Loading...
HomeMy WebLinkAboutCT 02-16; ROBERTSON RANCH EAST VILLAGE; DRAINAGE STUDY; 2006-07-301# DRAINAGE STUDY FOR ROBERTSON RANCH EAST VILLAGE C.T. 02-16 Job No. 01-1014 Revised: Nov. 30, 2006 Revised: June 26, 2006 Revised: December, 13, 2005 July 30, 2005 Prepared by: O'DAY CONSULTANTS, DSfC. 2710 Loker Avenue West Suite 100 Carlsbad, CaUfomia 92010 Td: (760)931-7700 Fax: (760)931-8680 Keith Hansen RCE 60223 Exp. 06/30/08 DRAINAGE STUDY FOR ROBERTSON RANCH EAST VILLAGE C.T. 02-16 Job No. 01-1014 Revised: Nov. 30,2006 Revised: June 26,2006 Revised: December, 13, 2005 July 30, 2005 Prepared by: O'DAY CONSULTANTS, INC 2710 Loker Avenue West Suite 100 Carlsbad, Califomia 92010 Td: (760)931-7700 Fax: (760)931-8680 Keith Hansen RCE 60223 Exp. 06/30/08 SECTION 1 TABLE OF CONTENTS INTRODUCTION Purpose of Study Scope Comprehensive Basin Analysis Facilities Proposed in City of Carlsbad Master Plan of Drainage STUDY AREA SoUs Groups Land Uses HYDROLOGY Modified Rational Method Description Program Process CONCLUSION SECTION 2 Vicinity Map Runoff Coefficients Isopluvial Maps 100-Year, 6-Hour 100-Year, 24-Hour Intensity-Duration Design Chart - Figure 3-1 Overland Time of Flow Nomograph - Figure 3-3 Maximum Overland Flow Length & Initial Time of Concentration - Table 3-2 Nomograph for Determination of Tc for Natural Watersheds - Figure 3-4 San Diego County Soils Interpretation Study Master Plan Land Use Plan SECTION 3 SECTION 4 Hydrology 100 year Analysis Existing Condition Hydrology 100 year Analysis Mass Graded Condition SECTION 5 Hydrology 100 year Analysis Ultimate Condition SECTION 6 Exhibit A Existing Condition Drainage Map Exhibit B Mass Graded Condition Drainage Map Exhibit C Ultimate Condition Drainage Map SECTION 7 Hydraulic Calculations 100 year Analysis SECTION 8 Curb Inlet Calculations SECTION 9 Brow Ditch Capacity Calculations SECTION 10 Low-Flow Pipe and Vegetated Swale Calculations SECTION 11 Temporary Desiltation Basin Calculations By: O'Day Consultants, May 8, 2006 SECTION 12 Riprap Sizing Calculations SECTION 13 Robertson's Ranch East Viilage- 84" Reinforced Concrete Pipe Alternative By: Chang Consultants, January 10, 2006 SECTION 14 Memorandum-Updated 84" RCP Hydraulic Calculations By: Chang Consuhants, December 1, 2006 SECTION 15 Hydrologic and Hydraulic Analyses for Robertson's Ranch East Village By: Chang Consultants, September 2,2004 SECTION 16 Operators Manual, San Diego County Rational-Hydrology Program Package Version 7.4, developed by CivilCADD/CIVILDESIGN Engineering Software © (1991-2004), SECTION 1 INTRODUCTION Purpose of Study This drainage study was prepared to determine existing and proposed runoff quantities for the grading of Robertson Ranch East Village and widening of College Blvd. and Cannon Rd. Scope This study analyzes the 1 OO-year flow for existing and proposed conditions of the site. The proposed conditions have been analyzed for the mass grading of the site and for the ultimate built-out condition. Proposed Condition Analysis The proposed condition of the site includes the widening of Cannon Rd. and College Blvd., the construction of streets 'A', 'B', and 'O', and the mass grading of the multi-family and single family lots. All proposed storm drain and desiltation basins are sized for the ultimate condition. The flows shown on the improvement plans, DWG. 433-6, reflect the ultimate condition flows. The proposed drainage maps in Section 6 reflect the mass graded and ultimate conditions. Please refer to runoff coefficient chart in Section 2 and proposed condition calculations in Sections 4 and 5. Comprehensive Basin Analysis Several engineering analyses and design projects have been performed within the Agua Hedionda and Calaveras Creek watersheds. These watersheds cover over 23 square miles and, as a result, support a variety of land uses including residential, commercial, industrial, open space, etc. Rick Engineering Company (Rick) prepared analyses to establish the lOO-year flow rate in Agua Hedionda and Calaveras Creek. The analyses also examined altematives for reducing lOO- year inundation in the Rancho Carlsbad Mobile Home Park. Rick's June 30, 1998 report, Rancho Carlsbad Channel and Basin Project, contains these earlier studies. The flood control altematives included construction of two Master Plan detention basins, BJ and BJB, at the intersection of Cannon Road and College Boulevard, as well as additional detention basins created by future extensions of Faraday Avenue and Melrose Drive. Additional altematives included channelization to restore the original design capacity of Agua Hedionda Creek, dredging below El Camino Real to reduce the backwater elevations, and walls/dikes to provide flood protection. Rick prepared a May 8, 2002 report titled, Hydrologic and Hydraulic Report for Calavera Hills II and Detention Basin BJB that includes hydrologic and hydraulic analyses used to design Detention Basin BJB. Rick also designed a weir immediately downstream of Detention Basin BJB. The weir has been constructed within the existing wall along the northerly boundary of the mobile home park. The weir is intended to control the 1 OO-year flow rate occurring on the north and south sides of the wall in order to assist in protecting the mobile home park from flooding. Recently, Rick updated their HEC-1 hydrologic analyses to account for an upcoming improvement to the Lake Calaveras outlet facility. The improvement is being implemented to provide greater protection against dam failure, and will reduce the 1 OO-year outflow from the lake. Chang Consultants has prepared a revision to this analysis since a portion of the Calaveras II development will no longer be constructed within detention basin BJB. This latest analysis shows that the total 1 OO-year flow from the Agua Hedionda and Calavera Creek watersheds below El Camino Real is approximately 8,500 cubic feet per second. This analysis assumes that all four detention basins are constructed. 84" RCP A hydraulic analysis was performed by Chang Consultants (please see Sections 13 & 14), which shows that the 1 OO-year flow runoff from Robertson Ranch East Village could be conveyed in an 84-inch reinforced concrete pipe (RCP). The pipe would be constructed from the Detention Basin BJB outlet culvert, then along the northerly edge of Cannon Road to an outlet adjacent to the existing box culverts under Cannon Road immediately east of El Camino Real. A facility would be designed to direct approximately 500 cfs from the Detention Basin BJB outlet culvert to the 84-inch RCP. The 84-inch RCP would also collect storm runoff from the Robertson Ranch East ViUage. In addition, a 24" RCP will be constructed to convey storm water runoff from the 84" RCP to the vegetated swale south of Cannon Rd. The vegetated swale will perform as a flow-based BMP and therefore will be designed to mitigate the maximum flow rate of runoff produced from a rainfall intensity of 0.2 inches/hour for each hour of a storm event. The area of runoff that will be treated is limited to the proposed Robertson Ranch East Village development and the flow has been found to be 12.18 cfs. Please see Section 10 for calculations. STUDY AREA Soils Groups The site is characterized mainly by soil group D, per the San Diego County Soils Interpretation Study. Refer to Soils map. Section 2. Land Use The site is currentiy used for agricultural farming and can be approximated using the runoff coefficient associated with undisturbed natural terrain. Cannon Rd. is currently improved to 74' paved width and can be approximated using the runoff coefficient associated with industrial land use. Proposed conditions include single-family and multi-family residential housing with varying density. Refer to the Master Plan Land Use Plan in section 2. The Agua Hedionda Creek and Calaveras Creek analyses performed for the city of Carlsbad by Rick Engineering are based on the General Plan (proposed development) land uses. As a result, these analyses account for the increase in runoff associated with development of Robertson's Ranch as well as other existing and future projects within the watersheds. (See Chang's Sept. 2, 2004 report for further discussion, section 15) In addition, all of the alternatives currently being considered by the city in order to alleviate flooding in Agua Hedionda and Calaveras Creek are being designed assuming build-out according to the General Plan. HYDROLOGY The hydrologic analyses are being performed according to the 2003 San Diego County Hydrology Manual. The overall drainage area is less than one square mile and includes junctions of independent drainage systems; therefore, the Modified Rational Method is being used for the analyses. The Modified Rational Method is applicable to a 6-hour storm duration because the procedure uses hitensity-Duration Design Charts that are based on a 6-hour storm duration. In some cases, the 6-hour precipitation must be adjusted based on the ratio of the 6- to 24-hour precipitation. This will be performed where necessary. Modifled Rational Method Description The modified rational method, as described in the 2003 San Diego County Flood Control/Hydrology Manual, is used to estimate surface runoff flows. The basic equation: Q = CIA C = runoff coefficient (varies with surface) I = intensity (varies with time of concentration) A = area in acres For the lOO-year design storm, the 6-hour rainfall amount is 2.6 inches and the 24-hour rainfall amount is 4.5 inches. San Diego County Rational-Hydrology Program Package Version 7.4, developed by CivilCADD/CIVILDESIGN Engineering Software © (1991-2004), was used to determine the rainfall amount, times of concentration, corresponding intensities and flows for the various hydrologic basins within this model. (See operators manual, Section 16) The program was then used to route flows through drainage conveyance structures and confluence basins per the modified rational method. Program Process The Rational-Hydrology program is a computer-aided design program where the user develops a node link model of the watershed. Developing independent node link models of each interior watershed and linking these submodels together at confluence points create the node link model. The program has the capability of performing calculations for 11 different hydrologic and hydraulic processes. These processes are assigned and printed in the output. They are as follows: 1. Initial sub-area input, top of stream. 2. Street flow through sub-area, includes sub-area runoff. 3. Addition of runoff from sub-area to stream. 4. Street inlet and parallel street and pipeflow and area. 5. Pipeflow travel time (program estimated pipe size). 6. Pipeflow travel time (user-specified pipe size). 7. Improved channel travel - Area add option. 8. Irregular channel travel time - Area add option. 9. User-specified entry of data at a point. 10. Confluence at downstieam point in current stream. 11. Confluence of main stteams. CONCLUSION The results of the analysis of the Robertson Ranch Storm Drain system are presented below. They show flows entering Calavera Creek, north of the flood waU, wiU be reduced from 143.67 cfs to 45.68 cfs after the development of the east village. The majority of the east village will drain into the 84" storm drain which bypasses Calavera Creek and outlets north of Cannon Rd., just east of El Camino Real. TABLE1-1 TABLEI-2 EXISTING CONDCrtQNS PROPOSED CONOITIONS 10Q-VEAR STORM EVENT (FLOW INTO CAUVVeRA CREEK 1 NORTH OF FLOOO WALL) 1Q0-YEAR STORM EVENl (FLOW INTO CALAVERA CREEK NORTH OF FLOOD WAUi 10Q-VEAR STORM EVENT (FLOW INTO CAUVVeRA CREEK 1 NORTH OF FLOOO WALL) Ultimate and Mass Graded Conditions BASIN ACREAGE Q BASIN ACREAGE Q A 10.02 21.18 E 1.33 6.22 B 59.71 68.81 G-2 1.58 6.30 C 12.60 15.48 H 3.55 11.80 D 22.78 38.20 1-2 0.44 2.48 D 22.78 38.20 J 4.11 18.88 TABLEI-3 PROPOSED CONOmONS 100.YEAR STORM lyENT- (FLOW INTO m STORM DRAIN NORTH CJP CANNON RD-l.. . Ultimate Condition ' Mass Graded Condition^ BASIN ACREAGE Q ACREAGE Q A 7.09 18.06 7.09 11.75 B 53.20 95.45 42.97 41.94 0 6.35 17.27 20.85 17.11 D 29.04 61.22 29.20 28.69 F 8.89 24.01 8.59 10.12 G 1.61 6.87 1.61 6.87 1 0.45 2.57 0.45 2.57 File: g:\jobs\2002\011014\hydrology\Hydrology Study-CT02-16-rev2.doc SECTION 2 an OF OCEANSIDE HIGHWAYL.^ SITE ! an OF mTA an OF SAN MARCO PACIFIC OCEAN ENaNITAS VICINITY MAP Robertson Ranch East Village Drainage Study Soils Type and Runoff Coefficients Used in Analysis Existinq Conditions County Elements Basin 'A' Paved Areas (Initial Area Input) Paved Areas (Street Flow+Subarea) Natural Terrain Basin 'B' Paved Areas (Initial Area Input) Paved Areas (Street Flow+Subarea) Natural Terrain Basin 'C Paved Areas (Initial Area Input) Paved Areas (Street Flow+Subarea) Natural Terrain Basin 'D' Paved Areas (Initial Area Input) Paved Areas (Street Flow+Subarea) Natural Terrain C-Value Soil Type General Industrial 0.87 0 0.95 D Permanent Open Space 0.35 D General Industrial 0.87 D 0.95 D Permanent Open Space 0.35 D General Industrial 0.87 D 0.95 D Permanent Open Space 0.35 D General Industrial 0.87 D 0.95 D Permanent Open Space 0.35 D Proposed Conditions County Elements C-Value Soii Type Basin 'A' Residential (PA 13) Residential, 24.0 DU/A or less 0.71 D Park (PA 12) Residential, 2.0 DU/A or less 0.46 D Basin 'B' Single Family Residential Residential, 7.3 DU/A or iess 0.57 D Affordable Housing + Adjacent Roads Residential, 24.0 DU/A or less 0.71 D School Neighborhood Commercial 0.79 D Natural Terrain Permanent Open Space 0.35 D Basin 'C Single Family Residential Residential, 7.3 DU/A or less 0.57 D Multi-Family + Adjacent Roads Residential, 14.5 DU/A or less 0.63 D Basin D' Single Family Residential Residential, 7.3 DU/A or less 0.57 D Basin 'E' Paved Areas General Industrial 0.87 D Basin 'F' Multi-Family + Adjacent Roads Residential, 14.5 DU/A or less 0.63 D Affordable Housing + Adjacent Roads Residential, 24.0 DU/A or less 0.71 D Basin 'G' Paved Areas General Industrial 0.87 D Basin 'H' Multi-Family + Adjacent Roads Residential, 14.5 DU/A or less 0.63 D Basin 1' Paved Areas General Industrial 0.87 D San Diego County Hydrology Manuai Date: June 2003 w<iuuai Section: i*age: Table 3-1 RUNOFF COEFFICIENTS FOR URBAN AREAS LandUse NRCS Elements Undistuibefi Natural Terrain (Namral) Low Densi|y Residential (LDR) Low Density Residential (LDR) Low Density Residential (LDR) Medium Density Residential (MDR) Medium Density Residential (MDR) Medium Depsity Residential (MDR) • Medium I^ensity Residential (MDR) Higti Densi^ Residential (HDR) High Density Residential (HDR) Commercial|bdustrial (N. Com) Commercial/^bdusbial (G. Com) Commerciaiyjndustiial (O.P. Com) Commercial/Industrial (Limited L) Commercial/Industrial fCr,.r,^i T I Residential, 1.0 DU/A or less Residential, 2.0 DU/A or less Residential, 2.9 DU/A or less Residential, 4.3 DU/A or less Residential, 73 DU/A or less Residential, 10.9 DU/A or less Residential, 14.5 DU/A or less Residential, 24.0 DU/A or less Residential. 43.0 DU/A or less Neighboriiood Commereial General Commercial Office Professional/Commercial Limited Industrial General Industrial • ^ -^w^ct x.^ ueneral Industrial c^^rTcrst'^soiir^^ ^ located in Cleveland Natio^ "^^^ undisturbed in peipetuify. DU/A = dwel^g units per acre NRCS = National Resouices Conservation Service 20 25 30 40 45 50 65 80 80 85 90 90 95 0.87 nmoff coefficient as described in Section ? i 9 " ^ Justification must be given tiutf the P^^^ «w area will remam nataral forever (e.g., the area 3-6 !!!!!!!!iiiiiiiiiiniiiii!i ^ » 40 » 1 Mmutes Duration DiuBctioBs for Applteation: EJSL'!I!fflS2!."^ deisfmlne 6 hr and 24 hramounts in ttw Design and Procedure Manual). «H»"IW«WW (2) A««ust 6 hr precipitation (if neoessary) so that tt is within (3) Plot 6 hr precipitation on the right side ofthe chart. (4) I3raw a Hne Ihrough the polrrt parallel to the plotted lines S^l'Si^"^^'^"^*'" curve for the location AppUcation Fwm; (a) Selected fiBquency jOO year («>)P6-.^Ui_in..P24= (o) Adjusted Pg^'« 5.6 in. <f)tx' -hiin. (»)'= > in./hr. *P24 «ntenrttjH3uraaoii Dertgn Chart-Template ^ ^ c K ff 3-1 100 UJ u. Ui o 2 CO Q UJ 8 ac LU I EXAMPLE: Given: Watercourse Distance (D) = 70 Feet Slope (s) =1.3% Runoff Coefficient (C) s o.41 Overiand Row Time (T)= 9.5 Minutes 1.8 (1.1-C) VD" SOURCE: Airport Drainage. Federal Aviation Administration. 1965 Rational Formula - Overland Time of Flow Nomograph FIG URE San Diego County Hydrology Manual Date: June 2003 Section: Page: 3 12 of 26 Note that the Initial Time of Concentration should be reflective ofthe general land-use at the upstream end ofa drainage basin. A single lot virith an area of two or less acres does not have a significant efifect wjiere the drainage basin area is 20 to 600 acres. Table 3-2 provides limits of the length (Maximum Length (LM)) of sheet flow to be used in hydfology studies. Initial T| values based on average C values for the Land Use Element are also included. These values can be used in plamiing and design applications as described below. Exceptions may be approved by the "Regulating Agency" when submitted with a detailed study. Table 3-2 MAXIMUM OVERLAND FLOW LENGTH (LM) Element'" DU/ 5% ] 1% 2% 3% 5% 10% Acre LM Ti LM Ti LM Ti LM Ti LM Ti I'M Ti Natural 50 13.2 70 12.5 85 10.9 100 103 100 8.7 100 6.9 LDR 1 50 12.2 70 11.5 85 10.0 100 9.5 100 8.0 100 6.4 LDR 2 50 11.3 70 10.5 85 9.2 100 8.8 100 7.4 100 5.8 LDR 2.9 50 10.7 70 10.0 85 8.8 95 8.1 100 7.0 100 5.6 MDR 4.3 50 10.2 70 9.6 80 8.1 95 7.8 100 6.7 100 5.3 MDR 7.3 50 9.2 65 8.4 80 7.4 95 7.0 100 6.0 100 4.8 MDR 10.9 50 8.7 65 7.9 80 6.9 90 6.4 100 5.7 100 4.5 MDR 14.5 50 8.2 65 7.4 80 6.5 90 6.0 100 5.4 100 4.3 HDR 24 50 6.7 65 6.1 75 5.1 90 4.9 95 4.3 100 3.5 HDR 43 50 5.3 65 4.7 75 4.0 85 3.8 95 3.4 100 2.7 N.Com 50 5.3 60 4.5 75 4.0 85 3.8 95 3.4 100 2.7 G. Com , 50 4.7 60 4.1 75 3.6 85 3.4 90 2.9 100 2.4 O.P./Com 50 4.2 60 3.7 70 3.1 80 2.9 90 2.6 100 2.2 Limited L 50 4.2 60 3.7 70 3.1 80 2.9 90 2.6 100 2.2 General L 50 3.7 60 3.2 70 2.7 80 2.6 90 2.3 100 1.9 *See Table 3-1 for more detailed description 3-12 m AE Feet looe aoo -mo .400 ^, .300 -200 Tc » ( EQUAHON 11.9L»y.38S .SOOft .4000 .3000 .2000 AE / Tc » Time of concentration (iiouis) L • Watarooufse Distance (mlbs) AE - Charge In elevation along effecttve slope line (See Rgure 3-5)(f3e0 Tc HoursI Minutes • 240 • 100 90 -30 .20 V MilM Peat ^1- - N 0.5' 4000 -10 — 3000 .2000 — 1800 — 1600 —1400 1200 .1000 — 900 *-800 — 700 -.600 -500 —400 —300 • 200 -180 •120 — 100 1-90 —80 — 70 60 50 h-4e -30 20 — 18 — 16 14 (—12 .10 —8 —8 —? —6 -5 —3 AE lURCE: California Diviston of Highways (1941) and Kirpich (1940) Tc Nomograph for Defemfilnatlon of Time of Concenfration (Tc) or Travel Time (Tt) for Natural Watersheds E. L G U R E A $ n n y\ r-t -r Alternative Uses REGIONAL TRAIL CONNECnOM/ TflAlHEAD SECTION 3 aan Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2003 Version 7.3 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 08/3 0/04 Robertson ranch Drainage Study Existing Condition - Basin "A" (Post Calavera Hills Development) J.N. 011014-5 File: RREastExistA Hydrology Study Control Information ********** O'Day Consultants, Inc., Carlsbad, CA - S/N 768 Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 P6/P24 = 60.5% San Diego hydrology manual 'C values used ++++ Process from Point/Station 100.000 to Point/Station 102 000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 ~~ ~ ~ Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = I.OOO [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 700.000(Ft.) Highest elevation = 109.000(Pt.) Lowest elevation = 41.700(Ft.) Elevation difference = 67.300(Ft.) Slope = 9.614 % Top of Initial Area Slope adjusted by User to 8.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 8.00 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.75 minutes TC = [1.8*(l.l-c)*distance(Ft.)".5)/(% slope"(l/3)] TC = [1.8*(l.l-0.3500)*( 100.000".5)/( 8.000^(1/3)]= 6.75 The initial area total distance of 700.00 (Ft.) entered leaves a remaining distance of 600.00 (Ft.) Using Figure 3-4, the travel time for this distance is 2.65 minutes for a distance of 600.00 (Ft.) and a slope of 9.61 % with an elevation difference of 57.68(Ft.) from the end of the top area Tt = [11.9*length(Mi) 3)/(elevation change(Ft.))]^.385 *60(min/hr) Page 1 of 9 2.651 Minutes Tt=[ (11.9*0.1136':3)/( 57.68)]^.385= 2.65 Total initial area Tl = 6.75 minutes from Figure 3-3 formula plus 2.65 minutes from the Figure 3-4 formula = 9.40 minutes Rainfall intensity (I) = 4.559(In/Hr) for a 100.0 year storm Effective rimoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 12.3 82(CFS) Total initial stream area = 7.760(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 104.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstreara point/station elevation = 41.700(Ft.) ~~~~ Downstream point/station elevation = 41.420(Ft.) Pipe length = 55.22(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 12.382(CFS) Given pipe size = 42.00(In.) Calculated individual pipe flow = 12.382(CFS) Normal flow depth in pipe = 11.81(In.) Flow top width inside pipe = 37.77(In.) Critical Depth = 12.80(In.) Pipe flow velocity = 5.58(Ft/s) Travel time through pipe = 0.17 min. Time of concentrat ion (TC) = 9.57 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 104.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 7.760(Ac.) Runoff from this stream = 12.382(CFS) Time of concentration = 9.57 min. Rainfall intensity = 4.508(In/Hr) Program is now starting with Main Stream No. 2 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.000 to Point/Station 108.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = l.OOO [INDUSTRIAL area type ] (General Industrial ) Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = 40.000(Ft.) Highest elevation = 60.250(Ft.) Lowest elevation = 59.330(Ft.) Elevation difference = 0.920(Ft.) Slope = 2.300 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 70.00 (Ft) for the top area slope value of 2.30 %, in a development type of Page 2 of 9 General Industrial In Accordance With Figure 3-3 Initial Area Time of"Concentration = 2.62 minutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(1/3)] TC = [1.8*(1.1-0.8700) *( 70.000*.5)/{ 2.300^(1/3)]= 2.62 Rainfall intensity (I) = 10.383(In/Hr) for a 100.0 year storm Effective rvmoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea runoff = 0.090(CFS) Total initial stream area = 0.010(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 108.000 to Point/Station 110.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 59.330(Ft.) End of street segment elevation = 51.800(Ft.) Length of street segment = 660.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 40.000(Ft.) Distance from crown to crossfall grade break = 38.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.014(CFS) Depth of flow = 0.315(Ft.), Average velocity = 2.23 8(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.931(Ft.) Flow velocity = 2.24(Ft/s) Travel time = 4.92 min. TC = 7.54 min. Adding area flow to street User specified 'C value of 0.950 given for subarea Rainfall intensity = 5.256(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.950 CA = 0.760 Siibarea runoff = 3. 904 (CFS) for 0.790 (Ac.) Total runoff = 3.994(CFS) Total area = 0.800(Ac.) Street flow at end of street = 3.994(CFS) Half street flow at end of street = 3.994(CFS) Depth of flow = 0.375(Ft.), Average velocity = 2.627(Pt/s) Flow width (from curb towards crown)= 11.909(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 112.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 43.900(Ft.) Downstream point/station elevation = 43.650(Ft.) Pipe length = 24.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.994(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 3.994(CFS) Page 3 of 9 Normal flow depth in pipe = 6.77(In.) Flow top width inside pipe = 21.60(In.) Critical Depth = 8.40(In.) Pipe flow velocity = 5.49(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 7.61 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 112.000 **** CONFLtJENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 0.800(Ac.) Runoff from this stream = 3.994(CFS) Time of concentration = 7.61 rain. Rainfall intensity = 5.223(In/Hr) Process frora Point/Station 106.000 to Point/Station 114.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = 40.000(Ft.) Highest elevation = 60.250(Ft.) Lowest elevation = 59.33 0(Ft.) Elevation difference = 0.920(Ft.) Slope = 2.300 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 70.00 (Ft) for the top area slope value of 2.30 %, in a development type of General Industrial In Accordance With Figure 3-3 Initial Area Time of Concentration = 2.62 minutes TC = [l.8*(l.l-C)*distance(Ft.)".5)/(% slope*(l/3)] TC = [1.8*(l.l-0.8700)*( 70.000*.5)/( 2.300^(1/3)]= 2.62 Rainfall intensity (I) = 10.383(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea runoff = 0.090(CFS) Total initial stream area = 0.010(Ac.) •f+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 114.000 to Point/Station 116.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 59.33 0(Ft.) End of street segment elevation = 51.800(Ft.) Length of street segment = 660.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 40.000(Ft.) Distance from crown to crossfall grade break = 38.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Page 4 of 9 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb td property line = 10.000(Ft.) Slope from curb'to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.786(CFS) Depth of flow = 0.342(Ft.), Average velocity = 2.412(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.260(Ft.) Flow velocity = 2.41(Ft/s) Travel tirae = 4.56 min. TC = 7.18 min. Adding area flow to street User specified 'C value of 0.950 given for subarea Rainfall intensity = 5.422(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.950 CA = 1.026 Subarea runoff = 5.473(CFS) for 1.070(Ac.) Total runoff = 5.563(CFS) Total area = 1.080(Ac.) Street flow at end of street = 5.563(CFS) Half street flow at end of street = 5.563(CFS) Depth of flow = 0.409(Ft.), Average velocity = 2.844(Ft/s) Flow width (from curb towards crown)= 13.614(Ft.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 116.000 to Point/Station 112.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 44.200(Ft.) Downstream point/station elevation = 43.650(Ft.) Pipe length = 54.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.563(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 5.563(CFS) Normal flow depth in pipe = 8.08(In.) Flow top width inside pipe = 22.68(In.) Critical Depth = 9.99(In.) Pipe flow velocity = 5.99(Ft/s) Travel time through pipe = 0.15 min. Time of concentration (TC) = 7.34 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 116.000 to Point/Station 112.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal streara number 2 Streara flow area = 1.080(Ac.) Runoff frora this stream = 5.563(CFS) Time of concentration = 7.34 min. Rainfall intensity = 5.350(In/Hr) Summary of streara data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) Page 5 of 1 3.994 -- 7.61 5.223 2 5.563 7.34 5.350 Qmax(1) = 1.000 * 1.000 * 3.994) + 0.976 * 1.000 * 5.563) + = 9.425 Qmax(2) = 1.000 * 0.963 * 3.994) + 1.000 * 1.000 * 5.563) + = 9.411 Total of 2 streams to confluence: Flow rates before confluence point: 3.994 5.563 Maximum flow rates at confluence using above data: 9.425 9.411 Area of streams before confluence: 0.800 1.080 Results of confluence: Total flow rate = 9.425(CFS) Tirae of concentration = 7.614 rain. Effective stream area after confluence = 1.880(Ac.) ++++++++++++++++++++++++++++ Process from Point/Station 112.000 to Point/Station 104.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 43.320(Ft.) Downstreara point/station elevation = 42.920(Ft.) Pipe length = 40.31(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 9.425(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 9.425(CFS) Normal flow depth in pipe = 10.83(In.) Flow top width inside pipe = 23.89(In.) Critical Depth = 13.16(In.) Pipe flow velocity = 6.85(Ft/s) Travel time through pipe = 0.10 min. Time of concentration (TC) = 7.71 rain. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.000 to Point/Station 104.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Streara number: 2 Stream flow area = 1.880(Ac.) Runoff frora this streara = 9.425(CFS) Tirae of concentration = 7.71 min. Rainfall intensity = 5.180(In/Hr) Summary of streara data: Stream Plow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 12.382 9.57 4.508 2 9.425 7.71 5.180 Qmax(1) = Page 6 of 9 Qmax(2) = 1.000 * 1.000 * 12.382) + 0.870~* 1.000 * 9.425) + = 20.585 1.000 * 0.806 * 12.382) + 1.000 * 1.000 * 9.425) + = 19.408 Total of 2 raain strearas to confluence: Flow rates before confluence point: 12.382 9.425 Maximura flow rates at confluence using above data: 20.585 19.408 Area of strearas before confluence: 7.760 1.880 Results of confluence: Total flow rate = 20.585(CFS) Tirae of concentration = 9.566 rain. Effective streatn area after confluence = 9.640 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 118 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 40.920(Ft.) Downstream point/station elevation = 40.010(Ft.) Pipe length = 181.16(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 20.585(CFS) Given pipe size = 42.00(In.) Calculated individual pipe flow = 20.585(CFS) Normal flow depth in pipe = 15.45(In.) Flow top width inside pipe = 40.50(In.) Critical Depth = 16.67(In.) Pipe flow velocity = 6.41(Ft/s) Travel time through pipe = 0.47 min. Time of concentration (TC) = 10.04 min. + + + + + + + + + + + + 4. + + + + + + + + + + + + + + + + + + + + + + + + + + + + ^..^ + + + + + ^.^. + + ^.^^^^^^^^^^^^ Process from Point/Station 104.000 to Point/Station 118.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 9.640(Ac.) Runoff from this stream = 20.585(CFS) Time of concentration = 10.04 rain. Rainfall intensity = 4.370(In/Hr) Prograra is now starting with Main Stream No. 2 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 4. + + + + + + ^. + + ^.^. + ^. + + ^.^.^^^^^^^^^^ Process from Point/Station 120.000 to Point/Station 122 000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 Page 7 of 9 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Irapervious value, Ai-= 0.000 Sxib-Area C Value = 0.350 Initial subarea total flow distance = 150.000(Ft.) Highest elevation = 66.000(Ft.) Lowest elevation = 50.100(Ft.) Elevation difference = 15.900(Ft.) Slope = 10.600 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maxiraura overland flow distance is 100.00 (Ft) for the top area slope value of 10.60 %, in a development type of Perraement Open Space In Accordance With Figure 3-3 Initial Area Tirae of Concentration = 6.15 rainutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(1/3)] TC = [1.8*(l.l-0.3500)*( 100.000*.5)/( 10.600*(1/3)]= 6.15 The initial area total distance of 150.00 (Ft.) entered leaves a remaining distance of 50.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.38 minutes for a distance of 50.00 (Ft.) and a slope of 10.60 % with an elevation difference of 5.30(Ft.) from the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(min/hr) 0.377 Minutes Tt=[(11.9*0.0095*3)/( 5.30)]*.385= 0.38 Total initial area Ti = 6.15 minutes frora Figure 3-3 formula plus 0.38 minutes from the Figure 3-4 formula = 6.52 minutes Rainfall intensity (I) = 5.771(In/Hr) for a 100.0 year storm' Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 0.768(CFS) Total initial stream area = 0.380 (Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 122.000 to Point/Station 118 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 42.420(Ft.) Downstream point/station elevation = 42.010(Ft.) Pipe length = 37.50(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.768(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 0.768(CFS) Normal flow depth in pipe = 3.22(In.) Flow top width inside pipe = 13.80(In.) Critical Depth = 3.90(In.) Pipe flow velocity = 3.58 (Ft/s) Travel time through pipe = 0.17 rain. Time of concentration (TC) = 6.70 min. ++++++++++++++++++++++++++++++++++++++++^.++++++++++^.+^.^+^.^^^+^^ Process from Point/Station 122.000 to Point/Station 118.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream nuraber: 2 Streara flow area = 0.380(Ac.) Runoff from this stream = 0.768(CFS) Time of concentration = 6.70 min. Rainfall intensity = 5.673(In/Hr) Page 8 of 9 Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmcix (1) Qraax(2) 20.585 0.768 1.000 * 0.770 * 1.000 * 1.000 * 10.04 6.70 1.000 * 1.000 * 0.667 * 1.000 * 4.370 5.673 20.585) + 0.768) + = 20.585) + 0.768) + = 21.176 14.503 Total of 2 raain streams to confluence: Flow rates before confluence point: 20.585 0.768 Maximura flow rates at confluence using above data: 21.176 14.503 Area of strearas before confluence: 9.640 0.380 Results of confluence: Total flow rate = 21.176(CFS) Tirae of concentration = 10.037 min. Effective stream area after confluence = 10.020(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 118.000 to Point/Station 124.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 39.510(Ft.) Downstream point/station elevation = 39.000(Ft.) Pipe length = 102.60(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 21.176(CFS) Given pipe size = 42.00(In.) Calculated individual pipe flow = 21.176(CFS) Normal flow depth in pipe = 15.73(In.) Flow top width inside pipe = 40.65(In.) Critical Depth = 16.90(In.) Pipe flow velocity = 6.44(Ft/s) Travel time through pipe = 0.27 min. Time of concentrat ion (TC) = 10.30 min. End of computations, total study area = 10.020 (Ac.) Page 9 of 9 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2003 Version 7.3 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 08/30/04 Robertson Ranch Drainage Study Existing Condition - Basin "B" (Post Calavera Hills Development) J.N. 011014-5 File: RREastExistB ********* Hydrology Study Control Inforraation ********** O'Day Consultants, Inc., Carlsbad, CA - S/N 768 Rational hydrology study storra event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 P6/P24 = 60.5% San Diego hydrology raanual 'C values used + + Process from Point/Station 200.000 to Point/Station 202 000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 ~ ^ Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = 32.000(Ft.) Highest elevation = 73.750(Ft.) Lowest elevation = 72.700(Ft.) Elevation difference = 1.050(Ft.) Slope = 3.281 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaximum overland flow distance is 80.00 (Ft) for the top area slope value of 3.28 %, in a development type of General Industrial In Accordance With Figure 3-3 Initial Area Time of Concentration = 2.49 rainutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(l.l-0.8700)*( 80.000*.5)/( 3.281*(1/3)]= 2.49 Rainfall intensity (I) = 10.734(In/Hr) for a 100.0 year storra Effective runoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea rimoff = 0.093 (CFS) Total initial stream area = 0.010(Ac.) Page 1 of 9 Process from Point/Station 202.000 to Point/Station 204.000 STREET FLOW.,TRAVEL TIME + SUBAREA FLOW ADDITION **** **** Top of street segment elevation = 72.700(Ft.) End of street segment elevation = 59.330(Ft.) Length of street segment = 1275.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 40.000(Ft.) Distance from crown to crossfall grade break = 38.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.428(CFS) Depth of flow = 0.364(Ft.), Average velocity = 2.453(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.380(Ft.) Flow velocity = 2.45(Ft/s) Travel tirae = 8.66 min. TC = 11.16 min. Adding area flow to street User specified 'C value of 0.950 given for subarea Rainfall intensity = 4.082(In/Hr) for a 100.0 year storm Effective rimoff coefficient used for total area (Q=KCIA) is C = 0.950 CA = 1.672 Subarea rimoff = 6.732(CFS) for 1.750(Ac.) Total runoff = 6.826(CFS) Total area = 1.760(Ac.) Street flow at end of street = 6.826(CFS) Half street flow at end of street = 6.826(CFS) Depth of flow = 0.437(Ft.), Average velocity = 2.895(Ft/s) Flow width (from curb towards crown)= 15.018(Ft.) Process frora Point/Station 204.000 to Point/Station 206 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 49.860(Ft.) Downstream point/station elevation = 49.740(Ft.) Pipe length = 24.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.826(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 6.826(CFS) Normal flow depth in pipe = 13.66(In.) Flow top width inside pipe = 15.39(In.) Critical Depth = 12.14(In.) Pipe flow velocity = 4.75(Ft/s) Travel time through pipe = 0.09 min. Time of concentration (TC) = 11.24 min. Process from Point/Station 204.000 to Point/Station 206 000 **** CONFLUENCE OF MAIN STREAMS **** Page 2 of 9 The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 1.760(Ac.) Runoff from this stream = 6.826(CFS) Time of concentration = 11.24 min. Rainfall intensity = 4.062(In/Hr) Program is now starting with Main Stream No. 2 Process from Point/Station 200.000 to Point/Station 208.000 **** INITIAL AREA EVALUATION **** .000 .000 .000 .000 ] 32.000(Ft.) Decimal fraction soil group A = Decimal fraction soil group B = Decimal fraction soil group C = Decimal fraction soil group D = [INDUSTRIAL area type (General Industrial ) Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance Highest elevation = 73.750(Ft.) Lowest elevation = 72.700(Ft.) Elevation difference = 1.050(Ft.) Slope = 3.281 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80.00 (Ft) for the top area slope value of 3.28 %, m a development type of General Industrial In Accordance With Figure 3-3 initial Area Time of Concentration = 2.49 mmutes TC = [1 8*(l.l-C)*distance(Ft.)*.5)/(% slope (1/3)] TC = [1 8*(1 l-0.8700)*( 80.000*.5)/( 3.281*(1/3) ] = Rainfall intensity (I) = 10.734(In/Hr) for a 100 Effective rimoff coefficient used for area (Q=KCIA) is Subarea runoff = 0.093(CFS) Total initial stream area = 0.010(Ac.) 2.49 year storm = 0.870 Process from Point/Station 208.000 to Pomt/Station 210.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 72.700(Ft.) End of street segment elevation = 59.330(Ft.) Length of street segment = 1275.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 40.000(Ft.) Distance from crown to crossfall grade break = 38.500 itt.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope frora curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = Manning's N from grade break to crown = Estimated mean flow rate at midpoint of street 0.0150 0.0150 4.221(CFS) Page 3 of 9 • Runoff from this streara = 10.822(CFS) Tirae of concentration = 6.89 min. Rainfall intensity 5.572(In/Hr) Program is now starting with Main Streara No. 2 Process frora Point/Station 400.000 to Point/Station 412.000 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = 32.000(Ft.) Highest elevation = 73.750(Ft.) Lowest elevation = 72.700(Ft.) Elevation difference = 1.050(Ft.) Slope = 3.281 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaximum overland flow distance is 80.00 (Ft) for the top area slope value of 3.28 %, in a development type of General Industrial In Accordance With Figure 3-3 Initial Area Time of Concentration = 2.49 minutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(1/3)] TC = [1.8*(1.1-0.8700)*( 80.000*.5)/( 3.281*(1/3)]= 2.49 Rainfall intensity (I) = 10.734(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea runoff = 0.093(CFS) Total initial streara area = 0.010 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 412.000 to Point/Station 414.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of Street segment elevation = 72.700(Ft.) End of street segment elevation = 66.060(Ft.) Length of street segment = 640.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 40.000(Ft.) Distance from crown to crossfall grade break = 38.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance frora curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.817(CFS) Depth of flow = 0.347(Ft.), Average velocity = 2.332 (Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.514(Ft.) Page 5 of 11 # Flow velocity = 2.33(Ft/s) Travel time = -4.57 min. TC = 7.07 min. Adding area flow to'street User specified 'C value of 0.950 given for subarea Rainfall intensity = 5.481(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.950 CA = 1.026 Subarea nmoff = 5.530 (CFS) for 1.070 (Ac.) Total runoff = 5.623(CFS) Total area = 1.080(Ac.) Street flow at end of street = 5.623(CFS) Half street flow at end of street = 5.623(CFS) Depth of flow = 0.415(Ft.), Average velocity = 2.751(Ft/s) Flow width (from curb towards crown)= 13.934(Ft.) Process from Point/Station 412.000 to Point/Station 414.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream nuraber 1 Stream flow area = 1.080(Ac.) Runoff frora this stream = 5.623(CFS) Time of concentration = 7.07 min. Rainfall intensity = 5.481(In/Hr) +++++++++++++•^+++++++++++++++++++++•^+^-++++++++++++++++++++-^+++++ Process from Point/Station 406.000 to Point/Station 416.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = 41.000(Ft.) Highest elevation = 73.200(Ft.) Lowest elevation = 72.750(Ft.) Elevation difference = 0.450(Pt.) Slope = 1.098 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maxiraum overland flow distance is 60.00 (Ft) for the top area slope value of 1.10 %, in a development type of General Industrial In Accordance With Figure 3-3 Initial Area Time of Concentration = 3.11 minutes TC = [1.8*(1.1-C)*distance(Ft.)*.5)/(% slope*(1/3)] TC = [1.8*(1.1-0.8700)*( 60.000*.5)/( 1.098*(1/3)]= 3.11 Rainfall intensity (I) = 9.308(In/Hr) for a 100.0 year storm Effective rimoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea rimoff = 0.081(CFS) Total initial stream area = 0.010(Ac.) ++++++++++++++++++++++++++++++++++++ Process from Point/Station 416.000 to Point/Station 414.000. **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Page 6 of 11 Top of street segment elevation = 72.750(Ft.) End of street segment elevation = 66.060(Ft.) Length of street segrfient = 570.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 40.000(Ft.) Distance from crown to crossfall grade break = 38.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side{s) of the street Distance frora curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.637(CFS) Depth of flow = 0.336(Ft.), Average velocity = 2.407(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.964(Ft.) Flow velocity = 2.41(Ft/s) Travel time = 3.95 min. TC = 7.05 min. Adding area flow to street User specified 'C value of 0.950 given for subarea Rainfall intensity = 5.486(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.950 CA = 0.959 Subarea runoff = 5.183(CFS) for 1.000(Ac.) Total rimoff = 5.264(CFS) Total area = 1.010(Ac.) Street flow at end of street = 5.264(CFS) Half street flow at end of street = 5.264(CFS) Depth of flow = 0.401(Ft.), Average velocity = 2.837(Ft/s) Flow width (from curb towards crown)= 13.240(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 416.000 to Point/Station 414.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 1.010(Ac.) Runoff from this stream = 5.264(CFS) Time of concentration = 7.05 rain. Rainfall intensity = 5.486(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) Qmax(l)^ Qmax(2) 5.623 5.264 1.000 * 0.999 * 1.000 * 1.000 * 7.07 7.05 1.000 * 1.000 * 0.998 * 1.000 * 5 .481 5.486 5.623) + 5.264) + = 5.623) + 5.264) + = 10.882 10.878 Total of 2 streams to confluence: Page 7 of 11 Flow rates before confluence point: 5.623 ~ 5.264 Maximum flow rates at confluence using above data: 10.882 10.878 Area of streams before confluence: 1.080 1.010 Results of confluence: Total flow rate = 10.882(CFS) Time of concentration = 7.066 min. Effective stream area after confluence = 2.090(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 414.000 to Point/Station 410.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 60.920(Ft.) Downstream point/station elevation = 60.570(Ft.) Pipe length = 70.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 10.882(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 10.882(CFS) Normal flow depth in pipe = 11.78(In.) Flow top width inside pipe = 33.78(In.) Critical Depth = 12.54(In.) Pipe flow velocity = 5.42(Ft/s) Travel tirae through pipe = 0.22 min. Time of concentration (TC) = 7.28 rain. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 414.000 to Point/Station 410.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Streara is listed: In Main Stream number: 2 Streara flow area = 2.090(Ac.) Runoff from this streara = 10.882(CFS) Time of concentration = 7.28 min. Rainfall intensity = 5.3 75(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 10.822 6.89 5.572 2 10.882 7.28 5.375 Qmax(l) = 1.000 * 1.000 * 10.822) + 1.000 * 0.946 * 10.882) + = 21.113 Qmax(2) = 0.965 * 1.000 * 10.822) + 1.000 * 1.000 * 10.882) + = 21.321 Total of 2 raain streams to confluence: Flow rates before confluence point: 10.822 10.882 Maxiraum flow rates at confluence using above data: 21.113 21.321 Page 8 of 11 Area of streams before confluence: 2.030 - 2.090 Results of confluence: Total flow rate = 21.321(CFS) Tirae of concentration = 7.282 rain. Effective streara area after confluence = 4.120(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 410.000 to Point/Station 418.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 60.240(Ft.) Downstream point/station elevation = 59.990(Ft.) Pipe length = 50.79(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 21.321(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 21.321(CFS) Normal flow depth in pipe = 17.05(In.) Flow top width inside pipe = 35.95(In.) Critical Depth = 17.80(In.) Pipe flow velocity = 6.47(Ft/s) Travel time through pipe = 0.13 min. Time of concentrat ion (TC) = 7.41 min. + + + + + + + + + + 4- + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ + + + .^ + + + + ^^.^^.^^^ Process from Point/Station 410.000 to Point/Station 418.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 4.120(Ac.) Runoff from this stream = 21.321(CFS) Tirae of concentration = 7.41 rain. Rainfall intensity = 5.314(In/Hr) Prograra is now starting with Main Stream No. 2 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 4. + + + + .^^.^. + ^.^.^.^^.^.^^ Process from Point/Station 420.000 to Point/Station 422 000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 2050.000(Ft.) Highest elevation = 200.000(Ft.) Lowest elevation = 59.240(Ft.) Elevation difference = 140.760(Ft.) Slope = 6.866 % Top of Initial Area Slope adjusted by User to 12.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximura overland flow distance is 100.00 (Ft) Page 9 of 11 for the top area slope value of 12.00 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 5.90 rainutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(1/3)] TC = [1.8*(l.l-0.3500)*( 100.000*.5)/( 12.000*(1/3)]= 5.90 The initial area total distance of 2050.00 (Ft.) entered leaves a remaining distance of 1950.00 (Ft.) Using Figure 3-4, the travel time for this distance is 7.48 rainutes for a distance of 1950.00 (Ft.) and a slope of 6.87 % with an elevation difference of 133.89(Ft.) from the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(min/hr) 7.478 Minutes Tt=[(11.9*0.3693*3)/(133.89)]*.385= 7.48 Total initial area Ti = 5.90 rainutes from Figure 3-3 formula plus 7.48 rainutes frora the Figure 3-4 formula = 13.37 minutes Rainfall intensity (I) = 3.632(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0 350 Subarea runoff = 23.718(CFS) Total initial stream area = 18.660 (Ac.) Process from Point/Station 422.000 to Point/Station 418 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 59.240(Ft.) ~ Downstream point/station elevation = 58.990(Ft.) Pipe length = 50.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 23.718(CFS) Given pipe size = 48.00(In.) Calculated individual pipe flow = 23.718(CFS) Normal flow depth in pipe = 15.80(In.) Flow top width inside pipe = 45.11(in.) Critical Depth = 17.25(In.) Pipe flow velocity = 6.58(Ft/s) Travel tirae through pipe = 0.13 rain. Time of concentration (TC) = 13.50 min. Process from Point/Station 422.000 to Point/Station 418 000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Streara is listed: ~~ In Main Stream number: 2 Stream flow area = 18.660(Ac.) Rimoff from this stream = 23.718(CFS) Time of concentration = 13.50 min. Rainfall intensity = 3.609(In/Hr) Suraraary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (rain) (In/Hr) 1 21.321 7.41 2 23.718 13.50 Qraax(1) = 5.314 3 .609 1.000 * 1.000 * 21.321) + Page 10 of 11 J 1.000 * 0.549 * 23.718) + = 34.343 Qmax(2) = 0.679 * 1.000 * 21.321) + 1.000 * 1.000 * 23.718) + = 38.200 Total of 2 main streams to confluence: Flow rates before confluence point: 21.321 23.718 Maximura flow rates at confluence using above data: 34.343 38.200 Area of strearas before confluence: 4.120 18.660 Results of confluence: Total flow rate = 38.200(CFS) Time of concentration = 13.502 rain. Effective streara area after confluence = 22.780(Ac.) + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ^.^4.4.4. + 4.4.^^^^^^^ Process frora Point/Station 418.000 to Point/Station 424 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstreara point/station elevation = 58.660(Ft.) Downstream point/station elevation = 58.000(Ft.) Pipe length = 131.28(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 38.200(CFS) Given pipe size = 48.00(In.) Calculated individual pipe flow = 38.200(CFS) Normal flow depth in pipe = 20.37(In.) Flow top width inside pipe = 47.45(In.) Critical Depth = 22.09(In.) Pipe flow velocity = 7.52(Ft/s) Travel time through pipe = 0.29 min. Tirae of concentration (TC) = 13.79 min. End of computations, total study area = 22.780 (Ac.) Page 11 of ll SECTION 4 • San Diego Coimty Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7.4 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 04/18/06 Robertson Ranch Proposed Conditions Basin A 4-18-06 Pile:gsita.out ********* Hydrology Study Control Information ********** Program License Serial Number 5007 Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 P6/P24 = 60.5% San Diego hydrology manual 'C values used Process from Point/Station 1000.000 to Point/Station **** INITIAL AREA EVALUATION **** 1002.000 ] 645.000(Ft.) Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [LOW DENSITY RESIDENTIAL (2.9 DU/A or Less ) Impervious value, Ai = 0.250 Sub-Area C Value = 0.490 Initial subarea total flow distance = Highest elevation = 103.000(Ft.) Lowest elevation = 42.000(Ft.) Elevation difference = 61.000(Ft.) Slope = 9.457 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaximum overland flow distance is 100.00 (Ft) for the top area slope value of 9.46 %, in a development type of 2.9 DU/A or Less ^'^ In Accordance With Figure 3-3 Initial Area Time of Concentration = 5.19 minutes TC = [1.8*(l.l-c)*distance(Ft.)*.5)/(% slope*(1/3)] TC = (1.8*(1.1-0.4900)*( 100.000*.5)/( 9.457*(1/3)]= 5 19 The initial area total distance of 645.00 (Ft.) entered leaves a remaining distance of 545.00 (Ft.) Using Figure 3-4, the travel time for this distance is 2.48 rainutes for a distance of 545.00 (Ft.) and a slope of 9.46 % Page 1 of 2 with an elevation difference of 51.54(Ft.) from the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(min/hr) = 2.477 Minutes Tt=[(11.9*0.1032*3)/{ 51.54)]*.385= 2.48 Total initial area Ti = 5.19 minutes from Figure 3-3 formula plus 2.48 minutes from the Figure 3-4 formula = 7.67 minutes Rainfall intensity (I) = 5.198(In/Hr) for a 100.0 year storm Effective nmoff coefficient used for area (Q=KCIA) is C = 0.490 Subarea nmoff = 18.060 (CFS) Total initial stream area = 7.090(Ac.) End of computations, total study area = 7.090 (Ac.) Page 2 of 2 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7.4 Rational raethod hydrology program based on San Diego Coimty Flood Control Division 2003 hydrology raanual Rational Hydrology Study Date: 11/10/06 Robertson Ranch East Drainage Study Mass Graded Condition Basin B - 100 Yr Storm Event J.N. 011014 File:bsitb.out ********* Hydrology Study Control Information ********** Prograra License Serial Nuraber 5014 Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 P6/P24 = 60.5% San Diego hydrology manual 'C values used +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2000.000 to Point/Station 2002.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATXHIAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 555.000(Ft.) Highest elevation = 203.500(Ft.) Lowest elevation = 132.500(Ft.) Elevation difference = 71.000(Ft.) Slope = 12.793 % Top of Initial Area Slope adjusted by User to 4.000 % Bottom of Initial Area Slope adjusted by User to 9.500 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 4.00 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Tirae of Concentration = 8.50 rainutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(l.l-0.3500)*( 100.000*.5)/( 4.000*(1/3)]= 8.50 The initial area total distance of 555.00 (Ft.) entered leaves a reraaining distance of 455.00 (Ft.) Using Figure 3-4, the travel tirae for this distance is 2.15 rainutes for a distance of 455.00 (Ft.) and a slope of 9.50 % with an elevation difference of 43.23(Ft.) frora the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(rain/hr) = 2.152 Minutes Tt=[(11.9*0.0862*3)/( 43.23)]*.385= 2.15 Total initial area Ti = 8.50 minutes frora Figure 3-3 forraula plus 2.15 rainutes frora the Figure 3-4 formula = 10.66 minutes Rainfall intensity (I) = 4.205(In/Hr) for a 100.0 year storra Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 9.698(CFS) Total initial streara area = 6.590(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2002.000 to Point/Station 2004.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstreara point elevation = 132.500(Ft.) Downstream point elevation = 129.500(Ft.) Channel length thru subarea = 300.000(Ft.) Channel base width = 1.000(Ft.) Slope or 'Z' of left channel bank = 20.000 Slope or 'Z' of right channel bank = 20.000 Estiraated raean flow rate at midpoint of channel = 10.600(CFS) Manning's 'N' = 0.040 Maximura depth of channel = 1.000(Ft.) Flow(q) thru subarea = 10.600(CFS) Depth of flow = 0.549(Ft.), Average velocity = 1.613(Ft/s) Channel flow top width = 22.953(Ft.) Flow Velocity = 1.61(Ft/s) Travel tirae = 3.10 rain. Time of concentration = 13.76 min. Critical depth = 0.422(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 3.566(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 3.206 Subarea runoff = 1.735(CFS) for 2.570(Ac.) Total runoff = 11.433(CFS) Total area = 9.160(Ac.) Depth of flow = 0.565(Ft.), Average velocity = 1.644(Ft/s) Critical depth = 0.434(Ft.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2002.000 to Point/Station 2004.000 **** CONFLtreNCE OF MINOR STREAMS **** Along Main Streara number: 1 in norraal streara number 1 Stream flow area = 9.160(Ac.) Runoff from this stream = 11.433(CFS) Time of concentration = 13.76 rain. Rainfall intensity = 3.566(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2006.000 to Point/Station 2004.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 560.000(Ft.) Highest elevation = 203.000(Ft.) Lowest elevation = 129.500(Ft.) Elevation difference = 73.500(Ft.) Slope = 13.125 % Top of Initial Area Slope adjusted by User to 4.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximura overland flow distance is 100.00 (Ft) for the top area slope value of 4.00 %, in a developraent type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Tirae of Concentration = 8.50 rainutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(1/3)] TC = [1.8* (1.1-0.3500)*( 100.000*.5)/( 4.000*(1/3)]= 8.50 The initial area total distance of 560.00 (Ft.) entered leaves a remaining distance of 460.00 (Ft.) Using Figure 3-4, the travel time for this distance is 1.92 minutes for a distance of 460.00 (Ft.) and a slope of 13.13 % with an elevation difference of 60.38(Ft.) from the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(min/hr) 1.916 Minutes Tt=[(11.9*0.0871*3)/( 60.38)]*.385= 1.92 Total initial area Ti = 8.50 minutes from Figure 3-3 formula plus 1.92 minutes from the Figure 3-4 formula = 10.42 minutes Rainfall intensity (I) = 4.266(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 4.375(CFS) Total initial stream area = 2.93 0(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2006.000 to Point/Station 2004.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream nuraber: 1 in norraal streara number 2 Stream flow area = 2.930(Ac.) Runoff from this stream = 4.375(CFS) Tirae of concentration = 10.42 rain. Rainfall intensity = 4.266(In/Hr) Suraraary of streara data: Streara Flow rate TC Rainfall Intensity No. (CFS) (rain) (In/Hr) 1 11.433 13.76 3.566 2 4.375 10.42 4.266 Qmax(1) Qmax(2) 1.000 * 1.000 * 11.433) + 0.836 * 1.000 * 4.375) + = 15.090 1.000 * 0.757 * 11.433) + 1.000 * 1.000 * 4.375) + = 13.035 Total of 2 Streams to confluence: Flow rates before confluence point: 11.433 4.375 Maximum flow rates at confluence using above data: 15.090 13.035 Area of streams before confluence: 9.160 2.930 Results of confluence: Total flow rate = 15.090(CFS) Time of concentration = 13.757 min. Effective streara area after confluence = 12.090(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2004.000 to Point/Station 2008.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 129.500(Ft.) Downstream point elevation = 122.000(Ft.) Channel length thru subarea = 620.000 (Ft.) Channel base width = 1.000(Ft.) Slope or 'Z' of left channel bank = 20.000 Slope or 'Z' of right channel bank = 20.000 Estimated mean flow rate at midpoint of channel = 15.116(CFS) Manning's 'N' = 0.040 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 15.116(CFS) Depth of flow = 0.607(Ft.), Average velocity = 1.893(Ft/s) Channel flow top width = 25.296(Ft.) Flow Velocity = 1.89(Ft/s) Travel time = 5.46 min. Tirae of concentration = 19.22 min. Critical depth = 0.488(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 <3nh-Area C Value = 0.350 ?S "ea added to the -inting =trea™ cau.e. a a louer flow rate o£ Q - ! , „ . 15 090 (CPS) is being used therefore the upstream flow °' , \oo.0 year storm ^^i:rtiie'r:::«'L;fficle^t^rsia 'for^total area ^^^•ZlB^' ^otalir^r-' 1...0..O., Z^TAl\ „'^0?^?iT'™ velocity = l.B..<.t/s, critical depth - 0.4eS(Ft.) ---*;;rtrtror""ro;::ror;r;rirtrsr.ri:r*'"r„;;:ror process from ^^^^^^^^^^f**** **** CONFLUENCE OF MINOR STREAMS iisiir^i^i^ri^^i^ stream flow area = "^'^ ^f^" ^o90 (CFS) Runoff from this stream = Time of concentration = 19-22 min- Rainfall intensity = 2.875(In/Hr) H- + + + + + + + + + r*";rtr.rari;r""roro:;:r;r;ri:^;-:ri:;""%oos.ooo Process from Point/Station **** INITIAL AREA EVALUATION **** Decimal fraction soil group B = OOOO Decimal fraction soil group C = 0 000 Decimal fraction soil group D =1.000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space ) impervious value, Ai = 0.000 ?S;S%ub:rert;t:"f?ow distance = 770.000 (Ft.) Highest elevation = 202.000(Ft ) Lowest elevation = 126.000(Ft^) ^ ^ ^ Elevation dif erence - 76^ 00 (Ft )^ ^^P^ ^^ ^^^ ^ S^TIL'AR'E^ i-rOF COUTRATION CALCULATIONS: The maximura overland ^1°- ^^^f ^^,,^^^0 % in I developraent type of for the top area slope value of 15.00 %, m Perraanent Open Space in Accordance With Figure minutes initial Area Tirae of Concentration .^^^.^^ TC = [l-8Ml.l-C)*distance(FtJ .5) % ^ P^,,. (,/3) 3 = 5.47 TC = 1-0.3500 *( 100jOO ^B)/(^ ^^^^^^^ ^^^^^3 , The initial area total distance or remaining distance of ,^,^3 distance is 2.86 minutes ZTl - -0 ^-•Lf^1e\3rF?V5rom ^end of the top area Ul^.-^h(S*3) / (riefati!:- cilnge (Ft .))]*• 385 *60 (min/hr) 2.857 Minutes Tt=[(11.9*0.1269*3)/( 66.13)]*.385= 2.86 Total initial area Ti = 5.47 rainutes frora Figure 3-3 forraula plus 2.86 rainutes frora the Figure 3-4 formula = 8.33 minutes Rainfall intensity (I) = 4.928(In/Hr) for a 100.0 year storra Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 11.488(CFS) Total initial stream area = 6.660(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2010.000 to Point/Station 2008.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in norraal streara number 2 Streara flow area = 6.660(Ac.) Runoff from this stream = 11.488(CFS) Time of concentration = 8.33 min. Rainfall intensity = 4.928(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 15.090 19.22 2.875 11.488 8.33 4.928 Qmax(1) Qmax(2) = 1.000 * 1.000 * 15.090) + 0.583 * 1.000 * 11.488) + = 21.791 1.000 * 0.434 * 15.090) + 1.000 * 1.000 * 11.488) + = 18.030 Total of 2 Streams to confluence: Flow rates before confluence point: 15.090 11.488 Maximum flow rates at confluence using above data: 21.791 18.030 Area of streams before confluence: 14.770 6.660 Results of confluence: Total flow rate = 21.791(CFS) Time of concentration = 19.216 min. Effective stream area after confluence = 21.430(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2008.000 to Point/Station 2012.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstreara point elevation = 126.000(Ft.) Downstream point elevation = 101.000(Ft.) Channel length thru subarea = 400.000(Ft.) Channel base width = 1.000(Ft.) Slope or 'Z' of left channel bank = 20.000 Slope or 'Z' of right channel bank = 20.000 Estimated mean flow rate at midpoint of channel = 22.463(CFS) Manning's 'N' = 0.040 Maximura depth of channel = 1.000(Ft.) Flow(q) thru subarea = 22.463(CFS) Depth of flow = 0.514(Ft.), Average velocity = 3.868(Ft/s) Channel flow top width = 21.576(Ft.) Flow Velocity = 3.87(Ft/s) Travel time = 1.72 min. Time of concentration = 20.94 min. Critical depth = 0.578(Ft.) Adding area flow to channel Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Perraanent Open Space ) Irapervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 2.720(In/Hr) for a 100.0 year storra Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 8.487 Subarea runoff = 1.293(CFS) for 2.820(Ac.) Total runoff = 23.084(CFS) Total area = 24.250(Ac.) Depth of flow = 0.520(Ft.), Average velocity = 3.895(Ft/s) Critical depth = 0.582(Ft.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2012.000 to Point/Station 2014.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 101.000(Ft.) Downstream point elevation = 90.000(Ft.) Channel length thru subarea = 390.000(Ft.) Channel base width = 1.000(Ft.) Slope or 'Z' of left channel bank = 20.000 Slope or 'Z' of right channel bank = 20.000 Estimated mean flow rate at midpoint of channel = 24.312(CFS) Manning's 'N' = 0.040 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 24.312(CFS) Depth of flow = 0.620(Ft.), Average velocity = 2.928(Ft/s) Channel flow top width = 25.792(Ft.) Flow Velocity = 2.93(Ft/s) Travel time = 2.22 min. Time of concentration = 23.16 min. Critical depth = 0.594(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Perraanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 2.549(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 9.999 Subarea runoff = 2.401(CFS) for 4.320(Ac.) Total runoff = 25.485(CFS) Total area = 28.570 (Ac.) Depth of flow = 0.631(Ft.), Average velocity = 2.963(Ft/s) Critical depth = 0.609(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2014.000 to Point/Station 2016.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 90.000(Ft.) Downstream point elevation = 88.000(Ft.) Channel length thru subarea = 200.000(Ft.) Channel base width = 1.000(Ft.) Slope or 'Z' of left channel bank = 20.000 Slope or 'Z' of right channel bank = 20.000 Estimated mean flow rate at midpoint of channel = 26.699(CFS) Manning's 'N' =0.040 Maximum depth of chaamel = 1.000 (Ft.) Flow(q) thru subarea = 26.699(CFS) Depth of flow = 0.786(Ft.), Average velocity = 2.032(Ft/s) Channel flow top width = 32.435(Ft.) Flow Velocity = 2.03(Ft/s) Travel time = 1.64 min. Time of concentration = 24.80 min. Critical depth = 0.617(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 2.439(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 11.413 Subarea runoff = 2.348(CFS) for 4.040(Ac.) Total runoff = 27.832(CFS) Total area = 32.610(Ac.) Depth of flow = 0.799(Ft.), Average velocity = 2.053(Ft/s) Critical depth = 0.633(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2016.000 to Point/Station 2018.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 78.000(Ft.) Downstream point/station elevation = 64.330(Ft.) Pipe length = 290.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 27.832(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 27.832(CFS) Normal flow depth in pipe = 10.70(In.) Flow top width inside pipe = 32.91(In.) Critical Depth = 20.47(In.) Pipe flow velocity = 15.82(Ft/s) Travel time through pipe = 0.31 min. Time of concentration (TC) = 25.10 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2016.000 to Point/Station 2018.