Loading...
HomeMy WebLinkAboutSDP 16-19; CARLSBAD RACEWAY LOTS 13-15; STORM WATER QUALITY MANAGEMENT PLAN; 2017-05-23... -... .. .. .. ,. .. .. .. ,. .. ,. ... .. .. .. - .. .. - SWQMP for: Carlsbad Raceway Lots 13-15 ADJ 06-07 CITY OF CARLSBAD PRIORITY DEVELOPMENT PROJECT (PDP) STORM WATER QUALITY MANAGEMENT PLAN (SWQMP) FOR CARLSBAD RACEWAY LOTS 13-15 ADJ 06-07 PROJECT ID SDP 16-19/ DWG 501-3A ENGINEER OF WORK: ~/}~ Robert Dentino, Excel~ngineering, PE 45629 PREPARED FOR: RAF GROUP RACEWAY, LLC 111 C. St. Suite 200 Encinitas, CA 92024 PREPARED BY: EXCEL ENGINEERING 440 State Place, Escondido, CA, 92029 (760)745-8118 DATE: November 18, 2016 REVISED: May 23, 2017 ~fa3/✓7 7 RECr:J\lfi:D JUN O 1 1:0i? Lt\f'-./D C':::\.1:iLOP:-,:Sr->JT ENGlr~E.ERING ...I ~ -:a: CD ::::, en ..J <C z -LL .. Ill .. Ill Ill Ill Ill .. 1111 Ill ,,.. ,.. ... ... ... ,,.. .... ,.. ,,.. ..... ... ... .. Ill .. .. ... .. .. - SWQMP for: Carlsbad Raceway Lots 13-15 ADJ 06-07 TABLE OF CONTENTS Certification Page Project Vicinity Map FORM E-34 Storm. Water Standard Questionnaire Site Information FORM E-36 Standard Project Requirement Checklist Summary of PDP Structural BMPs Attachment 1: Backup for PDP Pollutant Control BMPs Attachment la: DMA Exhibit Attachment lb: Tabular Summary ofDMAs and Design Capture Volume Calculations Attachment le: Harvest and Use Feasibility Screening (when applicable) Attachment 1d: Categorization of Infiltration Feasibility Condition (when applicable) Attachment le: Pollutant Control BMP Design Worksheets/ Calculations Attachment 2: Backup for PDP Hydromodification Control Measures Attachment 2a: Hydromodification Management Exhibit Attachment 2b: Management of Critical Coarse Sediment Yield Areas Attachment 2c: Geomorphic Assessment of Receiving Channels Attachment 2d: Flow Control Facility Design Attachment 3: Structural BMP Maintenance Thresholds and Actions Attachment 4: Single Sheet BMP (SSBMP) Exhibit Ill .. Ill .. .. .. ,,,. ,.. .. ... .. ... ... .. .. .. - SWQMP for: Carlsbad Raceway Lots 13-15 ADJ 06-07 CERTIFICATION PAGE Project Name: CARLSBAD RACEWAY LOT 15 Project ID: 16-024 I hereby declare that I am the Engineer in Responsible Charge of design of storm water BMPs for this project, and that I have exercised responsible charge over the design of the project as defined in Section 6703 of the Business and Professions Code, and that the design is consistent with the requirements of the BMP Design Manual, which is based on the requirements of SDRWQCB Order No. R9-2013-0001 (MS4 Permit) or the current Order. I have read and understand that the City Engineer has adopted minimum requirements for managing urban runoff, including storm water, from land development activities, as described in the BMP Design Manual. I certify that this SWQMP has been completed to the best of my ability and accurately reflects the project being proposed and the applicable source control and site design BMPs proposed to minimize the potentially negative impacts of this project's land development activities on water quality. I understand and acknowledge that the plan check review of this SWQMP by the City Engineer is confined to a review and does not relieve me, as the Engineer in Responsible Charge of design of storm water BMPs for this project, of my responsibilities for project design. Engineer ork's Signature, PE Number & Expiration Date ROBERT D. DENTINO PrintName EXCEL ENGINEERING Company 05/23/17 Date •·--•------ .. .. SWQMP for: Carlsbad Raceway Lots 13-15 ADJ 06-07 PROJECT VICINITY MAP .. I Ill Project Name: CARLSBAD RACEWAY LOT 15 .. .. .. ,, II ... .. ,,. .. ... ... .. -.. ... ... ... ... .. .. .. .. .. .. .. .. .. - Project ID: 16-024 VICINITY MAP CITY OF OCEANSIDE PACIFIC OCEAN 78 CITY OF ENCINITAS ___ ..,_. ___________ . NOT TO SCALE CITY OF VISTA SIT£ . . . -. --. . , . . . . --' . . . • I · , • , I I • , ' I I -• : To determine If your project Is a "development project", please answer the following question: YES NO Is your project LIMITED TO routine maintenance activity and/or repair/improvements to an existing I building or structure that do not alter the size (See Section 1.3 of the BMP Design Manual for guidance)? If you answered "yes" to the above question, provide justification below then Go to step 5, mark the third box stating "my project is not a 'development project' and not subject to the requirements of the BMP manual" and complete applicant information. Justification/discussion: (e.g. the project includes only interior remodels within an existing building): • • . • : ! : . -----' -.. . - ' ·,. j -'1 -':: i : . ' To determine if your project Is exempt from PDP requirements pursuant to MS4 Permit Provision E.3.b.(3), please answer the following questions: Is your project LIMITED to one or more of the following: YES NO 1. Constructing new or retrofitting paved sidewalks, bicycle lanes or.trails that meet the following criteria: a) Designed and constructed to direct storm water runoff to adjacent vegetated areas, or othernon: erodible permeable areas; b) Designed and constructed to be hydraulically disconnected from paved streets or roads; .,; c) Designed and constructed with permeable pavements or surfaces In accordance with USEPA Green Streets guidance? 2. Retrofitting or redeveloping existing paved alleys, streets, or roads that are designed and constructed .,; in accordance with the USEPA Green Streets guidance? 3. Ground Mounted Solar Array that meets the criteria provided in section 1.4.2 of the BMP manual? .,; If you answered "yes" to one or more of the above questions, provide discussion/justification below, then Go to step 5, mark the second box stating "my project Is EXEMPT from PDP ... " and complete applicant information. Discussion to justify exemption ( e.g. the project redeveloping e)(isting road designed and constructed in accordance with the USEPA Green Street guidance): If you answered "no" to the above questions, your project is not exempt from PDP, go to Step 3. E-34 Page 2 of4 REV. 02/16 ' : --·· -~ ..... -----.,-~~-• •-~, • n• • • ~ • ,. • •• . . ... ~ ; . : ; . -~ : I' ' I' l . ' To determine if your project is a PDP, please answer the following questions (MS4 Permit Provision E.3.b.(1)): YES NO 1. Is your project a new development that creates 10,000 square feet or more of impervious surfaces· ~ collectively over the entire project site? This includes commercial, industrial, residential, mixed-use, and f)ublic development projects on public or private land. 2. Is your project a redevelopment project creating and/or replacing 5,000 square feet or more of impervious surface collectively over the entire project site on an existing site of 10,000 square feet or more of impervious surface? This includes commercial, Industrial, residential, mixed-use, andpubllc ~ develooment oroiects on oublic or orivate land. 3. Is your project a new or redevelopment project that creates and/or replaces 5,000 square feet or more of impervious surface collectively over the entire project site and supports a restaurant? A restaurant ~ is a facility that sells prepared foods and drinks for consumption, including stationary lunch counters and refreshment stands selling prepared foods and drinks for immediate consumption (Standard Industrial Classification (SIC) code 5812). 4. Is your project a new or redevelopment project that creates 5,000 square feet or more· of impervious surface collectively over the entire project site and supports a hillside development project? A hillside ~ development proiect includes development on-any natural slooe that is twenty-five oercent or areater. 5. Is your project a new or redevelopment project that creates and/or replaces 5,000 square feet or more of impervious surface collectively over the entire project .site and supports a parking lot? A parking lot is a land area or facility for the temporary parking or storage of motor vehicles used personally for ..; business or for commerce. 6. Is your project a new or redevelopment project that creates and/or replaces 5,000 square feet or more of impervious surface collectively over the entire project site and supports a street, road, highway freeway or driveway? A street, road, highway, freeway or driveway is any paved impervious surface ..; used for the transoortatlon of automob/les, trucks, motorcycles, and other vehicles. 