVER-2 Reach-1 Reach-2 Reach-1 Profile PF 1 PF 1 PF 1 Upstream Normal S = .0143 Critical Downstream Normal S = .005 GEOMETRY DATA Geometry Title: Imported Geom 04 Geometry File : C:\Program Filea\hec\ras 3.0\alga.g04 Reach Connection Table River Reach Upstream Boundary RIVER-1 RIVER-1 RIVER-2 Reach-1 Reach-2 Reach-1 Downstream Boundary A A JUNCTION INFORMATION Name: A Description: Junction at section 45.9 Energy computation Method Length across Junction River Reach RIVER-1 Reach-1 RIVER-2 Reach-1 Tributary River to RIVER-1 to RIVER-1 Reach Reach-2 Reach-2 Length Angle 150 0 1 0 CROSS SECTION REACH: Reach-1 RIVER: RIVER-1 RS: 69.40 INPUT Description: Station Elevation Data num= 10 Sta Elev Sta Elev Sta Elev 450 127 472 126 500 122.8 555 125 590 124.8 650 125.1 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 450 .035 472 .05 513 .035 Bank Sta:Left 472 Right 513 Lengths: Left Channel 310 310 Sta 513 690 Right 340 Elev 125 125 Sta 540 710 Elev 126.1 134 Coeff Contr. .1 Expan. .3 CROSS SECTION REACH: Reach-1 RIVER: RIVER-1 RS: 65.30 IV-5 INPUT Description: Station Elevation Data num= 12 Sta Elev sta Elev Sta Elev Sta Elev Sta Kiev 440 130 462 125 477 124 488 121 500 118 520 121 550 120.3 600 120 625 119.8 650 120 670 119.9 695 130 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 440 .035 488 .05 520 .035 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 488 520 340 340 340- .1 .3 CROSS SECTION RIVER: RIVER-1 REACH: Reach-1 ' RS: 62.90 INPUT Description: Station Elevation Data num= 13 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 443 125 462 120 482 115 486 114 490 113.5 510 116 520 116.3 530 116 580 115.5 630 116.2 665 115.9 673 116 695 127 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 443 .035 482 .05 510 .035 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 482 510 270 270 270 .1 .3 CROSS SECTION RIVER: RIVER-1 REACH: Reach-1 RS.: 60.20 INPUT Description: Station Elevation Data Sta Elev Sta 433 130 452 500 112.8 514 6SO 112.8 678 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 433 .035 481 .05 514 .035 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 481 514 260 260 260 .1 .3 CROSS SECTION RIVER: RIVER-1 REACH: Reach-1 RS: 57.60 INPUT Description: Station Elevation Data num= 14 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 435 125 466 120 475 113 488 110 500 109 520 111 530 110 565 109.5 600 109 630 109.2 660 109.5 690 109.7 720 110 740 120 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 435 .035 488 .05 520 .035 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 488 520 360 360 370 .1 .3 CROSS SECTION RIVER: RIVER-1 REACH: Reach-1 RS: 54.00 num= Elev 125 113.1 113 13 Sta 431 550 700 Elev 115 112 .4 124 Sta 490 590 Elev 111.5 112.3 Sta 493 618 Elev 112 112 IV-6 INPUT Description: Station Elevation Data num= 11 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 373 120 408 110 430 108 500 107.5 606 107 670 106.8 705 107 725 107.2 760 107 782 110 797 118 Manning's n Values nura= 3 Sta n Val Sta n Val Sta n Val 373 .035 500 .04 606 .035 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 500 606 380 360 300- .1 .3 CROSS SECTION RIVER: RIVER-1 REACH: Reach-1 RS: 50.40 INPUT Description: Station Elevation Data num= 16 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 258 115 293 103 300 102.9 320 103 410 102 430 101 432 100.7 435 101 460 102.3 480 101.8 4B4 102 650 102.3 700 103 735 104 780 104.5 800 114 Manning' s n Values nutn= 3 Sta n Val Sta n Val Sta n Val .258 .035 410 .05 460 .035 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 410 460 160 160 150 .1 .3 Blocked Obstructions num= 2 Sta L Sta R Elev Sta L Sta R Elev 258 200 " 800 800 CROSS SECTION RIVER: RIVER-1 REACH: Reach-1 RS: 48.80 INPUT Description: .on Elevation Data Sta 257 365 500 739 Elev 110 99.5 99. 8 110 Sta 275 373 520 nura= Elev 105 100 101 16 Sta 295 410 555 Elev 99. 9 101.5 101.6 Sta 320 460 630 Elev 103.5 101 102 Sta 344 495 725 Elev 101.3 100 103 Manning's n Values nura= 3 Sta n Val Sta n Val Sta n Val 257 .035 344 .05 410 .035 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 344 410 150 160 170 .1 .3 CROSS SECTION RIVER: RIVER-1 REACH: Reach-1 RS: 47.20 INPUT Description: Station Elevation Data Sta Elev Sta 230 110 260 360 99.7 390 510 101 550 665 99.5 690 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 230 .035 450 .05 510 .035 num= Elev 100 100.3 99 100 20 Sta 275 420 585 727 Elev 101 101 99.8 100.6 Sta 302 450 612 740 Elev 100 100 99.4 100 Sta 330 480 640 760 Elev 99 99 99 110 IV-7 Bank Sta: Left Right 450 510 Ineffective Flow num Sta L Sta R Elev 888 F 888 F Blocked Obstructions num= Sta L Sta R Elev Sta L 230 200 800 Lengths: Left Channel 150 200 2 Permanent 2 Sta R 760 Right 240 Coeff Contr. .1 Expan. .3 Elev CROSS SECTION REACH: Reach-2 RIVER: RIVER-1 RS: 45.2 INPUT Description: Station Elevation Data Sta Elev Sta 481 110 481.1 494 99 494.1 507.1 99 519 num= Elev 99 99 99 14 Sta 481.2 506 519.1 Elev 99 99 99 Sta 493 506.1 519.2 Elev 99 99 110 Sta 493.1 507 Elev 99 99 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 481 .035 481 .05 519.2 .035 Bank Sta:Left 481 BRIDGE REACH: Reach-2 Right Lengths: Left Channel 519.2 80 80 RIVER: RIVER-1 RS: 44.80 Right 80 Coeff Contr. .3 Expan. .5 INPUT Description: Bridge #2 Distance from Upstream XS = 1 Deck/Roadway Width » __ 78.8 Weir Coefficient =" 2.6 Upstream Deck/Roadway Coordinates num= 14 Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord 481 110 110 481.1 110 99 493 110 105 493.1 110 99 494.1 110 105 506 110 105 507 110 99 507.1 110 105 519.1 110 99 519.2 110 110 Sta Hi Cord Lo Cord 481.2 110 105 494 110 99 506.1 110 99 519 110 105 Upstream Bridge Cross Section Data Station Elevation Data Sta Elev Sta 481 110 481.1 494 99 494.1 507.1 99 519 num= 14 Elev Sta Elev Sta 99 481.2 99 493 99 506 99 506.1 99 519.1 99 519.2 Elev Sta 99 493.1 99 507 110 Elev 99 99 Manning ' a Sta 481 Bank Sta: n Values n Val Sta .035 481 Left 481 Right 519.2 num= n Val .05 3 Sta 519.2 Coeff Contr. .3 n Val .035 Expan. .5 Downstream Deck/Roadway Coordinates num= 14 Sta Hi Cord Lo Cord 481 110 110 493 110 104 494.1 110 104 507 110 98 519.1 110 98 Sta Hi Cord Lo Cord 481.1 110 98 493.1 110 98 506 110 104 507.1 110 104 519.2 110 110 Sta Hi Cord Lo Cord 481.2 110 104 494 110 98 506.1 110 98 519 110 104 Downstream Bridge Cross Section Data Station Elevation Data num= 14 Sta Elev Sta Elev Sta 481 110 481.1 98 481.2 Elev 98 Sta 493 Elev Sta 98 493.1 Elev 98 IV-8 494 507.1 Manning ' s Sta 481 Bank Sta: 98 494.1 98 519 n Values n Val Sta .065 481 Left Right 481 519.2 98 506 98 519.1 nura= 3 n Val Sta .05 519.2 Coeff Contr. .3 98 506.1 98 519.2 n Val .035 Expan. .5 98 110 507 93 Upstream Embankment side slope = 0 horiz. to 1.0 vertical Downstream Embankment side slope = 0 horiz. to 1.0 vertical Maximum allowable submergence for weir flow = .95 Elevation at which weir flow begins = 110 Energy head used in spillway design = Spillway height used in design = Weir crest shape = Broad Crested Number of Bridge Coefficient Sets = 1 Low Flow Methods and Data Energy Selected Low Flow Methods = Energy High Flow Method Energy Only Additional Bridge Parameters Add Friction component to Momentum Do not add Weight component to Momentum Class B flow critical depth computations use critical depth inside the bridge at the upstream end Criteria to check for pressure flow = Upstream energy grade line CROSS SECTION RIVER: RIVER-1 REACH: Reach-2 RS: 44.40 INPUT Description: Station Elevation Data Sta Elev 481 110 494 93 507.1 93 Sta 481.1 494 . 1 519 Manning's n Values Sta n Val Sta 431 .065 Bank Sta: Left 481 CROSS SECTION REACH: Reach- 2 481 Right 519.2 num= 14 Elev Sta 98 481.2 98 SOS 98 519.1 num= 3 n Val Sta .05 519.2 Lengths : Left 210 Elev 98 98 98 n Val .035 Channel 210 Sta 493 506.1 519.2 Right 210 Elev Sta 98 493.1 98 507 110 Coeff Contr. .3 Elev 98 98 Expan .5 RIVER: RIVER-1 RS: 42.30 INPUT Description: Station Elevation Data num= 3 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 440 105 450 100 480 97 490 96 500 97 520 99 535 100 550 100.8 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 440 .035 480 .045 500 .035 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 480 500 280 300 340 .1 .3 Blocked Obstructions num= 1 Sta L Sta R Elev 520 550 IV-9 CROSS SECTION RIVER: RIVER- 1 REACH: Reach-2 RS : 39.40 INPUT Description: Station Elevation Data Sta Kiev Sta 330 100 350 516 93 547 Manning's n Values Sta n Val Sta 330 .035 460 Bank Sta: Left Right 460 516 num= 9 Elev Sta 93.5 400 95 600 num= 3 n Val Sta .075 516 Elev 93.3 97 n Val .035 Lengths : Left Channel 280 290 Sta 460 620 Right 310 Elev Sta Elev 93 500 92.5 97.6 Coeff Contr. Expan. .1 .3 CROSS SECTION RIVER: RIVER- I REACH: Reach- 2 INPUT Description: Station Elevation Data Sta Elev Sta 190 95 206 400 91 420 492 91 500 563 92 575 Manning's n Values Sta n Val Sta 190 .035 445 Bank Sta: Left Right 445 515 RS: 36.40 num= 1 8 Elev Sta 91 300 91.3 445 90.7 515 92 610 mim= 3 n Val Sta .1 515 Elev 90.5 91 91.5 95 n Val .035 Lengths : Left Channel 440 460 Sta 385 465 530 Right 460 Elev Sta Elev 90.7 390 90.3 90.4 480 91 91 550 91 Coeff Contr. Expan. .1 .3 CROSS SECTION RIVER: RIVER- 1 REACH: Reach-2 INPUT Description: Station Elevation Data Sta Elev Sta 196 95 243 390 86.8 402 470 87 485 632 90 647 830 94.5 840 Manning's n Values Sta n Val Sta 196 .035 463 Bank Sta: Left Right 463 550 RS: 31.80 num= 22 Elev Sta 90 280 87 422 86.2 522 91 666 95 nutn= 3 n Val Sta .1 550 Lengths : Left 560 Elev 87 90 87 93 n Val .035 Channel 560 Sta 340 442 550 742 Right 460 Elev Sta Elev 86.7 380 87.1 90 463 87.9 88 605 89 94 806 93.8 Coeff Contr. Expan. .1 .3 CROSS SECTION RIVER: RIVER- 1 REACH: Reach-2 INPUT Description: Station Elevation Data Sta Elev Sta 414 90 447 500 84 530 675 82.7 681 350 88 864 Manning's n Values Sta n Val Sta 414 .035 473 RS: 26.2 num= 17 Elev Sta 87.8 469 84.2 550 84 740 90 Elev 87 85.4 85 Sta 473 560 785 Elev Sta Elev 85.4 484 84 85 570 82.7 85 800 86 num= 3 n Val Sta n Val .1 550 .035 IV-10 Bank Sta: Left 473 Right 550 Lengths: Left Channel 480 470 Right 440 Coeff Contr. .1 Expan. .3 CROSS SECTION REACH: Reach-2 RIVER: RIVER- RS: 21.50 INPUT Description: Station Sta 345 500 815 1055 Manning' Sta 345 Bank Sta Elevation Kiev 90 82 79 82 Data Sta 427 540 887 s n Values n Val .035 : Left 540 Ineffective Flow Sta L 888 Sta R F Sta 540 Right 575 num* Elev nura= Elev 82.5 80 78 num= n Val .1 Lengths : 1 Permanent 16 Sta 457 5SO 905 3 Sta 575 Left 420 Elev 81 78 77.8 n Val .035 Channel 410 Sta 470 575 947 Right 380 Elev Sta 80 486 79 667 78 1045 Coeff Contr. .1 Elev 81 80 81 Expan .3 CROSS SECTION REACH: Reach-2 RIVER: RIVER-1 RS: 17.40 INPUT Description: Station Elevation Data num=10 Sta Elev Sta. 460 80 435 545 72 582 Manning's n Values Sta n Val Sta 460 .035 495 Bank Sta: Left Right 495 520 Elev 75 72.4 num= n Val .1 Lengths : CROSS SECTION RIVER: RIVER REACH: Reach- 2 INPUT Description: Station Elevation Data Sta Elev Sta 383 73 455 525 69.2 550 692 71 725 Manning ' s n Values Sta n Val Sta 383 .035 482 Bank Sta: Left Right 482 518 RS: 13.60 num= Elev 70 67.9 74 num= n Val .1 Lengths : CROSS SECTION RIVER: RIVER REACH: Reach- 2 INPUT Description: Station Elevation Data Sta Elev Sta 440 73 458 494 63 515 670 69.5 710 1015 72 RS: 10.80 num= Elev 71 £6 68 . 