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal streara number 1 Stream flow area = 32.610(Ac.) Runoff from this stream = 27.832(CFS) Time of concentration = 25.10 min. Rainfall intensity = 2.419(In/Hr) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2020.000 to Point/Station 2022.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 310.000(Ft.) Highest elevation = 87.600 (Ft.) Lowest elevation = 81.200(Ft.) Elevation difference = 6.400(Ft.) Slope = 2.065 % Top of Initial Area Slope adjusted by User to 2.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 85.00 (Ft) for the top area slope value of 2.00 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 9.88 minutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(1/3)] TC = [1.8* (1.1-0.3500)*( 85.000*.5)/( 2 . 000*(1/3)]= 9.88 Rainfall intensity (I) = 4.415(In/Hr) for a 100.0 year storm Effective nmoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 5.749(CFS) Total initial streara area = 3.720(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2022.000 to Point/Station 2023.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 80.200(Ft.) Downstreara point elevation = 79.800(Ft.) Channel length thru subarea = 40.000(Ft.) Channel base width = 10.000(Ft.) slope or 'Z' of left channel bank = 3.000 Slope or 'Z' of right channel bank = 3.000 Manning's 'N' = 0.040 Maximura depth of channel = 1.000(Ft.) Flow(q) thru subarea = 5.749(CFS) Depth of flow = 0.321(Ft.), Average velocity Channel flow top width = 11.924(Ft.) Flow Velocity = 1.64(Ft/s) Travel time = 0.41 min. Tirae of concentration = 10.29 min. Critical depth = 0.213(Ft.) 1.636(Ft/s) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2024.000 to Point/Station 2018.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstreara point/station elevation = 74.400(Ft.) Downstreara point/station elevation = 66.080(Ft.) Pipe length = 156.43(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.749(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 5.749(CFS) Normal flow depth in pipe = 5.38(In.) Flow top width inside pipe = 20.02(In.) Critical Depth = 10.16(In.) Pipe flow velocity = 10.92(Ft/s) Travel time through pipe = 0.24 rain. Time of concentration (TC) = 10.52 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2024.000 to Point/Station 2018.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Streara flow area = 3.720(Ac.) Runoff frora this streara = 5.749(CFS) Tirae of concentration = 10.52 min. Rainfall intensity = 4.239(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) Qmax(2) 27.832 5.749 1.000 * 0.571 * 000 000 25 .10 10.52 000 000 0 .419 1.000 2 .419 4 .239 27.832) + 5.749) + 27.832) + 5.749) + 31.114 17.417 Total of 2 Streams to confluence: Flow rates before confluence point: 27.832 5.749 Maximum flow rates at confluence using above data: 31.114 17.417 Area of streams before confluence: 32.610 3.720 Results of confluence: Total flow rate = 31.114(CFS) Tirae of concentration = 25.105 min. Effective stream area after confluence = 36.33 0(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2018.000 to Point/Station 2030.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstreara point/station elevation = 64.000(Ft.) Downstreara point/station elevation = 63.540(Ft.) Pipe length = 42.34(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 31.114(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 31.114(CFS) Normal flow depth in pipe = 16.88(In.) Flow top width inside pipe = 35.93(In.) Critical Depth = 21.68(In.) Pipe flow velocity = 9.56(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 25.18 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2018.000 to Point/Station 2030.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream nuraber: 1 Stream flow area = 36.330(Ac.) Runoff from this stream = 31.114(CFS) Time of concentration = 25.18 rain. Rainfall intensity = 2.415(In/Hr) Program is now starting with Main Stream No. 2 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2032.000 to Point/Station 2034.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Perraanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 820.000(Ft.) Highest elevation = 89.000(Ft.) Lowest elevation = 81.000(Ft.) Elevation difference = 8.000(Ft.) Slope = 0.976 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maxiraura overland flow distance is 70.00 (Ft) for the top area slope value of 0.98 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 11.39 minutes TC = [1.8*(1-l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(1.1-0.3500)*( 70.000*.5)/( 0 . 976*(1/3)]= 11.39 Rainfall intensity (I) = 4.029(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 3.497(CFS) Total initial stream area = 2.480 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2034.000 to Point/Station 2036.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstreara point/station elevation = 75.610(Ft.) Downstreara point/station elevation = 69.220(Ft.) Pipe length = 71.39(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.497(CFS) Given pipe size = 12. 00(In.) Calculated individual pipe flow = 3.497(CFS) Norraal flow depth in pipe = 4.73(In.) Flow top width inside pipe = 11.73(In.) Critical Depth = 9.59(In.) Pipe flow velocity = 12.15(Ft/s) Travel time through pipe = 0.10 min. Time of concentration (TC) = 11.48 rain. + ++++^-+++++++++++++++++++++++ +++++++^-++++++++++++^-++-^^•+++++ Process frora Point/Station 2034.000 to Point/Station 2036.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in norraal streara number 1 Stream flow area = 2.480(Ac.) Rimoff from this stream = 3.497(CFS) Time of concentration = 11.48 rain. Rainfall intensity = 4.007(In/Hr) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2038.000 to Point/Station 2040.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = 17.000(Ft.) Highest elevation = 88.000(Ft.) Lowest elevation = 87.660(Ft.) Elevation difference = 0.340(Ft.) Slope = 2.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaxlraura overland flow distance is 70.00 (Ft) for the top area slope value of 2.00 %, in a developraent type of General Industrial In Accordance With Figure 3-3 Initial Area Tirae of Concentration = 2.75 rainutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(1.1-0.8700)*( 70.000*.5)/( 2.000*(1/3)]= 2.75 Calculated TC of 2.749 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storra Effective nmoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea runoff = 0.060(CFS) Total initial streara area = 0.010(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2040.000 to Point/Station 2036.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of Street segment elevation = 87.660(Ft.) End of street segment elevation = 76.500(Ft.) Length of street segment = 950.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000 (Ft.) Slope frora curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2. 000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estiraated mean flow rate at midpoint of street = 1.674(CFS) Depth of flow = 0.300(Ft.), Average velocity = 2.170(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.178(Ft.) Flow velocity = 2.17 (Ft/s) Travel time = 7.30 min. TC = 10.05 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Rainfall intensity = 4.368(In/Hr) for a 100.0 year storm Effective nmoff coefficient used for total area (Q=KCIA) is C = 0.870 CA = 0.774 Subarea runoff = 3.322(CFS) for 0.880(Ac.) Total rimoff = 3.382(CFS) Total area = 0.890(Ac.) Street flow at end of street = 3.3 82(CFS) Half street flow at end of street = 3.382(CFS) Depth of flow = 0.358(Ft.), Average velocity = 2.553(Ft/s) Flow width (frora curb towards crown)= 11.055(Ft.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process frora Point/Station 2040.000 to Point/Station 2036.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara nuraber: 2 in normal stream nuraber 2 Stream flow area = 0.890(Ac.) Runoff from this stream = 3.382(CFS) Tirae of concentration = 10.05 min. Rainfall intensity = 4.368(In/Hr) Summary of streara data: Streara No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) Qmax(2) 3 .497 3 .382 1 .000 0 .917 1 . 000 1. 000 11.48 10 . 05 1.000 * 1.000 * 0.875 * 1.000 * 3.497) 3.382) 4 . 007 4 .368 + + = 3.497) + 3.382) + 6 .599 6 .441 Total of 2 streams to confluence: Flow rates before confluence point: 3.497 3.382 Maximura flow rates at confluence using above data: 6.599 6.441 Area of streams before confluence: 2.480 0.890 Results of confluence: Total flow rate = 6.599(CFS) Time of concentration = 11.485 min. Effective stream area after confluence = 3.370(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2036.000 to Point/Station 2042.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 68.720(Ft.) Downstreara point/station elevation = 68.620(Ft.) Pipe length = 5.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.599(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 6.599(CFS) Norraal flow depth in pipe = 8.52(In.) Flow top width inside pipe = 17.97(In.) Critical Depth = 11.92(In.) Pipe flow velocity = 8.01(Ft/s) Travel tirae through pipe = 0.01 rain. Tirae of concentration (TC) = 11.50 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2036.000 to Point/Station 2042.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal streara nuraber 1 Streara flow area = 3.370(Ac.) Rimoff frora this streara = 6.599(CFS) Tirae of concentration = 11.50 min. Rainfall intensity = 4.004(In/Hr) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2038.000 to Point/Station 2037.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = 17.000(Ft.) Highest elevation = 86.500(Ft.) Lowest elevation = 86.300(Ft.) Elevation difference = 0.200(Ft.) Slope = 1.176 % Top of Initial Area Slope adjusted by User to 2.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maxiraura overland flow distance is 70.00 (Ft) for the top area slope value of 2.00 %, in a development type of General Industrial In Accordance With Table 3-2 Initial Area Time of Concentration = 2.70 minutes (for slope value of 2.00 %) Calculated TC of 2.700 minutes is less than 5 minutes, resetting TC to 5.0 rainutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storra Effective runoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea nmoff = 0.060 (CFS) Total initial stream area = 0.010(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2037.000 to Point/Station 2043.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 86.300(Ft.) End of street segment elevation = 76.000(Ft.) Length of street segment = 950.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope frora gutter to grade break (v/hz) = 0.020 Slope frora grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance frora curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.200(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estiraated mean flow rate at midpoint of street = 1.788(CFS) Depth of flow = 0.173(Ft.), Average velocity = 2.079(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.327 (Ft.) Flow velocity = 2.08(Ft/s) Travel time = 7.61 min. TC = 10.31 min. Adding area flow to street Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Irapervious value, Ai = 0.950 Sub-Area C Value = 0.870 Rainfall intensity = 4.294(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.870 CA = 0.835 Subarea runoff = 3.527(CFS) for 0.950(Ac.) Total rimoff = 3.586(CFS) Total area = 0.960(Ac.) Street flow at end of street = 3.586(CFS) Half street flow at end of street = 3.586(CFS) Depth of flow = 0.228(Ft.), Average velocity = 2.477(Ft/s) Flow width (from curb towards crown)= 12. 074(Ft.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2043.000 to Point/Station 2042.. 000 **** PIPEFLOW TRAVEL TIME (Program estiraated size) **** Upstreara point/station elevation = 69.000(Ft.) Downstreara point/station elevation = 68.620(Ft.) Pipe length = 28.50(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.586 (CFS) Nearest coraputed pipe diameter = 12.00(In.) Calculated individual pipe flow = 3.586(CFS) Norraal flow depth in pipe = 8.67(In.) Flow top width inside pipe = 10.74(In.) Critical Depth = 9.70(In.) Pipe flow velocity = 5.90(Ft/s) Travel time through pipe = 0.08 min. Time of concentration (TC) = 10.40 rain. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2043.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 2042.000 Along Main Streara number: 2 in normal streara nuraber 2 Streara flow area = 0.960(Ac.) Rimoff frora this streara = 3.586 (CFS) Time of concentration = 10.40 min. Rainfall intensity = 4.273(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) Qmax(2) 599 586 000 937 1.000 * 1.000 * 11.50 10.40 1.000 * 1.000 * 0.904 * 1.000 * 6.599) 3.586) 4.004 4 .273 + + = 6.599) + 3.586) + 9.960 9 . 554 Total of 2 Streams to confluence: Flow rates before confluence point: 6.599 3.586 Maximura flow rates at confluence using above data: 9.960 9.554 Area of strearas before confluence: 3.370 0.960 Results of confluence: Total flow rate = Tirae of concentration 9.960(CFS) 11.496 min. Effective stream area after confluence 4.330(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2042.000 to Point/Station 2030.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstreara point/station elevation = 68.180(Ft.) Downstreara point/station elevation = 64.420(Ft.) Pipe length = 135.68(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 9.960(CFS^ Given pipe size = 24.00(In.) Calculated individual pipe flow = 9.960(CFS) Normal flow depth in pipe = 8.43(In.) Flow top width inside pipe = 22.91(In.) Critical Depth = 13.56(In.) Pipe flow velocity = 10.12(Ft/s) Travel time through pipe = 0.22 min. Time of concentration (TC) = 11.72 rain. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2042.000 to Point/Station 2030.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Streara is listed: In Main Streara nuraber: 2 Streara flow area = 4.330(Ac.) Runoff frora this streara = 9.960(CFS) Tirae of concentration = 11.72 rain. Rainfall intensity = 3.955(In/Hr) Suraraary of streara data: Streara Flow rate TC Rainfall Intensity No. (CFS) (rain) (In/Hr) 1 31.114 25.18 2.415 2 9.960 11.72 3.955 Qraax(1) Qmax(2) = 1.000 * 1.000 * 31.114) + 0.611 * 1.000 * 9.960) + = 37.196 1.000 * 0.465 * 31.114) + 1.000 * 1.000 * 9.960) + = 24.442 Total of 2 main streams to confluence: Flow rates before confluence point: 31.114 9.960 Maximum flow rates at confluence using above data: 37.196 24.442 Area of streams before confluence: 36.330 4.330 Results of confluence: Total flow rate = 37.196(CFS) Time of concentration = 25.179 min. Effective stream area after confluence = 40.660(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2030.000 to Point/Station 2050.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstreara point/station elevation = 64.420(Ft.) Downstreara point/station elevation = 44.860(Ft.) Pipe length = 440.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 37.196(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 37.196(CFS) Norraal flow depth in pipe = 12.64(In.) Flow top width inside pipe = 34.37(In.) Critical Depth = 23.82(In.) Pipe flow velocity = 16.80(Ft/s) Travel tirae through pipe = 0.44 rain. Tirae of concentration (TC) = 25.62 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2030.000 to Point/Station 2050.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream nuraber: 1 in norraal streara nuraber 1 Streara flow area = 40.660 (Ac.) Runoff from this stream = 37.196(CFS) Tirae of concentration = 25.62 rain. Rainfall intensity = 2.3 88(In/Hr) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2054.000 to Point/Station 2056.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Irapervious value, Ai = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = 40.000(Ft.) Highest elevation = 60.200(Ft.) Lowest elevation = 59.400(Ft.) Elevation difference = 0.800(Ft.) Slope = 2.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaxlraura overland flow distance is 70.00 (Ft) for the top area slope value of 2.00 %, in a development type of General Industrial In Accordance With Figure 3-3 Initial Area Tirae of Concentration = 2.75 minutes TC = [1.8*(1.1-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(1.1-0.8700)* ( 70.000*.5)/( 2 . 000*(1/3)]= 2.75 Calculated TC of 2.749 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storra Effective nmoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea runoff = 0.060(CFS) Total initial streara area = 0.010(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process frora Point/Station 2056.000 to Point/Station 2052.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segraent elevation = 59.400(Ft.) End of street segment elevation = 52.800(Ft.) Length of street segment = 480.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 40.000(Ft.) Distance from crown to crossfall grade break = 38.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope frora grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike frora flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N frora gutter to grade break = 0.0150 Manning's N frora grade break to crown = 0.0150 Estiraated raean flow rate at raidpoint of street = 4.414(CFS) Depth of flow = 0.375(Ft.), Average velocity = 2.888(Ft/s) Streetflow hydraulics at raidpoint of street travel: Halfstreet flow width = 11.941(Ft.) Flow velocity = 2.89(Ft/s) Travel time = 2.77 min. TC = 5.52 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Irapervious value, Ai = 0.950 Sub-Area C Value = 0.870 Rainfall intensity = 6.428(In/Hr) for a 100.0 year storra Effective rimoff coefficient used for total area (Q=KCIA) is C = 0.870 CA = 1.375 Subarea rimoff = 8.776(CFS) for 1.570(Ac.) Total runoff = 8.835(CFS) Total area = 1.580(Ac.) Street flow at end of street = 8.835(CFS) Half street flow at end of street = 8.835(CFS) Depth of flow = 0.452(Ft.), Average velocity = 3.415(Ft/s) Flow width (frora curb towards crown)= 15.762(Ft.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2052.000 to Point/Station 2050.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 49.000(Ft.) Downstream point/station elevation = 47.000(Ft.) Pipe length = 49.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 8.835(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 8.835(CFS) Normal flow depth in pipe = 8.10(In.) Flow top width inside pipe = 17.91(In.) Critical Depth = 13.80(In.) Pipe flow velocity = 11.46(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 5.59 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2052.000 to Point/Station 2050.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.580(Ac.) Runoff from this stream = 8.835(CFS) Time of concentration = 5.59 min. Rainfall intensity = 6.375(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2053.000 to Point/Station 2055.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Perraanent Open Space ) Irapervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 95.000(Ft.) Highest elevation = 87.000(Ft.) Lowest elevation = 80.000(Ft.) Elevation difference = 7.000(Ft.) Slope = 7.368 % Top of Initial Area Slope adjusted by User to 7.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaxlraura overland flow distance is 100.00 (Ft) for the top area slope value of 7.00 %, in a developraent type of Perraanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.06 rainutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(1.1-0.3500)*( 100.000*.5)/( 7.000*(1/3)]= 7.06 Rainfall intensity (I) = 5.485(In/Hr) for a 100.0 year storm Effective rimoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 0.134(CFS) Total initial stream area = 0.070(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process from Point/Station 2055.000 to Point/Station 2051.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of Street segraent elevation = 80.000(Ft.) End of street segment elevation = 53.000(Ft.) Length of street segraent = 580.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance frora crown to crossfall grade break = 15.500(Ft.) Slope frora gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike frora flowline = 0.200(In.) Manning's N in gutter = 0.0150 Manning's N frora gutter to grade break = 0.0150 Manning's N frora grade break to crown = 0.0150 Estiraated raean flow rate at raidpoint of street = 1.332(CFS) Depth of flow = 0.115(Ft.), Average velocity = 3.326(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.406(Ft.) Flow velocity = 3.33(Ft/s) Travel tirae = 2.91 rain. TC = 9.96 rain. Adding area flow to street Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Irapervious value, Ai = 0.950 Sub-Area C Value = 0.870 Rainfall intensity = 4.391(In/Hr) for a 100.0 year storra Effective runoff coefficient used for total area (Q=KCIA) is C = 0.820 CA = 0.599 Subarea runoff = 2.495(CFS) for 0.660(Ac.) Total rimoff = 2.629(CFS) Total area = 0.730(Ac.) Street flow at end of street = 2.629(CFS) Half street flow at end of street = 2.629(CFS) Depth of flow = 0.151(Ft.), Average velocity = 3.951(Ft/s) Flow width (frora curb towards crown)= 8.218(Ft.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2051.000 to Point/Station 2050.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstreara point/station elevation = 45.000(Ft.) Downstream point/station elevation = 44.700(Ft.) Pipe length = 4.50(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 2.629(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 2.629(CFS) Norraal flow depth in pipe = 5.10(In.) Flow top width inside pipe = 8.92(In.) Critical Depth = 8.42(In.) Pipe flow velocity = 10.16(Ft/s) Travel tirae through pipe = 0.01 min. Time of concentration (TC) = 9.97 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2051.000 to Point/Station 2050.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal streara number 3 Stream flow area = 0.73 0(Ac.) Runoff from this stream = 2.629(CFS) Time of concentration = 9.97 rain. Rainfall intensity = 4.389(In/Hr) Suraraary of streara data: Streara Flow rate TC Rainfall Intensity No. (CFS) (rain) (In/Hr) 1 37.196 25.62 2.388 2 8.835 5.59 6.375 2 629 9 97 4 . 389 1 .000 * 1 .000 * 37 196) + 0 .375 * 1 .000 * 8 835) + 0 .544 * 1 .000 * 2 629) + = 41 936 1 .000 * 0 .218 * 37 196) + 1 .000 * 1 .000 * 8 835) + 1 .000 * 0 .561 * 2 629) + = 18 427 1 .000 * 0 .389 * 37 .196) + 0 .689 * 1 .000 * 8 .835) + 1 .000 * 1 .000 * 2 .629) + = 23 .191 3 Qraax(1) Qmax(2) = Qraax(3) = Total of 3 strearas to confluence: Flow rates before confluence point: 37.196 8.835 2.629 Maxiraura flow rates at confluence using above data: 41.936 18.427 23.191 Area of strearas before confluence: 40.660 1.580 0.730 Results of confluence: Total flow rate = 41.936(CFS) Time of concentration = 25.615 min. Effective stream area after confluence = 42.970(Ac. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2050.000 to Point/Station 2060.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstreara point/station elevation = 44.700(Ft.) Downstreara point/station elevation = 44.160(Ft.) Pipe length = 53.68(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 41.936(CFS) Given pipe size = 48.00(In.) Calculated individual pipe flow = 41.936(CFS) Norraal flow depth in pipe = 17.74(In.) Flow top width inside pipe = 46.34(In.) Critical Depth = 23.21(in.) Pipe flow velocity = " 9.94(Ft/s) Travel tirae through pipe = 0.09 rain. Tirae of concentration (TC) = 25.71 rain. End of coraputations, total study area = 42.970 (Ac.) • San Diego County Rational Hydrology Prograra CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7.4 Rational raethod hydrology prograra based on San Diego Coimty Flood Control Division 2003 hydrology raanual Rational Hydrology Study Date: 06/22/06 Robertson Ranch East Hydrology Study Mass Graded Condition Basin C - 100 Yr Storra Event J.N. 011014 File:bsitc.out ********* Hydrology Study Control Inforraation ********** Prograra License Serial Nuraber 5007 Rational hydrology study storra event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 P6/P24 = 60.5% San Diego hydrology raanual 'C values used +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 3000.000 to Point/Station 3002.000 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 500.000(Ft.) Highest elevation = 120.000(Ft.) Lowest elevation = 115.000(Ft.) Elevation difference = 5.000(Ft.) Slope = 1.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaxlraura overland flow distance is 70.00 (Ft) for the top area slope value of 1.00 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 11.29 minutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(1.1-0.3500)*( 70.000*.5)/( 1.000*(1/3)]= 11.29 The initial area total distance of 500.00 (Ft.) entered leaves a remaining distance of 430.00 (Ft.) Using Figure 3-4, the travel tirae for this distance is 4.90 minutes for a distance of 430.00 (Ft.) and a slope of 1.00 % Page 1 of 10 with an elevation difference of 4.30(Ft.) from the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(rain/hr) 4.902 Minutes Tt=[(11.9*0.0814*3)/( 4.30)]*.385= 4.90 Total initial area Ti = 11.29 rainutes frora Figure 3-3 forraula plus 4.90 rainutes frora the Figure 3-4 formula = 16.20 minutes Rainfall'intensity (I) = 3.210(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 3.831(CFS) Total initial stream area = 3.410(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 3002.000 to Point/Station 3004.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 115.000(Ft.) Downstream point elevation = 90.000(Ft.) Channel length thru subarea = 550.000(Ft.) Channel base width = 1.000(Ft.) Slope or 'Z' of left channel bank = 20.000 Slope or 'Z' of right channel bank = 20.000 Estimated mean flow rate at raidpoint of channel = 7.421(CFS) Manning's 'N' = 0.040 Maxiraura depth of channel = 1.000(Ft.) Flow(q) thru subarea = 7.421(CFS) Depth of flow = 0.354(Ft.), Average velocity = 2.601(Ft/s) Channel flow top width = 15.141(Ft.) Flow Velocity = 2.60(Ft/s) Travel tirae = 3.52 rain. Time of concentration = 19.72 min. Critical depth = 0.363(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Perraanent Open Space ) Irapervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 2.827(In/Hr) for a 100.0 year storra Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 3.861 Subarea runoff = 7.083(CFS) for 7.620(Ac.) Total runoff = 10.913(CFS) Total area = 11.030(Ac.) Depth of flow = 0.412(Ft.), Average velocity = 2.865(Ft/s) Critical depth = 0.426(Ft.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 3004.000 to Point/Station 3006.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstreara point elevation = 90.000(Ft.) Downstreara point elevation = 85.000(Ft.) Channel length thru subarea = 200.000(Ft.) Channel base width = 1.000(Ft.) Slope or 'Z' of left channel bank = 20.000 Slope or 'Z' of right channel bank = 20.000 Page 2 of 10 Estiraated raean flow rate at raidpoint of channel = 13.329(CFS) Manning's 'N' = 0.040 Maxiraura depth of channel = 1.000(Ft.) Flow(q) thru subarea = 13.329(CFS) Depth of flow = 0.502(Ft.), Average velocity = 2.408(Ft/s) Channel flow top width = 21.068(Ft.) Flow Velocity = 2.41(Ft/s) Travel tirae = 1.38 rain. Tirae of concentration = 21.11 rain. Critical depth = 0.465(Ft.) Adding area flow to channel Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Perraanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 2.706(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 5.785 Subarea runoff = 4.742(CFS) for 5.500(Ac.) Total rimoff = 15.655(CFS) Total area = 16.530(Ac.) Depth of flow = 0.534(Ft.), Average velocity = 2.507(Ft/s) Critical depth = 0.496(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3006.000 to Point/Station 3008.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstreara point/station elevation = 77.500(Ft.) Downstreara point/station elevation = 63.050(Ft.) Pipe length = 475.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Rec[uired pipe flow = 15.655 (CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 15.655(CFS) Normal flow depth in pipe = 8.92(In.) Flow top width inside pipe = 31.08(In.) Critical Depth = 15.16(In.) Pipe flow velocity = 11.47(Ft/s) Travel time through pipe = 0.69 rain. Time of concentration (TC) = 21.80 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3006.000 to Point/Station 3008.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Streara is listed: In Main Streara number: 1 Streara flow area = 16.530(Ac.) Rimoff from this streara = 15.655(CFS) Tirae of concentration = 21.80 min. Rainfall intensity = 2.650(In/Hr) Prograra is now starting with Main Streara No. 2 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Page 3 of 10 Process frora Point/Station 3012.000 to Point/Station 3014.000 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATtJRAL TERRAIN ] (Permanent Open Space ) Irapervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 450.000(Ft.) Highest elevation = 80.000(Ft.) Lowest elevation = 72.000(Ft.) Elevation difference = 8.000(Ft.) Slope = 1.778 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaxlraura overland flow distance is 85.00 (Ft) for the top area slope value of 1.78 %, in a developraent type of Perraanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 10.27 minutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(1.1-0.3500)*( 85.000*.5)/( 1.778*(1/3)]= 10.27 Rainfall intensity (I) = 4.305(In/Hr) for a 100.0 year storra Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea rimoff = 4.415(CFS) Total initial streara area = 2.93 0(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 3014.000 to Point/Station 3010.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstreara point/station elevation = 66.000(Ft.) Downstream point/station elevation = 63.150(Ft.) Pipe length = 61.68(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.415(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 4.415(CFS) Norraal flow depth in pipe = 5.40(In.) Flow top width inside pipe = 16.49(In.) Critical Depth = 9.66(In.) Pipe flow velocity = 9.91(Ft/s) Travel tirae through pipe = 0.10 rain. Tirae of concentration (TC) = 10.38 rain. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 3014.000 to Point/Station 3010.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara number: 2 in normal streara nuraber 1 Streara flow area = 2.93 0(Ac.) Runoff frora this streara = 4.415(CFS) Tirae of concentration = 10.38 rain. Rainfall intensity = 4.277(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 3011.000 to Point/Station 3013.000 Page 4 of 10 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Irapervious value, Ai = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = 17.000(Ft.) Highest elevation = 87.700(Ft.) Lowest elevation = 87.500(Ft.) Elevation difference = 0.200(Ft.) Slope = 1.176 % Top of Initial Area Slope adjusted by User to 2.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaxlraura overland flow distance is 70.00 (Ft) for the top area slope value of 2.00 %, in a developraent type of General Industrial In Accordance With Figure 3-3 Initial Area Time of Concentration = 2.75 minutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8* (1.1-0.8700)*( 70.000*.5)/( 2.000*(1/3)]= 2.75 Rainfall intensity (I) = 10.075(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea runoff = 0.088(CFS) Total initial stream area = 0.010(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3013.000 to Point/Station 3010.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of Street segraent elevation = 87.500(Ft.) End of street segment elevation = 68.000(Ft.) Length of street segment = 580.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope frora gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estiraated raean flow rate at midpoint of street = 2.140(CFS) Depth of flow = 0.281(Ft.), Average velocity = 3.452(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.193(Ft.) Flow velocity = 3.45(Ft/s) Travel time = 2.80 rain. TC = 5.55 rain. Adding area flow to street Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 Page 5 of 10 [INDUSTRIAL area type ] (General Industrial ) Irapervious value, Ai = 0.950 Sub-Area C Value = 0.870 Rainfall intensity = 6.405(In/Hr) for a 100.0 year storra Effective rimoff coefficient used for total area (Q=KCIA) is C = 0.870 CA = 0.670 Subarea runoff = 4.203(CFS) for 0.760(Ac.) Total nmoff = 4.290 (CFS) Total area = 0.770 (Ac.) Street flow at end of street = 4.290(CFS) Half street flow at end of street = 4.290(CFS) Depth of flow = 0.333(Ft.), Average velocity = 4.037(Ft/s) Flow width (frora curb towards crown)= 9.799(Ft.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3013.000 to Point/Station 3010.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in norraal streara nuraber 2 Streara flow area = 0.770(Ac.) Rimoff frora this streara = 4.290(CFS) Tirae of concentration = 5.55 rain. Rainfall intensity = 6.405(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 3010.000 to Point/Station 3008.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstreara point/station elevation = 63.150(Ft.) Downstreara point/station elevation = 63.050(Ft.) Pipe length = 5.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.000(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 0.000(CFS) Norraal flow depth in pipe = 0.08(In.) Flow top width inside pipe = 2.32(In.) Critical depth could not be calculated. Pipe flow velocity = 0.41(Ft/s) Travel tirae through pipe = 0.21 rain. Tirae of concentration (TC) = 5.76 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 3010.000 to Point/Station 3008.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Streara is listed: In Main Streara nuraber: 2 Streara flow area = 0.770(Ac.) Rimoff frora this stream = 0.000(CFS) Time of concentration = 5.76 min. Rainfall intensity = 6.250(In/Hr) Suraraary of streara data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) Page 6 of 10 ] 1 15.655 21.80 2.650 2 0.000 5.76 6.250 Qmax(1) = 1.000 * 1.000 * 15.655) + 0.424 * 1.000 * 0.000) + = 15.655 Qraax(2) = 1.000 * 0.264 * 15.655) + 1.000 * 1.000 * 0.000) + = 4.140 Total of 2 main streams to confluence: Flow rates before confluence point: 15.655 0.000 Maximum flow rates at confluence using above data: 15.655 4.140 Area of streams before confluence: 16.530 0.770 Results of confluence: Total flow rate = 15.655(CFS) Time of concentration = 21.795 min. Effective stream area after confluence = 17.300(Ac. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3023.000 to Point/Station 3025.000 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = 17.000(Ft.) Highest elevation = 85.100(Ft.) Lowest elevation = 84.900(Ft.) Elevation difference = 0.200(Ft.) Slope = 1.176 % Top of Initial Area Slope adjusted by User to 2.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximura overland flow distance is 70.00 (Ft) for the top area slope value of 2.00 %, in a development type of General Industrial In Accordance With Figure 3-3 Initial Area Time of Concentration = 2.75 minutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(1.1-0.8700)*( 70.000*.5)/( 2.000*(1/3)]= 2.75 Rainfall intensity (I) = 10.075(In/Hr) for a 100.0 year storra Effective rimoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea rimoff = 0.088 (CFS) Total initial streara area = 0.010(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 3025.000 to Point/Station 3021.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 85.900(Ft.) Page 7 of 10 End of street segment elevation = 68.000(Ft.) Length of street segment = 420.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope frora grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope frora curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike frora flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N frora gutter to grade break = 0.0150 Maiming's N frora grade break to crown = 0.0150 Estiraated raean flow rate at raidpoint of street = 1.943(CFS) Depth of flow = 0.266(Ft.), Average velocity = 3.713(Ft/s) Streetflow hydraulics at raidpoint of street travel: Halfstreet flow width = 6.487(Ft.) Flow velocity = 3.71(Ft/s) Travel tirae = 1.89 rain. TC = 4.63 rain. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Irapervious value, Ai = 0.950 Sub-Area C Value = 0.870 Rainfall intensity = 7.194(In/Hr) for a 100.0 year storra Effective runoff coefficient used for total area (Q=KCIA) is C = 0.870 CA = 0.539 Subarea runoff = 3.793(CFS) for 0.610(Ac.) Total runoff = 3.881(CFS) Total area = 0.620(Ac.) Street flow at end of street = 3.881(CFS) Half street flow at end of street = 3.881(CFS) Depth of flow = 0.315(Ft.), Average velocity = 4.322(Ft/s) Flow width (from curb towards crown)= 8.919(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3021.000 to Point/Station 3008.000 **** PIPEFLOW TRAVEL TIME (Prograra estimated size) **** Upstream point/station elevation = 64.000(Ft.) Downstream point/station elevation = 63.050(Ft.) Pipe length = 50.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.881(CFS) Nearest coraputed pipe diaraeter = 12.00(In.) Calculated individual pipe flow = 3.881(CFS) Normal flow depth in pipe = 8.05(In.) Flow top width inside pipe = 11.28(In.) Critical Depth = 10.04(In.) Pipe flow velocity = 6.93(Ft/s) Travel time through pipe = 0.12 rain. Tirae of concentration (TC) = 4.75 rain. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Page 8 of 10 Process from Point/Station 3021.000 to Point/Station **** CONFLUENCE OF MAIN STREAMS **** 3008.000 The following data inside Main Stream is listed: In Main Streara nuraber: 3 Stream flow area = 0.620(Ac.) Rimoff frora this streara = 3.881 (CFS) Time of concentration = 4.75 min. Rainfall intensity = 7.076(In/Hr) Suraraary of streara data: Streara No. Flow rate (CFS) TC (rain) Rainfall Intensity (In/Hr) 655 21 80 2 650 000 5 76 6 250 881 4 75 7 076 1.000 * 1.000 * 15 .655) + 0.424 * 1.000 * 0 .000) + 0 .375 * 1.000 * 3 .881) + = 17 109 1.000 * 0 .264 * 15 .655) + 1.000 * 1.000 * 0 .000) + 0 .883 * 1.000 * 3 .881) + = 7 568 1.000 * 0 .218 * 15 .655) + 1.000 * 0.825 * 0 .000) + 1.000 * 1.000 * 3 .881) + = 7 296 1 IE 2 C 3 : Qraax(1) = Qraax(2) Qraax(3) = Total of 3 raain strearas to confluence: Flow rates before confluence point: 15.655 0.000 3.881 Maxiraura flow rates at confluence using above data: 17.109 7.568 7.296 Area of streams before confluence: 16.530 0.770 0.620 Results of confluence: Total flow rate = 17.109(CFS) Time of concentration = 21.795 min. Effective streara area after confluence = 17.920(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3008.000 to Point/Station 3020.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 61.220(Ft.) Downstreara point/station elevation = 53.660(Ft.) Pipe length = 33.91(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 17.109(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 17.109(CFS) Norraal flow depth in pipe = 5.70(In.) Flow top width inside pipe = 26.29(In.) Critical Depth = 15.86(In.) Pipe flow velocity = 23.80(Ft/s) Page 9 of 10 Travel tirae through pipe = 0.02 min._ Time of concentration (TC) = 21.82 min. End of computations, total study area = 20.850 (Ac.) Page 10 of 10 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7.4 Rational method hydrology prograra based on San Diego County Flood Control Division 2003 hydrology raanual Rational Hydrology Study Date: 09/16/05 Robertson Ranch East Drainage Study Mass Graded Condition Basin D - 100 Year Storra Event J.N. 011014 File:bsitd.out ********* Hydrology Study Control Information ********** Program License Serial Nuraber 5007 Rational hydrology study storra event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.3 00 P6/P24 = 60.5% San Diego hydrology raanual 'C values used +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 4000.000 to Point/Station 4002 000 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Perraanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 200.000(Ft.) Highest elevation = 135.000(Ft.) Lowest elevation = 130.000(Ft.) Elevation difference = 5.000(Ft.) Slope = 2.500 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximura overland flow distance is 100.00 (Ft) for the top area slope value of 2.50 %, in a development type of Perraanent Open Space In Accordance With Figure 3-3 Initial Area Tirae of Concentration = 9.95 rainutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(1.1-0.3500)*( 100.000*.5)/( 2.500*(1/3)]= 9.95 The initial area total distance of 200.00 (Ft.) entered leaves a remaining distance of 100.00 (Ft.) Using Figure 3-4, the travel time for this distance is 1.12 rainutes for a distance of 100.00 (Ft.) and a slope of 2.50 % Page 1 of 5 with an elevation difference of 2.50(Ft.) from the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(min/hr) 1.120 Minutes Tt=[(11.9*0.0189*3)/( 2.50)]*.385= 1.12 Total initial area Ti = 9.95 rainutes from Figure 3-3 formula plus 1.12 rainutes from the Figure 3-4 formula = 11.07 rainutes Rainfall intensity (I) = 4.103(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 1.393(CFS) Total initial streara area = 0.970(Ac.) Process frora Point/Station 4002.000 to Point/Station 4004.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstreara point elevation = 130.000(Ft.) Downstreara point elevation = 111.000(Ft.) Channel length thru subarea = 350.000(Ft.) Channel base width = 1.000(Ft.) Slope or 'Z' of left channel bank = 20.000 Slope or 'Z' of right channel bank = 20.000 Estimated raean flow rate at raidpoint of channel = 2.441(CFS) Manning's 'N' = 0.040 Maximura depth of channel = 1.000(Ft.) Flow(q) thru subarea = 2.441(CFS) Depth of flow = 0.217(Ft.), Average velocity = 2.102(Ft/s) Channel flow top width = 9.689(Ft.) Flow Velocity = 2.10(Ft/s) Travel tirae = 2.77 rain. Time of concentration = 13.84 rain. Critical depth = 0.225(Ft.) Adding area flow to channel Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 3.552(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area {Q=KCIA) is C = 0.350 CA = 0.962 Subarea rimoff = 2.026(CFS) for 1.780(Ac.) Total runoff = 3.419(CFS) Total area = 2.750(Ac.) Depth of flow = 0.249(Ft.), Average velocity = 2.288(Ft/s) Critical depth = 0.260(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++.^+++ Process from Point/Station 4004.000 to Point/Station 4006.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 111.000(Ft.) Downstreara point elevation = 86.000 (Ft.) Channel length thru subarea = 320.000(Ft.) Channel base width = 1.000(Ft.) Slope or 'Z' of left channel bank = 20.000 Slope or 'Z' of right channel bank = 20.000 Page 2 of 5 Estiraated mean flow rate at midpoint of channel = 6.617(CFS) Manning's 'N' =0.040 Maximura depth of channel = 1.000(Ft.) Flow(q) thru subarea = 6.617(CFS) Depth of flow = 0.303(Ft.), Average velocity = 3.096(Ft/s) Channel flow top width = 13.114(Ft.) Flow Velocity = 3.10(Ft/s) Travel tirae = 1.72 min. Tirae of concentration = 15.56 min. Critical depth = 0.344(Ft.) Adding area flow to channel Deciraal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 3.293(In/Hr) for a 100.0 year storm Effective nmoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 2.950 Subarea runoff = 6.298(CFS) for 5.680(Ac.) Total runoff = 9.716(CFS) Total area = 8.430(Ac.) Depth of flow = 0.353(Ft.), Average velocity = 3.409(Ft/s) Critical depth = 0.406(Ft.) Process frora Point/Station 4006.000 to Point/Station 4008.000 **** IMPROVED CHANNEL TRAVEL TIME **** 13.257(CFS) 2.614(Ft/s) Upstreara point elevation = 86.000(Ft.) Downstreara point elevation = 78.500(Ft.) Channel length thru subarea = 240.000(Ft.) Channel base width = 1.000(Ft.) Slope or 'Z' of left channel bank = 20.000 Slope or 'Z' of right channel bank = 20.000 Estiraated mean flow rate at midpoint of channel Manning's 'N' = 0.040 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 13.257(CFS) Depth of flow = 0.479(Ft.), Average velocity = Channel flow top width = 20.166(Ft.) Flow Velocity = 2.61(Ft/s) Travel time = 1.53 rain. Tirae of concentration = 17.10 min. Critical depth = 0.461(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Perraanent Open Space ) Irapervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 3.100(In/Hr) for a 100.0 year storra Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 5.397 Page 3 of 5 Subarea runoff = 7.014(CFS) for 6.990(Ac.) Total runoff = 16.73 0(CFS) Total area = 15.420 (Ac.) Depth of flow = 0.525(Ft.), Average velocity = 2.771(Ft/s) Critical depth = 0.508(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 4008.000 to Point/Station 4010.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstreara point elevation = 78.500(Ft.) Downstreara point elevation = 72.000(Ft.) Charmel length thru subarea = 400.000(Ft.) Channel base width = 1.000(Ft.) Slope or 'Z' of left channel bank = 20.000 Slope or 'Z' of right channel bank = 20.000 Estiraated raean flow rate at midpoint of cheinnel = 22.757 (CFS) Manning's 'N' = 0.040 Maximura depth of channel = 1.000(Ft.) Flow(q) thru subarea = 22.757(CFS) Depth of flow = 0.672(Ft.), Average velocity = 2.342(Ft/s) Channel flow top width = 27.897(Ft.) Flow Velocity = 2.34(Ft/s) Travel time = 2.85 min. Time of concentration = 19.94 min. Critical depth = 0.578(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 2.807(In/Hr) for a 100.0 year storm Effective rimoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 10.220 Subarea rimoff = 11.955(CFS) for 13.780(Ac.) Total runoff = 28.685(CFS) Total area = 29.200(Ac.) Depth of flow = 0.736(Ft.), Average velocity = 2.482(Ft/s) Critical depth = 0.641(Ft.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4010.000 to Point/Station 4012.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 59.000(Ft.) Downstreara point/station elevation = 58.550(Ft.) Pipe length = 44.95(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 28.685(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 28.685(CFS) Norraal flow depth in pipe = 16.50(In.) Flow top width inside pipe = 35.87(In.) Critical Depth = 20.78(In.) Pipe flow velocity = 9.09(Ft/s) Travel tirae through pipe = 0.08 rain. Tirae of concentration (TC) = 20.02 min. Page 4 of 5 End of computations, total study area = 29.200 (Ac.) Page 5 of 5 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7.4 Rational method hydrology program based on San Diego Coimty Flood Control Division 2003 hydrology raanual Rational Hydrology Study Date: 09/21/05 Robertson Ranch East Hydrology Study Mass Graded Condition Basin F - 100 Yr Storm Event J.N. 011014 File:bsitf.out ********* Hydrology Study Control Information ********** Program License Serial Nuraber 5007 Rational hydrology study storra event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 P6/P24 = 60.5% San Diego hydrology manual 'C values used +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6000.000 to Point/Station 6002.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Irapervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 480.000(Ft.) Highest elevation = 86.000(Ft.) Lowest elevation = 75.000(Ft.) Elevation difference = 11.000(Ft.) Slope = 2.292 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maxiraura overland flow distance is 85.00 (Ft) for the top area slope value of 2.29 %, in a development type of Perraanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 9.44 minutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(1/3)] TC = [1.8*(l.l-0.3500)*( 85.000*.5)/( 2.292*(1/3)]= 9.44 Rainfall intensity (I) = 4.547(In/Hr) for a 100.0 year storm Effective rimoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 2.180(CFS) Total initial stream area = 1.370(Ac.) Page 1 of 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6002.000 to Point/Station 6004.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 75.000(Ft.) Downstreara point elevation = 72.000(Ft.) Channel length thru subarea = 420.000(Ft.) Channel base width = 1.000(Ft.) Slope or 'Z' of left channel bank = 20.000 Slope or 'Z' of right chaimel bank = 20.000 Estiraated raean flow rate at midpoint of channel = 6.178(CFS) Manning's 'N' = 0.040 Mciximum depth of channel = 1.000 (Ft.) Flow(q) thru subarea = 6.178(CFS) Depth of flow = 0.474(Ft.), Average velocity = 1.242(Ft/s) Charmel flow top width = 19.975(Ft.) Flow Velocity = 1.24(Ft/s) Travel time = 5.64 min. Time of concentration = 15.08 min. Critical depth = 0.336(Ft.) Adding area flow to channel Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 3.362(In/Hr) for a 100.0 year storra Effective rimoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 3.006 Subarea runoff = 7.926(CFS) for 7.220(Ac.) Total runoff = 10.107(CFS) Total area = 8.590(Ac.) Depth of flow = 0.575(Ft.), Average velocity = 1.405(Ft/s) Critical depth = 0.414(Ft.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6004.000 to Point/Station 6006.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 58.400(Ft.) Downstream point/station elevation = 48.000(Ft.) Pipe length = 109.12(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 10.107(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 10.107(CFS) Normal flow depth in pipe = 6.17(In.) Flow top width inside pipe = 20.98(In.) Critical Depth = 13.65(In.) Pipe flow velocity = 15.83(Ft/s) Travel tirae through pipe = 0.11 rain. Tirae of concentration (TC) = 15.19 min. End of computations, total study area = 8.590 (Ac.) Page 2 of 2 San Diego Coimty Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7.4 Rational method hydrology program based on San Diego Coimty Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 07/20/05 Robertson Ranch East Hydrology Study Mass Graded Condition Basin H - 100 Yr Storm Event J.N. 011014 File:bsith.out ********* Hydrology Study Control Information ********** Program License Serial Number 5007 Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(incheis) = 2.600 24 hour precipitation(inches) = 4.300 P6/P24 = 60.5% San Diego hydrology raanual 'C values used +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 8000.000 to Point/Station 8002.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 550.000(Ft.) Highest elevation = 56.500(Ft.) Lowest elevation = 51.000(Ft.) Elevation difference = 5.500(Ft.) Slope = 1.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maxiraura overland flow distance is 70.00 (Ft) for the top area slope value of 1.00 %, in a developraent type of Perraanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 11.29 minutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(1/3)] TC = [1.8*(1.1-0.3500)*( 70.000*.5)/( 1.000*(1/3)]= 11.29 The initial area total distance of 550.00 (Ft.) entered leaves a remaining distance of 480.00 (Ft.) Using Figure 3-4, the travel time for this distance is 5.34 minutes for a distance of 480.00 (Ft.) and a slope of 1.00 % Page 1 of 2 with an elevation difference of 4.80(Ft.) from the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(min/hr) 5.335 Minutes Tt=[(11.9*0.0909*3)/( 4.80)]*.385= 5.34 Total initial area Ti = 11.29 minutes from Figure 3-3 formula plus 5.34 minutes frora the Figure 3-4 forraula = 16.63 minutes Rainfall intensity (I) = 3.156(In/Hr) for a 100.0 year storm Effective rimoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea nmoff = 3.645 (CFS) Total initial streara area = 3.300(Ac.) End of coraputations, total study area = 3.300 (Ac.) Page 2 of 2 SECTION 5 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7.4 Rational method hydrology program based on San Diego Coimty Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 04/18/06 Robertson Ranch Proposed Conditions Basin A 4-18-06 File:gsita.out ********* Hydrology Study Control Information ********** Program License Serial Number 5007 Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 P6/P24 = 60.5% San Diego hydrology manual 'C values used +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1000.000 to Point/Station 1002.000 **** INITIAL AREA EVALUATION **** ] 645.000(Ft.) Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [LOW DENSITY RESIDENTIAL (2.9 DU/A or Less ) Impervious value, Ai = 0.250 Sub-Area C Value = 0.490 Initial subarea total flow distance Highest elevation = 103.000(Ft.) Lowest elevation = 42.000(Ft.) Elevation difference = 61.000(Ft.) Slope = 9.457 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maxiraura overland flow distance is 100.00 (Ft) for the top area slope value of 9.46 %, in a developraent type of 2.9 DU/A or Less In Accordance With Figure 3-3 Initial Area Tirae of Concentration = 5.19 minutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(1/3)] TC = [1.8*(1.1-0.4900)*( 100.000*.5)/( 9.457*(1/3)]= 5.19 The initial area total distance of 645.00 (Ft.) entered leaves a remaining distance of 545.00 (Ft.) Using Figure 3-4, the travel time for this distance is for a distance of 545.00 (Ft.) and a slope of 9.46 % 2.48 minutes Page 1 of 2 with an elevation difference of 51.54(Ft.) from the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(rain/hr) 2.477 Minutes Tt=[(11.9*0.1032*3)/( 51.54)]*.385= 2.48 Total initial area Ti = 5.19 minutes from Figure 3-3 formula plus 2.48 minutes from the Figure 3-4 formula = 7.67 minutes Rainfall intensity (I) = 5.198(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.490 Subarea nmoff = 18.060 (CFS) Total initial stream area = 7.090(Ac.) End of computations, total study area = 7.090 (Ac.) Page 2 of 2 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7.4 Rational method hydrology prograra based on San Diego Coimty Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 11/11/06 Robertson Ranch East Village Proposed Conditions (Ultimate) Basin B 4-19-06 File:gsitb.out ********* Hydrology Study Control Information ********** Program License Serial Number 5014 Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.500 P6/P24 = 57.8% San Diego hydrology manual 'C values used +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process frora Point/Station 2000.000 to Point/Station 2002.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 600.000(Ft.) Highest elevation = 208.000(Ft.) Lowest elevation = 128.000(Ft.) Elevation difference = 80.000(Ft.) Slope = 13.333 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximura overland flow distance is 100.00 (Ft) for the top area slope value of 13.33 %, in a developraent type of Perraanent Open Space In Accordance With Figure 3-3 Initial Area Tirae of Concentration = 5.69 rainutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8* (1.1-0.3500)* ( 100.000*.5)/( 13 . 333*(1/3)]= 5.69 The initial area total distance of 600.00 (Ft.) entered leaves a remaining distance of 500.00 (Ft.) Using Figure 3-4, the travel time for this distance is 2.03 minutes for a distance of 500.00 (Ft.) and a slope of 13.33 % with an elevation difference of 66.67(Ft.) from the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(min/hr) 2.031 Minutes Tt=[(I1.9*0.0947*3)/( 66 . 67) ] *.385= 2.03 Total initial area Ti = 5.69 rainutes from Figure 3-3 formula plus 2.03 minutes from the Figure 3-4 formula = 7.72 minutes Rainfall intensity (I) = 5.175(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 12.479(CFS) Total initial stream area = 6.890(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2002.000 to Point/Station 2004.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 126.000(Ft.) Downstreara point/station elevation = 125.500(Ft.) Pipe length = 46.41(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 12.479(CFS) Nearest coraputed pipe diaraeter = 21.00(In.) Calculated individual pipe flow = 12.479(CFS) Normal flow depth in pipe = 13.69(In.) Flow top width inside pipe = 20.01(In.) Critical Depth = 15.80(In.) Pipe flow velocity = 7.52(Ft/s) Travel time through pipe = 0.10 min. Time of concentration (TC) = 7.83 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2004.000 to Point/Station 2006.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 125.500(Ft.) Downstream point/station elevation = 106.000(Ft.) Pipe length = 287.32(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 12.479(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 12.479(CFS) Norraal flow depth in pipe = 9.61(In.) Flow top width inside pipe = 14.39(In.) Critical depth could not be calculated. Pipe flow velocity = 15.01(Ft/s) Travel tirae through pipe = 0.32 rain. Time of concentration (TC) = 8.15 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2004.000 to Point/Station 2006.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Streara nuraber: 1 stream flow area = 6.890(Ac.) Rimoff from this stream = 12.479(CFS) Time of concentration = 8.15 rain. Rainfall intensity = 5.000(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2008.000 to Point/Station 2010.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 215.000(Ft.) Highest elevation = 126.500(Ft.) Lowest elevation = 117.700(Ft.) Elevation difference = 8.800(Ft.) Slope = 4.093 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maxiraura overland flow distance is 100.00 (Ft) for the top area slope value of 4.09 %, in a developraent type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Tirae of Concentration = 5.96 rainutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(1/3)] TC = [1.8*(1.1-0.5700)* ( 100.000*.5)/( 4 . 093* (1/3)]= 5.96 The initial area total distance of 215.00 (Ft.) entered leaves a reraaining distance of 115.00 (Ft.) Using Figure 3-4, the travel tirae for this distance is 1.03 minutes for a distance of 115.00 (Ft.) and a slope of 4.09 % with an elevation difference of 4.71(Ft.) from the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(min/hr) 1.032 Minutes Tt=[(11.9*0.0218*3)/( 4.71)]*.385= 1.03 Total initial area Ti = 5.96 minutes from Figure 3-3 formula plus 1.03 minutes frora the Figure 3-4 forraula = 7.00 minutes Rainfall intensity (I) = 5.516(In/Hr) for a 100.0 year storra Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 1.100(CFS) Total initial streara area = 0.350(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2010.000 to Point/Station 2012.000 **** PIPEFLOW TRAVEL TIME (Prograra estiraated size) **** Upstreara point/station elevation = 113.000(Ft.) Downstream point/station elevation = 112.800(Ft.) Pipe length = 36.20(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.100(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 1.100(CFS) Normal flow depth in pipe = 6.64(In.) Flow top width inside pipe = 7.91(In.) Critical Depth = 5.79(In.) Pipe flow velocity = 3.15(Ft/s) Travel time through pipe = 0.19 min. Time of concentration (TC) = 7.19 rain. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2012.000 to Point/Station 2014.000 **** PIPEFLOW TRAVEL TIME (Prograra estimated size) **** Upstreara point/station elevation = 112.800(Ft.) Downstreara point/station elevation = 106.500(Ft.) Pipe length = 433.78(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.100(CFS) Nearest coraputed pipe diaraeter = 9.00(In.) Calculated individual pipe flow = 1.100(CFS) Norraal flow depth in pipe = 4.78(In.) Flow top width inside pipe = 8.98(In.) Critical Depth = 5.79(In.) Pipe flow velocity = 4.62(Ft/s) Travel time through pipe = 1.56 min. Time of concentration (TC) = 8.75 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2012.000 to Point/Station 2014.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream nuraber: 2 in normal stream number 1 Stream flow area = 0.350(Ac.) Runoff from this stream = 1.100(CFS) Time of concentration = 8.75 min. Rainfall intensity = 4.774(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2016.000 to Point/Station 2018.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 110.000(Ft.) Highest elevation = 120. 900 (Ft.) Lowest elevation = 119.100(Ft.) Elevation difference = 1.800(Ft.) Slope = 1.636 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maxiraum overland flow distance is 80.00 (Ft) for the top area slope value of 1.64 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Tirae of Concentration = 7.24 rainutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8* (1.1-0.5700)*( 80.000*.5)/( 1.636*(1/3)]= 7.24 The initial area total distance of 110.00 (Ft.) entered leaves a reraaining distance of 30.00 (Ft.) Using Figure 3-4, the travel tirae for this distance is 0.52 minutes for a distance of 30.00 (Ft.) and a slope of 1.64 % with an elevation difference of 0.49(Ft.) from the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(min/hr) 0.522 Minutes Tt=[(11.9*0.0057*3)/( 0.49)]*.385= 0.52 Total initial area Ti = 7.24 rainutes frora Figure 3-3 formula plus 0.52 minutes from the Figure 3-4 forraula = 7.76 rainutes Rainfall intensity (I) = 5.158(In/Hr) for a 100.0 year storra Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.500(CFS) Total initial streara area = 0.170 (Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2018.000 to Point/Station 2020.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of Street segment elevation = 119.100(Ft.) End of street segment elevation = 112.600(Ft.) Length of street segraent = 680.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope frora gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance frora curb to property line = 13.000(Ft.) Slope frora curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated raean flow rate at raidpoint of street = 3.087(CFS) Depth of flow = 0.359(Ft.), Average velocity = 2.309(Ft/s) Streetflow hydraulics at raidpoint of street travel: Halfstreet flow width = 11.108(Ft.) Flow velocity = 2.31(Ft/s) Travel time = 4.91 min. TC = 12.67 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Irapervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 3.760(In/Hr) for a 100.0 year storra Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 1.488 Subarea rimoff = 5.095(CFS) for 2.440(Ac.) Total runoff = 5.594(CFS) Total area = 2.610(Ac.) Street flow at end of street = 5.594(CFS) Half street flow at end of street = 5.594(CFS) Depth of flow = 0.419(Ft.), Average velocity = 2.663(Ft/s) Flow width (frora curb towards crown)= 14.135(Ft.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2020.000 to Point/Station 2014.000 **** PIPEFLOW TRAVEL TIME (Prograra estimated size) **** Upstreara point/station elevation = 107.000(Ft.) Downstream point/station elevation = 106.500(Ft.) Pipe length = 5.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.594(CFS) Nearest coraputed pipe diameter = 12.00(In.) Calculated individual pipe flow = 5.594(CFS) Norraal flow depth in pipe = 5.98(In.) Flow top width inside pipe = 12.00(In.) Critical Depth = 11.31(In.) Pipe flow velocity = 14.32(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 12.68 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2020.000 to Point/Station 2014.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal streara number 2 Stream flow area = 2.610(Ac.) Runoff frora this streara = 5.594(CFS) Tirae of concentration = 12.68 min. Rainfall intensity = 3.759(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2022.000 to Point/Station 2024.000 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Irapervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 110.000(Ft.) Highest elevation = 120.900(Ft.) Lowest elevation = 119.200(Ft.) Elevation difference = 1.700(Ft.) Slope = 1.545 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaximum overland flow distance is 80.00 (Ft) for the top area slope value of 1.54 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.38 minutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(1/3)] TC = [1.8*(1.1-0.5700)* ( 80.000*.5)/( 1.545*(1/3)]= 7.38 The initial area total distance of 110.00 (Ft.) entered leaves a remaining distance of 30.00 (Ft.) Using Figure 3-4, the travel tirae for this distance is 0.53 rainutes for a distance of 30.00 (Ft.) and a slope of 1.54 % with an elevation difference of 0.46(Ft.) frora the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(rain/hr) 0.534 Minutes Tt=[(11.9*0.0057*3)/( 0.46)]*.385= 0.53 Total initial area Ti = 7.38 rainutes frora Figure 3-3 formula plus 0.53 minutes from the Figure 3-4 formula = 7.91 minutes Rainfall intensity (I) = 5.094(In/Hr) for a 100.0 year storm Effective rimoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea rimoff = 0.406 (CFS) Total initial stream area = 0.140(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2024.000 to Point/Station 2026.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segraent elevation = 119.200(Ft.) End of street segment elevation = 112.500(Ft.) Length of street segment = 670.