7. Is your project a new or redevelopment project that creates and/or replaces 2,500 square feet or more of impervious surface collectively over the entire site, and discharges directly to an Environmentally Sensitive Area (ESA)? "Discharging Directly to" Includes flow that Is conveyed overland a distance of ..; 200 feet or less from the project to the ESA, or conveyed In a pipe or open c!Jannel any distance as an isolated flow from the f)roJect.to the ESA (i.e. not commingled with flows from adjacent/ands).* 8. Is your project a new development or redevelopment project that creates and/or replaces 5,000 square feet or more of impervious surface that supports an automotive repair shop? An automotive repair shop is a facillty that is categorized in any one of the following_ Stanclard Industrial Classification ~ (SIC) codes: 5013, 5014, 5541 , 7532-7534, or7536-7539. 9. Is your project a new development or redevelopment project that creates and/or replaces 5,000 square feet or more of impervious area that supports· a retail gasoline outlet (RGO)? This category includes RGO's that meet the fol/owing criteria: (a) 5,000 square fee_t or more or (b) a project Average Dally Traffic /ADTJ of 100 or more vehicles per day. ~ 10. Is your project a new ·or redevelopment project that resulfil in the disturbance of one or more acres of ~ land and are expected to generate pollutants post construction? 11. Is your project located within 200 feet of the Pacific Ocean and (1) creates 2,500 square feet or more v of impervious surface or (2) increases imperyious surface on the property by more than 10%? (CMC 21.203.040) If you answered "yes" to one or more of the above questions, your project is a PDP. If your project is a redevelopment project, Go to step 4. If your project is a new project, Go to step 5,. check the. first box stating "My project is a PDP ... " and complete applicant Information. If you answered "no" to all of the above questions, your project is a 'STANDARD PROJECT', "Go to step 5, check the second box statina "My oroiect is a 'STANDARD PROJECT' ... " and complete aoolicantinformation. E-34 Page3 of4 REV. 02/16 ----~ -r-~----~ ...., -.. ._. •• , -~-. --~---. .. ~ -•,--•• I • • l,, • I ,I -I ) ' ~ -f l 1 I ~ ' ~ ~ ~- Complete the questions below regarding your redevelopment project (MS4 Permit Provision E.3.b.(2)): Does the redevelopment project result in the creation or replacement of impervious surface in an amount of less than 50% of the surface area of the previously existing development? Complete the percent impervious calculation below: Existing impervious area (A) = _____ N_/A ______ sq. ft. Total proposed newly created or replaced impervious area (B) = _____ N_/_A _____ sq. ft. Percent impervious area created or replaced (B/A)*100 = N/A % YES NO If you answered "yes", the structural BMP's required for PDP apply only to the creation or replacement of impervious surface and not the entire development. Go to step 5, check the first box stating "My project Is a PDP ... " andcomplete applicant information. If you answered "no," the structu_ral BMP's required for PDP apply to the entire development. Go to step 5, check the check the first box stating "My project is a PDP ... " and complete applicant information . . ,. l I ' j • l : ' t I. ! .J I ) : ' • '' ' ~ ! ; + My project Is a PDP and must comply with PDP stormwater requrrements of the BMP Manual. I understand I must prepare a Storm Water Quality Management Plan (SWQMP) for submittal at time ofappllcation. + My project Is a 'STANDARD PROJECT' OR EXEMPT from PDP and must only comply with 'STANDARD PROJECT' stormwater requirements of the BMP Manual. As part of these requirements, I will ·submit a "Standard Project Requirement Checklist Form £-36' and incorporate low impact development strategies throughout my project. Note: For projects that are close to meeting the PDP threshold, staff may require detailed impervious area calculations and exhibits to verify if 'STANDARD PROJl=CT' stormwater requirements apply. + My Project is NOT a 'development project' and is not subject to the requirements of the BMP Manual. Applicant Information and Signature Box Assessor's Parcel Number(s): 221-881-16 Applicant Name: Adam Robinson Applicant Signature: Applicant Title: Date: 11/18/2016 * Environmentally Sensitive Areas include but are not limited to all Clean Water Act Section 303(d) Impaired water bodies; areas designated as Areas of Special Biological Significance by the State Water Resources Control Board (Water Quality ·Control Plan for the San Diego Basin (1994) and amendments); water bodies designated with the RARE beneflclal use by the State Water Resources Control Board (Water Quality Control Plan for the San Diego Basin (1994) and amendments); areas designated as preserves or their equivalent under the Multi Species Conservation Program within the Cities and County of San Diego;.Habltat Management Plan; and any other equivalent environmentally sensiti\le areas which have been Identified by the City. This Box for City Use Onlv City Concurrence: I vi::~ I 11.1n I I By: Date: Project ID: E-34 Page4 of4 REV. 02/16 ' SWQMP for: Carlsbad Raceway Lots 13-15 ADJ 06-07 Project Summary Information Project Name: CARLSBAD RACEWAY LOT 15 Project ID: 16-024 Project Address: 3209 LionsHead Avenue, Carlsbad, CA 92010 Assessor's Parcel Number(s) (APN(s)) 221-881-16 Project Watershed (Hydrologic Unit) Carls bad 904 Parcel Area 11.46 Acres ( 499 150 Square Feet) Existing Impervious Area 0 Acres (subset of Parcel Area) ( 0.00 Square Feet) Area to be disturbed by the project (Project Area) 10.58 Acres ( 460 821 Square Feet) Project Proposed Impervious Area (subset of Project Area) 8.72 Acres ( 379 867 Square Feet) Project Proposed Pervious Area (subset of Project Area) 1.86 Acres ( 80 954 Square Feet) Note: Proposed Impervious Area+ Proposed Pervious Area = Area to be Disturbed by the Project. This may be less than the Parcel Area. SWQMP for: Carlsbad Raceway Lots 13-15 ADJ 06-07 Description of Existi~ Site Condition and Drainaee Patterns Current Status of the Site (select all that apply): Existing development -, Previously graded but not built out Agricultural or other non-impervious use -, Vacant, undeveloped/natural Description / Additional Information: Existing Land Cover Includes (select all that apply): -, Vegetative Cover -, Non-Vegetated Pervious Areas Impervious Areas Description / Additional Information: Underlying Soil belongs to Hydrologic Soil Group (select all that apply): NRCSTypeA NRCSTypeB NRCSTypeC -, NRCS Type D Approximate Depth to Groundwater (GW): GW Depth < 5 feet 5 feet < GW Depth < 10 feet 10 feet < GW Depth < 20 feet -, GW Depth > 20 feet Existing Natural Hydrologic Features (select all that apply): Watercourses Seeps Springs Wetlands -, None Description / Additional Information: SWQMP for: Carlsbad Raceway Lots 13-15 ADJ 06-07 Description of Existing Site Topography and Drainage [How is storm water runoff conveyed from the site? At a minimum, this description should answer (1) whether existing drainage conveyance is natural or urban; (2) describe existing constructed storm water conveyance systems, if applicable; and (3) is runoff from off site conveyed through the site? if so, describe]: The site topography for lots 13-15 is as follows. The lot is a graded level building pad with runoff flows via surface sheet flow, in a general north-westerly direction. The site discharge is collected in a temporary desiltation basin which discharges to an un-named tributary to the Agua Hedionda Creek 1. For Lot 13-15 the existing drainage is composed of both, natural and urban, conveyance systems. The site storm runoff first drains to a temporary desiltation basin which discharges in a 72" RCP that run across the site, it then enters an un-named tributary area to the branch of Aqua Hedionda creek that drains to the Agua Hedionda lagoon. The Aqua Hedionda lagoon discharges directly into the Pacific Ocean. 2. Existing conditions include the inlet temporary desiltation basins that is on lots 13, 14, and 15. 