5 Sta 495 620 3 Sta 520 Left 380 -1 12 Sta 482 600 3 Sta 518 Left 230 -1 16 Sta 473 542 785 Elev 72 73 n Val .035 Channel 330 Elev 69 69 n Val .035 Channel 280 Elev 65 65.8 68 .4 Sta 500 648 Right 330 Sta 500 650 Right 300 Sta 486 582 858 Elev 71.5 75 Coeff Elev 66 69 Coeff Elev 63 67.4 68.5 Sta 520 688 Contr . .1 Sta 513 670 Contr . .1 Sta 490 625 942 Elev 72 80 Expan . .3 Elev 69 70 Expan. .3 Elev 62.3 69 70 IV-11 Manning's Sta 440 n Values n Val .035 Sta 473 num= n Val .1 3 Sta 515 n Val .035 Bank Sta: Left Right 473 515 Ineffective Flow num= Sta L Sta R Elev 888 F Lengths: Left Channel 360 360 1 Permanent Right 360 Coeff Contr. .1 Expan. .3 CROSS SECTION REACH: Reach- 2 INPUT Description: Station Elevation Sta 444 515 657 Manning ' Sta 444 Bank Sta Elev 70 59.5 63 RIVER: RIVER- 1 RS : 7.2 Data Sta 457 521 709 s n Values n Val Sta .035 : Left 484 CROSS SECTION 484 Right 536 num= Elev 68 60 64 num= n Val .1 Lengths : 14 Sta 474 536 720 3 Sta 536 Left 340 Elev 65 62 65 n Val .035 Channel 340 Sta 484 583 755 Right 340 RIVER: RIVER- 1 REACH: Reach- 2 INPUT Description: Station Elevation Sta 328 404 572 Manning1 Sta 328 Bank Sta Elev 70 60 61 Data Sta 341 453 582 s n Values n Val Sta .035 : Left 505 CROSS SECTION 505 Right 561 RS: 3.80 num= ..Elev 65 58 .8 63 num= n Val .1 Lengths : 15 Sta Elev 346 505 602 3 Sta 561 Left 199 64 59 65 n Val .035 Channel 199 Sta 378 535 625 Right 199 RIVER: RIVER- 1 REACH: Reach -2 RS: 1.81 Elev Sta Elev 62 511 60 63.3 635 62.5 70 Coeff Contr. Expan. .1 .3 Elev Sta Elev 62 385 61 56 561 60 64 641 66 Coeff Contr. Expan. .1 .3 INPUT Description: Station Sta 444 480 436.5 491.3 496 .7 502 .5 525 536.7 Manning ' Sta 444 Bank Sta Elevation Data Elev 70 54.3 57.8 54.5 56.4 55.3 55.7 57.5 Sta 476 . 481. 436 . 492 . 497, 503 , 527 , 537, .5 ,3 .7 .5 .5 .3 ,5 .1 s n Values n Val .035 : Left 476.5 Sta 476 Right 503.5 CROSS SECTION .S num= Elev 57.8 54.5 56 .4 55.3 55.3 56 .4 55.7 59.8 num= n Val .045 Lengths : 38 Sta 476.7 432.5 487.5 493.3 498.7 503 .5 530 559 3 Sta 503.5 Left 1 Elev 56.4 55.3 55.3 56.4 54.5 57.8 55.7 70 n Val .035 Channel 1 Sta 477.5 483.3 438.7 493.5 500 522.9 532.5 Right 1 Elev 55, 56, 54 57, 54 59 55 .3 .4 .5 .8 .3 .7 .7 Coeff sta 478.7 483.5 490 496.5 501.3 523.3 535 Contr. .3 Elev 54.5 57.8 54.3 57.8 54.5 57.7 55.7 Expan .5 RIVER: RIVER- 1 REACH: Reach -2 RS: 1.80 IV-12 INPUT Description: Station Elevation Data Sta 444 480 486.5 491.3 496.7 502.5 525 536.7 Manning ' i Sta 444 Bank Sta: BRIDGE Elev 70 54. 3 57.8 54.5 56.4 55.3 55.7 57.5 Sta 476. 481, 486, 492, 497. 503, 527, 537, .5 .3 .7 .5 .5 .3 .5 .1 s n Values n Val .015 : Left 476.5 Sta 476. Right 503 .S .5 num= Elev 57.8 54.5 56.4 55.3 55.3 56.4 55.7 59.8 num= n Val .015 Lengths : 38 Sta 476.7 482.5 487.5 493.3 498.7 503.5 530 559 3 Sta 503.5 Left 109 Elev 56.4 55.3 55.3 56.4 54.5 57.8 55.7 70 n Val .02 Channel 109 Sta 477.5 483.3 488.7 493.5 500 522.9 532.5 Right 110 Elev 55 56 54 57 54 59 55 .3 .4 .5 .8 .3 .7 .7 Coeff Sta 478.7 483.5 490 496.5 501.3 523.3 535 Contr . .3 Elev 54.5 57.8 54.3 57.8 54.5 57.7 55.7 Expan .5 RIVER: RIVER- 1 REACH: Reach- 2 RS: 1.535 INPUT Description: Bridge #1 Distance from Upstream XS = 1 Deck/Roadway Width = 105 Weir Coefficient = 2.6 Upstream Deck/Roadway Coordinates num= 3 7 Sta 440 477.5 481.3 483 .5 488.7 492.5 496.5 498 .7 502.5 522.9 527.5 535 559 Upstream Station Sta 444 480 486.5 491.3 496.7 502.5 525 536.7 Manning ' Sta 444 Bank Sta Hi Cord 70 70 70 70 70 70 70 70 70 70 70 70 70 Lo Cord 70 60.4 61.1 57.8 61.1 60.4 57.8 61.1 SO .4 59.7 S3 .9 62.7 70 Sta Hi Cord 476,5 478.7 482.5 4.86.2 490 493 .3 496.7 500 503 .3 523.3 530 536.7 70 70 70 70 70 70 70 70 70 70 70 70 Lo Cord 57 61 60 57 61 59 59 61 59 60 64 60 .8 .1 .4 .8 .3 .2 .2 .3 .2 .2 .6 .2 Sta Hi Cord Lo Cord 476.7 480 483.3 487.5 491.3 493.5 497.5 501.3 503.5 525 532.5 537.1 70 70 70 70 70 70 70 70 70 70 70 70 59. 61 59. 60 61 57. 60 61 57 62 63 59 .2 .3 .2 .4 .1 .8 .4 .1 .8 .7 .9 .7 Bridge Cross Section Data Elevation Elev 70 54.3 57.8 54.5 56.4 55.3 55.7 57.5 Data Sta 476.5 481.3 486.7 492.5 497.5 503.3 527.5 537.1 s n Values n Val .015 : Left 476 .5 Sta 476 .5 Right 503.5 num= Elev 57.8 54.5 56.4 55.3 55.3 56.4 55.7 59.8 num= n Val .015 38 Sta 476.7 482.5 487.5 493.3 498 .7 503 .5 530 559 3 Sta 503.5 Coeff Contr. .3 Elev 56 55 55 56 54 57 55 .4 .3 .3 .4 .5 .8 .7 70 Sta 477.5 483.3 488 .7 493 .5 500 522.9 532.5 Elev 55.3 56.4 54.5 57.8 54.3 59.7 55.7 Sta 478 483 .7 .5 490 496 501 523 .5 .3 .3 535 Elev 54.5 57.8 54.3 57.8 54.5 57.7 55.7 n Val Expan .5 02 Downstream Deck/Roadway Coordinates num= 3 7 Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord 440 477.5 481.3 483 .5 438 . 7 70 70 70 70 70 70 56.4 57.1 53.8 57.1 476.5 478.7 432 .4 486.2 490 70 70 70 70 70 53.8 57.1 56.4 53.8 57.3 476.6 430 483 .3 487.5 491.3 70 70 70 70 70 55.2 57.3 54.2 56.4 57.1 IV-13 492.5 70 5S.4 493.3 496.5 70 53.8 496.7 498.7 70 57.1 500 502.3 70 56.4 503.3 522.9 70 59.7 523.3 527.5 70 63.9 530 535 70 62.7 536.7 559 70 70 Downstream Bridge Cross Section Data Station Elevation Data num= Sta Elev Sta Elev 444 70 476 53.8 480 50.3 481 50.5 486 53.8 486 52.4 491 50.5 492 51.3 496 52.4 497 51.3 502 51.3 503 52.4 525 55.7 527 55.7 536 57.7 537 59.5 Manning ' s n Values num= Sta n Val Sta n Val 444 .015 476 .015 70 70 70 70 70 70 70 33 Sta 476 482 487 493 498 503 530 559 3 Sta 503 Bank Sta: Left Right Coeff Contr . 476 503 Upstream Embankment aide slope Downstream Embankment side slope 3 55.2 55.2 57.3 55.2 60.2 64.6 60.2 Elev 52.4 51.3 51.3 52.4 50.5 53.8 55.7 70 n Val .02 Expan. .5 = ss Maximum allowable submergence for weir flow = Elevation at which weir flow begins Energy head used in spillway design Spillway height used in design Heir crest shape = = = 493.5 497.5 501.3 503.5 525 532.5 537.1 Sta 477 483. 488 493 500 522.9 532 0 horiz 0 horiz .95 70 70 70 70 70 70 70 70 Elev 51.3 52.4 50.5 53.8 50.3 59.7 55.7 . to 1 . to 1 53.8 56.4 57.1 53.8 62.7 63.9 59.7 Sta Elev 478 50. 483 S3. 490 50. 496 53. SOI 50. 523 57. 535 55. . 0 vertical . 0 vertical ,5 8 .3 ,8 .5 ,7 ,7 = Broad Crested Number of Bridge Coefficient Sets = 1 Low Flow Methods and Data Energy Selected Low Flow Methods = Energy High Flow Method Energy Only Additional Bridge Parameters Add Friction component to Momentum Do not add Weight component to Momentum Class B flow critical depth computations use critical depth inside the bridge at the upstream end Criteria to check for pressure flow = Upstream energy grade line CROSS SECTION REACH: Reach-2 RIVER: RIVER-1 RS: 0.71 INPUT Description: Station Elevation Data Sta Elev Sta 444 430 435 491 496 502 525 535 Manning ' s Sta 444 70 50.3 53.8 50.5 52.4 51.3 55.7 57.7 n Values n Val .015 476 481 486 492 497 503 527 537 Sta 476 num= Elev S3. 50. 52. 51. 51. 52. 55. 59. num= 8 ,5 ,4 ,3 .3 .4 .7 .5 n Val .015 33 Sta 476 432 487 493 498 503 530 559 3 sta 503 Elev 52.4 51.3 51.3 52.4 50.5 53.8 55.7 70 n Val .02 Sta 477 433 483 493 500 522.9 532 Elev 51. 52. 50. 53 50 59 55 .3 .4 .5 .3 .3 . 7 .7 Sta 473 483 490 496 501 523 535 Elev 50.5 53.8 50.3 53.8 50 .5 57.7 55 .7 IV-14 Bank Sta: Left Right 476 503 Lengths : Left Channel 1 1 Right Coeff Contr. 1 .3 Expan. .5 CROSS SECTION RIVER: RIVER-1 REACH: Reach -2 INPUT RS : 0.7 Description: THREE 7-FOOT DIAMTER RCP Station Elevation Data nutn= 38 Sta Elev Sta 444 70 476.5 430 50.3 481. 3 486.5 53.8 486.7 491.3 50.5 492.5 496.7 52.4 497.5 502.5 51.3 503.3 525 55 527.5 536.7 57 537.1 Manning ' a n Values Sta n Val Sta 444 .03 476.5 Bank Sta: Left Right 476.5 503.5 Elev Sta 53.8 476.7 50.5 482.5 52.4 487.5 51.3 493.3 51.3 498.7 52.4 503.5 55 530 59 559 nutn= 3 n Val Sta .1 503.5 PLUS ONE Elev 52.4 51.3 51.3 52.4 50.5 53.8 55 70 n Val .03 Lengths : Left Channel £9 69 GOLF CART CROSSING Sta Elev Sta 477.5 51.3 478.7 483.3 52.4 433.5 488.7 50.5 490 493.5' 53.8 496.5 500 50.3 501.3 522.9 59 523.3 532.5 55 535 Right Coeff Contr. 69 .3 Elev 50.5 53.8 50.3 53 .8 50.5 57 55 Expan. .5 CROSS SECTION RIVER: RIVER-1 REACH: Reach- 2 INPUT Description: Stat-ion. Elevation Data Sta Elev Sta 434 65 455 488 57 508 Manning ' 3 n Values Sta n Val Sta 434 .05 455 Bank Sta: Left Right 455 483 RS : 0.01 nunx= 9 Elev Sta 55 468 .. 57 520 num= 3 n Val Sta .1 483 Elev 50 65 n Val .03 Lengths: Left Channel 0 0 Sta Elev Sta 472 50 483 Right Coeff Contr. 0 .3 Elev 55 Expan . .5 CROSS SECTION RIVER: RIVER- 2 REACH: Reach -1 INPUT Description: Station Elevation Data Sta Elev Sta 368 185 384 462 179 481 564 177.9 590 660 185 Manning ' s n Values Sta n Val Sta 358 .035 500 Bank Sta: Left Right 500 607 RS: 132.55 num= 16 Elev Sta 183.5 400 178.6 500 177.7 607 num= 3 n Val Sta .08 607 Lengths : Left 345 Elev 182 178 .2 173 n Val .035 Channel 345 Sta Elev Sta 420 181 441 519 178.1 538 623 180 641 Right Coeff Contr. 345 .1 Elev 180 178 182.5 Expan. .3 CROSS SECTION RIVER: RIVER- 2 REACH: Reach-1 INPUT Description: Station Elevation Data Sta Elev Sta 340 185 361 452 171.6 476 575 174 592 RS: 129.10 nutn= 1 6 Elev Sta ISO 382 171.5 500 175.5 610 Elev 175 171.3 177 Sta Elev Sta 404 172 428 523 171.6 556 622 179 642 Elev 171.8 172 180 IV-15 num= Elev 177 163 157.8 172.5 19 Sta 370 476 575 670 Elev 174 161 158 175 Sta 392 496 592 683 Elev 171 159 161.5 180 sta 414 510 609 Elev 168 158 165 668 las Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 340 .035 404 .08 556 . .035 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 404 5SS 310 310 310 .1 .3 CROSS SECTION RIVER: RIVER-2 REACH: Reach-1 RS : 126.10 INPUT Description: Station Elevation Data Sta Elev Sta 315 180 342 436 155 456 530 157.9 550 637 170 653 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 315 .035 476 .1 592 .035 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 476 592 310 290 270 .1 .3 CROSS SECTION RIVER: RIVER-2 REACH: Reach-1 RS: 123.10 IHPUT Description: Station Elevation Data Sta Elev Sta 280 178 297 347 175 364 451 155 477 519 156.2 544 640 170 670 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 280 .015 280 .02 683 .015 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 280 683 65 65 65 .3 .5 CROSS SECTION RIVER: RIVER-2 REACH: Reach-1 RS: 122.45 INPUT Description: Station Elevation Data num= 17 Sta Elev Sta Elev Sta Elev Sta Elev Sta Elev 330 175 350 173 373 172.3 397 171.7 421 171 440 170.5 460 170 470 160 477 155 480 153 488 155 500 170 526 170.5 552 171 580 172 600 172.5 620 173 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 330 .015 460 .02 500 .015 Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan. 460 500 75 75 75 .3 .5 CROSS SECTION RIVER: RIVER-2 REACH: Reach-1 RS: 121.70 INPUT Description: num= _Elev 171 172 155 157.5 175 23 Sta 305 382 482 568 683 Elev 175 169 154 158.7 180 Sta 320 410 490 593 Elev 175 167 154 160 Sta 330 440 495 620 Elev 177 157 155 165 IV-16 Station Elevation Data Sta Elev Sta 400 160 427 497 148.2 520 614 157.5 635 num= Elev 154 148 160 12 Sta Elev 443 151.5 544 150 Sta 460 569 Elev 149 152.5 Sta 475 594 Elev 143.5 155 Manning's n Values Sta n Val Sta 400 .05 460 num= n Val .1 3 Sta 544 n Val .03 Bank Sta: Left 460 Right 544 Lengths: Left Channel 240 240 Right 240 Coeff Contr. .1 Expan. .3 CROSS SECTION REACH: Reach-1 RIVER: RIVER-2 RS: 119.30 INPUT Description: Station Elevation Data num= Sta Elev Sta Elev 270 160 302 155 396 148.7 423 147.3 507 143 524 142.5 592 145 615 150 Manning's n Values Sta n Val Sta 270 .05 507 num= n Val .1 19 Sta 311 450 542 640 Elev 152 146 142 155 Sta 345 473 570 652 Elev 151 145 143 160 Sta 370 490 585 Elev 150 144 144 3 Sta 570 n Val .03 Bank Sta:Left 507 Right 570 Lengths: Left Channel 240 200 Right 160 Coeff Contr. .3 Expan. .5 CROSS SECTION REACH: Reach-1 RIVER: RIVER-2 RS: 117.30 INPUT Description: Station Elevation Data Sta Elev Sta 496.4 150 496.5 499 139.1 500 503.4 141.5 503.5 Manning's n Values Sta n Val