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance frora curb to property line = 13.000 (Ft.) Slope frora curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estiraated raean flow rate at midpoint of street = 2.118(CFS) Depth of flow = 0.324(Ft.), Average velocity = 2.152(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.392(Ft.) Flow velocity = 2.15(Ft/s) Travel time = 5.19 min. TC = 13.10 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 3.680(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 1.026 Subarea rimoff = 3.369(CFS) for 1.660(Ac.) Total runoff = 3.775(CFS) Total area = 1.800(Ac.) Street flow at end of street = 3.775(CFS) Half street flow at end of street = 3.775(CFS) Depth of flow = 0.376(Ft.), Average velocity = 2.465(Ft/s) Flow width (from curb towards crown)= 11.955(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2026.000 to Point/Station 2014.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 107.000(Ft.) Downstreara point/station elevation = 106.500(Ft.) Pipe length = 29.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.775(CFS) Nearest coraputed pipe diaraeter = 12.00(In.) Calculated individual pipe flow = 3.775(CFS) Norraal flow depth in pipe = 8.17(In.) Flow top width inside pipe = 11.19(In.) Critical Depth = 9.93(In.) Pipe flow velocity = 6.63(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 13.18 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process from Point/Station 2026.000 to Point/Station 2014.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 3 Stream flow area = 1.800(Ac.) Runoff from this stream = 3.775(CFS) Time of concentration = 13.18 min. Rainfall intensity = 3.667(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 1 100 8 . 75 4. 774 2 5 594 12 . 68 3 759 3 3 775 13 18 3 667 Qmax(1) 1 000 * 1 000 * 1 .100) + 1 000 * 0 690 * 5 .594) + 1 000 * 0 664 * 3 .775) + = Qmax(2) 0 .787 * 1 000 * 1 .100) + 1 .000 * 1 000 * 5 .594) + 1 . 000 * 0 .962 * 3 .775) + = Qmax(3) 0 .768 * 1 . 000 * 1 .100) + 0 .975 * 1 .000 * 5 .594) + 7 .469 10.093 1.000 * 1.000 * 3.775) + = 10.077 Total of 3 Streams to confluence: Flow rates before confluence point: 1.100 5.594 3.775 Maximum flow rates at confluence using above data: 7.469 10.093 10.077 Area of strearas before confluence: 0.350 2.610 1.800 Results of confluence: Total flow rate = 10.093(CFS) Tirae of concentration = 12.677 rain. Effective streara area after confluence = 4.760(Ac. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2014.000 to Point/Station 2006.000 **** PIPEFLOW TRAVEL TIME (Prograra estimated size) **** Upstream point/station elevation = 106.500(Ft.) Downstream point/station elevation = 106.000(Ft.) Pipe length = 44.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 10.093(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 10.093(CFS) Norraal flow depth in pipe = 13.36(In.) Flow top width inside pipe = 15.75(In.) Critical Depth = 14.70(In.) Pipe flow velocity = 7.17(Ft/s) Travel time through pipe = 0.10 min. Time of concentration (TC) = 12.78 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2014.000 to Point/Station 2006.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 4.760(Ac.) Runoff from this stream = 10.093(CFS) Time of concentration = 12.78 min. Rainfall intensity = 3.740(In/Hr) Suraraary of streara data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 12.479 8.15 5.000 2 10.093 12.78 3.740 Qmax(1) = 1.000 * 1.000 * 12.479) + 1.000 * 0.637 * 10.093) + = 18.912 Qmax(2) = 0.748 * 1.000 * 12.479) + 1.000 * 1.000 * 10.093) + = 19.426 Total of 2 raain strearas to confluence: Flow rates before confluence point: 12.479 10.093 Maxiraura flow rates at confluence using above data; 18.912 19.426 Area of strearas before confluence: 6.890 4.760 Results of confluence: Total flow rate = 19.426(CFS) Tirae of concentration = 12.779 rain. Effective stream area after confluence = 11.650(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2006.000 to Point/Station 2028.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 106.000(Ft.) Downstreara point/station elevation = 97.000(Ft.) Pipe length = 215.50(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 19.426(CFS) Nearest computed pipe diameter = 18.00(In.) Calculated individual pipe flow = 19.426(CFS) Normal flow depth in pipe = 13.41(In.) Flow top width inside pipe = 15.70(In.) Critical depth could not be calculated. Pipe flow velocity = 13.76(Ft/s) Travel time through pipe = 0.26 min. Time of concentration (TC) = 13.04 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2028.000 to Point/Station 2030.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 97.000(Ft.) Downstreara point/station elevation = 96.000(Ft.) Pipe length = 71.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 19.426(CFS) Nearest computed pipe diameter = 24.00(In.) Calculated individual pipe flow = 19.426(CFS) Normal flow depth in pipe = 15.13(In.) Flow top width inside pipe = 23.17(In.) Critical Depth = 19.01(In.) Pipe flow velocity = 9.31(Ft/s) Travel time through pipe = 0.13 min. Time of concentration (TC) = 13.17 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process from Point/Station 2028.000 to Point/Station 2030.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 streara flow area = 11.650(Ac.) Rimoff frora this streara = 19.426 (CFS) Tirae of concentration = 13.17 rain. Rainfall intensity = 3.668(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2032.000 to Point/Station 2034.000 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 110.000(Ft.) Highest elevation = 111.000(Ft.) Lowest elevation = 109.400(Ft.) Elevation difference = 1.600(Ft.) Slope = 1.455 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaxlraura overland flow distance is 65.00 (Ft) for the top area slope value of 1.46 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.79 rainutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(1/3)] TC = [1.8*(1.1-0.5700)* ( 65.000*.5)/( 1.455*(1/3)]= 6.79 The initial area total distance of 110.00 (Ft.) entered leaves a remaining distance of 45.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.75 minutes for a distance of 45.00 (Ft.) and a slope of 1.46 % with an elevation difference of 0.65(Ft.) from the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(min/hr) 0.746 Minutes Tt=[(11.9*0.0085*3)/( 0.65)]*.385= 0.75 Total initial area Ti = 6.79 minutes from Figure 3-3 formula plus 0.75 minutes from the Figure 3-4 formula = 7.53 minutes Rainfall intensity (I) = 5.259(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.480(CFS) Total initial stream area = 0.160(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2034.000 to Point/Station 2036.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of Street segment elevation = 109.400(Ft.) End of street segment elevation = 100.600(Ft.) Length of street segment = 575.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope frora grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance frora curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.683(CFS) Depth of flow = 0.353(Ft.), Average velocity = 2.882(Ft/s) Streetflow hydraulics at raidpoint of street travel: Halfstreet flow width = 10.841(Ft.) Flow velocity = 2.88(Ft/s) Travel tirae = 3.33 rain. TC = 10.86 rain. Adding area flow to street Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.154(In/Hr) for a 100.0 year storm Effective nmoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 1.642 Subarea runoff = 6.339(CFS) for 2.720(Ac.) Total runoff = 6.819(CFS) Total area = 2.880(Ac.) Street flow at end of street = 6.819(CFS) Half street flow at end of street = 6.819(CFS) Depth of flow = 0.415(Ft.), Average velocity = 3.340(Ft/s) Flow width (frora curb towards crown)= 13.926(Ft.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2036.000 to Point/Station 2030.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 96.500(Ft.) Downstream point/station elevation = 96.000(Ft.) Pipe length = 5.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.819(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 6.819(CFS) Normal flow depth in pipe = 6.74(In.) Flow top width inside pipe = 11.91(In.) Critical depth could not be calculated. Pipe flow velocity = 15.03(Ft/s) Travel tirae through pipe = 0.01 rain. Tirae of concentration (TC) = 10.86 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2036.000 to Point/Station 2030.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream nuraber: 1 in normal stream number 2 Streara flow area = 2.880(Ac.) Rimoff from this stream = 6.819(CFS) Time of concentration = 10.86 rain. Rainfall intensity = 4.153(In/Hr) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2038.000 to Point/Station 2040.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Irapervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 110.000(Ft.) Highest elevation = 106.400(Ft.) Lowest elevation = 104.200(Ft.) Elevation difference = 2.200(Ft.) Slope = 2.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80.00 (Ft) for the top area slope value of 2.00 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.77 minutes TC = [l.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(l.l-0.5700)*( 80.000*.5)/( 2.000*(1/3)]= 6.77 The initial area total distance of 110.00 (Ft.) entered leaves a remaining distance of 30.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.48 minutes for a distance of 30.00 (Ft.) and a slope of 2.00 % with an elevation difference of 0.60(Ft.) from the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(min/hr) = 0.483 Minutes Tt=[(11.9*0.0057*3)/( 0.60)]*.385= 0.48 Total initial area Ti = 6.77 minutes from Figure 3-3 formula plus 0.48 minutes from the Figure 3-4 formula = 7.26 rainutes Rainfall intensity (I) = 5.388(In/Hr) for a 100.0 year storra Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.491(CFS) Total initial streara area = 0.160(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process from Point/Station 2040.000 to Point/Station 2042.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 104.200(Ft.) End of street segraent elevation = 101.600(Ft.) Length of street segment = 243.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance frora curb to property line = 13.000(Ft.) Slope frora curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike frora flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N frora gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated raean flow rate at midpoint of street = 3.092(CFS) Depth of flow = 0.354(Ft.), Average velocity = 2.412(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.861(Ft.) Flow velocity = 2.41(Ft/s) Travel tirae = 1.68 min. TC = 8.93 min. Adding area flow to street Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Irapervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.711(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 1.197 Subarea runoff = 5.148(CFS) for 1.940(Ac.) Total runoff = 5.639(CFS) Total area = 2.100(Ac. Street flow at end of street = 5.639(CFS) Half street flow at end of street = 5.639(CFS) Depth of flow = 0.414(Ft.), Average velocity = 2.785(Ft/s) Flow width (from curb towards crown)= 13.864 (Ft.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2042.000 to Point/Station 2030.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 96.500(Ft.) Downstream point/station elevation = 96.000(Ft.) Pipe length = 29.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.639(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 5.639(CFS) Normal flow depth in pipe = 8.94(In.) Flow top width inside pipe = 14.72(In.) Critical Depth = 11.54(In.) Pipe flow velocity = 7.40(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 9.00 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2042.000 to Point/Station 2030.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream nuraber: 1 in norraal streara nuraber 3 Streara flow area = 2.100(Ac.) Runoff frora this streara = 5.639(CFS) Tirae of concentration = 9.00 min. Rainfall intensity = 4.689(In/Hr) Summary of stream data: Streara No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 19 426 13 . 17 3 . 668 2 6 819 10 86 4 . 153 3 5 639 9 00 4. 689 Qmax(1) = 1 000 * 1 000 * 19 426) + 0 883 * 1 000 * 6 819) + 0 782 * 1 000 * 5 639) + = 29 862 Qmax(2) = 1 000 * 0 825 * 19 426) + 1 .000 * 1 000 * 6 819) + 0 .886 * 1 000 * 5 639) + = 27 842 Qmax(3) = 1 .000 * 0 . 684 * 19 .426) + 1 .000 * 0 .828 * 6 .819) + 1 .000 * 1 .000 * 5 .639) + = 24 .566 Total of 3 strearas to confluence: Flow rates before confluence point: 19.426 6.819 5.639 Maxiraura flow rates at confluence using above data: 29.862 27.842 24.566 Area of strearas before confluence: 11.650 2.880 2.100 Results of confluence: Total flow rate = 29.862(CFS) Time of concentration = 13.167 min. Effective stream area after confluence = 16.630(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2030.000 to Point/Station 2044.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 96.000(Ft.) Downstream point/station elevation = 93.000(Ft.) Pipe length = 343.06(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 29.862(CFS) Nearest computed pipe diameter = 30.00(In.) Calculated individual pipe flow = 29.862(CFS) Normal flow depth in pipe = 19.90(In.) Flow top width inside pipe = 28.36(In.) Critical Depth = 22.34(In.) Pipe flow velocity = 8.64(Ft/s) Travel time through pipe = 0.66 min. Tirae of concentration (TC) = 13.83 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2030.000 to Point/Station 2044.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara number: 1 in normal stream number 1 Stream flow area = 16.63 0(Ac.) Runoff from this stream = 29.862(CFS) Time of concentration = 13.83 min. Rainfall intensity = 3.554(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2046.000 to Point/Station 2048.000 **** INITIAL AREA EVALUATION **** ] = 205.000(Ft.) 3.561 % Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance Highest elevation = 116.300(Ft.) Lowest elevation = 109.000(Ft.) Elevation difference = 7.300(Ft.) Slope INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 95.00 (Ft) for the top area slope value of 3.56 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.09 minutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(l.l-0.5700)*( 95.000*.5)/( 3.561*(1/3)]= 6.09 The initial area total distance of 205.00 (Ft.) entered leaves a remaining distance of 110.00 (Ft.) Using Figure 3-4, the travel time for this distance is 1.05 minutes for a distance of 110.00 (Ft.) and a slope of 3.56 % with an elevation difference of 3.92(Ft.) from the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(min/hr) = 1.052 Minutes Tt=[(11.9*0.0208*3)/( 3.92)]*.385= 1.05 Total initial area Ti = 6.09 minutes from Figure 3-3 formula plus 1.05 minutes from the Figure 3-4 formula = 7.14 minutes Rainfall intensity (I) = 5.443(In/Hr) for a 100.0 year storra Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.807(CFS) Total initial stream area = 0.260(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2048.000 to Point/Station 2044.000 **** PIPEFLOW TRAVEL TIME (Program estiraated size) **** Upstreara point/station elevation = 93.200(Ft.) Downstreara point/station elevation = 93.000(Ft.) Pipe length = 31.70(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.807(CFS) Nearest coraputed pipe diaraeter = 9.00(In.) Calculated individual pipe flow = 0.807(CFS) Normal flow depth in pipe = 5.10(In.) Flow top width inside pipe = 8.92(In.) Critical Depth = 4.91(In.) Pipe flow velocity = 3.13(Ft/s) Travel time through pipe = 0.17 min. Tirae of concentration (TC) = 7.31 rain. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2048.000 to Point/Station 2044.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara nuraber: 1 in norraal stream number 2 Streara flow area = 0.260(Ac.) Runoff frora this streara = 0.807(CFS) Tirae of concentration = 7.31 min. Rainfall intensity = 5.362(In/Hr) Suraraary of streara data: Streara No. Flow rate (CFS) TC (rain) Rainfall Intensity (In/Hr) 29.862 0.807 Qraax(1) = 1.000 * 0.663 * Qraax(2) = . 000 .000 13 . 83 7.31 1.000 * 1.000 * 0.529 * 1.000 * 3 .554 5.362 29.862) + 0.807) + 29.862) + 0.807) + 30.396 16.592 Total of 2 streams to confluence: Flow rates before confluence point: 29.862 0.807 Maximum flow rates at confluence using above data: 30.396 16.592 Area of streams before confluence: 16.630 0.260 Results of confluence: Total flow rate = 30.396(CFS) Tirae of concentration = 13.829 rain. Effective stream area after confluence = 16.890(Ac. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2044.000 to Point/Station 2056.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 93.000 (Ft.) Downstream point/station elevation = 87.000(Ft.) Pipe length = 229.91(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 30.396(CFS) Nearest coraputed pipe diameter = 24.00(In.) Calculated individual pipe flow = 30.396(CFS) Normal flow depth in pipe = 16.71(In.) Flow top width inside pipe = 22.07(In.) Critical Depth = 22.41(In.) Pipe flow velocity = 13.01(Ft/s) Travel time through pipe = 0.29 min. Time of concentration (TC) = 14.12 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2044.000 to Point/Station 2056.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara nuraber: 1 in norraal streara nuraber 1 Streara flow area = 16.890(Ac.) Runoff from this stream = 30.396(CFS) Time of concentration = 14.12 min. Rainfall intensity = 3.506(In/Hr) Suraraary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 30.396 14.12 3.506 Qmax(1) = 1.000 * 1.000 * 30.396) + = 30.396 Total of 1 streams to confluence: Flow rates before confluence point: 30 .396 Maximum flow rates at confluence using above data: 30.396 Area of streams before confluence: 16.890 Results of confluence: Total flow rate = 30.396(CFS) Time of concentration = 14.124 min. Effective stream area after confluence = 16.890(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2052.000 to Point/Station 2054.000 **** INITIAL AREA EVALUATION **** 000 000 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = Decimal fraction soil group D = [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance 110.000(Ft, Highest elevation = 111.000(Ft.) Lowest elevation = 108.800(Ft.) Elevation difference = 2.200(Ft.) Slope = 2.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaxlraura overland flow distance is 80.00 (Ft) for the top area slope value of 2.00 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.77 minutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(1/3)] TC = [1.8*(1.1-0.5700)*( 80.000*.5)/( 2.000*(1/3)]= 6.77 The initial area total distance of 110.00 (Ft.) entered leaves a reraaining distance of 3 0.00 (Ft.) Using Figure 3-4, the travel tirae for this distance is 0.48 rainutes for a distance of 30.00 (Ft.) and a slope of 2.00 % with an elevation difference of 0.60(Ft.) frora the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(rain/hr) 0.483 Minutes Tt=[(11.9*0.0057*3)/( 0.60)]*.385= 0.48 Total initial area Ti = 6.77 rainutes from Figure 3-3 formula plus 0.48 minutes from the Figure 3-4 forraula = 7.26 rainutes Rainfall intensity (I) = 5.388(In/Hr) for a 100.0 year storra Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.522(CFS) Total initial stream area = 0.170(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2054.000 to Point/Station 2058.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of Street segment elevation = 108.800(Ft.) End of street segment elevation = 93.500(Ft.) Length of street segment = 390.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [l] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estiraated raean flow rate at raidpoint of street = 1.402(CFS) Depth of flow = 0.249(Ft.), Average velocity = 3.366(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5.603(Ft.) Flow velocity = 3.37(Ft/s) Travel time = 1.93 min. TC = 9.19 min. Adding area flow to street Deciraal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.627(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.473 Subarea runoff = 1.667(CFS) for 0.660(Ac.) Total runoff = 2.189(CFS) Total area = 0.83 0(Ac.) Street flow at end of street = 2.189(CFS) Half street flow at end of street = 2.189(CFS) Depth of flow = 0.277(Ft.), Average velocity = 3.685(Ft/s) Flow width (from curb towards crown)= 7.Oil(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2058.000 to Point/Station 2056.000 **** PIPEFLOW TRAVEL TIME (Prograra estiraated size) **** Upstreara point/station elevation = 87.500(Ft.) Downstream point/station elevation = 87.000(Ft.) Pipe length = 5.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 2.189(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 2.189(CFS) Norraal flow depth in pipe = 4.06(In.) Flow top width inside pipe = 8.96(In.) Critical Depth = 7.97(In.) Pipe flow velocity = 11.31(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 9.19 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2058.000 to Point/Station 2056.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.83 0(Ac.) Runoff from this stream = 2.189(CFS) Time of concentration = 9.19 min. Rainfall intensity = 4.625(In/Hr) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2060.000 to Point/Station 2062.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 220.000(Ft.) Highest elevation = 105.000(Ft.) Lowest elevation = 93.500(Ft.) Elevation difference = 11.500(Ft.) Slope = 5.227 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maxiraura overland flow distance is 100.00 (Ft) for the top area slope value of 5.23 %, in a developraent type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Tirae of Concentration = 5.50 rainutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(1/3)] TC = [1.8* (1.1-0.5700)*( 100.000*.5)/( 5 . 227*(1/3)]= 5.50 The initial area total distance of 220.00 (Ft.) entered leaves a reraaining distance of 120.00 (Ft.) Using Figure 3-4, the travel tirae for this distance is 0.97 rainutes for a distance of 120.00 (Ft.) and a slope of 5.23 % with an elevation difference of 6.27(Ft.) frora the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(rain/hr) 0.971 Minutes Tt=[(11.9*0.0227*3)/( 6.27)]*.385= 0.97 Total initial area Ti = 5.50 rainutes from Figure 3-3 formula plus 0.97 minutes frora the Figure 3-4 formula = 6.47 minutes Rainfall intensity (1) = 5.802(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.595(CFS) Total initial streara area = 0.180(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process frora Point/Station 2062.000 to Point/Station 2056.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 87.500(Ft.) Downstream point/station elevation = 87.000(Ft.) Pipe length = 29.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.595(CFS) Nearest computed pipe diaraeter = 6.00(In.) Calculated individual pipe flow = 0.595(CFS) Norraal flow depth in pipe = 4.09(In.) Flow top width inside pipe = 5.59(In.) Critical Depth = 4.71(In.) Pipe flow velocity = 4.18(Ft/s) Travel time through pipe = 0.12 min. Time of concentration (TC) = 6.58 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2062.000 to Point/Station 2056.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream nuraber: 1 in norraal streara number 3 Stream flow area = 0.180(Ac.) Runoff frora this streara = 0.595(CFS) Time of concentration = 6.58 min. Rainfall intensity = 5.736(In/Hr) Summary of stream data: stream No. Flow rate (CFS) TC (rain) Rainfall Intensity (In/Hr) 1 2 3 Qraax(1) 30.396 2.189 0 . 595 Qmax(2) = 000 758 ,611 Qraax(3) = 1.000 1.000 0.806 000 000 000 14 .12 9.19 6 .58 1.000 * 1.000 * 1.000 * 0.651 * 1.000 * 1.000 * 0.466 * 0.716 * 1.000 * 3 .506 4.625 5.736 30.396) + 2.189) + 0.595) + 30.396) + 2.189) + 0.595) + 30.396) + 2.189) + 0.595) + 32.420 22.457 16.331 Total of 3 Strearas to confluence: Flow rates before confluence point: 30.396 2.189 0.595 Maximura flow rates at confluence using above data: 32.420 22.457 16.331 Area of strearas before confluence: 16.890 0.830 0.180 Results of confluence: Total flow rate = 32.420(CFS) Time of concentration = 14.124 min. Effective streara area after confluence = 17.900(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2056.000 to Point/Station 2064.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 87.000(Ft.) Downstreara point/station elevation = 81.000(Ft.) Pipe length = 59.24(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 32.420(CFS) Nearest coraputed pipe diameter = 18.00(In.) Calculated individual pipe flow = 32.420(CFS) Normal flow depth in pipe = 14.30(In.) Flow top width inside pipe = 14.55(In.) Critical depth could not be calculated. Pipe flow velocity = 21.56(Ft/s) Travel time through pipe = 0.05 rain. Tirae of concentration (TC) = 14.17 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2056.000 to Point/Station 2064.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Streara is listed: In Main Streara number: 1 stream flow area = 17.900(Ac.) Runoff from this stream = 32.420(CFS) Time of concentration = 14.17 min. Rainfall intensity = 3.499(In/Hr) Program is now starting with Main Streara No. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2066.000 to Point/Station 2068.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Irapervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 110.000(Ft.) Highest elevation = 94.200(Ft.) Lowest elevation = 92.400(Ft.) Elevation difference = 1.800(Ft.) Slope = 1.636 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80.00 (Ft) for the top area slope value of 1.64 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.24 minutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(1/3)] TC = [1.8*(1.1-0.5700)*( 80.000*.5)/( 1.636*(1/3)]= 7.24 The initial area total distance of 110.00 (Ft.) entered leaves a remaining distance of 30.00 (Ft.) Using Figure 3-4, the travel tirae for this distance is 0.52 rainutes for a distance of 30.00 (Ft.) and a slope of 1.64 % with an elevation difference of 0.49(Ft.) frora the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(rain/hr) 0.522 Minutes Tt=[(11.9*0.0057*3)/( 0.49)]*.385= 0.52 Total initial area Ti = 7.24 minutes from Figure 3-3 formula plus 0.52 minutes from the Figure 3-4 formula = 7.76 minutes Rainfall intensity (I) = 5.158(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.529(CFS) Total initial stream area = 0.180(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2068.000 to Point/Station 2070.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of Street segraent elevation = 92.400(Ft.) End of street segraent elevation = 88.000(Ft.) Length of street segment = 437.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope frora curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike frora flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N frora gutter to grade break = 0.0150 Manning's N frora grade break to crown = 0.0150 Estiraated raean flow rate at raidpoint of street = 2.970(CFS) Depth of flow = 0.353(Ft.), Average velocity = 2.334(Ft/s) Streetflow hydraulics at raidpoint of street travel: Halfstreet flow width = 10.815(Ft.) Flow velocity = 2.33(Ft/s) Travel time = 3.12 min. TC = 10.88 rain. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Irapervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.148(In/Hr) for a 100.0 year storra Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 1.282 Subarea runoff = 4.790(CFS) for 2.070(Ac.) Total runoff = 5.320 (CFS) Total area = 2.250 (Ac! Street flow at end of street = 5.320(CFS) Half street flow at end of street = 5.320(CFS) Depth of flow = 0.411(Ft.), Average velocity = 2.684(Ft/s) Flow width (from curb towards crown)= 13.711(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2070.000 to Point/Station 2072.000 **** PIPEFLOW TRAVEL TIME (Program estiraated size) **** Upstreara point/station elevation = 83.500(Ft.) Downstream point/station elevation = 83.000(Ft.) Pipe length = 5.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.320(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 5.320(CFS) Normal flow depth in pipe = 5.80(In.) Flow top width inside pipe = 11.99(In.) Critical Depth = 11.18(In.) Pipe flow velocity = 14.14(Ft/s) Travel time through pipe = 0.01 rain. Time of concentration (TC) = 10.89 rain.. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2070.000 to Point/Station 2072.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Streara flow area = 2.250(Ac.) Runoff frora this stream = 5.320(CFS) Tirae of concentration = 10.89 min. Rainfall intensity = 4.146(In/Hr) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2074.000 to Point/Station 2076.000 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 110.000(Ft.) Highest elevation = 92.600(Ft.) Lowest elevation = 90.800(Ft.) Elevation difference = 1.800(Ft.) Slope = 1.636 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximura overland flow distance is 80.00 (Ft) for the top area slope value of 1.64 %, in a developraent type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.24 minutes TC = [1.8*(1.1-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(1.1-0.5700)*( 80.000*.5)/( 1.636*(1/3)]= 7.24 The initial area total distance of 110.00 (Ft.) entered leaves a remaining distance of 3 0.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.52 minutes for a distance of 30.00 (Ft.) and a slope of 1.64 % with an elevation difference of 0.49(Ft.) frora the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(rain/hr) 0.522 Minutes Tt=[(11.9*0 . 0057*3)/( 0.49)]*.385= 0.52 Total initial area Ti = 7.24 minutes from Figure 3-3 formula plus 0.52 minutes from the Figure 3-4 formula = 7.76 minutes Rainfall intensity (I) = 5.158(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.470(CFS) Total initial stream area = 0.160(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2076.000 to Point/Station 2078.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of Street segraent elevation = 90.800(Ft.) End of street segraent elevation = 88.000(Ft.) Length of street segraent = 260.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike frora flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.037(CFS) Depth of flow = 0.318(Ft.), Average velocity = 2.194(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.088(Ft.) Flow velocity = 2.19(Ft/s) Travel time = 1.98 min. TC = 9.74 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.456(In/Hr) for a 100.0 year storra Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.792 Subarea runoff = 3.060(CFS) for 1.230(Ac.) Total runoff = 3.531(CFS) Total area = 1.390(Ac.) Street flow at end of street = 3.531(CFS) Half street flow at end of street = 3.531(CFS) Depth of flow = 0.366(Ft.), Average velocity = 2.495(Ft/s) Flow width (frora curb towards crown)= 11.456(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2078.000 to Point/Station 2072.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 83.500(Ft.) Downstream point/station elevation = 83.000(Ft.) Pipe length = 29.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.531(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 3.531(CFS) Normal flow depth in pipe = 7.79(In.) Flow top width inside pipe = 11.45(In.) Critical Depth = 9.63(In.) Pipe flow velocity = 6.55(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 9.81 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2078.000 to Point/Station 2072.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara number: 2 in normal streara nuraber 2 Streara flow area = 1.390(Ac.) Runoff frora this streara = 3.531(CFS) Tirae of concentration = 9.81 rain. Rainfall intensity = 4.435(In/Hr) Suraraary of streara data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) Qraax(2) 5.320 3.531 1.000 * 0.935 * 1.000 * 1.000 * 10.89 9.81 1.000 * 1.000 * 0.901 * 1.000 * 4.146 4 .435 5.320) + 3.531) + 5.320) + 3.531) + 8.621 8.324 Total of 2 strearas to confluence: Flow rates before confluence point: 5.320 3.531 Maximura flow rates at confluence using above data: 8.621 8.324 Area of streams before confluence: 2.250 1.390 Results of confluence: Total flow rate = Tirae of concentration = 8.621(CFS) 10.890 rain. Effective streara area after confluence 3.640(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2072.000 to Point/Station 2064.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 83.000(Ft.) Downstream point/station elevation = 81.000(Ft.) Pipe length = 359.16(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 8.621(CFS) Nearest coraputed pipe diameter = 21.00(In.) Calculated individual pipe flow = 8.621(CFS) Normal flow depth in pipe = 13.31(In.) Flow top width inside pipe = 20.23(In.) Critical Depth = 13.08(In.) Pipe flow velocity = 5.36(Ft/s) Travel time through pipe = 1.12 min. Time of concentration (TC) = 12.01 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2072.000 to Point/Station 2064.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Streara flow area = 3.640(Ac.) Runoff frora this streara = 8.621(CFS) Time of concentration = 12.01 min. Rainfall intensity = 3.894(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (rain) Rainfall Intensity (In/Hr) 1 2 Qraax(1) 32.420 8 . 621 Qraax(2) = ,000 .899 .000 . 000 14 .17 12.01 1.000 * 1.000 * 0.847 * 1.000 * 3 .499 3 .894 32.420) + 8.621) + = 32.420) + 8.621) + = 40.167 36.089 Total of 2 raain streams to confluence: Flow rates before confluence point: 32.420 8.621 Maximura flow rates at confluence using above data: 40.167 36.089 Area of strearas before confluence: 17.900 3.640 Results of confluence: Total flow rate = 40.167(CFS) Tirae of concentration = 14.169 min. Effective stream area after confluence 21.540(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2064.000 to Point/Station 2080.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstreara point/station elevation = 81.000(Ft.) Downstream point/station elevation = 77.020(Ft.) Pipe length = 275.14(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 40.167(CFS) Nearest computed pipe diameter = 30.00(In.) Calculated individual pipe flow = 40.167(CFS) Normal flow depth in pipe = 20.58(In.) Flow top width inside pipe = 27.85(In.) Critical Depth = 25.57(In.) Pipe flow velocity = 11.20(Ft/s) Travel tirae through pipe = 0.41 rain. Tirae of concentration (TC) = 14.58 rain. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2080.000 to Point/Station 2082.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 77.020(Ft.) Downstream point/station elevation = 76.180(Ft.) Pipe length = 53.47(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 40.167(CFS) Nearest coraputed pipe diaraeter = 30.00(In.) Calculated individual pipe flow = 40.167(CFS) Normal flow depth in pipe = 19.95(In.) Flow top width inside pipe = 28.32(In.) Critical Depth = 25.57(In.) Pipe flow velocity = 11.58(Ft/s) Travel time through pipe = 0.08 min. Time of concentration (TC) = 14.66 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2080.000 to Point/Station 2082.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal streara nuraber 1 Streara flow area = 21.540(Ac.) Runoff frora this streara = 40.167(CFS) Tirae of concentration = 14.66 rain. Rainfall intensity = 3.424(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process frora Point/Station 2086.000 to Point/Station 2088.000 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 110.000(Ft.) Highest elevation = 89.600(Ft.) Lowest elevation = 88.000(Ft.) Elevation difference = 1.600(Ft.) Slope = 1.455 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 65.00 (Ft) for the top area slope value of 1.46 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Tirae of Concentration = 6.79 rainutes TC = [1.8*(1.1-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(1.1-0.5700)*( 65.000*.5)/( 1.455*(1/3)]= 6.79 The initial area total distance of 110.00 (Ft.) entered leaves a reraaining distance of 45.00 (Ft.) Using Figure 3-4, the travel tirae for this distance is 0.75 minutes for a distance of 45.00 (Ft.) and a slope of 1.46 % with an elevation difference of 0.65(Ft.) frora the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(min/hr) = 0.746 Minutes Tt=[(11.9*0.0085*3)/( 0.65)]*.385= 0.75 Total initial area Ti = 6.79 minutes from Figure 3-3 formula plus 0 75 minutes from the Figure 3-4 forraula = 7.53 rainutes Rainfall intensity (I) = 5.259(In/Hr) for a 100.0 year storra Effective runoff coefficient used for area {Q=KCIA) is C = 0.570 Subarea runoff = 0.450(CFS) Total initial streara area = 0.150(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2088.000 to Point/Station 2084.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of Street segment elevation = 88.000(Ft.) End of street segment elevation = 83.000(Ft.) Length of street segment = 420.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope frora curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.582(CFS) Depth of flow = 0.334(Ft.), Average velocity = 2.409(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.846(Ft.) Flow velocity = 2.41(Ft/s) Travel time = 2.91 min. TC = 10.44 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL 1 (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.261(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 1.089 Subarea runoff = 4.189(CFS) for 1.760(Ac.) Total runoff = 4.639(CFS) Total area = 1.910(Ac.) Street flow at end of street = 4.639(CFS) Half street flow at end of street = 4.639(CFS) Depth of flow = 0.388(Ft.), Average velocity = 2.767(Ft/s) Flow width (from curb towards crown)= 12.546(Ft.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2084.000 to Point/Station 2082.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 77.120(Ft.) Downstream point/station elevation = 76.180(Ft.) Pipe length = 5.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.63 9 (CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 4.639(CFS) Normal flow depth in pipe = 5.27(In.) Flow top width inside pipe = 8.87(In.) Critical depth could not be calculated. Pipe flow velocity = 17.26(Ft/s) Travel tirae through pipe = 0.00 min. Time of concentration (TC) = 10.44 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2084.000 to Point/Station 2082.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 1.910(Ac.) Runoff from this streara = 4.639 (CFS) Time of concentration = 10.44 min. Rainfall intensity = 4.259(In/Hr) Suraraary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) 40.167 4 . 639 1.000 0 . 804 Qmax(2) = .000 ,000 14.66 10.44 1.000 * 1.000 * 0.713 * 1.000 * 3 .424 4 .259 40.167) + 4.639) + 40.167) + 4.639) + 43.895 33.265 Total of 2 strearas to confluence: Flow rates before confluence point: 40.167 4.639 Maximum flow rates at confluence using above data: 43.895 33.265 Area of streams before confluence: 21.540 1.910 Results of confluence: Total flow rate = 43.895(CFS) Time of concentration = 14.656 min. Effective stream area after confluence = 23.450(Ac, ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2082.000 to Point/Station 2090.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 76.180(Ft.) Downstream point/station elevation = 68.060(Ft.) Pipe length = 497.71(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 43.895(CFS) Nearest computed pipe diameter = 30.00(In.) Calculated individual pipe flow = 43.895(CFS) Normal flow depth in pipe = 21.00(In.) Flow top width inside pipe = 27.50(In.) Critical Depth = 26.46(In.) Pipe flow velocity = 11.95(Ft/s) Travel tirae through pipe = 0.69 rain. Time of concentration (TC) = 15.35 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2082.000 to Point/Station 2090.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 23.450(Ac.) Runoff from this stream = 43. 895(CFS) Time of concentration = 15.35 min. Rainfall intensity = 3.323(In/Hr) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2094.000 to Point/Station 2096.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 110.000(Ft.) Highest elevation = 85.000(Ft.) Lowest elevation = 83.500(Ft.) Elevation difference = 1.500(Ft.) Slope = 1.364 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 65.00 (Ft) for the top area slope value of 1.36 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.94 minutes TC = [1.8*(1.1-C)*distance(Ft.)*.5)/{% slope*(l/3)] TC = [1.8* (1.1-0.5700)* ( 65.000*.5)/{ 1. 364*(1/3)]= 6.94 The initial area total distance of 110.00 (Ft.) entered leaves a remaining distance of 45.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.77 minutes for a distance of 45.00 (Ft.) and a slope of 1.36 % with an elevation difference of 0.61(Ft.) frora the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(rain/hr) = 0.765 Minutes Tt=[(11.9*0.0085*3)/( 0.61)]*.385= 0.77 Total initial area Ti = 6.94 rainutes frora Figure 3-3 forraula plus 0.77 minutes from the Figure 3-4 formula = 7.70 minutes Rainfall intensity (I) = 5.185(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea rimoff = 0.650 (CFS) Total initial stream area = 0.220(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2096.000 to Point/Station 2092.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of Street segraent elevation = 83.500(Ft.) End of street segment elevation = 75.500(Ft.) Length of street segraent = 450.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance frora crown to crossfall grade break = 15.500(Ft.) Slope frora gutter to grade break (v/hz) = 0.020 Slope frora grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance frora curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.807(CFS) Depth of flow = 0.324(Ft.), Average velocity = 2.865(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.367 (Ft.) Flow velocity = 2.86(Ft/s) Travel time = 2.62 min. TC = 10.32 min. Adding area flow to street Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Irapervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.293(In/Hr) for a 100.0 year storm Effective rimoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 1.140 Subarea runoff = 4.244(CFS) for 1.780(Ac.) Total runoff = 4.894(CFS) Total area = 2.000(Ac.) Street flow at end of street = 4.894(CFS) Half street flow at end of street = 4.894(CFS) Depth of flow = 0.373(Ft.), Average velocity = 3.264(Ft/s) Flow width (from curb towards crown)= 11.818(Ft.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2092.000 to Point/Station 2090.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 68.340(Ft.) Downstreara point/station elevation = 68.060(Ft.) Pipe length = 5.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.894(CFS) Nearest coraputed pipe diaraeter = 12.00(In.) Calculated individual pipe flow = 4.894(CFS) Norraal flow depth in pipe = 6.56(In.) Flow top width inside pipe = 11.95(In.) Critical Depth = 10.93(In.) Pipe flow velocity = 11.13(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 10.33 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2092.000 to Point/Station 2090.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 2 Stream flow area = 2.000(Ac.) Runoff from this stream = 4.894(CFS) Time of concentration = 10.33 min. Rainfall intensity = 4.291(In/Hr) +++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2102.000 to Point/Station 2100.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [HIGH DENSITY RESIDENTIAL ] (24.0 DU/A or Less ) Irapervious value, Ai = 0.650 Sub-Area C Value = 0.710 Initial subarea total flow distance = 10.000(Ft.) Highest elevation = 88.500(Ft.) Lowest elevation = 88.000(Ft.) Elevation difference = 0.500(Ft.) Slope = 5.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaximura overland flow distance is 95.00 (Ft) for the top area slope value of 5.00 %, in a development type of 24.0 DU/A or Less In Accordance With Figure 3-3 Initial Area Tirae of Concentration = 4.00 rainutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(1.1-0.7100)*( 95.000*.5)/( 5.000*(1/3)]= 4.00 Calculated TC of 4.001 rainutes is less than 5 rainutes, resetting TC to 5.0 rainutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storra Effective runoff coefficient used for area (Q=KCIA) is C = 0.710 Subarea runoff = 0.049(CFS) Total initial streara area = 0.010(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2100.000 to Point/Station 2098.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of Street segment elevation = 88.000(Ft.) End of street segment elevation = 75.500(Ft.) Length of street segment = 960.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance frora curb to property line = 13.000(Ft.) Slope frora curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike frora flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N frora gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.977(CFS) Depth of flow = 0.260(Ft.), Average velocity = 2.013(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.188(Ft.) Flow velocity = 2.01(Ft/s) Travel tirae = 7.95 min. TC = 11.95 min. Adding area flow to street Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [HIGH DENSITY RESIDENTIAL ] (24.0 DU/A or Less ) Irapervious value, Ai = 0.650 Sub-Area C Value = 0.710 Rainfall intensity = 3.905(In/Hr) for a 100.0 year storra Effective runoff coefficient used for total area (Q=KCIA) is C = 0.710 CA = 0.511 Subarea runoff = 1.948(CFS) for 0.710(Ac.) Total runoff = 1.996(CFS) Total area = 0.720(Ac.) Street flow at end of street = 1.996(CFS) Half street flow at end of street = 1.996(CFS) Depth of flow = 0.310(Ft.), Average velocity = 2.350(Ft/s) Flow width (frora curb towards crown)= 8.643(Ft.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2098.000 to Point/Station 2090.000 **** PIPEFLOW TRAVEL TIME (Prograra estimated size) **** Upstream point/station elevation = 68.740(Ft.) Downstream point/station elevation = 68.060(Ft.) Pipe length = 29.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.996(CFS) Nearest coraputed pipe diaraeter = 9.00(In.) Calculated individual pipe flow = 1.996(CFS) Normal flow depth in pipe = 6.02(In.) Flow top width inside pipe = 8.47(In.) Critical Depth = 7.70(In.) Pipe flow velocity = 6.35(Ft/s) Travel time through pipe = 0.08 min. Time of concentration (TC) = 12.03 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2098.000 to Point/Station 2090.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara nuraber: 1 in norraal streara nuraber 3 Stream flow area = 0.720(Ac.) Rimoff from this streara = 1.996(CFS) Tirae of concentration = 12.03 rain. Rainfall intensity = 3.889(In/Hr) Suraraary of streara data: Streara No. Flow rate (CFS) TC (rain) Rainfall Intensity (In/Hr) 1 2 3 Qraax(1) 43.895 4 .894 1.996 Qmax(2) = Qmax(3) ,000 ,774 , 854 . 000 . 000 . 000 1.000 0.906 1 . 000 15.35 10 .33 12 . 03 1.000 * 1.000 * 1.000 * 0.673 * 1.000 * 0.859 * 0.783 * 1.000 * 1.000 * 3 .323 4 .291 3 .889 43.895) + 4.894) + 1.996) + 43.895) + 4.894) + 1.996) + 43.895) + 4.894) + 1.996) + 49.391 36.137 40 .820 Total of 3 streams to confluence: Flow rates before confluence point: 43.895 4.894 1.996 Maximura flow rates at confluence using above data: 49.391 36.137 40.820 Area of streams before confluence: 23.450 2.000 0.720 Results of confluence: Total flow rate = 49.391(CFS) Time of concentration = 15.350 min. Effective streara area after confluence = 26.170(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2090.000 to Point/Station 2104.000 **** PIPEFLOW TRAVEL TIME (Prograra estimated size) **** Upstream point/station elevation 68.060(Ft.) Downstream point/station elevation = 64.000(Ft.) Pipe length = 101.64(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 49.391(CFS) Nearest coraputed pipe diameter = 27.00(In.) Calculated individual pipe flow = 49.3 91(CFS) Normal flow depth in pipe = 18.23(In.) Flow top width inside pipe = 25.29(In.) Critical depth could not be calculated. Pipe flow velocity = 17.29(Ft/s) Travel tirae through pipe = 0.10 rain. Tirae of concentration (TC) = 15.45 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2090.000 to Point/Station 2104.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Streara nuraber: 1 Streara flow area = 26.170(Ac.) Runoff from this stream = 49.391(CFS) Time of concentration = 15.45 min. Rainfall intensity = 3.309(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2110.000 to Point/Station 2112.000 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 470.000(Ft.) Highest elevation = 208.000(Ft.) Lowest elevation = 142.000(Ft.) Elevation difference = 66.000(Ft.) Slope = 14.043 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaxlraura overland flow distance is 100.00 (Ft) for the top area slope value of 14.04 %, in a developraent type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Tirae of Concentration = 5.60 minutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(1/3)] TC = [1.8*(1.1-0.3500)* ( 100.000*.5)/( 14 . 043*(1/3)]= 5.60 The initial area total distance of 470.00 (Ft.) entered leaves a remaining distance of 370.00 (Ft.) Using Figure 3-4, the travel time for this distance is 1.58 minutes for a distance of 370.00 (Ft.) and a slope of 14.04 % with an elevation difference of 51.96(Ft.) from the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(min/hr) 1.579 Minutes Tt=[(11.9*0.0701*3)/( 51.96)]*.385= 1.58 Total initial area Ti = 5.60 minutes from Figure 3-3 formula plus 1.58 rainutes from the Figure 3-4 forraula = 7.17 rainutes Rainfall intensity (I) = 5.427(In/Hr) for a 100.0 year storm Effective rimoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea rimoff = 2.963 (CFS) Total initial stream area = 1.560(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2112.000 to Point/Station 2114.000 **** PIPEFLOW TRAVEL TIME (Prograra estimated size) **** Upstreara point/station elevation = 139.000(Ft.) Downstream point/station elevation = 124.000(Ft.) Pipe length = 44.18(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 2.963(CFS) Nearest coraputed pipe diameter = 6.00(In.) Calculated individual pipe flow = 2.963(CFS) Normal flow depth in pipe = 4.48(In.) Flow top width inside pipe = 5.22(In.) Critical depth could not be calculated. Pipe flow velocity = 18.86(Ft/s) Travel tirae through pipe = 0.04 rain. Tirae of concentration (TC) = 7.21 rain. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2114.000 to Point/Station 2116.000 **** PIPEFLOW TRAVEL TIME (Prograra estiraated size) **** Upstreara point/station elevation = 124.000(Ft.) Downstreara point/station elevation = 122.000(Ft.) Pipe length = 87.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 2.963(CFS) Nearest coraputed pipe diaraeter = 12.00(In.) Calculated individual pipe flow = 2.963(CFS) Normal flow depth in pipe = 6.34(In.) Flow top width inside pipe = 11.98(In.) Critical Depth = 8.86(In.) Pipe flow velocity = 7.04(Ft/s) Travel time through pipe = 0.21 min. Time of concentration (TC) = 7.42 rain. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2114.000 to Point/Station 2116.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara nuraber: 2 in norraal stream number 1 Streara flow area = 1.560(Ac.) Runoff from this stream = 2.963(CFS) Time of concentration = 7.42 min. Rainfall intensity = 5.311(In/Hr) ++++++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2118.000 to Point/Station 2120.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN 1 (Permanent Open Space ) Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 480.000(Ft.) Highest elevation = 207.000(Ft.) Lowest elevation = 145.000(Ft.) Elevation difference = 62.000(Ft.) Slope = 12.917 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 12.92 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 5.75 minutes TC = [1.8*(1.1-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(1.1-0.3500)*( 100.000*.5)/( 12.917*(1/3)]= 5.75 The initial area total distance of 480.00 (Ft.) entered leaves a remaining distance of 380.00 (Ft.) Using Figure 3-4, the travel time for this distance is 1.66 minutes for a distance of 380.00 (Ft.) and a slope of 12.92 % with an elevation difference of 49.08(Ft.) frora the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(rain/hr) 1.664 Minutes Tt=[(11.9*0.0720*3)/( 49.08)]*.385= 1.66 Total initial area Ti = 5.75 minutes from Figure 3-3 formula plus 1.66 rainutes frora the Figure 3-4 formula = 7.42 minutes Rainfall intensity (I) = 5.311(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea nmoff = 2.547 (CFS) Total initial stream area = 1.370 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2120.000 to Point/Station 2116.000 **** PIPEFLOW TRAVEL TIME (Program estiraated size) **** Upstream point/station elevation = 142.000(Ft.) Downstream point/station elevation = 122.000(Ft.) Pipe length = 52.50(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 2.547(CFS) Nearest computed pipe diameter = 6.00(In.) Calculated individual pipe flow = 2.547(CFS) Norraal flow depth in pipe = 3.83(In.) Flow top width inside pipe = 5.77(In.) Critical depth could not be calculated. Pipe flow velocity = 19.28(Ft/s) Travel tirae through pipe = 0.05 rain. Tirae of concentration (TC) = 7.46 rain. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2120.000 to Point/Station 2116.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara number: 2 in normal streara nuraber 2 Streara flow area = 1.370(Ac.) Runoff from this stream = 2.547(CFS) Tirae of concentration = 7.46 rain. Rainfall intensity = 5.291(In/Hr) Suraraary of streara data: Streara No. Flow rate (CFS) TC (rain) Rainfall Intensity (In/Hr) 1 2 Qmax(1) 2.963 2 .547 000 000 Qmax(2) = 0.996 1.000 7.42 7 .46 1.000 * 0.994 * 1.000 * 1.000 * 2.963) 2.547) 5.311 5.291 2.963) + 2.547) + 5 .495 5.499 Total of 2 streams to confluence: Flow rates before confluence point: 2.963 2.547 Maximura flow rates at confluence using above data: 5.495 5.499 Area of strearas before confluence: 1.560 1.370 Results of confluence: Total flow rate = 5.499(CFS) Tirae of concentration = 7.463 min. Effective stream area after confluence = 2.930(Ac. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2116.000 to Point/Station 2122.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 122.000(Ft.) Downstream point/station elevation = 118.500(Ft.) Pipe length = 337.11(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow Nearest computed pipe diameter Calculated individual pipe flow = Norraal flow depth in pipe = 10.48(In.) Flow top width inside pipe = 13.77(In.) Critical Depth = 11.40(In.) Pipe flow velocity = 6.00(Ft/s) Travel time through pipe = 0.94 min. Tirae of concentration (TC) = 8.40 rain 5.499(CFS) 15.00(In.) 5.499(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2116.000 to Point/Station 2122.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream nuraber: 2 in norraal streara nuraber 1 Streara flow area = 2.930(Ac.) Runoff frora this streara = 5.499(CFS) Time of concentration = 8.40 min. Rainfall intensity = 4.902(In/Hr) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2126.000 to Point/Station 2128.000 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Irapervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 110.000(Ft.) Highest elevation = 134.000(Ft.) Lowest elevation = 132.300(Ft.) Elevation difference = 1.700(Ft.) Slope = 1.545 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaxlraura overland flow distance is 80.00 (Ft) for the top area slope value of 1.54 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.38 rainutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(l.l-0.5700)*( 80.000*.5)/( 1.545* (1/3)]= 7.38 The initial area total distance of 110.00 (Ft.) entered leaves a reraaining distance of 3 0.00 (Ft.) Using Figure 3-4, the travel tirae for this distance is 0.53 minutes for a distance of 3 0.00 (Ft.) and a slope of 1.54 % with an elevation difference of 0.46(Ft.) from the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(min/hr) 0.534 Minutes Tt=[(11.9*0.0057*3)/( 0.46)]*.385= 0.53 Total initial area Ti = 7.38 rainutes from Figure 3-3 formula plus 0.53 minutes from the Figure 3-4 formula = 7.91 minutes Rainfall intensity (I) = 5.094(In/Hr) for a 100.0 year storra Effective runoff coefficient used for area (Q=KCIA) is C '= 0.570 Subarea rimoff = 0.465 (CFS) Total initial stream area = 0.160(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2128.000 to Point/Station 2124.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of Street segraent elevation = 132.300(Ft.) End of street segraent elevation = 124.500(Ft.) Length of street segraent = 760.000(Ft.) Height of curb above gutter flowline = 6.0(In.) width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N frora gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.575(CFS) Depth of flow = 0.340(Ft.), Average velocity = 2.274(Ft/s) Streetflow hydraulics at raidpoint of street travel: Halfstreet flow width = 10.148(Ft.) Flow velocity = 2.27(Ft/s) Travel tirae = 5.57 rain. TC = 13.49 rain. Adding area flow to street Deciraal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 3.612(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 1.277 Subarea runoff = 4.148(CFS) for 2.080 (Ac.) Total runoff = 4.612(CFS) Total area = 2.240(Ac.) Street flow at end of street = 4.612(CFS) Half street flow at end of street = 4.612(CFS) Depth of flow = 0.395(Ft.), Average velocity = 2.612(Ft/s) Flow width (from curb towards crown)= 12.898(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2124.000 to Point/Station 2122.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 119.000(Ft.) Downstream point/station elevation = 118.500(Ft.) Pipe length = 29.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.612(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 4.612(CFS) Normal flow depth in pipe = 9.68(In.) Flow top width inside pipe = 9.48(In.) Critical Depth = 10.73(In.) Pipe flow velocity = 6.79(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 13.56 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2124.000 to Point/Station 2122.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in norraal streara number 2 Stream flow area = 2.240(Ac.) Runoff from this stream = 4.612(CFS) Time of concentration = 13.56 min. Rainfall intensity = 3.600(In/Hr) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2132.000 to Point/Station 2134.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 13.000(Ft.) Highest elevation = 133.500(Ft.) Lowest elevation = 133.000(Ft.) Elevation difference = 0.500(Ft.) Slope = 3.846 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaxlraura overland flow distance is 95.00 (Ft) for the top area slope value of 3.85 %, in a developraent type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Tirae of Concentration = 5.93 rainutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(1/3)] TC = [1.8*(1.1-0.5700)*( 95.000*.5)/( 3.846*(1/3)]= 5.93 Rainfall intensity (I) = 6.133(In/Hr) for a 100.0 year storra Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.035(CFS) Total initial stream area = 0.010(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2134.000 to Point/Station 2130.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of Street segment elevation = 133.000(Ft.) End of street segment elevation = 124.500(Ft.) Length of street segraent = 83 0.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance frora crown to crossfall grade break = 15.500(Ft.) Slope frora gutter to grade break (v/hz) = 0.020 Slope frora grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike frora flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.378(CFS) Depth of flow = 0.291(Ft.), Average velocity = 1.970(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.725(Ft.) Flow velocity = 1.97(Ft/s) Travel time = 7.02 rain. TC = 12.96 rain. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 3.707(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.752 Subarea runoff = 2.754(CFS) for 1.310(Ac.) Total runoff = 2.789(CFS) Total area = 1.320(Ac.) Street flow at end of street = 2.789(CFS) Half street flow at end of street = 2.789(CFS) Depth of flow = 0.347(Ft.), Average velocity = 2.315(Ft/s) Flow width (from curb towards crown)= 10.499(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2130.000 to Point/Station 2122.000 **** PIPEFLOW TRAVEL TIME (Prograra estiraated size) **** Upstreara point/station elevation = 119.000(Ft.) Downstream point/station elevation = 118.500(Ft.) Pipe length = 5.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 2.789(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 2.789(CFS) Normal flow depth in pipe = 4.68(In.) Flow top width inside pipe = 8.99(In.) Critical Depth = 8.53(In.) Pipe flow velocity = 12.03(Ft/s) Travel tirae through pipe = 0.01 rain. Time of concentration (TC) = 12.96 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2130.000 to Point/Station 2122.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara number: 2 in normal streara nuraber 3 Streara flow area = 1.320(Ac.) Runoff from this streara = 2.789(CFS) Time of concentration = 12.96 min. Rainfall intensity = 3.705(In/Hr) Summary of stream data: stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 3 Qraax(1) 5 .499 4.612 2 .789 1.000 * * * ,000 ,000 Qraax(2) = 0 .734 1.000 Qraax(3) = 0.972 * ,756 .000 .000 8 .40 13 .56 12 .96 1.000 * 0.620 * 0.648 * 1.000 * 1.000 * 1.000 * 1.000 * 0.956 * 1.000 * 4.902 3 .600 3 .705 5.499) + 4.612) + 2.789) + = 5.499) + 4.612) + 2.789) + = 5.499) + 4.612) + 2.789) + = 10.164 11.360 11.356 Total of 3 strearas to confluence: Flow rates before confluence point: 5.499 4.612 2.789 Maximura flow rates at confluence using above data: 10.164 11.360 11.356 Area of streams before confluence: 2.930 2.240 1.320 Results of confluence: Total flow rate = 11.360(CFS) Time of concentration = 13.556 rain. Effective stream area after confluence = 6.490(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2122.000 to Point/Station 2136.000 **** PIPEFLOW TRAVEL TIME (Prograra estiraated size) **** Upstreara point/station elevation = 118.500(Ft.) Downstreara point/station elevation = 116.500(Ft.) Pipe length = 200.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 11.360(CFS) Nearest coraputed pipe diameter = 21.00(In.) Calculated individual pipe flow = 11.360(CFS) Normal flow depth in pipe = 13.15(In.) Flow top width inside pipe = 20.32(In.) Critical Depth = 15.08(In.) Pipe flow velocity = 7.16(Ft/s) Travel time through pipe = 0.47 min. Time of concentration (TC) = 14.02 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frora Point/Station 2122.000 to Point/Station 2136.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara number: 2 in normal stream nuraber 1 stream flow area = 6.490(Ac.) Runoff from this streara = 11.360(CFS) Time of concentration = 14.02 min. Rainfall intensity = 3.523(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2138.000 to Point/Station 2140.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN ] (Permanent Open Space ) Irapervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 700.000(Ft.) Highest elevation = 220.000(Ft.) Lowest elevation = 126.000(Ft.) Elevation difference = 94.000(Ft.) Slope = 13.429 % Top of Initial Area Slope adjusted by User to 30.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaxiraum overland flow distance is 100.00 (Ft) for the top area slope value of 30.00 %, in a developraent type of Perraanent Open Space In Accordance With Figure 3-3 Initial Area Tirae of Concentration = 4.34 rainutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(1/3)] TC = [1.8* (1.1-0.3500)*( 100.000*.5)/( 30.000*(1/3)]= 4.34 The initial area total distance of 700.00 (Ft.) entered leaves a reraaining distance of 600.00 (Ft.) Using Figure 3-4, the travel time for this distance is 2.33 minutes for a distance of 600.00 (Ft.) and a slope of 13.43 % with an elevation difference of 80.57(Ft.) from the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(min/hr) 2.331 Minutes Tt=[(11.9*0.1136*3)/( 80.57)]*.385= 2.33 Total initial area Ti = 4.34 minutes from Figure 3-3 formula plus 2.33 rainutes from the Figure 3-4 formula = 6.68 minutes Rainfall intensity (I) = 5.685(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 13.253 (CFS) Total initial stream area = 6.660(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2140.000 to Point/Station 2136.000 **** PIPEFLOW TRAVEL TIME (Program estiraated size) **** Upstreara point/station elevation = 124.000(Ft.) Downstreara point/station elevation = 116.500(Ft.) Pipe length = 33.60(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 13.253(CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 13.253(CFS) Normal flow depth in pipe = 8.03(In.) Flow top width inside pipe = 11.29(In.) Critical depth could not be calculated. Pipe flow velocity = 23.74(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 6.70 rain. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++^ Process from Point/Station 2140.000 to Point/Station 2136.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream nuraber 2 Streara flow area = 6.660(Ac.) Runoff frora this streara = 13.253(CFS) Tirae of concentration = 6.70 rain. Rainfall intensity = 5.672(In/Hr) Suraraary of streara data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 11.360 14.02 3.523 2 13.253 6.70 5.672 Qmax(1) = 1.000 * 1.000 * 11.360) + Qmax(2) 0.621 * 1.000 * 13.253) + = 19.590 1.000 * 0.478 * 11.360) + 1.000 * 1.000 * 13.253) + = 18.680 Total of 2 streams to confluence: Flow rates before confluence point: 11.360 13.253 Maximum flow rates at confluence using above data: 19.590 18.680 Area of streams before confluence: 6.490 6.660 Results of confluence: Total flow rate = 19.590(CFS) Tirae of concentration = 14.022 rain. Effective streara area after confluence = 13.150(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2136.000 to Point/Station 2142.000 **** PIPEFLOW TRAVEL TIME (Prograra estiraated size) **** Upstreara point/station elevation = 116.500(Ft.) Downstreara point/station elevation = 91.500(Ft.) Pipe length = 485.