3. Water from off site is conveyed through a 72" RCP that runs across the site area to an un- named tributary area. 4. Water runoff north of the site on the existing slope is carried in an existing browditch (Per DWG 409-lA, 409-1) and carried to an existing storm drain. The remaining existing water runoff will be collected in a proposed browditch and routed to offsite via rip-rap dissipation. SWQMP for: Carlsbad Raceway Lots 13-15 ADJ 06-07 Description of Proposed Site Development and Drainaee Patterns Project Description / Proposed Land Use and/ or Activities: The proposed project consists of the development of a commercial facility on lot 15; 172,360 sf of commercial facility that will be mainly used as the business office building, approximately 358 parking spaces, 2 lunch patios and 4 biofiltration ponds. List/ describe proposed impervious features of the project ( e.g., buildings, roadways, parking lots, courtyards, athletic courts, other impervious features): The impervious area of the proposed project will include the building roof area, parking lots and a patio. List/ describe proposed pervious features of the project (e.g., landscape areas): The pervious area of the proposed project will include landscaping area and the various biofiltration ponds. Does the project include grading and changes to site topography? ~ Yes -minor changes No Description / Additional Information: The site for the proposed development has been previously graded, per Project No. C.T. 98-10, DWG 409-1. However, minor changes in elevations are expected for drainage purposes. Does the project include changes to site drainage ( e.g., installation of new storm water conveyance systems)? ti/ Yes No Description / Additional Information: A new drainage system will be designed for the proposed site. The drainage structures will include biofiltration pond. SWQMP for: Carlsbad Raceway Lots 13-15 ADJ 06-07 Identify whether any of the following features, activities, and/ or pollutant source areas will be present (select all that apply): ~ On-site storm drain inlets Interior floor drains and elevator shaft sump pumps Interior parking garages Need for future indoor & structural pest control ~ Landscape/Outdoor Pesticide Use Pools, spas, ponds, decorative fountains, and other water features Food service ~ Refuse areas Industrial processes Outdoor storage of equipment or materials Vehicle and E quipment Cleaning Vehicle/Equipment Repair and Maintenance Fuel Dispensing Areas ~ Loading Docks ~ Fire Sprinkler Test Water Miscellaneous Drain or Wash Water ~ Plazas, sidewalks, and parking lots SWQMP for: Carlsbad Raceway Lots 13-15 ADJ 06-07 Identification of Receiving Water Pollutants of Concern Describe path of storm water from the project site to the Pacific Ocean (or bay, lagoon, lake or reservoir, as applicable): The project site drains to the branch of Agua Hedionda creek that drains into Agua Hedionda lagoon. The Aqua Hedionda lagoon discharges directly to the Pacific Ocean. List any 303(d) impaired water bodies within the path of storm water from the project site to the Pacific Ocean (or bay, lagoon, lake or reservoir, as applicable), identify the pollutant(s)/stressor(s) causing impairment, and identify any TMDLs for the impaired water bodies: 303(d) Impaired Water Body Pollutant( s)IStressor( s) TMDLs Agua Hedionda Creek Enterococcus TMDL completion 2019 Agua Hedionda Creek Fecal Coliform TMDL completion 2019 Agua Hedionda Creek Manganese TMDL completion 2019 Agua Hedionda Creek Phosphorus TMDL completion 2019 Agua Hedionda Creek Selenium TMDL completion 2019 Agua Hedionda Creek Total Dissolved Solids TMDL completion 2019 Agua Hedionda Creek Total Nitrogen as N TMDL completion 2019 Agua Hedionda Creek Toxicity TMDL completion 2019 Identification of Project Site Pollutants Identify pollutants anticipated from the project site based on all proposed use(s) of the site (see BMP Design Manual Appendix B.6): Also a Receiving Not Applicable to Anticipated from the Water Pollutant of Pollutant the Project Site Project Site Concern Sediment ~ ~ Nutrients ~ ~ Heavy Metals ~ Organic Compounds Trash & Debris ~ Oxygen Demanding Substances Oil & Grease ~ Bacteria & Viruses Pesticides SWQMP for: Carlsbad Raceway Lots 13-15 ADJ 06-07 Hydromodification Mana2ement Requirements Do hydromodification management requirements apply (see Section 1.6 of the BMPDesign Manual)? ~ Yes, hydromodification management flow control structural BMPs required. No, the project will discharge runoff directly to existing underground storm drains discharging directly to water storage reservoirs, lakes, enclosed embayments, or the Pacific Ocean. No, the project will discharge runoff directly to conveyance channels whose bed and bank are concrete- lined all the way from the point of discharge to water storage reservoirs, lakes, enclosed embayments, or the Pacific Ocean. No, the project will discharge runoff directly to an area identified as appropriate for an exemption by the WMAA for the watershed in which the project resides. Description / Additional Information (to be provided if a 'No' answer has been selected above): Critical Coarse Sediment Yield Areas* *This Section onlv reauired if hvdromodification man:urement reauirements aoolv Based on the maps provided within the WMAA, do potential critical coarse sediment yield areas exist within the project drainage boundaries? ~ Yes No, No critical coarse sediment yield areas to be protected based on WMAA maps If yes, have any of the optional analyses presented in Section 6.2 of the BMP Design Manual been performed? 6.2.1 Verification of Geomorphic Landscape Units (GLUs) Onsite ~ 6.2.2 Downstream Systems Sensitivity to Coarse Sediment 6.2.3 Optional Additional Analysis of Potential Critical Coarse Sediment Yield Areas Onsite No optional analyses performed, the project will avoid critical coarse sediment yield areas identified based on WMAA maps If optional analyses were performed, what is the final result? No critical coarse sediment yield areas to be protected based on verification of GLUs onsite ~ Critical coarse sediment yield areas exist but additional analysis has determined that protection is not required. Documentation attached in Attachment 2B of the SWQMP. See discussion/ Additional Information below. Critical coarse sediment yield areas exist and require protection. The project will implement management measures described in Sections 6.2.4 and 6.2.5 as applicable, and the areas are identified on the SWQMP Exhibit. Discussion / Additional Information: The site on Lots 13-15 has an area of critical course sediment according to the WMAA maps. But due to the area being previously mass graded with a fill soil of type "D" the critical coarse area will be graded over. Lots 13-15 fills extend to a maximum of 64 feet in the northwest corner (a location of a critical course sediment). Existing offsite detention basins were incorporated as part of the mass grading of Carlsbad Raceway (per C.T. 98-10, DWG 409-l A). Form 1-10 has been provided in Attachment 2-B SWQMP for: Carlsbad Raceway Lots 13-15 ADJ 06-07 Flow Control for Post-Project Runoft'llc .-Y-his Section only required ifhydromodification manaeement requirements apply List and describe point(s) of compliance (POCs) for flow control for hydromodification management (see Section 6.3.1 ). For each POC, provide a POC identification name or number correlating to the project's HMP Exhibit and a receiving channel identification name or number correlating to the project's HMP Exhibit. Tl1ere is one Point of Compliance for lots 13-15. It is located approximately 574 feet from Lions Head Avenue traveling north along the property line for lot 15. The discharge from sites 13-15 will enter an existing 72" RCP storm line. It is named "POC" and is indicated on the DMA map for lot 13-15 as such. Has a geomorphic assessment been performed for the receivingchannel(s)? ~ No, the low flow threshold is 0.1Q2 (default low flow threshold) Yes, the result is the low flow threshold is 0.1 Q2 Yes, the result is the low flow threshold is 0.3Q2 Yes, the result is the low flow threshold is 0.5Q2 If a geomorphic assessment has been performed, provide title, date, and preparer: Discussion / Additional Information: (optional) SWQMP for: Carlsbad Raceway Lots 13-15 ADJ 06-07 Other Site Requirements and Constraints When applicable, list other site requirements or constraints that will influence storm water management design, such as zoning requirements including setbacks and open space, or City codes governing