Sta 496.4 .035 496.4 num= Elev 142.5 139 142.5 13 Sta 496.6 501 503.6 Elev 141 .5 139 .1 150 Sta 497 502 Elev 140.7 139.6 Sta 498 503 Elev 139.6 140.7 num= n Val .045 3 Sta 503 .6 n Val .035 Bank Sta: Left 496.4 Right 503.6 Lengths: Left Channel Right 111 Coeff Contr. .3 Expan. .5 CROSS SECTION REACH: Reach-1 RIVER: RIVER-2 RS: 117.29 INPUT Description: Station Elevation Data Sta Elev Sta 496.4 154 496.5 499 139.1 500 503.4 141.5 503.5 num= Elev 142.5 139 142.5 13 Sta 496.6 501 503.6 Elev 141.5 139 .1 154 Sta 497 502 Elev 140.7 139.6 Sta 498 503 Elev 139.6 140.7 Manning's n Values num= 3 Sta n Val Sta n Val Sta n Val 496.4 .035 496.4 .015 503.6 .035 Bank Sta: Left 496 .4 Right 503 .6 Lengths: Left Channel 1959 1959 Right 1959 Coeff Contr. .3 Expan. .5 CULVERT REACH: Reach-1 RIVER: RIVER-2 RS: 107.325 INPUT IV-17 Description: Bridge #3 Distance from Upstream XS = 1 Deck/Roadway Width = 1957.9 Weir Coefficient = 2.6 Upstream Deck/Roadway Coordinates num= 13 Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord 496.4 154 150 496.5 154 142.5 497 154 144.4 498 154 145.4 500 154 146 501 154 145.9 503 154 144.4 503.4 154 143.5 503.6 154 150 Upstream Bridge Cross Section Data Sta Hi Cord Lo Cord 496.6 154 143.5 499 154 145.9 502 154 145.4 503.S 154 142.5 Station Sta 496.4 499 503.4 Manning ' Sta 496.4 Bank Sta Elevation Data Kiev 154 139.1 141.5 Sta 496.5 500 503.5 s n Values n Val .035 : Left 496.4 Sta 496.4 Right 503.6 num= Elev 142.5 139 142.5 num= n Val .015 Coeff 13 Sta 496.6 501 503.6 3 Sta 503.6 Contr . .3 Elev Sta Elev 141.5 497 140.7 139.1 502 139.6 154 n Val .035 Expan. .5 Sta Elev 49B 139.6 503 140.7 Downstream Deck/Roadway Coordinates num= 13 .Sta Hi Cord Lo Cord Sta Hi Cord Lo Cord 496.4 110 110 496.5 110 102.5 497 110 104.4 498 110 105.4 500 110 106 501 110 105.9 503 110 104.4 503.4 110 103.5 503.6 110 110 Downstream Bridge Cross Section Data Sta Hi Cord Lo Cord 496.6 110 103.5 4.29 110 105.9 502 110 105.4 503.5 110 102.5 Station E Sta 496.4 499 503.4 Manning ' s Sta 496.4 Bank Sta: levatioi Elev 110 99.1 101.5 i Data Sta 496.5 500 503.5 n Values n Val Sta .035 Left 496 .4 496.4 Right 503.6 num= Elev 102 .5 99 102.5 num= n Val .015 Coeff 13 sta 496.6 501 503.6 3 Sta 503.6 Contr. .3 Elev 101.5 99.1 110 n Val .035 Expan. .5 Sta 497 502 Elev 100.7 99.6 Sta Elav 498 99.6 503 100.7 Upstream Embankment side slope = 0 horiz. Downstream Embankment side slope = 0 horiz. Maximum allowable submergence for weir flow = .95 Elevation at which weir flow begins = 154 Energy head used in spillway design = Spillway height used in design = Weir crest shape = Broad Crested Number of Culverts = 1 to 1 to 1 0 vertical 0 vertical Culvert Name Shape Rise Span Culvert #1 Circular 7 FHWA Chart tt 1 - Concrete Pipe Culvert FHWA Scale # 1 - Square edge entrance with headwall Solution Criteria = Highest U.S. EG Culvert Upstrm Dist Length n Value 1 1957.5 .015 Upstream Elevation = 139 Centerline Station = 500 Downstream Elevation = 99 Centerline Station = 500 Entrance Loss Coef .5 Exit Loss Coef 1 IV-18 CROSS SECTION RIVER: RIVER-2 REACH: Reach -1 INPUT Description: Station Elevation Data Sta Elev Sta 496.4 110 496.5 499 99.1 500 503.4 101.5 503.5 Manning's n Values Sta n Val Sta 496.4 .035 496.4 Bank Sta: Left Right 496.4 503.6 RS: 97.70 nura= 13 Elev Sta 102.5 496.6 99 501 102.5 503.6 num= 3 n Val Sta .015 503.6 Lengths : Left 1 Elev Sta 101.5 497 99.1 502 110 n Val .035 Channel Right 1 1 Elev Sta Elev 100.7 498 99. 6 99.6 503 100.7 Coeff Contr. Expan. .3 .5 CROSS SECTION RIVER: RIVER-2 REACH: Reach- 1 INPUT Description: Station Elevation Data Sta Elev Sta 49S.4 110 49S.5 499 99.1 500 503.4 101.5 503.5 Manning ' s n Values Sta n Val Sta 49^.4 .03-5 4*6.4 Bank Sta: Left Right 496.4 503.6 RS: 97.69 num= 13 Elev Sta 102.5 496.6 99 501 102.5 503.6 nutn= 3 Elev Sta 101.5 497 99.1 502 110 Elev Sta Elev 100.7 493 99.6 99.6 503 100.7 n Val Sta n Val . &5 503 . 6 Lengths : Left 169 .045 Channel Right 169 169 Coeff Cont r . Expan . .3 .5 CROSS SECTION RIVER: RIVER-2 REACH: Reach-1 RS: 96 INPUT Description: Station Elevation Data num= Sta Elev Sta Elev 285 111 350 101 610 98 613 100 8 Sta Elev Sta 368 100 450 642 110 Elev 99 Sta 510 Elev 98.6 Manning's n Values Sta n Val Sta 285 .035 450 num= n Val .05 3 Sta 510 n Val .035 Bank Sta:Left 4SO Right 510 Lengths: Left Channel 100 180 Right 300 Coeff Contr. .3 Expan. .5 SUMMARY OF MANNING'S N VALUES River:RIVER-1 Reach River Sta. Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-2 Reach-2 nl n2 n3 69. 66 62, 60. 57. 54 50 48 47 45 44 .40 .30 .90 .20 .60 .00 .40 .80 .20 .2 .80 .035 .035 .035 .035 .035 .035 .035 .035 .035 .035 Bridge .05 .05 .05 .05 .05 .04 .05 .05 .05 .05 .035 .035 .035 .035 .035 .035 .035 .035 .035 .035 IV-19 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 River:RIVER-2 Reach Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 44.40 42.30 39.40 36.40 31.30 26.2 21.50 17.40 13.60 10.80 7.2 3 .80 1.81 1.80 1.535 0.71 0.7 0.01 .065 .035 .035 .035 .035 .035 .035 .035 .035 .035 .035 .035 .035 .015 Bridge .015 .03 .05 .05 .045 .075 .1 .1 .1 .1 .1 .1 .1 .1 .1 .045 .015 - .015 .1 .1 .035 .035 .035 .035 .035 .035 .035 .035 .035 .035 .035 .035 .035 .02 .02 .03 .03 River Sta.nl n2 n3 132.55 129.10 126.10 123.10 122.45 121.70 119.30 117.30 117.25 107.325 97.70 97.69- 96 .035 .035 .035 .015 .015 .05 .05 .035 .3-J5 Culvert .035 .035 .035 .08 .08 .1 .02 .02 .1 .1 .045 .015 .015 .05 .05 .035 .035 .035 .015 .015 .03 .03 .035 .035 .035 .035 .035 SUMMARY OF REACH LENGTHS River: RIVER-1 Reach Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 River Sta. 69.40 66.30 62.90 60.20 57.60 54.00 50.40 48.80 47.20 45 .2 44.80 44.40 42.30 39.40 36 .40 31.80 26.2 21.50 17.40 13.60 10.80 7.2 .30 .81 .80 .535 .71 3, 1. 1. 1. 0. 0.7 0.01 Left Channel Right Bridge 310 340 270 260 360 380 160 150 150 80 210 280 280 440 560 480 420 3BO 230 360 340 199 1 109 Bridge 1 69 0 310 340 270 260 360 360 160 160 200 80 210 300 290 460 560 470 410 380 230 360 340 199 1 109 1 69 0 340 340 270 260 370 300 150 170 240 80 210 340 310 460 460 440 380 380 300 360 340 199 1 110 1 69 0 IV-20 River Sta.Left Channel River: RIVER-2 Reach Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS River: RIVER-1 Right 132.55 129.10 126.10 123.10 122.45 121.70 119.30 117.30 117.29 107.325 97.70 97.69 96 345 310 310 65 75 240 240 1 1959 Culvert 1 169 100 345 310 290 65 75 240 200 1 1959 1 169 130 345 310 270 65 75 240 160 1 1959 1 169 300 Reach Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 Reach-2 River: RIVER-2 Reach Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 Reach-1 River Sta.Contr. 69.40 66.30 62.90 60.20 57.60 54.00 50.40 4-8.9* 47 .20 45.2 44.30 ., 44 .40 42.30 39.40 36 .40 31.30 26.2 21.50 17.40 13 .60 10.80 7.2 3 .80 1.81 1. 80 1.535 0.71 0 .7 0.01 River Sta 132 .55 129.10 126.10 123 .10 122.45 121.70 119.30 117.30 117.29 107.325 97.70 97.59 96 .1 .1 .1 .1 .1 .1 .1 .1 .1 .3 Bridge .3 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .3 .3 Bridge .3 .3 .3 Contr .1 .1 .1 .3 .3 .1 .3 .3 .3 Culvert .3 .3 .3 Expan. .3 .3 .3 .3 .3 .3 .3 .3 .3 .5 .5 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .5 .5 .5 .5 .5 Expan. .3 .3 .3 .5 .5 .3 .5 .5 .5 .5 .5 .5 IV-21 SECTION IV. WATER-SURFACE AND CHANNEL-BED PROFILES FOR THE STREAM CHANNELS •aca>ata> T- D- , CO •ac 8 O (y) UOIJBA9I3 o>u Q "55 ra 6 c '(0 UOI1BA9I3 •st-o cS3.CL •coCL E CO "uK 201 cu 0) o8CM O OO CM o§ "55c ro6 o <"o 2 ooin oCO in<N if)o oo in05 (y) uo i—ooo o CO —i—o ooin CO oooco ooinCM o -2"55 § 5o <uCN C CD 6 C '(0 o Soin ooo ooin oCM oo o CO (y) Hydrology Study for La Costa Greens in Carlsbad Prepared for O'Day Consultants 5900 Pasteur Court Suite 100 Carlsbad, CA 92008-7317 Prepared by Howard H. Chang, Ph.D.,P.E. August 1998 Howard H. Chang Consultants Hydraulic and Hydrologic Engineering Erosion and Sedimentation P. O. Box 9492 Rancho Santa Fe, CA 92067 TEL: (858) 756-9050 FAX: (858) 756-9460 HYDROLOGY STUDY FOR LA COSTA GREENS The hydrology study is included in the package as a supplemental information for the base flood discharges used in the hydraulic study. This study was submitted to the City of Carlsbad and approved by the City in 1998. Base flood discharges for the drainage channels were determined based on hydrologic simulation using information pertaining to the rainfall and physical characteristics of the drainage basin. The Soil Conservation Service (SCS) unit hydrograph method was used herein. The hydrology study was guided by the National Engineering Handbook, Section 4 - Hydrology by the Soil Conservation Service (1972), USD A and the Hydrology Manual of the County of San Diego, updated in 1985 and 1993. The San Diego County hydrology manual is also based on the SCS method, but it has certain useful information specific to this semi-arid area. The HEC-1 computer model developed by the U. S. Army Corps of Engineers, which employs the SCS method, was the principal tool for this study. The drainage basin was divided into subbasins. Subbasins selected for La Costa Greens are designated as subbasin LI, L2, L3, and L4 as shown in Fig. 1. The points of concentration are at the respective subbasin outlets. The concentration points for the subbasins of La Costa Greens are as follows: For subbasin LI, the exit is at concentration point 4. For subbasin L2, the exit is at concentration point 5. . For subbasin L3, the exit is at concentration point 6. For subbasin L4, the exit is at concentration point 6. The HEC-1 model was used to generate flood hydrographs at these points of concentration. For the purpose of hydrological computation, certainbasin characteristics are required. Such characteristics include basin area, Antecedent Moisture Condition (AMC), precipitation, SCS curve number (CN), lag time, etc. Methods for obtaining such characteristics are described below separately. The measured and selected parameters for the drainage basin are summarized in Table 1. The flood hydrograph generated for a subbasin was routed downstream through the natural drainage paths; it was superimposed with other hydrograph at the confluences. Basin Area - The total drainage basin upstream of Alga Road encompassing the La Costa Greens development was divided into three subbasins: LI, L2, L3, and L4, as shown in Fig. 1. The area of each subbasin was measured directly from the drainage basin map. In this case, the USGS map with the scale of 1" = 2,000' was used for area measurements. Areas for the four basins are 0.238, 0.698, 0.944, and 0.121 square miles, respectively. 