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 19.590(CFS) Nearest coraputed pipe diameter = 18.00(In.) Calculated individual pipe flow = 19.590(CFS) Normal flow depth in pipe = 12.42(In.) Flow top width inside pipe = 16.65(In.) Critical depth could not be calculated. Pipe flow velocity = 15.06(Ft/s) Travel tirae through pipe = 0.54 min. Time of concentration (TC) = 14.56 min. +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2136.000 to Point/Station 2142.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara number: 2 in norraal stream number 1 Stream flow area = 13.150(Ac.) Runoff from this stream = 19.590(CFS) Tirae of concentration = 14.56 min. Rainfall intensity = 3.438(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2146.000 to Point/Station 2148.000 **** INITIAL AREA EVALUATION **** ] = iio.ooo(Ft.; 1.909 % in a development type of Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance Highest elevation = 126.100(Ft.) Lowest elevation = 124.000(Ft.) Elevation difference = 2.100(Ft.) Slope INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaxlraura overland flow distance is 80.00 (Ft) for the top area slope value of 1.91 %, 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.88 minutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(1.1-0.5700)* ( 80.000*.5)/( 1.909*(1/3)]= 6.88 The initial area total distance of 110.00 (Ft.) entered leaves a remaining distance of 3 0.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.49 minutes for a distance of 30.00 (Ft.) and a slope of 1.91 % with an elevation difference of 0.57(Ft.) frora the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(rain/hr) 0.492 Minutes Tt=[(11.9*0.0057*3)/( 0.57)]*.385= 0.49 Total initial area Ti = 6.88 rainutes frora Figure 3-3 formula plus 0.49 minutes from the Figure 3-4 formula = 7.37 minutes Rainfall intensity (I) = 5.334(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.517(CFS) Total initial stream area = 0.170(Ac.) +++++++++++4-++++++++++++++++++++++++++++++++++++++++++++++++^ Process from Point/Station 2148.000 to Point/Station 2144.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 124.000(Ft.) End of street segment elevation = 98.000(Ft.) Length of street segment = 620.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope frora gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope frora curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N frora grade break to crown = 0.0150 Estiraated raean flow rate at midpoint of street = 4.212(CFS) Depth of flow = 0.322(Ft.), Average velocity = 4.376(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.273(Ft.) Flow velocity = 4.38(Ft/s) Travel time = 2.36 min. TC = 9.73 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.458(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 1.761 Subarea runoff = 7.336(CFS) for 2.920(Ac.) Total runoff = 7.852(CFS) Total area = 3.090(Ac.) Street flow at end of street = 7.852(CFS) Half street flow at end of street = 7.852(CFS) Depth of flow = 0.377(Ft.), Average velocity = 5.066(Ft/s) Flow width (from curb towards crown)= 12.031(Ft.) +++++++++++++++4-+++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2144.000 to Point/Station 2142.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 92.000(Ft.) Downstreara point/station elevation = 91.500(Ft.) Pipe length = 29.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 7.852(CFS) Nearest coraputed pipe diaraeter = 15.00(In.) Calculated individual pipe flow = 7.852(CFS) Norraal flow depth in pipe = 11.39(In.) Flow top width inside pipe = 12.82(In.) Critical Depth = 13.30(In.) Pipe flow velocity = 7.85(Ft/s) Travel tirae through pipe = 0.06 rain. Tirae of concentration (TC) = 9.79 rain. 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-+ 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 2144.000 to Point/Station 2142.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in norraal stream number 2 Stream flow area = 3.090(Ac.) Rimoff from this stream = 7.852(CFS) Tirae of concentration = 9.79 min. Rainfall intensity = 4.440(In/Hr) 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 2152.000 to Point/Station 2154.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 45.000(Ft.) Highest elevation = 13 8.000(Ft.) Lowest elevation = 124.600(Ft.) Elevation difference = 13.400(Ft.) Slope = 29.778 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maxiraura overland flow distance is 100.00 (Ft) for the top area slope value of 29.78 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 3.08 minutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8* (1.1-0.5700)*( 100.000*.5)/( 29.778*(1/3)]= 3.08 Calculated TC of 3.078 minutes is less than 5 minutes, resetting TC to 5.0 rainutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storra Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.039(CFS) Total initial stream area = 0.010(Ac.) 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- + 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 2154.000 to Point/Station 2150.000 **** STREET FLOW TRAVEL TIME 4- SUBAREA FLOW ADDITION **** Top of Street segment elevation = 124.600(Ft.) End of street segraent elevation = 98.000(Ft.) Length of street segment = 730.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope frora grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000 (Ft.) Slope frora curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike frora flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N frora gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 0.949(CFS) Depth of flow = 0.228(Ft.), Average velocity = 3.050(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 4.570(Ft.) Flow velocity = 3.05(Ft/s) Travel time = 3.99 min. TC = 7.07 min. Adding area flow to street Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 5.480(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.353 Subarea runoff = 1.898(CFS) for 0.610(Ac.) Total runoff = 1.937(CFS) Total area = 0.620(Ac. Street flow at end of street = 1.937(CFS) Half street flow at end of street = 1.937(CFS) Depth of flow = 0.271(Ft.), Average velocity = 3.488(Ft/s) Flow width (from curb towards crown)= 6.729(Ft.) 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-"4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 2150.000 to Point/Station 2142.000 **** PIPEFLOW TRAVEL TIME (Prograra estimated size) **** Upstream point/station elevation = 92.000(Ft.) Downstreara point/station elevation = 91.500(Ft.) Pipe length = 5.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.937(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 1.937(CFS) Normal flow depth in pipe = 3.79(In.) Flow top width inside pipe = 8.89(In.) Critical Depth = 7.61(In.) Pipe flow velocity = 10.96(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 7.08 min. + + + +4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 2150.000 to Point/Station 2142.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in norraal stream number 3 Streara flow area = 0.620(Ac.) Runoff from this stream = 1.937(CFS) Tirae of concentration = 7.08 rain. Rainfall intensity = 5.476(In/Hr) Summary of stream data: Streara No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) • 1 19. 590 14 56 3 . 438 2 7. 852 9 79 4 . 440 3 1. 937 7 08 5. 476 Qmax(1) = 1. 000 * 1 000 * 19. 590) 4- 0. 774 * 1 .000 * 7 852) 4- 0. 628 * 1 .000 * 1 937) 4-= 26 886 Qmax(2) = 590) 1 000 * 0 .673 * 19 590) 4- 1 000 * 1 . 000 * 7 852) 4- 0 811 * 1 .000 * 1 937) 4-= 22 601 Qmax(3) = 1 000 * 0 .486 * 19 590) 4- 1 000 * 0 .722 * 7 .852) 4- 1 000 * 1 .000 * 1 .937) 4-= 17 . 130 Total of 3 streams to confluence: Flow rates before confluence point: 19.590 7.852 1.937 Maximum flow rates at confluence using above data: 26.886 22.601 17.130 Area of streams before confluence: 13.150 3.090 0.620 Results of confluence: Total flow rate = 26.886(CFS) Time of concentration = 14.558 rain. Effective streara area after confluence = 16.860(Ac.) + + + + +4.4.4-4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 2142.000 to Point/Station 2156.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 91.500(Ft.) Downstreara point/station elevation = 82.800(Ft.) Pipe length = 350.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 26.886(CFS) Nearest coraputed pipe diameter = 24.00(In.) Calculated individual pipe flow = 26.886(CFS) Norraal flow depth in pipe = 15.56(In.) Flow top width inside pipe = 22.92(In.) Critical Depth = 21.66(In.) Pipe flow velocity = 12.47(Ft/s) Travel tirae through pipe = 0.47 min. Time of concentration (TC) = 15.03 min. + + + + +4-+ 4.4-4.4.4.4.4-4-4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 2156.000 to Point/Station 2158.000 **** PIPEFLOW TRAVEL TIME (Prograra estiraated size) **** Upstream point/station elevation = 82.800(Ft.) Downstream point/station elevation = 79.000(Ft.) Pipe length = 110.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 26.886(CFS) Nearest computed pipe diameter = 21.00(In.) Calculated individual pipe flow = 26.886(CFS) Norraal flow depth in pipe = 15.77(In.) Flow top width inside pipe = 18.16(In.) Critical depth could not be calculated. Pipe flow velocity = 13.88(Ft/s) Travel time through pipe = 0.13 min. Tirae of concentration (TC) = 15.16 min. 4-4-4-4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 2156.000 to Point/Station 2158.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal streara nuraber 1 Streara flow area = 16.860(Ac.) Rimoff frora this stream = 26.886(CFS) Time of concentration = 15.16 min. Rainfall intensity = 3.350(In/Hr) 4-4-4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 2162.000 to Point/Station 2164.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 110.000(Ft.) Highest elevation = 98.500(Ft.) Lowest elevation = 94.500(Ft.) Elevation difference = 4.000(Ft.) Slope = 3.636 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 95.00 (Ft) for the top area slope value of 3.64 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.05 minutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(1/3)] TC = [1.8*(1.1-0.5700)*( 95.000*.5)/( 3.636*(1/3)]= 6.05 The initial area total distance of 110.00 (Ft.) entered leaves a remaining distance of 15.00 (Ft.) Using Figure 3-4, the travel tirae for this distance is 0.23 rainutes for a distance of 15.00 (Ft.) and a slope of 3.64 % with an elevation difference of 0.55(Ft.) frora the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(rain/hr) 0.225 Minutes Tt=[(11.9*0.0028*3)/( 0.55)]*.385= 0.23 Total initial area Ti = 6.05 rainutes frora Figure 3-3 forraula plus 0.23 minutes from the Figure 3-4 formula = 6.27 minutes Rainfall intensity (I) = 5.919(In/Hr) for a 100.0 year storra Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.540(CFS) Total initial streara area = 0.160(Ac.) + +4-+ 4.4.4.4.4-4-4-4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 2164.000 to Point/Station 2160.000 **** STREET FLOW TRAVEL TIME 4- SUBAREA FLOW ADDITION **** Top of Street segment elevation = 94.500(Ft.) End of street segment elevation = 85.000(Ft.) Length of street segment = 450.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estiraated mean flow rate at midpoint of street = 3.747(CFS) Depth of flow = 0.341(Ft.), Average velocity = 3.272(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.210(Ft.) Flow velocity = 3.27(Ft/s) Travel time = 2.29 min. TC = 8.56 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.841(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 1.425 Subarea runoff = 6.359(CFS) for 2.340(Ac.) Total runoff = 6.899(CFS) Total area = 2.500(Ac.) street flow at end of street = 6.899(CFS) Half street flow at end of street = 6.899(CFS) Depth of flow = 0.399(Ft.), Average velocity = 3.784(Ft/s) Flow width (from curb towards crown)= 13.118(Ft.) 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 2160.000 to Point/Station 2158.000 **** PIPEFLOW TRAVEL TIME (Program estiraated size) **** Upstreara point/station elevation = 79.500(Ft.) Downstreara point/station elevation = 79.000(Ft.) Pipe length = 29.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.899(CFS) Nearest coraputed pipe diaraeter = 15.00(In.) Calculated individual pipe flow = 6.899(CFS) Norraal flow depth in pipe = 10.28(In.) Flow top width inside pipe = 13.93(In.) Critical Depth = 12.64(In.) Pipe flow velocity = 7.70(Ft/s) Travel tirae through pipe = 0.06 rain. Tirae of concentration (TC) = 8.63 min. 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 2160.000 to Point/Station 2158.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 2.500(Ac.) Runoff from this streara = 6.899(CFS) Tirae of concentration = 8.63 rain. Rainfall intensity = 4.819(In/Hr) 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 2168.000 to Point/Station 2170.000 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Irapervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 110.000(Ft.) Highest elevation = 94.100(Ft.) Lowest elevation = 92.500(Ft.) Elevation difference = 1.600(Ft.) Slope = 1.455 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximura overland flow distance is 65.00 (Ft) for the top area slope value of 1.46 %, in a developraent type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Tirae of Concentration = 6.79 rainutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8* (1.1-0.5700)*( 65.000*.5)/( 1.455*(1/3)]= 6.79 The initial area total distance of 110.00 (Ft.) entered leaves a reraaining distance of 45.00 (Ft.) Using Figure 3-4, the travel tirae for this distance is 0.75 rainutes for a distance of 45.00 (Ft.) and a slope of 1.46 % with an elevation difference of 0.65(Ft.) frora the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(min/hr) = 0.746 Minutes Tt=[(11.9*0.0085*3)/( 0.65)]*.385= 0.75 Total initial area Ti = 6.79 minutes frora Figure 3-3 formula plus 0.75 minutes from the Figure 3-4 formula = 7.53 minutes Rainfall intensity (I) = 5.259(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea rimoff = 0.570(CFS) Total initial streara area = 0.190(Ac.) + + + +4-4-4-4.4.4.4.4.4-4.4.4-4.4.4.4.4.4-4-4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 2170.000 to Point/Station 2166.000 **** STREET FLOW TRAVEL TIME 4- SUBAREA FLOW ADDITION **** Top of Street segment elevation = 92.500(Ft.) End of street segment elevation = 85.000(Ft.) Length of street segment = 600.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope frora grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance frora curb to property line = 13.000(Ft.) Slope frora curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike frora flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at raidpoint of street = 3.463(CFS) Depth of flow = 0.357(Ft.), Average velocity = 2.629(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.022(Ft.) Flow velocity = 2.63(Ft/s) Travel time = 3.80 min. TC = 11.34 rain. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Irapervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.040(In/Hr) for a 100.0 year storra Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 1.556 Subarea rimoff = 5.717(CFS) for 2.540(Ac.) Total rimoff = 6.287(CFS) Total area = 2.730(Ac.) Street flow at end of street = 6.287(CFS) Half street flow at end of street = 6.287(CFS) Depth of flow = 0.417(Ft.), Average velocity = 3.033(Ft/s) Flow width (frora curb towards crown)= 14.037(Ft.) 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 2166.000 to Point/Station 2158.000 **** PIPEFLOW TRAVEL TIME (Prograra estiraated size) **** Upstreara point/station elevation = 79.500(Ft.) Downstream point/station elevation = 79.000(Ft.) Pipe length = 5.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = Nearest computed pipe diameter Calculated individual pipe flow = Normal flow depth in pipe = 6.41(In.) Flow top width inside pipe = 11.97(In.) Critical depth could not be calculated. Pipe flow velocity = 14.74(Ft/s) Travel tirae through pipe = 0.01 rain. Tirae of concentration (TC) = 11.34 rain. 6.287(CFS) 12.00(In.) 6.287(CFS) 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 2166.000 to Point/Station 2158.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara number: 2 in normal stream number 3 Streara flow area = 2.730(Ac.) Rimoff frora this stream = 6.287(CFS) Time of concentration = 11.34 min. Rainfall intensity = 4.039(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 3 Qmax(l) Qmax(2) 26.886 6.899 6.287 1.000 0.695 0.829 1.000 1.000 1.000 Qmax(3) = 1.000 0 .838 1. 000 15.16 8 .63 11.34 1.000 * 1.000 * 1.000 * 0.569 * 1.000 * 0.761 * 0.748 * 1.000 * 1.000 * 3 .350 4.819 4 . 039 26.886) 4- 6.899) 4- 6.287) 4- 26.886) 4- 6.899) 4- 6.287) 4- 26.886) 4- 6.899) 4- 6.287) 4- 36.897 26.982 32.189 Total of 3 streams to confluence: Flow rates before confluence point: 26.886 6.899 6.287 Maximum flow rates at confluence using above data: 36.897 26.982 32.189 Area of streams before confluence: 16.860 2.500 2.730 Results of confluence: Total flow rate = 36.897(CFS) Time of concentration = 15.158 rain. Effective streara area after confluence = 22.090(Ac.) 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 2158.000 to Point/Station 2172.000 **** PIPEFLOW TRAVEL TIME (Prograra estiraated size) **** Upstreara point/station elevation = 79.000(Ft.) Downstreara point/station elevation = 78.000(Ft.) Pipe length = 165.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 36.897(CFS) Nearest computed pipe diameter = 33.00(In.) Calculated individual pipe flow = 36.897(CFS) Normal flow depth in pipe = 24.38(In.) Flow top width inside pipe = 29.00(In.) Critical Depth = 24.26(In.) Pipe flow velocity = 7.84(Ft/s) Travel tirae through pipe = 0.35 rain. Time of concentration (TC) = 15.51 min. 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 2172.000 to Point/Station 2104.000 **** PIPEFLOW TRAVEL TIME (Prograra estiraated size) **** Upstreara point/station elevation = 78.000(Ft.) Downstreara point/station elevation = 64.000(Ft.) Pipe length = 290.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 36.897(CFS) Nearest computed pipe diameter = 24.00(In.) Calculated individual pipe flow = 36.897(CFS) Normal flow depth in pipe = 15.40(In.) Flow top width inside pipe = 23.02(In.) Critical depth could not be calculated. Pipe flow velocity = 17.33(Ft/s) Travel time through pipe = 0.28 min. Time of concentration (TC) = 15.79 rain. 4-4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-+ 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 2172.000 to Point/Station 2104.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Streara nuraber: 2 Stream flow area = 22.090(Ac.) Runoff frora this streara = 36.897(CFS) Time of concentration = 15.79 min. Rainfall intensity = 3.263(In/Hr) Prograra is now starting with Main Streara No. + + + +4.4-4.4-4.4-4-4.4.4.4-4-4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 2178.000 to Point/Station 2179.000 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 110.000(Ft.) Highest elevation = 85.700(Ft.) Lowest elevation = 84.200(Ft.) Elevation difference = 1.500(Ft.) Slope = 1.364 % Top of Initial Area Slope adjusted by User to 1.000 % Bottora of Initial Area Slope adjusted by User to 1.333 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 65.00 (Ft) for the top area slope value of 1.00 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.69 minutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(1/3)] TC = [1.8*(1.1-0.5700)* ( 65.000*.5)/( 1.000*(1/3)]= 7.69 The initial area total distance of 110.00 (Ft.) entered leaves a remaining distance of 45.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.77 minutes for a distance of 45.00 (Ft.) and a slope of 1.33 % with an elevation difference of 0.60(Ft.) from the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(min/hr) 0.772 Minutes Tt=[(11.9*0.0085*3)/( 0.60)]*.385= 0.77 Total initial area Ti = 7.69 minutes from Figure 3-3 formula plus 0.77 minutes frora the Figure 3-4 formula = 8.46 minutes Rainfall intensity (I) = 4.879(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.501(CFS) Total initial stream area = 0.180(Ac.) 4.4.4.4.4.4-4.4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4--^ 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 2179.000 to Point/Station 2179.100 **** STREET FLOW TRAVEL TIME 4- SUBAREA FLOW ADDITION **** Top of Street segment elevation = 84.200(Ft.) End of street segment elevation = 77.800(Ft.) Length of street segment = 430.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope frora grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance frora curb to property line = 13.000(Ft.) Slope frora curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 0.130(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estiraated mean flow rate at midpoint of street = 2.089(CFS) Depth of flow = 0.126(Ft.), Average velocity = 2.040(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.255(Ft.) Flow velocity = 2.04(Ft/s) Travel time = 3.51 rain. TC = 11.98 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 3.900(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.912 Subarea runoff = 3.056(CFS) for 1.420(Ac.) Total runoff = 3.557(CFS) Total area = 1.600(Ac.) Street flow at end of street = 3.557(CFS) Half street flow at end of street = 1.778(CFS) Depth of flow = 0.157(Ft.), Average velocity = 2.335(Ft/s) Flow width (from curb towards crown)= 8.809(Ft.) 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 2179.100 to Point/Station 2180.000 **** PIPEFLOW TRAVEL TIME (Program estiraated size) **** Upstream point/station elevation = 72.800(Ft.) Downstream point/station elevation = 72.3 00(Ft.) Pipe length = 5.00(Ft.) Manning's N = 0.015 No. of pipes = 1 Required pipe flow = 3.557(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 3.557(CFS) Normal flow depth in pipe = 6.00(In.) Flow top width inside pipe = 8.49(In.) Critical depth could not be calculated. Pipe flow velocity = 11.36(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 11.98 min. 4-4-4-4.4-4-4-4-4-4-4-4-4-4-4-4-+ 4-4-4-4-4-4-4-4-4-4-+ 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 2179.100 to Point/Station 2180.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara nuraber: 3 in normal stream number 1 Stream flow area = 1.600(Ac.) Runoff from this stream = 3.557(CFS) Time of concentration = 11.98 min. Rainfall intensity = 3.898(In/Hr) 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 2180.100 to Point/Station 2180.200 **** INITIAL AREA EVALUATION **** ] = ioo.ooo(Ft.; Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less ) Irapervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance Highest elevation = 85.000(Ft.) Lowest elevation = 83.300(Ft.) Elevation difference = 1.700(Ft.) Slope = 1.700 % Top of Initial Area Slope adjusted by User to 1.000 % Bottora of Initial Area Slope adjusted by User to 2.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaximum overland flow distance is 65.00 (Ft) for the top area slope value of 1.00 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Tirae of Concentration = 7.69 rainutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(1/3)] TC = [1.8*(1.1-0.5700)* ( 65.000*.5)/( 1.000*(1/3)]= 7.69 The initial area total distance of 100.00 (Ft.) entered leaves a reraaining distance of 35.00 (Ft.) Using Figure 3-4, the travel tirae for this distance is 0.54 minutes for a distance of 35.00 (Ft.) and a slope of 2.00 % with an elevation difference of 0.70(Ft.) frora the end of the top area Tt = [11.9*length{Mi)*3)/(elevation change(Ft.))]*.385 *60(rain/hr) 0.544 Minutes Tt=[(11.9*0.0066*3)/( 0.70)]*.385= 0.54 Total initial area Ti = 7.69 rainutes from Figure 3-3 formula plus 0.54 rainutes frora the Figure 3-4 formula = 8.24 minutes Rainfall intensity (I) = 4.965(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.453(CFS) Total initial streara area = 0.160(Ac.) 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-+ 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 2180.200 to Point/Station 2181.000 **** STREET FLOW TRAVEL TIME 4- SUBAREA FLOW ADDITION **** Top of Street segment elevation = 83.300(Ft.) End of street segraent elevation = 77.800(Ft.) Length of street segraent = 385.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope frora grade break to crown (v/hz) = 0.020 Street flow is on [2] side(s) of the street Distance frora curb to property line = 13.000(Ft.) Slope frora curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike frora flowline = 0.13 0(In.) Manning's N in gutter = 0.0150 Manning's N frora gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.058(CFS) Depth of flow = 0.095(Ft.), Average velocity = 1.688(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 5.725(Ft.) Flow velocity = 1.69(Ft/s) Travel tirae = 3.80 rain. TC = 12.04 rain. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Irapervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 3.887(In/Hr) for a 100.0 year storra Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.399 Subarea rimoff = 1.098(CFS) for 0.540(Ac.) Total runoff = 1.551(CFS) Total area = 0.700(Ac.; Street flow at end of street = 1.551(CFS) Half street flow at end of street = 0.775(CFS) Depth of flow = 0.112(Ft.), Average velocity = 1.862(Ft/s) Flow width (frora curb towards crown)= 6.564(Ft.) 4.4-4-4-4-4-4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-+ 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 2181.000 to Point/Station 2180.000 **** PIPEFLOW TRAVEL TIME (Prograra estiraated size) **** Upstreara point/station elevation = 72.800(Ft.) Downstreara point/station elevation = 72.300(Ft.) Pipe length = 28.00(Ft.) Manning's N = 0.015 No. of pipes = 1 Required pipe flow = 1.551(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 1.551(CFS) Normal flow depth in pipe = 6.14(In.) Flow top width inside pipe = 8.38(In.) Critical Depth = 6.88(In.) Pipe flow velocity = 4.83(Ft/s) Travel tirae through pipe = 0.10 min. Time of concentration (TC) = 12.13 min. 4-4-4-4-4-4-4-4-4-4-4-4-4-4.4.4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 2181.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS **** 2180.000 Along Main Streara nuraber: 3 in norraal streara number 2 Stream flow area = 0.700(Ac.) Runoff from this stream = 1.551(CFS) Tirae of concentration = 12.13 min. Rainfall intensity = 3.867(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) Qraax(2) = 3.557 1.551 1.000 * 1.000 * 0.992 * 1.000 * 11.98 12.13 1.000 * 0.988 * 1.000 * 1.000 * 3.557) 1.551) 3.557) 1.551) 3 .898 3 .867 4- 4- = 4- 4- = 5.088 5.079 Total of 2 streams to confluence: Flow rates before confluence point: 3.557 1.551 Maximum flow rates at confluence using above data: 5.088 5.079 Area of streams before confluence: 1.600 0.700 Results of confluence: Total flow rate = 5.088(CFS) Time of concentration = 11.983 min. Effective streara area after confluence = 2.300(Ac.) 4.4-4.4-4.4-4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 2181.000 to Point/Station 2104.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstreara point/station elevation = 72.300(Ft.) Downstreara point/station elevation = 64.000(Ft.) Pipe length = 78.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.088(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 5.088(CFS) Normal flow depth in pipe = 6.95(In.) Flow top width inside pipe = 7.55(In.) Critical depth could not be calculated. Pipe flow velocity = 13.89(Ft/s) Travel time through pipe = 0.09 min. Tirae of concentration (TC) = 12.08 rain. 4.4.4-4.4.4.4.4.4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 2181.000 to Point/Station 2104.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Streara is listed: In Main Streara number: 3 Streara flow area = 2.30 0(Ac.) Runoff from this streara = 5.088(CFS) Tirae of concentration = 12.08 rain. Rainfall intensity = 3.879(In/Hr) Suraraary of stream data: Streara No. Flow rate (CFS) TC (rain) Rainfall Intensity (In/Hr) 1 2 3 Qmax(1) Qmax(2) Qmax(3) 49.391 36.897 5.088 000 000 0.853 * 0.986 * 000 841 000 000 000 15.45 15.79 12.08 1.000 * 0.978 * 1.000 * 1.000 * 1.000 * 1.000 * 0.782 * 0.765 * 1.000 * 3 .309 3 .263 3 .879 49.391) 4- 36.897) 4- 5.088) + 49.391) + 36.897) 4- 5.088) 4- 49.391) -I- 36.897) 4- 5.088) 4- 89.834 89.880 71.926 Total of 3 main streams to confluence: Flow rates before confluence point: 49.391 36.897 5.088 Maximum flow rates at confluence using above data; 89.834 89.880 71.926 Area of streams before confluence: 26.170 22.090 2.300 Results of confluence: Total flow rate = 89.880(CFS) Time of concentration = 15.788 min. Effective stream area after confluence 50.560(Ac.) 4-4-4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 2104.000 to Point/Station 2182.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 64.000(Ft.) Downstream point/station elevation = 56.500(Ft.) Pipe length = 122.37(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 89.880(CFS) Nearest computed pipe diameter = 30.00(In.) Calculated individual pipe flow = 89.880(CFS) Normal flow depth in pipe = 21.94(In.) Flow top width inside pipe = 26.60(In.) Critical depth could not be calculated. Pipe flow velocity = 23.36(Ft/s) Travel tirae through pipe = 0.09 rain. Tirae of concentration (TC) = 15.88 min. 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 2182.000 to Point/Station 2184.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 56.500(Ft.) Downstreara point/station elevation = 54.000(Ft.) Pipe length = 52.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 89.880(CFS) Nearest coraputed pipe diaraeter = 3 0.00(In.) Calculated individual pipe flow = 89.880(CFS) Norraal flow depth in pipe = 24.56(In.) Flow top width inside pipe = 23.11(In.) Critical depth could not be calculated. Pipe flow velocity = 20.89(Ft/s) Travel tirae through pipe = 0.04 rain. Time of concentration (TC) = 15.92 min. 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 2184.000 to Point/Station 2186.000 **** PIPEFLOW TRAVEL TIME (Program estiraated size) **** Upstreara point/station elevation = 54.000(Ft.) Downstream point/station elevation = 53.500(Ft.) Pipe length = 37.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 89.880(CFS) Nearest coraputed pipe diameter = 39.00(In.) Calculated individual pipe flow = 89.880(CFS) Norraal flow depth in pipe = 29.95(In.) Flow top width inside pipe = 32.92(In.) Critical Depth = 35.13(In.) Pipe flow velocity = 13.15(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 15.96 min. 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 2186.000 to Point/Station 2188.000 **** PIPEFLOW TRAVEL TIME (Prograra estiraated size) **** Upstreara point/station elevation = 53.500(Ft.) Downstreara point/station elevation = 47.300(Ft.) Pipe length = 124.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 89.880(CFS) Nearest coraputed pipe diameter = 30.00(In.) Calculated individual pipe flow = 89.880(CFS) Normal flow depth in pipe = 24.05(In.) Flow top width inside pipe = 23.93(In.) Critical depth could not be calculated. Pipe flow velocity = 21.30(Ft/s) Travel tirae through pipe = 0.10 rain. Tirae of concentration (TC) = 16.06 min. 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 2188.000 to Point/Station 2190.000 **** PIPEFLOW TRAVEL TIME (Prograra estiraated size) **** Upstreara point/station elevation = 47.300(Ft.) Downstreara point/station elevation = 43.260(Ft.) Pipe length = 90.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 89.880(CFS) Nearest coraputed pipe diaraeter = 33.00(In.) Calculated individual pipe flow = 89.880(CFS) Norraal flow depth in pipe = 22.36(In.) Flow top width inside pipe = 30.85(In.) Critical depth could not be calculated. Pipe flow velocity = 20.97(Ft/s) Travel tirae through pipe = 0.07 min. Time of concentration (TC) = 16.13 min. 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 2188.000 to Point/Station 2190.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Streara is listed: In Main Streara number: 1 Stream flow area = 50.560(Ac.) Rimoff from this streara = 89.880(CFS) Tirae of concentration = 16.13 min. Rainfall intensity = 3.218(In/Hr) Program is now starting with Main Stream No. 2 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 2194.000 to Point/Station 2196.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 13.000(Ft.) Highest elevation = 87.700(Ft.) Lowest elevation = 87.000(Ft.) Elevation difference = 0.700(Ft.) Slope = 5.385 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 5.38 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 5.44 minutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(l.l-0.5700)*( 100.000*.5)/( 5.385*(1/3)]= 5.44 Rainfall intensity (I) = 6.485(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.037(CFS) Total initial streara area = 0.010(Ac.) 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 2196.000 to Point/Station 2192.000 **** STREET FLOW TRAVEL TIME SUBAREA FLOW ADDITION **** Top of street segraent elevation = 87.000(Ft.) End of street segraent elevation = 52.100(Ft.) Length of street segraent = 750.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance frora crown to crossfall grade break = 15.500(Ft.) Slope frora gutter to grade break (v/hz) = 0.020 Slope frora grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance frora curb to property line = 13.000(Ft.) Slope frora curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike frora flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N frora gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.498(CFS) Depth of flow = 0.248(Ft.), Average velocity = 3.653(Ft/s) Streetflow hydraulics at raidpoint of street travel: Halfstreet flow width = 5.547(Ft.) Flow velocity = 3.65(Ft/s) Travel time = 3.42 min. TC = 8.87 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.735(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.638 Subarea runoff = 2.986(CFS) for 1.110(Ac.) Total runoff = 3.023(CFS) Total area = 1.120(Ac.) Street flow at end of street = 3.023(CFS) Half street flow at end of street = 3.023(CFS) Depth of flow = 0.293(Ft.), Average velocity = 4.227(Ft/s) Flow width (from curb towards crown)= 7.827(Ft.) 4-4-4-4-4-+ 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 2192.000 to Point/Station 2190.000 **** PIPEFLOW TRAVEL TIME (Prograra estiraated size) **** Upstream point/station elevation = 47.360(Ft.) Downstream point/station elevation = 43.260(Ft.) Pipe length = 5.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.023(CFS) Nearest computed pipe diameter = 6.00(In.) Calculated individual pipe flow = 3.023(CFS) Norraal flow depth in pipe = 3.33(In.) Flow top width inside pipe = 5.96(In.) Critical depth could not be calculated. Pipe flow velocity = 26.99(Ft/s) Travel tirae through pipe = 0.00 rain. Time of concentration (TC) = 8.87 min. 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 2192.000 to Point/Station 2190.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Streara is listed: In Main Stream number: 2 Stream flow area = 1.120(Ac.) Rimoff frora this streara = 3.023(CFS) Tirae of concentration = 8.87 rain. Rainfall intensity = 4.734(In/Hr) Prograra is now starting with Main Streara No. 3 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 2200.000 to Point/Station 2202.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [HIGH DENSITY RESIDENTIAL ] (24.0 DU/A or Less ) Impervious value, Ai = 0.650 Sub-Area C Value = 0.710 Initial subarea total flow distance = 39.000(Ft.) Highest elevation = 72.000(Ft.) Lowest elevation = 59.000(Ft.) Elevation difference = 13.000(Ft.) Slope = 33.333 % Top of Initial Area Slope adjusted by User to 30.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 30.00 %, in a development type of 24.0 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 2.26 rainutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(1.1-0.7100)*( 100.000*.5)/( 30.000*(1/3)]= 2.26 Calculated TC of 2.259 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.710 Subarea runoff = 0.049(CFS) Total initial streara area = 0.010(Ac.) + + +4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 2202.000 to Point/Station 2198.000 **** STREET FLOW TRAVEL TIME 4- SUBAREA FLOW ADDITION **** Top of Street segment elevation = 59.000(Ft.) End of street segment elevation = 52.100(Ft.) Length of street segment = 500.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 40.000(Ft.) Distance from crown to crossfall grade break = 38.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope frora grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N frora gutter to grade break = 0.0150 Marming's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.559(CFS) Depth of flow = 0.355(Ft.), Average velocity = 2.748(Ft/s) Streetflow hydraulics at raidpoint of street travel: Halfstreet flow width = 10.921(Ft.) Flow velocity = 2.75(Ft/s) Travel tirae = 3.03 min. TC = 5.29 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [HIGH DENSITY RESIDENTIAL ] (24.0 DU/A or Less ) Irapervious value, Ai = 0.650 Sub-Area C Value = 0.710 Rainfall intensity = 6.604(In/Hr) for a 100.0 year storra Effective runoff coefficient used for total area (Q=KCIA) is C = 0.710 CA = 1.079 Subarea runoff = 7.079(CFS) for 1.510(Ac.) Total runoff = 7.127(CFS) Total area = 1.520(Ac.) Street flow at end of street = 7.127(CFS) Half street flow at end of street = 7.127(CFS) Depth of flow = 0.426(Ft.), Average velocity = 3.246(Ft/s) Flow width (frora curb towards crown)= 14.468(Ft.) 4-4.4.4-4.4-4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-+ 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 2198.000 to Point/Station 2190.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstreara point/station elevation = 45.400(Ft.) Downstreara point/station elevation = 43.260(Ft.) Pipe length = 61.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 7.127(CFS) Nearest computed pipe diameter = 15.00(In.) San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7.4 Rational method hydrology program based on San Diego Coimty Flood Control Division 2003 hydrology raanual Rational Hydrology Study Date: 06/16/06 Robertson Ranch East Village Proposed Conditions (Ultimate) Basin C 4-20-06 File:gsitc.out ********* Hydrology Study Control Inforraation ********** Program License Serial Number 5007 Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.500 P6/P24 = 57.8% San Diego hydrology manual 'C' values used 4.4.4.4-4-4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 3000.000 to Point/Station 3002.000 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Irapervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 180.000(Ft.) Highest elevation = 125.000(Ft.) Lowest elevation = 110.000(Ft.) Elevation difference = 15.000(Ft.) Slope = 8.333 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maxiraura overland flow distance is 100.00 (Ft) for the top area slope value of 8.33 %, in a developraent type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Tirae of Concentration = 4.71 rainutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(1.1-0.5700)*( 100.000*.5)/( 8 .333* (1/3)]= 4.71 The initial area total distance of 180.00 (Ft.) entered leaves a remaining distance of 80.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.59 rainutes for a distance of 80.00 (Ft.) and a slope of 8.33 % Page 1 of 10 with an elevation difference of 6.67(Ft.) frora the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(rain/hr) 0.594 Minutes Tt=[(11.9*0.0152*3)/( 6.67)]*.385= 0.59 Total initial area Ti = 4.71 rainutes frora Figure 3-3 forraula plus 0.59 rainutes frora the Figure 3-4 forraula = 5.30 minutes Rainfall intensity (I) = 6.598(In/Hr) for a 100.0 year storm Effective rimoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea nmoff = 0.978 (CFS) Total initial stream area = 0.260(Ac.) 4.4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 3002.000 to Point/Station 3004.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstreara point elevation = 110.000(Ft.) Downstreara point elevation = 88.500(Ft.) Channel length thru subarea = 550.000(Ft.) Channel base width = 10.000(Ft.) Slope or 'Z' of left channel bank = 0.200 Slope or 'Z' of right channel bank = 0.200 Estimated raean flow rate at raidpoint of channel = 4.137(CFS) Manning's 'N' = 0.030 Maxiraura depth of channel = 1.000(Ft.) Flow(q) thru subarea = 4.137(CFS) Depth of flow = 0.151(Ft.), Average velocity = 2.729(Ft/s) Channel flow top width = 10.060(Ft.) Flow Velocity = 2.73(Ft/s) Travel tirae = 3.36 rain. Tirae of concentration = 8.66 rain. Critical depth = 0.174(Ft.) Adding area flow to channel Deciraal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Irapervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.807(In/Hr) for a 100.0 year storra Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 1.505 Subarea runoff = 6.256(CFS) for 2.380(Ac.) Total runoff = 7.234(CFS) Total area = 2.640(Ac.) Depth of flow = 0.212(Ft.), Average velocity = 3.396(Ft/s) Critical depth = 0.254(Ft.) + + +4.4.4.4.4-4.4.4.4.4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 3004.000 to Point/Station 3006.000 **** PIPEFLOW TRAVEL TIME (Program estiraated size) **** Upstreara point/station elevation = 82.000(Ft.) Downstreara point/station elevation = 80.000(Ft.) Pipe length = 60.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 7.234(CFS) Nearest coraputed pipe diaraeter = 15.00(In.) Calculated individual pipe flow = 7.234(CFS) Page 2 of 10 Normal flow depth in pipe = 8.49(In.) Flow top width inside pipe = . 14.87(In.) Critical Depth = 12.89(In.) Pipe flow velocity = 10.10(Ft/s) Travel time through pipe = 0.10 min. Time of concentration (TC) = 8.76 min. 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 3006.000 to Point/Station 3008.000 **** PIPEFLOW TRAVEL TIME (Prograra estimated size) **** Upstreara point/station elevation = 80.000(Ft.) Downstream point/station elevation = 76.000(Ft.) Pipe length = 159.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 7.234(CFS) Nearest computed pipe diaraeter = 15.00(In.) Calculated individual pipe flow = 7.234(CFS) Norraal flow depth in pipe = 9.30(In.) Flow top width inside pipe = 14.56(In.) Critical Depth = 12.89(In.) Pipe flow velocity = 9.05(Ft/s) Travel time through pipe = 0.29 min. Time of concentration (TC) = 9.05 rain. 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 3008.000 to Point/Station 3010.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 76.000(Ft.) Downstream point/station elevation = 64.000(Ft.) Pipe length = 302.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 7.234(CFS) Nearest computed pipe diaraeter = 15.00(In.) Calculated individual pipe flow = 7.234(CFS) Normal flow depth in pipe = 8.04(In.) Flow top width inside pipe = 14.96(In.) Critical Depth = 12.89(In.) Pipe flow velocity = 10.80(Ft/s) Travel time through pipe = 0.47 min. Time of concentration (TC) = 9.52 min. 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 3008.000 to Point/Station 3010.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Streara number: 1 Streara flow area = 2.640 (Ac.) Runoff from this stream = 7.234(CFS) Time of concentration = 9.52 min. Rainfall intensity = 4.523(In/Hr) Program is now starting with Main Stream No. 2 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 3014.000 to Point/Station 3016.000 **** INITIAL AREA EVALUATION **** Page 3 of 10 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (14.5 DU/A or Less ) Impervious value, Ai = 0.500 Sub-Area C Value = 0.630 Initial subarea total flow distance = 480.000(Ft.) Highest elevation = 87.000(Ft.) Lowest elevation = 78.000(Ft.) Elevation difference = 9.000(Ft.) Slope = 1.875 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maxiraum overland flow distance is 80.00 (Ft) for the top area slope value of 1.88 %, in a development type of 14.5 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.14 minutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(1.1-0.6300)*( 80.000*.5)/( 1.875* (1/3)]= 6.14 The initial area total distance of 480.00 (Ft.) entered leaves a reraaining distance of 400.00 (Ft.) Using Figure 3-4, the travel tirae for this distance is 3.64 rainutes for a distance of 400.00 (Ft.) and a slope of 1.88 % with an elevation difference of 7.50(Ft.) frora the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(rain/hr) = 3 .640 Minutes Tt=[(11.9*0.0758*3)/( 7.50)]*.385= 3.64 Total initial area Ti = 6.14 rainutes from Figure 3-3 formula plus 3.64 minutes from the Figure 3-4 forraula = 9.78 rainutes Rainfall intensity (I) = 4.445(In/Hr) for a 100.0 year storm Effective rimoff coefficient used for area (Q=KCIA) is C = 0.630 Subarea rimoff = 6.497 (CFS) Total initial stream area = 2.320(Ac.) 4.4.4-4-4-4.4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 3016.000 to Point/Station 3012.000 **** PIPEFLOW TRAVEL TIME (Program estiraated size) **** Upstreara point/station elevation = 72.000(Ft.) Downstreara point/station elevation = 64.500(Ft.) Pipe length = 55.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.497(CFS) Nearest coraputed pipe diaraeter = 12.00(In.) Calculated individual pipe flow = 6.497(CFS) Norraal flow depth in pipe = 5.95(In.) Flow top width inside pipe = 12.00(In.) Critical depth could not be calculated. Pipe flow velocity = 16.70(Ft/s) Travel tirae through pipe = 0.05 rain. Tirae of concentration (TC) = 9.83 rain. 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 3016.000 to Point/Station 3012.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara number: 2 in normal stream number 1 Page 4 of 10 streara flow area = 2.320(Ac.) Rimoff frora this streara = 6.497(CFS) Time of concentration = 9.83 rain. Rainfall intensity = 4.429(In/Hr) 4.4-4-4.4.4-4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 3018.000 to Point/Station 3020.000 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (14.5 DU/A or Less ) Irapervious value, Ai = 0.500 Sub-Area C Value = 0.630 Initial subarea total flow distance = 13.000(Ft.) Highest elevation = 88.200(Ft.) Lowest elevation = 88.000(Ft.) Elevation difference = 0.200(Ft.) Slope = 1.538 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaxlraura overland flow distance is 80.00 (Ft) for the top area slope value of 1.54 %, in a development type of 14.5 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.56 rainutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(1.1-0.6300)*( 80.000*.5)/( 1. 538*(1/3)]= 6.56 Rainfall intensity (I) = 5.752(In/Hr) for a 100.0 year storra Effective runoff coefficient used for area (Q=KCIA) is C = 0.630 Subarea rimoff = 0.036 (CFS) Total initial streara area = 0.010(Ac.) 4.4-4-4.4.4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 3020.000 to Point/Station 3012.000 **** STREET FLOW TRAVEL TIME 4- SUBAREA FLOW ADDITION **** Top of street segraent elevation = 87.500(Ft.) End of street segment elevation = 69.000(Ft.) Length of street segment = 580.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance frora crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance frora curb to property line = 13.000(Ft.) Slope frora curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike frora flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N frora gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at raidpoint of street = 0.954(CFS) Depth of flow = 0.232(Ft.), Average velocity = 2.886(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 4.776(Ft.) Page 5 of 10 Flow velocity = 2.89(Ft/s) Travel time = 3.35 rain. TC = 9.90 rain. Adding area flow to street Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (14.5 DU/A or Less ) Irapervious value, Ai = 0.500 Sub-Area C Value = 0.630 Rainfall intensity = 4.408(In/Hr) Effective rimoff coefficient used for total area (Q=KCIA) is C = 0.630 CA = 0.441 Subarea runoff = 1.908(CFS) for 0.690(Ac.) Total runoff = 1.944(CFS) Total area = 0.700(Ac.) Street flow at end of street = 1.944(CFS) Half street flow at end of street = 1.944(CFS) Depth of flow = 0.276(Ft.), Average velocity = 3.312(Ft/s) Flow width (frora curb towards crown)= 6.960(Ft.) ] for a 100.0 year storra 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 3020.000 to Point/Station 3012.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara nuraber: 2 in normal stream nuraber 2 Streara flow area = 0.700(Ac.) Runoff frora this stream = 1.944(CFS) Time of concentration = 9.90 min. Rainfall intensity = 4.408(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (rain) Rainfall Intensity (In/Hr) Qraax(1) 6 .497 1. 944 Qraax(2) = 1.000 * 1.000 * 0.995 * 1.000 * 9.83 9.90 1.000 * 0.993 * 1.000 * 1.000 * 6 .497) 1.944) 4 .429 4 .408 4- 4- = 6.497) 4- 1.944) 4- 8 .426 8 .410 Total of 2 strearas to confluence: Flow rates before confluence point: 6.497 1.944 Maxiraura flow rates at confluence using above data: 8.426 8.410 Area of strearas before confluence: 2.320 0.700 Results of confluence: Total flow rate = 8.426(CFS) Tirae of concentration = 9.831 rain. Effective streara area after confluence = 3.020(Ac.) + +4.4.4-4.4.4-4.4.4-4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Page 6 of 10 Process frora Point/Station 3012.000 to Point/Station 3010.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 64.500(Ft.) Downstream point/station elevation = 64.000(Ft.) Pipe length = 5.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 8.426(CFS) Nearest coraputed pipe diaraeter = 12.00(In.) Calculated individual pipe flow = 8.426(CFS) Norraal flow depth in pipe = 7.73(In.) Flow top width inside pipe = 11.49(In.) Critical depth could not be calculated. Pipe flow velocity = 15.73(Ft/s) Travel tirae through pipe = 0.01 rain. Tirae of concentration (TC) = 9.84 rain. 4-4-4.4.4.4-4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 3012.000 to Point/Station 3010.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara nuraber: 2 in norraal stream number 1 Stream flow area = 3.020(Ac.) Rimoff from this stream = 8.426(CFS) Time of concentration = 9.84 min. Rainfall intensity = 4.428(In/Hr) 4-4-4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 3022.000 to Point/Station 3024.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 13.000(Ft.) Highest elevation = 86.000(Ft.) Lowest elevation = 85.800(Ft.) Elevation difference = 0.200(Ft.) Slope = 1.538 % INITIAL AREA TIME OF CONCENTRATION CTUJCULATIONS: The maxiraum overland flow distance is 80.00 (Ft) for the top area slope value of 1.54 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Tirae of Concentration = 7.39 rainutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(1/3)] TC = [1.8* (1.1-0.5700)*( 80.000*.5)/( 1.538*(1/3)]= 7.39 Rainfall intensity (I) = 5.323(In/Hr) for a 100.0 year storra Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea rimoff = 0.030 (CFS) Total initial streara area = 0.010(Ac.) -I--t-+ 4.4.4.4.4.4.4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 3024.000 to Point/Station 3026.000 Page 7 of 10 0.0150 0.0150 0.867(CFS) 3.091(Ft/s) Top Of Street segraent elevation = ^^-^^^J^J-J End of street segment elevation = ^9 °00(Ft.) Sngth of street segment = 420.000 (Ft.) Height of curb above gutter flowlme = 6^°^^^^' Width of half street (curb to crown) = "' ) distance frora crown to crossfall grade break = 15.500(Ft.) Slope frora gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance frora curb to property ^ne = "-OJOJ^J-^ Slope frora curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowlme = 2.000 (In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break - Manning's N from grade break to 'r''^;^/.^^^^ Estiraated raean flow rate at raidpoint of street Denth of flow = 0.221(Ft.), Average velocity - StKet?low hydraulics at raidpoint of street travel Halfstreet flow width = 4.219(Ft.) Flow velocity = 3.09(Ft/s) Travel tirae = 2.26 min. TC - Adding area flow to street Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less ) Irapervious value, Ai = 0.400 Sub-Area C Value = 0.570 ,„ > ^ Rainfall intensity = . ' ""^^ \rea Effective runoff coefficient used for total area in-vnA) is C = 0.570 CA = 0.393 sSbSet^^off = 1.732(CFS) for 0.680(AC. ?otal nmoff = 1.762(CFS) Total area = 0.690 (Ac.) Street flow at end of street = ^•^"-.^ ^fofcFS) Half street flow at end of street = 1.762(CFS) , . Septh of flow = 0.263(Ft.), Average velocity = 3.507(Ft/s) Flow width (from curb towards crown)= 6.325(Ft.) 9.66 rain. ] 100.0 year storm |. 4-4-4.4-4-4-4-4-4-4-4-4-4-4-4-4-4- f ::r;:i;:;rt::t:;""";2rro;":"p:i::;rt:rio„ 30x0.000 Process from Point/fatacion J .^„n„-.t-e.fi q-ize) **** PIPEFLOW TRAVEL TIME (Program estimated size) upstream point/station elevation = ^^1^°°!^'^^^ . Downstream point/station elevation = ^4.000(Ftj Pipe length = 49.25(Ft.) ^^^^^^^^ ^ = °„°5^cFS) No"^ of pipes = 1 Required pipe flow = ^^^-^f ^^^^^ Nearest computed pipe diameter = ^2.00(In_) calculated individual pipe flow = 1.762(CFS) Normal flow depth in pipe = ^ ^^i^^;^ > Flow top width inside pipe = 12.00(In.) Critical Depth = 6.78(In.) Pipe flow velocity = 4.55(Ft/s) Travel time through pipe = 0.18 mm. Time of concentration (TC) = 9.84 ram. Page 8 of 10 -^-^-^-^-I--H-f-f-t--I--H-H •^ •^-^-t--^-^-I--^ •^-1--h-I--1--I--I-+4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 3026.000 to Point/Station 3010.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara number: 2 in norraal stream nuraber 2 Streara flow area = 0.690 (Ac.) Runoff from this streara = 1.762(CFS) Tirae of concentration = 9.84 rain. Rainfall intensity = 4.427(In/Hr) Suraraary of streara data: Streara No. Flow rate (CFS) TC (rain) Rainfall Intensity (In/Hr) 1 2 Qmax(l) Qmax(2) = 8.426 1.762 1.000 * 1.000 * 1.000 * 1.000 * 9.84 9 .84 1.000 * 1.000 * 000 000 4.428 4 .427 8.426) 4- 1.762) 4- 8.426) 4- 1.762) 4- 10.188 10.188 Total of 2 streams to confluence: Flow rates before confluence point: 8.426 1.762 Maximum flow rates at confluence using above data: 10.188 10.188 Area of streams before confluence: 3.020 0.690 Results of confluence: Total flow rate = 10.188(CFS) Tirae of concentration = 9.836 rain. Effective stream area after confluence = 3.710(Ac.) + + + +4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 3026.000 to Point/Station 3010.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Streara is listed: ~~ In Main Streara nuraber: 2 Streara flow area = 3.710(Ac.) Runoff frora this streara = 10.188(CFS) Tirae of concentration = 9.84 min. Rainfall intensity = 4.428(In/Hr) Suraraary of streara data: Streara No. Flow rate (CFS) TC (rain) Rainfall Intensity (In/Hr) 7.234 10.188 Qraax(1) = 1.000 * 1.000 * 9.52 9 .84 1. 000 0 . 967 4 .523 4.428 7.234) 4- 10.188) 4-17.091 Page 9 of 10 Qraax(2) = 0.979 * 1.000 * 7.234) 4- 1.000 * 1.000 * 10.188) 4- = 17.270 Total of 2 raain streams to confluence: Flow rates before confluence point: 7.234 10.188 Maxiraura flow rates at confluence using above data: 17.091 17.270 Area of strearas before confluence: 2.640 3.710 Results of confluence: Total flow rate = 17.270(CFS) Tirae of concentration = 9.836 rain. Effective streara area after confluence = 6.350(Ac.) + + + + + + + + + + + + + + + + + + + + -^•^•^-^-^-^•^-^•^-l-4-4-4-4-4-4-4-4-4•4-4-4-4-4-4-4•4-4-4-4-4•4-4-4-4•4-4-4-4- + 4-4-4-4-4-4-4- + Process frora Point/Station 3010.000 to Point/Station 3030.000 **** PIPEFLOW TRAVEL TIME (Prograra estimated size) **** Upstream point/station elevation = 58.350(Ft.) Downstreara point/station elevation = 50.200(Ft.) Pipe length = 40.93(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 17.270(CFS) Nearest coraputed pipe diaraeter = 15.00(In.) Calculated individual pipe flow = 17.270(CFS) Norraal flow depth in pipe = 8.37(In.) Flow top width inside pipe = 14.90(In.) Critical depth could not be calculated. Pipe flow velocity = 24.54(Ft/s) Travel time through pipe = 0.03 min. Time of concentrat ion (TC) = 9.86 min. End of computations, total study area = 6.350 (Ac.) Page 10 of 10 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7.4 Rational raethod hydrology prograra based on San Diego Coimty Flood Control Division 2003 hydrology raanual Rational Hydrology Study Date: 05/01/06 Robertson Ranch Proposed Conditions (Ultiraate) Basin D 4-28-06 File:gsitd.out ********* Hydrology Study Control Inforraation ********** Program License Serial Nuraber 5007 Rational hydrology study storra event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.500 P6/P24 = 57.8% San Diego hydrology manual 'C values used -H-H •^•^•-l--^-^-l--t--^•-l--l-•^-^-^-l--^•f-^ + 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 4000.000 to Point/Station 4002.000 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0,000 Deciraal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 88.000(Ft.) Highest elevation = 150.000(Ft.) Lowest elevation = 122.000(Ft.) Elevation difference = 28.000(Ft.) Slope = 31.818 % Top of Initial Area Slope adjusted by User to 30.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaximura overland flow distance is 100.00 (Ft) for the top area slope value of 30.00 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 3.07 rainutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(1/3)] TC = [1.8*(1.1-0.5700)*( 100.000*.5)/( 30.000*(1/3)]= 3.07 Rainfall intensity (I) = 9.383(In/Hr) for a 100.0 year storra Effective rimoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 2.567(CFS) Page 1 of 31 Total initial stream area = 0.480(Ac.) 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4--f Process from Point/Station 4002.000 to Point/Station 4004.000 **** PIPEFLOW TRAVEL TIME (Program estiraated size) **** Upstream point/station elevation = 119.000(Ft.) Downstream point/station elevation = 115.000(Ft.) Pipe length = 45.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 2.567(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 2.567(CFS) Norraal flow depth in pipe = 4.61(In.) Flow top width inside pipe = 9.00(In.) Critical Depth = 8.37(In.) Pipe flow velocity = 11.27(Ft/s) Travel tirae through pipe = 0.07 min. Tirae of concentration (TC) = 3.14 min. 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 4004.000 to Point/Station 4006.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 115.000(Ft.) Downstream point/station elevation = 81.500(Ft.) Pipe length = 437.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 2.567(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 2.567(CFS) Normal flow depth in pipe = 4.82(In.) Flow top width inside pipe = 8.98(In.) Critical Depth = 8.37(In.) Pipe flow velocity = 10.66(Ft/s) Travel time through pipe = 0.68 min. Time of concentration (TC) = 3.82 min. 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 4004.000 to Point/Station 4006.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara nuraber: 1 in normal stream nuraber 1 Stream flow area = 0.480(Ac.) Runoff from this stream = 2.567(CFS) Time of concentration = 3.82 min. Rainfall intensity = 8.149(In/Hr) 4-4-4-4-4-4-4-+ -H-H-H--H-H4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 4008.000 to Point/Station 4010.000 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less - ) Page 2 of 31 • Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 110.000(Ft.) Highest elevation = 135.500(Ft.) Lowest elevation = 133.300(Ft.) Elevation difference = 2.200(Ft.) Slope = 2.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maxiraum overland flow distance is 80.00 (Ft) for the top area slope value of 2.00 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Tirae of Concentration = 6.77 minutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(1.1-0.5700)*( 80.000*.5)/( 2.000*(1/3)]= 6.77 The initial area total distance of 110.00 (Ft.) entered leaves a remaining distance of 30.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.48 rainutes for a distance of 30.00 (Ft.) and a slope of 2.00 % with an elevation difference of 0.60(Ft.) frora the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(min/hr) = 0.483 Minutes Tt=[(11.9*0.0057*3)/( 0.60)]*.385= 0.48 Total initial area Ti = 6.77 minutes from Figure 3-3 forraula plus 0.48 minutes from the Figure 3-4 formula = 7.26 minutes Rainfall intensity (I) = 5.388(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea rimoff = 0.522(CFS) Total initial streara area = 0.170(Ac.) -H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H +-H +-H-H-H-H-H 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-+ Process frora Point/Station 4010.000 to Point/Station 4012.000 **** STREET FLOW TRAVEL TIME 4- SUBAREA FLOW ADDITION **** Top of Street segment elevation = 133.300(Ft.) End of street segment elevation = 87.500(Ft.) Length of street segment = 730.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance frora crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope frora curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N frora grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 6.630(CFS) Depth of flow = 0.343(Ft.), Average velocity = 5.676(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.323(Ft.) Flow velocity = 5.68(Ft/s) Travel time = 2.14 min. TC = 9.40 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Page 3 of 31 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.559(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 2.776 Subarea rimoff = 12.134(CFS) for 4.700(Ac.) Total runoff = 12.656(CFS) Total area = 4.870(Ac.) Street flow at end of street = 12.656(CFS) Half street flow at end of street = 12.656(CFS) Depth of flow = 0.406(Ft.), Average velocity = 6.621(Ft/s) Flow width (from curb towards crown)= 13.450(Ft.) -H-H-H +-H-H-H-H-H-H-H-H-H-H-f-H-H +-H-H-H-H +-H-H-H-H-H 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-+ Process from Point/Station 4012.000 to Point/Station 4006.000 **** PIPEFLOW TRAVEL TIME (Prograra estimated size) **** Upstream point/station elevation = 82.000(Ft.) Downstreara point/station elevation = 81.500(Ft.) Pipe length = 5.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 12.656(CFS) Nearest coraputed pipe diameter = 15.00(In.) Calculated individual pipe flow = 12.656(CFS) Norraal flow depth in pipe = 8.54(In.) Flow top width inside pipe = 14.85(In.) Critical depth could not be calculated. Pipe flow velocity = 17.53(Ft/s) Travel tirae through pipe = 0.00 min. Time of concentration (TC) = 9.40 min. •H-H +-H-H 4-4-4-4-4-4-4-+ 4-4-+ 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 4012.000 to Point/Station 4006.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream nuraber: 1 in norraal streara nuraber 2 Streara flow area = 4.870(Ac.) Runoff frora this streara = 12.656(CFS) Time of concentration = 9.40 min. Rainfall intensity = 4.558(In/Hr) -H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-f-H-H-H 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 4014.000 to Point/Station 4016.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 """" Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Irapervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 13.000(Ft.) Highest elevation = 134.700(Ft.) Lowest elevation = 134.500(Ft.) Page 4 of 31 Elevation difference = 0.200(Ft.) Slope = 1.538 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80.00 (Ft) for the top area slope value of 1.54 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.39 minutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(1/3)] TC = [1.8*(l.l-0.5700)*( 80.000*.5)/( 1.538*(1/3)]= 7.39 Rainfall intensity (I) = 5.323(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.121(CFS) Total initial stream area = 0.040 (Ac.) 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 4016.000 to Point/Station 4018.000 **** STREET FLOW TRAVEL TIME -I- StJBAREA FLOW ADDITION **** Top of street segment elevation = 134.500(Ft.) End of street segment elevation = 87.500(Ft.) Length of street segraent = 780.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope frora grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance frora curb to property line = 13.000(Ft.) Slope frora curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.135(CFS) Depth of flow = 0.287(Ft.), Average velocity = 4.712(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 7.502(Ft.) Flow velocity = 4.71(Ft/s) Travel time = 2.76 min. TC = 10.15 rain. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Irapervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.339(In/Hr) for a 100.0 year storra Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 1.431 Subarea runoff = 6.086(CFS) for 2.470(Ac.) Total runoff = 6.207(CFS) Total area = 2.510(Ac.) Street flow at end of street = 6.207(CFS) Half street flow at end of street = 6.207(CFS) Depth of flow = 0.339(Ft.), Average velocity = 5.503(Ft/s) Flow width (from curb towards crown)= 10.126(Ft.) Page 5 of 31 • + -H-H-H-H-H + + + + + -H + + + + + + + + -H + -H-H-H-H-H + -H-H-H-f-H-H4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- + Process from Point/Station 4018.000 to Point/Station 4006.