minimum street width, sidewalk construction, allowable pavement types, and drainage requirements. No other constraints are applicable to this site. Optional Additional Information or Continuation of Previous Sections As Needed This space provided for additional information or continuation of information from previous sections as needed. ~ City of Carlsbad STANDARD PROJECT REQUIREMENT CHECKLIST E-36 Project Information Project Name: Carlsbad Raceway Lot 13-15 ADJ 16-07 Project ID: SOP 16-19 DWG No. or BuildinQ Permit No.: DWG 501-3A Source Control BMPs Development Services Land Development Engineering 1635 Faraday Avenue 760-602-2750 www.carlsbadca.gov All development projects must implement source control BMPs SC-1 through SC-6 where applicable and feasible. See Chapter 4 and Appendix E.1 of the BMP Design Manual for information to implement source control BMPs shown in this checklist. Answer each category below pursuant to the following. f "Yes" means the project will implement the source control BMP as described in Chapter 4 and/or Appendix E.1 of the Model BMP Design Manual. Discussion/justification is not required. f "No" means the BMP is applicable to the project but it is not feasible to implement. Discussion/justification must be provided. f "N/A" means the BMP is not applicable at the project site because the project does not include the feature that is addressed by the BMP (e.g., the project has no outdoor materials storage areas). Discussion/justification may be provided. Source Control Requirement Applied? SC-1 Prevention of Illicit Discharges into the MS4 J ..,, Yesl J No I J N/A Discussion/justification if SC-1 not implemented: SC-2 Storm Drain Stenciling or Signage J ..,, Yes J J No I J NIA Discussion/justification if SC-2 not implemented: SC-3 Protect Outdoor Materials Storage Areas from Rainfall, Run-On, J Yes I J No I J 'Iii N/A Runoff, and Wind Dispersal Discussion/justification if SC-3 not implemented: Project site is a proposed commercial office building, and will not have outdoor material storage. SC-4 Protect Materials Stored in Outdoor Work Areas from Rainfall, Run-On, J Yes I J No I J 'Iii N/A Runoff, and Wind Dispersal Discussion/justification if SC-4 not implemented: Project site is a proposed comercial building, and will not have outdoor material storage. SC-5 Protect Trash Storage Areas from Rainfall, Run-On, Runoff, and Wind J 'Iii Yes I J No l J N/A Dispersal Discussion/justification if SC-5 not implemented: E-36 Page 1 of 3 REV 02/16 Source Control Requirement Applied? SC-6 Additional BMPs based on Potential Sources of Runoff Pollutants must answer for each source listed below and identify additional BMPs. (See Table in Appendix E.1 of BMP Manual for guidance). J On-site storm drain inlets CASQA SD-13 J ti/ Yes J No J N/A J Interior floor drains and elevator shaft sump pumps CASQA SC-41 J Yes J No J ti/ N/A J Interior parking garages Yes J No J ti/ N/A J Need for future indoor & structural pest control CASQA SC-41 J ~ Yes J No J N/A J Landscape/Outdoor Pesticide Use CASQA BG-40 J ~ Yes J No J N/A J Pools, spas, ponds, decorative fountains, and other water features J Yes J No J ti/ N/A J Food service J Yes J No J ti/ N/A J Refuse areas CASQASD-32 J ti/ Yes J No J N/A J Industrial processes J Yes J No J ~ N/A J Outdoor storage of equipment or materials J Yes J No J ~ N/A J Vehicle and Equipment Cleaning J Yes J No J ~ N/A J Vehicle/Equipment Repair and Maintenance J Yes J No J ti/ N/A J Fuel Dispensing Areas J Yes J No J ti/ N/A J Loading Docks CASQA SD-31, SC-30 J ti/ Yes J No J N/A J Fire Sprinkler Test Water CASQA SC-41 J ti/ Yes J No J N/A J Miscellaneous Drain or Wash Water CASQA SC-41 J ~ Yes J No J N/A J Plazas, sidewalks, and parking lots CASQA SC-71 J ti/ Yes J No J N/A For "Yes" answers, identify the additional BMP per Appendix E.1. Provide justification for "No" answers. See Operations and Maintenance Manual in Attachment 3 of this SWQMP. Appendix E.1 of the Model BMP Design Manual San Diego Region Dated February 2016 is included in attachment 3.) YES RESPONSES: On-site storm drain inlets: Stenciling "No Dumping! Flows to Creek" Need for future indoor & Structural Pest Control: Use appropriate measures per CASQA SC-41 Landscape/Outdoor Pesticide Use: Selected plants appropriate to site conditions Refuse areas: Signs "Do not dump hazardous materials here" Loading Docks: Sweep appropriate areas. Fire Sprinkler Test Water: Drains to sanitary sewer Miscellaneous Drain or Wash Water: Drains to sanitary sewer Plazas, sidewalks, and parking lots: Drains to BMP N/A RESPONSE: N/A response above indicates that the feature is not a proposed part of the project. E-36 Page 2 of 3 REV. 02/16 Site Design BMPs All development projects must implement site design BMPs SD-1 through SD-8 where applicable and feasible. See Chapter 4 and Appendix E.2 thru E.6 of the BMP Design Manual for information to implement site design BMPs shown in this checklist. Answer each category below pursuant to the following. E "Yes" means the project will implement the site design BMPs as described in Chapter 4 and/or Appendix E.2 thru E.6 of the Model BMP Design Manual. Discussion/ justification is not required. E "No" means the BMPs is applicable to the project but it is not feasible to implement. Discussion/justification must be provided. E "N/A" means the BMPs is not applicable at the project site because the project does not include the feature that is addressed by the BMPs (e.g., the project site has no existing natural areas to conserve). Discussion/justification may be provided. Site Design Reauirement I Applied? SD-1 Maintain Natural Drainage Pathways and Hydrologic Features I J Yes I J No I J ~ N/A Discussion/justification if SD-1 not implemented: No natural drainage paths are present on this site. SD-2 Conserve Natural Areas, Soils, and Vegetation I J Yes I J No I J ~ N/A Discussion/justification if SD-2 not implemented: No natural drainage paths are present on this site. SD-3 Minimize Impervious Area I J V Yes l J No I J N/A Discussion/justification if SD-3 not implemented: SD-4 Minimize Soil Compaction I J V Yes I J No I J N/A Discussion/justification if SD-4 not implemented: SD-5 Impervious Area Dispersion I ~ Yes I J No I J NIA Discussion/justification if SD-5 not implemented: SD-6 Runoff Collection I J V Yesl J No I J N/A Discussion/justification if SD-6 not implemented: SD-7 Landscaping with Native or Drought Tolerant Species I J V Yes I J No I J NIA Discussion/justification if SD-7 not implemented: SD-8 Harvesting and Using Precipitation I J Yes I J V Nol J N/A Discussion/justification if SD-8 not implemented: The 36 hour demand is less than the DCV and 0.25DCV, making Harvesting and Using to be infeasible per Harvest and Use Feasibility Checklist (Form 1-7). E-36 Page 3 of 3 REV. 02/16 SWQMP for: Carlsbad Raceway Lots 13-15 ADJ 06-07 SU MMARY OF PDP STRUCTURAL BMPS PDP Structural BMPs All PDPs must implement structural BMPs for storm water pollutant control (see Chapter 5 of the BMP Design Manual). Selection of PDP structural BMPs for storm water pollutant control must be based on the selection process described in Chapter 5. PDPs subject to hydromodification management requirements must also implement structural BMPs for flow control for hydromodification management (see Chapter 6 of the BMP Design Manual). Both storm water pollutant control and flow control for hydromodification management can be achieved within the same structural BMP(s). PDP structural BMPs must be verified by the City at the completion of construction. This may include requiring the project owner or project owner's representative to certify construction of the structural BMPs (see Section 1.12 of the BMP Design Manual). PDP structural BMPs must be maintained into perpetuity, and the City must confirm the maintenance (see Section 7 of the BMP Design Manual). Use this form to provide narrative description of the general strategy for structuralBMP implementation at the project site in the box below. Then complete the PDP structural BMP summary information sheet for each structural BMP within the project (copy the BMP summary information page as many times as needed to provide summary information for each individual structural BMP). Describe the general strategy for structural BMP implementation at