1 Hydrologic Soil Groups - The hydrologic soil type for the subbasins were obtained from the Design and Procedure Manual (earlier edition) published by the County of San Diego. Type D soil is the dominate hydrologic soil type for these subbasins. The CN values so obtained are for the AMC of 2. Adjustment of CN for other AMCs was based on the information shown in Table I-A-5 of the Hydrology Manual. Precipitation Zone Number (PZN) - This value for a subbasin was obtained from Fig. I-A- 23 of the County Hydrology Manual. The coastal line has the PZN value of 1. Subbasins in the study area have PZN values of about 1.2. Antecedent Moisture Condition (AMC) - The AMC value for the 100-yr flood was computed based on the Precipitation Zone Number (PZN) given in Fig. I-A-23 of the San Diego County Hydrology Manual. The value of 2.2 was obtained for the 100-yr flood. Runoff Curve Number (CN) - In the SCS method for runoff estimation, the CN value was used. Table I-A-1 of the Hydrology Manual lists the CN values related to land use, land treatment or practice, hydrologic condition, and soil type. The CN values for the AMC of 2 are listed in the manual. For the existing conditions, the CN value of 86 was selected for subbasins LI, L2, and L3. Adjustment to other AMCs was based on the information shown in Table I-A-5 of the manual. For the AMC value of 2.2, the adjusted CN is 88. For the proposed development, the CN value of 88 was selected for medium density residential area and type D soil. This value is for the AMC value of 2. For the AMC value of 2.2, the adjusted CN is 90. This value was further adjusted based on the percentage of area to be developed within each subbasin. For subbasin LI, the proposed development accounts for 60 % of the subbasin area. The weighted CN value for LI is as follows. CN = 88 + (90-88) x 0.6 = 89.2 For subbasin L2, the proposed development accounts for 20 % of the subbasin area. The weighted CN value is 88 + (90-88) x 0.2 = 88.4. For subbasin L3, the proposed development covers 70 % of the subbasin area, the weighted CN value is 88 + (90-88) x 0.7 = 89.4. For subbasin L4, the proposed development covers 85 % of the subbasin area, the weighted CN value is 88 + (90-88) x 0.85 = 89.7. Precipitation - The precipitation in inches for each subbasin was obtained from the precipitation map in the Hydrology Manual. Precipitation was distributed in accordance with the Type B distribution curve. The 6-hr storm of 2.9 inches was used in this study. Table 1. Summary of basin characteristics for San Marcos Creek Subbasin LI L2 before L2 after L3 L4 Total Area sq. mi 0.238 0.698 0.689 0.944 0.121 2.00 CN 89.2 88.4 89.4 89.7 n 0.035 0.035 0.035 0.040 AE ft 300 350 470 350 L miles 0.4 0.8 0.78 0.57 Lc miles 0.22 0.4 0.35 0.29 Lag hours 0.095 0.172 0.130 0.152 0.143 Lag Time - Lag is defined as the time in hours from the center of mass of the excess rainfall to the peak discharge, it is an empirical expression of the physical characteristics of a drainage area in terms of time. The lag time relationship is based on criteria developed by the U. S. Army Crops of Engineers which is also adopted by the County of San Diego as given in its Hydrology Manual. L * Lc mLag (hours) = 24 n (-,—-) (1) where n = Basin factor, representing a measure of overall basin roughness; m = 0.38, a constant; L = Length of the longest water course; Lc = Length along longest course in miles, measured upstream to the point opposite the center of area; S = Overall slope, in feet per mile, of the longest water course. Values of these variables are listed in Table 1. The development preserves the natural drainage paths for subbasins LI, L3 and L4; therefore, the lag time for each subbasin stays essentially the same. For subbasin L2, a large concrete pipe will be used for the lower portion of the drainage path in the north branch drainage channel. The pipe connecting the proposed berm in the north branch to Poinsettia Lane is about 2,000 feet in length. Since storm water travels much faster in the pipe, the lag time will thus be affected. The lag times listed in Table 1 for subbasin L2 are for the existing and proposed conditions. For the proposed conditions, the lag time consists of two parts, a part through the natural path and another part through the pipeline. For the natural path, E = 310 feet, L = 0.45 mile and Lc = 0.25 mile. The computed lag time is 0.1 hour. For the pipeline portion, the lag time computed based on the flow speed of 16 feet per second is 0.03 hour. The combined lag time for subbasin L2 is thus 0.13 hour. Flood Routing through Detention Basin at Alicante Road - The east branch of the drainage channel upstream of Alicante Road has a broad width that averages 450 feet. The channel also has a flat slope. The road embankment acts like a berm in the floodplain; it slows down the flow velocity thereby inducing fioodwater storage during major events. Drainage through the road crossing consists of triple 12 feet by 6 feet concrete box culverts. These culverts will cause backwater, namely storage, effects on the upstream side of the road embankment. In other words, the road embankment together with the culverts create a fioodwater detention basin on the upstream side of the road. Hydraulic characteristics of the fioodwater detention facility are represented by its discharge-elevation -surface area relation shown in Table 2. This relation was established based on HEC-2 runs using various discharges. For each discharge, the water-surface elevation of the basin was computed by the HEC-2 program. The computed water-surface profiles at various discharges are shown in Fig. 2. The basin area has a water-surface elevation that is almost level. The surface area for the level pool was also computed from the topographic map. Table 2. Discharge-elevation-surface area relation for the flood water detention facility upstream of Alicante Road Discharge, cfs 0 100 500 1,000 1,500 2,000 Elevation, feet 99 100.2 101.8 103.3 104.7 105.8 Surface area, acres 0 0.8 4.0 4.2 4.6 4.8 Results of Simulation - Input/output listings of the HEC-1 simulation are included Appendix A of this report. Discharges of the 100-yr flood under existing and proposed conditions for the La Costa Greens development are summarized in Table 3. It can be seen from the summary that the proposed development of La Costa Greens togther with the floodwater detention basin will not increase the 100-yr flood discharges downstream. Table 3. Summary of computed 100-yr flood discharges Location Exit of subbasin LI (pt. 4) Exit of subbasin L2 (pt. 5) Inlet of detention basin (pt. 4) Exit of detention basin L2 (pt. 4) At inlet of Alga culverts (pt. 6) At exit of Alga Road (pt.6) Surface area, acres Existing condition (before La Costa Greens) 822 635 1,452 1,452 1,904 2,012 Proposed condition (with La Costa Greens) 856 675 1522 1,324 1,754 1,870 REFERENCES 1. County of San Diego, "Hydrology Manual", 1993. 2. Soil Conservation Service, USDA, National Engineering Handbook, Section 4 - Hydrology, 1972. LIST OF FIGURES Fig. 1. Drainage basin for the La Costa Greens development with delineated subbasins Fig. 2. Stage-discharge relation for the floodwater detention basin located upstream from the Alicante Road crossing in the east branch channel , -m^v^-Mii^: .\^xi>-v--1; a<U 0) o »HP-. cd 01 on in in om en VV oo o _ CO W "« m u•a S<L> B"3 J°2 C O 's § ^^« -K.2 «VC2 <U S 2 • ^ *"2-9'!.§» > MI ao o&^-II SIo o '+3 «ta <;!i II-S <tt\n —, IS-2 £05 §- CN &b•i—(HH ^ APPENDIX A. INPUT/OUTPUT LISTINGS OF HEC-1 FOR THE EXISTING AND PROPOSED CONDITIONS • FLOOD HVDROGRAPH PACKAGE (HEC-1) * • SEPTEMBER 1990 * m * VERSION 4.0 • • * .» * RUN DATE 08/07/1998 TIME 16:10:40 • U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 9S616 (916) 756-1104 X XXXXXXX XXXXX X XX X XX xxxxxxx xxxx X XX X XX XXXXX X XXXXXXX XXXXX XX X X X X XXX PART I. EXISTING (BEFORE LA COSTA GREENS) CONDTIONS THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HECIGS, HEC1DB, AND HEC1KW. THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WHITE STAGE FREQUENCY. DSS-.READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM LINE HEC-1 INPUT ID 1 2 3 4 S 6 7 8 9 10 PAGE 1 2 3 4 5 6 7 a 9 10 11 12 13 14 IS 16 17 13 19 20 21 22 ID •«*«»•**»*•**«»*»*««««**«•**•»**«******•*•«••»•***»*•***»«*»«»«.»•••••«•«» ID MODELS DETENTION AT MELROSE, BRESSI, AND EL FUERTE. 84" AND 20" PIPES AT ID BHESSI. 20" PIPE FUNCTIONING. NON-DSOD FACILITY AT BRESSI AMD EL FUERTE. ID FILENAME: MBEFDET.HC1 3/31/98 J-12960 !D ••*****»***•*«•***»»*•••*»««•»«**•**•*«***•*•«•**••*»«*****•*»«»«»»**»*«*• ID MODIFIED FROM RICK ENGINEERING ID RANCHO CAHRILLO HYDROLOGY FOR DETENTION ANALYSIS (ALTERNATIVE "1") ID CURRENT CONDITION ASSUMES UPSTREAM AND RANCHO CARRILLO DEVELOPED; DOWNSTREAM ID CURRENT CONDITIONS AS OF 8/12/88 WHEN TOPO WAS FLOWN. MINOR IMPROVEMENTS ID TO SPILLWAY OP BRESSI DAM. DETAIN BACK TO CURRENT CONDITION ID WATERSHED TRIBUTARY TO SAN MARCOS CREEK ID DRAINAGE COURSE TERMINATES AT CONVERGENCE OF CREEK AND ALGA ROAD ID ANALYSIS TO MEET ZONE 10, 17 9 18 REQUIREMENTS ID 100 YEAR - 6HR STORM EVENT ID DETERMINED WATERSHED FROM USGS 2000 SCALE QUAD MAPS & 200 SCALE ONSITE MAPS ID CN, LAG AND DRAINAGE AREA BASED ON EACH INDIVIDUAL WATERSHED ROUTED THROUGH ID CREEK, EXISTING EARTH DAM AND GOLF COURSE DOWN TO ALGA ROAD ID LAG FOR STORM DRAIN INTO MELROSE AND EL FUERTE CULVERTS USED CONVERSION ID FORMULA FROM RATIONAL METHOD TO SCS METHOD ID JN 12119 APRIL Ifl, 1993 Rev 8/12/93 Rev 9/16/93 IT 2 28APRS5 0 300 10 5 23 24 25 26 KK PTPDRAINAGE AREA UPSTREAM OF PALOMAR AIRPORT ROAD BA 0.39 IN 15. 23APRS5 PB 2.90 A-l 27 23 29 30 31 32 33 34 3S 36 37 38 39 40 41 42 43 44 45 46 PI PI PI LS UD KK RS SV SQ SE KK KM RS RC RX RY KK BA LS UD 0. .185 .02 0 . .IDS DETAIN 1 0 0 413 RTEP-G ROUTE 1 .035 0 420 .0175 .05 .02 87 STOR .05 23.2 41S DESIGN STOR .035 95 400 BASINGDRAINAGE 0.79 0. .182 87 .0175 .05 .02 -1 1.02 180.8 420 POINT P TO -1 .035 190 380 .0225 .04 .02 4.55 275.4 425 POINT G 5300 290 360 AREA BETWEEN POINT .0225 .0275 .0275 .0475 .0475 .185 .04 .0275 .0275 .0225 .0225 .02 .02 12.13 23.09 39.85 345.2 403.2 453.8 430 435 440 .030 390 490 590 £95 360 380 400 420 G AND POINT P HEC-1 INPUT PAGE LINE ID 1 2 3 4 5 S 7.J 9 10 47 48 49 50 51 sT 53 54 55 56 57 58 59 60 ei 62 63 64 65 66 67 63 69 70 71 72 73 74 75 76 77 78 79 80 31 62 33 94 as 86 KK KM HC KK KM RS RC RX RY KK BA LS UD KK KM HC KK RS SV SV SQ SQ SE SE KK BA LS UD KK KM HC KK BA LS UD KK KM HC KK KM PTO COMBINE 2 RTEG-1 FLOWS AT POINT G - ROUTE DESIGN POINT G THRU 1 .035 0 242.5 'STOR" -1 .035 .035 50 100 237-.S 235 DRAINAGE AREA UPSTREAM OF VILLAGE BASIN 1 240 0.25 140 155 170 210 270 230 232 235 245 255 BASIN1DESIGN POINT 1 DRAINAGE AREA BETWEEN VILLAGE G ROAD AND 0.38 0. .14 PT1 COMBINE 2 DETAIN 1 0 84. 7S 0 456 262 282 87. FLOWS FROM DESIGN STOR -1 .87 3.76 9 102.12 121.5 141 0 SB .4 496 528 264 266 284 286 BASIN1ADESIGN POINT 1A STORM .23 0. .23 PT1A COMBINE 2 90. FLOWS FROM DESIGN G ROAD MELROSE AVENUE POINT G - AREAS BETWEEN MELROSE AND VILLAGE G .01 15.65 23.57 32.74 43.3 .84 164.27 189.2 215.34 152 224 280 328 360 552 568 568 568 268 270 272 274 276 288 290 292 293.9 DRAIN INTO MELROSE AVENUE CULVERT POINT 1 - STORM DRAIN INTO MELROSE 55.33 S9.13 400 440 278 230 AVENUE CULVERT BASIN1ADESILTING POINT 1A STORM DRAIN FEEDING HISTORIC BRIDGE 0 .08 0. .23 PT1AA COMBINE 2 RTE1A-2 90. FLOWS FROM DESIGN POINT 1A - STORM DRAIN FEEDING HISTORIC BRIDGE ROUTE DESIGN POINT 1A THRU BASIN 2 A-2 87 aa as 90 LINE 91 92 93 94 95 96 97 99 99 100 101 102 103 104 105 IDS 107 108 109 110 111 ii's 113 114 115 116 117 118 119 120 121 122 123 124 125 125 127 123 129 130 131 132 133 134 LINE 135 136 137 138 139 140 141 142 143 RS RC RX Rlf ID KK BA LS UD KK KM HC KK KM RS SV sv SQ SQ SE 5E KK BA LS UD KK KM HC KK RS SV SV SQ SO SE SE KK BA LS UD KK KM HC 1 STOR -1 .035 .035 .035 4224 .026 0 50 100 140 155 170 210 270 235 232.5 230 225 227 230 240 250 HEC-1 INPUT 1 2 3 4 5 6 . 7 g 9 B AS IN2 DESIGN POINT 2 DRAINAGE AREA BETWEEN MELROSE AVE & BRESSI EARTH 0.45 0. 89. .09 PT2 COMBINE FLOWS FROM DESIGN POINT 1A - AREA BETWEEN MELROSE & EARTH DAM 2 RTE2 - 3 ROUTE DESIGN POINT 2 THRU BASIN 3, DETENTION AT BRESSI DAM 1 STOR - 1 0 0.77 4.62 11.01 18.92 28.29 35.63 37.83 40.07 46.52 49.39 0 26. 6 29.7 213. 5 355.8 476.1 554.4 575.4 595.9 649.5 £71. S 154.8 162 164 166 168 170 171.4 171. B 172.2 173.3 173.8 BASIN3DESIGN POINT 3 DRAINAGE AREA BETWEEN BRESSI EARTH DAM & EL FUERT 0.07 0. 87. 