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstreara point/station elevation = 82.000(Ft.) Downstream point/station elevation = 81.500(Ft.) Pipe length = 29.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow Nearest computed pipe diameter = Calculated individual pipe flow = Norraal flow depth in pipe = 9.53(In.) Flow top width inside pipe = 14.44(In.) Critical Depth = 12.07(In.) Pipe flow velocity = 7.55(Ft/s) Travel tirae through pipe = 0.06 min. Time of concentration (TC) = 10.21 min 6.207(CFS) 15.00(In.) 6.207(CFS) •H-H-H-H-H-H-H-f-H-H-H-H-H-H-H-H-H-H-f +-H-H-H-H-H-H-H-H-H 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-+ Process frora Point/Station 4018.000 to Point/Station 4006.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream nuraber: 1 in norraal stream number 3 Stream flow area = 2.510(Ac.) Runoff from this stream = 6.207(CFS) Time of concentration = 10.21 min. Rainfall intensity = 4.321(In/Hr) Summary of stream data: Streara No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 3 Qmax{1) = 2.567 12.656 6.207 Qmax(2) = Qmax(3) 3 .82 9.40 10 .21 8 .149 4.558 4.321 1 . 000 * 1 000 * 2 .567) 4- 1 .000 * 0 406 * 12 .656) 4- 1 .000 * 0 374 * 6 .207) 4- = 10 029 0 .559 * 1 000 * 2 .567) 4- 1 . 000 * 1 000 * 12 .656) 4- 1 .000 * 0 921 * 6 .207) 4- = 19 806 0 .530 * 1 000 *' 2 .567) 4- 0 .948 * 1 000 * 12 .656) 4- 1 . 000 * 1 000 * 6 .207) 4- = 19 567 Total of 3 streams to confluence: Flow rates before confluence point: 2.567 12.656 6.207 Maximum flow rates at confluence using above data: 10.029 19.806 19.567 Area of strearas before confluence: 0.480 4.870 2.510 Results of confluence: Total flow rate = 19.806(CFS) Tirae of concentration = 9.404 rain. Page 6 of 31 Effective streara area after confluence = 7.860(Ac.) 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4--H-H 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 4006.000 to Point/Station 4020.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 81.500(Ft.) Downstream point/station elevation = 71.800(Ft.) Pipe length = 305.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 19.806(CFS) Nearest coraputed pipe diaraeter = 21.00(In.) Calculated individual pipe flow = 19.806(CFS) Norraal flow depth in pipe = 12.96(In.) Flow top width inside pipe = 20.42(In.) Critical Depth = 19.11(In.) Pipe flow velocity = 12.72(Ft/s) Travel time through pipe = 0.40 rain. Time of concentration (TC) = 9.80 rain. 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4 Process from Point/Station 4006.000 to Point/Station 4020.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Streara is listed: In Main Streara number: 1 Stream flow area = 7.860(Ac.) Rimoff from this streara = 19.806(CFS) Tirae of concentration = 9.80 rain. Rainfall intensity = 4.437(In/Hr) Program is now starting with Main Stream No. 2 4-4-4-4-4-4-4-+ 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 4024.000 to Point/Station 4026.000 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 110.000(Ft.) Highest elevation = 99.400(Ft.) Lowest elevation = 97.500(Ft.) Elevation difference = 1.900(Ft.) Slope = 1.727 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximura overland flow distance is 80.00 (Ft) for the top area slope value of 1.73 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.11 minutes TC = [1.8*(1.1-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(l.l-0.5700)*( 80.000*.5)/( 1.727*(1/3)]= 7.11 Rainfall intensity (I) = 5.458(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Page 7 of 31 Subarea runoff = 0.684(CFS) Total initial stream area = 0.220(Ac.) 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4--H-H-I--H-H 4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 4026.000 to Point/Station 4028.000 **** STREET FLOW TRAVEL TIME 4- SUBAREA FLOW ADDITION **** Top of Street segment elevation = 97.500(Ft.) End of street segment elevation = 77.200(Ft.) Length of street segraent = 920.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance frora crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance frora curb to property line = 13.000(Ft.) Slope frora curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike frora flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N frora gutter to grade break = 0.0150 Manning's N frora grade break to crown = 0.0150 Estiraated raean flow rate at midpoint of street = 9.332(CFS) Depth of flow = 0.430(Ft.), Average velocity = 4.139(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 14.670(Ft.) Flow velocity = 4.14(Ft/s) Travel time = 3.70 min. TC = 10.82 min. Adding area flow to street Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.165(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 4.3 03 Subarea nmoff = 17.238 (CFS) for 7.330 (Ac.) Total rimoff = 17.922(CFS) Total area = 7.550(Ac.) Street flow at end of street = 17.922(CFS) Half street flow at end of street = 17.922(CFS) Depth of flow = 0.511(Ft.), Average velocity = 5.003(Ft/s) Warning: depth of flow exceeds top of curb Note: depth of flow exceeds top of street crown. Distance that curb overflow reaches into property = 0.56.(Ft.) Flow width (from curb towards crown)= 17.000(Ft.) 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 4026.000 to Point/Station 4028.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 7.550(Ac.) Runoff from this stream = 17.922(CFS) Page 8 of 31 Time of concentration = 10.82 min. Rainfall intensity = 4.165(In/Hr) 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-+^ 4^ 4-4-4-4-4--1^4-4-4-4-4-4-4-4-4-4-4-4--H-f-H-H 4-4- Process frora Point/Station 4030.000 to Point/Station 4032.000, * * * * INITIAL AREA EVALUATION * * * * Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Irapervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 110.000(Ft.) Highest elevation = 89.200(Ft.) Lowest elevation = 87.500(Ft.) Elevation difference = 1.700(Ft.) Slope = 1.545 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaxlraura overland flow distance is 80.00 (Ft) for the top area slope value of 1.54 %, in a developraent type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.38 minutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(1/3)] TC = [1.8*(1.1-0.5700)*( 80.000*.5)/( 1.545*(1/3)]= 7.38 The initial area total distance of 110.00 (Ft.) entered leaves a remaining distance of 30.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.53 minutes for a distance of 30.00 (Ft.) and a slope of 1.54 % with an elevation difference of 0.46(Ft.) frora the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(min/hr) 0.534 Minutes Tt=[(11.9*0.0057*3)/( 0.46)]*.385= 0.53 Total initial area Ti = 7.38 minutes from Figure 3-3 formula plus 0.53 minutes from the Figure 3-4 forraula = 7.91 minutes Rainfall intensity (I) = 5.094(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.436(CFS) Total initial stream area = 0.150(Ac.) 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4^*4TT^ 4-4-4-4-\ 4-4-+ 4-4-+ 4-4-4-4-4-4-4-4-4-4-+ Process from Point/Station / 4032.op« to Point/Station ( 4028.OOcj) **** STREET FLOW TRAVEL TIME >~-SUB*atEA FLOW ADDITION **** Top of Street segment elevation = 87.500(Ft.) End of street segment elevation = 77.200(Ft.) Length of street segment = 1000.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Pt.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Page 9 of 31 • Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.260(CFS) Depth of flow = 0.360(Ft.), Average velocity = 2.407(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 11.188(Ft.) Flow velocity = 2.41(Ft/s) Travel time = 6.92 min. TC = 14.84 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 3.396(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 1.773 Subarea rimoff = 5.585(CFS) for 2.960(Ac.) Total rimoff = 6.021(CFS) Total area = 3.110(Ac.) Street flow at end of street = 6.021(CFS) Half street flow at end of street = 6.021(CFS) Depth of flow = 0.423(Ft.), Average velocity = 2.789(Ft/s) Flow width (from curb towards crown)= 14.339(Ft.) 4.4-4-4-4-4-4-4-4-4-4-4-4-+ 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 4032.000 to Point/Station 4028.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 3.110(Ac.) Runoff from this stream = 6.021(CFS) Time of concentration = 14.84 min. Rainfall intensity = 3.396(In/Hr) Suramary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 17.922 10.82 4.165 6.021 14.84 3.396 Qmax(1) = Qmax(2) = 1.000 * 1.000 * 17.922) 4- 1.000 * 0.729 * 6.021) + = 22.311 0.816 * 1.000 * 17.922) 4- 1.000 * 1.000 * 6.021) -•- = 20.636 Total of 2 streams to confluence: Flow rates before confluence point: 17.922 6.021 Maximum flow rates at confluence using above data: 22.311 20.636 Area of streams before confluence: Page 10 of 31 7.550 3.110 Results of confluence: Total flow rate = 22.311(CFS) Time of concentration = 10.816 min. Effective stream area after confluence = 10.660(Ac.) 4. + 4-4-4.4.4.4.4-4.4.4.4-4.4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4--I-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 4028.000 to Point/Station 4022.000 **** PIPEFLOW TRAVEL TIME (Program estiraated size) **** Upstreara point/station elevation = 72.500(Ft.) Downstream point/station elevation = 72.000(Ft.) Pipe length = 5.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 22.311(CFS) Nearest computed pipe diaraeter = 18.00(In.) Calculated individual pipe flow = 22.311(CFS) Normal flow depth in pipe = 10.80(In.) Flow top width inside pipe = 17.63(In.) Critical depth could not be calculated. Pipe flow velocity = 20.16(Ft/s) Travel time through pipe = 0.00 min. Time of concentration (TC) = 10.82 rain. 4.4.4.4.4.4.4.4.4.4.4.4.4.4. + 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 4028.000 to Point/Station 4022.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara nuraber: 2 in normal stream number 1 Stream flow area = 10.660(Ac.) Rimoff from this streara = 22.311(CFS) Tirae of concentration = 10.82 min. Rainfall intensity = 4.163(In/Hr) 4.4.4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 4036.000 to Point/Station 4038.000 **** INITIAL AREA EVALUATION **** ] = 110.000(Ft.) Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance Highest elevation = 81.300(Ft.) Lowest elevation = 79.400(Ft.) Elevation difference = 1.900(Ft.) Slope = 1.727 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80.00 (Ft) for the top area slope value of 1.73 % 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.11 minutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(1.1-0.5700)*( 80.000*.5)/( 1.727*(l/3)] in a development type of 7.11 Page 11 of 31 The initial area total distance of 110.00 (Ft.) entered leaves a remaining distance of 30.00 (Ft.) Using Figure 3-4, the travel tirae for this distance is 0.51 rainutes for a distance of 30.00 (Ft.) and a slope of 1.73 % with an elevation difference of 0.52(Ft.) frora the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(min/hr) 0.511 Minutes Tt=[(11.9*0.0057*3)/( 0.52)]*.385= 0.51 Total initial area Ti = 7.11 rainutes frora Figure 3-3 forraula plus 0.51 minutes from the Figure 3-4 formula = 7.62 minutes Rainfall intensity (I) = 5.219(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea nmoff = 0.625 (CFS) Total initial stream area = 0.210(Ac.) 4.4.4.4-4-4-+ 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-+ 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-H 4-4- Process from Point/Station 4038.000 to Point/Station 4034.000 **** STREET FLOW TRAVEL TIME 4- SUBAREA FLOW ADDITION **** Top of Street segment elevation = 79.400(Ft.) End of street segraent elevation = 77.200(Ft.) Length of street segraent = 235.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance frora crown to crossfall grade break = 15.500(Ft.) Slope frora gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estiraated raean flow rate at raidpoint of street = 1.457(CFS) Depth of flow = 0.298(Ft.), Average velocity = 1.926(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.086(Ft.) Flow velocity = 1.93(Ft/s) Travel time = 2.03 min. TC = 9.66 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.481(In/Hr) for a 100.0 year storm Effective rimoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.490 Subarea runoff = 1.572(CFS) for 0.650(Ac.) Total runoff = 2.196(CFS) Total area = 0.860(Ac.) Street flow at end of street = 2.196(CFS) Half street flow at end of street = 2.196(CFS) Depth of flow = 0.330(Ft.), Average velocity = 2.115(Ft/s) Flow width (from curb towards crown)= 9.674(Ft.) Page 12 of 31 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 4038.000 to Point/Station 4034.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.860(Ac.) Runoff from this stream = 2.196(CFS) Tirae of concentration = 9.66 rain. Rainfall intensity = 4.481(In/Hr) 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 4040.000 to Point/Station 4042.000 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 110.000(Ft.) Highest elevation = 82.500(Ft.) Lowest elevation = 80.500(Ft.) Elevation difference = 2.000(Ft.) Slope = 1.818 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maxiraura overland flow distance is 80.00 (Ft) for the top area slope value of 1.82 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.99 rainutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(l.l-0.5700)*( 80.000*.5)/( 1. 818*(1/3)]= 6.99 The initial area total distance of 110.00 (Ft.) entered leaves a reraaining distance of 30.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.50 minutes for a distance of 3 0.00 (Ft.) and a slope of 1.82 % with an elevation difference of 0.55 (Ft.) from the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(min/hr) 0.501 Minutes Tt=[(11.9*0.0057*3)/( 0.55)]*.385= 0.50 Total initial area Ti = 6.99 rainutes frora Figure 3-3 forraula plus 0.50 rainutes from the Figure 3-4 formula = 7.49 minutes Rainfall intensity (I) = 5.277(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.541(CFS) Total initial streara area = 0.180(Ac.) 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-+ 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 4042.000 to Point/Station 4034.000 **** STREET FLOW TRAVEL TIME 4- SUBAREA FLOW ADDITION **** Top of street segraent elevation = 80.500(Ft.) End of street segraent elevation = 77.200(Ft.) Length of street segment = 350.000(Ft.) Page 13 of 31 Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.02 0 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estiraated mean flow rate at midpoint of street = 1.818(CFS) Depth of flow = 0.315(Ft.), Average velocity = 2.031(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.903(Ft.) Flow velocity = 2.03(Ft/s) Travel tirae = 2.87 rain. TC = 10.37 rain. Adding area flow to street Deciraal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.281(In/Hr) for a 100.0 year storm Effective rimoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.701 Subarea rimoff = 2.460(CFS) for 1.050(Ac.) Total runoff = 3.001(CFS) Total area = 1.230(Ac.) Street flow at end of street = 3.001(CFS) Half street flow at end of street = 3.001(CFS) Depth of flow = 0.357(Ft.), Average velocity = 2.282(Ft/s) Flow width (from curb towards crown)= 11.Oil(Ft.) -H 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-+ 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 4042.000 to Point/Station 4034.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 3 Stream flow area = 1.230(Ac.) Runoff from this stream = 3.001(CFS) Time of concentration = 10.37 min. Rainfall intensity = 4.281(In/Hr) Summary of stream data: Streara Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 22.311 10.82 4.163 2 2.196 9.66 4.481 3 3.001 10.37 4.281 Qmax(1) = 1.000 * 1.000 * 22.311) + 0.929 * 1.000 * 2.196) 4- Page 14 of 31 0 973 * 1.000 * 3 .001) 4- = 27 271 1 000 * 0.892 * 22 .311) 4- 1 000 * 1.000 * 2 .196) 4- 1 000 * 0.932 * 3 .001) 4- = 24 903 1 000 * 0.958 * 22 .311) 4- 0 955 * 1.000 * 2 .196) 4- 1 000 * 1.000 * 3 .001) 4- = 26 471 Qmax(2) = Qmax(3) = Total of 3 strearas to confluence: Flow rates before confluence point: 22.311 2.196 3.001 Maxiraum flow rates at confluence using above data: 27.271 24.903 26.471 Area of streams before confluence: 10.660 0.860 1.230 Results of confluence: Total flow rate = 27.271(CFS) Tirae of concentration = 10.820 rain. Effective stream area after confluence = 12.750(Ac.) 4.4-4-4-4-4-4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- + 4-4-4-4-4-4- + 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 4022.000 to Point/Station 4020.000 **** PIPEFLOW TRAVEL TIME (Prograra estiraated size) **** Upstream point/station elevation = 72.000(Ft.) Downstreara point/station elevation = 71.800(Ft.) Pipe length = 67.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 27.271(CFS) Nearest coraputed pipe diaraeter = 33.00(In.) Calculated individual pipe flow = 27.271(CFS) Norraal flow depth in pipe = 25.50(In.) Flow top width inside pipe = 27.66(In.) Critical Depth = 20.81(In.) Pipe flow velocity = 5.53(Ft/s) Travel tirae through pipe = 0.20 rain. Time of concentration (TC) = 11.02 min. 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 4022.000 to Point/Station 4020.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 12.750(Ac.) Rimoff from this streara = 27.271(CFS) Time of concentration = 11.02 min. Rainfall intensity = 4.114(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 19.806 9.80 4.437 2 27.271 11.02 4.114 Qmax(l) = Page 15 of 31 1.000 * 1.000 * 19.806) + 1.000 * 0.889 * 27.271) 4- = 44.062 Qraax (2) = 0.927 * 1.000 * 19.806) 4- 1.000 * 1.000 * 27.271) 4- = 45.635 Total of 2 main streams to confluence: Flow rates before confluence point: 19.806 27.271 McLximura flow rates at confluence using above data: 44.062 45.635 Area of strearas before confluence: 7.860 12.750 Results of confluence: Total flow rate = 45.635(CFS) Tirae of concentration = 11.022 rain. Effective stream area after confluence = 20.610(Ac.) 4.4.4.4-4-4.4.4.4.4.4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 4020.000 to Point/Station 4044.000 **** PIPEFLOW TRAVEL TIME (Prograra estiraated size) **** Upstreara point/station elevation = 71.800(Ft.) Downstreara point/station elevation = 71.600(Ft.) Pipe length = 38.84(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 45.635(CFS) Nearest coraputed pipe diaraeter = 36.00(In.) Calculated individual pipe flow = 45.635(CFS) Normal flow depth in pipe = 28.13(In.) Flow top width inside pipe = 29.76(In.) Critical Depth = 26.41(In.) Pipe flow velocity = 7.71(Ft/s) Travel time through pipe = 0.08 min. Tirae of concentration (TC) = 11.11 rain. 4.4.4.4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 4044.000 to Point/Station 4046.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstreara point/station elevation = 71.600(Ft.) Downstream point/station elevation = 67.300(Ft.) Pipe length = 258.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 45.635(CFS) Nearest computed pipe diameter = 30.00(In.) Calculated individual pipe flow = 45.635(CFS) Norraal flow depth in pipe = 21.47(In.) Flow top width inside pipe = 27.07(In.) Critical Depth = 26.84(In.) Pipe flow velocity = 12.13(Ft/s) Travel tirae through pipe = 0.35 min. Tirae of concentration (TC) = 11.46 rain. 4.4.4.4.4.4.4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 4046.000 to Point/Station 4048.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Page 16 of 31 Upstream point/station elevation = 67.3 00(Ft.) Downstream point/station elevation = 64.200(Ft.) Pipe length = 203.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 45.635(CFS) Nearest computed pipe diameter = 30.00(In.) Calculated individual pipe flow = 45.635(CFS) Normal flow depth in pipe = 22.27(In.) Flow top width inside pipe = 26.25(In.) Critical Depth = 26.84(In.) Pipe flow velocity = 11.69(Ft/s) Travel time through pipe = 0.29 min. Time of concentration (TC) = 11.75 min. 4-4.4-4.4.4.4-4.4-4.4.4.4.4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 4046.000 to Point/Station 4048.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Streara flow area = 20.610(Ac.) Rimoff frora this stream = 45.635(CFS) Time of concentration = 11.75 rain. Rainfall intensity = 3.948(In/Hr) Program is now starting with Main Stream No. 2 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 4050.000 to Point/Station 4052.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Irapervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 110.000(Ft.) Highest elevation = 86. 800(Ft.) Lowest elevation = 84.800(Ft.) Elevation difference = 2.000(Ft.) Slope = 1.818 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaxlraura overland flow distance is 80.00 (Ft) for the top area slope value of 1.82 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.99 rainutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(1.1-0.5700)*( 80.000*.5)/( 1.818*(1/3)]= 6.99 The initial area total distance of 110.00 (Ft.) entered leaves a reraaining distance of 30.00 (Ft.) Using Figure 3-4, the travel tirae for this distance is 0.50 minutes for a distance of 30.00 (Ft.) and a slope of 1.82 % with an elevation difference of 0.55(Ft.) frora the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(min/hr) 0.501 Minutes Tt=[(11.9*0.0057*3)/( 0.55)]*.385= 0.50 Page 17 of 31 Total initial area Ti = 6.99 rainutes from Figure 3-3 forraula plus 0.50 minutes frora the Figure 3-4 formula = 7.49 minutes Rainfall intensity (I) = 5.277(In/Hr) for a 100.0 year storm Effective rimoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea nmoff = 0.451 (CFS) Total initial stream area = 0.150(Ac.) 4-4-4-H 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 4052.000 to Point/Station 4054.000 **** STREET FLOW TRAVEL TIME 4- SUBAREA FLOW ADDITION **** Top of street segment elevation = 84.800(Ft.) End of street segment elevation = 81.000(Ft.) Length of street segment = 320.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope frora curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Maiming's N in gutter = 0.0150 Maiming's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.600(CFS) Depth of flow = 0.297(Ft.), Average velocity = 2.158(Ft/s) Streetflow hydraulics at raidpoint of street travel: Halfstreet flow width = 7.996(Ft.) Flow velocity = 2.16(Ft/s) Travel tirae = 2.47 rain. TC = 9.96 rain. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.391(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.610 Subarea runoff = 2.227(CFS) for 0.920(Ac.) Total runoff = 2.678(CFS) Total area = 1.070(Ac.) Street flow at end of street = 2.678(CFS) Half street flow at end of street = 2.678(CFS) Depth of flow = 0.337(Ft.), Average velocity = 2.427(Ft/s) Flow width (from curb towards crown)= 10.005(Ft.) 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 4054.000 to Point/Station 4056.000 **** STREET PLOW TRAVEL TIME 4- SUBAREA FLOW ADDITION **** Top of street segment elevation = 81.000(Ft.) End of street segment elevation = 73.500(Ft.) Page 18 of 31 Length of street segment = 230.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N frora gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.057(CFS) Depth of flow = 0.307(Ft.), Average velocity = 3.691(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.519(Ft.) Flow velocity = 3.69(Ft/s) Travel time = 1.04 min. TC = 11.00 min. Adding area flow to street Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Irapervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.119(In/Hr) for a 100.0 year storra Effective rimoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.821 Subarea runoff = 0.703 (CFS) for 0.370 (Ac.) Total runoff = 3.381(CFS) Total area = 1.440(Ac.) Street flow at end of street = 3.381(CFS) Half street flow at end of street = 3.381(CFS) Depth of flow = 0.315(Ft.), Average velocity = 2.777(Ft/s) Flow width (frora curb towards crown)= 8.903(Ft.) 4-4-4-4.4.4.4.4-4-4-4-4-4-4--H 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-+ 4-4-4-4-4-4-4-4-4-4-4-4-4-+ 4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 4054.000 to Point/Station 4056.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream nuraber 1 Stream flow area = 1.440(Ac.) Rimoff from this streara = 3.381(CFS) Tirae of concentration = 11.00 min. Rainfall intensity = 4.119(In/Hr) -V4. + 4.4.4.4.4.4.4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 4058.000 to Point/Station 4060.000 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] Page 19 of 31 (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 110.000(Ft.) Highest elevation = 79.500(Ft.) Lowest elevation = 77.800(Ft.) Elevation difference = 1.700(Ft.) Slope = 1.545 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80.00 (Ft) for the top area slope value of 1.54 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.38 minutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(l.l-0.5700)*( 80.000*.5)/( 1.545*(1/3)]= 7.38 The initial area total distance of 110.00 (Ft.) entered leaves a reraaining distance of 30.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.53 minutes for a distance of 30.00 (Ft.) and a slope of 1.54 % with an elevation difference of 0.46(Ft.) frora the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(rain/hr) = 0.534 Minutes Tt=[(11.9*0.0057*3)/( 0.46)]*.385= 0.53 Total initial area Ti = 7.38 rainutes from Figure 3-3 formula plus 0.53 minutes from the Figure 3-4 formula = 7.91 minutes Rainfall intensity (I) = 5.094(In/Hr) for a 100.0 year storra Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea nmoff = 0.494 (CFS) Total initial streara area = 0.170(Ac.) +-I-4.4-4.4-4.4.4-4-4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-+ 4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 4060.000 to Point/Station 4056.000 **** STREET FLOW TRAVEL TIME 4- SUBAREA FLOW ADDITION **** Top of Street segment elevation = 77.800(Ft.) End of street segment elevation = 73.300(Ft.) Length of street segment = 430.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N frora gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at raidpoint of street = 1.857(CFS) Depth of flow = 0.312(Ft.), Average velocity = 2.124(Ft/s) Streetflow hydraulics at raidpoint of street travel: Halfstreet flow width = 8.784(Ft.) Flow velocity = 2.12(Ft/s) Travel tirae = 3.37 rain. TC = 11.29 rain. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Page 20 of 31 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.051(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.781 Subarea rimoff = 2.670(CFS) for 1.200(Ac.) Total rimoff = 3.164(CFS) Total area = 1.370(Ac.) Street flow at end of street = 3.164(CFS) Half street flow at end of street = 3.164(CFS) Depth of flow = 0.357(Ft.), Average velocity = 2.405(Ft/s) Plow width (frora curb towards crown)= 11.014(Ft.) + 4.4.4.4.4-4-4.4.4.4-4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-H 4-4-4-4-4- Process from Point/Station 4060.000 to Point/Station 4056.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream nuraber: 2 in norraal streara number 2 Stream flow area = 1.370(Ac.) Runoff from this streara = 3.164(CFS) Time of concentration = 11.29 min. Rainfall intensity = 4.051(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) Qmax(1) Qmax(2) 3 .381 3 .164 11.00 11.29 1.000 * 1.000 * 0.984 * 1.000 * 1.000 * 0.975 * 1.000 * 1.000 * 4 .119 4.051 3.381) -H 3.164) 4- 3.381) 4- 3.164) 4- 6.465 6 .489 Total of 2 Streams to confluence: Flow rates before confluence point: 3.381 3.164 Maximum flow rates at confluence using above data: 6.465 6.489 Area of streams before confluence: 1.440 1.370 Results of confluence: Total flow rate = 6.489(CFS) Time of concentration = 11.288 min. Effective stream area after confluence = 2.810(Ac.) 4.4.4.4.4.4.4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 4056.000 to Point/Station 4062.000 **** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION **** Top of street segment elevation = 73.300(Ft.) End of street segment elevation = 70.200(Ft.) Page 21 of 31 Length of street segment = 320.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance frora crown to crossfall grade break = 15.500(Ft.) Slope frora gutter to grade break (v/hz) = 0.020 Slope frora grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance frora curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike frora flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 7.203(CFS) Depth of flow = 0.448(Ft.), Average velocity = 2.847(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 15. 582(Ft.) Flow velocity = 2.85(Ft/s) Travel time = 1.87 min. TC = 13.16 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 3.669(In/Hr) for a 100.0 year storra Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 2.143 Subarea runoff = 1.375(CFS) for 0.950 (Ac.) Total runoff = 7.864(CFS) Total area = 3.760(Ac.) Street flow at end of street = 7.864(CFS) Half street flow at end of street = 7.864(CFS) Depth of flow = 0.459(Ft.), Average velocity = 2.908(Ft/s) Flow width (from curb towards crown)= 16.130(Ft.) 4-4-4.4-4.4.4.4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 4056.000 to Point/Station 4062.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 3.760(Ac.) Rimoff from this stream = 7.864(CFS) Time of concentration = 13.16 min. Rainfall intensity = 3.669(In/Hr) -^ + 4.4.4.4.4.4.4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 4063.000 to Point/Station 4065.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [HEDim DENSITY RESIDENTIAL ] Page 22 of 31 (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 100.000(Ft.) Highest elevation = 78.000(Ft.) Lowest elevation = 75.600(Ft.) Elevation difference = 2.400(Ft.) Slope = 2.400 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maxiraura overland flow distance is 80.00 (Ft) for the top area slope value of 2.40 %, in a developraent type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.37 minutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(1/3)] TC = [1.8*(1.1-0.5700)*( 80.000*.5)/( 2.400*(1/3)]= 6.37 The initial area total distance of 100.00 (Ft.) entered leaves a remaining distance of 20.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.33 rainutes for a distance of 20.00 (Ft.) and a slope of 2.40 % with an elevation difference of 0.48(Ft.) from the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(rain/hr) 0.330 Minutes Tt=[(11.9*0.0038*3)/( 0.48)]*.385= 0.33 Total initial area Ti = 6.37 rainutes frora Figure 3-3 formula plus 0 33 minutes from the Figure 3-4 formula = 6.70 minutes Rainfall intensity (I) = 5.670(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea rimoff = 0.614 (CFS) Total initial stream area = 0.190(Ac.) +4-4.4-4.4.4.4.4-4-4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 4065.000 to Point/Station 4062.000 **** STREET FLOW TRAVEL TIME 4- SUBAREA FLOW ADDITION **** Top of Street segraent elevation = 75.600(Ft.) End of street segraent elevation = 70.200(Ft.) Length of street segraent = 320.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Maiming's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 1.980(CFS) Depth of flow = 0.299(Ft.), Average velocity = 2.593(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.129(Ft.) Flow velocity = 2.59(Ft/s) Travel time = 2.06 rain. TC = 8.76 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Page 23 of 31 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Irapervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.771(In/Hr) for a 100.0 year storm Effective rimoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.684 Subarea rimoff = 2.650(CFS) for 1.010(Ac.) Total rimoff = 3.264(CFS) Total area = 1.200(Ac.) Street flow at end of street = 3.264(CFS) Half street flow at end of street = 3.264(CFS) Depth of flow = 0.339(Ft.), Average velocity = 2.908(Ft/s) Flow width (from curb towards crown)= 10.098(Ft.) 4.4.4.4-4.4.4.4.4.4-4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4--H 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4--H 4-4-4- Process from Point/Station 4065.000 to Point/Station 4062.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 1.200(Ac.) Runoff from this stream = 3.264(CFS) Time of concentration = 8.76 min. Rainfall intensity = 4.771(In/Hr) Suraraary of streara data: Streara Flow rate TC Rainfall Intensity No. (CFS) (rain) (In/Hr) 1 7.864 13.16 3.669 2 3.264 8.76 4.771 Qmax(1) = 1.000 * 1.000 * 7.864) -H 0.769 * 1.000 * 3.264) 4- = 10.374 Qmax (2) = 1.000 * 0.666 * 7.864) 4- 1.000 * 1.000 * 3.264) 4- = 8.498 Total of 2 streams to confluence: Flow rates before confluence point: 7.864 3.264 Maximum flow rates at confluence using above data: 10.374 8.498 Area of streams before confluence: 3.760 1.200 Results of confluence: Total flow rate = 10.374(CFS) Tirae of concentration = 13.162 rain. Effective streara area after confluence = 4.960(Ac.) 4.4.4.4.4.4.4.4.4.4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 4062.000 to Point/Station 4048.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 64.500(Ft.) Downstream point/station elevation = 64.200(Ft.) Page 24 of 31 Pipe length = 5.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 10.374(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 10.374(CFS) Normal flow depth in pipe = 8.86(In.) Flow top width inside pipe = 14.75(In.) Critical depth could not be calculated. Pipe flow velocity = 13.75(Ft/s) Travel time through pipe = 0.01 rain. Time of concentration (TC) = 13.17 rain. 4.4.4.4.4.4.4.4.4.4-4-4-4-4-4-4-4- + 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 4062.000 to Point/Station 4048.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 4.960(Ac.) Runoff from this stream = 10.374(CFS) Tirae of concentration = 13.17 min. Rainfall intensity = 3.668(In/Hr) Suraraary of stream data: Stream No. 1 2 Qraax (1) Flow rate TC Rainfall Intensity (CFS) (rain) (In/Hr) 45.635 11.75 3.948 10.374 13.17 3.668 1.000 * 1.000 * 45.635) -H 1.000 * 0.892 * 10.374) -H = 54.893 Qraax (2) = 0.929 * 1.000 * 45.635) 4- 1.000 * 1.000 * 10.374) 4- = 52.777 Total of 2 raain strearas to confluence: Flow rates before confluence point: 45.635 10.374 Maxiraum flow rates at confluence using above data: 54.893 52.777 Area of streams before confluence: 20.610 4.960 Results of confluence: Total flow rate = 54.893(CFS) Time of concentration = 11.750 min. Effective streara area after confluence = 25.570(Ac.) 4-4-4-+4.4.4.4.4.4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 4048.000 to Point/Station 4072.000 **** PIPEFLOW TRAVEL TIME (Prograra estiraated size) **** Upstream point/station elevation = 64.200(Ft.) Downstream point/station elevation = 64.000(Ft.) Pipe length = 32.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 54.893(CFS) Page 25 of 31 Nearest computed pipe diameter = 39.00(In.) Calculated individual pipe flow = 54.893(CFS) Norraal flow depth in pipe = 27.38(In.) Flow top width inside pipe = 35.68(In.) Critical Depth = 28.37(In.) Pipe flow velocity = 8.82(Ft/s) Travel time through pipe = 0.06 rain. Tirae of concentration (TC) = 11.81 rain. 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4--H 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 4048.000 to Point/Station 4072.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 25.570(Ac.) Rimoff from this stream = 54.893(CFS) Time of concentration = 11.81 min. Rainfall intensity = 3.935(In/Hr) Program is now starting with Main Stream No. 2 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 4066.000 to Point/Station 4068.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 100.000(Ft.) Highest elevation = 79.400(Ft.) Lowest elevation = 77.800(Ft.) Elevation difference = 1.600(Ft.) Slope = 1.600 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaxlraura overland flow distance is 80.00 (Ft) for the top area slope value of 1.60 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.30 minutes TC = [1.8*(1.1-C)*distance(Ft.)*.5)/(% slope*(1/3)] TC = [1.8*(1.1-0.5700)*( 80.000*.5)/( 1. 600*(1/3)]= 7.30 The initial area total distance of 100.00 (Ft.) entered leaves a remaining distance of 20.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.39 minutes for a distance of 20.00 (Ft.) and a slope of 1.60 % with an elevation difference of 0.32(Ft.) frora the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(rain/hr) 0.385 Minutes Tt=[(11.9*0.0038*3)/( 0.32)]*.385= 0.39 Total initial area Ti = 7.30 rainutes frora Figure 3-3 forraula plus 0.39 rainutes from the Figure 3-4 forraula = 7.68 rainutes Rainfall intensity (I) = 5.193(In/Hr) for a 100.0 year storra Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.474(CFS) Page 26 of 31 • Total initial stream area = 0.160(Ac.) 4.4.4.4.4.4.4.4-4-4-4-4-H 4-4-4--H 4--H-H 4--H 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 4068.000 to Point/Station 4070.000 **** STREET FLOW TRAVEL TIME 4- SUBAREA FLOW ADDITION **** Top of Street segment elevation = 77.800(Ft.) End of street segment elevation = 70.200(Ft.) Length of street segment = 780.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance frora crown to crossfall grade break = 15.500(Ft.) Slope frora gutter to grade break (v/hz) = 0.020 Slope frora grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance frora curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at raidpoint of street = 2.824(CFS) Depth of flow = 0.350(Ft.), Average velocity = 2.278(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.663(Ft.) Flow velocity = 2.28(Ft/s) Travel time = 5.71 min. TC = 13.39 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 3.629(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 1.402 Subarea runoff = 4.615(CFS) for 2.300(Ac.) Total runoff = 5.089(CFS) Total area = 2.460(Ac.) Street flow at end of street = 5.089(CFS) Half street flow at end of street = 5.089(CFS) Depth of flow = 0.408(Ft.), Average velocity = 2.622(Ft/s) Flow width (from curb towards crown)= 13.558(Ft.) 4.4.4.4.4.4.4.4.4.4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 4068.000 to Point/Station 4070.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream nuraber: 2 in norraal stream number 1 Stream flow area = 2.460(Ac.) Runoff from this stream = 5.089(CFS) Time of concentration = 13.39 min. Rainfall intensity = 3.629(In/Hr) Page 27 of 31 4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-H 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 4071.000 to Point/Station 4073.000 **** INITIAL AREA EVALUATION **** ] = 100.000(Ft.) Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance Highest elevation = 75.800(Ft.) Lowest elevation = 73.500(Ft.) Elevation difference = 2.300(Ft.) Slope = 2.300 % INITIAL AREA TIME OP CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80.00 (Ft) for the top area slope value of 2.30 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Tirae of Concentration = 6.46 rainutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(l.l-0.5700)*( 80.000*.5)/( 2.300*(1/3)]= 6.46 The initial area total distance of 100.00 (Ft.) entered leaves a reraaining distance of 20.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.34 minutes for a distance of 20.00 (Ft.) and a slope of 2.30 % with an elevation difference of 0.46(Ft.) from the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(min/hr) = 0.335 Minutes Tt=[(11.9*0.0038*3)/( 0.46)]*.385= 0.34 Total initial area Ti = 6.46 minutes from Figure 3-3 formula plus 0.34 minutes frora the Figure 3-4 forraula = 6.80 minutes Rainfall intensity (I) = 5.618(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 1.409(CFS) Total initial streara area = 0.440(Ac.) 4.4.4.4.4.4.4.4.4.4.4.4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 4073.000 to Point/Station 4070.000 **** STREET FLOW TRAVEL TIME 4- SUBAREA FLOW ADDITION **** ) Top of street segment elevation = 73.500(Ft. End of street segment elevation = 70.200(Ft.) Length of street segment = 220.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 17.000(Ft.) Distance from crown to crossfall grade break = 15.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 13.000(Ft.) Slope from curb to property line (v/hz) = Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = Manning's N from grade break to crown = 0.020 0.0150 ).0150 Page 28 of 31 Estimated mean flow rate at midpoint of street = 2.181(CFS) Depth of flow = 0.311(Ft.), Average velocity = 2.532(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.710(Ft.) Flow velocity = 2.53(Ft/s) Travel time = 1.45 min. TC = 8.25 rain. Adding area flow to street Deciraal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.961(In/Hr) for a 100.0 year storm Effective rimoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.576 Subarea nmoff = 1.447 (CFS) for 0.570 (Ac.) Total runoff = 2.856(CFS) Total area = 1.010(Ac.) Street flow at end of street = 2.856(CFS) Half street flow at end of street = 2.856(CFS) Depth of flow = 0.332(Ft.), Average velocity = 2.694(Ft/s) Flow width (from curb towards crown)= 9.785(Ft.) 4.4-4.4-4.4.4. + 4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 4073.000 to Point/Station 4070.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 1.010(Ac.) Runoff from this stream = 2.856(CFS) Tirae of concentration = 8.25 rain. Rainfall intensity = 4.961(In/Hr) Suramary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) Qmax(2) ,089 ,856 1.000 0. 732 1.000 1. 000 13 . 39 8 .25 1 1 ,000 . 000 0.616 1.000 3 .629 4.961 5.089) 4- 2.856) -H 5.089) 4- 2.856) 4- 7.178 5.991 Total of 2 Streams to confluence: Flow rates before confluence point: 5.089 2.856 Maximum flow rates at confluence using above data; 7.178 5.991 Area of streams before confluence: 2.460 1.010 Results of confluence: Total flow rate = 7.178(CFS) Time of concentration = 13.3 88 min. Page 29 of 31 Effective streara area after confluence = 3.470(Ac.) 4-4-+ +4-4.4-+ 4.4-4-4-4-4-4-4-4-4-4-H 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-+ 4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 4070.000 to Point/Station 4072.000 **** PIPEFLOW TRAVEL TIME (Program estiraated size) **** Upstream point/station elevation = 64.200(Ft.) Downstream point/station elevation = 64.000(Ft.) Pipe length = 4.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 7.178 (CFS) Nearest computed pipe diameter = 12.00(In.) Calculated individual pipe flow = 7.178(CFS) Normal flow depth in pipe = 8.91(In.) Flow top width inside pipe = 10.50(In.) Critical depth could not be calculated. Pipe flow velocity = 11.48(Ft/s) Travel time through pipe = 0.01 min. Tirae of concentration (TC) = 13.39 rain. 4.+ + +4-4-4-4. + 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 4070.000 to Point/Station 4072.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 3.470(Ac.) Runoff from this stream = 7.178(CFS) Time of concentration = 13.39 min. Rainfall intensity = 3.628(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 54.893 11.81 3.935 2 7.178 13.39 3.628 Qmax(l) = Qmax(2) = 1.000 * 1.000 * 54.893) + 1.000 * 0.882 * 7.178) + = 61.223 0.922 * 1.000 * 54.893) 4- 1.000 * 1.000 * 7.178) + = 57.794 Total of 2 main strearas to confluence: Flow rates before confluence point: 54.893 7.178 Maxiraum flow rates at confluence using above data: 61.223 57.794 Area of streams before confluence: 25.570 3.470 Results of confluence: Total flow rate = 61.223(CFS) Time of concentration = 11.811 min. Effective stream area after confluence = 29.040(Ac.) Page 30 of 31 4.4-4-4--H4-4--H4--H-H4-4-4--H-H-H-H4-4--H4--H4--H4-4-4-4-4-4-4-4--H4-4-4-4-4--H4-4-4-4--H4-4-4--H4-4-4--H-H4-4-4-4- + 4-4-4-4-4-4--H4- Process frora Point/Station 4072.000 to Point/Station 4074.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 64.000(Ft.) Downstream point/station elevation = 54.690(Ft.) Pipe length = 131.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 61.223(CFS) Nearest computed pipe diameter = 27.00(In.) Calculated individual pipe flow = 61.223(CFS) Normal flow depth in pipe = 17.32(In.) Flow top width inside pipe = 25.90(In.) Critical depth could not be calculated. Pipe flow velocity = 22.74(Ft/s) Travel time through pipe = 0.10 rain. Time of concentration (TC) = 11.91 min. End of computations, total study area = 29.040 (Ac.) Page 31 of 31 San Diego Coimty Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7.4 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 07/30/05 Robertson Ranch Proposed Conditions Basin E 7-30-05 File:gsite.out ********* Hydrology Study Control Information ********** Program License Serial Nuraber 5007 Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 P6/P24 = 60.5% San Diego hydrology manual 'C values used 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 5000.000 to Point/Station 5002.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Irapervious value, Ai = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = 60.000(Ft.) Highest elevation = 55.460(Ft.) Lowest elevation = 54.000(Ft.) Elevation difference = 1.460(Ft.) Slope = 2.433 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximura overland flow distance is 70.00 (Ft) for the top area slope value of 2.43 %, in a developraent type of General Industrial In Accordance With Figure 3-3 Initial Area Tirae of Concentration = 2.58 rainutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(l.l-0.8700)*( 70.000*.5)/( 2 .433* (1/3)]= 2.58 Rainfall intensity (I) = 10.509(In/Hr) for a 100.0 year storra Effective rimoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea runoff = 0.091(CFS) Total initial stream area = 0.010(Ac.) Page 1 of 6 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 5002.000 to Point/Station 5004.000 **** STREET FLOW TRAVEL TIME -H SUBAREA FLOW ADDITION **** Top of street segment elevation = 54.000(Ft.) End of street segment elevation = 52.700(Ft.) Length of street segment = 160.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 40.000(Ft.) Distance from crown to crossfall grade break = 38.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope frora grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance frora curb to property line = 10.000(Ft.) Slope frora curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike frora flowline = 2.000(In.) Manning's N in gutter = 0.0150 Maiming's N frora gutter to grade break = 0.0150 Manning's N frora grade break to crown = 0.0150 Estimated mean flow rate at raidpoint of street = 0.780(CFS) Depth of flow = 0.261(Ft.), Average velocity = 1.594(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 6.219(Ft.) Flow velocity = 1.59(Ft/s) Travel time = 1.67 min. TC = 4.25 min. Adding area flow to street Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Irapervious value, Ai = 0.950 Sub-Area C Value = 0.870 Rainfall intensity = 7.609(In/Hr) for a 100.0 year storra Effective runoff coefficient used for total area (Q=KCIA) is C = 0.870 CA = 0.200 Subarea rimoff = 1.431(CFS) for 0.220(Ac.) Total runoff = 1.523(CPS) Total area = 0.230(Ac.) Street flow at end of street = 1.523(CFS) Half street flow at end of street = 1.523(CFS) Depth of flow = 0.307(Ft.), Average velocity = 1.842(Ft/s) Flow width (frora curb towards crown)= 8. 510(Ft.) 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/station 5004.000 to Point/Station 5006.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 43.900(Ft.) Downstream point/station elevation = 43.650(Ft.) Pipe length = 24.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.523(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 1.523(CFS) Norraal flow depth in pipe = 6.71(In.) Flow top width inside pipe = 7.83(In.) Page 2 of 6 • Critical Depth = 6.81(In.) Pipe flow velocitiy = 4.31 (Ft/s) Travel time through pipe = 0.09 min. Tirae of concentration (TC) = 4.34 min. 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4--H 4--H 4-4-4--H 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-H 4-4-4-4-4--H 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 5004.000 to Point/Station 5006.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream number 1 Stream flow area = 0.23 0 (Ac.) Runoff from this stream = 1.523(CFS) Time of concentration = 4.34 min. Rainfall intensity = 7.502(In/Hr) 4-4-4-4-4-4-4-4-4-4-4-4-4-4--H 4--H 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 5008.000 to Point/Station 5010.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = 40.000(Ft.) Highest elevation = 60.250(Ft.) Lowest elevation = 59.330(Ft.) Elevation difference = 0.920(Ft.) Slope = 2.300 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximura overland-flow distance is 70.00 (Ft) for the top area slope value of 2.30 %, in a developraent type of General Industrial In Accordance With Figure 3-3 Initial Area Tirae of Concentration = 2.62 rainutes TC = [1.8*(1.1-C)*distance(Ft.)*.5)/(% slope*(1/3)] TC = [1.8*(1.1-0.8700)*( 70.000*.5)/( 2 . 300*(1/3)]= 2.62 Rainfall intensity (I) = 10.383(In/Hr) for a 100.0 year storm Effective rimoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea rimoff = 0.090 (CFS) Total initial stream area = 0.010 (Ac.) 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-+• 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 5010.000 to Point/Station 5012.000 **** STREET FLOW TRAVEL TIME 4- SUBAREA FLOW ADDITION **** Top of Street segment elevation = 59.330(Ft.) End of street segment elevation = 51.880(Ft.) Length of street segment = 660.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 40.000(Ft.) Distance from crown to crossfall grade break = 38.500(Ft.) Slope frora gutter to grade break (v/hz) = 0.020 Slope frora grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Page 3 of 6 Distance from curb to property line = 10.000(Ft.) Slope frora curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike frora flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N frora gutter to grade break = 0.0150 Manning's N frora grade break to crown = 0.0150 Estiraated raean flow rate at raidpoint of street = 2.579(CFS) Depth of flow = 0.336(Ft.), Average velocity = 2.359(Ft/s) Streetflow hydraulics at raidpoint of street travel: Halfstreet flow width = 9.953(Ft.) Flow velocity = 2.36(Ft/s) Travel tirae = 4.66 min. TC = 7.29 min. Adding area flow to street Deciraal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Rainfall intensity = 5.373(In/Hr) for a 100.0 year storm Effective nmoff coefficient used for total area (Q=KCIA) is C = 0.870 CA = 0.957 Subarea runoff = 5.052(CFS) for 1.090(Ac.) Total runoff = 5.142(CFS) Total area = 1.100(Ac.) Street flow at end of street = 5.142(CFS) Half street flow at end of street = 5.142(CFS) Depth of flow = 0.401(Ft.), Average velocity = 2.780(Ft/s) Flow width (from curb towards crown)= 13.219(Ft.) 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 5012.000 to Point/Station 5006.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 44.200(Ft.) Downstreara point/station elevation = 43.650(Ft.) Pipe length = 54.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.142(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 5.142(CFS) Norraal flow depth in pipe = 7.75(In.) Flow top width inside pipe = 22.45(In.) Critical Depth = 9.58(In.) Pipe flow velocity = 5.86(Ft/s) Travel time through pipe = 0.15 min. Tirae of concentration (TC) = 7.44 min. 4-4-4-4-4-H 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-H 4--H 4-4-4-4-4-4-4-4-H 4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 5012.000 to Point/Station 5006.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara nuraber: 1 in normal stream number 2 Streara flow area = 1.100(Ac.) Runoff from this stream = 5.142(CFS) Tirae of concentration = 7.44 min. Rainfall intensity = 5.301(In/Hr) Page 4 of 6 Suraraary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 1.523 4.34 7.502 2 5.142 7.44 5.301 Qmax(1) = 1.000 * 1.000 * 1.523) -H 1.000 * 0.584 * 5.142) 4- = 4.524 Qmax(2) = 0.707 * 1.000 * 1.523) 4- 1.000 * 1.000 * 5.142) 4- = 6.218 Total of 2 strearas to confluence: Flow rates before confluence point: 1.523 5.142 Maxiraura flow rates at confluence using above data: 4.524 6.218 Area of streams before confluence: 0.230 1.100 Results of confluence: Total flow rate = 6.218(CFS) Time of concentration = 7.441 rain. Effective streara area after confluence = 1.330(Ac.) + + + +-H +-H 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 5006.000 to Point/Station 5014.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 43.320(Ft.) Downstreara point/station elevation = 42.920(Ft.) Pipe length = 40.31(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.218(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 6.218(CFS) Norraal flow depth in pipe = 8.62(In.) Flow top width inside pipe = 23.03(In.) Critical Depth = 10.59(In.) Pipe flow velocity = 6.13(Ft/s) Travel time through pipe = 0.11 min. Tirae of concentrat ion (TC) = 7.55 rain. 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 5014.000 to Point/Station 5016.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstreara point/station elevation = 40.920(Ft.) Downstream point/station elevation = 40.010(Ft.) Pipe length = 181.16(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.218(CFS) Given pipe size = 42.00(In.) Calculated individual pipe flow = 6.218(CFS) Normal flow depth in pipe = 8.38(In.) Flow top width inside pipe = 33.57(In.) Critical depth could not be calculated. Pipe flow velocity = 4.55(Ft/s) Page 5 of 6 Travel time through pipe = 0.66 min. Time of concentration (TC) = 8.21 rain. 4-4-4-4-4-4-4-4-4--H-H 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4--f 4-4-4-4-4-4- Process from Point/Station 5016.000 to Point/Station 5018.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 39.510(Ft.) Downstream point/station elevation = 39.000(Ft.) Pipe length = 102.60(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.218(CFS) Given pipe size = 42.00(In.) Calculated individual pipe flow = 6.218(CFS) Normal flow depth in pipe = 8.40(In.) Flow top width inside pipe = 33.60(In.) Critical depth could not be calculated. Pipe flow velocity = 4.54(Ft/s) Travel time through pipe = 0.38 min. Time of concentration (TC) = 8.59 min. End of computations, total study area = 1.330 (Ac.) Page 6 of 6 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7.4 Rational raethod hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 05/06/06 Robertson Ranch Proposed Conditions (Ultimate) Basin F 5-6-06 File:gsitf.out ********* Hydrology Study Control Inforraation ********** Prograra License Serial Number 5007 Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.500 P6/P24 = 57.8% San Diego hydrology manual 'C' values used 4.4.4-4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 6000.000 to Point/Station 6002.000 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (14.5 DU/A or Less ) Impervious value, Ai = 0.500 Sub-Area C Value = 0.630 Initial subarea total flow distance = 275.000(Ft.) Highest elevation = 89.000(Ft.) Lowest elevation = 85.000(Ft.) Elevation difference = 4.000(Ft.) Slope = 1.455 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maxiraura overland flow distance is 65.00 (Ft) for the top area slope value of 1.46 %, in a development type of 14.5 DU/A or Less In Accordance With Figure 3-3 Initial Area Tirae of Concentration = 6.02 rainutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(1.1-0.6300)* ( 65.000*.5)/( 1.455*(1/3)]= 6.02 The initial area total distance of 275.00 (Ft.) entered leaves a reraaining distance of 210.00 (Ft.) Using Figure 3-4, the travel time for this distance is 2.44 rainutes for a distance of 210.00 (Ft.) and a slope of 1.46 % Page 1 of 4 with an elevation difference of 3.06(Ft.) frora the end of the top area Tt = [11.9*length(Mi)*3)/(elevation change(Ft.))]*.385 *60(rain/hr) = 2.443 Minutes Tt=[(11.9*0.0398*3)/( 3.06)]*.385= 2.44 Total initial area Ti = 6.02 rainutes frora Figure 3-3 formula plus 2.44 minutes from the Figure 3-4 formula = 8.46 rainutes Rainfall intensity (I) = 4.879(In/Hr) for a 100.0 year storra Effective runoff coefficient used for area (Q=KCIA) is C = 0.630 Subarea nmoff = 1.383 (CFS) Total initial stream area = 0.450(Ac.) 4.4.4.4.4.4-4-4--H 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 6002.000 to Point/Station 6004.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** Estimated raean flow rate at raidpoint of channel = 3.556(CFS) Depth of flow = 0.422(Ft.), Average velocity = 3.997(Ft/s) ******* Irregular Channel Data *********** Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 1.00 2 5.00 0.00 3 10.00 1.00 Maiming's 'N' friction factor = 0.013 Sub-Channel flow = 3.556(CFS) • • flow top width = 4.218(Ft.) ' ' velocity= 3.997(Ft/s) ' ' area = 0.890(Sq.Ft) • ' Froude number = 1.534 Upstreara point elevation = 85.000(Ft.) Downstreara point elevation = 81. 000 (Ft.) Flow length = 400.000(Ft.) Travel tirae = 1.67 rain. Tirae of concentration = 10.13 min. Depth of flow = 0.422(Ft.) Average velocity = 3.997(Ft/s) Total irregular channel flow = 3.556(CFS) Irregular channel normal depth above invert elev. = 0.422(Ft.) Average velocity of channel(s) = 3.997(Ft/s) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (14.5 DU/A or Less ) Impervious value, Ai = 0.500 Sub-Area C Value = 0.630 Rainfall intensity = 4.344(In/Hr) for a 100.0 year storm Effective rimoff coefficient used for total area (Q=KCIA) is C = 0.630 CA = 1.298 Subarea runoff = 4.255(CFS) for 1.610(Ac.) Total runoff = 5.638(CFS) Total area = 2.060(Ac.) Depth of flow = 0.501(Ft.), Average velocity = 4.486(Ft/s) Page 2 of 4 4-4-i-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 6004.000 to Point/Station 6006.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstreara point elevation = 81.000(Ft.) Downstreara point elevation = 73.000(Ft.) Channel length thru subarea = 230.000(Ft.) Channel base width = 3.000(Ft.) Slope or 'Z' of left channel bank = 1.000 Slope or 'Z' of right channel bank = 1.000 Estiraated raean flow rate at raidpoint of channel = 10.714(CFS) Maiming's 'N' = 0.013 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 10.714(CFS) Depth of flow = 0.344(Ft.), Average velocity = 9.325(Ft/s) Channel flow top width = 3.687(Ft.) Flow Velocity = 9.32(Ft/s) Travel tirae = 0.41 rain. Time of concentration = 10.54 rain. Critical depth = 0.680(Ft.) Adding area flow to chaimel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (14.5 DU/A or Less ) Impervious value, Ai = 0.500 Sub-Area C Value = 0.630 Rainfall intensity = 4.234(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.630 CA = 3.717 Subarea runoff = 10.101(CFS) for 3.840(Ac.) Total rimoff = 15.739(CFS) Total area = 5.900(Ac.) Depth of flow = 0.432(Ft.), Average velocity = 10.613(Ft/s) Critical depth = 0.859(Ft.) 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 6006.000 to Point/Station 6008.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstreara point elevation = 73.000(Ft.) Downstreara point elevation = 69.000(Ft.) Charmel length thru subarea = 240.000(Ft.) Charmel base width = 3.000(Ft.) Slope or 'Z' of left channel bank = 1.000 Slope or 'Z' of right channel bank = 1.000 Estiraated raean flow rate at raidpoint of channel = 19.836(CFS) Manning's 'N' = 0.015 Maxiraum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 19.836(CFS) Depth of flow = 0.669(Ft.), Average velocity = 8.077(Ft/s) Channel flow top width = 4.339(Ft.) Flow Velocity = 8.08(Ft/s) Travel time = 0.50 min. Tirae of concentration = 11.04 rain. Critical depth = 0.984(Ft.) Adding area flow to channel Deciraal fraction soil group A = 0.000 Page 3 of 4 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [HIGH DENSITY RESIDENTIAL ] (24.0 DU/A or Less ) Impervious value, Ai = 0.650 Sub-Area C Value = 0.710 Rainfall intensity = 4.111(In/Hr) for a 100.0 year storm Effective rimoff coefficient used for total area (Q=KCIA) is C = 0.657 CA = 5.840 Subarea runoff = 8.267(CFS) for 2.990(Ac.) Total runoff = 24.006(CFS) Total area = 8.890(Ac.) Depth of flow = 0.748(Ft.), Average velocity = 8.564(Ft/s) Critical depth = 1.094(Ft.) 4.4.4-4.4.4.4-4-4-4-4-4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 6008.000 to Point/Station 6010.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstreara point/station elevation = 58.400(Ft.) Downstreara point/station elevation = 56.250(Ft.) Pipe length = 33.52(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 24.006(CFS) Nearest coraputed pipe diaraeter = 18.00(In.) Calculated individual pipe flow = 24.006(CFS) Norraal flow depth in pipe = 13.38(In.) Flow top width inside pipe = 15.72(In.) Critical depth could not be calculated. Pipe flow velocity = 17.04(Ft/s) Travel tirae through pipe = 0.03 rain. Tirae of concentration (TC) = 11.07 rain. 4.4.4-4.4.4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 6010.000 to Point/Station 6012.000 **** PIPEFLOW TRAVEL TIME (Prograra estiraated size) **** Upstreara point/station elevation = 56.250(Ft.) Downstreara point/station elevation = 43.120(Ft.) Pipe length = 73.55(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 24.006(CFS) Nearest coraputed pipe diameter = 15.00(In.) Calculated individual pipe flow = 24.006(CFS) Normal flow depth in pipe = 10.92(In.) Flow top width inside pipe = 13.35(In.) Critical depth could not be calculated. Pipe flow velocity = 25.10(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 11.12 rain. End of coraputations, total study area = 8.890 (Ac.) Page 4 of 4 San Diego County Rational Hydrology Prograra CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7.4 Rational raethod hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 06/22/06 Robertson Ranch Proposed Conditions Basin G 6-22-06 File:gsitg.out ********* Hydrology Study Control Inforraation **** ****** Program License Serial Number 5007 Rational hydrology study storra event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 P6/P24 = 60.5% San Diego hydrology raanual 'C values used 4-4.4.4.4.4-4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 7000.000 to Point/Station 7002.000 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Irapervious value, Ai = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = 32.000(Ft.) Highest elevation = 70.360(Ft.) Lowest elevation = 69.440(Ft.) Elevation difference = 0.920(Ft.) Slope = 2.875 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaxiraum overland flow distance is 80.00 (Ft) for the top area slope value of 2.88 %, in a development type of General Industrial In Accordance With Figure 3-3 Initial Area Tirae of Concentration = 2.60 rainutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(1/3)] TC = [1.8*(l.l-0.8700)*( 80.000*.5)/( 2.875*(1/3)]= 2.60 Rainfall intensity (I) = 10.434(In/Hr) for a 100.0 year storm Effective rimoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea runoff = 0.091(CFS) Total initial streara area = 0.010(Ac.) Page 1 of 3 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 7002.000 to Point/Station 7004.000 **** STREET FLOW TRAVEL TIME 4- SUBAREA FLOW ADDITION **** Top of street segraent elevation = 69.340(Ft.) End of street segraent elevation = 59.33 0(Ft.) Length of street segment =880.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 40.000(Ft.) Distance from crown to crossfall grade break = 38.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N frora grade break to crown = 0.0150 Estiraated raean flow rate at raidpoint of street = 3.451(CFS) Depth of flow = 0.361(Ft.), Average velocity = 2.534(Ft/s) Streetflow hydraulics at raidpoint of street travel: Halfstreet flow width = 11.222(Ft.) Flow velocity = 2.53(Ft/s) Travel tirae = 5.79 min. TC = 8.39 rain. Adding area flow to street Deciraal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Irapervious value, Ai = 0.950 Sub-Area C Value = 0.870 Rainfall intensity = 4.905(In/Hr) for a 100.0 year storra Effective runoff coefficient used for total area (Q=KCIA) is C = 0.870 CA = 1.401 Subarea runoff = 6.780(CFS) for 1.600(Ac.) Total runoff = 6.871(CFS) Total area = 1.610(Ac.) Street flow at end of street = 6.871(CFS) Half street flow at end of street = 6.871(CFS) Depth of flow = 0.433(Ft.), Average velocity = 2.990(Ft/s) Flow width (from curb towards crown)= 14.816(Ft.) 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 7004.000 to Point/Station 7005.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstreara point/station elevation = 49.860(Ft.) Downstreara point/station elevation = 48. 