the site. T his information must describe how the steps for selecting and designing storm water pollutant controlBMPs presented in Section 5.1 of the BMP Design Manual were followed, and the results (type of BMPs selected). For projects requiring hydromodification flow control BMPs, indicate whether pollutant control and flow control BMPs are integrated together or separate. The project BMP selection process was accomplished in conjunction with section 5.1 of the BMP design !manual. Step 1, the project was divided up and evaluated at the DMA scale. Each DMA area was classified as Self- rrreating, De-minimis, Self-Retaining or Draining to an Integrated Management Practice (IMP). ::>tep 2, For the DMAs that drain to IMPs, the appropriate runoff factors were applied to each area and the required Design Capture Volume (DCV) of each sub area calculated. For this project, Harvest and reuse is not considered feasible. Step 3, due to the impermeability of the underlying soils, (soil type D ), infiltration BMPs are not feasible. Step 3A&B for the no infiltration condition leads to section 5.5.3 which is the Biofiltration BMP category. The various sizing methods included in Appendix B.5 were followed and the entire DCV can be treated within the Droposed IMPs. IStep 4, each Biofiltration area is sized in accordance with the fact sheet INF-2 found in appendix E of the BMP !design manual. This project requires hydromodification controls, so the Biofiltration units accomplish both storm water treatment and flow control mitigation in an integrated design. SWQMP for: Carlsbad Raceway Lots 13-15 ADJ 06-07 [Continued from previous page -This page is reserved for continuation of description of general strategy for structural BMP implementation at the site.] I SWQMP for: Carlsbad Raceway Lots 13-15 ADJ 06-07 Structural BMP Summary Information Structural BMP ID No. BMP E DWG 501-3A Sheet No. 4, 8, and 12 Type of structural BMP: Retention by harvest and use (HU-1) Retention by infiltration basin (INF-1) Retention by bioretention (INF-2) Retention by permeable pavement (INF-3) Partial retention by biofiltration with partial retention (PR-1) ~ Biofiltration (BF-1) Flow-thru treatment control included as pre-treatment/forebay for an onsite retention or biofiltration BMP (provide BMP type/description and indicate which onsite retention or biofiltration BMP it serves in discussion section below) Detention pond or vault for hydromodification management Other (describe in discussion section below) Purpose: Pollutant control only Hydromodification control only ~ Combined pollutant control and hydromodification control Pre-treatment/forebay for another structural BMP Other (describe in discussion section below) Discussion (as needed): All of the BMPs used on this project are biofiltration units that are designed per worksheet 8.5-1 of the COC BMP Design Manual and modeled using continuous simulation modeling with SWMM. Each pond is designed with a typical detail and sized according the hydromodification mentioned above. Since each pond is designed per a typical detail, it is intended that each pond will be constructed and maintained using the same general methods and materials. SWQMP for: Carlsbad Raceway Lots 13-15 ADJ 06-07 Structural BMP Summary Information Structural BMP ID No. BMP F DWG 501-3A Sheet No. 6, 10, and 14 Type of structural BMP: Retention by harvest and use (HU-1) Retention by infiltration basin (INF-1) Retention by bioretention (INF-2) Retention by permeable pavement (INF-3) Partial retention by biofiltration with partial retention (PR-1) ~ Biofiltration (BF-1) Flow-thru treatment control included as pre-treatment/forebay for an onsite retention or biofiltration BMP (provide BMP type/description and indicate which onsite retention or biofiltration BMP it serves in discussion section below) Detention pond or vault for hydromodification management Other (describe in discussion section below) Purpose: Pollutant control only Hydromodification control only ~ Combined pollutant control and hydromodification control Pre-treatment/forebay for another structural BMP Other (describe in discussion section below) Discussion (as needed): All of the BMPs used on this project are biofiltration units that are designed per worksheet B.5-1 of the COC BMP Design Manual and modeled using continuous simulation modeling with SWMM. Each pond is designed with a typical detail and sized according the hydromodification mentioned above. Since each pond is designed per a typical detail, it is intended that each pond will be constructed and maintained using the same general methods and materials. I SWQMP for: Carlsbad Raceway Lots 13-15 ADJ 06-07 Structural BMP Summary Information Structural BMP ID No. BMP G DWG 501-3A Sheet No. 6, 10, and 14 Type of structural BMP: Retention by harvest and use (HU-1) Retention by infiltration basin (INF-1) Retention by bioretention (INF-2) Retention by permeable pavement (INF-3) Partial retention by biofiltration with partial retention (PR-1) ..,, Biofiltration (BF-1) Flow-thru treatment control included as pre-treatmenUforebay for an onsite retention or biofiltration BMP (provide BMP type/description and indicate which onsite retention or biofiltration BMP it serves in discussion section below) Detention pond or vault for hydromodification management Other (describe in discussion section below) Purpose: Pollutant control only Hydromodification control only ..,, Combined pollutant control and hydromodification control Pre-treatmenUforebay for another structural BMP Other (describe in discussion section below) Discussion (as needed): All of the BMPs used on this project are biofiltration units that are designed per worksheet B.5-1 of the COC BMP Design Manual and modeled using continuous simulation modeling with SWMM. Each pond is designed with a typical detail and sized according the hydromodification mentioned above. Since each pond is designed per a typical detail, it is intended that each pond will be constructed and maintained using the same general methods and materials. SWQMP for: Carlsbad Raceway Lots 13-15 ADJ 06-07 Structural BMP Summary Information Structural BMP ID No. BMP H DWG 501-3A Sheet No. 5, 9, and 13 Type of structural BMP: Retention by harvest and use (HU-1) Retention by infiltration basin (INF-1) Retention by bioretention (INF-2) Retention by permeable pavement (INF-3) Partial retention by biofiltration with partial retention (PR-1) ..,; Biofiltration (BF-1) Flow-thru treatment control included as pre-treatment/forebay for an onsite retention or biofiltration BMP (provide BMP type/description and indicate which onsite retention or biofiltration BMP it serves in discussion section below) Detention pond or vault for hydromodification management Other (describe in discussion section below) Purpose: Pollutant control only Hydromodification control only ..,; Combined pollutant control and hydromodification control Pre-treatment/forebay for another structural BMP Other (describe in discussion section below) Discussion (as needed): All of the BMPs used on this project are biofiltration units that are designed per worksheet B.5-1 of the COC BMP Design Manual and modeled using continuous simulation modeling with SWMM. Each pond is designed with a typical detail and sized according the hydromodification mentioned above. Since each pond is designed per a typical detail, it is intended that each pond will be constructed and maintained using the same general methods and materials. SWQMP for: Carlsbad Raceway Lots 13-15 ADJ 06-07 AT C E T 1 BACKUP FOR PDP POLLUTANT CONTROL BMPS Attachment Contents Checklist ~An11Ance Attachment 1 a OMA Exhibit (Required) ~ Included See OMA Exhibit Checklist on the back of this Attachment cover sheet. Attachment 1 b Tabular Summary of DMAs Showing ~ Included on OMA OMA ID matching OMA Exhibit, OMA Exhibit in Attachment 1 a Area, and OMA Type (Required)* ~ Included as Attachment *Provide table in this Attachment OR 1 b, separate from OMA on OMA Exhibit in Attachment 1 a Exhibit Attachment 1 c Form 1-7, Harvest and Use Feasibility ~ Included Screening Checklist (Required unless Not included because the entire the entire project will use infiltration project will use infiltration BMPs BMPs) Refer to Appendix B.3-1 of the BMP Design Manual to complete Form 1-7. Attachment 1 d Form 1-8, Categorization of Infiltration ~ Included Feasibility Condition (Required unless Not included because the entire the project will use harvest and use project will use harvest and use BMPs) BMPs Refer to Appendices C and D of the BMP Design Manual to complete Form 1-8. Attachment 1 e Pollutant Control BMP Design ~ Included Worksheets/ Calculations (Required) Refer to Appendices B and E of the BMP Design Manual for structural pollutant control BMP design guidelines = C C C C [ C C ,. i· 1111 .. 