0.037 PT3 COMBINE FLOW'S FROM "DESIGN POINT 2 - AREA BETWEEN HHKSai EAKTH- D75M 6 EE 2 DETAIN 1 STOR - 1 0 0.01 0.39 1.66 4.72 10.23 17.93 27.24 37.76 60.93 73.44 0 2.1 45.0 122.1 217.4 293.0 352.9 404.0 449.4 528.3 563.8 141.50 142 144 146 148 ISO 152 154 156 160 162 BASIN3A DESIGN POINT 3A - STORM DRAIN INTO EL FUERTE STREET CULVERT .27 0. 39. 0.23B PT3A COMBINE FLOWS FROM DESIGN POINT 3 - STORMDRAIN INTO EL FUERTE CULVERT 3 DAM 43.5 626.7 172.8 E ST tUKK'lti 49.04 490 .6 158 KKRTE3A-3B KM RS RC RX RY ID KK BA LS UD KK KM HC KK KM ROUTE DESIGN POINT 3A THRU BASIN 3B 1 STOR - 1 .035 .035 .035 500 .010 0 255 314 406 420 428 432 460 120 113 118 114 114 118 120 130 HEC-1 INPUT 1 . ...2 3 4 5 6 7 8 9. BASIN3BDESIGN POINT 3B DRAINAGE AREA BETWEEN EL FUERTE AND CONFLUENCE P 0.32 0 88 0.146 PT3B 10 OINT COMBINE FLOWS FROM DESIGN POINT 3A - AREA BETWEEN EL FUERTE AND CONFLUENCE PT 2 RTE3B-4 ROUTE DESIGN POINT 3B THRU BASIN LI (N=0.040 FOR 3320') PAGE PAGE A-3 144 145 146 147 148 149 ISO 151 152 153 154 15S 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 ' 171 'IT2 173 174 175 176 LINE 177 178 179 180 181 182 183 184 185 RS RC RX RY KK BA LS UD KK KM HC KK KO BA LS UD KK KM KO HC KK KM RS RC RX RY KK BA ES~ UD KK KM HC ID KK KM BA LS UD KK KM HC ZZ 1 STOR -1 0.035 0.035 0.040 3000 0.011 0 255 314 406 420 428 432 460 120 113 118 114 114 118 120 130 BASL1 0 .238 o as 0.095 PT4 COMBINE FLOWS FROM DESIGN POINT 3B AND SUBBASIN LI 2 BASL2 12 " 0.698 0 88 0.172 PT5 COMBINE FLOWS FROM SUBBASINS LI AND L2 1 2 2 RTES ROUTE DESIGN POINT 5 THRU BASIN L3 TO OUTLET 1 STOR -1 0.031 0.031 0.060 4000 0.0055 0 185 823 830 831 839 875 967 100 75 65 64 64 55 75 100 BASL3DESIGN POINT 6 DRAINAGE AREA BETWEEN CONFLUENCE POINT AND ALGA R DAD 0.944 •a- re 0.1S2 PTS COMBINE FLOWS FROM DESIGN POINT 6 2 HEC-1 INPUT PAGE 5 1 2 3 4 5 6 7 8. 9 10 PTS BASIN L4 OUTFLOW 0.121 o as 0.143 PTS COMBINE FLOWS 2 FLOOD HYDROGRAPH PACKAGE (HEC-1) * SEPTEMBER 1990 • VERSION 4.0 * * RUN DATE 08/07/1998 TIME 16:10:40 * U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104 MODELS DETENTION AT MELROSE, BRESSI, AND EL FUERTE. 84" AND 20" PIPES AT BRESSI. 20" PIPE FUNCTIONING. NON-DSOD FACILITY AT BRESSI AND EL FUERTE. FILENAME: MBEFDET.HC1 3/31/98 J-12960 MODIFIED FROM RICK ENGINEERING A-4 22 IO IT RANCHO CARRILLO HYDROLOGY FOR DETENTION ANALYSIS (ALTERNATIVE "1") CURRENT CONDITION ASSUMES UPSTREAM AND RANCHO CARRILLO DEVELOPED; DOWNSTREAM CURRENT CONDITIONS AS OP 8/12/88 WHEN TOPO WAS FLOWN.. MINOR IMPROVEMENTS TO SPILLWAY OF BRESSI DAM. DETAIN BACK TO CURRENT CONDITION WATERSHED TRIBUTARY TO SAN MARCOS CREEK DRAINAGE COURSE TERMINATES AT CONVERGENCE OF CREEK AND ALGA ROAD ANALYSIS TO MEET ZONE 10, 17 9 IB REQUIREMENTS 100 YEAR - SHR STORM EVENT DETERMINED WATERSHED FROM USGS 2000 SCALE QUAD MAPS & 200 SCALE ONSITE MAPS CM, LAG AND DRAINAGE AREA BASED ON EACH INDIVIDUAL WATERSHED ROUTED THROUGH CREEK, EXISTING EARTH DAM AND GOLF COURSE DOWN TO ALGA ROAD LAG FOR STORM DRAIN INTO MELROSE AND EL FUERTE CULVERTS USED CONVERSION FORMULA FROM RATIONAL METHOD TO SCS METHOD JN 12119 APRIL IB, 1993 Rev B/12/93 Rev 9/16/93 OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL I PLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAFH PLOT SCALE HYDROGRAPH TIME DATA NMIN IDATE ITIME NQ NDDATE NDTIME I CENT 2 2 a APRS 5 0000 300 28APR55 0958 19 COMPUTATION INTERVAL TOTAL TIME BASE MINUTES IN COMPUTATION INTERVAL STARTING DATE STARTING TIME NUMBER OF HYDROGRAPH ORDINATES ENDING DATE ENDING TIME CENTURY MARK .03 HOURS 9.97 HOURS ENGLISH UNITS DRAINAGE AREA P~R~ECIP'iTAfTON" DEPTH LENGTH, ELEVATION FLOW STORAGE VOLUME SURFACE AREA TEMPERATURE SQUARE MILES INCHES FEET CUBIC FEET PER SECOND ACRE.-FEET ACRES DEGREES FAHRENHEIT 155 KK BASL2 156 KO 157 BA OUTPUT CONTROL VARIABLES IPRNT 1 PRINT CONTROL I PLOT 2 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE SUBBASIN RUNOFF DATA SUBBASIN CHARACTERISTICS TAREA .70 SUBBASIN AREA 26 PB PRECIPITATION DATA STORM 2.90 BASIN TOTAL PRECIPITATION PEAK FLOW (CFS) 635. TIME (HR) 2.30 (CFS) (INCHES) (AC-FT) e-HR 130 . 1.730 64. MAXIMUM AVERAGE FLOW 24-HR 72-HR CUMULATIVE AREA 73. 1.730 64. .70 SQ MI 78. 1.730 64. 9.97-HR 78 . 1.730 64. A-5 STATION BASL2 0. .00 DAHRMN PER 2SOOOO 1O- 290002 280004 2B0006 280130 280132 280134 280136 280138 280140 280142 230144 280146 280148 280150 280152 280154 280156 28015S 280200 280202 280204 280206 280208 280210 280212 230214 280216 28021B 280220 280222 280224 280226 280228 280230 230232 230234 230236 280233 280240 230242 280244 280246 280249 280250 280252 280254 23O256 280258 280300 230302 230304 280306 280308 230310 280312 230314 290316 230318 100. 280320 101. 280322 102. 280324 103. 280326 104. 280328 105. 280330 106. 280332 107. 280334 108. 280336 109. 280338 110. 280340 111. 100. .00 (O) OUTFLOW 200. 300. .00 .00 400. .00 500.SOO . .00 700. .00 0. .08 0.0. (L) PREC1P, .04 0. (X) EXCESS -02 2O 30 4O 4 SO 47O 480 49O SOO 51.0. . 52 .0 53 .0 54 .0 55.O 56. 0 57. O 53. O 59. O 60. 0 61. . O 62. O 63 . 0 64. 0 65. 66. 67. 68. 69. 70. 71. .. 72. 73 . 74 . 75. 76. 77. 78. 79. 80 . 81. . . 82. 83. 84 . 85. 86. 87. 89. 90 . 91 . 92. 93. 94. 95. 96. 97. 98. 99. LLLLL. LLLLL LLLLL. LLLLL. LLLLX. . . .LLLLX. LLLLX. LLLLX. . LLLLLLX. .LLLLLLLXX. .LLLLLLLXX. .LLLLLLLXX. .LLLLLLLXX. .LLLLLLLXX. .LLLLLLLXX. .LLLLLLXXX. -LLLLLLXXX. .LLLLLLXXX. .LLLLLLXXX. .LLLLLLXXX. .LLLLLLXXX. .LLLLLLXXX. .LLLLLXXXX. 0. 0. 0. O. O O . .0. .O 0 0 O. 0. LLLLLLLLLLLLLLLLLLLLXXXXXXXXXXXXXXXX . LLLLLLLLLLLLLLLLLLLXXXXXXXXXXXXXXXXX. LLLLLLLLLLL.LLLLLLXXXXXXXXXXXXXXXXXXX. LLLUjLLLLLLLLLLLXXXXXXXXXXXXXXXXXXXX. LLLLLLLLLLLLLLLXXXXXXXXXXXXXXXXXXXXX. LLLLLLLLLLLLLLXXXXXXXXXXXXXXXXXXXXXX. LLLLLLLLLLLLLXXXXXXXXXXXXXXXXXXXXXXX. LLLLLLLLLLLLXXXXXXXXXXXXXXXXXXXXXXXX. LLLLLLLLLLLLXXXXXXXXXXXXXXXXXXXXXXXX. LLLLLLLLLLLXXXXXXXXXXXXXXXXXXXXXXXXX. LLLLLLLLLLLXXXXXXXXXXXXXXXXXXXXXXXXX. LLLLLLLLLLXXXXXXXXXXXXXXXXXXXXXXXXJCX. LLLLLLLLLXXXXXXXXXXXXXXXXXXXXXXXXXXX. LLLLLLLLLXXXXXXXXXXXXXXXXXXXXXXXXXXX. LLLLLLXXXXXXXXXXXXXXXXX. LLLXXXXXXX. LLLXXXXXXX. LLXXXXXXXX. LLXXXXXXXX. LLXXXXXXXX. LLXXXXXXXX. LLXXXXXXXX. LLXXXXXXXX. LLXXXXXXXX. LLXXXXXXXX. LLXXXXXXXX. LLXXXXXXXX. LLXXXXXXXX. LLXXXXXXXX. .LLXXXXXXX. . LLXXXXXX. LLXXXXXX. . LLXXXXXX. . LLXXXXXX. . LLXXXXXX. . LLXXXXXX. . LLXXXXXX. . LLXXXXXX. . LLXXXXXX. . LLXXXXXX. . LLXXXXXX. LLXXXXXX. A-6 280342 112. O . 280344 113. . 0 . 280346 114. . 0 . 280348 US. . 0 . 280350 116. . O . 280352 117. . O . 280354 118. 0 280356 119. . 0 . 230358 120. . 0 . 280400 121 0 280402 122. . 0 . 280404 123. . 0 . 280406 124. . 0 . 230408 125. . 0 . 280410 126. . 0 . . . . .... 280412 127. . 0 . 280414 128. . 0 . 280416 129. . 0 . 280418 130. . 0 . 280420 131 O 280422 132. . 0 280424 133. . O . 280426 134. .O ....... 280428 135. .O ....... 280430 136. .O ....... 280432 137. -O ....... 280434 133. 0 ... .... 280436 139. 0 ....... 280438 140. 0 ... .... 280440 141 O 280442 142. O ....... 280444 143. O 280446 144. 0 230448 145. 0 ... .... 280450" 146. O . 280956 2990 . ... .... 280958 3000 .-- . - . . . . . . 1 * * 160 KK * PTS * * * LLXXXXXX . LLXXXXXX LLXXXXX LXXXX LXXXX LXXXX LXXXX LXXXX LXXXX LXXXX LXXXX LXXXX LXXXX XXXXX XXXXX XXXXX LXXXX xxxx xxxx xxxx xxxx. xxxx. xxxx xxxx. xxxx. xxxx. xxxx. xxxx. xxxx. xxxx. LXXX. txxx. 162 KO 163 HC OUTPUT CONTROL VARIABLES IPENT 1 PRINT CONTROL IPLOT 2 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE HYDROGRAPH COMBINATION ICOMP 2 NUMBER OF HYDROGRAPHS TO COMBINE PEAK FLOW (CFS) 1452. TIME (HR) 2.30 MAXIMUM AVERAGE FLOW (CFS) (INCHES) (AC-FT) 6-HR 650. 1.542 322. CUMULATIVE AREA 24-HR 431. 1 .701 355. 3.92 SQ MI 72-HR 431. 1.701 355. STATION 9.97-HR 431. 1.701 355. PTS 200. (O) OUTFLOW 400. 600.800.1000.1200.1400.1600.0 .0. DAHRMN PER 280000 10--- 230150 56. 0 A-7 2801S2 57. O 280154 58. O 280156 59. 0 2B01SB SO. 0 280200 61. .0 280202 62. 0 280204 63. O 280206 64. O 280208 65. 0 280210 56. 0 . 280212 67. 0 . 280214 68. 0 . 280216 69. 0 . 280218 70. O ...... 280220 71 O 280222 72. . 0 . 280224 73. . .0 ..... 280226 74. . . 0 . . . . . 280228 75. .0 280230 76. . . . O . 280232 77. . . . 0 . . . 280234 78. . . . O 280236 79. .... 0 .. 280238 80. . . . . . O . 280240 81 . .0. ....... 280242 82. . . . . . . O . 280244 83. . . . . . 0 280246 84. ...... .0 280248 B5. . . . . . . . O 280250 86. . . . . . . .0 280252 87. ...... 0 280254 88. . . . . . . 0 . 280256 89. . . . . . . O . 280258 90. . . . . . 0. 280366" '91 0 280302 92. . . . . . 0 . 280304 93. O 280306 94. . . - . 0 . 280308 95. . . . 0 280310 96. . . . . O . 280312 97. . . . . O . 280314 98. . . . . O . 280316 99. . . . . 0 . 280318 100. . . . .0 ... 280320 101 0 280322 102. . 0 280324 103 .... O. ... 28Q32S 104. . . . O. . . . 280328 105. . . . 0 . 280330 106. . . . 0 . 280332 107. . . 0 . 280334 108. . . . O . 280336 109. . . . O . 280338 110. . . . O . 280340 111 O 280342 112. . . . O . 280344 113. . . . O . 280346 114. . . . O . 280348 115. . . O . 280350 116. . . . O . 280352 117. . . . 0 . 280354 118. . . . O . Z80356 119. . . O 280358 120. . . . O . 280400 121 0 280402 122. . . O 280404 123 . . . . 0 . 280406 124. . . . 0 . 280408 125. . . . 0 . 2B0410 126. . . . 0 . 280412 127. . . . 0 . 280414 128. . . . O . 280416 129. . . . O . 280418 130. . . . 0 . 280420 131 0 280422 132. . . . 0 280424 133. . . . 0 A-8 I 1 1 1 ; S ' P I P 1 1 290425 134. 290428 135. 280430 136. 280432 137. 280434 138. 280436 139. 280438 140. 280440 141 280442 142. 280444 143. 280446 144. 280448 145. 280450 146. 280452 147. 280454 148. 280456 149. 230458 150. 280500 151 280502 152. 280504 153. 280506 154. 280508 155. 230510 156. 280512 157. 280514 158. 280516 159. 280518 160. 280520 161 280522 162. 280524 163. 280526 164. 280528 165. 280530 166. 280532 167. 280534'isa. 280536 169. 280538 170. 280540 171 280542 172. 280544 173. . 280546 174. 280548 175. 280956 299. 0 280958 300. -0-- .-- . 0 ...... . . 0 ...... . . 0 ...... . . 0 ...... . . o . . o . . . . . . . . '_ . o . o . 0 . . 0 . . 0 . . o . . . . . . . . \ . 0 . . 0 . . 0 . . .... . 0 . . 0 . . . . . . . . ' 0 . 0 . . . . . . . o . . . . . . . . 0 . . . . . . . . ' . 0 . . . . . . . . [ . 0 . . . . . . . . ' . 0 . . . . . . . . ' . o . . . . . . . . [ . 0 . . 0 . 0 . 0 . . 0 . . 0 . . . . . . . . ' . o . . 0 . . o . . . . . . . . ' . o . . 0 . . 0 . . . . . . . . ' o . . . 0 . . o . . o . . o . • I I e m ft OPERATION HYDROGRAPH AT ROUTED TO ROUTED TO HYDROBRAPH AT 2 COMBINED AT ROUTED TO HYDROGRAPH AT STATION RTEP-G BASING PTG RTEG-1 BASIN1 RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES PEAK TIME OF AVERAGE FLOW FOR MAXIMUM PERIOD FLOW PEAK 6-HOUR 24-HOUR 72-HOUR 363. 675. 906. 906. 340. 2.77 261. 2.87 250. 2.97 2.80 2.83 2.83 2.77 69. 69. 69. 140. 210. 210. sa. 42.42. 42. 42. 85. 126. 41. 85. 125. 126. 41. BASIN MAXIMUM TIME OF AREA STAGE MAX STAGE .39 .39 .39 .79 1.18 1.18 .38 424.21 360.15 2.87 2.97 232.10 2.33 A-9 2 COMBINED AT PT1 1239. 2.80 277. 167. 167. 1.56 ROUTED TO DETAIN 380. 3.77 272. 167. 167. 1.56 277.02 3.77 HYDROGRAPH AT BASIN1A 215. 2.83 47. 28. 28. .23 2 COMBINED AT PT1A 540. 2.90 318. 195. 195. 1.79 HYDROGRAPH AT BASIN1A 75. 2.83 16. ..10. 10. .08 2 COMBINED AT PT1AA 614. 2.87 334. 205. 205. 1.87 ROUTED TO RTE1A-2 586. 2.97 333. 205. 205. 1.87 227.85 2.97 HYDROGRAPH AT BASIN2 461. 2.77 88. 53. 53. .45 2 COMBINED AT PT2 916. 2.80 417. 357. 257. 2.32 ROUTED TO RTE2-1 540. 3.97 407. 253. 253. 2.32 171.14 3.97 HYDROGRAPH AT BASIN3 S3. 2.T3 12. 7. 7. .0^ 2 COMBINED AT PT3 553. 3.77 418. 261. 261. 2.39 ROUTED TO DETAIN 453. 6.30 398. 261. 261. 2.39 156.19 6.30 HYDROGRAPH AT BASIN 238. 2.33 S3. 32. 