950(Ft.) Pipe length = 1.84(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.871(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 6.871(CFS) Norraal flow depth in pipe = 3.71(In.) Flow top width inside pipe = 14.56(In.) Page 2 of 3 Critical Depth = 12.16(In.) Pipe flow velocity = 26.17(Ft/s) Travel time through pipe = 0.00 min. Tirae of concentration (TC) = 8.39 rain. End of coraputations, total study area = 1.610 (Ac.) Page 3 of 3 San Diego Coimty Rational Hydrology Prograra CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7.4 Rational raethod hydrology prograra based on San Diego Coimty Flood Control Division 2003 hydrology raanual Rational Hydrology Study Date: 06/22/06 Robertson Ranch Proposed Conditions Basin G-2 6-22-06 File:gsitg2 .out ********* Hydrology Study Control Information ********** Prograra License Serial Nuraber 5007 Rational hydrology study storra event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 P6/P24 = 60.5% San Diego hydrology raanual 'C values used + +-H-+ 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 7008.000 to Point/Station 7010.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Irapervious value, Ai = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = 32.000(Ft.) Highest elevation = 71.660(Ft.) Lowest elevation = 70.740(Ft.) Elevation difference = 0.920(Ft.) Slope = 2.875 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaxlraura overland flow distance is 80.00 (Ft) for the top area slope value of 2.88 %, in a development type of General Industrial In Accordance With Figure 3-3 Initial Area Time of Concentration = 2.60 minutes TC = [1 8*(1.1-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(1.1-0.8700)*( 80.000*.5)/( 2.875*(1/3)]= 2.60 Rainfall intensity (I) = 10.434(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea runoff = 0.091(CFS) Total initial streara area = 0.010(Ac.) Page 1 of 4 + 4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 7010.000 to Point/Station 7012.000 **** STREET FLOW TRAVEL TIME 4- SUBAREA FLOW ADDITION **** Top of Street segraent elevation = 70.740(Ft.) End of street segraent elevation = 59.330(Ft.) Length of street segraent = 1000.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 40.000(Ft.) Distance from crown to crossfall grade break = 38.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope frora grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance frora curb to property line = 10.000(Ft.) Slope frora curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike frora flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Maiming's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 3.147(CFS) Depth of flow = 0.353(Ft.), Average velocity = 2.482(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.795(Ft.) Flow velocity = 2.48(Ft/s) Travel time = 6.71 rain. TC = 9.32 rain. Adding area flow to street Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Irapervious value, Ai = 0.950 Sub-Area C Value = 0.870 Rainfall intensity = 4.585(In/Hr) for a 100.0 year storra Effective runoff coefficient used for total area (Q=KCIA) is C = 0.870 CA = 1.375 Subarea rimoff = 6.212(CFS) for 1.570(Ac.) Total nmoff = 6.302 (CFS) Total area = 1.580 (Ac.) Street flow at end of street = 6.302(CFS) Half street flow at end of street = 6.302(CFS) Depth of flow = 0.423(Ft.), Average velocity = 2.932(Ft/s) Flow width (frora curb towards crown)= 14.308(Ft.) + +4-4.4.4-4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 7012.000 to Point/Station 7006.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstreara point/station elevation = 50.010(Ft.) Downstreara point/station elevation = 49.740(Ft.) Pipe length = 54.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.302(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 6.302(CFS) Norraal flow depth in pipe = 12.75(In.) Flow top width inside pipe = 16.36(In.) Page 2 of 4 Critical Depth = 11.64(In.) Pipe flow velocity = 4.71(Ft/s) Travel tirae through pipe = 0.19 rain. Time of concentration (TC) = 9.51 min. + ++ 4.4-4-4-4-4.4-4-4.4.4-4.4.4.4.4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 7006.000 to Point/Station 7014.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstreara point/station elevation = 49.270(Ft.) Downstreara point/station elevation = 48.760(Ft.) Pipe length = 95.80(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.302(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 6.302(CFS) Norraal flow depth in pipe = 10.29(In.) Flow top width inside pipe = 23.75(In.) Critical Depth = 10.67(In.) Pipe flow velocity = 4.90(Ft/s) Travel tirae through pipe = 0.33 rain. Tirae of concentration (TC) = 9.84 rain. 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 7014.000 to Point/Station 7016.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 46.760(Ft.) Downstream point/station elevation = 45.330(Ft.) Pipe length = 287.16(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.302(CFS) Given pipe size = 42.00(In.) Calculated individual pipe flow = 6.302(CFS) Normal flow depth in pipe = 8.46(In.) Flow top width inside pipe = 33.68(In.) Critical Depth = 9.06(In.) Pipe flow velocity = 4.56(Ft/s) Travel time through pipe = 1.05 min. Time of concentration (TC) = 10.89 min. 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 7016.000 to Point/Station 7018.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstreara point/station elevation = 44.33 0(Ft.) Downstream point/station elevation = 43.910(Ft.) Pipe length = 83.36(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.302(CFS) Given pipe size = 48.00(In.) Calculated individual pipe flow = 6.302(CFS) Normal flow depth in pipe = 8.09(In.) Flow top width inside pipe = 35.94(In.) Critical Depth = 8.70(In.) Pipe flow velocity = 4.50(Ft/s) Travel time through pipe = 0.31 min. Time of concentration (TC) = 11.19 min. Page 3 of 4 ++ 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4 Process from Point/Station 7018.000 to Point/Station 7020.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 43.410(Ft.) Downstreara point/station elevation = 42.800(Ft.) Pipe length = 122.14(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.302(CFS) Given pipe size = 54.00(In.) Calculated individual pipe flow = 6.302(CFS) Norraal flow depth in pipe = 7.83(In.) Flow top width inside pipe = 38.03(In.) Critical depth could not be calculated. Pipe flow velocity = 4.42(Ft/s) Travel time through pipe = 0.46 min. Time of concentration (TC) = 11.66 min. End of coraputations, total study area = 1.580 (Ac.) Page 4 of 4 San Diego County Rational Hydrology Prograra CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7.4 Rational raethod hydrology prograra based on San Diego Coimty Flood Control Division 2003 hydrology raanual Rational Hydrology Study Date: 06/13/06 Robertson Ranch Proposed Conditions (Ultiraate) Basin H 6-13-06 File:gsith.out ********* Hydrology Study Control Information ********** Prograra License Serial Nuraber 5007 Rational hydrology study storra event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.500 P6/P24 = 57.8% San Diego hydrology raanual 'C values used 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 8000.000 to Point/Station 8002.000 **** INITIAL AREA EVALUATION **** ] = 100.000(Ft.) 9.000 % Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [HIGH DENSITY RESIDENTIAL (24.0 DU/A or Less ) Impervious value, Ai = 0.650 Sub-Area C Value = 0.710 Initial subarea total flow distance Highest elevation = 66.000(Ft.) Lowest elevation = 57.000(Ft.) Elevation difference = 9.000(Ft.) INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaxlraura overland flow distance is 100.00 (Ft) for the top area slope value of 9.00 %, in a developraent type of 24.0 DU/A or Less In Accordance With Figure 3-3 Initial Area Tirae of Concentration = 3.37 minutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(1.1-0.7100)*( 100.000*.5)/( 9.000*(1/3)]= Rainfall intensity (I) = 8.827(In/Hr) for a 100.0 Effective rimoff coefficient used for area (Q=KCIA) is C Subarea rimoff = 0.877 (CFS) Total initial stream area = 0.140(Ac.) Slope 3 .37 year storm = 0.710 Page 1 of 2 -H 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 8002.000 to Point/Station 8004.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 57.000(Ft.) Downstreara point elevation = 51.000(Ft.) Chaimel length thru subarea = 600.000(Ft.) Channel base width = 10.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right charmel bank = 2.000 Estiraated raean flow rate at raidpoint of charmel = 6.819(CFS) Marming's 'N' =0.030 Maxiraura depth of charmel = 1.000(Ft.) Flow(q) thru subarea = 6.819(CFS) Depth of flow = 0.302(Ft.), Average velocity = 2.130(Ft/s) Charmel flow top width = 11.208(Ft.) Flow Velocity = 2.13(Ft/s) Travel time = 4.69 min. Time of concentration = 8.07 min. Critical depth = 0.238(Ft.) Adding area flow to charmel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [HIGH DENSITY RESIDENTIAL ] (24.0 DU/A or Less ) Irapervious value, Ai = 0.650 Sub-Area C Value = 0.710 Rainfall intensity = 5.031(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.710 CA = 2.521 Subarea rimoff = 11.803(CFS) for 3.410(Ac.) Total runoff = 12.680(CFS) Total area = 3.550(Ac.) Depth of flow = 0.436(Ft.), Average velocity = 2.674(Ft/s) Critical depth = 0.359(Ft.) End of coraputations, total study area = 3.550 (Ac.) Page 2 of 2 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7.4 Rational raethod hydrology prograra based on San Diego Coimty Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 06/22/06 Robertson Ranch Proposed Conditions Basin I J.N. 011014 File:gsiti.out ********* Hydrology Study Control Inforraation ********** Program License Serial Number 5007 Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 P6/P24 = 60.5% San Diego hydrology raanual 'C values used 4.4.4-4-4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 9000.000 to Point/Station 9002.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [INDUSTRIAL area type 1 (General Industrial ) Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = 41.000(Ft.) Highest elevation = 73.750(Ft.) Lowest elevation = 72.700(Ft.) Elevation difference = 1.050(Ft.) Slope = 2.561 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaxlraura overland flow distance is 80.00 (Ft) for the top area slope value of 2.56 %, in a developraent type of General Industrial In Accordance With Figure 3-3 Initial Area Time of Concentration = 2.71 minutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(l.l-0.8700)*( 80.000*.5)/( 2.561*(1/3)]= 2.71 Rainfall intensity (I) = 10.178(In/Hr) for a 100.0 year storm Effective rimoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea rimoff = 0.089 (CFS) Total initial stream area = 0.010(Ac.) Page 1 of 3 + + + + 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 9002.000 to Point/Station 9004.000 **** STREET FLOW TRAVEL TIME 4- SUBAREA FLOW ADDITION **** Top of Street segment elevation = 72.700(Ft.) End of street segraent elevation = 70.740(Ft.) Length of street segraent = 270.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 40.000(Ft.) Distance frora crown to crossfall grade break = 38.500(Ft.) Slope frora gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike frora flowline = 2.000(In.) Manning's N in gutter = 0.0150 Marming's N frora gutter to grade break = 0.0150 Marming's N frora grade break to crown = 0.0150 Estimated mean flow rate at raidpoint of street = 1.300(CFS) Depth of flow = 0.299(Ft.), Average velocity = 1.701(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.133(Ft.) Flow velocity = 1.70(Ft/s) Travel time = 2.65 min. TC = 5.35 min. Adding area flow to street Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Irapervious value, Ai = 0.950 Sub-Area C Value = 0.870 Rainfall intensity = 6.556(In/Hr) for a 100.0 year storra Effective runoff coefficient used for total area (Q=KCIA) is C = 0.870 CA = 0.391 Subarea runoff = 2.478(CFS) for 0.440(Ac.) Total rimoff = 2.567(CFS) Total area = 0.450(Ac.) Street flow at end of street = 2.567(CFS) Half street flow at end of street = 2.567(CFS) Depth of flow = 0.355(Ft.), Average velocity = 1.990(Ft/s) Flow width (frora curb towards crown)= 10.895(Ft.) + + + + + + + + + + 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 9004.000 to Point/Station 9005.000 **** PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstreara point/station elevation = 60.850(Ft.) Downstream point/station elevation = 56.280(Ft.) Pipe length = 3.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 2.567(CFS) Nearest coraputed pipe diameter = 6.00(In.) Calculated individual pipe flow = 2.567(CFS) Normal flow depth in pipe = 2.53(In.) Flow top width inside pipe = 5.93(In.) Page 2 of 3 Critical depth could not be calculated. Pipe flow velocity = 32.65(Ft/s) Travel time through pipe = 0.00 min. Time of concentration (TC) = 5.35 min. End of coraputations, total study area = 0.450 (Ac.) Page 3 of 3 San Diego County Rational Hydrology Prograra CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7.4 Rational raethod hydrology prograra based on San Diego Coimty Flood Control Division 2003 hydrology raanual Rational Hydrology Study Date: 06/22/06 Robertson Ranch Proposed Conditions Basin 1-2 J.N. 011014 File:gsiti2.out ********* Hydrology Study Control Information ********** Program License Serial Number 5007 Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 P6/P24 = 60.5% San Diego hydrology raanual 'C values used + + + + + + + + + + + + + 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 9000.000 to Point/Station 9008.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Irapervious value, Ai = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = 41.000(Ft.) Highest elevation = 73.750(Ft.) Lowest elevation = 72.700(Ft.) Elevation difference = 1.050(Ft.) Slope = 2.561 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaximum overland flow distance is 80.00 (Ft) for the top area slope value of 2.56 %, in a development type of General Industrial In Accordance With Figure 3-3 Initial Area Time of Concentration = 2.71 minutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(1.1-0.8700)*( 80.000*.5)/( 2 . 561* (1/3)]= 2.71 Rainfall intensity (I) = 10.178(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea runoff = 0.089(CFS) Total initial stream area = 0.010(Ac.) Page 1 of 4 + + + + + + +4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 9008.000 to Point/Station 9010.000 **** STREET FLOW TRAVEL TIME 4- SUBAREA FLOW ADDITION **** Top of street segment elevation = 72.700(Ft.) End of street segment elevation = 70.740(Ft.) Length of street segment = 275.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 40.000(Ft.) Distance from crown to crossfall grade break = 38.500(Ft.) Slope frora gutter to grade break (v/hz) = 0.020 Slope frora grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance frora curb to property line = 10.000(Ft.) Slope frora curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike frora flowline = 2.000(In.) Marming's N in gutter = 0.0150 Manning's N frora gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estiraated raean flow rate at raidpoint of street = 1.259(CFS) Depth of flow = 0.298(Ft.), Average velocity = 1.677(Ft/s) Streetflow hydraulics at raidpoint of street travel: Halfstreet flow width = 8.050(Ft.) Flow velocity = 1.68(Ft/s) Travel tirae = 2.73 rain. TC = 5.44 min. Adding area flow to street Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Irapervious value, Ai = 0.950 Sub-Area C Value = 0.870 Rainfall intensity = 6.488(In/Hr) for a 100.0 year storra Effective runoff coefficient used for total area (Q=KCIA) is C = 0.870 CA = 0.383 Subarea runoff = 2.395(CFS) for 0.430(Ac.) Total runoff = 2.484(CFS) Total area = 0.440(Ac.) Street flow at end of street = 2.484(CFS) Half street flow at end of street = 2.484(CFS) Depth of flow = 0.352(Ft.), Average velocity = 1.961(Ft/s) Flow width (from curb towards crown)= 10.788(Ft.) + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 9010.000 to Point/Station 9006.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstreara point/station elevation = 61.000(Ft.) Downstream point/station elevation = 60.730(Ft.) Pipe length = 54.25(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 2.484(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 2.484(CFS) Normal flow depth in pipe = 7.18(In.) Flow top width inside pipe = 17.63(In.) Page 2 of 4 Critical Depth = 7.16(In.) Pipe flow velocity = 3.78(Ft/s) Travel tirae through pipe = 0.24 rain. Tirae of concentration (TC) = 5.68 min. + + + + + + + + + + + + + + 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 9006.000 to Point/Station 9012.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 60.230(Ft.) Downstream point/station elevation = 59.640(Ft.) Pipe length = 118.66(Ft.) Marming's N = 0.013 No. of pipes = 1 Required pipe flow = 2.484(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 2.484(CFS) Normal flow depth in pipe = 6.40(In.) Flow top width inside pipe = 21.23(In.) Critical Depth = 6.58(In.) Pipe flow velocity = 3.69(Ft/s) Travel time through pipe = 0.54 rain. Tirae of concentration (TC) = 6.21 rain. + + ++ + + + + 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 9012.000 to Point/Station 9014.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 58.140(Ft.) Downstream point/station elevation = 57.110(Ft.) Pipe length = 38.52(Ft.) Marming's N = 0.013 No. of pipes = 1 Required pipe flow = 2.484(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 2.484(CFS) Normal flow depth in pipe = 3.75(In.) Flow top width inside pipe = 22.00(In.) Critical Depth = 5.88(In.) Pipe flow velocity = 6.35(Ft/s) Travel time through pipe = 0.10 rain. Time of concentration (TC) = 6.32 min. + + + + + + + + +4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 9014.000 to Point/Station 9016.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 56.610(Ft.) Downstreara point/station elevation = 56.000(Ft.) Pipe length = 122.89(Ft.) Marming's N = 0.013 No. of pipes = 1 Required pipe flow = 2.484(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 2.484(CFS) Norraal flow depth in pipe = 5.63(In.) Flow top width inside pipe = 26.14(In.) Critical Depth = 5.88(In.) Pipe flow velocity = 3.52(Ft/s) Travel time through pipe = 0.58 min. Tirae of concentration (TC) = 6.90 rain. End of coraputations, total study area = 0.440 (Ac.) Page 3 of 4 Page 4 of 4 San Diego Coimty Rational Hydrology Prograra CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7.4 Rational raethod hydrology prograra based on San Diego County Flood Control Division 2003 hydrology raanual Rational Hydrology Study Date: 06/22/06 Robertson Ranch Proposed Conditions Basin J J.N. 011014 File:gsitj.out ********* Hydrology Study Control Inforraation ********** Prograra License Serial Nuraber 5007 Rational hydrology study storra event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.300 P6/P24 = 60.5% San Diego hydrology raanual 'C values used + + + + + + + + + + + + + + 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 9500.000 to Point/Station 9502.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = 32.000(Ft.) Highest elevation = 73.750(Ft.) Lowest elevation = 72.700(Ft.) Elevation difference = 1.050(Ft.) Slope = 3.281 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80.00 (Ft) for the top area slope value of 3.28 %, in a development type of General Industrial In Accordance With Figure 3-3 Initial Area Time of Concentration = 2.49 minutes TC = [l.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1 8*(1.1-0.8700)*( 80.000*.5)/( 3.281*(1/3)]= 2.49 Rainfall intensity (I) = 10.734(In/Hr) for a 100.0 year storra Effective runoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea runoff = 0.093(CFS) Total initial streara area = 0.010(Ac.) Page 1 of 10 + + + + + + + + + + + ++ + 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 9502.000 to Point/Station 9504.000 **** STREET FLOW TRAVEL TIME 4- SUBAREA FLOW ADDITION **** Top of Street segment elevation = 72.700(Ft.) End of street segment elevation = 66.060(Ft.) Length of street segment = 640.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 40.000(Ft.) Distance from crown to crossfall grade break = 38.500(Ft.) Slope frora gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance frora curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Manning's N in gutter = 0.0150 Manning's N frora gutter to grade break = 0.0150 Marming's N frora grade break to crown = 0.0150 Estiraated raean flow rate at midpoint of street = 2.949(CFS) Depth of flow = 0.351(Ft.), Average velocity = 2.357(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 10.717(Ft.) Flow velocity = 2.36(Ft/s) Travel tirae = 4.52 rain. TC = 7.02 rain. Adding area flow to street Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Rainfall intensity = 5.505(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.870 CA = 1.070 Subarea runoff = 5.798(CFS) for 1.220(Ac.) Total runoff = 5.891(CFS) Total area = 1.230(Ac.) Street flow at end of street = 5.891(CFS) Half street flow at end of street = 5.891(CFS) Depth of flow = 0.421(Ft.), Average velocity = 2.782(Ft/s) Flow width (from curb towards crown)= 14.195(Ft.) + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 9502.000 to Point/Station 9504.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in normal stream nuraber 1 Streara flow area = 1.23 0(Ac.) Runoff from this stream = 5.891(CFS) Tirae of concentration = 7.02 rain. Rainfall intensity = 5.505(In/Hr) + + + + + + + + + + + + + + + + + + + 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Page 2 of 10 Process from Point/Station 9506.000 to Point/Station 9508.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Irapervious value, Ai = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = 51.000(Ft.) Highest elevation = 73.080(Ft.) Lowest elevation = 71.960(Ft.) Elevation difference = 1.120(Ft.) Slope = 2.196 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaxiraum overland flow distance is 70.00 (Ft) for the top area slope value of 2.20 %, in a developraent type of General Industrial In Accordance With Figure 3-3 Initial Area Tirae of Concentration = 2.66 minutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(l.l-0.8700)*( 70.000*.5)/( 2.196*(1/3)]= 2.66 Rainfall intensity (I) = 10.280(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea runoff = 0.089(CFS) Total initial streara area = 0.010(Ac.) + + + + + + + + + + + + 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 9508.000 to Point/Station 9504.000 **** STREET FLOW TRAVEL TIME 4- SUBAREA FLOW ADDITION **** Top of Street segment elevation = 71.960(Ft.) End of street segment elevation = 66.060(Ft.) Length of street segment = 390.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 40.000(Ft.) Distance frora crown to crossfall grade break = 38.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope frora curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike frora flowline = 2.000(In.) Marming's N in gutter = 0.0150 Marming's N frora gutter to grade break = 0.0150 Marming's N frora grade break to crown = 0.0150 Estiraated raean flow rate at raidpoint of street = 3.095(CFS) Depth of flow = 0.339(Ft.), Average velocity = 2.754(Ft/s) Streetflow hydraulics at raidpoint of street travel: Halfstreet flow width = 10.105(Ft.) Flow velocity = 2.75(Ft/s) Travel tirae = 2.3 6 rain. TC = 5.02 min. Adding area flow to street Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 Page 3 of 10 [INDUSTRIAL area type ] (General Industrial ) Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Rainfall intensity = 6.829(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.870 CA = 0.905 Subarea runoff = 6.089(CFS) for 1.03 0(Ac.) Total rimoff = 6.178(CFS) Total area = 1.040(Ac.) Street flow at end of street = 6.178(CFS) Half street flow at end of street = 6.178(CFS) Depth of flow = 0.405(Ft.), Average velocity = 3.247(Ft/s) Flow width (from curb towards crown)= 13.418(Ft.) + + + + + + + + + + + + + + + + 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 9508.000 to Point/Station 9504.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 1 in norraal stream nuraber 2 Streara flow area = 1.040 (Ac.) Runoff from this stream = 6.178(CFS) Time of concentration = 5.02 min. Rainfall intensity = 6.829(In/Hr) Suraraary of streara data: Streara Flow rate TC Rainfall Intensity No. 1 2 Qraax(1) = Qmax(2) = (CFS) (rain) (In/Hr) 5.891 7.02 5.505 6.178 5.02 6.829 1.000 * 1.000 * 5.891) -H 0.806 * 1.000 * 6.178) -H = 10.873 1.000 * 0.716 * 5.891) -H 1.000 * 1.000 * 6.178) 4- = 10.397 Total of 2 strearas to confluence: Flow rates before confluence point: 5.891 6.178 Maxiraura flow rates at confluence using above data: 10.873 10.397 Area of strearas before confluence: 1.230 1.040 Results of confluence: Total flow rate = 10.873(CFS) Tirae of concentration = 7.017 min. Effective stream area after confluence = 2.270(Ac.) + + + + + + + + + + + + 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 9504.000 to Point/Station 9510.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstreara point/station elevation = 60.690(Ft.) Downstream point/station elevation = 60.570(Ft.) Pipe length = 24.25(Ft.) Marming's N = 0.013 No. of pipes = 1 Required pipe flow = 10.873(CFS) Page 4 of 10 Given pipe size = 36.00(In.) Calculated individual pipe flow = 10.873(CFS) Norraal flow depth in pipe = 11.79(In.) Flow top width inside pipe = 33.79(In.) Critical Depth = 12.52(In.) Pipe flow velocity = 5.40(Ft/s) Travel tirae through pipe = 0.07 rain. Time of concentration (TC) = 7.09 min. + + + + + + + + + + + + + + + 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 9504.000 to Point/Station 9510.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Streara is listed: In Main Streara nuraber: 1 Streara flow area = 2.270(Ac.) Rimoff from this stream = 10.873(CFS) Time of concentration = 7.09 rain. Rainfall intensity = 5.468(In/Hr) Prograra is now starting with Main Streara No. 2 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 9500.000 to Point/Station 9512.000 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Irapervious value, Ai = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = 32.000(Ft.) Highest elevation = 73.750(Ft.) Lowest elevation = 72.700(Ft.) Elevation difference = 1.050(Ft.) Slope = 3.281 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaxlraura overland flow distance is 80.00 (Ft) for the top area slope value of 3.28 %, in a developraent type of General Industrial In Accordance With Figure 3-3 Initial Area Tirae of Concentration = 2.49 minutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/{% slope*(l/3)] TC = [1.8*(1.1-0.8700)*( 80.000*.5)/( 3.281*(1/3)]= 2.49 Rainfall intensity (I) = 10.734(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea runoff = 0.093(CFS) Total initial streara area = 0.010(Ac.) + + + + + + + + + + + + + + + + 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 9512.000 to Point/Station 9514.000 **** STREET FLOW TRAVEL TIME 4- SUBAREA FLOW ADDITION **** Top of street segraent elevation = 72.700(Ft.) End of street segraent elevation = 66.060(Ft.) Length of street segment = 640.000(Ft.) Page 5 of 10 Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 40.000(Ft.) Distance from crown to crossfall grade break = 38.500(Ft.) Slope frora gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike from flowline = 2.000(In.) Marming's N in gutter = 0.0150 Manning's N from gutter to grade break = 0.0150 Manning's N from grade break to crown = 0.0150 Estimated mean flow rate at midpoint of street = 2.483(CFS) Depth of flow = 0.336(Ft.), Average velocity = 2.264(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 9.971(Ft.) Flow velocity = 2.26(Ft/s) Travel time = 4.71 min. TC = 7.20 rain. Adding area flow to street Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Rainfall intensity = 5.413(In/Hr) for a 100.0 year storm Effective rimoff coefficient used for total area (Q=KCIA) is C = 0.870 CA = 0.914 Subarea runoff = 4.852(CFS) for 1.040(Ac.) Total runoff = 4.945(CFS) Total area = 1.050(Ac.) Street flow at end of street = 4.945(CFS) Half street flow at end of street = 4.945(CFS) Depth of flow = 0.401(Ft.), Average velocity = 2.667(Ft/s) Flow width (frora curb towards crown)= 13.236(Ft.) + + + + + + + + + + + + + + + + + + + + 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 9512.000 to Point/Station 9514.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 1.050(Ac.) Runoff from this stream = 4.945(CFS) Time of concentration = 7.20 rain. Rainfall intensity = 5.413(In/Hr) + + + + + + + + + + + + + +4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 9506.000 to Point/Station 9516.000 **** INITIAL AREA EVALUATION **** Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Page 6 of 10 Irapervious value, Ai = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = 41.000(Ft.) Highest elevation = 73.200(Ft.) Lowest elevation = 72.750(Ft.) Elevation difference = 0.450(Ft.) Slope = 1.098 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaxlraura overland flow distance is 60.00 (Ft) for the top area slope value of 1.10 %, in a developraent type of General Industrial In Accordance With Figure 3-3 Initial Area Time of Concentration = -3.11 rainutes TC = [1.8*(1.1-C)*distance(Ft.)*.5)/(% slope*(l/3)] TC = [1.8*(l.l-0.8700)*( 60.000*.5)/( 1.098*(1/3)]= 3.11 Rainfall intensity (I) = 9.308(In/Hr) for a 100.0 year storm Effective rimoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea nmoff = 0.081 (CFS) Total initial streara area = 0.010(Ac.) + + + + + + + + + + + + + + + + + + + 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 9516.000 to Point/Station 9514.000 **** STREET FLOW TRAVEL TIME 4- SUBAREA FLOW ADDITION **** Top of Street segraent elevation = 72.750(Ft.) End of street segraent elevation = 66.060(Ft.) Length of street segraent = 570.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 40.000(Ft.) Distance frora crown to crossfall grade break = 38.500(Ft.) Slope frora gutter to grade break (v/hz) = 0.020 Slope frora grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width = 1.500(Ft.) Gutter hike frora flowline = 2.000(In.) Marming's N in gutter = 0.0150 Marming's N frora gutter to grade break = 0.0150 Manning's N frora grade break to crown = 0.0150 Estiraated mean flow rate at midpoint of street = 1.823(CFS) Depth of flow = 0.307(Ft.), Average velocity = 2.212(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width = 8.497(Ft.) Flow velocity = 2.21(Ft/s) Travel time = 4.3 0 min. TC = 7.40 min. Adding area flow to street Deciraal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Irapervious value, Ai = 0.950 Sub-Area C Value = 0.870 Rainfall intensity = 5.318(In/Hr) for a 100.0 year storra Effective rimoff coefficient used for total area (Q=KCIA) is C = 0.870 CA = 0.687 Subarea runoff = 3.574(CFS) for 0.780(Ac.) Total runoff = 3.655(CFS) Total area = 0.790(Ac.) Page 7 of 10 street flow at end of street = 3.655(CFS) Half street flow at end of street = 3.655(CFS) Depth of flow = 0.365(Ft.), Average velocity = 2.600(Ft/s) Flow width (frora curb towards crown)= 11.417(Ft.) + + + + + + + + + + + + 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 9516.000 to Point/Station 9514.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara nuraber: 2 in norraal streara nuraber 2 Streara flow area = 0.790(Ac.) Runoff from this streara = 3.655(CFS) Tirae of concentration = 7.40 rain. Rainfall intensity = 5.318(In/Hr) Summary of stream data: Streara No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 2 Qmax(1) Qmax(2) 4.945 3 .655 7 .20 7 .40 5.413 5.318 1.000 * 1.000 * 0.982 * 1.000 * 1.000 * 0.973 * 1.000 * 1.000 * 4.945) -H 3.655) + 4.945) 3.655) 8.501 8 .513 Total of 2 strearas to confluence: Flow rates before confluence point: 4.945 3.655 Maxiraum flow rates at confluence using above data: 8.501 8.513 Area of streams before confluence: 1.050 0.790 Results of confluence: Total flow rate = 8.513(CFS) Time of concentration = 7.404 rain. Effective streara area after confluence = 1.840(Ac.) + + + + + + + + + + + + + + + 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 9514.000 to Point/Station 9510.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 60.920(Ft.) Downstreara point/station elevation = 60.570(Ft.) Pipe length = 70.25(Ft.) Marming's N = 0.013 No. of pipes = 1 Required pipe flow = 8.513(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 8.513(CFS) Normal flow depth in pipe = 10.37(In.) Flow top width inside pipe = 32.60(In.) Critical Depth = 11.03(In.) Pipe flow velocity = 5.05(Ft/s) Travel time through pipe = 0.23 rain. Time of concentration (TC) = 7.64 rain. Page 8 of 10 + + + + + + + + + + 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 9514.000 to Point/Station 9510.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Streara is listed: In Main Streara nuraber: 2 Streara flow area = 1.840(Ac.) Rimoff frora this streara = 8.513(CFS) Tirae of concentration = 7.64 rain. Rainfall intensity = 5.213(In/Hr) Suramary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) m Qraax(1) Qmax(2) 10.873 8.513 000 000 0.953 * 1.000 * 7.09 7.64 1.000 * 0.929 * 1.000 * 1.000 * 5.468 5.213 10.873) -H 8.513) -H 10.873) 4- 8.513) 4- 18.779 18.879 Total of 2 main streams to confluence: Flow rates before confluence point: 10.873 8.513 Maxiraura flow rates at confluence using above data: 18.779 18.879 Area of strearas before confluence: 2.270 1.840 Results of confluence: Total flow rate = 18.879(CFS) Tirae of concentration = 7.636 rain. Effective streara area after confluence = 4.110(Ac.) + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 9510.000 to Point/Station 9518.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 60.240(Ft.) Downstream point/station elevation = 59.990(Ft.) Pipe length = 50.79(Ft.) Marming's N = 0.013 No. of pipes = 1 Required pipe flow = 18.879(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 18.879(CFS) Norraal flow depth in pipe = 15.91(In.) Flow top width inside pipe = 35.76(In.) Critical Depth = 16.71(In.) Pipe flow velocity = 6.27(Ft/s) Travel tirae through pipe = 0.14 rain. Tirae of concentration (TC) = 7.77 rain. + + + + + + 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Page 9 of 10 Process frora Point/Station 9518.000 to Point/Station 9520.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstreara point/station elevation = 58.660(Ft.) Downstreara point/station elevation = 58.000(Ft.) Pipe length = 131.28(Ft.) Marming's N = 0.013 No. of pipes = 1 Required pipe flow = 18.879(CFS) Given pipe size = 48.00(In.) Calculated individual pipe flow = 18.879(CFS) Normal flow depth in pipe = 13.99(In.) Flow top width inside pipe = 43.63(In.) Critical Depth = 15.30(In.) Pipe flow velocity = 6.19(Ft/s) Travel time through pipe = 0.35 min. Time of concentration (TC) = 8.12 min. End of computations, total study area = 4.110 (Ac.) Page 10 of 10 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7.4 Rational method hydrology prograra based on San Diego County Flood Control Division 2003 hydrology raanual Rational Hydrology Study Date: 07/12/06 Robertson Ranch East Village Proposed Conditions (Ultiraate) Basin K 7-12-06 File:gsitk.out ********* Hydrology Study Control Inforraation ********** Prograra License Serial Number 5007 Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.500 P6/P24 = 57.8% San Diego hydrology manual 'C' values used 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 9600.000 to Point/Station 9602.000 **** INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 24.000(Ft.) Highest elevation = 98.000(Ft.) Lowest elevation = 86.000(Ft.) Elevation difference = 12.000(Ft.) Slope = 50.000 % Top of Initial Area Slope adjusted by User to 30.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The raaximum overland flow distance is 100.00 (Ft) for the top area slope value of 3 0.00 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Tirae of Concentration = 3.07 rainutes TC = [1.8*(l.l-C)*distance(Ft.)*.5)/(% slope*<l/3)] TC = [1.8*(1.1-0.5700)*( 100.000*.5)/( 30.000*(1/3)]= 3.07 Rainfall intensity (I) = 9.383(In/Hr) for a 100.0 year storm Effective rimoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.535(CFS) Page 1 of 2 Total initial streara area = 0.100(Ac.) 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-+ 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 9602.000 to Point/Station 9604.000 **** IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 86.000(Ft.) Downstream point elevation = 67.000(Ft.) Charmel length thru subarea = 355.000(Ft.) Channel base width = 1.000(Ft.) Slope or 'Z' of left charmel bank = 1.000 Slope or 'Z' of right charmel bank = 1.000 Estiraated raean flow rate at midpoint of charmel = 1.256(CFS) Marming's 'N' = 0.015 Maximura depth of charmel = 1.000(Ft.) Flow(q) thru subarea = 1.256(CFS) Depth of flow = 0.175 (Ft.), Average velocity = 6.107(Ft/s) Charmel flow top width = 1.350(Ft.) Flow Velocity = 6.11(Ft/s) Travel tirae = 0.97 rain. Tirae of concentration = 4.04 min. Critical depth = 0.328(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Irapervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 7.861(In/Hr) for a 100.0 year storra Effective nmoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.239 Subarea rimoff = 1.347(CFS) for 0.320(Ac.) Total runoff = 1.882(CFS) Total area = 0.420(Ac.) Depth of flow = 0.222(Ft.), Average velocity = 6.939(Ft/s) Critical depth = 0.414(Ft.) 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 9604.000 to Point/Station 9606.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 63.000(Ft.) Downstream point/station elevation = 56.710(Ft.) Pipe length = 37.51(Ft.) Marming's N = 0.013 No. of pipes = 1 Required pipe flow = 1.882(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.882(CFS) Norraal flow depth in pipe = 2.57(In.) Flow top width inside pipe = 12.58(In.) Critical Depth = 6.19(In.) Pipe flow velocity = 12.19(Ft/s) Travel tirae through pipe = 0.05 min. Time of concentration (TC) = 4.09 min. End of computations, total study area = 0.420 (Ac.) Page 2 of 2 SECTION 6 SECTION 7 ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * Line A * * Robertson Ranch East Village * * Improveraent Plans * ************************************************************************** FILE NAME: LINE-A.DAT TIME/DATE OF STtJDY: 14:46 12/05/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) NODE NUMBER 2210.00- 2190 .50 2190.00 2188.50 2188.00 2186.50 2186.00 2184 . 50 2184 .00 2182.50 2182.00 2104.50 2104.00 2173.50 2173.00 5.93* 4537.07 5.98* 4437.68 } HYDRAULIC JUMP 4055.93 UPSTREAM RUN MODEL PRESSURE PRESSURE4- PROCESS HEAD(FT) MOMENTUM(POUNDS) 6.27* 4805.86 FRICTION JUNCTION FRICTION MANHOLE FRICTION MANHOLE FRICTION MANHOLE FRICTION MANHOLE FRICTION JUNCTION FRICTION MANHOLE FRICTION 5.50 5.21 2.91 DC 2.91 Dc 2.91 Dc 2.91 Dc 2.91 Dc 2.91 Dc 2.91*Dc 3830 .02 2477.25 2477 .25 2477 .25 2477.25 2477.25 2477.25 2477.25 4.30* 1568.87 } HYDRAULIC JUMP 1.92 Dc 742.06 DOWNSTREAM RUN FLOW PRESSURE4- DEPTH(FT) MOMENTUM(POUWDS) 3029.54 1.92 Dc 742.06 2.17 2 .06 1.71 1.44* 1.43* 1.58* 1.58* 1.54* 1.54* 1.60* 1.60* 2.91*Dc 1.00 1.13* 1.16* 3162.77 3458.06 4222.84 4241.68 3766.24 3760.45 3890.33 3891.65 3716.74 3708.01 2477.25 1192.37 1035.56 1008.10 Page 1 of 9 2172.50- 1.92*Dc 742.06 1.92*Dc 742.06 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2210.00 FLOWLINE ELEVATION = 42.63 PIPE FLOW = 97.22 CFS PIPE DIAMETER = 48.00 INCHES ASStJMED DOWNSTREAM CONTROL HGL = 48.900 FEET NODE 2210.00 : HGL = < 48.900>;EGL= < 49.829>;FLOWLINE= < 42.630> ****************************************************************************** FLOW PROCESS FROM NODE 2210.00 TO NODE 2190.50 IS CODE = 1 UPSTREAM NODE 2190.50 ELEVATION = 43.26 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 97.22 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 62.70 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 97.22)/( 1436.441))**2 = 0.00458 HF=L*SF = ( 62 . 70)* (0.00458) = 0.287 NODE 2190.50 : HGL = < 49.187>;EGL= < 50.117>;FLOWLINE= < 43.260> ****************************************************************************** FLOW PROCESS FROM NODE 2190.50 TO NODE 2190.00 IS CODE = 5 UPSTREAM NODE 2190.00 ELEVATION = 43.59 (FLOW IS UNDER PRESSURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 92.31 48.00 0.00 43.59 2.91 7.346 DOWNSTREAM 97.22 48.00 - 43.26 2.99 7.737 LATERAL #1 2.02 18.00 90.00 43.42 0.54 1.143 LATERAL #2 2.88 18.00 90.00 43.42 0.64 1.630 Q5 0.01===Q5 EQUALS BASIN INPUT=== JTJNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00413 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00458 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00435 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.017 FEET ENTRANCE LOSSES = 0.186 FEET JUNCTION LOSSES = (TRANSITION LOSS) 4-(FRICTION LOSS) 4-(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.091)-H( 0.017) 4-( 0.186) = 0.295 NODE 2190.00 : HGL = < 49.573>;EGL= < 50.411>;FLOWLINE= < 43.590> ****************************************************************************** FLOW PROCESS FROM NODE 2190.00 TO NODE 2188.50 IS CODE = 1 UPSTREAM NODE 2188.50 ELEVATION = 44.45 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 92.31 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 90.36 FEET MANNING'S N = 0.01300 Page 2 of 9 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) 2.37 CRITICAL DEPTH(FT) = 2.91 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.44 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE4- CONTROL(FT) (FT) (FT/SEC) ENERGY (FT) MOMENTUM(POUNDS) 0 .000 1.435 22 755 9 481 4222 84 11 . 916 1.473 21 976 8 977 4093 06 23 . 974 1.510 21 245 8 523 3972 18 36 . 190 1.548 20 558 8 114 3859 48 48 .580 1.585 19 911 7 745 3754 34 61 . 163 1.622 19 301 7 410 3656 17 73 . 962 1.660 18 725 7 108 3564 .46 87 . 003 1.697 18 181 6 833 3478 .76 90 .360 1.706 18 048 6 768 3458 06 HYDRAULIC JtJMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 5.98 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0. 000 90.360 PRESSURE VELOCITY SPECIFIC HEAD(FT) (FT/SEC) ENERGY(FT) 5.983 7.346 6.821 5.497 7.346 6.335 END OF HYDRAULIC JUMP ANALYSIS- PRESSURE4-M0MENTUM BALANCE OCCURS AT 79.32 FEET UPSTREAM OF NODE 2190.00 DOWNSTREAM DEPTH = 5.556 FEET, UPSTREAM CONJUGATE DEPTH = 1.470 FEET PRESSURE4- MOMENTUM(POUNDS) 4437.68 4055.93 NODE 2188.50 : HGL 45.885>;EGL= < 53.931>;FLOWLINE= < 44.450> ****************************************************************************** FLOW PROCESS FROM NODE 2188.50 TO NODE 2188.00 IS CODE = 2 UPSTREAM NODE 2188.00 ELEVATION = " 44.78 (FL'OW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 92.31 CFS PIPE DIAMETER = 48.00 INCHES AVERAGED VELOCITY HEAD = 8.085 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05* ( 8.085) = 0.404 NODE 2188.00 : HGL = < 46.210>;EGL= < 54.336>;FLOWLINE= < 44.780> ****************************************************************************** FLOW PROCESS FROM NODE 2188.00 TO NODE 2186.50 IS CODE = 1 UPSTREAM NODE 2186.50 ELEVATION = 52.53 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 92.31 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 124.17 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1.38 CRITICAL DEPTH(FT) = 2.91 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.58 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: Page 3 of 9 DISTANCE FROM CONTROL(FT) 0.000 3 .148 6.462 9.957 13.650 17.559 21.709 26.125 30.839 35.885 41.308 47.161 53.507 60 .426 68.017 76.412 85.778 96 .346 108 .440 122 .531 124.170 FLOW DEPTH (FT) 1.581 1, 1. 1. 1, 1, 1, 1, 1. 1. 1. 1, 1, 1. .573 ,565 ,557 , 549 .541 .533 .525 ,518 ,510 ,502 .494 .486 .478 1.470 1.462 1.455 1.447 1.439 1.431 1.430 VELOCITY (FT/SEC) 19.984 20.118 20.254 20.391 20.531 20.672 20.814 20.959 21.105 21.254 21.404 21.557 21.711 21.867 22.026 22.187 22.349 22.514 22.682 22.851 22.868 SPECIFIC ENERGY(FT) 7.786 7.861 7.939 8.018 8.098 8.181 8.265 8.351 8.439 8.528 8.620 8.714 8.810 8.908 .008 .111 ,216 ,323 9.432 9.544 9.556 9. 9, 9. 9. PRESSURE4- MOMENTUM(POUNDS) 3766.24 -3787.96 3810.00 3832 .36 3855.06 3878.08 3901.45 3925.16 3949.22 3973.64 3998.42 4023.57 4049.09 4075.00 4101.30 4128.00 4155.10 4182.61 4210.54 4238.90 4241.68 NODE 2186.50 : HGL = < 54.111>;EGL= < 60.316>;FLOWLINE= < 52.530> (***************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 2186.00 2186.50 TO NODE ELEVATION = 2186.00 IS CODE = 2 52.86 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 92.31 CFS PIPE DIAMETER = 48.00 INCHES AVERAGED VELOCITY HEAD = 6.194 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05*( 6.194) = 0.310 NODE 2186.00 : HGL = < 54.443>;EGL= < 60.626>;FLOWLINE= < 52.860> ****************************************************************************** FLOW PROCESS FROM NODE 2186.00 TO NODE 2184.50 IS CODE = 1 UPSTREAM NODE 2184.50 ELEVATION = 53.87 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 92.31 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 36.85 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.73 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.54 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.91 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE-H CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNDS) 0 .000 1.537 20 .746 8 .225 3890.33 5.696 1.545 20.607 8.143 3867.57 11.586 1.552 20.470 8.063 3845.13 17.688 1.560 20 .334 7 . 985 3823.01 24.023 1.568 20.200 7.908 3801.20 30.612 1. 576 20.067 7 . 833 3779.70 Page 4 of 9 36.850 1.583 19.948 7.766 3760.45 NODE 2184.50 : HGL = < 55.407>;EGL= < 62.095>;FLOWLINE= < 53.870> *****************************************************^^*^^n,^t^jt^jt^j^^t^^j^^^^^^^^^^j^ FLOW PROCESS FROM NODE UPSTREAM NODE 2184.00 2184.50 TO NODE ELEVATION = 2184.00 IS CODE = 2 54.20 (FLOW IS SUPERCRITICAL) PIPE DIAMETER CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 92.31 CFS AVERAGED VELOCITY HEAD = 6.690 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05*( 6.690) 48.00 INCHES 0.335 NODE 2184.00 : HGL = < 55.737>;EGL= < 62.429>;FLOWLINE= < 54.200> *****************************************************^^**^t^^t^^^^t^^^^^^^t^^^^^^^j^^ FLOW PROCESS FROM NODE 2184.00 TO NODE 2182.50 IS CODE = 1 UPSTREAM NODE 2182.50 ELEVATION = 57.26 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 92.31 CFS PIPE PIPE LENGTH = 61.77 FEET DIAMETER = 48.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.47 CRITICAL DEPTH(FT) = 2.91 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.60 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE4- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUN 0. 000 1 . 599 19 678 7 . 615 3716 . 74 3 . 608 1 .594 19 762 7 . 662 3730 .29 7 . 392 1 .589 19 847 7 . 709 3743 .97 11. 368 1 .584 19 932 7 . 756 3757 .78 15. 555 1 .579 20 018 7 . 805 3771 .72 19. 972 1 . 573 20 105 7 . 854 3785 .80 24 . 644 1 .568 20 192 7 . 904 3800 .00 29. 598 1 .553 20 281 7. 954 3814 .34 34. 867 1 .558 20 370 8. 005 3828 .81 40. 489 1 .553 20 459 8. 057 3843 .42 46 . 510 1 . 548 20 550 8 . 109 3858 . 17 52 . 984 1 .543 20 641 8 . 163 3873 . 06 59 . 980 1 .538 20 733 8. 217 3888 . 09 61. 770 1 .537 20 755 8. 229 3891 .65 NODE 2182 .50 HGL = < 58. 859>;EGL= < 64.875>;FLOWLINE= < 57. 260 *****************************************«*******,****jj,jtjt^^t^^j^^m.^^j^,j^^^^^.i^.n^^^^^^ FLOW PROCESS FROM NODE 2182.50 TO NODE 2182.00 IS CODE = 2 UPSTREAM NODE 2182.00 ELEVATION = 57.59 (FLOW IS SUPERCRITICAL) 48.00 INCHES CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 92.31 CFS PIPE DIAMETER AVERAGED VELOCITY HEAD = 6.000 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05*( 6.000) = 0.300 NODE 2182.00 : HGL = < 59.192>;EGL= < 65.176>;FLOWLINE= < 57.590> ***************************************************jHHHH,^m^jtj,^^^j,^jj^,|l,^,|^,|^,j^,(^^^^.^j^^ Page 5 of 9 FLOW PROCESS FROM NODE 2182.00 TO NODE 2104.50 IS CODE = 1 UPSTREAM NODE 2104.50 ELEVATION = 65.08 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 92.31 CFS PIPE PIPE LENGTH = 164.82 FEET DIAMETER = 48.00 INCHES' MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.51 CRITICAL DEPTH(FT) = 2.91 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1 II 1 1 IO 1 1 vo II 1 H-" II GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 .000 0.056 0.233 0.543 1.003 1.631 2.448 3 .479 4.754 6.310 8 .188 10.442 13 .138 16.356 20.200 24.806 30.350 37 .077 45.327 55.603 68 .687 85.890 109.677 145.589 164.820 FLOW DEPTH (FT) 2 . 913 856 800 744 688 631 575 519 463 2 .406 2 .350 294 237 181 125 069 012 956 900 844 787 731 675 619 602 VELOCITY (FT/SEC) 9.414 9. 9. .612 .821 10.043 10 .278 10.528 10.792 11.072 11.369 11.686 12.022 12 .380 12.762 13.170 13.605 14.072 14.572 15.108 15.686 16.308 16.981 17.709 18.499 19.358 19.624 SPECIFIC ENERGY(FT) 4.290 4.292 4 .299 4 .311 4.329 4.353 4.385 4 .423 4.471 4.528 4 . 4 . 4 , 4 . 5, 5, 5, 5 . 5 . 5 . 6 , 6. 6 . 7 . 7 , ,596 .675 .768 ,876 .001 ,145 ,312 ,503 ,723 ,976 .268 .604 , 992 .441 .586 PRESSURE4- MOMENTUM(POUNDS) 2477 .25 2478.60 2482.75 2489.84 2500.01 2513.44 2530.31 2550.82 2575.19 2603.67 2636.53 2674.07 2716.63 2764.57 2818.32 2878 .34 2945.17 3019.39 3101.68 3192.82 3293.67 3405.24 3528.69 3665 .36 3708.01 NODE 2104.50 : HGL = < 67.993>;EGL= < 69.370>;FLOWLINE= < 65.080> **************************************«****^nn^*^n^^^*jt^^^^^^^^^^^^^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 2104.50 TO NODE 2104.00 IS CODE = 5 UPSTREAM NODE 2104.00 ELEVATION = 66.08 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 34.85 92 .31 49.39 8.12 DIAMETER (INCHES) 36 .00 48.00 36.00 18.00 ANGLE (DEGREES) 0.00 90.00 90.00 FLOWLINE ELEVATION 66 .08 65.08 66 .08 66.08 CRITICAL DEPTH(FT.) 1.92 2 .91 2 .29 1.10 0.00===Q5 EQUALS BASIN INPUT=== VELOCITY (FT/SEC) 4.930 9.417 6.987 4.595 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00273 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00533 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00403 Page 6 of 9 JUNCTION LENGTH FRICTION LOSSES JUNCTION LOSSES JUNCTION LOSSES 4.00 FEET 0.016 FEET ENTRANCE LOSSES = 0.000 FEET (TRANSITION LOSS) 4-(FRICTION LOSS) 4-(ENTRANCE LOSSES) ( 1.374)4-( 0.016)4-( 0.000) = 1.390 NODE 2104.00 : HGL = < 70.382>;EGL= < 70.759>;FLOWLINE= < 66.080> ************************************************jt^t*^t^^^j^^tj^^^^^^^^^^j^^^^^^^^^^^^ FLOW PROCESS FROM NODE 2104.00 TO NODE 2173.50 IS CODE = 1 UPSTREAM NODE 2173.50 ELEVATION = 70.70 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 34.85 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 86.67 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.97 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.13 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.92 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE4- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 1 .132 14 .264 4 .294 1035 56 1 .847 1 .126 14 .375 4 .337 1042 .07 3 .797 1 .119 14 488 4 .381 1048 .69 5 .858 1 .113 14 602 4 426 1055 .43 8 .042 1 .106 14 718 4 472 1062 30 10 .359 1 .100 14 835 4 520 1069 29 12 .826 1 .093 14 955 4 568 1076 40 15 .457 1 . 087 15 076 4 618 1083 64 18 .272 1 .080 15 199 4 670 1091 01 21 .293 1 . 074 15 323 4 722 1098 51 24 .547 1 .057 15 450 4 776 1106 15 28 . 068 1 .061 15 579 4 832 1113 93 31 . 894 1 .055 15 709 4 889 1121 85 36 . 075 -1 .048 15 842 4 9^47 1129 91 40 .674 1 .042 15 976 5 007 1138 12 45 .771 1 .035 16 113 5 069 1146 47 51 .470 1 . 029 16 252 5 132 1154 99 57 .915 1 . 022 16 393 5 198 1163 65 65 .307 1 .016 16 536 5 264 1172 48 73 .939 1 . 009 16 682 5 333 1181 47 84 .266 1 .003 16 830 5 404 1190 63 86 .670 1 .001 16 858 5 417 1192 37 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 4.30 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE4- CONTROL(FT) HEAD (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 4.302 4 .930 4 .679 1568.87 25.744 3.000 4 .930 3 .377 994.59 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 3.00 Page 7 of 9 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 25.744 26.555 27.325 28.070 28.794 29.497 30.182 30.849 31.496 32.125 FLOW DEPTH (FT) 32 , 33 , 33 , 34, 34, 734 322 889 432 951 35.443 35.906 36.338 36.736 37.097 37.417 37.691 37.916 38.085 38.192 38.230 86.670 3 2 2 2 2 2, 2, 2 , 2, 2. 2, 2. 2, 2. 2 , 2, 2. 2. 2 . 2, 2 . 2. 2, 2 . 1. 1. 1. 000 957 913 870 827 784 740 697 654 611 567 524 481 437 394 351 308 264 221 178 134 091 048 005 961 918 918 VELOCITY (FT/SEC) 4.929 4. 4 . 5. 5. 5. SPECIFIC ENERGY(FT) 3 .377 ,943 ,970 ,004 ,045 ,093 .145 .203 .267 .336 .410 .489 .574 .664 ,760 ,863 .972 ,087 ,209 ,339 ,477 ,622 ,777 ,941 ,116 ,301 ,301 3 3 3 3 3 3 3 , 3 , 3 , 3 , 2, 2, 2. 2 , 2. 2, 2 , 2 , 2 , 2 . 2. 2. 2 . 2 . 2 . 2. 336 297 259 222 187 152 118 085 053 022 992 963 936 910 885 862 840 820 802 786 773 762 753 748 746 746 PRESSURE-H MOMENTUM(POUNDS) 994.59 976, 959, 942. 926. 911.44 896.63 882, 868, 855, 843 , 831, 819, 809.23 799.27 789.99 781, 773 , 766 , 760, 754 , 750.45 746.86 744 .23 742.61 742.06 742.06 ,50 ,30 ,77 ,82 ,37 .68 .57 .06 .15 .87 ,43 ,62 , 58 ,35 ,96 • END OF HYDRAULIC JUMP ANALYSIS PRESSURE4-M0MENTUM BALANCE OCCURS AT 17.59 FEET UPSTREAM OF NODE 2104.00 DOWNSTREAM DEPTH = 3.412 FEET, UPSTREAM CONJUGATE DEPTH = 1.013 FEET NODE 2173.50 : HGL = < 71.832>;EGL= < 74.994>;FLOWLINE= < 70.700> ************«*********************************^tjtjn^^^^j^^-^^^^^^^^^^^^-^^^^^^^^^^^^ FLOW PROCESS FROM NODE 2173.50 TO NODE 2173.00 IS CODE = 2 UPSTREAM NODE 2173.00 ELEVATION = 71.03 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 34.85 CFS PIPE DIAMETER = 36.00 INCHES AVERAGED VELOCITY HEAD = 3.059 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05* ( 3.059) = 0.153 NODE 2173.00 : HGL = < 72.191>;EGL= < 75.147>;FLOWLINE= < 71.030> ********************************************^t**jt^nt^*^^^^^^^^^j^^^^^j^^^^^^^^^^^^^ FLOW PROCESS FROM NODE 2173.00 TO NODE 2172.50 IS CODE = 1 UPSTREAM NODE 2172.50 ELEVATION = 77.01 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 34.85 CFS PIPE PIPE LENGTH = 199.40 FEET DIAMETER = 36.00 INCHES MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.13 CRITICAL DEPTH(FT) = 1. 92 UPSTREAM CONTROL ASStJMED FLOWDEPTH (FT) = 1.92 Page 8 of 9 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 .000 0 .041 0.171 0 .399 0 .735 1.193 1.786 2 .533 3 .453 4 .570 5.914 7 .520 9 .429 11.697 14.392 17.600 21.439 26.065 31.700 38.669 47 .474 58.962 74.718 98.304 141.157 199.400 FLOW DEPTH (FT) 1.918 1. 1. 1. 1, 1. 1. 1, 1. 1, 1, 1, 1, 1, 1, 1, 1, 1. 1 1 1 1 1 1 1 1 887 855 824 792 760 729 697 666 634 603 571 540 508 477 445 414 382 351 319 288 256 225 193 162 161 VELOCITY (FT/SEC) 7.301 7.443 7 .591 7.747 7.910 8.080 8.259 8.446 8.643 8.849 9.066 9.295 9.535 9.788 10.055 10.337 10.635 10.951 11.285 11.639 12.015 12.416 12.842 13.296 13.782 13.792 SPECIFIC ENERGY(FT) 2.746 2 . 2. 2. 2. 2 . 2 , 2 , 2 . 2 , 2 , 2 , 2 , 2, 3 , 3 , 3 , 3 , 3 . 3 , 3 3 3 3 4 4 747 750 756 764 775 789 806 827 851 880 914 952 997 048 106 171 246 329 424 531 651 787 940 113 117 PRESSURE4- MOMENTUM(POUNDS) 742.06 742 .36 743.28 744.85 747.09 750.04 753.72 758.17 763.44 769.56 776.57 784.53 793 .49 803.50 814.64 826.97 840.57 855.53 871.93 889.89 909.51 930.93 954.30 979 .76 1007.51 1008.10 NODE 2172.50 HGL 78.928>;EGL= < 79.756>;FLOWLINE= < 77.010> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2172.50 FLOWLINE ELEVATION = 77.01 ASSUMED UPSTREAM CONTROL HGL = 78.93 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 9 of 9 ******************************************************************^mjtjf^jtjm,^*^* PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * Line A- W Lateral ® 114-20.06 Street 'A' * * Robertson Ranch East Village * * Iraproveraent Plans * *******************************************************jnm**jnntjn^**jt^^m^^^jt FILE NAME: A-LATl.DAT TIME/DATE OF STtJDY: 07:33 06/19/2006 *************************************************************jnm,^nt^^j^^jt^^jt^^^^^ GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE4- FLOW PRESSURE4- NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 2190.00- 5.96* 578.98 0.19 60.87 } FRICTION 2192.00- 2.02* 144.71 0.54 Dc 21.83 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDIiAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ***************************************************************jmjnm,jtjnt**jn^jtjm DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2190.00 FLOWLINE ELEVATION = 43.42 PIPE FLOW = 2.02 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 49.3 80 FEET NODE 2190.00 : HGL = < 49.380>;EGL= < 49.400>;FLOWLINE= < 43.420> ****************************************************************************** FLOW PROCESS FROM NODE 2190.00 TO NODE 2192.00 IS CODE = 1 UPSTREAM NODE 2192.00 ELEVATION = 47.36 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.02 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 4.75 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 2.02)/( 105.097))**2 = 0.00037 HF=L*SF = { 4 .75)* (0 .00037) = 0.002 NODE 2192.00 : HGL = < 49.382>;EGL= < 49.402>;FLOWLINE= < 47.360> Page 1 of 2 ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2192.00 FLOWLINE ELEVATION = 47.36 ASSUMED UPSTREAM CONTROL HGL = 47.90 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS • Page 2 of 2 ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * Line A- E Lateral @ 114-20.06 Street 'A' * * Robertson Ranch East Village * * Improveraent Plans * ************************************************************************** FILE NAME: A-LAT2.DAT TIME/DATE OF STUDY: 07:36 06/19/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE4- FLOW PRESSURE4- NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 2190.00- 5.96* 630.26 0.65 146.39 } FRICTION 2198.00- 4.26* 442.87 1.03 Dc 112.77 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2190.00 FLOWLINE ELEVATION = 43.42 PIPE FLOW = 7.13 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 49.3 80 FEET NODE 2190.00 : HGL = < 49.380>;EGL= < 49.633>;FLOWLINE= < 43.420> ****************************************************************************** FLOW PROCESS FROM NODE 2190.00 TO NODE 2198.00 IS CODE = 1 UPSTREAM NODE 2198.00 ELEVATION = 45.39 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 7.13 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 58.75 FEET MANNING'S N = 0.013 00 SF=(Q/K)**2 = (( 7.13)/( 105.043))**2 = 0.00461 HF=L*SF = ( 58 .75)*(0.00461) = 0.271 NODE 2198.00 : HGL = < 49.651>;EGL= < 49.903>;FLOWLINE= < 45.390> Page 1 of 2 ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2198.00 FLOWLINE ELEVATION = 45.39 ASSUMED UPSTREAM CONTROL HGL = 46.42 FOR DOWNSTREAM RUN ANALYSIS END' OF GRADUALLY VARIED FLOW ANALYSIS • Page 2 of 2 ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software ,(aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * Line B * * Robertson Ranch East Village * * Iraproveraent Plans * ************************************************************************** FILE NAME: LINE-B.DAT TIME/DATE OF STUDY: 15:09 12/05/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN NODE MODEL PRESSURE PRE SSURE 4- NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS 3.11* 1378.90 } HYDRAULIC JUMP 2.29 Dc 2104.00 2090.50 2090.00 2083.50 2083 . 00 2082.50 2082.00 2080 .50 FRICTION JUNCTION FRICTION MANHOLE FRICTION JUNCTION FRICTION 2 .65 2.16 Dc 2.16 Dc 2.16 Dc 2.27 2.06*DC 1188.15 1075 .63 1011.53 1011.53 1011.53 909.47 897 .23 DOWNSTREAM RUN FLOW PRESSURE4- DEPTH(FT) MOMENTUM(POUNDS) 1.89 1249.40 1.81* 1279.82 1.46* 1222.87 1.59* 1140.80 1.73* 1081.80 2.06* 1014.96 1.75* 932.63 2.06*Dc 897.23 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2104.00 FLOWLINE ELEVATION = 66.08 PIPE FLOW = 49.39 CFS PIPE DIAMETER = 36.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 69.190 FEET NODE 2104.00 : HGL = < 69.190>;EGL= < 69.948>;FLOWLINE= < 66.080> Page 1 of 6 ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 2090.50 2104.00 TO NODE ELEVATION = 2090.50 IS CODE. = 1 67.06 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 49.39 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 97.64 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 1.92 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.81 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2.25 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE4- CONTROL(FT) (FT) (FT/SEC) ENERGY FT) MOMENTUM(POUNDS) 0. 000 1. 806 11 . 104 3 722 1279 . 82 3 . 533 1 . 811 11. 071 3 715 1277. 91 7 . 182 1. 815 11 039 3 708 1276 . 04 10 . 955 1 . 820 11 006 3 702 1274 18 14 865 1 . 824 10 974 3 695 1272 35 18 924 1. 829 10 942 3 689 1270 54 23 150 1 833 10 910 3 683 1268 76 27 558 1 838 10 878 3 676 1267 00 32 171 1 842 10 846 3 670 1265 27 37 014 1 847 10 815 3 664 1263 55 42 115 1 851 10 784 3 .658 1261 86 47 510 1 856 10 753 3 .652 1260 20 53 245 1 860 10 723 3 . 647 1258 55 59 372 1 865 10 .692 3 .641 1256 93 65 960 1 869 10 . 662 3 .636 1255 .33 73 . 097 1 874 10 .632 3 .630 1253 .76 80 . 900 1 . 878 10 .602 3 . 625 1252 .20 89 .525 1 .883 10 .572 3 .619 1250 .67 97 . 640 1 .887 10 . 547 3 . 615 1249 .40 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) 3 .11 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE CONTROL(FT) HEAD(FT) 0.000 3.110 24.157 3.000 VELOCITY (FT/SEC) 6 . 987 6.987 SPECIFIC ENERGY(FT) 3 . 868 3 .758 PRESSURE 4- MOMENTUM(POUNDS) 1378.90 1330 .39 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 3 . 00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRE SSURE 4- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 24.157 3 .000 6.985 3 .758 1330 .39 29.596 2 . 972 6.996 3 .732 1318.87 34 .374 2 .943 7.016 3.708 1308.26 38 .796 2 . 915 7 . 042 3 .685 1298 .26 42.952 2 . 886 7.073 3 .663 1288.77 Page 2 of 6 46 . 889 2 . 858 7 . 108 3 643 1279 . 76 50 . 638 2 829 7 . 147 3 623 1271 19 54 . 216 2 801 7 190 3 604 1263 04 57 . 639 2 772 7 237 3 586 1255 30 60 914 2 744 7 286 3 568 • 1247 97 64 047 2 715 7 339 3 552 1241 04 67 042 2 687 7 396 3 536 1234 52 69 899 2 658 7 455 3 522 1228 39 72 618 2 630 7 518 3 508 1222 68 75 195 2 601 7 584 3 495 1217 37 77 626 2 573 7 653 3 483 1212 48 79 905 2 544 7 726 3 471 1208 00 82 024 2 516 7 802 3 461 1203 96 83 972 2 487 7 881 3 .452 1200 35 85 737 2 459 7 964 3 .444 1197 19 87 .303 2 .430 8 050 3 .437 1194 48 88 .651 2 .402 8 . 140 3 .431 1192 23 89 .758 2 .373 8 .233 3 .426 1190 .47 90 .597 2 .345 8 .331 3 .423 1189 .19 91 .133 2 .316 8 .432 3 .421 1188 .41 91 .323 2 .288 8 . 537 3 .420 1188 . 15 97 .640 2 .288 8 .537 3 .420 1188 . 15 END OF HYDRAULIC JUMP ANALYSIS PRESSURE4-M0MENTUM BALANCE OCCURS AT 54.83 FEET UPSTREAM OF DOWNSTREAM DEPTH = 2.795 FEET, UPSTREAM CONJUGATE DEPTH NODE 2104.00 = 1.852 FEET NODE 2090.50 : HGL = < 68.866>;EGL= < 70.782>;FLOWLINE= < 67.060> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 2090.00 2090 .50 TO NODE ELEVATION = 2090.00 IS CODE = 5 67.39 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 43 . 90 49 .39 4 . 89 0.60 DIAMETER (INCHES) 36 .00 36 . 00 18 .00 18 . 00 ANGLE (DEGREES) 0.00 90 . 00 90.00 FLOWLINE ELEVATION 67 .39 67 . 06 67 .23 67.23 CRITICAL DEPTH(FT.) 2.16 2 .29 0 .85 0.29 VELOCITY (FT/SEC) 12.817 11.108 2 . 767 0.340 0.00===Q5 EQUALS BASIN INPUT= JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0, DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0, AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01543 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.062 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (TRANSITION LOSS) 4-(FRICTION LOSS) 4-(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.561) 4-( 0.062) 4-( 0.000) = 0.622 01884 01202 0.000 FEET NODE 2090.00 HGL 68.854>;EGL= < 71.404>;FLOWLINE= < 67.390> ****************************************************************************** FLOW PROCESS FROM NODE 2090.00 TO NODE 2083.50 IS CODE = 1 UPSTREAM NODE 2083.50 ELEVATION = 72.18 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 43.90 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 251.00 FEET MANNING'S N = 0.01300 Page 3 of 6 CRITICAL DEPTH(FT) NORMAL DEPTH(FT) = 1.46 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.59 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2 .16 DISTANCE FROM CONTROL(FT) 0 . 000 2 .508 5.152 7.943 10.896 14.025 17.350 20.892 24.676 28.730 33.091 37.801 42.911 48.486 54.607 61.378 68.938 77.472 87.242 98.629 112.228 129 . 032 150.903 182.028 235 .837 251.000 FLOW DEPTH (FT) 1.594 1 , 1, 1, 1 . 1. 1. 1 , 1 , 1 . 1. 1 , 1, 1 , 1 , ,588 , 583 ,577 , 572 ,567 ,561 ,556 ,550 , 545 .539 ,534 , 529 ,523 ,518 1.512 1.507 1.502 1 .496 1.491 1.485 1 .480 ,474 .469 .464 ,464 VELOCITY (FT/SEC) 11.503 11.552 11.602 11.652 11.702 11.753 11.805 11.856 11.909 11.961 12.015 12 . 068 12.122 12.177 12 .232 12 .288 12 .344 12.401 12.458 12.516 12.574 12 .633 12.692 12.752 12.813 12.813 SPECIFIC ENERGY(FT) 3 .650 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 4 . 4 , 662 674 687 700 713 726 740 754 768 782 797 812 3 . 827 3 . 843 3 .858 .875 .891 908 925 942 960 978 996 014 014 PRESSURE4- MOMENTUM(POUNDS) 1140.80 1143.70 1146 . 63 1149.61 1152.63 1155.70 1158.81 1161.96 1165.16 1168.40 1171.69 1175.03 1178.41 1181.85 1185 . 