11111 .... ... C C - ATTACHMENT1a ANTICIPATEO ANO POTENTIAL POLLUTANTS CENERATEO BY LANO USE TYPE PER MOOEL BMP OESICN MANUAL JUNE 2015 PRIORITY PROJECT CATEGORIES HEAVY ORGANIC SEDIMENT NUTRIENTS METALS COMPOUNDS TRASH & OEBRIS OXYGEN OEMANOING SUBSTANCES OIL & BACTERIA CREASE & 1/JRUSES P£Sl7C/O£S COMMERCIAL DEVELOPMENT P(l) > ON£ ACRE PARKING LOTS P(l) X = ANllCIPA TEO P = POTENllAL P(l) X P(2) P(l) X (!} A POTEN11AL POLLUTANT IF LANDSCAPING EXISTS ONSl!E X P(5} X P(!} (2) A POTEN11AL POLLUTANT IF TH£ PROJECT INCLUDES UNCOvEREO PARKING AREAS. X X (J) A POTEN11AL POLLUTANT IF LANO US£ INVOL vES FOOD OR ANIMAL WASTE PRODUCTS. (4) INCLUDING PETROLEUM HYOROCARBONS. (5) INCLUDING SOL vENTS. P(J} P(5) P(!} BIO-FI LTRATION SUMMARY TABLE £FF£C11V£ Al A2 AJ B C 0 (INCH} (INCH) (INCH} OMA -10 ORA/NS TO TYPE OFBMP AREA (/NCH} (INCH) (INCH) TOP OF CLEAN UPPER (SOFT} RISER BASIN OUT ORIFICE A/£0/A GRAVEL OAIA-9 N/,4 SELF-MlllGA 110N OMA-10 BMP-£ BIORL TRA 170N 4963.00 6 120 6.0 18.0 JJ OMA-!! N/,4 SELF-MlllGA 170N OMA-12 BMP-F BIORL TRA 170N 1509.6 10 120 6.0 18.0 JJ OMA-13 BMP-G BIORL TRA 170N !!71.9 10 120 6.0 18.0 JJ OMA-14 BMP-H BIORL TRA 170N 14500.0 6 120 6.0 18.0 33 OMA-15 N/,4 SELF-MlllGA 170N / / / / / / / / / / / I I I / I I / / / / I I I / DMA-9 !MPERVIOUSNESS=O% 0.34 ACRES BOX RISER/ / / / / / / I / / / ' I I I \ I I I I l _,,.-_,.....-,I I I \ / / I I I I I I I I I /; I I I I I I I I / r--.,,,, / I I I I I I I I I I I I I I I f I I f I I I / \I I I I I • / I / / I / I I I I I I I I I / \ / // I I I I I I I I I I I / I I I I I I I I ,,.- / I / ,,/ I I I I I I I I I I I 7 I I I I I I I I I I I I I I I I I I I I I I I I I I I ; I I I I I I / I I / I I I I I I I I I / I I ,'. I / / I I / I I / / / I I I I / ; I / / / I / / I I I OvERFLOIY ORIFICES 0/AMETER £ STRUC1l/R£ IMPERMEABLE FEET SIZE LINER? UPPER LOWER (INCHES) (/NCH) (/NCH) !.5 J6XJ6 f.0 YES 25 24x24 0.50 YES 25 J6XJ6 0.50 YES !.5 J6X36 1.5 YES ✓.~ I I I I I I I I / / / / 1\ I I I I I \'\ I 1- 1 I I / /. /2 I / / I / / / / I I I I I I \ £ DISTANCE FROAI TO£ OF SLOP£ TO LINER ' ' ' ' ' ' ' ' ' -- ' \ \ \ \ ' \ / / / I / I / \ \\ \ /' ' ,' / / / / / / / \ --- OVER/10/Y STRUC1VR£ ANO MAINTENANCE ACCESS CLEAN OUT ~-- TOP OF BASlN APRON FOR ---,SZ,=-ENERGY 0/SSlPATER \':,·;. '.;. .. OURET/£ PER PLAN NOT TO SCALE "' ',/., ',/., "' '"' PLANllNG PER LANDSCAPE PLAN / ',/., 'OUSNESS=0% , . ·-;.J,,..·· ·-. . ·\J-' . \[.; .. , -'k· .. .,, "'lk. £OGE 5&, ·"'· APRiW FOR ENERGY DISSIPATER 4'-6' DROP FROAI CURB C!JT TO APRON SDP 16-19 LEGEND OMA BOUNDARY (EXTENTS) ■ ••• ■ OMA BOUNOAR Y PROPOSED CRAOE A. C. (TRUCK ROUTE} A. C. (PARl(fNC} PCC BIOFIL TRA 110N 4" PEA CRAV£Z CRA /lfZ STORA CE SUB-CRAOE SOIL /lfZOC/TY 0/SS/PA TER 'ATCH BASIN PER PLAN ■---■ I l I//////) ' lj;,,;:;,:,c;c:o.;:-" ~~::;,•,·".I ~ vg;o cv1 t< \/4'Z,\ \ :;-;1 P\i..M¼IDiAiCil SCH ,ffJ PVC MAL£ ADAPTER (Mi!PxSoC) '=;;============"i===lJ.<~ SCH 40 PVC THREADED 7JRAG£ £NO CAP (fPT) riTT==rr::'77=,==;11=,l====l}-'"'4l---OR/LL OR/RC£ HOLE AT w 110/ltUNE OF £NO CAP PLAN VIEW NOT TO SCALE CLASS II PERAi STORAGE LAYER OR/RC£ DETAIL NOT TO SCALE SCALE 1:40' -.t:_._ : . : . v,; . (SIZE PER BIO-BASIN DETAIL} ct/, '9 C!JT !.5' OANING A -------0 40 80 120 160 HWROL.OC/CAL SO'L CROIJP TH£ HYROLOG/CAL SOh'. GROUP FOR THIS SITE IS TYPE (0) NOTE APPROXIMATE DEPTH TO CRO/JNOIYATER IS GREATER THAN 20' It'«#' DMA EXHIBIT FOR ENGINEERING LIND PL\NN~G • ENQNEERING • SUR\ftlNG CARLSBAD RACEWAY LOT13-15 ADJ 06 -07 440 STATE PU.Cf, ESCONDIDO, CA 92029 PH (76D)745-811B FX (760)745-189D .. 111111 C ... [ .. ... .. .... .... ... ,... ... ... ,. ,. 111111 r .. - ATTACHMENT1b 1 r 'I r ~, r 'I 1 'I r 1 r I r 1 r 1 r 1 r 1 r 1 r 1 r 1 r -1 r 1 r 1 r 1 i,--,. ,--. BMP DATA: Per DMA DATA table BMPID BMP ROOF CONCRETE ASPHALT TYPE (sqft} (sqft) (sqft) BMP-E Biofiltration 83735.47 20975.24 30252.67 BMP-F Biofiltration 0.00 6045.69 1718.42 BMP-G Biofiltration 984.02 18185.27 3384.51 BMP-H Biofiltration 69585.50 80176.86 64823.65 CONCRETE ASPHALT PAVERS 0.9 0.9 0.9 Weighted Runoff Factor Per BMP Appendix B.1.1 BMPID CONCRETE ASPHALT PAVERS BMP-E 0.12 0.17 0.00 BMP-F 0.30 0.08 0.00 BMP-G 0.48 0.09 0.00 BMP-H 0.28 0.23 0.00 LANDSCAPE (sqft) 28905.91 10550.54 11381.15 40383.64 COMPACTED SOIL 0.3 COMPACTED SOIL 0.00 0.00 0.00 0.00 TOTAL (SQFT} TOTAL (ACRE) 163869.29 18314.65 33934.95 254969.65 LCxAx C = LAx 3.762 0.420 0.779 5.853 Cx= Runoff Factor for Area x Ax=Tributary area x (acres} %IMP 82% 42% 66% 84% I ! 1 r· 11 I' 'I .-.. ..-~ ,-1 ~ r 1 r · 1 r 1 r 1 r 1 r 1 ,-1 r 1 ,-1 r 1 ,----. .--, ir, Project: 16-024 Subject: POST DEV conditions Date: 3/14/2017 By: EXCEL Engingeering TOTAL BASIN DATA: Per DWG 501-3A_Basin_areas DMA ROOF DMAID TYPE Drains to BMP (sqft) DMA-9 Self-mitigating N/A - DMA-10 Drains to BMP BMP-E 83735.47 DMA-11 Self-mitigating N/A - DMA-12 Drains to BMP BMP-F 0.00 DMA-13 Drains to BMP BMP-G 984.02 DMA-14 Drains to BMP BMP-H 69585.50 DMA-15 Self-mitigating N/A - CONCRETE (sqft) - 20975.24 - 6045.69 18185.27 80176.86 - POST DEV ASPHALT LANDSCAPE TOTAL (SQFT) TOTAL (ACRE) %IMP (sqft) (sqft) -14968.00 14968.00 0.344 0% 30252.67 28905.91 163869.29 3.762 82% -4512.22 4512.22 0.104 0% 1718.42 10550.54 18314.65 0.420 42% 3384.51 11381.15 33934.95 0.779 66% 64823.65 40383.64 254969.65 5.853 84% -8588.57 8588.57 0.197 0% EFFECTIVE A1 BMPID AREA (INCH) (SOFT) RISER BMP-A 147.4 6.0 BMP-B 1748.0 6.0 BMP-C 4629.2 6.0 BMP-0 991 .3 6.0 E 0/STANCc f'RON TCf" tY Sl.CAPE TVUNER "°,~---1 ..... ' -•.·••., .. :··.·~ I-·· ,;_,_ . ~~~ .. 4,, ,--~ .... ·,. .... ~ .. A2 (INCH) 12.0 12.0 12.0 12.0 I .. -~-. ":-,,.. ... ~ .. .. .. ... , . : ~;:tii~t{Ii~~t{/~it\ ~ ~••:·;:.:_,!'•411:.!-~~--:=-~•-;-;.: .. •~•--! ~.i:.;: ~:.!;;. W~EABlE UNER r ---- (20-.J(J 1./ll PCWO l/NEH) ~NAL Sl?INC CT LINER f>El? SC1l ENCINEEHS RECOI.IAIENOA nONs A3 (INCH) 6.0 6.0 6.0 6.0 ' ~ BIO-BASIN SUMMARY TABLE C (INCH) 18.0 18.0 18.0 18.0 ~ D (INCH) 21.0 30.0 30.0 30.0 CLEAN our FS £LEV PEI? Pt.AN E (FEET) 1.5 1.5 1.5 1.5 BOX RISER / OVERFLOW STRUCTURE SIZE (INCHES) 36x36 36x36 36x36 36x36 CATCH BASIN OETAIL NOT TO SCALE ORIFICES DIAMETER IMPERMEABLE UPPER (INCH) N/A N/A N/A N/A LOWER (INCH) 0.500 0.750 1.125 0.500 LINER? YES YES YES YES APHQVF(;w ENERCY OISSIPATCW Pt.ANllNC PEHi ~--r IJHt:¥' /Jr LANDSCAPE CVl?B cvr ro Pt.AN APRON ~r-r . . -,•··.. -,-. -,.--.~1 ~ ,y\ . ·:..--.. ? ~. , • • /). ar flRE"SmvE' f>IP£ CW EOUIVAlENT , f>IPE PENEINA nc, TIIHOUCH IAIPEH/1. 1./NE!i' If.fl \._OLA$S\//?ERA ST0RAGt=-l.7fYD SCH 40 PVC MALE AOAPll:R (MiTPxSoC} n PVC SCH 40 PVC 1HREAOEO OSUBORAINO ENO CAP (FPT} =;:=======i===t_t--'-'----OR/LL ORIFICE HOLE AT -MIN. J'!-(1 • FLOM.IN£ or ENO CAP i.,,:\__._.!_r-!;:_ • (SIZE PER BIO-BASIN DETAIL} CLASS II PERM STORAGE LAYER OR/RC£ OETAIL NOT TO SCALE 1 r w .~,. w w r--w r----.. r~ • 1 r 1 r 1 ,, 1 r "' r 1 r 1 r 1 ,-1 f" 1 ,---. ..-~ r-. DESIGN CAPTURE VOLUME -PER WORKSHEET 8.2-1 BMP-E BMP-F BMP-G BMP-H 1 85th percentile 24-hr storm d= 0.62 0.62 0.62 0.62 depth from Fig. B.1-1 (inch) 2 Area Tributary to BMP (acres) A= 3.76 0.42 0.78 5.85 3 Area Weighted runoff Factor C= 0.76 0.44 0.63 0.77 (using App B.1.1 and B.2.1) 4 Street Trees Volume reduction TCV= 0 0 0 0 5 Rain barrels volume reduction RCV= 0 0 0 0 6 Calculate DCV = DCV= 6425 416 1108 10187 (3630 x C x d x A)-TCV-RCV (CUFT) 7 Percent Impervious %IMP 82% 42% 66% 84% C C ,. I ... ,. ... ,,,. .. ... .. C C - ATTACHMENT 1c ... 111111 r .. ... .. ... ,,. ... ... ... ... I Ill - Appendix I: Fonns and Checklists Harvest and Use Feasibility Checklist Lot 13-15 Form 1-7 1. Is there a demand for harvested water (check all that apply) at the project site that is reliably present during the wet season? til Toilet and urinal flushing til Landscape irrigation Other: __ 2. If there is a demand; es cimate the anticipated average wet season demand over a period of 36 hours. Guidance for planning level demand calculations for toilet/ urinal flushing and landscape irrigation is provided in Section B.3.2. Flushing: (359 employees)x(9.3 gal/res)= 3,339gallons c::::)(3,339 gal)(1.5 days)/(7.48 gal/cu. ft.)