32. .27 2 COMBINED AT PT3A 489. 6.23 441. 292. 292. 2.66 ROUTED TO RTE3A-3B 489. 6.27 441. 292. 292. 2.66 116.20 6.27 HYDROGRAPH AT BA5IN3B 293. 2.80 60. 36. 36. .32 2 COMBINED AT PT3B 741. 2.83 492. 328. 323. 2.98 ROUTED TO RTE3B-4 674. 2.93 490. 327. 327. 2.98 116.54 2.93 HYDROGRAPH AT BASL1 233. 2.77 44. 27. 27. .24 2 COMBINED AT PT4 822. 2.83 527. 353. 353. 3.22 HYDROGRAPH AT BASL2 635. 2.BO 130. 78. 78. .70 2 COMBINED AT PTS 1452. 2.80 650. 431. 431. 3.92 ROUTED TO RTE 1177. 2.97 644. 428. 428. 3.92 A-10 **• NORMAL END OF HEC-1 *** A-ll 67.28 2.97 HYDROGRAPH AT BASL3 876. 2.80 176.106.106..94 2 COMBINED AT FT6 1904. 2.83 807.S34.534.4.86 HYDROGRAPH AT PT6 113. 2.77 23.14.14..12 2 COMBINED AT PT6 2012. 2.83 4.98 FLOOD HYDROGRAPH PACKAGE (HEC-1) * SEPTEMBER 1990 * VERSION 4.0 • * RUN DATE 08/07/1998 TIME 16:10:50 * U.S. ARMY CORPS OF ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 9S61S (916) 756-1104 X XXXXXXX XXXXX .. X X X X XXXXXXX X X X X X X xxxx X X X X X X X X XXXXX X XX X X X X X XXXXXXX XXXXX XXX PART II. PROPOSED (AFTER LA COSTA GREENS) CONDITIONS THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OP HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW. THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE , SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, OSS; READ TIME SERIES_ AT DEglHED CALCULATION INTERVAL LOSS RATE: GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM"' " ~~ - - HEC-1 INPUT PAGE LINE ID. , m *** FREE *** 1 2 3 4 5 6 7 a 9 10 n 12 13 14 15 16 17 ia 19 20 21 22 ID MODELS DETENTION AT MELROSE, BRESSI, AND EL FUERTE. 84" AND 20" PIPES AT ID BRESSI. 20" PIPE FUNCTIONING. NON-DSOD FACILITY AT BRESSI AND EL FUERTE. ID FILENAME: MBEFDET.HC1 3-/31/98 J-12960 £D if************************************************************************* ID MODIFIED FROM RICK ENGINEERING ID RANCHO CARRILLO HYDROLOGY FOR DETENTION ANALYSIS (ALTERNATIVE "1") ID CURRENT CONDITION ASSUMES UPSTREAM AND RANCHO CARRILLO DEVELOPED; DOWNSTREAM ID CURRENT CONDITIONS AS OF 8/12/88 WHEN TOPO WAS FLOWN. MINOR IMPROVEMENTS ID TO SPILLWAY OF BRESSI DAM. DETAIN BACK TO CURRENT CONDITION ID WATERSHED TRIBUTARY TO SAN MARCOS CREEK ID DRAINAGE COURSE TERMINATES AT CONVERGENCE OF CREEK AND ALGA ROAD ID ANALYSIS TO MEET ZONE 10, 17 9 18 REQUIREMENTS ID 100 YEAR - SHE STORM EVENT ID DETERMINED WATERSHED FROM USGS 2000 SCALE QUAD MAPS & 200 SCALE ONSITE MAPS ID CN, LAG AND DRAINAGE AREA BASED ON EACH INDIVIDUAL WATERSHED ROUTED THROUGH ID CREEK, EXISTING EARTH DAM AND GOLF COURSE DOWN TO ALGA ROAD ID LAG FOR STORM DRAIN INTO MELROSE AND EL FUERTE CULVERTS USED CONVERSION ID FORMULA FROM RATIONAL METHOD TO SCS METHOD ID JN 12119 APRIL 18, 1993 Rev 8/12/93 Rev 9/16/93 IT 2 28APRS5 0 300 10 5 23 24 25 26 27 29 29 30 31 KK BA IN PB PI PI PI LS UD PTPDRAINAGE AREA UPSTREAM OF 0.39 15. 28APR55 2.90 0. .IBS .02 0. .105 .0175 .05 .02 87 .0175 .OS .02 .0225 .04 .02 PALOMAH AIRPORT ROAD .0225 .0275 .0275 .0475 .0475 .04 .0275 .0275 .0225 .0225 .02 .185 .02 32 33 KK DETAIN RS 1 STOR A-12 34 35 36 37 38 39 40 41 42 43 44 45 46 LINE 47 48 49 50 SI 52 53 54 55 56 . 57 SB 59 60 61 62 63 64 65 66 67 63 69 70 71 72 73 74 75 76 77 78 79 BO ai 82 83 B4 85 86 87 88 89 90 SV SQ SE KK KM RS RC RX RY KK BA LS UD ID KK KM HC KK KM RS RC RX RY KK BA LS ub' KK KM HC KK RS SV SV SQ SQ SE SB KK BA LS UD KK KM HC KK BA LS UD KK KM HC KK KM RS ac RX RY 0 .05 1.02 4. 55 12.13 23.09 39.85 0 28.2 iaO.8 275.4 345.2 403.2 453.8 413 415 420 425 430 RTEP-G ROUTE DESIGN POINT P TO POINT G 1 STOR -1 .035 .035 .035 S300 .030 0 95 190 290 390 420 400 380 360 360 435 440 490 590 695 380 400 420 BASINGDRAINAGE AREA BETWEEN POINT G AND POINT P 0.79 0. 87 .182 HEC-1 INPUT 1 2 3 4 5... . PTG PAGE 2 . .6 7 8 9 10 COMBINE FLONS AT POINT G - DRAINAGE AREA UPSTREAM OF VILLAGE G ROAD 2 RTEG-1 ROUTE DESIGN POINT G THRU BASIN 1 1 STOR -1 .035 .035 .035 240 0.25 0 50 100 140 155 242.5 237.5 235 230 232 BASIN1DESIGN POINT 1 DRAINAGE AREA BETWEEN 0.38 0. 87. .14 PT1 COMBINE FLOWS FROM DESIGN POINT G - AREAS 2 DETAIN 1 STOR -1 0 .87 3.76 9.01 15.65 23 170 210 270 235 245 255 VILLAGE G ROAD AND MELROSE AVENUE BETWEEN MELROSE AND VILLAGE G .57 32.74 43.3 55.38 69.13 84.75 102.12 121.5 141.84 164.27 189.2 215.34 0 0 58.4 152 224 456 496 528 552 568 262 264 266 268 270 282 284 286 289 290 280 328 360 400 440 568 568 272 274 276 278 280 292 293.9 BASIN1ADESIGN POINT 1A STORM DRAIN INTO MELROSE AVENUE CULVERT .23 0. 90. .23 PT1A COMBINE FLOWS FROM DESIGN POINT 1 - STORM 2 DRAIN INTO MELROSE AVENUE CULVERT BASIN1ADESILTING POINT 1A STORM DRAIN FEEDING HISTORIC BRIDGE 0.08 0. 90 . .23 PT1AA COMBINE FLOWS FROM DESIGN POINT 1A - STORM 2 RTE1A-2 ROUTE DESIGN POINT 1A THRU BASIN 2 1 STOR -1 .035 .035 .035 4224 .026 0 50 100 140 155 235 232.5 230 225 227 HEC-1 INPUT DRAIN FEEDING HISTORIC BRIDGE 170 210 270 230 240 2SO PAGE 3 LINE ID 1 2 3 4 5 6 7 8 9 10 A-13 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 . ' 117 118 iig' 120 121 122 121 124 125 126 127 128 129 130 131 132 133 134 13S LINE 136 137 138 139 140 141 142 143 144 145 146 147 143 149 150 KK BA LS UD KK KM HC KK KM RS SV SV SQ SQ SE SE KK BA LS UD KK KM HC KK KO RS SV SV "SQ SQ SE SE KK BA LS UD KK KM HC BASIN2DESIGN POINT 1 DRAINAGE AREA BETWEEN MELROSE AVE & BRESSI EARTH 0.45 0. 89. .09 PT2 COMBINE FLOWS FROM DESIGN POINT IA - AREA BETWEEN MELROSE & EARTH DAM 2 RTE2-3 ROUTE DESIGN POINT 2 THRU BASIN 3, DETENTION AT BRESSI DAM 1 STOR -1 0 0.77 4.62 11.01 18.92 23.29 35.63 37.83 40.07 46.52 49.39 0 26.6 29.7 213.5 355.8 476.1 554.4 575.4 595.9 649.5 671.5 154.8 162 164 1S6 168 170 171.4 171.8 172.2 173.3 173.8 BASIN3DESIGN POINT 3 DRAINAGE AREA BETWEEN BRESSI EARTH DAM & EL FUERT 0.07 0. 87. 0.037 PT3 COMBINE FLOWS FROM DESIGN POINT 2 - AREA BETWEEN BRESSI EARTH DAM & EL 2 DETAIN 0 2 1 STOR - 1 0 0.01 0.39 1.66 4.72 10.23 17.93 27.24 37.76 60.93 73.44 "6" 2~."l 45.0 122.1 217.4 293".0 352.9 4fi4.fi 449.4 528.3 563.8 141.50 142 144 146 148 150 152 154 156 160 1-62 BASIN3A DESIGN POINT 3A - STORM DRAIN INTO EL FUERTE STREET CULVERT .27 0. 89. 0.238 PT3A COMBINE FLOWS FROM DESIGN POINT 3 - STORMDRAIN INTO EL FUERTE CULVERT 2 DAM 43.5 626.7 172.8 E ST FUERTE 49.04 4W. 6 158 KKRTE3A-3B KM RS RC RX RTf ID KK BA LS UD KK KM HC KK KM RS RC RX RY KK BA ROUTE DESIGN POINT 3A THRU BASIN 3B 1 STOR -1 .035 .035 .035 500 .010 0 255 314 406 420 423 432 460 120 118 118 114 114 118 120 130 HEC-1 INPUT 1 2 3 4 5 6 7 8 9. BASIN3BDESIGN POINT 3B DRAINAGE AREA BETWEEN EL FUERTE AND CONFLUENCE P 0.32 0 38 0.146 PT3B 10 OINT COMBINE FLOWS FROM DESIGN POINT 3A - AREA BETWEEN EL FUERTE AND CONFLUENCE PT 2 RTE3B-4 ROUTE DESIGN POINT 3B THRU BASIN LI (N=0.040 FOR 3320') 1 STOR -1 0.03S 0.035 0.040 2500 0.011 0 255 314 406 420 428 432 460 120 118 118 114 114 118 120 130 BASL1 0.238 PAGE A-14 151 152 1S3 154 155 156 157 isa 159 160 161 1S2 163 1S4 165 166 167 168 169 170 171 172 173 174 175 176 LINE 177 178 179 130. 131 182 183 184 IBS IBS 187 188 189 190 191 192 LS UD KX KM KO HC KK BA LS UD KK KM KO HC KK KO RS SA SQ SE KK KM RS RC RX RY ID KK BA LS UD KK KM HC KK KM BA LS UD KK KM HC ZZ 0 89.2 0.095 PT4 COMBINE FLOWS PROM DESIGN POINT 3B AND SUBBASIN LI 1 2 2 BA5L2 0.698 0 88.4 0.13 PTS COMBINE FLOWS FROM SUB BASINS LI AND L2 1 2 2 PT4 FLOODWATER DETENTION BASIN AT INTERSECTION 0 2 1 STOR -1 0 0.8 4.02 4.2 4.6 4.8 0 100 500 1000 1500 2000 99 100.2 101.8 103.3 104.7 105.8 RTES ROUTE DESIGN POINT 5 THRU BASIN L3 TO OUTLET 1 STOR -1 0.031 0.031 0.060 4000 0.0055 0 1S5 823 330 831 839 37S 967 100 75 65 64 64 65 75 100 HEC-1 INPUT PAGE 5 1 2 3 4 5 6 7 8 9. ..10 BASL3DESIGN POINT 6 DRAINAGE AREA BETWEEN CONFLUENCE POINT AND ALGA R OAD 0.944 o a 9". 4 0.152 PT6 COMBINE FLOWS FROM DESIGN POINT 6 2 PT6 BASIN L4 OUTFLOW 0.121 0 89.7 0.143 PT6 COMBINE FLOWS 2 FLOOD HYDROGRAPH PACKAGE SEPTEMBER 1990 VERSION 4.0 (HEC-1) * RUN DATE 08/07/1998 TIME 16:10:50 * U.S. ARMY CORPS OP ENGINEERS HYDROLOGIC ENGINEERING CENTER 609 SECOND STREET DAVIS, CALIFORNIA 95616 (916) 756-1104 MODELS DETENTION AT MELROSE, BRESSI, AND EL FUERTE. 84" AND 20" PIPES AT BRESSI . 20" PIPE FUNCTIONING. NON-DSOD FACILITY AT BRESSI AND EL FUERTE. FILENAME: MBEFDET.HC1 3/31/98 J-12960 MODIFIED FROM RICK ENGINEERING RANCHO CARRILLO HYDROLOGY FOR DETENTION ANALYSIS (ALTERNATIVE "1") CURRENT CONDITION ASSUMES UPSTREAM AND RANCHO CARRILLO DEVELOPED; DOWNSTREAM A-15 m H CURRENT CONDITIONS AS OP 8/12/88 WHEN TOPO WAS FLOWN. MINOR IMPROVEMENTS TO SPILLWAY OF BRESSI DAM. DETAIN BACK TO CURRENT CONDITION WATERSHED TRIBUTARY TO SAN MARCOS .CREJBK DRAINAGE COURSE TERMINATES AT CONVERGENCE OF CREEK AND ALGA ROAD ANALYSIS TO MEET ZONE 10, 17 a 18 REQUIREMENTS 100 YEAR - 6HR STORM EVENT DETERMINED WATERSHED FROM USGS 2000 SCALE QUAD MAPS & 200 SCALE OHSITE MAPS CM, LAG AND DRAINAGE AREA BASED ON EACH INDIVIDUAL WATERSHED ROUTED THROUGH CREEK, EXISTING EARTH DAM AND GOLF COURSE DOWN TO ALGA ROAD LAG FOR STORM DRAIN INTO MELROSE AND EL FUERTE CULVERTS USED CONVERSION FORMULA FROM RATIONAL METHOD TO SCS METHOD JN 12119 APRIL 18, 1993 Rev 8/12/93 Rev 9/16/93 22 10 IT OUTPUT CONTROL VARIABLES IPRNT 5 PRINT CONTROL IPLOT 0 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE HYDROGRAPH TIME DATA NMIN IDATE ITIME NQ NDDATE NDTIME I CENT 28APRSS 0000 300 2 8 APRS 5 0958 19 MINUTES IN COMPUTATION INTERVAL STARTING DATE STARTING TIME NUMBER OF HYDROGRAPH ORDINATES ENDING DATE ENDING TIME CENTURY MARK COMPUTATION INTERVAL TOTAL TIME BASE .03 HOURS 9.97 HOURS ENGLISH UNITS DRAINAGE AREA PRECIPITATION DEPTH _LENGTH. ELEVATION FLOW"" STORAGE VOLUME SURFACE AREA TEMPERATURE SQUARE MILES INCHES FEET "CUBIC" FEET PER SECOND ACRE-FEET ACRES DEGREES FAHRENHEIT DETAIN 115 KO OUTPUT CONTROL VARIABLES IPRNT S PRINT CONTROL IPLOT 2 PLOT CONTROL QSCAL 0 . HYDROGRAPH PLOT SCALE STATION DETAIN 1 DAHRMN •j annnnA a UU U U 280002 280214 280216 280218 2 80220 280222 280224 280226 280228 280230 280232 280234 230236 280238 28O240 0. 100. 200. 300. 400. 0. 0. 0. 0. 0. PER 21 ... 68. 01 69. 01 . 70. 01 71 01 72 . O I . 73. O I . 74. 01. 75. 0 . I 76. O . I . 77. 0. I. . 78. .0 . I . 79. .0.1. SO. . O . I Bl 0 I SOO. 600 . 0. 0. 0. 0. 0. 0. (S) STORAGE 0. 0. 10. 20 . 30 . 40. 0. 0. ..___._, - s .__... ..... ... .. ---.- S ...... s ...... 3 ...... 3 . . .3 S ...... s ...... .3 ...... .S ...... .3 ...... .3 ...... .S ...... . S . . S . S A-16 280242 82. 2S0244 S3. 280246 34. 2B0248 35. 230250 86. 230252 87. 230254 88. 260256 89. 280258 90. 280300 91 280302 92. 280304 93. 280306 94. 280308 95. 280310 96. 280312 97. 280314 98. 28031S 99. 230318 100. 230320 101 280322 102. 230324 103. 280326 104. 280328 105. 280330 106. 280332 107. 280334 108. 280336 109. 280338 110. 280340 111 280342 112. 280344 113 230346 114. 280348 115. 280350 116. 280352 117. 230354 118. 230356 119. 230358 120. 280400 121 280402 122. 280404 123. 280406 124. 280408 125. 230410 126. 280412 127. 280414 128. 280416 129. 280418 130. 280420 131 280422 132. 280424 133. 230426 134. 280428 135. 230430 136. 280432 137. 280434 138. 280436 139. 280438 140. 23 0440 141 280442 142. 280444 143. 280446 144. 280448 145. 280450 146. 230452 147. 280454 148. 230456 149. 280458 150. 230500 151 280502 152. 280504 153. 280506 154. 280508 155. 280510 156. 280512 157. 230514 158. 0. . I . . . S . 0. . I . . .3. 0 . I . . S . . 0 . .1 . . S . . 0 . .1 . . S . . 0 . . I . S 0. . I . .S. O . . 1 . .S. 0. . I . .S. 0 1 S 0 . . I . . S. 0 . . I. . S. o. . i . s 0. I . S 0 . .1 . - .3 Q . .1 . .S . . .0 . . I . . S . .0 . . I . . S . .0 . . I . .S. 0 1 S .0 . . I . S . O . . I . . S . O . I . S . 