32 1188.85 1192.43 1196.05 1199.73 1203 .46 1207 .23 1211.06 1214.94 1218 . 88 1222.87 1222 . 87 NODE 2083.50 : HGL = < 73.774>;EGL= < 75.830>;FLOWLINE= < 72.180> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 2083.00 2083 .50 TO NODE ELEVATION = 2083.00 IS CODE = 2 72.51 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 43.90 CFS PIPE DIAMETER = 36.00 INCHES AVERAGED VELOCITY HEAD = 1.871 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = . 05* ( 1.871) = 0 . 094 NODE 2083.00 : HGL = < 74.237>;EGL= < 75.923>;FLOWLINE= < 72.510> r***************************************************************************** FLOW PROCESS FROM NODE 2083.00 TO NODE 2082.50 IS CODE = 1 UPSTREAM NODE 2082.50 ELEVATION = 75.18 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 43.90 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 238.71 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.71 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.06 2 .16 Page 4 of 6 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.681 1.480 2 .408 3 .477 4.702 6.098 7.685 9.484 11.522 13 . 830 16 .446 19.415 22.796 26.660 31.100 36 .238 42 .242 49.342 57.880 68.384 81.738 99.602 125.703 172 . 003 238.710 FLOW DEPTH VELOCITY (FT) 2.056 042 028 015 001 987 974 960 946 933 919 905 892 878 864 851 837 1.823 809 796 782 768 755 741 727 727 (FT/SEC) 8 . 501 8.564 8.629 8 .695 8 .762 8.830 8.900 8 . 971 , 043 , 117 ,192 ,268 , 347 ,426 ,507 ,590 , 675 ,761 , 849 , 938 SPECIFIC ENERGY(FT) 3 .179 9 , 9 , 9, 9 , 9, 9, 9 . 9. 9 , 9 , 9 , 9, 10.030 10 .123 10.218 10 .316 10 .415 10 .417 182 185 189 194 199 204 210 217 224 232 240 249 258 269 280 291 3 .303 3 .317 330 345 361 377 394 413 413 3 . 3 . 3 . 3 , 3 , 3 , 3 , PRESSURE4- MOMENTUM(POUNDS) ' 1014.96 1015.96 1017.10 1018 .37 1019.78 1021.34 1023.04 1024.88 1026.88 1029.02 1031.33 1033.79 1036 .41 1039.19 1042.15 1045.27 1048.57 1052 . 05 1055.70 1059 . 55 1063.58 1067.80 1072.23 1076.85 1081.68 1081.80 NODE 2082.50 : HGL = < 77.236>;EGL= < 78.359>;FLOWLINE= < 75.180> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 2082.00 2082 .50 TO NODE ELEVATION = 2082.00 IS CODE = 5 75.51 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 40 .17 43 . 90 3 . 73 0 .00 36.00 36 . 00 18 .00 0 . 00 0.00 90 . 00 90.00 75 . 51 75 .18 75 .35 75.35 2.06 2 .16 0 .74 0 . 00 9 .405 8 . 504 2 . Ill 0 . 000 0.00===Q5 EQUALS BASIN INPUT=== , 00882 , 00654 0.000 FEET JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0. DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0, AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00768 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.031 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (TRANSITION LOSS) 4-(FRICTION LOSS) 4-(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.241) 4-( 0.031) 4-( 0.000) = 0.272 NODE 2082.00 : HGL = < 77.257>;EGL= < 78.63 0>;FLOWLINE= < 75.510> ****************************************************************************** FLOW PROCESS FROM NODE 2082.00 TO NODE 2080.50 IS CODE = 1 UPSTREAM NODE 2080.50 ELEVATION = 76.02 (FLOW IS SUPERCRITICAL) Page 5 of 6 CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 40.17 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 49.47 FEET MANNING'S N 0.01300 1.66 CRITICAL DEPTH(FT) NORMAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: SPECIFIC 2 . 06 2 . 06 DISTANCE FROM FLOW DEPTH VELOCITY CONTROL(FT) (FT) (FT/SEC) 0 . 000 2 . 064 7 . 746 0 . 051 2 . 047 7 . 814 0 . 211 2 . 031 7 . 882 0 . 490 2 . 015 7 . 953 0 . 898 1 . 999 8 . 024 1. 449 1. 983 8. 098 2 158 1 967 8. 173 3 041 1 951 8 250 4 121 1 935 8 328 5 421 1 919 8 409 6 969 1 903 8 491 8 801 1 887 8 575 10 960 1 871 8 661 13 .499 1 .855 8 749 16 .484 1 .839 8 .839 20 .001 1 .823 8 . 931 24 .165 1 .807 9 . 026 29 . 129 1 .791 9 .122 35 . 109 1 .775 9 .221 42 .420 1 . 759 9 .322 49 .470 1 .747 9 .402 NODE 2080.50 HGL = < 78. 084>;EGL= < ***************************************** PRESSURE4- ENERGY( FT) MOMENTUM(POUNDS 2 . 996 897 23 2 . 996 897 31 2 . 997 897 55 2 . 998 897 96 3 000 898 53 3 002 899 27 3 005 900 18 3 009 901 .28 3 013 902 .55 3 018 904 .01 3 024 905 .66 3 . 030 907 .50 3 . 037 909 .54 3 . 045 911 . 78 3 . 053 914 .23 3 .063 916 .88 3 . 073 919 .76 3 . 084 922 .85 3 .096 926 . 17 3 . 109 929 .73 3 . 120 932 .63 79.016>;FLOWLINE= < 76 . 020> UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2080.50 ASSUMED UPSTREAM CONTROL HGL = ********************************* FLOWLINE ELEVATION = 76.02 78.08 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS • Page 6 of 6 ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * Line B- N Lateral ® 104-90.00 Street 'B' * * Robertson Ranch East Village * * Improveraent Plans * ************************************************************************** FILE NAME: B-LATl.DAT TIME/DATE OF STUDY: 08:08 06/19/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE4- FLOW PRESSURE4- NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 2090.00- 1.63* 123.26 0.49 98.35 } FRICTION 2092.00- 0.85*Dc 68.38 0.85*Dc 68.38 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2090.00 FLOWLINE ELEVATION = 67.23 PIPE FLOW = 4.89 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 68.860 FEET NODE 2090.00 : HGL = < 68.860>;EGL= < 68.979>;FLOWLINE= < 67.230> ****************************************************************************** FLOW PROCESS FROM NODE 2090.00 TO NODE 2092.00 UPSTREAM NODE 2092.00 ELEVATION = 68.34 IS CODE = 1 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.89 CFS PIPE DIAMETER = PIPE LENGTH = 13.59 FEET MANNING'S 18.00 INCHES N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.63 PRESSURE FLOW PROFILE COMPUTED INFORMATION: Page 1 of 2 DISTANCE FROM CONTROL(FT) PRESSURE HEAD(FT) VELOCITY (FT/SEC) SPECIFIC ENERGY(FT) PRESSURE 4- MOMENTUM(POUNDS) 0.000 1.635 1.630 1.500 2.767 1.749 2.767 1.619 123.26 108.92 NORMAL DEPTH(FT) = 0 .41 CRITICAL DEPTH(FT) = 0 .85 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 1.635 1 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 950 255 553 844 131 412 687 957 221 479 730 974 210 437 654 861 056 6.238 6 .405 6 .554 6.685 6.793 6.875 6.929 6.947 13.590 FLOW DEPTH (FT) 1.500 1.474 1.448 1.422 VELOCITY (FT/SEC) 2.766 SPECIFIC ENERGY(FT) 1.619 396 370 344 318 292 266 240 214 188 162 136 110 084 058 032 006 0 .980 0.954 0 .928 0 . 902 0.876 0.850 0 . 850 .777 ,797 .822 .853 .888 .928 .971 .020 . 072 3 .129 3 .190 3 .256 3 .328 .404 .486 .574 .669 . 770 879 ,996 . 122 4.257 4 .403 4.560 4.730 4 . 730 3 3 . 3 . 3 , 3 , 3 , 3 , 4 , ,594 ,570 ,546 ,522 ,500 .477 ,455 .434 .413 .392 .372 .353 .334 ,316 .299 .283 .267 .253 .240 .228 1.218 1.210 1.203 1.199 1.198 1.198 1. 1. 1. 1. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1. 1. 1. 1. 1. PRESSURE 4- MOMENTUM(POUNDS) 108.92 106.16 103.51 100.93 98 .42 95.99 93 .64 91.37 89.18 87 . 07 85.05 83.12 81.29 79.56 77.93 76 .40 74.99 73 .70 72.53 71.49 70.58 69.82 69.21 68 .76 68 .48 68.38 68 .38 NODE 2092.00 : HGL = < 69.190>;EGL= < 69.538>;FLOWLINE= < 68.340> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2092.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 68.34 69.19 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS • Page 2 of 2 ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * Line B- S Lateral @ 104-90.00 Street 'B' * * Robertson Ranch East Village * * Improveraent Plans * ************************************************************************** FILE NAME: B-LAT2.DAT TIME/DATE OF STUDY: 07:48 06/19/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE4- FLOW PRESSURE4- NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 2090.00- 1.63* 101.42 0.29 33.59 } FRICTION 2098.00- 0.53*Dc 21.55 0.53*Dc 21.55 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2090.00 FLOWLINE ELEVATION = 67.23 PIPE FLOW = 2.00 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 68.860 FEET NODE 2090.00 : HGL = < 68.860>;EGL= < 68.880>;FLOWLINE= < 67.230> ****************************************************************************** FLOW PROCESS FROM NODE 2090.00 TO NODE 2098.00 IS CODE = 1 UPSTREAM NODE 2098.00 ELEVATION = 68.74 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.00 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 25.25 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.63 PRESSURE FLOW PROFILE COMPUTED INFORMATION: Page 1 of 2 DISTANCE FROM CONTROL(FT) 0.000 2 .187 PRESSURE HEAD (FT) 1.630 1.500 VELOCITY (FT/SEC) 1.132 1.132 SPECIFIC ENERGY(FT) 1.650 1.520 PRESSURE4- MOMENTUM(POUNDS) 101.42 87.09 NORMAL DEPTH(FT) = 0.28 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) CRITICAL DEPTH(FT) 1.50 0.53 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 2.187 2, 3 , 4, 4. 5, 6, 6 , 7. 7. ,833 ,474 ,113 ,748 ,381 , 012 ,639 ,263 ,883 8 .498 9.109 9.714 10.312 10.902 11.481 12.049 12.601 13.134 13.644 14.124 14.565 14.954 15.273 15.496 15.583 25.250 FLOW DEPTH (FT) 1.500 1.461 1.423 .384 ,345 ,307 ,268 ,229 1.191 1.152 1.113 1.075 1.036 VELOCITY (FT/SEC) 1.131 1 1 1 1 1 1 1 1 1 1 SPECIFIC ENERGY(FT) 1.520 0.997 0 .959 0.920 0.881 0 . 843 0.804 0 .765 0 .727 0 . 688 0 .649 0.611 0.572 0.533 0.533 139 154 173 197 224 255 290 329 373 422 1.476 1.536 603 677 760 852 956 073 206 357 529 728 960 3 .231 3 .552 3 .552 .481 .443 .405 .368 .330 .292 .255 1.218 1.181 ,145 ,108 ,073 .037 .002 .968 .935 .902 .871 .841 .813 .787 .765 0 .747 0.734 0.729 0.729 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0. 0 . 0 , 0, 0, 0, 0 , PRESSURE4- MOMENTUM(POUNDS) 87.09 82.87 78.71 74 .64 70.66 66.78 63 .00 59.34 55.81 52 .41 49.14 46 . 02 43 . 05 40.23 37.57 35.08 32.77 30.64 28 .70 26.95 25.42 24.11 23 .04 22 .24 21.73 21.55 21.55 NODE 2098.00 : HGL = < 69.273>;EGL= < 69.469>;FLOWLINE= < 68.740> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2098.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 68.74 69.27 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS • Page 2 of 2 ***********************************************************jj..i^.^..j..^.j..j^^^^^.^.^.^.j..^.^^.^ PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STtJDY ************************** * Line B- W Lateral @ 154-87.71 Street 'B' * * Robertson Ranch East Village * * Iraproveraent Plans * ******************** **************************************,j^j^^^.^.H,.^,^^.^.j^.^.^jj..|^.^ FILE NAME: B-LAT3.DAT TIME/DATE OF STUDY: 07:58 06/19/2006 ************************************************************^^j^^^^^^^^^\j^^^^^^j^ GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE4- FLOW PRESSURE4- NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 2082.00- 1.74* 127.07 0.38 93.80 } FRICTION 2084.00- 0.77*Dc 53.29 0.77*Dc 53.29 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ************************************************************^.H..^.^.^.^.^.^^^.j..^j^^.^.j..^^.^ DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2082.00 FLOWLINE ELEVATION = 75.51 PIPE FLOW = 4.04 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 77.250 FEET NODE 2082.00 : HGL = < 77.250>;EGL= < 77.331>;FLOWLINE= < 75.510> *****************************************************************^j^^^^^^^^^.^^^^ FLOW PROCESS FROM NODE 2082.00 TO NODE 2084.00 IS CODE = 1 UPSTREAM NODE 2084.00 ELEVATION = 77.12 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.04 CFS PIPE DIAMETER = PIPE LENGTH = 5.25 FEET MANNING'S 18 .00 N = 0 INCHES .01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.74 PRESSURE FLOW PROFILE COMPUTED INFORMATION: Page 1 of 2 DISTANCE FROM CONTROL(FT) PRESSURE HEAD (FT) VELOCITY (FT/SEC) SPECIFIC ENERGY(FT) PRESSURE4- MOMENTUM(POUNDS) 0 . 000 0.786 1 .740 1.500 2.286 1.821 2.286 1.581 127.07 100 .60 NORMAL DEPTH(FT) = 0.27 CRITICAL DEPTH(FT) = 0.77 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE4- (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUN 0 .786 1 .500 2 .285 1 .581 100 60 0 .880 1 .471 2 .296 1 .553 97 47 0 .971 1 .442 2 .315 1 .525 94 42 1 .061 1 .412 2 .341 1 .497 91 46 1 .149 1 .383 2 .371 1 .470 88 57 1 .236 1 .354 2 .406 1 .444 85 76 1 .322 1 .325 2 .445 1 .418 83 03 1 .407 1 .295 2 .489 1 .392 80 39 1 .490 1 .266 2 .538 1 .366 77 84 1 .572 1 .237 2 . 591 1 .341 75 38 1 .653 1 .208 2 .649 1 .317 73 02 1 .731 1 . 179 2 . 712 1 .293 70 76 1 .808 1 . 149 2 .780 1 .269 68 62 1 .882 1 .120 2 .854 1 .247 66 58 1 .955 1 .091 2 . 934 1 .225 64 66 2 .024 1 . 062 3 .020 1 .203 62 86 2 .091 1 .032 3 .114 1 .183 61 19 2 .154 1 .003 3 .216 1 .164 59 66 2 .214 0 . 974 3 .326 1 .146 58 27 2 .268 0 . 945 3 .445 1 .129 57 03 2 .318 0 . 915 3 . 575 1 .114 55 95 2 .362 0 . 886 3 .716 1 .101 55 03 2 .398 0 .857 3 .870 1 .090 54 30 2 .426 0 . 828 4 . 038 1 .081 53 75 2 .445 0 .799 4 .223 1 . 076 53 41 2 .451 0 .769 4 .425 1 . 074 53 29 5 .250 0 .769 4 .425 1 .074 53 29 NODE 2084.00 : HGL = < 77.889>;EGL= < 78.194>;FLOWLINE= < 77.120> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2084.00 ASStJMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 77.12 77.89 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS • Page 2 of 2 ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * Line B- N Lateral ® 164-39.18 * * Robertson Ranch East Village * * Iraproveraent Plans * **************** ********************************************************** FILE NAME: B-LAT4.DAT TIME/DATE OF STUDY: 15:49 12/05/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE4- FLOW PRESSUREn- NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTTJM(POUNDS) 2080.00- 2.06 897.23 1.82* 917.40 } FRICTION 2081.00- 2.06*Dc 897.23 2.06*Dc 897.23 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2080.00 FLOWLINE ELEVATION = 76.22 PIPE FLOW = 40.17 CFS PIPE DIAMETER = 36.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 78.080 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 1.86 FT.) IS LESS THAN CRITICAL DEPTH( 2.06 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 2080.00 : HGL = < 78.040>;EGL= < 79.284>;FLOWLINE= < 76.220> ****************************************************************************** FLOW PROCESS FROM NODE 2080.00 TO NODE 2081.00 IS CODE = 1 UPSTREAM NODE 2081.00 ELEVATION = 76.45 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 40.17 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 23.01 FEET MANNING'S N = 0.01300 Page 1 of 2 CRITICAL DEPTH(FT) NORMAL DEPTH(FT) = 1.68 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.06 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 2 . 06 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE4- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNI 0 . 000 2 . 064 7 . 746 2 . 996 897. 23 0 051 2 . 048 7 . 811 2 . 996 897 31 0 208 2 . 033 7 877 2 997 897 53 0 482 2 017 7 944 2 998 897 90 0 884 2 002 8 013 3 000 898 42 1 426 1 987 8 083 3 002 899 11 2 123 1 971 8 155 3 005 899 95 2 993 1 956 8 228 3 008 900 95 4 055 1 940 8 303 3 012 902 12 5 333 1 925 8 380 3 016 903 46 6 .855 1 910 8 .458 3 . 021 904 98 8 .656 1 .894 8 .538 3 . 027 906 .66 10 . 778 1 . 879 8 . 619 3 . 033 908 .53 13 .273 1 .864 8 .703 3 . 040 910 .59 16 .206 1 . 848 8 . 788 3 . 048 912 .83 19 .661 1 . 833 8 . 876 3 .057 915 .26 23 .010 1 .820 8 . 949 3 . 064 917 .40 NODE 2081.00 HGL 78.514>;EGL= < 79.446>;FLOWLINE= < 76.450> ******************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2081.00 ASSUMED UPSTREAM CONTROL HGL = ********************************** FLOWLINE ELEVATION = 76.45 78.51 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 2 of 2 ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software , (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * Line O * * Robertson Ranch East Village * * Iraproveraent Plans * ************************************************************************** FILE NAME: LINE-O.DAT TIME/DATE OF STUDY: 09:03 12/06/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE4- FLOW PRESSURE4- NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 3030.00- 6.28* 1219.04 0.62 708.72 } FRICTION 3010.50- 1.50*Dc 334.56 1.50*Dc 334.56 } JUNCTION 3010.00- 2.39* 238.10 0.62 158.86 } FRICTION } HYDRAULIC JUMP 3008.00- 1.04 Dc 114.90 0.73* 134.73 } MANHOLE 3008.50- 1.04 Dc 114.90 0.92* 117.49 } FRICTION 3006.50- 1.04*Dc 114.90 1.04*Dc 114.90 MAXIMtJM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3030.00 FLOWLINE ELEVATION = 49.91 PIPE FLOW = 17.27 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 56.190 FEET NODE 3030.00 : HGL = < 56.190>;EGL= < 56.659>;FLOWLINE= < 49.910> ****************************************************************************** FLOW PROCESS FROM NODE 3030.00 TO NODE 3010.50 IS CODE = 1 UPSTREAM NODE 3 010.50 ELEVATION = 58.35 (FLOW SEALS IN REACH) Page 1 of 5 CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 17.27 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 40.93 FEET MANNING'S N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 6.28 PRESSURE FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE4- CONTROL(FT) HEAD( FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 6 . 280 5. 497 6 . 749 1219 . 04 21 360 2 . 000 5. 497 2 . 469 380 . 01 NORMAL DEPTH(FT) = 0 .55 CRITICAL DEPTH(FT) 1.50 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE4- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 21 360 2 . 000 5 . 496 2 469 380 . 01 21 452 1. 980 5 . 505 2 451 376 . 39 21 537 1. 960 5 . 522 2 434 373 . 04 21 618 1. 940 5. 544 2 417 369. 87 21 696 1. 920 5 . 571 2 402 366 . 86 21 769 1. 900 5 . 601 2 387 364 . 00 21 840 1. 879 5 . 634 2 373 361. 27 21 908 1. 859 5 . 671 2 359 358 . 67 21 . 973 1. 839 5 . 711 2 346 356 . 20 22 .035 1. 819 5 . 754 2 334 353 . 85 22 .094 1. 799 5 799 2 322 351. 63 22 .150 1 779 5 848 2 310 349. 54 22 .204 1 759 5 899 2 300 347 . 57 22 .254 1 739 5 953 2 289 345. 73 22 .301 1 719 6 010 2 280 344 . 02 22 .345 1 699 6 070 2 271 342 44 22 .386 1 679 6 133 2 .263 341 00 22 .424 1 658 6 199 2 .255 339 69 22 .457 1 638 6 268 2 .249 338 52 22 .487 1 618 6 340 2 .243 337 50 22 .513 1 598 6 415 2 .238 336 62 22 .535 1 578 6 493 2 .233 335 89 22 . 552 1 558 6 575 2 .230 335 32 22 . 565 1 538 6 660 2 .227 334 90 22 .573 1 518 6 749 2 .226 334 64 22 . 576 1 .498 6 . 842 2 .225 334 56 40 . 930 1 .498 6 . 842 2 .225 334 56 NODE 3010.50 : HGL = < 59. 848>;EGL= < 60.575>;FLOWLINE= < 58.350> ****************************************************************************** FLOW PROCESS FROM NODE 3010.50 TO NODE 3010.00 IS CODE = 5 UPSTREAM NODE 3 010.00 ELEVATION = 58.68 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 7.23 18.00 0.00 58.68 1.04 4.091 17.27 24.00 - 58.35 1.50 6.844 Page 2 of 5 LATERAL #1 LATERAL #2 Q5 8.43 18.00 90.00 58.51 1.61 18.00 90.00 58.51 0.00===Q5 EQUALS BASIN INPUT=== 1 .12 0 .48 4 .770 0 . 911 JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00474 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00703 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00589 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.024 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS) 4-(FRICTION LOSS) 4-(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.731) + ( 0.024) 4-( 0.000) = 0.754 NODE 3010.00 : HGL = < 61.069>;EGL= < 61.329>;FLOWLINE= < 58.680> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 3 008.00 3 010.00 TO NODE ELEVATION = 3008.00 IS CODE = 1 70.16 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 7.23 CFS PIPE DIAMETER = PIPE LENGTH = 298.23 FEET MANNING'S 18.00 INCHES N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.61 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.73 ALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.04 ICE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE4- ^OL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTtJM (POUNI 0 . 000 0 . 733 8 . 428 1 . 836 134 . 73 0. 782 0 . 728 8 . 499 1. 850 135 47 1 614 0 . 723 8 571 1. 865 136 23 2 . 498 0 . 718 8 644 1. 879 137 01 3 441 0 714 8 719 1 895 137 80 4 449 0 709 8 795 1 911 138 62 5 527 0 704 8 872 1 927 139 46 6 684 0 699 8 950 1 944 140 32 7 930 0 694 9 030 1 962 141 20 9 274 0 690 9 111 1 980 142 10 10 730 0 685 9 194 1 998 143 02 12 314 0 680 9 278 2 018 143 97 14 044 0 675 9 364 2 038 144 94 15 945 0 671 9 451 2 059 145 93 18 047 0 666 9 540 2 080 146 95 20 387 0 661 9 630 2 102 147 99 23 018 0 656 9 .722 2 125 149 .06 26 .007 0 .652 9 .816 2 149 150 .15 29 .451 0 .647 9 .912 2 . 173 151 .27 33 .492 0 . 642 10 .009 2 .199 152 .42 38 .349 0 .637 10 .108 2 .225 153 .59 44 .388 0 .632 10 .209 2 .252 154 .80 52 .299 0 . 628 10 .312 2 .280 156 . 03 63 .627 0 .623 10 .417 2 .309 157 .29 83 .336 0 .618 10 .524 2 .339 158 .58 298 .230 0 .617 10 .546 2 .345 158 . 86 Page 3 of 5 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.39 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSUREH- CONTROL(FT) HEAD( FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 2 . 389 4 . 091 2 . 649 238 . 10 26 . 348 1. 500 4 . 091 1 . 760 140 . 03 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) 1 .50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE4- CONTROL(FT) (FT) (FT/SEC) ENERGY FT) MOMENTUM(POUNDS) 26 348 1 500 4 . 090 1 760 140 . 03 26 854 1 482 4 . 099 1 743 138 . 14 27 326 1 463 4 . 117 1 727 136 . 36 27 778 1 445 4 . 139 1 711 134 . 67 28 212 1 427 4 . 165 1 696 133 05 28 631 1 408 4 . 196 1 682 131. 49 29 035 1 390 4 . 230 1 668 130 00 29 426 1 372 4 . 267 1 654 128 58 29 804 1 353 4 . 307 1 641 127 21 30 168 1 335 4 . 351 1 629 125 91 30 518 1 316 4 . 398 1 617 124 67 30 855 1 298 4 . 447 1 605 123 50 31 . 177 1 280 4 500 1 594 122 39 31 .484 1 261 4 557 1 584 121 35 31 . 775 1 243 4 616 1 574 120 38 32 .049 1 .225 4 679 1 565 119 48 32 .306 1 .206 4 745 1 556 118 65 32 . 544 1 . 188 4 815 1 548 117 90 32 .762 1 .170 4 889 1 . 541 117 .23 32 . 958 1 . 151 4 966 1 .535 116 . 63 33 .131 1 .133 5 047 1 .529 116 . 12 33 .278 1 . 115 5 133 1 .524 115 .69 33 .397 1 .096 5 223 1 . 520 115 .35 33 .486 1 .078 5 317 1 . 517 115 . 10 33 .542 1 .060 5 416 1 .515 114 .95 33 .562 1 . 041 5 .521 1 . 515 114 . 90 298 .230 1 . 041 5 .521 1 . 515 114 .90 -END OF HYDRAULIC JUMP ANALYSIS PRESSURE4-M0MENTUM BALANCE OCCURS AT 21.30 FEET UPSTREAM OF NODE 3010.00 DOWNSTREAM DEPTH = 1.671 FEET, UPSTREAM CONJUGATE DEPTH = 0.617 FEET NODE 3008.00 : HGL = < 70.893>;EGL= < 71.996>;FLOWLINE= < 70.160> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 3 008.50 3008 . 00 TO NODE ELEVATION = 3008.50 IS CODE = 2 70.49 (FLOW IS SUPERCRITICAL) 18.00 INCHES CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 7.23 CFS PIPE DIAMETER AVERAGED VELOCITY HEAD = 0.868 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = . 05* ( 0.868) = 0.043 NODE 3008.50 : HGL = < 71.408>;EGL= < 72.040>;FLOWLINE= < 70.490> Page 4 of 5 ****************************************************************************** FLOW PROCESS FROM NODE 3008.50 TO NODE 3006.50 IS CODE = 1 UPSTREAM NODE 3006.50 ELEVATION = 72.04 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 7.23 CFS PIPE DIAMETER 18.00 INCHES PIPE LENGTH = 154.76 FEET MANNING'S N = 0 01300 NORMAL DEPTH(FT) 0 .91 CRITICAL DEPTH(FT) 1 . 04 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1 . 04 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRE SSURE 4- CONTROL(FT) (FT) (FT/ SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 1. 041 5 . 521 1 515 114 . 90 0 . 016 1. 036 5 . 551 1 515 114. 91 0 .067 1. 031 5 .581 1 515 114 . 92 0 . 154 1. 026 5 . 612 1 515 114 . 94 0 .283 1. 021 5 . 643 1 516 114 . 97 0 .456 1. 016 5 . 674 1 516 115. 00 0 .679 1 . Oil 5 .706 1 517 115. 05 0 .956 1 . 006 5 . 739 1 517 115 . 10 1 .294 1. 001 5 . 772 1 518 115 . 17 1 .701 0 . 995 5 . 805 1 519 115 . 24 2 .185 0 . 990 5 . 839 1 520 115 . 32 2 .757 0 . 985 5 . 874 1 521 115 . 41 3 .430 0 . 980 5 . 908 1 523 115 . 51 4 .221 0 . 975 5 . 944 1 524 115 . 61 5 .149 0 . 970 5 . 980 1 526 115 . 73 6 .242 0 . 965 6 .016 1 527 115. 86 7 .533 0 . 960 6 .053 1 529 116 . 00 9 . 071 0 . 955 6 .090 1 531 116 . 14 10 . 920 0 . 950 6 . 128 1 533 116 . 30 13 . 178 0 . 944 6 . 167 1 535 116 . 47 15 .995 0 . 939 6 .206 1 538 116 . 64 19 . 621 0 . 934 6 .246 1 540 116. 83 24 . 527 0 . 929 6 .286 1 543 117 . 03 31 . 770 0 . 924 6 . 327 1 546 117 . 24 44 . 745 0 . 919 6 .368 1 549 117 45 154 . 760 0 . 918 6 .375 1 550 117 49 NODE 3006.50 : HGL = < 73.081>;EGL= < 73.555>;FLOWLINE= < 72.040> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3006.50 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 72.04 73.08 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 5 of 5 ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software , (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * Line O - Mass Graded Condition * * Robertson Ranch East Village * * Iraproveraent Plans * ************************************************************************** FILE NAME: 0-MASS.DAT TIME/DATE OF STUDY: 09:06 12/06/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE4- FLOW PRESSURE4- NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 3030.00- 6.28* } FRICTION } HYDRAUL 3010.50- 1.49 DC } JUNCTION 3010.00- 1.42 Dc } FRICTION 3008.00- 1.42 Dc } MANHOLE 3008.50- 1.42*Dc } FRICTION 3006.50- 3.36* MAXIMXJM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 2 5 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3030.00 FLOWLINE ELEVATION = 49.91 PIPE FLOW = 17.11 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 56.190 FEET NODE 3030.00 : HGL = < 56.190>;EGL= < 56.651>;FLOWLINE= < 49.910> ****************************************************************************** FLOW PROCESS FROM NODE 3030.00 TO NODE 3010.50 IS CODE = 1 UPSTREAM NODE 3010.50 ELEVATION = 58.35 (HYDRAULIC JUMP OCCURS) Page 1 of 5 1215 65 0 60 721 77 JUMP 330 32 0 92* 434 80 348 53 0 98* 419 61 348 53 1 15* 373 16 348 53 1 42*DC 348 53 556 .28 1 42 DC 348 .53 CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 17.11 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 40.93 FEET MANNING'S N = 0.01300 HYDRAULIC JTJMP: DOWNSTREAM RTJN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.55 CRITICAL DEPTH(FT) UPSTREAM CONTROL ASSTJMED FLOWDEPTH (FT) = 0.92 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 1.49 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE 4- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTTJM (POTJNI 0 . 000 0 . 923 12 . 071 3 . 187 434. 80 0 . 472 0 . 908 12 . 329 3 . 270 442 . 04 0 . 985 0 . 893 12 . 597 3 . 359 449 . 66 1. 545 0 . 878 12 . 876 3 455 457 . 68 2 . 155 0. 864 13 168 3 558 466 . 14 2 . 821 0 849 13 472 3 669 475 . 05 3 . 552 0 834 13 791 3 789 484 44 4 354 0 819 14 123 3 918 494 35 5 237 0 804 14 472 4 058 504 79 6 212 0 789 14 836 4 210 515 80 7 293 0 775 15 218 4 373 527 42 8 495 0 760 15 619 4 550 539 70 9 840 0 745 16 040 4 743 552 66 11 352 0 730 16 483 4 952 566 37 13 062 0 .715 16 949 5 .179 580 86 15 . Oil 0 .700 17 .43 9-^^ 5 .426 596 20 17 .253 0 .686 17 .956 5 .695 612 45 19 .861 0 .671 18 .501 5 . 989 629 .68 22 .936 0 .656 19 . 078 6 .311 647 .96 26 . 630 0 . 641 19 .688 6 .664 667 .37 31 . 175 0 .626 20 .334 7 . 051 688 . 01 36 . 961 0 . 611 21 . 019 7 .476 709 . 98 40 .930 0 . 604 21 .386 7 .710 721 . 77 HYDRAULIC JTJMP: UPSTREAM RTJN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSTJMED PRESSURE HEAD (FT) = 6 .28 PRESSURE FLOW PROFILE COMPUTED INFORMATION : DISTANCE FROM PRESSURE CONTROL(FT) HEAD(FT) 0.000 6.280 21.348 2.000 VELOCITY (FT/SEC) 5 .446 5 .446 SPECIFIC ENERGY(FT) 6 .741 2 .461 PRE SSURE 4- MOMENTUM (POTJNDS) 1215.65 376.62 ASSTJMED DOWNSTREAM PRESSURE HEAD (FT) = 2 . 00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRE SSURE 4- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTTJM (POUNDS 21.348 2 . 000 5.445 2 .461 376.62 21 .442 1.980 5 .454 2 .442 372.94 21.529 1.959 5 .471 2 .424 369.54 21.611 1.939 5.494 2 .408 366 .32 21 .689 1.919 5 . 521 2 .392 363.26 Page 2 of 5 21 . 764 1. 898 5 . 551 2 377 360 35 21. 836 1. 878 5 . 585 2 362 357 57 21. 905 1. 857 5 622 2 349 354 92 21 972 1 837 5 663 2 335 352 40 22 035 1 817 5 706 2 323 350 02 22 095 1 796 5 752 2 310 347 75 22 153 1 776 5 801 2 299 345 62 22 207 1 756 5 853 2 288 343 61 22 258 1 735 5 908 2 278 341 74 22 307 1 715 5 966 2 268 339 99 22 352 1 695 6 027 2 259 338 38 22 .393 1 674 6 090 2 250 336 91 22 432 1 654 6 157 2 243 335 57 22 .466 1 633 6 227 2 236 334 .38 22 .497 1 613 6 300 2 230 333 33 22 .524 1 593 6 376 2 .224 332 43 22 .546 1 .572 6 456 2 .220 331 69 22 .564 1 .552 6 .539 2 .216 331 10 22 .577 1 . 532 6 . 626 2 .214 330 .67 22 . 585 1 .511 6 .716 2 .212 330 .41 22 . 588 1 .491 6 . 810 2 .212 330 .32 40 .930 1 .491 6 .810 2 .212 330 .32 END OF HYDRAULIC JTJMP ANALYSIS PRESSURE4-M0MENTTJM BALANCE OCCURS AT 13.90 FEET UPSTREAM OF DOWNSTREAM DEPTH = 3.492 FEET, UPSTREAM CONJUGATE DEPTH NODE 3030.00 = 0.640 FEET NODE 3010.50 : HGL = < 59.273>;EGL= < 61.53 7>;FLOWLINE= < 58.350> ****************************************************************************** FLOW PROCESS FROM NODE 3010.50 TO NODE 3010.00 IS CODE = 5 UPSTREAM NODE 3010.00 ELEVATION = 58.68 (FLOW IS SUPERCRITICAL) CALCULATE JUNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 15 .66 17 .11 1.40 0 . 05 DIAMETER (INCHES) 18 . 00 24 . 00 18 . 00 18 . 00 ANGLE (DEGREES) 0 . 00 90.00 90.00 FLOWLINE ELEVATION 58 . 68 58 .35 58 . 51 58 .51 CRITICAL DEPTH(FT.) 1.42 1.49 0 .44 0.08 VELOCITY (FT/SEC) 12 . 739 12.075 1.174 0 . 042 0.00===Q5 EQUALS BASIN INPUT== JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03781 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03017 AVERAGED FRICTION SLOPE IN JTJNCTION ASSTJMED AS 0.03399 JTJNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.136 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (TRANSITION LOSS) 4-(FRICTION LOSS) 4-(ENTRANCE LOSSES) JTJNCTION LOSSES = ( 0.511) 4-( 0.136) 4-( 0.000) = 0.647 NODE 3010.00 : HGL = < 59.664>;EGL= < 62.184>;FLOWLINE= < 58.680> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 3 008.00 3010.00 TO NODE ELEVATION = 3008.00 IS CODE = 1 70.16 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 15.66 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 298.23 FEET MANNING'S N = 0.01300 Page 3 of 5 NORMAL DEPTH(FT) = 0.98 CRITICAL DEPTH(FT) = 1 .42 UPSTREAM CONTROL ASSTJMED FLOWDEPTH (FT) 1. 15 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0 . 000 153 382 694 096 6 .599 8 .212 9.946 11.817 13 .841 16.037 18 .431 21.050 23.932 27.122 30.680 34.684 39 .238 44.492 50.663 58.085 67.323 79.433 96.788 127.004 298.230 FLOW DEPTH (FT) 1.153 1, 1 . 1. 1. 1, 1, 1. 1 . 1. 1, 1 , 1, 1, 1 , 1. 1. 1 , 1, 1, 1, 1, , 146 , 139 .132 . 125 , 118 , 111 ,104 .097 , 090 ,083 , 076 ,069 ,062 , 055 , 048 , 041 , 034 , 027 ,020 .013 .006 0.999 0.992 0.985 0 . 984 VELOCITY (FT/SEC) 10 .737 10.803 10.870 10 . 939 11. 009 11. 080 11.152 11.226 11.301 11.378 11.456 11.536 11.617 11. 700 11.785 11.871 11.958 12.048 12 .139 12.232 12.326 12.423 12.521 12.622 12 .724 12 . 735 SPECIFIC ENERGY(FT) 2 . 945 960 975 991 008 026 044 062 082 102 123 144 166 , 189 ,213 ,238 ,263 ,289 ,317 ,345 ,374 .404 .435 .467 .501 .504 PRE SSURE 4- MOMENTUM(POUNDS) 373 .16 374.52 375.93 377.38 378 . 88 380.42 382.00 383.64 385.31 387.04 388 . 82 390.64 392.52 394 .44 396 .42 398.45 400.54 402 . 68 404.88 407.14 409 .46 411. 83 414.27 416 .77 419.33 419 .61 NODE 3008.00 : HGL = < 71.313>;EGL= < 73.105>;FLOWLINE= < 70.160> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 3 008.50 3008.00 TO NODE ELEVATION = 3008.50 IS CODE = 2 70.49 (FLOW IS AT CRITICAL DEPTH) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 15.66 CFS PIPE DIAMETER = 18.00 INCHES AVERAGED VELOCITY HEAD = 1.273 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05*( 1.273) = 0.064 NOTE: ENERGY GRADE LINE HAS BEEN ADJUSTED DUE TO CHANGING IN FLOW LINE ELEVATIONS NODE 3008.50 : HGL = < 71.909>;EGL= < 73.181>;FLOWLINE= < 70.490> ****************************************************************************** FLOW PROCESS FROM NODE 3008.50 TO NODE 3006.50 IS CODE = 1 UPSTREAM NODE 3006.50 ELEVATION = 72.04 (FLOW TJNSEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 15.66 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 154.76 FEET MANNING'S N = 0.01300 ===> NORMAL PIPEFLOW IS PRESSURE FLOW NORMAL DEPTH(FT) 1.50 CRITICAL DEPTH(FT) Page 4 of 5 1.42 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 1.42 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.004 0.016 0 .036 0 . 065 0 .102 0 .147 0.200 0 .262 0 .332 0.411 0 .499 0 .596 0 .701 0 . 815 0. 939 1. 072 1.215 1.367 1 . 529 1. 702 1.886 2 . 081 2 .289 2 . 512 2 .757 = = = > FLOW IS TJNDER 154.760 FLOW DEPTH (FT) 1.419 ,422 ,425 ,428 ,432 ,435 ,438 .441 .445 .448 .451 ,454 ,458 ,461 .464 .467 1.471 1 .474 1.477 1 .480 1.484 1.487 1.490 1.493 1.497 1.500 PRESSURE 3 .356 1 . 1 . 1, 1, 1, 1, 1, 1. 1 , 1, 1, 1 , 1, 1, 1 VELOCITY (FT/SEC) 9.050 039 027 016 006 8 . 995 8.985 8 . 975 8.966 8 . 956 8.947 8 . 939 8.930 8 . 922 8.914 8.907 8.900 8 . 893 8.887 8 .881 8 . 876 8 .871 8 .867 8.863 8 .861 8 . 859 8 . 862 SPECIFIC ENERGY(FT) 2 .691 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 2 2 2 2 2 2 2 691 691 692 692 692 693 693 694 694 695 696 697 698 699 700 701 703 704 706 708 710 712 714 717 2 . 719 4 . 575 PRESSURE4- MOMENTTJM (POUNDS) 348 .53 348.54 348 . 55 348.57 348 . 60 348.63 348.68 348.73 348 . 80 348 . 87 348.95 349.04 349.14 349 .25 349.38 349.51 349 . 65 349 .81 349 . 98 350.16 350 .35 350 . 57 350.80 351.05 351.32 351.63 556 .28 NODE 3006.50 : HGL = < 75.396>;EGL= < 76.615>;FLOWLINE= < 72.040> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NTJMBER = 3006.50 ASSTJMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 72.04 73.46 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED PLOW ANALYSIS n Page 5 of 5 ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software .(aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * Line O- W Lateral ® 104-97.77 Street 'O' * * Robertson Ranch East Village ^ * Iraproveraent Plans ************************************************************************* FILE NAME: O-LATl.DAT TIME/DATE OF STUDY: 09:12 12/06/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RTIN DOWNSTREAM RTJN NODE MODEL PRESSURE PRESSURE4- FLOW PRESSURE4- NUMBER PROCESS HEAD (FT) MOMENTTJM (POUNDS) DEPTH (FT) MOMENTTJM (POTJNDS) 3010.00- 1.12 141.54 0.59* 223.71 } FRICTION 3012.00- 1.12*DC 141.54 1.12*Dc 141.54 MAXIMTJM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JTJNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NTJMBER = 3010.00 FLOWLINE ELEVATION = 58.51 PIPE FLOW = 8.43 CFS PIPE DIAMETER = 18.00 INCHES ASSTJMED DOWNSTREAM CONTROL HGL = 59.470 FEET *NOTE: ASSTJMED DOWNSTREAM CONTROL DEPTH ( 0.96 FT.) IS LESS THAN CRITICAL DEPTH( 1.12 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RTJN ANALYSIS NODE 3010.00 : HGL = < 59.099>;EGL= < 61.759>;FLOWLINE= < 58.510> ****************************************************************************** FLOW PROCESS FROM NODE 3010.00 TO NODE 3012.00 IS CODE = 1 UPSTREAM NODE 3012.00 ELEVATION = 60.28 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 8.43 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 5.25 FEET MANNING'S N = 0.01300 Page 1 of 2 0.38 CRITICAL DEPTH(FT) = NORMAL DEPTH(FT) = UPSTREAM CONTROL ASSTJMED FLOWDEPTH (FT) GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION 1 . 12 1.12 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE4- CONTROL(FT) (FT) (FT/SEC) ENERGY( FT) MOMENTTJM (POTJNI 0 . 000 1. 124 5 . 931 1 . 671 141 . 54 0 . 005 1 . 094 6 . 100 1 . 673 141. 68 0 . 021 1. 065 6 . 283 1. 678 142 14 0 050 1 035 6. 482 1 688 142 92 0 094 1 005 6 698 1 702 144 06 0 154 0 975 6 932 1 721 145 57 0 234 0 945 7 187 1 747 147 51 0 336 0 915 7 464 1 781 149 89 0 465 0 885 7 766 1 822 152 76 0 626 0 855 8 096 1 874 156 18 0 824 0 825 8 458 1 937 160 19 1 066 0 795 8 856 2 014 164 87 1 364 0 .765 9 293 2 . 107 170 28 1 . 728 0 .736 9 .777 2 .221 176 54 2 . 175 0 .706 10 .313 2 .358 183 .73 2 . 727 0 . 676 10 .911 2 .525 192 .01 3 .412 0 . 646 11 .578 2 .729 201 .52 4 .270 0 .616 12 .328 2 . 977 212 .46 5 .250 0 .589 13 .085 3 .249 223 .71 NODE 3012.00 : HGL 61.404>;EGL= < 61.951>;FLOWLINE= < 60.280> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NTJMBER = 3012.00 FLOWLINE ELEVATION ASSTJMED UPSTREAM CONTROL HGL = 60 .28 61.40 FOR DOWNSTREAM RTJN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS • Page 2 of 2 ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software ,(aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * Line O- E Lateral @ 104-97.77 * * Robertson Ranch East Village * * Improveraent Plans * ************************************************************************** FILE NAME: 0-LAT2.DAT TIME/DATE OF STUDY: 09:33 12/06/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RTJN NODE MODEL PRESSURE PRESSURE4- FLOW PRESSURE4- NUMBER PROCESS HEAD (FT) MOMENTUM (POTJNDS) DEPTH (FT) MOMENTUM (POTJNDS) 3010.00- 1.99* 140.13 0.28 27.79 } FRICTION 3026.00- 0.50*Dc 18.31 0.50*Dc 18.31 MAXIMTJM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JTJNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3010.00 FLOWLINE ELEVATION = 58.51 PIPE FLOW = 1.76 CFS PIPE DIAMETER = 18.00 INCHES ASSTJMED DOWNSTREAM CONTROL HGL = 60.500 FEET NODE 3010.00 : HGL = < 60.500>;EGL= < 60.515>;FLOWLINE= < 58.510> ****************************************************************************** FLOW PROCESS FROM NODE 3 010.00 TO NODE 3 026.00 UPSTREAM NODE 3026.00 ELEVATION = 61.16 IS CODE = 1 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.76 CFS PIPE DIAMETER = PIPE LENGTH = 49.25 FEET MANNING'S 18.00 INCHES N = 0.01300 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1 . 99 PRESSURE FLOW PROFILE COMPUTED INFORMATION: Page 1 of 2 DISTANCE FROM CONTROL(FT) 0 . 000 9 . 154 PRESSURE HEAD(FT) 1. 990 1 . 500 VELOCITY (FT/SEC) 0 . 996 0.996 SPECIFIC ENERGY(FT) 2 .005 1.515 PRESSURE 4- MOMENTTJM (POUNDS) 140.13 86.10 NORMAL DEPTH(FT) = 0.27 CRITICAL DEPTH(FT) = 0.50 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1. 50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: E FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE4- L(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POUNI 9 . 154 1 . 500 0 . 996 1. 515 86 . 10 9 898 1. 460 1. 003 1 476 81. 72 10 638 1. 420 1 017 1 436 77 . 41 11 374 1. 380 1 034 1 397 73 19 12 109 1 340 1 056 1 357 69 05 12 841 1 300 1 081 1 318 65 03 13 570 1 260 1 110 1 279 61 11 14 297 1 220 1 143 1 240 57 32 15 020 1 180 1 180 1 201 53 66 15 740 1 140 1 221 1 163 50 14 16 455 1 100 1 267 1 125 46 76 17 166 1 060 1 319 1 087 43 54 17 871 1 020 1 376 1 049 40 47 18 570 0 979 1 439 1 012 37 56 19 260 0 939 1 511 0 975 34 82 19 940 0 899 1 591 0 939 32 25 20 607 0 859 1 680 0 903 29 87 21 .259 0 .819 1 782 0 869 27 68 21 .892 0 .779 1 .897 0 .835 25 . 68 22 .499 0 . 739 2 . 028 0 . 803 23 .88 23 . 074 0 .699 2 . 179 0 . 773 22 .30 23 .606 0 .659 2 .353 0 .745 20 .96 24 .079 0 . 619 2 .556 0 .721 19 .86 24 .472 0 . 579 2 . 795 0 .700 19 . 02 24 . 751 0 .539 3 . 079 0 .686 18 .49 24 .861 0 .499 3 .422 0 . 681 18 .31 49 .250 0 .499 3 .422 0 .681 18 .31 NODE 3026.00 : HGL = < 61.659>;EGL= < 61.841>;FLOWLINE= < 61.160> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NTJMBER = 3026.00 ASSTJMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 61.16 61.66 FOR DOWNSTREAM RTJN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS • Page 2 of 2 ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software ,(aes) Ver. 8.0 Release Date: 01/01/2002 License ID' 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * Lateral to 84" Line ® 151-HIO.OO Carmon Rd. * * Robertson Ranch East Village ^ * Improvement Plans ... ^ ^... ... ******************************************************************* FILE NAME: LINE-F.DAT TIME/DATE OF STUDY: 10:44 12/06/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RTJN NODE MODEL PRESSURE PRESSURE4- FLOW PRESSURE4- NUMBER PROCESS HEAD (FT) MOMENTTJM (POTJNDS) DEPTH (FT) MOMENTTJM (POUNDS) 7004.00- 0.61 29.71 0.21* 86.74 } FRICTION 7044.50- 0.61*DC 29.71 0.61*Dc 29.71 MAXIMUM NTJMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JTJNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 7004.00 FLOWLINE ELEVATION = 56.28 PIPE FLOW = 2.57 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 56.640 FEET *NOTE: ASSTJMED DOWNSTREAM CONTROL DEPTH ( 0.36 FT.) IS LESS THAN CRITICAL DEPTH( 0.61 FT.) ===> CRITICAL DEPTH IS ASSTJMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 7004.00 : HGL = < 56.489>;EGL= < 61.114>;FLOWLINE= < 56.280> ****************************************************************************** FLOW PROCESS FROM NODE 7004.00 TO NODE 7044.50 IS CODE = 1 UPSTREAM NODE 7044.50 ELEVATION = 60.85 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.57 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 3.00 FEET MANNING'S N = 0.01300 Page 1 of 2 NORMAL DEPTH(FT) = 0.15 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSTJMED FLOWDEPTH (FT) = 0.61 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 0.61 FROM FLOW DEPTH VELOCITY SPECIFIC PRE SSURE 4- (FT) (FT) (FT/SEC) ENERGY FT) MOMENTUM (POTJNI 0 . 000 0 . 607 3 . 829 0 835 29. 71 0 . 001 0 589 3 990 0 836 29. 76 0 . 003 0 571 4 164 0 840 29 90 0 . 007 0 552 4 353 0 847 30 15 0 014 0 534 4 559 0 857 30 51 0 023 0 515 4 783 0 871 30 99 0 036 0 497 5 027 0 889 31 61 0 052 0 478 5 296 0 914 32 37 0 073 0 460 5 592 0 946 33 30 0 100 0 441 5 918 0 986 34 41 0 133 0 423 6 281 1 036 35 73 0 175 0 405 6 685 1 099 37 29 0 227 0 386 7 137 1 178 39 12 0 294 0 368 7 647 1 276 41 26 0 377 0 349 8 225 1 .400 43 76 0 483 0 .331 8 .884 1 .557 46 70 0 619 0 .312 9 .640 1 .756 50 15 0 .796 0 .294 10 .517 2 . 012 54 .22 1 . 030 0 .275 11 .542 2 .345 59 .06 1 .344 0 .257 12 .753 2 . 784 64 . 85 1 .780 0 .239 14 .201 3 .372 71 .84 2 .406 0 .220 15 .957 4 . 177 80 .39 3 . 000 0 .209 17 .254 4 . 834 86 . 74 NODE 7044.50 : HGL = < 61.457>;EGL= < 61.685>;FLOWLINE= < 60.850> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NTJMBER = 7044.50 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 60.85 61.46 FOR DOWNSTREAM RTJN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS • Page 2 of 2 ****************************************************************************** PI PE-FLOW HYDRAULICS COMPTJTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * Line J - Lateral from CB. to Exist. 36" ® 1044-69.27 College Blvd. * * Robertson Ranch East Village * * Iraproveraent Plans * ****************************************************************^^.j^.^^^.^^^j^^ FILE NAME: c:\aes2002\hydrosft\ratscx\line-j.DAT TIME/DATE OF STUDY: 13:39 10/26/2005 ******************************************************************^.j^^.j^^^^^^^^j^ GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSTJRE PRESSURE4- FLOW PRESSURE4- NUMBER PROCESS HEAD (FT) MOMENTTJM (POTJNDS) DEPTH (FT) MOMENTUM (POTJNDS) 100.00- 0.66* 13.02 0.05 2.22 } FRICTION 101.00- 0.14*Dc 0.82 0.14*Dc 0.82 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JUNCTION ANALYSIS USING FULL INTEGRATION FORMULATION **************************************************************^,^,j^,jj,^.^.^^.j,.j,^j^.^.j^^^ DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NTJMBER = 100.00 FLOWLINE ELEVATION = 128.94 PIPE FLOW = 0.15 CFS PIPE DIAMETER = 18.00 INCHES ASSTJMED DOWNSTREAM CONTROL HGL = 129.600 FEET NODE 100.00 : HGL = < 129.600>;EGL= < 129.601>;FLOWLrNE= < 128.940> ***************************************************************^^^.j^.j^^.j..^.^^.^^^.j^^ FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 1 UPSTREAM NODE 101.00 ELEVATION = 139.80 (FLOW IS SUBCRITICAL) CALCULATE FRICTION PIPE FLOW PIPE LENGTH = LOSSES(LACFCD): 0.15 CFS PIPE DIAMETER = 18.00 INCHES 23.80 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.05 CRITICAL DEPTH(FT) = 0 .14 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.66 .Page 1 of 2 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0 , 0 , ,045 ,091 0.136 0 .181 ,226 ,271 ,316 ,362 ,407 .452 ,496 0.541 0.586 0.630 ,675 . 718 ,762 , 805 0.847 0.888 0.927 0 . 964 0 .996 1.020 1.031 23.800 0, 0. 0, 0 , 0. 0, 0 , 0. 0 . 0, 0. FLOW DEPTH (FT) 0.660 0.639 0.619 0.598 0.577 0.556 0.536 0.515 0 .494 0.474 0.453 0.432 0.411 0.391 0.370 0.349 0.329 0.308 0.287 0.266 .246 .225 .204 , 184 ,163 0 .142 0.142 0 , 0. 0. 0, 0. VELOCITY (FT/SEC) 0 .200 0 .209 0 .218 0 .228 0 .239 0.251 0, 0 , 0 , 0 , ,265 .279 ,295 ,313 0 .333 0.356 0 .381 0 .410 0 .442 0 .480 0.523 0.574 .635 ,707 .794 .902 ,038 .213 1 .445 1.764 1 .764 0 , 0 , 0 . 0. 1, 1, SPECIFIC ENERGY(FT) PRESSURE4- MOMENTTJM (POUNDS) 0 .661 13.02 0 . 640 12.08 0 .619 11.17 0 .599 10.31 0.578 9.48 0.557 8.69 0.537 7.95 0.516 7.24 0 .496 6.57 0 .475 5.94 0.455 5.34 0.434 4.78 0 .414 4.27 0.393 3 .78 0.373 3 .34 0 .353 2.93 0.333 2 .55 0.313 2.21 0 .293 1.91 0 .274 1.64 0 .256 1.41 0 .238 1.21 0.221 1.05 0.206 0.93 0.195 0.85 0.191 0.82 0.191 0 .82 NODE 101.00 : HGL = < 139.942>;EGL= < 139.991>;FLOWLINE= < 139.800> *******************************************************************^^^^^^^^^^^ UPSTREAM PIPE FLOW CONTROL DATA: NODE NTJMBER = 101.00 FLOWLINE ELEVATION = 139.80 ASSUMED UPSTREAM CONTROL HGL = 13 9.94 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS • Page 2 of 2 ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software ,(a:es) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * Private Line 'A' * Robertson Ranch East Village ^ * Grading Plans ************************************************************************** FILE NAME: PRIV-A.DAT TIME/DATE OF STUDY: 14:53 12/06/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RTJN DOWNSTREAM RTJN NODE MODEL PRESSURE PRESSUREH- FLOW PRESSURE4- NUMBER PROCESS HEAD (FT) MOMENTTJM (POTJNDS) DEPTH (FT) MOMENTTJM (POUNDS) 2104.00- 3.10* 295.39 0.45 148.31 } FRICTION } HYDRAULIC JTJMP 2179.90- 0.93 Dc 84.65 0.54* 119.78 } JTJNCTION 2180.00- 0.95 DC 105.20 0.71* 118.53 } FRICTION 2024.00- 0.95*Dc 105.20 0.95*Dc 105.20 MAXIMTJM NTJMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NTJMBER = 2104.00 FLOWLINE ELEVATION = 66.08 PIPE FLOW = 5.75 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 69.180 FEET NODE 2104.00 : HGL = < 69.180>;EGL= < 69.344>;FLOWLINE= < 66.080> ****************************************************************************** FLOW PROCESS FROM NODE 2104.00 TO NODE 2179.90 IS CODE = 1 UPSTREAM NODE 2179.90 ELEVATION = 72.30 (HYDRAULIC JTJMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.75 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 78.03 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS Page 1 of 4 NORMAL DEPTH(FT) 0 .45 CRITICAL DEPTH(FT) 0 . 93 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0 . 54 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE4- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 . 000 0 . 540 10. 025 2 102 119. 78 0 . 639 0 . 537 10 119 2 128 120 . 69 1. 316 0 . 533 10 215 2 154 121. 63 2 033 0 . 529 10 312 2 182 122 . 59 2 794 0 . 526 10 412 2 210 123 . 57 3 604 0 . 522 10 513 2 239 124 . 57 4 468 0 . 518 10 616 2 269 125 . 59 5 392 0 . 514 10 720 2 300 126 . 63 6 383 0 . 511 10 827 2 332 127. 70 7 450 0 . 507 10 936 2 365 128 . 78 8 601 0 . 503 11 046 2 399 129. 90 9 850 0 . 500 11 159 2 434 131. 03 11 210 0 . 496 11 274 2 471 132 . 19 12 700 0 . 492 11 390 2 508 133 . 38 14 342 0 . 489 11 510 2 547 134 . 59 16 167 0. 485 11 631 2 587 135. 83 18 212 0 481 11 755 2 .628 137 . 09 20 531 0 477 11 881 2 . 671 138 . 39 23 196 0 474 12 009 2 . 715 139. 71 26 315 0 470 12 . 141 2 .760 141. 06 30 . 055 0 466 12 .274 2 . 807 142 . 44 34 .696 0 463 12 .411 2 .856 143 . 85 40 .762 0 459 12 .550 2 . 906 145 30 49 .431 0 455 12 .692 2 .958 146 78 64 .482 0 451 12 . 837 3 . 012 148 29 78 . 030 0 451 12 .839 3 .012 148 31 HYDRAULIC JTJMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSTJMED PRESSURE HEAD (FT) = 3 .10 PRESSURE FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE 4- CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM (POTJNDS) 0 . 000 3 .100 3 .254 3 .264 295.39 20.856 1. 500 3 .254 1. 664 118.96 ASSTJMED DOWNSTREAM PRESSURE HEAD (FT) = 1. 50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRE SSURE 4- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 20.856 1 .500 3 .253 1 . 664 118.96 21.142 1.477 3 .263 1 .642 116.54 21.415 1.454 3 .282 1.621 114 .24 21.680 1.431 3 .307 1.601 112.01 21.938 1 .408 3 .337 1 .581 109.86 22.190 1.385 3 .371 1.562 107.79 22 .436 1.362 3 .410 1.543 105.78 Page 2 of 4 22 675 1 339 3 452 1 524 103 85 22 909 1 316 3 498 1 506 101 99 23 137 1 293 3 548 1 489 100 21 23 357 1 270 3 602 1 472 98 50 23 571 1 247 3 661 1 455-, • 96 88 23 778 1 224 3 723 1 439 95 34 23 976 1 201 3 789 1 424 93 89 24 166 1 178 3 860 1 410 92 52 24 347 1 155 3 936 1 396 91 25 24 517 1 132 4 017 1 383 90 08 24 677 1 109 4 103 1 371 89 01 24 825 1 086 4 194 1 360 88 04 24 959 1 063 4 292 1 349 87 18 25 078 1 040 4 395 1 340 86 44 25 181 1 017 4 506 1 333 85 81 25 265 0 994 4 623 1 326 85 31 25 329 0 971 4 748 1 322 84 95 25 370 0 948 4 882 1 319 84 72 25 384 0 925 5 024 1 .318 84 65 78 030 0 925 5 024 1 .318 84 65 END OF HYDRAULIC JTJMP ANALYSIS PRESSURE4-M0MENTTJM BALANCE OCCURS AT 17.44 FEET UPSTREAM OF DOWNSTREAM DEPTH = 1.762 FEET, UPSTREAM CONJUGATE DEPTH NODE 2104.00 = 0.452 FEET NODE 2179.90 HGL 72.840>;EGL= < 74.402>;FLOWLINE= < 72.300> ****************************************************************************** FLOW PROCESS FROM NODE 2179.90 TO NODE 2180.00 IS CODE = 5 UPSTREAM NODE 2180.00 ELEVATION = 72.63 (FLOW IS SUPERCRITICAL) CALCULATE JTJNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 5 . 75 5 .75 0.00 0 . 00 0 . 00 = DIAMETER ANGLE FLOWLINE CRITICAL (INCHES) (DEGREES) ELEVATION DEPTH(FT.) 12.00 15.00 72.63 0.95 18.00 - 72.30 0.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 :=Q5 EQUALS BASIN INPUT=== VELOCITY (FT/SEC) 9.571 10.028 0 .000 0.000 LACFCD AND OCEMA FLOW JTJNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS (DELTA4) ) / ( (A14-A2) *16 .1) 4-FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03520 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03886 AVERAGED FRICTION SLOPE IN JTJNCTION ASSTJMED AS 0.03703 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.148 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY4-HVI - HV2) 4-(ENTRANCE LOSSES) JTJNCTION LOSSES = ( 0.365) 4-( 0.000) = 0.365 NODE 2180.00 : HGL = < 73.345>;EGL= < 74.767>;FLOWLINE= < 72.630> ****************************************************************************** FLOW PROCESS FROM NODE 2180.00 TO NODE 2024.00 IS CODE = 1 UPSTREAM NODE 2024.00 ELEVATION = 74.40 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.75 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 46.94 FEET MANNING'S N = 0.01300 Page 3 of 4 NORMAL DEPTH(FT) = 0.70 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSTJMED FLOWDEPTH (FT) = 0.95 0 . 95 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: E FROM FLOW DEPTH VELOCITY SPECIFIC PRE SSURE 4- L (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POTJN 0 . 000 0 .948 7 467 1 814 105 20 0 .036 0 .938 7 513 1 815 105 23 0 . 141 0 . 928 7 562 1 816 105 31 0 .315 0 .918 7 616 1 819 105 43 0 .560 0 . 908 7 674 1 823 105 60 0 . 876 0 .898 7 736 1 827 105 82 1 .269 0 . 887 7 801 1 833 106 09 1 . 744 0 . 877 7 871 1 840 106 40 2 .307 0 .867 7 944 1 848 106 75 2 . 966 0 .857 8 021 1 857 107 16 3 . 733 0 .847 8 102 1 867 107 61 4 .620 0 . 837 8 186 1 878 108 11 5 . 644 0 . 827 8 275 1 891 108 66 6 .826 0 .817 8 368 1 905 109 26 8 . 192 0 . 807 8 465 1 920 109 92 9 . 777 0 . 797 8 566 1 937 110 62 11 .625 0 . 787 8 672 1 955 111 38 13 .800 0 . 777 8 782 1 975 112 20 16 . 387 0 . 767 8 897 1 997 113 07 19 .514 0 .757 9 017 2 020 114 00 23 .379 0 .746 9 142 2 045 114 99 28 .315 0 .736 9 272 2 072 116 05 34 . 944 0 .726 9 408 2 101 117 17 44 .668 0 .716 9 549 2 133 118 37 46 . 940 0 . 715 9 568 2 137 118 53 NODE 2024.00 HGL = < 75.348>;EGL= < 76.214>;FLOWLINE= < 74.400> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2024.00 FLOWLINE ELEVATION = 74.40 ASSTJMED UPSTREAM CONTROL HGL = 75.35 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS • Page 4 of 4 ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software,(aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * Private Line 'B' * * Robertson Ranch East Village * * Grading Plans * ************************************************************************** FILE NAME: PRIV-B.DAT TIME/DATE OF STUDY: 14:11 12/06/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RTJN NODE MODEL PRESSURE PRESSURE4- FLOW PRESSURE4- NUMBER PROCESS HEAD (FT) MOMENTUM (POUNDS) DEPTH (FT) MOMENTTJM (POTJNDS) 2015.00- 1.82 661.42 1.29* 773.83 } FRICTION 2016.00- 1.82*Dc 661.42 1.82*Dc 661.42 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JTJNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2015.00 FLOWLINE ELEVATION = 78.34 PIPE FLOW = 27.83 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 78.93 0 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.59 FT.) IS LESS THAN CRITICAL DEPTH( 1.82 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RTJN ANALYSIS NODE 2015.00 : HGL = < 79.634>;EGL= < 82.235>;FLOWLINE= < 78.340> ****************************************************************************** FLOW PROCESS FROM NODE 2015.00 TO NODE 2016.00 IS CODE = 1 UPSTREAM NODE 2016.00 ELEVATION = 80.20 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 27.83 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 51.89 FEET MANNING'S N = 0.01300 Page 1 of 2 NORMAL DEPTH (FT) = 1-17 __^!!!^^^^_^!!™l!!i=:-=====i;!--====== UPSTREAM CONTROL ASSTJMED FLOWDEPTH (FT) = 1^82 "GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ^ ' "DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSTJRE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 000 1^825 9.252 3.155 661.42 0 056 1^799 9.346 3.156 661.66 0 225 1.773 9.448 3.160 662.36 o'5i4 1.747 9.558 3.166 663.53 o'928 1^721 9.676 3.175 665.17 1 477 1.695 9.801 3.187 667.29 2*172 1^669 9.934 3.202 669.90 3 027 1^643 10.076 3.220 673.01 4 059 1^617 10.225 3.241 676.64 5"289 1^591 10.384 3.266 680.79 6*742 1.565 10.551 3.294 685.50 8'448 1.539 10.728 3.327 690.78 10 447 1^513 10.914 3.363 696.66 12*787 1.487 11.110 3.405 703.16 15.527 1.461 11.318 3.451 710.31 18 747 1.435 11.536 3.502 718.13 22 552 1.409 11.766 3.560 726.68 27 083 1.382 12.009 3.623 735.98 32'.538 1.356 12.265 3.694 746.07 39 212 1^330 12.535 3.772 757.00 47 556 1.304 12.820 3.858 768.81 51.890 1^294 12.939 3.895 773.83 '"NODE"2016'oo'rHGL'= < 82.025>;EGL= < 83 . 355> ; FLOWLINE= < 80.200> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2016.00 FLOWLINE ELEVATION = 80.20 ASSUMED UPSTREAM CONTROL HGL = 82.02 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS • Page 2 of 2 ****************************************************************************** PIPE-FLOW HYDRATJLICS COMPTJTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STTJDY ************************** * Private Line 'C * * Robertson Ranch East Village * * Grading Plans * ************************************************************************** FILE NAME: PRIV-C.DAT TIME/DATE OF STTJDY: 14:19 07/12/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RTJN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE4- FLOW PRESSURE4- NUMBER PROCESS HEAD (FT) MOMENTTJM (POTJNDS) DEPTH (FT) MOMENTTJM (POTJNDS) 2036.00- 1.00 54.73 0.40* 84.29 } FRICTION 2035.50- 0.80 Dc 50.52 0.42* 80.20 } MANHOLE 2035.00- 0.80 Dc 50.52 0.42* 78.59 } FRICTION 2034.00- 0.80*Dc 50.52 0.80*Dc 50.52 MAXIMTJM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JTJNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 2036.00 FLOWLINE ELEVATION = 68.48 PIPE FLOW = 3.50 CFS PIPE DIAMETER = 12.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 69.480 FEET NODE 2036.00 : HGL = < 68.879>;EGL= < 71.107>;FLOWLINE= < 68.480> ****************************************************************************** FLOW PROCESS FROM NODE 2036.00 TO NODE 2035.50 IS CODE = 1 UPSTREAM NODE 2035.50 ELEVATION = 71.57 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.50 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 35.14 FEET MANNING'S N = 0.01300 Page 1 of 3 NORMAL DEPTH(FT) = 0.40 CRITICAL DEPTH(FT) = 0.80 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.42 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.662 1.354 2.080 2.842 3 , 4 , 5, 6, 7 , FLOW DEPTH (FT) 0.416 .644 ,489 ,384 ,332 .342 8.420 9.576 10.823 12.173 13.646 15.265 17.060 19.074 21.364 24.017 27.165 31.030 35.140 0.415 0 .414 0 .413 0.413 0 .412 0 .411 0 .410 0.410 0.409 0 .408 0.407 0.406 0.406 0.405 0 .404 0 .403 0 .403 0.402 0.401 0 .400 0.399 0.399 VELOCITY (FT/SEC) 11.325 11.354 11.382 11.411 11.440 11.468 11.497 11.527 11.556 11.585 11.615 11.645 11.675 11.705 11. 735 11.765 11.796 11.826 11.857 11.888 11.919 11.950 11.976 SPECIFIC ENERGY(FT) 2.409 2, 2 , 2 , 2 , 2, 2, 2 , 2 . 2 , 2 , 2 , 2 . 2. 2 . 2 . 2 , 2 , 2 , 2 , 2 . .418 ,427 .437 .446 .456 ,465 ,475 .484 .494 , 504 ,514 ,524 , 534 ,544 ,555 . 565 ,576 . 586 ,597 ,607 2 . 618 2 . 627 PRESSURE4- MOMENTUM(POUNDS) 80 .20 80.38 80.55 80.73 80 . 91 81.09 81.28 81.46 81.64 81. 83 82 .01 82 .20 82 .39 82.58 82 . 77 82.96 83 .15 83 .34 83 .54 83 .73 83 .93 84 .13 84 .29 NODE 2035;50 : HGL = < 71.986>;EGL= < 73.979>;FLOWLINE= < 71.570> *********************************************************************.^^^,^^^^^^^ FLOW PROCESS FROM NODE 2035.50 TO NODE 2035.00 IS CODE = 2 UPSTREAM NODE 2035.00 ELEVATION = 71.75 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 3.50 CFS PIPE DIAMETER = 12.00 INCHES AVERAGED VELOCITY HEAD = 1.948 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05*( 1.948) = 0.097 NODE 2035.00 : HGL = < 72.173>;EGL= < 74.076>;FLOWLINE= < 71.750> **********************************************************************^^^.^^^j^^ FLOW PROCESS FROM NODE 2035.00 TO NODE 2034.00 IS CODE = 1 UPSTREAM NODE 2034.00 ELEVATION = 75.30 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.50 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 44.75 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.41 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.80 0 .80 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC Page 2 of 3 PRESSURE4- L(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTTJM (POTJN 0 000 0 .799 5 .199 1 .219 50 .52 0 010 0 .784 5 .299 1 .220 50 .54 0 041 0 .768 5 .406 1 .222 50 63 0 096 0 .752 5 .521 1 226 50 78 0 176 0 .737 5 .642 1 231 50 99 0 286 0 .721 5 .772 1 239 51 27 0 428 0 .705 5 . 910 1 248 51 62 0 607 0 .690 6 .057 1 260 52 05 0 828 0 .674 6 .214 1 274 52 56 1 097 0 . 658 6 .382 1 291 53 15 1 422 0 .643 6 .560 1 311 53 84 1 811 0 .627 6 .751 1 335 54 62 2 276 0 .611 6 .956 1 363 55 50 2 830 0 .596 7 .174 1 395 56 50 3 492 0 .580 7 .408 1 433 57 62 4 285 0 .564 7 .660 1 476 58 87 5 239 0 .549 7 .930 1 526 60. 27 6 397 0 .533 8 .221 1 583 61 82 7 816 0 .517 8 .535 1 649 63 . 54 9 584 0 .502 8 .874 1 725 65. 44 11 836 0 .486 9 .241 1 813 67. 56 14 798 0 .470 9 . 639 1 914 69. 90 18 896 0 .455 10 . 073 2 031 72 . 49 25 087 0 .439 10 .546 2 167 75 . 37 36 444 0 .423 11 . 063 2 325 78. 56 44 750 0 .423 11 . 067 2 326 78. 59 NODE 2034.00 HGL = < 76.099>;EGL= < 76.519>;FLOWLINE= < 75.300> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NTJMBER = 2034.00 FLOWLINE ELEVATION = 75.30 ASSUMED UPSTREAM CONTROL HGL = 76.10 FOR DOWNSTREAM RTJN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS • Page 3 of 3 ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software ,(aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STTJDY ************************** * Hydraulic Calculations- Robertson Ranch 011014 * * Storm Drain 'D'- 24" PVC Sd from Desiltation Basin 'D' * * NF 11/9/06 * ************************************************************************** FILE NAME: PRIV-D.DAT TIME/DATE OF STTJDY: 14:19 12/06/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RTJN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE4- FLOW PRESSURE4- NUMBER PROCESS HEAD (FT) MOMENTTJM (POUNDS) DEPTH (FT) MOMENTTJM (POTJNDS) 200.00- 3.03* 549.22 0.95 360.27 } FRICTION } HYDRAULIC JUMP 201.00- 1.43 Dc 292.83 1.06* 327.90 } JTJNCTION 201.10- 1.43 Dc 292.83 1.24* 300.71 } FRICTION 202.00- 1.43*Dc 292.83 1.43*Dc 292.83 MAXIMTJM NTJMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 200.00 FLOWLINE ELEVATION = 72.37 PIPE FLOW = 15.66 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 75.400 FEET NODE 200.00 : HGL = < 75.400>;EGL= < 75.786>;FLOWLINE= < 72.370> ****************************************************************************** FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 1 UPSTREAM NODE 201.00 ELEVATION = 74.98 (HYDRAULIC JTJMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 15.66 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 110.31 FEET MANNING'S N = 0.01300 HYDRAULIC JTJMP: DOWNSTREAM RTJN ANALYSIS RESULTS Page 1 of 4 NORMAL DEPTH(FT) 0 . 94 CRITICAL DEPTH(FT) 1.43 UPSTREAM CONTROL ASSTJMED FLOWDEPTH(FT) = 1.06 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE4- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POTJNDS) 0 000 1 . 064 9 216 2 384 327 . 90 1 319 1. 059 9 270 2 394 329. 01 2 716 1 . 054 9 324 2 405 330 . 14 4 197 1 . 049 9 379 2 416 331. 30 5 771 1. 044 9 435 2 427 332 . 48 7 446 1. 039 9 491 2 439 333 . 68 9 234 1. 034 9 549 2 451 334 . 91 11 146 1 . 029 9 606 2 463 336 . 16 13 197 1 . 024 9 665 2 476 337. 43 15 404 1. 020 9 724 2 489 338 . 74 17 787 1. 015 9 784 2 502 340. 06 20 370 1. 010 9 845 2 516 341. 41 23 184 1. 005 9 906 2 530 342 . 79 26 266 1 . 000 9 969 2 544 344 . 20 29 663 0 . 995 10 032 2 559 345 . 63 33 434 0 . 990 10 096 2 574 347 . 09 37 659 0 . 985 10 160 2 589 348 . 58 42 446 0 . 980 10 .226 2 605 350 . 09 47 945 0 . 975 10 .292 2 621 351. 64 54 378 0 . 970 10 .359 2 .638 353 . 21 62 086 0 965 10 .427 2 . 655 354 . 81 71 642 0 960 10 .496 2 . 672 356 . 45 84 .123 0 955 10 .566 2 .690 358 . 11 101 . 943 0 950 10 .637 2 . 709 359 . 80 110 .310 0 949 10 .656 2 .714 360 27 HYDRAULIC JTJMP: UPSTREAM RTJN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSTJMED PRESSURE HEAD (FT) = PRESSURE FLOW PROFILE COMPUTED INFORMATION: 3 . 03 DISTANCE FROM CONTROL(FT) 0 . 000 54.588 PRESSURE HEAD(FT) 3 . 030 2 . 000 VELOCITY (FT/SEC) 4 . 985 4 . 985 SPECIFIC ENERGY(FT) 3 .416 2 .386 PRESSURE4- MOMENTUM (POTJNDS) 549.22 347.31 ASSTJMED DOWNSTREAM PRESSURE HEAD(FT) = 2 . 00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 54.588 55.706 56.740 57.722 58.663 59.568 60.439 61.278 FLOW DEPTH (FT) 2.000 1.977 1 . 954 1.931 1.908 1 .885 1.862 1. 839 VELOCITY (FT/SEC) 4.983 4 . 994 5.013 5 . 037 5.067 5.100 5 . 137 5 .178 SPECIFIC ENERGY(FT) 2 .386 2 .365 2 .345 2 .325 2 .307 2 .289 2 . 272 2 .256 PRE SSURE 4- MOMENTUM (POTJNDS) 347.31 343.13 339.23 335.52 331. 97 328.58 325.33 322 .23 Page 2 of 4 62 087 1 816 5 223 2 240 319 27 62 865 1 794 5 271 2 225 316 45 63 613 1 771 5 322 2 211 313 78 64 330 1 748 5 376 2 197 311 24 65 015 1 725 5 434 2 184 , •' 308 86 65 667 1 702 5 496 2 171 • 306 62 66 285 1 679 5 560 2 159 304 53 66 867 1 656 5 629 2 148 302 60 67 411 1 633 5 701 2 138 300 82 67 915 1 610 5 776 2 128 299 21 68 376 1 587 5 856 2 120 297 77 68 791 1 564 5 939 2 112 296 50 69 156 1 541 6 026 2 106 295 41 69 467 1 518 6 118 2 100 294 50 69 720 1 495 6 214 2 095 293 78 69 908 1 472 6 315 2 092 293 26 70 027 1 449 6 420 2 090 292 94 70 068 1 427 6 530 2 089 292 83 110 310 1 427 6 530 2 089 292 83 END OF HYDRAULIC JTJMP ANALYSIS PRESSURE4-M0MENTUM BALANCE OCCURS AT 52.82 FEET UPSTREAM OF NODE 200.00 DOWNSTREAM DEPTH = 2.033 FEET, UPSTREAM CONJUGATE DEPTH = 0.968 FEET NODE 201.00 : HGL = < 76.044>;EGL= < 77.364>;FLOWLINE= < 74.980> ****************************************************************************** FLOW PROCESS FROM NODE 2 01.00 TO NODE 201.10 IS CODE = 5 UPSTREAM NODE 201.10 ELEVATION = 75.31 (FLOW IS SUPERCRITICAL) CALCULATE JTJNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 15.66 24.00 0.00 75.31 1.43 7.634 DOWNSTREAM 15.66 24.00 - 74.98 1.43 9.219 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*COS (DELTA4) ) / ( (A14-A2) *16 .1) 4-FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00955 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01557 AVERAGED FRICTION SLOPE IN JTJNCTION ASSTJMED AS 0.01256 JTJNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.050 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HVl-HV2) 4-(ENTRANCE LOSSES) JTJNCTION LOSSES = ( 0.094) 4-( 0.000) = 0.094 NODE 201.10 : HGL = < 76.553>;EGL= < 77.458>;FLOWLINE= < 75.310> ****************************************************************************** FLOW PROCESS FROM NODE 201.10 TO NODE 202.00 IS CODE = 1 UPSTREAM NODE 202.00 ELEVATION = 75.81 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 15.66 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 50.11 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.22 CRITICAL DEPTH(FT) = 1.43 Page 3 of 4 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.43 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: E FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE4- L (FT) (FT) (FT/SEC) ENERGY(FT) MOMENTTJM (POTJN 0 000 1 427 6 530 2 089 292 83 0 027 1 418 6 571 2 089 292 84 0 .111 1 410 6 611 2 090 292 88 0 .256 1 402 6 653 2 090 292 95 0 .470 1 394 6 695 2 091 293 05 0 .758 1 386 6 738 2 092 293 18 1 . 