0 . . I . S 0 I . S . 0 - . I . . S . 0 I S . 0 . . I . . S . 0 . . I . .3. 0 I S 0 . I . . S O . . I . - . S 0 . I . .3 0 . . I . . .3o . . i . . . s 0 . I . . S . O . I . . S TO. . I . . . S . 0 . . I . . S 0 I S 0. I . . S . 0. . I . . S 0. I . S O . I . . S 0 I . . S . O I . . S . 0 . I . . S . .0 . I . . . S . .0 . I . . . S . . .0 I S .0.1- . .3. .O.I. - .3. .0.1. . S. .0.1. . . S .0.1. . . S .O.I. . . S .0 i . . .s .0 . I . . . .S .0.1. - . .3 o s . 0 . . • . . S . . 0 . . . . . S . . 0 . . . . S . 0 - . . . S . . 0 . . . . . S . . 0 . . . . . S . O.I. . . . S . . O.I. . . . S . . O.I. . . . S . ... ,0. ... I S O.I. . . . S . O.I. . . . S . 0 .1 . . . . • S . 0 .1 . - . S . 0 .1 . . . . S . 0 .1 . . . . S . 0 .1 . . . S . A-17 280516 159. 280518 ISO. 280S20 161 280522 162. 280524 163. 280526 164. 230528 165. 280530 166. 280532 167. 280534 168. 280536 169. 280538 170. 280540 171 280542 172. 280544 173. 280546 174. 280548 175. 280550 176. 280552 177. 280554 178. 280556 179. 280558 180. 280600 181 280602 182. 280604 183. 280606 184. 280608 185. 280610 186. 280S12 187. 280614 188. 2B0616 189. 280618 190. 280620 191 280622 192. 2a06aT"l93". 280626 194. 280628 195. 280630 196. 280632 197. 280634 198. 280636 199. 280638 200. 280640 201 280642 202. 280644 203. 2B0646 204. 290648 205. 280650 206. 280652 207. 280654 208. 280656 209. 280658 210. 280700 211 . . . 280702 212. 280704 213. 280706 214. 280708 215. 280710 216. 280712 217. 280714 218. 280716 219. 280718 220. 280720 221 280722 222. 280724 223. 280726 224. 230728 225. 290730 226. 280732 227. 280734 228. 280736 229. 280738 230. 230740 231 280742 232. 280744 233. 280746 234. 280748 235. 0 .1 0 .1 . 0 . . I 01 01 01 01 01 01. 01. 01. 01. 0. .1 01. 01. 01. 01. O I . 01. 01. ... 01. 01. O.I 01. 01. 01. 01. 01 OI . 01 01 I . I 10 TO . IO . 10. .10. . 10. .10. .10. .10. I. .0 .10. 10. 10. I. 0 . I. 0 . . . I . 0 I . 0 . I . O . I . 0 . . , . . . . .1 . . 0 1 . O . I . O . I . 0 . I . O . I . 0 . I . O . .1 . 0 . .1 . 0 . .1 . 0 . . . . . . . . .1 0 1 . O . I. . 0 . I . . 0 . I . . 0 . I .0 I . .0 I . . 0 I . 0 . I . . 0 . I . . . . .0 I . .0 . . I . .0 . . I . .0 . . I . .0 . s s s s . s . s s .s . 3 . . S . s . s . s s . s . s . s . s . s . s . s . s.s. . . . s. s. s. s. s. s. s. s. s. s s.s. s. s. s. s. s . s . s . s s . s . s . s . s . s s . s .s .s. . . . s . s . s . s . s . s . s . s s . s . s . • s . • s . • s . s . .s .3 . . , s s . . . s s. s. s . s . A-18 280750 280752 280754 230756 280758 280800 230802 280B04 280806 280808 280310 280812 280814 290816 280818 280820 230822 280824 280826 290828 280830 280832 280834 280836 280838 280840 280842 280344 280846 280343 280850 280852 280854 280856 280TS8." 280900 230902 230904 280906 280908 280910 280912 280914 280916 230918 280920 230922 280924 280926 280928 280930 280932 230934 230936 280938 23O940 230942 280944 230946 280943 230950 2809S2 230954 280956 280958 236. 237. 223. 239. 240. 241. 242. 243. 244. 245. 246. 247. 248. 249. 250. 251. 252. 253. 254. 255. 256. 257. 258. 259. 260. 261. 262. 263. 264. 265. 266. 267. 263. 269. 270'. 271. 272. 273 . 274. 275. 276. 277. 278. 279. 280 . 281. 232. 233 . 284. 285. 286. 287. 288. 289. 290. 291. 292 . 293 . 294 . 295. 296. 297. 298. 299. 300 .- .1 I I. 0 0 0 0. 0. .0. 0 o o o 0 o I I I. I. I. I . I . I . . 0 . 0 .o .0 o . o 0.o . I I I I I I I I II. .oo .o o. .s s s s. .s s 5. 5. .s .s .s .s.s .3 .s .3 s s . 10 IO 10 I I I I I 153 KK £>T4 A-19 155 KO 156 HC OUTPUT CONTROL VARIABLES I PRUT 1 PRINT CONTROL I PLOT 2 PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE HYDROGRAPH COMBINATION ICOMP 2 NUMBER OF HYDROGRAPHS TO COMBINE PEAK FLOW (CFS) 856. TIME (HR) 2. 83 (CFS) (INCHES) (AC-FT) 6-HR 530. 1.531 263. MAXIMUM AVERAGE FLOW 24-HR 72-HR CUMULATIVE AREA 355. 1.704 293. 3.22 SQ MI 355. 1.704 292. 9.97-HR - 355. 1.704 292 . 0. DAHRMN PER 280000 10 280002 280D04 280006 230122 230124 230126 230128 230130 100. (0) OUTFLOW 200. 300. STATION PT4 500. 600.700.800.9QO. 230132 230134 280136 230138 230140 230142 280144 230146 280148 280150 280152 280154 230156 280153 280200 230202 230204 230206 230208 230210 230212 280214 280216 280218 230220 280222 280224 280226 280228 280230 230232 230234 230236 230238 230240 280242 280244 290246 280249 280250 280252 280254 280256 20 3O 4O 420 430 440 450 _4_sg_ 47O 480 49.0 50.0 51.0. 52.0 53.0 54.0 55. 0 56. O 57. O 58. 0 59. O 60. 61. . 62. 63 . 61. 65. 66. 67 . 68. 69. 70. 71. . 72 . 73. 74 . 75. 76. 77. 78. 79. BO. 81. . 32. 83 . 84. 85. S6. 87. 88 . 89. O O O. O 0. 0. . 0 . 0 0. A-20 230258 90. ... 0 «• 280300 91 0 . . 280302 92. . . . . . . . O «, 280304 93. . . . . . . O 230306 94. . . . . . . O . 280308 95. . . . . . . O . 280310 96. . . . . . . O . 280312 97. . . . . . . 0 . <• 280314 98. . . . . . . O 280316 99. . . . . . .0 . m 280318 100. . . . 0 280320 101 0 280322 102. ..... 0. . ** 280324 103 . . . . . . 0 . 280326 104. . . . . . 0 . •• . * 280328 105. . . . . . 0 . 280330 106. . . . . . 0 . „, 280332 107. . . . . . O . 280334 108. . . . . . O . 280336 109. . . . . . 0 . ** 280338 110. . . . . . O . 280340 111 O ** 280342 112. . . . . O . 280344 113. . . . . . O . m 280346 114. . . . . . O . 2B0348 115. . . . . . 0 . 2803SO 116. . . . . . O . <» 280352 117. . . . . . 0 . 2803S4 118. . . . . . 0 . -m 280356 119. . . . . . 0 . 280358 120. . . . . . 0 . 280400 121. . O ** 280402 122. . . . . . O . 2J3O404_ 123. . . . . . 0 . * 280406 124. . . . . . O . 280408 125. . . . . . O . 280410 126. . . . . . O . 2B0412 127. . . .- . 0 280414 128. . . . . . 0 . "* 280416 129. . . . . . 0 280418 130. . . . . . 0 . m 280420 131 0 280422 132. . . . . . 0 . 280424 133. . . . . . 0 . 280426 134. . . . . . 0 . 280428 135. . . . • . 0 . .„ 280430 136. . . . . . 0 . 280432 137. . . . . . 0 . — 280434 138. . . . . . 0 . 280436 139. . . . • . 0 . 280438 140. . . . . . 0 . <• 280440 141 O 280442 142. . . . . . O . m 280444 143. . . . • . O . 280446 144. . . . • . O . 280448 145. . . - . . 0 . "* 280450 146. . . . . . O . 280452 147. . . . . . 0 . '* 280454 14B. . . . . . 0 . 280456 149. . . . . . O . 280458 150. . . - - . O . 280500 151 0 280502 152. . . . • . O . 280504 153. . . . • . 0 . 280506 154. . . . • . O . * 280508 155. . . . . . 0 . 280510 156. . . . • . 0 . m 280512 157. . . . • . 0 . 280514 158. . . . • . 0 . 280516 159. . . . • . 0 . " 280513 160. . . . . . 0 . 280520 161 0 <* 230522 162. . . . . . 0 . 280524 163. . . . • . 0 . m 280526 164. . . . . . 0 . 280528 165. . . . • . 0 . _ 280530 166. . . . • . 0 . A-21 280532 167. . . . . . O 230534 168. . . . . .0 2BOS3S 163. . . . . .0 280S3B 170. . . . . .0 280540 171 0 280542 172. . . . . .0 280544 173. . . . . . 0 280546 174. . . . . . O 280548 175. . . . . .0 280550 176. . . . . . 0 280552 177. . . . . . O 2805S4 178. . . . . . O 280556 179. . . . . . 0 280558 180. . . . . . 0 280600 181 0 280602 182. . . . . . 0 280604 183. . . . O 280606 184. . . . 0 280608 185. . . . O 280610 186. . . . . . O 280612 187. . . . . . O 280614 188. . . . . .0 280616 139. . . . . . O 280618 190. . . . O 280620 191 O. 280622 192. . . . . . O 280624 193. . . . . . O 280626 194. . . . . . O 280628 195. . . . . . O 280630 196. . . .0 280632 197. .... 0 280634 198. . . . .0. 280636 199. . . . .0. 230638 _2_00. . . . . 0 . 28064~0~ 20~i. ! 0 .... 280642 202. . . . . 0 . 280644 203. . . . . O . 280646 204. . . .- . 0 . 280648 205. . . . 0 280650 206. . . . . 0 . 280652 207. . . . . 0 . 280654 208. . . . . 0 . 280656 209. . . . . 0 . 280658 210. . . . . O . 280700 211 0 280702 212. . . . . O . 280704 213. . . . . O . 280706 214. . . . . 0 . 280708 215. . . . . O . 280710 216. . . . . 0 . 280712 217. . . . . 0 . 280714 218. . . . . 0 . 280716 219. . . . . O . 280718 220. . . . . 0 . 280720 221 O 280722 222. . . . 0 280724 223. . . . . 0 . 280726 224. . . . . 0 280728 225. . . . . 0 . 280730 226. . . . . 0 . 280732 227. . . . . 0 . 280734 228. . . . . 0 . 280736 229. . . . . 0 280733 230. . . . . 0 . 280740 231 0 280742 232. . . . . 0 . 280744 233. . . . . 0 . 280746 234. . . . .0 . 280748 235. . . . .0 . 280750 236. . . .0 280752 237. . . . .0 . 280754 238. . . . .0 . 280756 239. . . . 0 . 280758 240. . . . 0 . 280800 241 0 230802 242. . . . 0. . 280804 243 ... 0. A-22 290306 280808 280810 280912 280814 280816 280818 290820 230822 280824 280826 280828 280830 280832 280834 2B0836 280838 280840 280842 280844 280846 280958 244. 245. 246. 247. 248. 249. 250. 251. 252. 253. 254. 255. 256. 257. 258. 259. 260. 261. 262. 263. 264. 300.- .0 .O o -«« 1 m m 161 KK PT5 163 KO 164 HC OUTPUT CONTROL, VARIABLES IPRNT 1 PRINT CONTROL I PLOT 2- PLOT CONTROL QSCAL 0. HYDROGRAPH PLOT SCALE HYDROGRAPH COMBINATION ICOMP 2 NUMBER OF HYDROGRAPHS TO COMBINE PEAK FLOW (CFS) 1522. TIME (HR) 2 .80 (CFS) (INCHES) (AC-FT) 6-HR 654. 1.552 324. MAXIMUM AVERAGE FLOW 24-HR 72-HR CUMULATIVE AREA 435. 1.714 358. 3 .92 SQ MI 435. 1.714 358. STATION 9.97-HR 435. 1.714 359. PTS DAHRMN 230000 280002 280124 280126 290128 280130 280132 280134 280136 280138 280140 280142 230144 280146 290148 290150 (O) OUTFLOW 0. 200. 400. 600. 800. 1000. 1200. 1400. 1600. 0. 0. 0. 0. PER 20 ............ 430 . ........... 440 ............ 450 . . . . . . . . . 460 ............ 470 ............ 480 . ........... 49.0 . . . ......... 50.0 ............ 51 0 . . 52.0 . . . ......... 53.0 . ........... 54.0 . ........... 55. 0 56. 0 . . . . • • • . • . A-23 280152 57. 0 280154 58. 0 . . . 2J01S6 59. O 280158 60. 0 . . 280200 61. . .0 280202 62. O 2B0204 63. 0 . 290206 64. 0 280208 65. 0 . 280210 66. O . 2B0212 67. O . 280214 68. 0. ...... 280216 69. 0. . . ... 280218 70. .O ...... 280220 71 0 280222 72. . Q . . ... 280224 73. . . 0 . 280226 74. . . . O . 280228 75. . . . O . 280230 76. . . . . O 280232 77. . . . . O . 280234 78. . . . . .O . 280236 79. . . . . . 0 . 280238 80. . . . .O 280340 81 0 280242 82. . . . . O. 280244 83. . . . . . . .0 280246 84. . . . . . . . O 280248 85. . . . . O 2802SO 86. . . . . . . . O 280252 87. ...... O 280254 88. . . . . . . 0 . 280256 89. ..... 0 . 280258 90. . . . . . O . 280300" "sTiY". 0 280302 92. . . . . O. 280304 93. . . . . O . 280306 94. . . - . 0 . 230308 95. . . . O 280310 96. . . . . . 0 . 280312 97. . . . . O 280314 98. . . . . O . 280316 99. . . .O 280318 100. . . .0 ... 280320 101 0 280322 102. . O. ... 280324 103. . O. ... 280326 104. . . . 0 . 280328 105. . . 0 . 280330 106. . . . 0 . 280332 107. . . . 0 . 280334 108. . . . O . 290336 109. . . . 0 . 28033B 110. . . . 0 . 280340 111 O 280342 112. . . . O . 280344 113. . . . O . 280346 114. . . . O . 230348 115. . . 0 .. 280350 116. . . . O . 280352 117. . . . O . 280354 118. . . . O . 280356 119. . . . 0 . 2803S8 120. . . . 0 . 280400 121 0 280402 122. . . . 0 . 280404 123. . . . O . 280406 124. . . O 230408 125. . . . 0 . 280410 126. . . 0 280412 127. . . . O . 280414 128. . . . O . 280416 129. . . . 0 . 280418 130. . . 0 280420 131 O 280422 132. . . . 0 . 280424 133. . . . O . A-24 »«w ... *"* •** a <*» * *i ^4^ m m . •w <* m .4* !^B M 4H ^n '•*« 4*W ..« .•** *«» Ml '& •*• 41 *» *u> 230426 134. 280428 135. 280430 136. 230432 137. 280434 133. 280436 139. 280438 140. 280440 141 280442 142. 280444 143. 280446 144. 280448 145. 280450 146. 280452 147. 280454 148. 280456 149. 280458 150. 280500 151 280502 152. 280504 153. 280506 154. 280508 15S. 280510 156. 280512 157. 280514 158. 280516 159. 280518 160. 280520 161 280522 162. 280524 163. 280526 164. 280528 165. 280530 166. 280532 167. 280534 168. 280536 169. 280538 170. 280540 171. . . . 280542 172. 280544 173. . 280546 174. 280548 175. 