127 1 378 6 781 2 093 293 33 1 .588 1 .370 6 826 2 094 293 52 2 . 150 1 .362 6 871 2 095 293 73 2 . 825 1 .354 6 916 2 097 293 98 3 .629 1 .346 6 963 2 099 294 25 4 .579 1 .338 7 010 2 101 294 56 5 .697 1 .330 7 058 2 104 294 90 7 . 010 1 .322 7 107 2 106 295 27 8 . 552 1 .314 7 157 2 109 295 67 10 .367 1 .305 7 207 2 113 296 11 12 .513 1 .297 7 259 2 116 296 58 15 .067 1 .289 7 311 2 120 297 09 18 . 140 1 .281 7 364 2 124 297 63 21 .893 1 .273 7 419 2 128 298 21 26 .575 1 .265 7 474 2 133 298 82 32 .602 1 .257 7 530 2 138 299 47 40 . 759 1 .249 7 587 2 143 300 15 50 . 110 1 .243 7 632 2 148 300 71 NODE 202.00 : HGL = < 77.237>;EGL= < 77.899>;FLOWLINE= < 75.810> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 202.00 ASSTJMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 75.81 77.24 FOR DOWNSTREAM RTJN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS • Page 4 of 4 ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD.LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 * ************************** DESCRIPTION OF STUDY ************************** * Private Line 'E' ^ * Robertson Ranch East Village ^ * Grading Plans ************************************************************************** FILE NAME: PRIV-E.DAT TIME/DATE OF STUDY: 15:28 12/06/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RTJN NODE MODEL PRESSURE PRESSURE4- FLOW PRESSURE4- NUMBER PROCESS HEAD (FT) MOMENTTJM (POUNDS) DEPTH (FT) MOMENTTJM (POUNDS) 4074.00- 6.08* 3047.65 1.62 2036.49 } FRICTION 4073.50- 4.81* 2486.63 1.87 1800.29 } MANHOLE 4073.00- 4.54* 2366.76 1.97 1739.93 } FRICTION 4072.00- 3.99* 2127.80 2.52 Dc 1604.62 MAXIMTJM NTJMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JTJNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 4074.00 FLOWLINE ELEVATION = 55.05 PIPE FLOW = 61.22 CFS PIPE DIAMETER = 36.00 INCHES ASSTJMED DOWNSTREAM CONTROL HGL = 61.130 FEET NODE 4074.00 : HGL = < 61.130>;EGL= < 62.2 95>;FLOWLINE= < 55.050> ******* *********************************************************************** FLOW PROCESS FROM NODE 4074.00 TO NODE 4073.50 IS CODE = 1 UPSTREAM NODE 4073.50 ELEVATION = 56.56 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 61.22 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 28.26 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 61.22)/( 666.984))**2 = 0.00842 Page 1 of 2 HF=L*SF = ( 28.26)*(0.00842) = 0.238 NODE 4073.50 : HGL = < 61.368>;EGL= < 62.533>;FLOWLINE= < 56.560> ****************************************************************************** FLOW PROCESS FROM NODE 4073.50 TO NODE 4073.00 IS CODE = 2 UPSTREAM NODE 4073.00 ELEVATION = 56.89 (FLOW IS UNDER PRESSURE) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 61.22 CFS PIPE DIAMETER = 36.00 INCHES FLOW VELOCITY = 8.66 FEET/SEC. VELOCITY HEAD = 1.165 FEET HMN = .05*(VELOCITY HEAD) = .05*( 1.165) = 0.058 NODE 4073.00 : HGL = < 61.426>;EGL= < 62.591>;FLOWLINE= < 56.890> ****************************************************************************** FLOW PROCESS FROM NODE 4073.00 TO NODE 4072.00 IS CODE = 1 UPSTREAM NODE 4072.00 ELEVATION = 57.76 (FLOW IS TJNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD ) : PIPE FLOW 61.22 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 38.96 FEET MANNING S N = 0.01300 SF=(Q/K)**2 = (( 61.22)/ ( 666.987))**2 = 0 00842 HF=L*SF = ( 38 .96)*(0.00842) 0.328 NODE 4072.00 : HGL = < 61.755>;EGL= < 62.919>;FLOWLINE= < 57.760> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 4072.00 FLOWLINE ELEVATION = 57.76 ASSTJMED UPSTREAM CONTROL HGL = 60.28 FOR DOWNSTREAM RTJN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 2 of 2 ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * Private Line 'F' * * Robertson Ranch East Village * * Grading Plans * ************************************************************************** FILE NAME: PRIV-F.DAT TIME/DATE OF STTJDY: 15:31 12/06/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RTJN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE4- FLOW PRESSURE4- NTJMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 6012.00- 7.04* 1539.66 0.74 1079.11 } FRICTION } HYDRAULIC JUMP 6010.50- 1.74 DC 531.65 1.31* 588.81 } MANHOLE 6010.00- 1.74 DC 531.65 1.47* 553.18 } FRICTION 6008.00- 1.74*Dc 531.65 1.74*Dc 531.65 MAXIMTJM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD.LACFCD, AND OCEMA DESIGN MANUALS. JTJNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NTJMBER = 6012.00 FLOWLINE ELEVATION = 43.12 PIPE FLOW = 24.01 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 50.160 FEET NODE 6012.00 : HGL = < 50.160>;EGL= < 51.067>;FLOWLINE= < 43.120> ****************************************************************************** FLOW PROCESS FROM NODE 6012.00 TO NODE 6010.50 IS CODE = 1 UPSTREAM NODE 6010.50 ELEVATION = 52.64 (HYDRAULIC JTJMP OCCURS) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 24.01 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 47.46 FEET MANNING'S N = 0.01300 Page 1 of 4 HYDRAULIC JUMP: DOWNSTREAM RTJN ANALYSIS RESULTS NORMAL DEPTH(FT) 0 .66 CRITICAL DEPTH(FT) 1.74 UPSTREAM CONTROL ASSTJMED FLOWDEPTH(FT) = 1. 31 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE4- CONTROL(FT) (FT) (FT/SEC) ENERGY( FT) MOMENTUM(POUNDS) 0 . 000 1. 315 10 . 963 3 . 182 588. 81 0 . 341 1. 289 11. 218 3 . 244 597. 14 0. 724 1. 262 11. 487 3 . 313 606. 23 1. 154 1. 236 11. 771 3 . 389 616 . 11 1. 637 1. 210 12 . 072 3 . 475 626. 84 2 179 1. 184 12. 391 3 . 570 638 . 48 2 787 1. 158 12 729 3 675 651. 09 3 472 1. 132 13 087 3 793 664. 73 4 244 1 106 13 467 3 924 679 . 48 5 116 1 080 13 871 4 069 695. 44 6 103 1 054 14 301 4 232 712 68 7 225 1 028 14 760 4 412 731 32 8 506 1 002 15 249 4 614 751 48 9 .975 0 976 15 771 4 840 773 28 11 .670 0 949 16 .330 5 .093 796 87 13 .641 0 923 16 .930 5 .377 822 43 15 . 951 0 .897 17 .574 5 .696 850 13 18 .691 0 . 871 18 .267 6 . 056 880 20 21 .983 0 .845 19 .014 6 .462 912 87 26 .013 0 . 819 19 . 821 6 . 923 948 .43 31 .066 0 .793 20 .695 7 .448 987 .20 37 .620 0 .767 21 .645 8 . 046 1029 .55 46 . 578 0 .741 22 .679 8 .732 1075 .91 47 .460 0 .739 22 .750 8 .781 1079 . 11 HYDRAULIC JTJMP: UPSTREAM RTJN ANALYSIS RESULTS DOWNSTRETm CONTROL ASSTJMED PRESSURE HEAD (FT) PRESSURE FLOW PROFILE COMPUTED INFORMATION: 7 . 04 DISTANCE FROM CONTROL(FT) 0 .000 26 . 621 PRESSURE HEAD(FT) 7 . 040 2 . 000 VELOCITY (FT/SEC) 7 . 643 7 . 643 SPECIFIC ENERGY(FT) 7 . 947 2 . 907 PRESSURE4- MOMENTTJM (POTJNDS) 1539.66 551 . 64 ASSTJMED DOWNSTREAM PRESSURE HEAD(FT) = 2 . 00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 26.621 26 .671 26.715 26.756 26.794 26.829 26.863 26.894 FLOW DEPTH (FT) 2 . 000 1.989 1.979 1.968 1.958 1.947 1.936 1. 926 VELOCITY (FT/SEC) 7 . 640 7.645 7.654 7 . 666 7.680 7.696 7.714 7 . 733 SPECIFIC ENERGY(FT) 2 . 907 2 .898 2.889 2 . 881 2.874 2 .867 2.861 2 . 855 PRESSUREH- MOMENTUM(POUNDS) 551.64 549.79 548.14 546 . 62 545.21 543 .89 542 .65 541 .49 Page 2 of 4 26 26 26 27 27 27 27 27 924 951 977 001 024 044 064 ,081 27.097 27.Ill 27.124 27.135 27.144 27.152 27.158 27.162 27.165 27.166 47.460 1. 1, 1, 1 1 1 1 1 1 1 1 1 1 1 915 905 894 884 873 862 852 841 ,831 ,820 .809 .799 .788 .778 1.767 1.756 1.746 1.735 1.735 754 776 799 824 850 877 905 ,934 ,965 .997 .030 .064 8.099 8.135 172 210 250 290 290 8 . 8 . 8 , 8, 8, 2 . 2 . 2 . 2 , 2 , 2 2 2 2 2 2 2 2 2 2 2 2 2 2 849 844 839 835 830 826 ,823 ,819 .816 .814 .811 .809 .807 .806 . 805 . 804 .803 .803 .803 540 .40 539.38 538 .43 537.55 536.73 535.98 535.29 534 .66 534 .09 533.58 533.13 532.74 532.40 532.13 531.92 531.77 531.68 531.65 531.65 END OF HYDRAULIC JUMP ANALYSIS PRESSURE4-M0MENTUM BALANCE OCCURS AT 14.57 FEET UPSTREAM OF DOWNSTREAM DEPTH = 4.282 FEET, UPSTREAM CONJUGATE DEPTH NODE 6012.00 = 0.786 FEET NODE 6010.50 : HGL = < 53.955>;EGL= < 55.822>;FLOWLINE= < 52.640> **************************** ********************** ***************************** FLOW PROCESS FROM NODE 6010.50 TO NODE 6010.00 IS CODE = 2 UPS?R^ NODE 6010.00 ELEVATION = 52.97 (FLOW IS SUPERCRITICAL) 24.00 INCHES CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 24.01 CFS PIPE DIAMETER AVERAGED VELOCITY HEAD = 1.668 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = .05*( 1.668) =0.083 'NODE"6oio'oo':'HGL'I < 54.436>;EGL= < 55 . 905> ; FLOWLINE= < 52.970> ************************************************ 008.00 IS 53.98 (FLOW IS SUPERCRITICAL) ****************************** FLOW PROCESS FROM NODE 6010.00 TO NODE 6008.00 IS CODE = 1 UPSTREAM NODE 6008.00 ELEVATION CALCULATE FRICTION LOSSES(LACFCD): 24.01 CFS PIPE DIAMETER = 24.00 INCHES FEET MANNING'S N = 0.01300 PIPE FLOW PIPE LENGTH = 66.72 1 .74 NORMAL DEPTH (FT) = 1.43 UPSTREAM CONTROL ASSTJMED FLOWDEPTH (FT) = 1.74 'GRADUALLY"VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0 . 046 0 .190 0.436 0.794 1.272 1.881 2.633 DEPTH VELOCITY SPECIFIC PRESSURE4- (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POTJNDS) 1.735 8 .290 2 .803 531.65 1.723 8 .338 2.803 531.69 1. 711 8 .387 2 .804 531.81 1.699 8 .438 2.805 532.01 1.687 8 .490 2.807 532.29 1.675 8.543 2 .809 532.66 1.663 8 .598 2 .811 533.11 1. 651 8.655 2 .815 533.64 Page 3 of 4 3 544 1.639 8.713 2.818 534.26 4*631 1^626 8.773 2.822 534.96 5 916 1.614 8.834 2.827 535.75 7 424 1.602 8.897 2.832 536.64 9*188 1.590 8.961 2.838 537.61 11*248 1.578 9.028 2.844 538.68 13 653 1.566 9.095 2.851 539.84 16 469 1.554 9.165 2.859 541.09 19 781 1.542 9.236 2.867 542.44 23*705 1.530 9.310 2.876 543.90 28'.405 1.518 9.385 2.886 545.45 34 118 1.505 9.461 2.896 547.11 41 216 1.493 9.540 2.908 548.87 50*319 1.481 9.621 2.920 550.74 62 592 1.469 9.704 2.932 552.71 66.720 1.466 9.723 2.935 'NODE"6008'oo'rHGL"= < 55.715>;EGL= < 56 . 783> ; FLOWLINE= < 53.980> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 6008.00 FLOWLINE ELEVATION = 53.98 ASSUMED UPSTREAM CONTROL HGL = 55.72 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS Page 4 of 4 ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STUDY ************************** * Private Line 'G' * * Robertson Ranch East Village * * Grading Plans * ************************************************************************** FILE NAME: PRIV-G.DAT TIME/DATE OF STUDY: 16:09 07/11/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RTJN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE4- FLOW PRESSURE4- NUMBER PROCESS HEAD (FT) MOMENTTJM (POTJNDS) DEPTH (FT) MOMENTTJM (POUNDS) 3010.00- 0.99 99.62 0.35* 262.05 } FRICTION 3012.50- 0.99 Dc 99.62 0.59* 136.35 } MANHOLE 3012.00- 0.99 Dc 99.62 0.64* 125.27 } FRICTION 3016.00- ' 0.99*Dc 99.62 0.99*Dc 99.62 MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JTJNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3010.00 FLOWLINE ELEVATION = 60.61 PIPE FLOW = 6.50 CFS PIPE DIAMETER = 18.00 INCHES ASSTJMED DOWNSTREAM CONTROL HGL = 61.400 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.79 FT.) IS LESS THAN CRITICAL DEPTH( 0.99 FT.) ===> CRITICAL DEPTH IS ASSTJMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS NODE 3010.00 : HGL = < 60.962>;EGL= < 67.537>;FLOWLINE= < 60.610> ****************************************************************************** FLOW PROCESS FROM NODE 3010.00 TO NODE 3012.50 IS CODE = 1 UPSTREAM NODE 3012.50 ELEVATION = 70.74 (FLOW IS SUPERCRITICAL) Page 1 of 3 CALCTJLATE FRICTION LOSSES (LACFCD) : PIPE FLOW = 6.50 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 31.13 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.33 UPSTREAM CONTROL ASSTJMED FLOWDEPTH (FT) CRITICAL DEPTH(FT) 0.99 0.59 GRADUALLY VARIED FLOW PROFILE COMPTJTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE4- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 0 .592 10.028 2 .154 136 .35 0 .226 0.581 10.268 2.219 138 .95 0 .472 0.571 10.518 2 .290 141 .71 0 .742 0.561 10.780 2.366 144 .62 1 .037 0 .550 11.054 2.449 147 .69 1 .360 0.540 11.342 2 .539 150 . 94 1 .716 0.530 11.644 2.636 154 .37 2 .108 0.519 11.960 2 .742 158 .01 2 .541 0.509 12.293 2.857 161 .85 3 .022 0 .499 12.643 2 . 982 165 .93 3 .556 0 .488 13.011 3 .119 170 .24 4 .154 0 .478 13.400 3 .268 174 .82 4 .825 0.468 13.810 3 .431 179 .68 5 .582 0 .458 14.243 3 .609 184 84 6 .442 0 .447 14.701 3. 805 190 32 7 .427 0 .437 15.186 4 . 020 196 15 8 .566 0.427 15.701 4 .257 202 37 9 896 0 .416 16.247 4.518 208 99 11 471 0 .406 16.829 4.806 216 06 13 373 0.396 17.448 5.126 223 62 15 724 0.385 18.109 5.480 231 71 18 731 0.375 18.815 5.875 240 39 22 784 0 .365 19.572 6.316 249 70 28 758 0.354 20.384 6.810 259 72 31 130 0 .352 20.572 6.927 262 05 NODE 3012.50 : HGL = < 71.332>;EGL= < 72.894>;FLOWLINE= < 70.740> *****************************************************************^^^^^^^^.^^^^j^ FLOW PROCESS FROM NODE 3012.50 TO NODE 3012.00 IS CODE = 2 UPSTREAM NODE 3012.00 ELEVATION = 71.07 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES(LACFCD): PIPE FLOW = 6.50 CFS PIPE DIAMETER = 18.00 INCHES AVERAGED VELOCITY HEAD = 1.407 FEET HMN = .05*(AVERAGED VELOCITY HEAD) = . 05* ( 1.407) = 0 . 070 NODE 3012.00 : HGL = < 71.713>;EGL= < 72.965>;FLOWLINE= < 71.070> **********************************************************************^j^^.j^j^^^j^ FLOW PROCESS FROM NODE 3012.00 TO NODE 3016.00 IS CODE = 1 UPSTREAM NODE 3016.00 ELEVATION = 72.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 6.50 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 24.09 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.58 CRITICAL DEPTH(FT) = 0.99 Page 2 of 3 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.99 GRADUALLY VARIED FLOW PROFILE COMPTJTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 0.017 0.070 0.162 0.299 0.485 0.727 1.031 1.405 1.860 2.406 3.060 3 . 837 4.760 5.857 7.163 8.726 10.610 12.906 15.745 19.333 24.016 24.090 FLOW DEPTH (FT) 0.986 0. .970 0.953 0.937 0.921 0.904 0.888 0 .872 0 .856 0.839 0.823 0.807 0.790 0.774 ,758 ,741 ,725 ,709 0.692 0.676 0.660 0.644 0.643 VELOCITY (FT/SEC) 5.276 5.378 5.484 5.596 5.713 5.835 5.964 6.098 6 6 6 6 6 240 389 545 710 884 067 260 464 679 908 8.150 8.407 8.680 8 . 970 8 . 974 SPECIFIC ENERGY(FT) 1.418 1.419 1.421 1.424 1.428 1.433 ,441 ,450 .461 ,473 ,489 ,506 .527 .550 .577 .607 .641 .680 .724 .774 1.830 1.894 1.895 1. 1. 1. 1. 1. 1, 1, 1, 1, 1. 1, 1, 1, 1. PRESSURE4- MOMENTUM(POUNDS) 99.62 99.66 99.79 100.00 100.30 100.70 101.20 101.80 102.51 103.34 104.29 105.37 106.58 107.94 109.45 111.12 112.96 114.99 117.22 119.66 122.32 125.23 125.27 NODE 3 016.00 HGL 72.986>;EGL= < 73.418>;FLOWLINE= < 72.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 3016.00 FLOWLINE ELEVATION = 72.00 ASSUMED UPSTREAM CONTROL HGL = 72.99 FOR DOWNSTREAM RTJN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS • Page 3 of 3 ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2006 Advanced Engineering Software (aes) Ver. 13.0 Release Date: 06/01/2006 License ID 1423 Analysis prepared by: O'Day Consultants 2710 Loker Ave. West Ste. 100 Carlsbad, CA 92010 (760) 931-7700 ************************** DESCRIPTION OF STTJDY ************************** * Hydraulic Calculations- Robertson Ranch JN 011014 * * Revised Storra Drain 'H' * * NF 11/10/06 * ************************************************************************** FILE NAME: AES300.DAT TIME/DATE OF STUDY: 14:30 11/10/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RTJN NODE MODEL PRESSURE PRESSURE4- FLOW PRESSURE4- NUMBER PROCESS HEAD (FT) MOMENTTJM (POTJNDS) DEPTH (FT) MOMENTTJM (POTJNDS) 300.00- 1.50 235.40 1.01* 248.93 } FRICTION 301.00- 1.31 DC 227.19 0.95* 258.52 } JTJNCTION 301.10- 1.31 Dc 227.19 1.06* 241.72 } FRICTION 302.00- 1.31*Dc 227.19 1.31*Dc 227.19 MAXIMTJM NTJMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRATJLIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NTJMBER = 3 00.00 FLOWLINE ELEVATION = 3 9.90 PIPE FLOW = 11.80 CFS PIPE DIAMETER = 18.00 INCHES ASSTJMED DOWNSTREAM CONTROL HGL = 41.400 FEET NODE 300.00 : HGL = < 40.906>;EGL= < 42.269>;FLOWLINE= < 39.900> ****************************************************************************** FLOW PROCESS FROM NODE 3 00.00 TO NODE 301.00 IS CODE = 1 UPSTREAM NODE 301.00 ELEVATION = 42.06 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 11.80 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 107.91 FEET MANNING'S N = 0.013 00 NORMAL DEPTH(FT) = 1.01 CRITICAL DEPTH(FT) = UPSTREAM CONTROL ASSTJMED FLOWDEPTH (FT) = 0.95 1.31 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 0.000 1 .786 3 .635 5.554 7.549 9.628 11.799 14.071 16.457 18.971 21.629 24.451 27.461 30.689 34.174 37.965 42.125 46.743 51.941 57.898 64.893 73.392 84.268 99.485 107.910 FLOW DEPTH (FT) 0.953 0.955 0.957 0 .960 0.962 0.964 0.966 0 .969 0.971 0.973 0.975 0 . 978 0 .980 0 . 982 0 .984 0 . 987 0.989 0.991 0.994 0 . 996 0. 998 1 .000 1 . 003 1. 005 1. 006 VELOCITY (FT/SEC) 9.962 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 934 907 880 853 827 800 774 748 722 696 670 645 620 595 570 545 520 495 471 447 423 399 9 .375 9 .367 SPECIFIC ENERGY(FT) 2.495 2 .489 2 .482 ,476 ,470 ,465 .459 .453 ,447 ,442 ,436 ,431 2 .425 2 .420 2 .415 2 .410 2 .404 2.399 2.394 2 .390 2.385 2 .380 2 .375 2 .370 2 .369 2, 2, 2. 2 . 2 , 2 , 2 , 2 , 2 , PRESSTJRE4- MOMENTUM (POTJNDS) 258.52 258.06 257.61 257.16 256.71 256.27 255.84 255.40 254.98 254.55 254.13 253 .72 253 .31 252 .90 252 .50 252.10 251.70 251.31 250.93 250.54 250.17 249.79 249.42 249 . 05 248.93 NODE 301.00 : HGL = < 43.013>;EGL= < 44.555>;FLOWLINE= < 42.060> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 3 01.10 301.00 TO NODE ELEVATION = 3 01.10 IS CODE = 5 42.39 (FLOW IS SUPERCRITICAL) CALCULATE JTJNCTION LOSSES: PIPE UPSTREAM DOWNSTREAM LATERAL #1 LATERAL #2 Q5 FLOW (CFS) 11.80 11.80 0 . 00 0.00 DIAMETER (INCHES) 18.00 18.00 0.00 0.00 ANGLE (DEGREES) 0 . 00 0 . 00 0 . 00 FLOWLINE ELEVATION 42 .39 42 .06 0 .00 0 . 00 CRITICAL DEPTH(FT.) 1.31 1.31 0 . 00 0 . 00 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JTJNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*C0S(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S(DELTA4) ) / ( (A14-A2) * 16 .1) 4-FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01774 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02357 AVERAGED FRICTION SLOPE IN JTJNCTION ASSTJMED AS 0.02066 VELOCITY (FT/SEC) 8 .877 9.965 0 .000 0 . 000 JTJNCTION LENGTH FRICTION LOSSES JTJNCTION LOSSES JUNCTION LOSSES 3.00 FEET 0.062 FEET ENTRANCE LOSSES = 0.000 FEET (DY4-HVI-HV2) 4-(ENTRANCE LOSSES) ( 0.115) 4-( 0.000) = 0.115 NODE 301.10 : HGL = < 43.446>;EGL= < 44.669>;FLOWLINE= < 42.390> ****************************************************************************** FLOW PROCESS FROM NODE 301.10 TO NODE 302.00 IS CODE = 1 UPSTREAM NODE 302.00 ELEVATION = 43.14 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 11.80 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 37.39 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) 1 .01 CRITICAL DEPTH(FT) 1.31 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.31 GRADUALLY VARIED FLOW PROFILE COMPTJTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE4- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0 .000 1. 306 7 .224 2 .117 227 . 19 0 .034 1. 294 7 .278 2.117 227 . 22 0 .139 1. 282 7 .334 2.118 227 . 30 0 .319 1. 270 7 .392 2.119 227 . 45 0 .581 1. 258 7 .453 2.121 227 . 66 0 .931 1. 246 7 .516 2.124 227. 93 1 .376 1. 234 7 .581 2 .128 228 . 26 1 . 927 1. 223 7 .649 2 .132 228 . 66 2 .593 1. 211 7 .719 2 .136 229 . 12 3 .390 1. 199 7 .791 2 .142 229. 64 4 .331 1. 187 7 .866 2 .148 230 . 23 5 .438 1 . 175 7 . 943 2 .155 230 . 89 6 .734 1. 163 8 . 023 2.163 231. 63 8 .248 1. 151 8 . 106 2 .172 232 . 43 10 .019 1. 139 8 .191 2 .182 233 . 31 12 .094 1. 127 8 .279 2 .192 234 . 26 14 .539 1. 116 8 .370 2 .204 235 . 29 17 .441 1. 104 8 .464 2 .217 236 . 40 20 .921 1. 092 8 .561 2.231 237 . 59 25 .159 1. 080 8 .661 2 .246 238 . 87 30 .433 1. 068 8 .765 2 .262 240 . 23 37 .209 1. 056 8 .872 2 .279 241. 69 37 .390 1 . 056 8 .874 2.279 241. 72 NODE 302.00 : HGL = < 44.446>;EGL= < 45.257>;FLOWLINE= < 43.140> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NTJMBER = 302.00 ASSUMED UPSTREAM CONTROL HGL = FLOWLINE ELEVATION = 43.14 44.45 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRATJLICS CRITERION) (c) Copyright 1982-2006 Advanced Engineering Software (aes) Ver. 13.0 Release Date: 06/01/2006 License ID 1423 Analysis prepared by: O'Day Consultants 2710 Loker Ave. West Ste. 100 Carlsbad, CA 92010 (760) 931-7700 ************************** DESCRIPTION OF STTJDY ************************** * Hydraulic Calculations- Robertson Ranch 011014 * * Storra Drain 'J'- 24" SD ® Station 1344-05.18 * * NF 11/7/06 * ************************************************************************** FILE NAME: AES100.DAT TIME/DATE OF STUDY: 10:46 11/07/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RTJN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE4- FLOW PRESSURE4- NUMBER PROCESS HEAD(FT) MOMENTUM (POTJNDS) DEPTH(FT) MOMENTTJM (POTJNDS) 102.00- 5.18* 2124.93 } FRICTION 101.10- 3.30* } JTJNCTION 2.79* 553.00 1000 .63 101.00- } FRICTION 100.00-2 .17* 430.04 0.70 0.98 1.25 1.53 DC 487.19 341.46 376.72 355 . 75 MAXIMUM NTJMBER OF ENERGY BALANCES USED IN EACH PROFILE 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NTJMBER = 102.00 FLOWLINE ELEVATION = 39.82 PIPE FLOW = 18.06 CFS PIPE DIAMETER = 42.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 45.000 FEET NODE 102.00 : HGL = < 45.000>;EGL= < 45.055>;FLOWLINE= < 39.820> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 101.10 102.00 TO NODE 101.10 IS CODE = 1 ELEVATION = 41.70 (FLOW SEALS IN REACH) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 18.06 CFS PIPE DIAMETER 42.00 INCHES PIPE LENGTH = 17.47 FEET MANNING'S N 0.01300 DOWNSTREAM CONTROL ASSTJMED PRESSURE HEAD (FT) = PRESSURE FLOW PROFILE COMPUTED INFORMATION: 5.18 DISTANCE FROM CONTROL(FT) 0.000 15.658 PRESSURE HEAD (FT) 5.180 3 .500 VELOCITY (FT/SEC) 1.877 1.877 SPECIFIC ENERGY(FT) 5 .235 3 .555 PRESSURE4- MOMENTUM(POUNDS) 2124.93 1116.32 NORMAL DEPTH(FT) 0.56 CRITICAL DEPTH(FT) 1.30 ASSTJMED DOWNSTREAM PRESSURE HEAD (FT) = 3 . 50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM CONTROL(FT) 15.658 16.472 17.280 17 .470 FLOW DEPTH (FT) 3 .500 3 .412 3 .324 3 .303 VELOCITY (FT/SEC) 1. 877 1.889 1.913 1.919 SPECIFIC ENERGY(FT) 3 . 555 3 .467 3.381 3 .360 PRESSURE4- MOMENTUM (POTJNDS) 1116.32 1064.04 1012.65 1000.63 NODE 101.10 : HGL = < 45.003>;EGL= < 45 .060>;FLOWLINE= < 41.700> ****************************************************************************** FLOW PROCESS FROM NODE UPSTREAM NODE 101.00 101.10 TO NODE ELEVATION = 101.00 IS CODE = 5 42.03 (FLOW TJNSEALS IN REACH) CALCULATE JTJNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 18 . 06 24 . 00 45 . 00 42 .03 1.53 5 . 749 DOWNSTREAM 18 . 06 42 . 00 -41.70 1.30 1. 920 LATERAL #1 0.00 0 . 00 0 . 00 0 . 00 0 . 00 0 . 000 LATERAL #2 0.00 0 . 00 0.00 0 .00 0.00 0 .000 Q5 0.00 = ==Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Ql*Vl*COS(DELTAl)-Q3*V3*COS(DELTA3)- Q4*V4*C0S (DELTA4) ) / ( (A14-A2) *16 .1) 4-FRICTION LOSSES UPSTREAM: MANNING'S N = 0.013 00; FRICTION SLOPE = 0, DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0, AVERAGED FRICTION SLOPE IN JUNCTION ASSTJMED AS 0.00333 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.013 FEET ENTRANCE LOSSES = JUNCTION LOSSES = (DY4-HVI-HV2) 4-(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.277) 4-( 0.000) = 0.277 NODE 101.00 : HGL = < 44.825>;EGL= < 45.338>;FLOWLINE= < 42.030> ****************************************************************************** 00637 00028 0.000 FEET FLOW PROCESS FROM NODE UPSTREAM NODE 100.00 101.00 TO NODE ELEVATION = 100.00 IS CODE = 1 43.26 (FLOW IS UNDER PRESSURE) CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 18.06 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 94.58 FEET MANNING'S N = 0.013 00 SF=(Q/K)**2 = (( 18.06)/( 226.224))**2 = 0.00637 HF=L*SF = ( 94.58)*(0.00637) = 0.603 NODE 100.00 : HGL = < 45.427>;EGL= < 45.941>;FLOWLINE= < 43.260> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NTJMBER = 100.00 FLOWLINE ELEVATION = 43.26 ASSTJMED UPSTREAM CONTROL HGL = 44.79 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRATJLICS CRITERION) (c) Copyright 1982-2002 Advanced Engineering Software (aes) Ver. 8.0 Release Date: 01/01/2002 License ID 1423 Analysis prepared by: O'Day Consultants, Inc. 2710 Loker Avenue West Suite 100 Carlsbad, CA 92008 ************************** DESCRIPTION OF STTJDY ************************** * Robertson Ranch East Village * * Private Line 'K' * * Grading Plans * ************************************************************************** FILE NAME: PRIV-K.DAT TIME/DATE OF STUDY: 13:16 07/12/2006 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RTJN DOWNSTREAM RTJN NODE MODEL PRESSURE PRESSURE4- FLOW PRESSURE4- NUMBER PROCESS HEAD (FT) MOMENTUM (POUNDS) DEPTH (FT) MOMENTTJM(POTJNDS) 9606.00- 1.50* 86.58 0.21 45.24 } FRICTION 9604.00- 0.52*Dc 19.91 0.52*Dc 19.91 MAXIMTJM NTJMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. JTJNCTION ANALYSIS USING FULL INTEGRATION FORMULATION ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NTJMBER = 9606.00- FLOWLINE ELEVATION = 56.71 PIPE FLOW = 1.88 CFS PIPE DIAMETER = 18.00 INCHES ASSTMED DOWNSTREAM CONTROL HGL = 58.210 FEET NODE 9606.00 : HGL = < 58.210>;EGL= < 58.228>;FLOWLINE= < 56.710> ****************************************************************************** FLOW PROCESS FROM NODE 9606.00 TO NODE 9604.00 IS CODE = 1 UPSTREAM NODE 9604.00 ELEVATION = 63.00 (FLOW SEALS IN REACH) CALCULATE FRICTION PIPE FLOW PIPE LENGTH = LOSSES(LACFCD): 1.88 CFS PIPE DIAMETER = 18.00 INCHES 37.51 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.21 CRITICAL DEPTH(FT) = 0.52 DOWNSTREAM CONTROL ASSTJMED PRESSURE HEAD (FT) = 1.50 Page 1 of 2 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE4- CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM (POTJNI 0 . 000 1 . 500 1. 064 1. 518 86 .58 0 . 234 1. 461 1. 071 1. 478 82.28 0 . 466 1. 421 1. 085 1. 440 78 .05 0 . 697 1. 382 1. 104 1. 401 73 .90 0 . 927 1. 343 1. 126 1. 362 69.84 1. 157 1. 303 1. 153 1. 324 65.89 1. 385 1 264 1. 183 1 286 62.05 1 613 1 225 1. 217 1 248 58.32 1 839 1 185 1 255 1 210 54.73 2 064 1 146 1 297 1 172 51.26 2 288 1 107 1 345 1 135 47.94 2 510 1 067 1 398 1 098 44.77 2 729 1 028 1 456 1 061 41.75 2 947 0 988 1 522 1 024 38.88 3 .161 0 949 1 594 0 989 36.19 3 .372 0 910 1 676 0 953 33 .66 3 .578 0 . 870 1 .767 0 .919 31.31 3 .779 0 .831 1 . 870 0 .885 29.14 3 .973 0 .792 1 .986 0 .853 27.17 4 .159 0 .752 2 .118 0 .822 25.40 4 .334 0 .713 2 .269 0 .793 23 .85 4 .494 0 .674 2 .443 0 .766 22 .52 4 .636 0 .634 2 .644 0 .743 21.44 4 .752 0 .595 2 .879 0 .724 20.62 4 .833 0 .556 3 .157 0 .711 20.10 4 .865 0 .516 3 .488 0 .705 19.91 37 .510 0 .516 3 .488 0 .705 19 .91 NODE 9604.00 : HGL = < 63.516>;EGL= < 63.705>;FLOWLINE= < 63.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NTJMBER = 9604.00 FLOWLINE ELEVATION = 63.00 ASSUMED UPSTREAM CONTROL HGL = 63.52 FOR DOWNSTREAM RTJN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS • Page 2 of 2 SECTION 8 Curb Inlet Calculations DWG. 433-6 O'Day Consultants October 26, 2005 Revised: Nov. 30, 2006 Street Wind Trail Way Wind Trail Way Station 11-1-20.06 @ 34.00" LT. 11-H20.06 @ 34.00' RT. Q (cfs) 2.02 7.13 Condition Sump Sump a (ft) N/A N/A v(ft) N/A N/A L„(rea'd) 1.01 3.57 L(used) 5' 5" Glen Ave. Glen Ave. 11-1-03.50 € 10-f90.00 @ } 17.00' LT. ) 17.00" RT. 4.89 2.00 Sump Sump N/A N/A N/A N/A 2.45 1.00 5' 5' Glen Ave. 15-1-87.71 € i 17.00" LT. 4.04 On Grade 0.33 0.335 10.64 12' Hilltop St. Hilltop St. 10-H97.77 € 10-H97.77 <§ i 29.00' LT. 5 29.00' RT. 1.95 1.76 Sump Sump N/A N/A N/A N/A 0.98 0.88 5' 5' Cannon Cannon 151-Hi 0.00 151-Hi 0.00 < W 41.00'LT. § 41.00' RT. 2.57 2.48 On Grade On Grade 0.33 0.33 0.299 0.298 7.36 7.12 9' 9' G:\011014\Calcs\Curb Inlet Calcs-Dwg. 433-6.xls INLET CALCULATION FORMULAS Stmt Inlet Contmnous Grade Q=0.7L(a+y)^ L=. a .. x3« 0.7(a+yr where y ^ depth of flow in approach goner in feet a a depth of depression of flow line at inlet in feet L s length of clear opening in feet (max. 30 fest) Q = flow in CFS Street Inlet Samp Condition L=.J2 where L ^ length of clear opening in feet Q = flow in CFS SECTION 9 Brow Ditch Capadty Calculations Brow ditch capacity calculations were performed for the proposed brow ditches using the minimum slope of each ditch. The brow ditches used are Type D per SDRSD D-75. In order to model the ditches, a trapezoidal PCC channel was assumed with a base width of 1' and side slopes of 1:1. All ditches had flows less than 1' in depth. Please see following pages for calculations. • O'Day Consultants Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, C^^ 92008 Tel: (760) 931-7700 Fax: (760) 931-8680 t**** ****** *** *** *** *** *** *** *** |< ( 2.03') >| *** ******^**^^ Water Depth ( 0.52')*^*^^**''*** *** *** * * * * * * *** *** ***!< ( 1.00') >|*** ************************ ******************** Trapezoidal Channel Flowrate 10.510 CFS Velocity 13.462 fps Depth of Flow 0.515 feet Critical Depth 1.067 feet Freeboard 0.000 feet Total Depth 0.515 feet Width at Water Surface .... 2.030 feet Top Width 2.030 feet Slope of Channel 6.400 % Left Side Slope 1.000 : 1 Right Side Slope 1.000 : 1 Base Width 1.000 feet X-Sectional Area 0.780 sq. ft. Wetted Periraeter 2.457 feet AR^(2/3) 0.363 Mannings 'n' 0.013 O'Day Consultants Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 Fax: (760) 931-8680 **** ****** *** *** *** *** *** *** *** |< ( 1.96') >| *** ******''^^'^^ Water Depth ( 0.48')^^^'**^^^*** *** *** *** *** *** *** ***!< ( 1.00'^ ^1*** ( 1.00') >| ************************ ******************** Trapezoidal Channel Flowrate 5.730 CFS Velocity 8.108 fps Depth of Flow 0.478 feet Critical Depth 0.778 feet Freeboard 0.000 feet Total Depth 0.478 feet Width at Water Surface .... 1.956 feet Top Width 1.956 feet Slope of Channel 2.500 % Left Side Slope 1.000 : 1 Right Side Slope 1.000 : 1 Base Width 1.000 feet X-Sectional Area 0.707 sq. ft. Wetted Perimeter 2.352 feet AR*(2/3) 0.317 Mannings 'n' 0.013 O'Day Consultants Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, C^^ 92008 Tel: (760) 931-7700 Fax: (760) 931-8680 **** ****** *** *** *** *** *** *** *** |< ( 2.44') >| *** ****^^^^*^^ Water Depth ( o.72')******^^*** *** *** *** *** *** *** ***!< ( 1.00') >|*** ************************ ******************** Trapezoidal Channel Flowrate 11.060 CFS Velocity 8.900 fps Depth of Flow 0.722 feet Critical Depth 1.100 feet Freeboard 0.000 feet Total Depth 0.722 feet Width at Water Surface .... 2.443 feet Top Width 2.443 feet Slope of Channel 2.000 % Left Side Slope 1.000 : 1 Right Side Slope 1.000 : 1 Base Width 1.000 feet X-Sectional Area 1.242 sq. ft. Wetted Perimeter 3.041 feet AR*(2/3) 0.684 Mannings 'n' 0.013 SECTION 10 Vegetated Swale South of Cannon Rd. (Flow-based BMP) Cavg= 0.56 1= 0.2 in/hr A= 108.78 AC. Q= CIA 0= (.56)(0.2){108.78)= 12.18 cfs t Tributarv Area to Vegetated Swale Cavg Calculations Basin Subbasin Area (AC.) C B B-1 3.59 0.71 B-2 16.21 0.35 B-3 38.05 0.57 C C-1 2.63 0.57 C-2 3.68 0.63 D 28.58 0.57 E E-1 1.41 0.87 E-2 1.61 0.87 E-3 0.5 0.87 F F-1 2.99 0.71 F-2 5.9 0.63 H 3.63 0.57 Total 108.78 Cavg= 0.56 O'Day Consultants Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, C:A 92008 Tel: (760) 931-7700 Fax: (760) 931-8680 Inside Diameter { 24.00 in.) Water I ( 15.16 in.) ( 1.264 ft.) I I V Circular Channel Section 12. 180 CFS 5 823 fps 24 000 inches 15 165 inches 1 264 feet 1 259 feet Depth/Diameter (D/d) 0 632 0 .550 % sq. ft 2 .092 % sq. ft 3 .675 feet 1 .437 0 .013 Min. Fric. Slope, 24 inch Pipe Flowing Full 0 .290 % O'Day Consultants Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, C:A 92008 Tel: (760) 931-7700 Fax: (760) 931-8680 ****** * * * *** *** *** |< ( 41.26') ****^-^^""* Water Depth ( 0.31') * * * * * * * * * *** l< ( 40.00')- ****** * * * *** * * * *** * * * * * * * * * j * * * ************************ ******************** Trapezoidal Channel Flowrate 12.180 CFS Velocity • 0.953 fps Depth of Flow 0.314 feet Critical Depth 0.141 feet Freeboard 0.000 feet Total Depth 0.314 feet Width at Water Surface .... 41.257 feet Top Width 41.257 feet Slope of Channel 0.400 % Left Side Slope 2.000 : 1 Right Side Slope 2.000 : 1 Base Width 40.000 feet X-Sectional Area 12.772 sq. ft. Wetted Perimeter 41.406 feet Samiingl "^ '^^ ' ' '^ ' '^^^. \'.^^S <^^\iyx^rOv^ Table A-3 Table A-3 Average Manning Roughness Coefficients for Small Open Channels Conveying Less than 50 cfs^ Design Flow Depth Lining Type 0-0.5 ft 0.5 - 2.0 ft > 2.0 ft Concrete (Poured) 0.015 0.013 0.013 Air Blown Concrete 0.023 0.019 0.016 Grouted Riprap 0.040 0.030 0.028 Stone Masonry 0.042 0.032 0.030 Soil Cement 0.025 0.022 0.020 Bare Soil 0.023 0.020 0.020 Rock Cut 0.045 0.035 0.025 Rock Riprap Based on Rock Size (See Section 5.7.2) Table A-4 Table A-4 Average Manning Roughness Coefficients for Larger Open Channels Unlined Channels Clay Loam 0.023 Sand 0.020 Lined Channels Grass Lined (Well-Maintained) 0.035 Grass Lined (Not Maintained) 0.045 Wetland-Bottom Channels (New Channel) 0.023 Wetland-Bottom Channels (Mature Channel) See Table A-5 Riprap-Lined Channels See Section 5.7.2 Concrete (Poured) 0.014 Air Blown Mortar (Gunite or Shotcrete)* 0.016 Asphaltic Concrete or Bituminous Plant Mix 0.018 For channels with revetments or multiple lining types, use composite Manning roughness coefficient based on component lining materials. " Based on materials and workmanship required by standard specifications. ' For air-blown concrete, use n=0.012 (if troweled) and n=0.025 if purposely roughened. San Diego County Drainage Design Manual (May 2005) Page A-5 ************************************* ************************************** ****** PIPE FLOW CALCULATIONS ****** Copyright (c) 1988, CivilDesign Software, Inc. *************************************************************************** **** PRESSURE FLOW CALCULATIONS **** CALCULATE PIPE CAPACITY GIVEN: Channel Slope = -.005525 (Ft./Ft.) = -.5525 % Invert elevation at pipe INLET = 40.840 (Ft.) Invert elevation at pipe OUTLET = 39.850 (Ft.) Length of pipe = 179.200 (Ft.) Given Flow Rate = .00 Cubic Feet/Second Not including elevation change, the Pressure difference (Outlet - Inlet) = 9.050 Feet of H20 *** PIPE PRESSURE FLOW *** Mannings "n" = .013 Minor friction loss "K" factor = 1.50 PIPEFLOW RESULTS: No. of pipes = 1 Length of pipe(s) = 179.20 (Ft.) Velocity = 12.51 (Ft/S) Given pressure difference (Outlet - Inlet) = 9.050 (Ft.H20) I, M II n II = 3.923 (PSI) TOTAL pipe flow = 39.32 (CFS) " " " = .1765E4-05 (GPM) " " " = 25.41 (MGD) Given pipe size = 24.00 (In.) Elevation change inlet to outlet = -.990 (Ft.) TOTAL pressure required at pipe inlet = 8.060 (Ft H20) II II M II II II = 3.494 (PSI) Head loss due to pipe friction = 5.402 (Ft H20) II 11 11 n II II _ 2.342 (PSI) Head loss due to minor factors 3.648 (Ft H20) " " " " " " 1.581 (PSI) Combined pipe losses = 9.050 (Ft H20) " " " = 3.923 (PSI) Individual pipe flow = [3 9.32~| (CFS) " " " = .1.765E4-05 (GPM) " " = 25.41 (MGD) Page 1 of 1 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7.4 Rational raethod hydrology prograra based on San Diego County Flood Control Division 2003 hydrology raanual Rational Hydrology Study Date: 10/25/06 Robertson Ranch East Village 100-year confluence at vegetated swale File:vegswale.out 7-18-06 ********* Hydrology Study Control Inforraation ** ******** Prograra License Serial Nuraber 5007 Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.500 P6/P24 = 57.8% San Diego hydrology raanual 'C values used 4-4.4.4-4-4-4-4-4-4- +4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-^ Process from Point/Station 7018.000 to Point/Station 7020.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ] (General Industrial ) Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Rainfall intensity (I) = 3.968(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 11.66 min. Rain intensity = 3.97(In/Hr) Total area = 1.580(Ac.) Total rvmoff = 6.300(CFS) 4.4.4-4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-+ 4-4-4-4-4-4-+ 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-+ 4-4-4-4-4-4-4- Process from Point/Station 7018.000 to Point/Station 7020.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara nuraber: 1 in normal stream number 1 Stream flow area = 1.580(Ac.) Runoff frora this streara = 6.300 (CFS) Tirae of concentration = 11.66 min. Rainfall intensity = 3.968(In/Hr) Page 1 of 3 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 8004.000 to Point/Station 7020.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [HIGH DENSITY RESIDENTIAL ] (24.0 DU/A or Less ) Irapervious value, Ai = 0.650 Sub-Area C Value = 0.710 Rainfall intensity (I) = 5.031(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 8.07 min. Rain intensity = 5.03(In/Hr) Total area = 3.550(Ac.) Total runoff = 12.680(CFS) 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 8004.000 to Point/Station 7020.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara number: 1 in normal streara number 2 Stream flow area = 3.550(Ac.) Runoff frora this streara = 12.680(CFS) Time of concentration = 8.07 min. Rainfall intensity = 5.031(In/Hr) 4.4.4-4.4.4.4.4.4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process frora Point/Station 2210.000 to Point/Station 7020.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** Deciraal fraction soil group A = 0.000 Deciraal fraction soil group B = 0.000 Deciraal fraction soil group C = 0.000 Deciraal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (7.3 DU/A or Less ) Irapervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity (I) = 3.205(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 16.23 min. Rain intensity = 3.21(In/Hr) Total area = 108.780(Ac.) Total runoff = 39.320(CFS) 4.4.4.4.4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- Process from Point/Station 2210.000 to Point/Station 7020.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Streara number: 1 in normal stream number 3 Stream flow area = 108.780(Ac.) Runoff from this streara = 39.320(CFS) Tirae of concentration = 16.23 rain. Rainfall intensity = 3.205(In/Hr) Suraraary of stream data: Page 2 of 3 stream No. Flow rate (CFS) TC (rain) Rainfall Intensity (In/Hr) 1 2 3 Qraax(1) = Qraax(2) Qmax(3) = 6.300 12.680 39.320 ,000 ,789 ,000 .000 . 000 .000 11.66 8 .07 16 .23 1 1 0 . 808 0.637 1.000 ,000 ,000 0.718 * 0.692 1.000 0.497 * 1.000 1.000 1.000 3.968 5.031 3 .205 6.300) 4- 12.680) -H 39.320) 4- 6.300) -H 12.680) -H 39.320) 4- 6.300) 4- 12.680) 4- 39.320) 4- 44.549 36.591 52 .490 Total of 3 Streams to confluence: Flow rates before confluence point: 6.300 12.680 39.320 Maximura flow rates at confluence using above data: 44.549 36.591 52.490 Area of streams before confluence: 1.580 3.550 108.780 Results of confluence: Total flow rate = 52.490(CFS) Time of concentration = 16.23 0 min. Effective stream area after confluence = End of computations, total study area = 113.910(Ac.) 113.910 (Ac, Page 3 of 3 O'Day Consultants Inc. 2710 Loker Avenue West, Suite 100 Carlsbad, CA 92008 Tel: (760) 931-7700 Fax: (760) 931-8680 ****** *** * * * * * * ****** * * * * * * * * * *** |< ( 43.01') >| *** ***^^^*^*** Water Depth ( o.75')""^^""^^*** * * * * * * *** *** *** *** ***!< ( 40.00') >|*** ************************ ******************** Trapezoidal Channel Flowrate 52.490 CFS Velocity 1.679 fps Depth of Flow 0.753 feet Critical Depth 0.376 feet Freeboard 0.000 feet Total Depth 0.753 feet Width at Water Surface .... 43.013 feet Top Width 43.013 feet Slope of Channel 0.400 % Left Side Slope 2.000 : 1 Right Side Slope 2.000 : 1 Base Width 40.000 feet X-Sectional Area 31.263 sq. ft. Wetted Perimeter 43.368 feet AR"(2/3) 25.134 Mannings 'n' 0.045 Vegetated Swaie :- - -x'Fy^L-*?'^-i- !r Design Considerations • Tributary/\rea a Area Required • Slope • Water Availability Description Vegetated swales are open, shallow channels with vegetation covering the side slopes and bottom that collect and slowly convey runoff flow to downstream discharge points. They are designed to treat runoff through filtering by the vegetation in the channel, filtering through a subsoil matrix, and/or mfiltration into the underlying soils. Swales can be natural or manmade. They trap particulate pollutants (suspended solids and trace metals), promote infiltration, and reduce the flow velocity of stormwater runoff. Vegetated swales can serve as part of a stonnwater drauiage system and can replace curbs, gutters and storm sewer systems. California Experience Caltrans constructed and monitored six vegetated swales in southem Califomia. These swales were generally effective in reducing the volume and mass of pollutants in mnoff. Even in the areas where the annual rainfall was only about lo inches/yr, the vegetation did not require additional irrigation. One factor that strongly affected performance was the presence of large numbers of gophers at most of the sites. The gophers created earthen mounds, destroyed vegetation, and generally reduced the effectiveness of the controls for TSS reduction. Advantages a If properly designed, vegetated, and operated, swales can serve as an aesthetic, potentially inexpensive urban development or roadway drainage conveyance measure with significant collateral water quality benefits. Targeted Constituents • • • • • • Sediment Nutrients Trash Metals Bacteria Oil and Grease Organics • A • A A Legend (Removal Effectiveness) • Low • High • Medium Caiifomia Stonnwater Quality Association January 2003 California Stormm/al-p.r BMP Handhnnlr 0 Vegetated Swale a Roadside ditches should be regarded as significant potential swale/buffer strip sites and should be utilized for this purpose whenever possible. Limitations • Can be difficult to avoid channelization. • May not be appropriate for industrial sites or locations where spills may occur • Grassed swales cannot treat a very large drainage area. Large areas may be divided and treated using multiple swales. • A thick vegetative cover is needed for these practices to function properly. • They are impractical in areas with steep topography. • They are not effective and may even erode when flow velocities are high, if the grass cover is not properly maintained. • In some places, their use is restricted by law: many local municipalities require curb and gutter systems in residential areas. Swales are mores susceptible to failure if not properly maintained than other treatment •HMPS. Design and Sizing Guidelines • Flow rate based design determined by local requirements or sized so that 85% of the annual mnoff volume is discharged at less than the design rainfall intensity. • Swale should be designed so that the water level does not exceed 2/3rds the height of the grass or 4 inches, which ever is less, at the design treatment rate. • Longitudinal slopes should not exceed 2.5% • Trapezoidal channels are normally recommended but other configurations, such as parabolic, can also provide substantial water quality improvement and may be easier to mow than designs with sharp breaks in slope. • Swales constmcted in cut are preferred, or in fill areas that are far enough firom an adjacent slope to minimize the potential for gopher damage. Do not use side slopes constmcted of fill, which are prone to stmctural damage by gophers and other burrowing animals. I A diverse selection of low growing, plants that thrive under the specific site, climatic, and watering conditions should be specified. Vegetation whose growing season corresponds to the wet season are preferred. Drought tolerant vegetation should be considered especially for swales that are not part of a regularly irrigated landscaped area. «ie width of the swale should be determined using Manning's Equation using a value of 25 for Manning's n. of 13 California Stormwater BMP Handbook 1anii:%r\/ '>nm m Vegetated Swale TC-30 Construction/Inspection Considerations • Include directions in the specifications for use of appropriate fertilizer and soil amendments based on soil properties determined through testing and compared to the needs of the vegetation requirements. • Install swales at the time of the year when there is a reasonable chance of successful establishment without irrigation; however, it is recognized that rainfall in a given year may not be sufficient and temporary irrigation may be used. • If sod tiles must be used, they should be placed so that there are no gaps between the tiles; stagger the ends of the tiles to prevent the fonnation of channels along the swale or strip. • Use a roller on the sod to ensure that no air pockets form between the sod and the soil. • Where seeds are used, erosion controls will be necessary to protect seeds for at least 75 days after the first rainfall of the season. Performance The Uterature suggests that vegetated swales represent a practical and potentially effective technique for controlling urban mnoff quality. While liraited quantitative performance data exists for vegetated swales, it is known that check dams, slight slopes, permeable soils, dense grass cover, increased contact time, and small storm events all contribute to successful pollutant removal by the swale system. Factors decreasing fhe effectiveness of swales include compacted soils, short mnoff contact time, large storm events, firozen ground, short grass heights, steep slopes, and high runoff velocities and discharge rates. Conventional vegetated swale designs have achieved mixed results in removing particulate pollutants. A study performed by the Nationwide Urban Runoff Program (NURP) monitored three grass swales in the Washington, D.C, area and found no significant improvement in urban rtmoff quality for the pollutants analyzed. However, the weak performance of these swales was attributed to the high flow velocities in the swales, soil compaction, steep slopes, and short grass height. Another project in Durham, NC, monitored the performance of a carefully designed artificial swale that received mnoff from a commercial parking lot. The project tracked 11 storms and concluded that particulate concentrations of heavy metals (Cu, Pb, Zn, and Cd) were reduced by approximately 50 percent. However, the swale proved largely ineffective for removing soluble nutrients. The effectiveness of vegetated swales can be enhanced by adding check dams at approximately 17 meter (50 foot) increments along their lengtii (See Figure 1). These dams maximize the retention time within the swale, decrease flow velocities, and promote particulate settling. Finally, the incorporation of vegetated filter strips parallel to the top of the channel banks can help to treat sheet flows entering the swale. Only 9 studies have been conducted on all grassed channels designed for water quality (Table 1). The data suggest relatively high removal rates for some pollutants, but negative removals for some bacteria, and fair performance for phosphorus. January 2003 California Stormwater BMP Handbool< IC-30 Vegetated Swale Table 1 Grassed swale pollutant removai efficiency data Removal EfBciencies (% Removal) Study TSS TP TN NO3 Metals Bacteria Type Caltrans 2002 77 8 67 66 83-90 -33 dry swales Goldberg 1993 67.8 4-5 -31.4 42-62 -100 grassed channel Seattle Metro and Washington Department of Ecology 1992 60 45 --25 2-16 -25 grassed channel Seattle Metro and Washington Department of Ecology, 1992 83 29 --25 46-73 -25 grassed channel Wangetal., 1981 80 ---70-80 -dry swale Dorman et al., 1989 98 18 .-45 37-81 -dry swale Harper, 1988 87 83 84 80 88-90 -dry swale Kercher et al., 1983 99 99 99 99 99 dry swale Harper, 1988. 81 17 40 52 37-69 wet swale Koon, 1995 67 39 -9 -35 to 6 - ^ wet swale While it is difficult to distinguish between different designs based on the small amount of available data, grassed channels generally have poorer removal rates than wet and dry swales altiiough some swales appear to export soluble phosphoms (Harper, 1988; Koon, 1995) It is not clear why swales export bacteria. One explanation is that bacteria tiuive in tiie warm swale soils. Siting Criteria The suitability of a swale at a site will depend on land use, size ofthe area serviced, soil type, slope, imperviousness of the contributing watershed, and dimensions and slope ofthe swale syrstem (Schueler et al., 1992). In general, swales can be used to serve areas of less than 10 acres with slopes no greater tiian 5 %. Use of natiiral topographic lows is encouraged and natural drainage courses should be regarded as significant local resources to be kept in use fYoune et al 1996). V 6 ai.. Selection Criteria (NCTCOG, 1993) • Comparable performance to wet basins • Limited to treating a few acres • Availability of water during dry periods to maintain vegetation ufficient available land area -arch m the Austin area indicates that vegetated controls are effective at removing pollutants ;ven when dormant. Therefore, irrigation is not required to maintain growth during dry jeriods, but may be necessary only to prevent the vegetation from dying. \ of 13 Califomia Stormwater BMP Handbook Vegetated Swale TC-30 The topography oftiie site should permit tiie design of a channel with appropriate slope and cross-sectional area. Site topography may also dictate a need for additional stinichiral controls Recommendations for longitiidinal slopes range between 2 and 6 percent. Flatiier slopes can be used, if sufficient to provide adequate conveyance. Steep slopes increase flow velocity decrease detention time, and may require energy dissipating and grade check. Steep slopes also can be managed using a series of check dams to terrace the swale and reduce tiie slope to within acceptable limits. The use of check dams with swales also promotes infiltration. Additional Design Guidelines Most ofthe design guidelines adopted for swale design specify a minimum hydrauUc residence time of 9 minutes. This criterion is based on the results of a single stiidy conducted in Seattie Washmgton (Seattle Metro and Washington Department of Ecology, 1992), and is not well ' supported. Analysis of tiie data collected in tiiat study indicates that pollutant removal at a residence time of 5 minutes was not significantly different, altiiough tiiere is more variability in tiiat data. Therefore, additional research in tiie design criteria for swales is needed. Substantial poUutant removal has also been observed for vegetated contirols designed solely for conveyance (Barrett et al, 1998); consequentiy, some flexibility in the design is warranted. Many design guidelines recommend tiiat grass be firequentiy mowed to maintain dense coverage near tiie ground surface. Recent research (ColweU et al., 2000) has shown mowing fiequency Sr grass height has littie or no effect on poUutant removal. Summary of Design Recommendations 1) The swale should have a length that provides a mmimum hydrauUc residence time of at least 10 minutes. The maximum bottom width should not exceed 10 feet unless a dividing berm is provided. The depth of flow should not exceed 2/3rds the height of the grass at tiie peak of tiie water quality design storm intensity. The channel slope should not exceed 2.5%. 2) A design grass height of 6 inches is recommended. 3) Regardless of the recommended detention time, the swale should be not less than 100 feet in length. 4) The widtii of the swale should be determined using Manning's Equation, at the peak of the design storm, using a Manning's n of 0.25. 5) The swale can be sized as both a treatment facility for the design storm and as a conveyance system to pass the peak hydraulic flows of the lOO-year storm if it is located "on-line." The side slopes should be no steeper than 3:1 (H:V). 6) Roadside ditches should be regarded as significant potential swale/buffer strip sites and should be utilized for this purpose whenever possible. If flow is to be inti-oduced through curb cuts, place pavement slightly above the elevation oftiie vegetated areas Curb cuts should be at least 12 inches wide to prevent clogging. 7) Swales must be vegetated in order to provide adequate treatment of runoff. It is important to maximize water contact with vegetation and the soil surface. For general purposes, select fine, close-growing, water-resistant grasses. If possible, divert ranoff (other than necessary irrigation) during the period of vegetation California Stormwater BMP Handbook 'C^30 Vegetated Swale establishment. Where mnoff diversion is not possible, cover graded and seeded areas with suitable erosion control materials. Maintenance The usefiil Ufe of a vegetated swale system is direcfly proportional to its maintenance ft-equency. If properly designed and regularly maintained, vegetated swales can last indefinitely. The maintenance objectives for vegetated swale systems include keeping up tiie hydrauUc and removal efficiency ofthe channel and maintaining a dense, healthy grass cover. Maintenance activities should include periodic mowing (with grass never cut shorter than the design flow depth), weed control, watering during drought conditions, reseeding of bare areas, and clearing of debris and blockages. Cuttings should be removed firom tiie channel and disposed in a local composting faciUty. Accumulated sediment should also be removed manuaUy to avoid concentrated flows in the swale. The appUcation of fertiUzers and pesticides should be minimal. Another aspect of a good maintenance plan is repauring damaged areas within a channel. For example, ifthe channel develops mts or holes, it should be repaired utilizing a suitable soil that is properly tamped and seeded. The grass cover should be tiiick; if it is not, reseed as necessary. Any standing water removed during the maintenance operation must be disposed to a sanitary ^wer at an approved discharge location. Residuals (e.g., silt, grass cuttings) must be disposed ••iccordance with local or State requirements. Maintenance of grassed swales mostiy involves ^lEntenance of the grass or wetiand plant cover. Typical maintenance activities are sununarized below: • Inspect swales at least twice annuaUy for erosion, damage to vegetation, and sediment and debris accumulation preferably at the end of fhe wet season to schedule summer maintenance and before major faU mnoff to be sure the swale is ready for winter. However, additional inspection after periods of heavy mnoff is desirable. The swale should be checked for debris and Utter, and areas of sediment accumulation. • Grass height and mowing frequency may not have a large impact on poUutant removal. Consequentiy, mowing may only be necessary once or twice a year for safety or aesthetics or to suppress weeds and woody vegetation. • Trash tends to accumulate in swale areas, particularly along highways. The need for litter removal is determined through periodic inspection, but litter should always be removed prior to mowing. • Sediment accumulating near culverts and in channels should be removed when it builds up to 75 mm (3 in.) at any spot, or covers vegetation. • Regularly inspect swales for pools of standing water. Swales can become a nuisance due to mosquito breeding in standing water if obstmctions develop (e.g. debris accumulation, invasive vegetation) and/or if proper drainage slopes are not implemented and maintained. mm 6 of 13 California Stormwater BMP Handbook January 2003 Vegetated Swale TC-30 Cost Construction Cost Littie data is available to estimate the difference in cost between various swale designs. One study (SWRPC, 1991) estimated the constraction cost of grassed channels at approximately $0.25 per ft*. This price does not include design costs or contingencies. Brown and Schueler (1997) estimate these costs at approximately 32 percent of constmction costs for most stormwater management practices. For swales, however, these costs would probably be significantiy higher since the constmction costs are so low compared with other practices. A more realistic estimate would be a total cost of approximately $0.50 per ft*, which compares favorably with other stormwater management practices. January 2003 California Stormwater BMP Handbook 7 of 13 Table 2 Swale Cost Estimate (SEWRPC, 1991) Component umt ExtMit Low Uodents Htoh Low Moiieiate Hish Mobilization / Dsmobilization-Ught Swaia $107 1274 $441 $107 $274 $441 Site Prapaniicn Qaarinir.. Grubbjna». Ganaral Excawatiorf...., i^avBlandTai*.. SilBB Oavsloptnent Salvaged Topsoil Saed. and Mulcti*.. Sod>.. Acre Acre Yd* as a25 372 1.210 $3.fl00 $2.10 $0.^ $3400 $5;H)O $a70 $ass $6,400 $8,600 $5.30 $0.60 $1,100 $iffiO $7&1 $242 $1,800 $1,300 $1,376 $424 $2,700 $1,650 $1,972 Nota: MobilizationAlaniobBbation laftrs to the oroanizaUcn and plannina invdved in aatabiUiino a v^jeiaiive wala • Swale has a bottom width of 1.0 fbot, a top wUth of 10 ftet wKh 1:3 side slopes, and a I.OOCMbot length "Area cleared = (top width •«-10 feet}xswale lenglh. ° Area grutibed = Qop width x swale length}. "Volume excavated = (0.67 x top width x swale deptlO x swale lenflth (parabolic cross-section) ' Area tilled = (top width t Sfswaia dflDth«> Y sMale lenoth (parabolic cross-secHon). 3(top width} 'Area seed^j = area cleared x 0.5. > Area sodded = area cleared X 0,6. 8 of 13 Califomia Stormwater BMP Handbook New Development and Redevelopment www.cabmphandbooks.com January 2003 veii^acea ^waie Table 3 Estimated Maintenance Costs (SEWRPC, 1991) TC-3(# Component Lawn kilowing Stvala Debris and Litier Ramoval Grass Raseedins with Mulch and Faitilizar Progcaim Administiation and Swato Ingpaefon UnU Cost $0.85/1,000f^/moiiing $8.00/1.0001^/^ $0.10 / Koear foot / yaar $a30/yd> $ai5/linaarlbd/yaar, plu»$2S/lngpaclton I^FbotDmtft.Ooft' Foot Botton Widtii. Iltfootfopwtldtti $0.14/iiDair1aot f0.1B/itaairlbQt $0.10/liaearftad $im /IkiaarfQot SO.IS/liosarfoot $Oi.sa;iimarfM>t W^oot Depth, 3-Foot Bottoin Wdtiik214H)ot Top Widtt $021/Inov fint {QJZB/lnearlbot $0.10/inear &Mt $0.15/Inear fbot $OJ&/lkMarfflot Comment Latin DiainiMsnoe area-{kip vMti+IOfaaOxlengtii. Mow elQiatlmBa per year Unwi matatenanoe area > ftop wk«h*10fiBa8xlenfl*i AIM nvBsatatad equals 1 % orhnin mairtaaanoaaiaa par year Inspect four timas per yaar Januar/ 2003 Califomia Stormwater BMP Handbook New Development and Redevelopment www.cabmphandbooks.com 9 of 13 30 Vegetated Swale Maintenance Cost Caltrans (2002) estimated the expected annual maintenance cost for a swale with a tributary area of approximately 2 ha at approximately $2,700. Since almost aU maintenance consists of mowing, the cost is fJindamentaUy a fimction of the mowing frequency. Unit costs developed by SEWRPC are shown m Table 3. In many cases vegetated channels would be used to convey mnoff and would require periodic mowing as well, so there may be Uttie additional cost for the water quaUty component. Since essentiaUy aU the activities are related to vegetation management, no special training is required for maintenance personnel. References and Sources of Additionai Information Barrett, Michael E., Walsh, Patrick M., MaUna, Joseph F., Jr., Charbeneau, RandaU J, 1998, "Performance of vegetative controls for treating highway mnoff," ASCB JbumaZ of Environmental Engineering,yol. 124, No. ii, pp. 1121-1128. Brown, W., and T. Schueler. 1997. iTie Economics of Stormwater BMPs in the Mid-Atlantic Region. Prepared for the Chesapeake Research Consortium, Edgewater, MD, bythe Center for Watershed Protection, ElUcott City, MD. Center for Watershed Protection (CWP). 1996. Design of Stormwater Filtering Systems. Prepared for the Chesapeake Research Consortium, Solomons, MD, and USEPA Region V, ^Hcago, IL, by the Center for Watershed Protection, EUicott City, MD. ColweU, Shanti R., Homer, Richard R., and Booth, Derek B., 2000. Characterization of Performance Predictors and Evakiation of Mowing Practices in Biofiltration Swales. Report to King County Land And Water Resources Division and others by Center for Urban Water Resources Management, Department of Civil and Environmental Engineering, University of Washington, Seattie, WA Dorman, M.E., J. Hartigan, R.F. Steg, and T. Quasebarth. 1989- Retention, Detention and Overland Flow for Pollutant Removal From Highway Stormwater Rwioff. Vol. 1. FHWA/RD 89/202. Federal Highway Administration, Washington, DC. Goldberg. 1993. Dayton Avenue Swale Biofiltration Study. Seattie Engineering Department, Seattle, WA Harper, H. 1988. Effects of Stormwater Management Systems on Groundwater Quality. Prepared for Florida Department of Environmental Regulation, Tallahassee, FL, by Environmental Research and Design, Inc., Orlando, FL. Kercher, W.C, J.C. Landon, and R. MassarelU. 1983. Grassy swales prove cost-effective for water pollution control. Public Works, 16: 53-55- Koon, J. 1995. Evaluation of Water Quality Ponds and Swales in the Issaquah/East Lake Sammamish Basins. King County Surface Water Management, Seattle, WA, and Washington artment of Ecology, Olympia, WA. Metzger, M. E., D. F. Messer, C. L. Beitia, C. M. Myers, and V. L. Kramer. 2002. The Dark Side Of Stormwater Runoff Management: Disease Vectors Associated With Stmctural BMPs. Stormwater 3(2): 24-39.0akland, P.H. 1983. An evaluation of stormwater poUutant removal TC-30 throughgrassedswale treatinent. In Proceedmgs of the International Sym^^^^^ Hydrology, Hydraulics and Sediment Control, Lexington, KY. pp. 173-182. Occoauan Watershed Monitoring Laboratory. 1983. Final Report: MetropoKtan Washington U^rRunM PreparedfortiieMetropoUtanWashingtonComicilofGovem^^^ T^^I^Z^, by tiie Occoquan Watershed Monitoring Laboratory, Manassas, VA. Pitt R. andJ McLean. 1986. Toronto Area mitershed Management Sfrategy Study: Humber mMtwZshedZject. On^^^^^^ Schueler, T. 1997. Comparative PoUutant Removal CapabUity of Urban BMPs: A reanalysis. Watershed Protection Techniques 2(2):379-383- Department, Seattie, WA Southeastern Wisconsin Regional Planning Commission (SWRPC). 1991. Costs of Urban N:^:TZT^^^Mtion control Measures^ Technical report no. 31. Southeastem Wisconsin Regional Planning Commission, Waukesha, Wl. U S EPA 1999, Stormwater Fact Sheet: Vegetated Swal^. Report f 832-F-99-006 ^»^''r^'-"v/"-^^ Washmgton DC. Wang T D Spyridakis, B. Mar, and R. Homer. 1981. IVansport, Deposition an^ Si MetaSghu;ay Runo#. FHWA-WA-RD-39-10. University of Washington, Departtnent of Civil Engineering, Seattle, WA. Washington State Department of Transportation, 1995. Highu;ay l?uno#Manuai, Washington State Departinent of Transportation, Olympia, Washington. No. 87-4004. U.S. Geological Survey, Reston, VA. ir^7 A>r woo^»nctn H Hamer D Pearce, and R. Tolbert. 1985. Best Management Florida and Florida Department of Transportation, Orlando, FL. Yu S S. Bames, and V Gerde. 1993. resting o/Best Management Practices/^^^^^ SghiayRunoi. FHWA/VA-93-R16. Virginia Transportation Research Council, Charlottesville, VA. Information jResourccs , x r^ Maryland Department of the Environment (MDE). 2000. Mary/and Stormu;ater Design Ma^d.^SS^ Accessed May 22, 2001. Reeves, E. 1994. Performance and Condition of Biofilters in the Pacific Northwest. Watershed Protection Techniques i(3):ii7-ii9. C-30 Vegetated Swale Seattle Metro and Washington Department of Ecology. 1992. Biofiltration Swale Performance. Recommendations and Design Considerations. Publication No. 657. Seatfle Metro and Washington Department of Ecology, Olympia, WA. USEPA 1993. Guidance Specifying Management Measures for Sources of Nonpoint PoUution in Coastal Waters. EPA-840-B-92-002. U.S. Environmental Protection Agency, Office of Water. Washington, DC. Watershed Management Institute (WMI). 1997. Operation, Maintenance, and Management of Stormwater Management Systems. Prepared for U.S. Environmental Protection Agency, Office of Water. Washmgton, DC, by the Watershed Management Institute, Ingleside, MD. 12 of 13 California Stormwater BMP Handbook January 2003 m Vegetated Swale TC-30 Provida fbr icour prot«ctiofl. (») Cross MctiOBofswab Willi Chech dam. NotaUon: 9i >B0ttai*tMiorMnto(lun >BMiBMiwliWlorelMdidMim Ziu R«li» of becteonW to viflieal ehinga In swato iMa alop* January 2003 Califomia Stormwater BMP Handbook 13 of 13 SECTION 11