280550 176. 280552 177. 2SOS54 178. 280556 179. 280558 180. 280600 181 280602 182. 280604 183. 280606 1S4. 280608 185. 230610 136. 280612 187. 280614 188. 280616 189. 280618 190. 280620 191 280622 192. 280624 193. 280626 194. 280628 195. 280630 196. 280632 197. 280634 198. 280636 199. 280638 200. 280642 202. 280644 203. 280646 204. 280643 205. 290650 206. 280652 207. 230654 208. 280656 209. 2BOSS8 210. . O ....... O ...... . O . . . . O . . O . . 0 . 0 O . 0 . . 0 . . 0 . . 0 . 0 . . 0 . . 0 . . .... . O . . 0 . O . 0 . . O . O . O . . 0 . . . ' . . O . . . . . . . . 0 . . 0 . . O . O . 0 . . O . . 0 . 0 . 0 . . O . . O . . 0 . 0 . .- O . 0 . 0 . 6 ........ . 0 ........ . o ........ . o ........ . o ........ o ........ . 0 ........ o. . . . 0 ......... o ........ . 0 ......... o ........ o ......... . 0 ......... o ......... o ........ . o . o . o ......... 0. ......... 0 . o . o . o . o . 0 . ..... .... o . ..... .... o o . ......... . o .....-••.. . o .......... . o .......... . o .......... . o ......... . o .......... . o .......... . 0 .......... A-25 280700 211 Q. 280702 212. . . O 280704 213. . . O 280706 214. . . O 280708 215. . . O 280710 216. . . O 280712 217. . . O 280714 218. . . 0 280716 219. . . O 280718 220. . . O 280720 221 O . 280722 222. . . O 280724 223. . . O 280726 224. . . O 280728 225. . . O 280730 226. . .O 280732 227. . .O 280734 229. . .O 280736 229. . .O 280738 230. . .0 280740 231 0. . 280742 232. . .O 280744 233. . .O 280746 234. . .O 280749 235. . .O 280750 236. . .O 280752 237. . O 280754 23S. . 0 280756 239. . O 280758 240. . O 280800 241 O . . 280802 242. . O 290804 243. . O 280306 244. . 0. 2T080T2-45. . 0. 230810 246. . O. 280812 247. . O. 280814 24B. . O. 280816 249. . 0. 230818 250. . . O . 280820 251 O . . . 280322 252. . O . 280324 253. . O . 280326 254. . O . 280328 255. . 0 . 280330 256. . O . 280332 257. . O . 280334 258. . 0 . 280836 259. . O 280838 260. . 0 280340 261 Q . . . . 280342 262. . 0 280844 263. . 0 . 2B0846 264. . 0 230848 265. . O 280850 266. . O 280852 267. . O 280S54 268. . O 280856 269. . O 280858 270. . O 280900 271 O 280902 272. . O . 280904 273. . O 280906 274. . O 280908 275. .0 280910 276. .O 280912 277. 0 280914 278. 0 280916 279. O. 280918 280. 0. 280920 281. . . . O 280922 282. O . 280924 283 0 . 280926 284. O . 28"09'28 285 . O . 280930 286. 0 280932 287. Q A-26 280934 230936 280938. 280940 280942 280944 28094S 280948 280950 280952 280954 28095S 280953 288 289 290 291 292. 293. 294. 295. 296. 297, 298. 299, 300, 0 ........ 0 ......... . 0 ......... . . . . 0 . 0 ........... . 0 ........... 0 , 0 ........... , 0 ........... 0 ........... . 0 . , o . , -O . . . .- . . __ 165 KK PT4 FLOODWATER DETENTION BASIN AT INTERSECTION 166 KO 0. 0. DAHRMN PER 280000 280002 280004 280130 280132 280134 230136 230138 230140 280142 280144 280146 280148 230150 230152 2BO1S4 2B0156 290158 280200 280202 280204 230206 280208 280210 280212 230214 280216 230218 230220 230222 280224 280226 230228 280230 230232 230234 280236 230238 280240 230242 OUTPUT CONTROL VARIABLES IPRNT 5 IPLOT 2 QSCAL 0 . PRINT CONTROL PLOT CONTROL HYDROGRAPH PLOT SCALE STATION PT4 (I) INFLOW, (0) OUTFLOW 400. 600. 800. 0 . 0. 0. 1000. 1200. 1400. 1600. (S) STORAGE 0. 0. 4 . 3.12. 0. 16. 21 .... 31 .. 461 ..... 471 ..... 431 ..... 49OI ..... 50.1 51 I 52.1 53.1 54. I 55.01 ..... 56. I 57. OI . SB . I . 59. OI 60. I 51 01 62. I 63. 01 64. OI . 63. 01 66. 0 I . 67. 01 . 68. O I . 69. 01. .... 70. 0 .1 72. .01 73. .0.1. 74. . 0. . 1 . 75. - .0.1. 76. . . 0 . .1 77. . . 0 . I . 78. . . . 0 . . I 79. . . . 0 . 30. . . • -0 82. . . • • 0 S ...... S ...... S ...... S ...... S ...... S ...... S ..... . . . S S ...... S . S ...... S ...... S ...... S ...... S . . . . . . S ...... .S ...... . . . .S .S ...... .3 ...... .S ...... .S ...... .S ...... . S . . S . . S . . S . S S . . . . . . S . S . S. .S . . . . . S . S . I . S . .1 . S . . . . I S I. . S . A-27 280244 83. . . . . 0 .1 . S . 2.80246 84. . . . . . 0 . . I . S 280248 85. . . . . . .0.1. .S 280250 86. . . . . . .0.1. .S 280252 87. . . . . . .01 . . S 280254 88. . . . . . 10 . S 280256 89. . . . . . 10. . . S 280258 90. . . . . .1.0. . S 280300 91 I .... 0 S . . 280302 92. I. 0 .S 280304 93. . . . .1.0. . . S 280306 94. . . . .1.0. . . S. 230308 95. . . . .1.0. . . S . 280310 96. . . . . I .0 . . . S . 280312 97. . . . .10. .... . S . 280314 98. . . . .10. . . S 280316 99. . . . .IO. . . . S . 280318 100. . . . .10. . . . S . 280320 101 I.O S 280322 102. . . . I. O . . . .S 280324 103. . . I. 0 . . S 280326 104. . . .I.O. . . S 280328 105. . . I .O . .3. 280330 106. . . .ID . . S. 280332 107. . . .10 . . .3. 280334 108. . . I O. . . . S . 280336 109. . . I O. . . . S . 280338 110. . . .10. . . . S . 280340 111 IO S 280342 112. . . . 10 . . . . S . 280344 113. . . .IO. . . S . 280346 114. . . . 10 . . . S 280348 US. ' . . .IO. . . . S . 280350 116. . . .IO. . . . S . 280352 117. . . . ID . . . S . 280354 118. . . .IO. . . S 280356 119. . . .IO. . . .S. 280358 120. . . IO . . S 280400 121 10 S 280402 122. .. . .10. . . .S. 280404 123. . . IO . . S 280406 124. . . IO . . S 280408 125. . . 10 . . S 280410 126. . . 10 . . . S . 280412 127. . . . I . . . . S . 280414 128. . . . I . . . . S . 280416 129. . . . I . . . S 280418 130. . . . I . . . . S . 280420 131 IO S 280422 132. . . . 10 . . . . S . 280424 133. . . . 10 . . . S 280426 134. . . IO . • . 5 . 280428 135. . . . I . . • . S . 280430 136. . . I - • . S . 280432 137. . . . IO . . . S . 280434 138. . . . 10 . . • . S . 280435 139. . . . 10 . . • . S . 280433 140. . . . 10 . • . S . 280440 141 IO S 280442 142. . . . IO . . . . S . 280444 143. . . . IO . . . . S . 280446 144. . . . 10 . . • . S . 280448 145. . . . IO . . . . S . 280450 146. . . . I . . . . S . 280452 147. . . . I . . . . S . 280454 148. . . . I . . • . S . 280456 149. . . . I . . . . S . 280458 150. . . . I . . . . S . 280500 151 I S 280502 152. . . . I . . • . S . 280504 153, . . . I . . • . S . 280506 154. . . . I . . • . S . 280508 155, . . . I . . • . S . 280510 156. . . . I . . . . S . 280512 157. . . . I • • . S . 280514 158. . . . I . . . . S . 280516 159. . . . I . • • . S . A-28 280518 ISO. 280520 161. . . 280522 162. 280524 163. 280526 164. 280528 165. 280530 166. 280532 15-7. 280534 16S. 280S36 169. 280538 170. 280540 171 . . 280542 172. 2B0544 173. 280546 174. 280549 175. 280550 176. 280552 177. 280554 178. 2BOS56 179. 280558 180. 280602 182. 280604 193. 280606 184. 280608 185. 280610 186. 280612 187. 280614 188. 280616 189. 280618 190. 280622 192. 280624 193. 2B0626 194. 280628 195. 280630 196. 280632 197. 280634 198. 280636 199. 280638 200. 280642 202. 280644 203. 280646 204. 280648 205. 280650 206. 280652 207. 280654 208. 280656 209. 280658 210. 280702 212. 280704 213. 2B0706 214. 280708 215. 280710 216. 280712 217. 280714 218. 280716 219. 280718 220. 280722 222. 280724 223. 230726 224. 280728 225. 280730 226. 280732 227. 280734 228. 230736 229. 230738 230. 290742 232. 280744 233. 280746 234. 230743 235. 280750 236. . I .1 . I . I . I . I . I . I . I . I . I .1 . I . 1 . OI . 01 . OI . 01 I I. I II . I . I . I . I . I . I . I . 10 .... .10 .... I 0 I. 0 I .0 I 0 I O I 0~, 10. I O . I O . I O . ... 10. . 10. . I O . . 10 . IO . IO IO. I I I .10 .10 .10 .10.1 .1 .1 .1 .1 .1 . I .1 .1 .10 .10 .10 .1 .1 I .1 .1 .1 .1 .1 . • s s s s s. s. s. s. s. s. s. s. s. s. s. s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s . s - . s s . s . s . s . s .s s 3 s . s s . s . s . s . s . s . s . s s . . s s . s s . s . s s . s . s . s . .3 s . s . s s . . . . ' s s s . . . . s . . . . s ..... A-29 2807S2 237. . 10 280754 233. . IO 280756 239. . 10 230753 240. . I 280800 241 I . . 280802 242. . I 280804 243. . I 280806 244. . IO 280308 245. . 10 280810 246. . 10 28DB12 247. . I. 280814 248. . I. 230816 249. . I. 280B1B 250. . 10. 230320 251 10. .. 280B22 252. . 10. 230824 253. . I . 280326 254. . I . 280823 255. . IO . 280830 256. . IO . 280332 257. . IO . 280834 258. . I . 280836 259. . IO . 230338 260. . IO . 230340 261 10. . . . 230342 262. . I 280844 263 . IO 280346 264. . IO 280843 265. . IO 230350 266. . IO 230852 267. . IO 280854 268. IO 280356 269. IO 230858 270. . IQ 2~BO9~6~d~ 27i IO 280902 272. . IO 280904 273. . IO 230906 274. . IO 280908 275. .1 O 280910 276. .10 280912 277. I O 230914 278. IO 2BO916 279. I.O 280918 280. IO 280920 281. ... I 0 280922 282. IO. 230924 283 I O. 230926 284. IO . 230923 285. I O . 230930 286. IO . 230932 287. I O . 230934 288. IO 230936 289. 10. 280938 290. 10 230942 292. 10 .. 280944 293. 10 230946 294. I 280948 295. I 280950 296. I 280952 297. I 280954 298. 10 230956 299. 10 230958 300. -I . . 1 1 OPERATION STATION S . s . S . s .s s . s . s . s . s s . s . s .. s . s s .s . s . s . s .s s . .s . s. s • s . .s ss . s .ss ss . s s . . . . s . s. s . s . s .s . . . ... . s. s s . s . . . . s . . s . . s. s . . s . .s . . . .3 . . .S ' ,s .s ....s ... .s . . .s s s ..... s ..... s ..... t g . > ,-_-_- . ... ---. - RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES PEAK TIME OF AVERAGE FLOW FOR MAXIMUM PERIOD BASIN MAXIMUM TIME OF FLOW PEAK MEA STAGE MAX STAGE KYDROGRAPH AT PTP 363 .2.77 69.42.42..39 A-30 ROUTED TO DETAIN 261. 2.87 69.42..39 424.21 2.87 ROUTED TO RTKP-G 250. 2.97 69.42.42..39 3S0.1S 2.97 HYDROGRAPH AT BASING 675. 2.80 140.85.85..79 2 COMBINED AT PTG 906. 2.83 210.126.126.1.18 ROUTED TO RTEG-1 906. 2.83 210.126.126.1.18 232.10 2.33 HYDROGRAPH AT BASIN1 340. 2.77 68.41..39 2 COMBINED AT PT1 1239. 2.80 277.167.1.5S ROUTED TO DETAIN 380. 3.77 272.167.167.1.56 277.02 3 .77 HYDROGRAPH AT BASIN1A 215. 2.83 47.28..23 2 COMBINED AT PT1A 540. 2.90 318.195.195.1.79 HYDHOGRAPfl AT BASIN1A 75. 2.83 16.10. 2 COMBINED AT PT1AA 614. 2.87 334.20S.205.1.87 ROUTED TO RTE1A-2 586. 2.97 333.20S.205.1.87 227.85 2 .97 HYDROGRAPH AT BASIN2 461. 2.77 88.S3..45 2 COMBINED AT PT2 916. 2.80 417.257.257.2.32 ROUTED TO RTE2- 3 540. 3.97 253.253.2.32 171.14 3.97 HYDROGRAPH AT BASIN3 69. 2.73 12.7. 2 COMBINED AT PT3 553. 3.77 261.2.39 ROUTED TO DETAIN 453. 6.30 398.261.261. 156.19 6.30 HYDROGRAPH AT BASIN 238. 2.83 53.32.32..27 2 COMBINED AT PT3A 489. 6.23 441.292.292.2.66 ROUTED TO RTE3A-3B 489. 6.27 441.292.292.2 .66 116.20 6 .27 HYDROGRAPH AT BASIN3B 298. 2.80 SO.36.36..32 A-31 2 COMBINED AT PT3B 741. 2.83 492.328.328.2.98 ROUTED TO RTE3B-4 692. 2.90 491 .327.337.2 .98 11S.S6 2.90 HYDHOGRAPH AT BASL1 245. 2.77 47.28.28..24 2 COMBINED AT PT4 856. 2.83 530.355.355.3.22 HYDROGRAPH AT BASL2 675. 2.77 132.••BO.80..70 2 COMBINED AT PT5 1522. 2.80 654.435.435.3 .92 ROUTED TO PT4 1325. 2.90 652.434.3.92 104.21 2.9D ROUTED TO RTE 1121. 3.10 647.431.431.3.92 67.20 3.10 HYDROGRAPH AT BASL3 932. 2.BO 1B7.113.113..94 2 COMBINED AT PT6 1754. 2.83 817.543.543.4.86 HYDROGRAPH AT PTS 122. 2.-77 24.15."15..12 2 COMBINED At PT6 1870. 2.83 339.558.558.4.98 *** NORMAL END OP HEC-1 •** A-32 NATIONAL FLOOD INSURANCE PROGRAM FIRM FLOOD INSURANCE RATE MAP [TY OF CARLSBAD 060285 SAN DIEGO COUNTY, CALIFORNIA AND INCORPORATED AREAS PANEL 1032 OF 2375 (SEE MAP INDEX FOR PANELS NOT PRINTED) MAP NUMBER 06073C1032 F EFFECTIVE DATE: JUNE 19,1997 Federal Emergency Management Agency PROPOSED FLOOD INSURANCE RATE MAP PANEL 766 Limit of study EXHIBIT D NATIONAL FLOOD INSURANCE PROGRAM FIRM FLOOD INSURANCE RATE MAP T OF CARLSBAD 060285 SAN DIEGO COUNTY, CALIFORNIA AND INCORPORATED AREAS PANEL 1032 OF 2375 (SEE MAP INDEX FOR PANELS NOT PRINTED) MAP NUMBER 06073C1032 F EFFECTIVE DATE: JUNE 19,1997 Federal Emergency Management Agency Limit of study