= 669.5 cu. ft . Irrigation: 36-hr Mod. Water per Table B.3-3 = (1,470 gal days/ acre)(l 1.48 acres)/ (7.48 gal/ cu feet) = 2,256 c ft. Total Demand = 2,925.6 cu. ft. 3. Calculate the DCV using worksheet B.2-1. DCV = 20,308 ( cubic feet) 3a. Is the 36 hour demand greater than or equal to the DCV? Yes / 0 Harvest and use appears to be feasible. Conduct more detailed evaluation and sizing calculations to confirm that DCV can be used at an adequate rate to meet drawdown criteria. 3b. Is the 36 hour demand greater than 0.25DCV but less than the full DCV? Yes /@ Harvest and use may be feasible. Conduct more detailed evaluation and sizing calculations to determine feasibility. Harvest and use may only be able to be used for a portion of the site, or ( optionally) the storage may need to be upsized to meet long term capture targets while draining in longer than 36 hours. Is harvest and use feasible based on further evaluation? Yes, refer to Appendix E to select and size harvest and use BMPs. til No, select alternate BMPs . 1-26 3c. Is the 36 hour demand less than 0.25DCV? @ i Harvest and use is considered to be infeasible. February 2016 C .. ... ,. ... ,,. ... .. 1111 111111 • .. .. !Ill .. JIii I .. .. .. - ATTACHMENT1d .. .. .. ... ,,.. ... -... ,,. ... 11111 ! .. - Appendix C: Geotechnical and Groundwater Investigation Requirements W kh C41 C . fl fi1 F "bill C di . Categorization of Infiltration Feasibility Condition Worksheet C.4-1 Part 1 -Full Infiltration Feasibility Screening Criteria Would infiltration of the full design volume be feasible from a physical perspective without any undesirable consequences that cannot be reasonably mitigated? Criteria Screening Question Yes No 1 Is the estimated reliable infiltration rate below proposed facility locations greater than 0.5 inches per hour? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2 and Appendix D. X* Provide basis: *The measured infiltration rates of the existing soils based on the on-site infiltration study was calculated after applying a minimum factor of safety of 2. 0 to range from 0. 06 to 0. 09 inches per hour. These results indicate that at locations P-1 and P-2fall infiltration is not feasible . Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/ data source applicability . 2 Can infiltration greater than 0.5 inches per hour be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2. Provide basis: NOVA did not encounter areas with infiltration rates greater than 0.5 in/hr, during our field testing at the site. It is NOVA 's opinion that at the site, the risks of geotechnical hazards caused by infiltration greater than 0.5 in/hr could be mitigated to an acceptable level. However, based on the results of NOVA 's field study; presented in Section 7 of the referenced Geotechnical Report, the infiltration rates at the site were I= 0. 02 in/hr and I= 0. 06 in/hr. These data demonstrate infiltration greater than 0.5 in/hr cannot be achieved at the site. Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/ data source applicability. Storm Water Standards Part 1: BMP Design Manual January 2016 Edition C-11 X .. ... ,.. ,,. .. C t C C C - Appendix C: Geotechnical and Groundwater Investigation Requirements Worksheet C.4-1 Page 2 of 4 Criteria Screening Question 3 Can infiltration greater than 0.5 inches per hour be allowed without increasing risk of groundwater contamination (shallow water table, storm water pollutants or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3. Provide basis: Water contamination was not evaluated at this time by NOVA Services. Yes No ✓ Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/ data source applicability. 4 Can infiltration greater than 0.5 inches per hour be allowed without causing potential water balance issues such as change of seasonality of ephemeral streams or increased discharge of contaminated groundwater to surface waters? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3. Provide basis: The potential for water balance was not evaluated by NOVA Services. ✓ Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/ data source applicability. Part 1 Result"' If all answers to rows 1 -4 are ''Yes" a full infiltration design is potentially feasible. The feasibility screening category is Full Infiltration If any answer from row 1-4 is "No", infiltration may be possible to some extent but would not generally be feasible or desirable to achieve a "full infiltration" design. Proceed to Part 2 NO in No. 1 *To be completed using gathered site information and best professional judgment considering the definition of MEP in the MS4 Permit. Additional testing and/ or studies may be required by City Engineer to substantiate findings. Storm Water Standards Part 1: BMP Design Manual January 2016 Edition C-12 .. ! ... ... ... ,. ., ,.. .. .. ... ... .. C C C C C - Appendix C: Geotechnical and Groundwater Investigation Requirements Worksheet C.4-1 Page 3 of 4 Part 2 -Partial Infiltration vs. No Infiltration Feasibility Screening Criteria Would infiltration of water in any appreciable amount be physically feasible without any negative consequences that cannot be reasonably mitigated? Criteria Screening Question 5 Do soil and geologic conditions allow for infiltration in any appreciable rate or volume? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2 and AppendixD. Provide basis: Yes No X The design irifiltration rate calculated based on the on-site geologic conditions and field testing is lower than 0. I inches per hour, the site is underlain by deep artificial fills which consist primarily of expansive clayey materials that do not percolate, as such the soils conditions are not recommended for infiltration. Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/ data source applicability and why it was not feasible to mitigate low infiltration rates . 6 Can Infiltration in any appreciable quantity be allowed without increasing risk of geotechnical hazards (slope stability, groundwater mounding, utilities, or other factors) that cannot be mitigated to an acceptable level? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.2 . X Provide B~M testing indicate that the infiltration rates are less than 0. 5 inches per hour. The site is underlain by deep artificial fill that is highly variable in composition and permeability. As such infiltration is not recommended at the site. C2.2 Settlement and Volume Change: The subject site is underlain mainly by a fill and formational (fsa) deposits, that may be subject to heave or settlement when wet. C2.3 Slope Stability: The site is bounded to the north and east by an ascending slope that is steeper than 25% and that may be subject to saturation and failure if retention/infiltration systems of the adjacent properties are planned too close to the slopes. NOVA recommends that the proposed BMP 's be located at least 50 feet from the tops of any of the existing slopes. At this distance the proposed BMP 's whether in.filtration or detention system should not affect the existing slopes negatively. C2.4 Utility Considerations: Underground utilities whether public or private are conduits for water migration and saturation. Stom,water if!fi/tration BMPs should not be sited within 10 feet of Underground utilities. C2.5 Groundwater Mounding: Groundwater is expected to be deeper than 30 feet. The encountered soils at the base of each percolation- infiltration indicated the presence of mainly fill soils. These soils presented very low in.filtration potential. It is NO VA 's opinion that the temporary groundwater mounding during wet periods should not be significant. Cl. 6 Other Factors: Soil piping is not considered a geotechnical hazard at this site. Premature asphalt failure and impacts to adjacent properties can he mitigated to an acceptable level. Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/ data source applicability and why it was not feasible to mitigate low infiltration rates. Storm Water Standards Part 1: BMP Design Manual January 2016 Edition C-13 City of San Die10 ~ TRANSPORTATION & STORM WATER ... .. ,.. ' .. .. ... .. ,. ... ... .. ... ,.. ... .. ... ... .. ... ... C ' .. - Appendix C: Geotechnical and Groundwater Investigation Requirements Worksheet C.4-1 Page 4 of 4 Criteria Screening Question 7 Can Infiltration in any appreciable quantity be allowed without posing significant risk for groundwater related concerns (shallow water table, storm water pollutants or other factors)? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3 . Provide basis: Water contamination was not evaluated at this time by NOVA Services. Yes No ✓ Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/ data source applicability and why it was not feasible to mitigate low infiltration rates . 8 Can infiltration be allowed without violating downstream water rights? The response to this Screening Question shall be based on a comprehensive evaluation of the factors presented in Appendix C.3 . ✓ Provide basis: Violation of downstream water rights, was not evaluated by NOVA Summarize findings of studies; provide reference to studies, calculations, maps, data sources, etc. Provide narrative discussion of study/ data source applicability and why it was not feasible to mitigate low infiltration rates. If all answers from row 1-4 are yes then partial infiltration design is potentially feasible. Part 2 The feasibility screening category is Partial Infiltration. Result* If any answer from row 5-8 is no, then infiltration of any volume is considered to be infeasible within the drainage area. The feasibility screening category is No Infiltration. NO in No. 1 *To be completed using gathered site information and best professional judgment considering the definition of MEP in the MS4 Permit. Additional testing and/ or studies may be required by City Engineer to substantiate findings Storm Water Standards Part 1: BMP Design Manual January 2016 Edition C-14 City of sen Diego ·~ TRANSPORTATION , STORM WATER ,. .. .. .. .. .. - -.. .. .. ... .. I .. - ATTACHMENT 1e fl ii ~i C Q. ~o O fl u-; O;j ic •-CD c~ C GI CII~ V, r. -II') CIO BMP ID BMP -E BMP -F BMP -G BMP -H I I I I EFFECTIVE A1 AREA (INCH) (SOFT) RISER 4963.0 6.0 1509.6 10.0 1171.9 10.0 14500.0 6.0 £ IJtSTANCE flrOAI ro£ or Sl,QP(' TO I./N£/i' A2 (INCH) 12.0 12.0 12.0 12.0 I h: ~ ........... ,EAB[._£_1..1,_~-r--------== {20-.JO Al,t P(WtJ I.MR} 'fiNAL Sl.lTNG OF I.IN£7? f'£H Sl>Z £NC1Na'RS li'CCCIAIJ/£MJA navs BIO-BASIN SUMMARY TABLE A3 C D (INCH) (INCH) (INCH) 6.0 6.0 6.0 6.0 18.0 18.0 18.0 18.0 OIO?fl.OW Smt/C lt/1?£ ANO V.AJNl!NANCE ACCESS ~ ~ 33.0 33.0 33.0 33.0 ·{S t~~~f~\;)I?gJ; E (FEET) 1.5 2.5 2.5 1.5 BOX RISER / OVERFLOW STRUCTURE SIZE (INCHES) 36x36 24x24 36x36 36x36 ""\_ClASS II f'ER, STORAGE /JI Y£i CATCH BASIN OE TAIL ·SCH 40 PJ.C 1./ALE AOAP!FR {AlilPxSoC} • Pvt: SCH 40 Pvt: THREAOEO OSUBORAINO ENO CAP {FPl) ·/,/IN. J" I • \_CLASS If PERI.I STORAGE LA YER OR/LL ORIFICE HOt.E AT rZOH!INE OF ENO CAP (SIZE PER BIO-BASIN DETAIL} NOT TO SCALE ORIFICES DIAMETER UPPER LOWER (INCH) (INCH) N/A 1.000 N/A 0.500 N/A 0.500 N/A 1.500 IMPERMEABLE LINER? YES YES YES YES f'IH£STCW£ l'fP£ IJOOT OH £0t/lVAI.EN T TO SEAi. PIPE PENOl?Antw fHROVCHIU~,mvs I.IN£R "--a Ass 11 !PEW STORAGE-t-A YD SCH 40 PIie A/AL£ AOAPTER (AlilPxSoC) " f ., ~ SCH 40 PIie 1HR£A0£0 ~ PIie OSUBORAINO ~N. .r '\_CLA;S II PERAi STORA CE LA YER OR/RC£ OETAIL NOT TO SCALE £NO CAP (FP T) OR/LL ORIFICE HOLE AT fl OlfUN£ OF £NO CAP (SIZE PER BIO-BASIN 0£TAll.) I ..--, r-, ,-~, r-, ..---, r, r-·-w ,--1 r 1 ,-· 1 r 1 r ,, r -, r --, r -, r·-1 r, r, r 1 DESIGN CAPTURE VOLUME -PER WORKSHEET B.2-1 BMP-E BMP-F BMP-G BMP-H 1 85th percentile 24-hr storm d= 0.62 0.62 0.62 0.62 depth from Fig. B.1-1 (inch) 2 Area Tributary to BMP (acres) A= 3.76 0.42 0.78 5.85 3 Area Weighted runoff Factor C= 0.76 0.44 0.63 0.77 (using App B.1.1 and B.2.1) 4 Street Trees Volume reduction TCV= 0 0 0 0 5 Rain barrels volume reduction RCV= 0 0 0 0 6 Calculate DCV = DCV= 6425 416 1108 10187 (3630 x C x d x A)-TCV-RCV (CUFT) 7 Percent Impervious %IMP 82% 42% 66% 84% I ..-----. r ---. ,----.. ..--. r·-w ..-~. w I r I I I r 1 ' 1 ,--~ r I r 1 r 1 ,--1 r-··-.. .,--,,., r, RECALCULATE WORKSHEET B.5-1: BASED ON LOWER ORIFICE FLOW RATE Simple Sizing Method for Biofiltration BMPs BMP-E BMP-F BMP-G BMP-H 1 Remaining DCV after implementing retention BMPs (cubic feet) 6425 416 1108 10187 Partial Retention 2 Infiltration rate from Worksheet D.5-1 if partial infiltration is feasible (in/hr) 0.00 0.00 0.00 0.00 3 Allowable drawdown time for aggregate storage below the underdrain (hrs) 36 36 36 36 4 Depth of runoff that can be infiltrated (Line2xline3) (in) 0.00 0.00 0.00 0.00 5 Aggregate pore space 0.4 0.4 0.4 0.4 6 Required depth of gravel below the underdrain (Line4/Line5) (in) 0 0 0 0 7 Assumed surface area of bioretention BMP (sq-ft) 4963 1510 1172 14500 8 Media retained pore space (in/in) 0.1 0.1 0.1 0.1 9 Volume retained by BMP (Line4+(Linel2xline8))/12*Line7 (cubic feet) 744 226 176 2175 10 DCV that requires bioretention (Linel-Line9) (cubic feet) 5681 189 932 8012 BMP PARAMETERS 11 Surface Ponding [ 6" min/ 12" max) 6.00 10.00 10.00 6.00 12 Media Thickness [18 inches minimum) 18 18 18 18 13 Aggregate storage above underdrain invert (12" typical) 30 30 30 30 14 media available pore space (in/in) 0.2 0.2 0.2 0.2 15 Media filtration rate (in/hr) 5.00 5.00 5.00 5.00 15a MODIFIED -filtration based on lower orifice (in/hr) 0.50 0.42 0.54 0.17 15b Filtration rate to be used for sizing [=Min(line 15, line 15a)] (in/hr) 0.50 0.42 0.54 0.17 Baseline Calculations 16 Allowable Routing Time for sizing (hours) 6 6 6 6 17 Depth filtered during the storm [line 15b x line 16](inches) 3 3 3 1 18 Depth of Detention Storage [line ll+(line 12xline14)+(Iine 13xline5)] 22 26 26 22 19 Total depth treated [line 17+Iine 18) 24.58 28.14 28.87 22.62 OPTION 1 -BIORETENTION 1.5 TIMES THE DCV 20 Required biofiltered volume [l.5xline10) (cubic feet) 8521 284 1398 12018 21 Required footprint [line 20/line 19]x12 (square feet) 4161 121 581 6376 OPTION-2-Store 0.75 of remaining DCV in pores and ponding 22 Required Storage (surface+pores) volume [0.75xline10] (cubic-feet) 4261 142 699 6009 23 Required footprint [line 22/line 18]x12 2367 66 328 3338 FOOTPRINT OF THE BMP 24 Area draining to the BMP (sq-ft) 163869 18315 33935 254970 25 Adjusted Runoff Factor for drainage area (Refer to Appedix B.1 and B.2) 0.76 0.44 0.63 0.77 26 Minimum BMP Footprint [Line 24xline 25x0.03] 3731 241 643 5915 27 Footprint of the BMP = Maximum (Minimum(line 21, Line 23), Line 26) 3730.7 241.3 643.1 5915.0 28 BMP area provided in this project 4963.00 1509.60 1171.90 14500.00 Check for Volume Reduction [Not applicable for No Infiltration Condition] 29 Calculate the fraction of the DCV retained by the BMP [Line 9 / Line 1] N/A N/A N/A N/A 30 Minimum required fraction of DCV retained for partial infiltration condition 0.375 0.375 0.375 0.375 31 Is the retained DCV > 0.375? If the answer is "NO" increase Line 26 until "YES" N/A N/A N/A N/A I .--, .--~ r--.. ,~, ,,----. ,---. ..-1 r-, r--, r-i r--., r-. .., r-=1 ,--1 r 1 r 1 r, r-. r, BMP DATA: Per OMA DATA table BMP ROOF CONCRETE ASPHALT BMPID TYPE (sqft) (sqft) (sqft) BMP-E Biofiltration 83735.47 20975.24 30252.67 BMP-F Biofiltration 0.00 6045.69 1718.42 BMP-G Biofiltration 984.02 18185.27 3384.51 BMP-H Biofiltration 69585.50 80176.86 64823.65 CONCRETE ASPHALT PAVERS 0.9 0.9 0.9 Weighted Runoff Factor Per BMP Appendix B.1.1 BMPID CONCRETE ASPHALT PAVERS BMP-E 0.12 0.17 0.00 BMP-F 0.30 0.08 0.00 BMP-G 0.48 0.09 0.00 BMP-H 0.28 0.23 0.00 LANDSCAPE (sqft) 28905.91 10550.54 11381.15 40383.64 COMPACTED SOIL 0.3 COMPACTED SOIL 0.00 0.00 0.00 0.00 TOTAL (SQFT) TOTAL (ACRE) 163869.29 3.762 18314.65 0.420 33934.95 0.779 254969.65 5.853 Cx= Runoff Factor for Area x Ax=Tributary area x (acres) %IMP 82% 42% 66% 84% SWQMP for: Carlsbad Raceway Lots 13-15 ADJ 06-07 TAC N 2 BACKUP FOR PDP HYDROMODIFICATION CONTROL MEASURES Attachment Contents Checklist Seauence Attachment 2a Hydromodification Management V Included Exhibit (Required) See Hydromodification Management Exhibit Checklist on the back of this Attachment cover sheet. Attachment 2b Management of Critical Coarse V Exhibit showing project Sediment Yield Areas (WMAA Exhibit drainage boundaries marked on is required, additional analyses are WMAACritical Coarse Sediment optional) Yield Area Map (Required) See Section 6.2 of the BMP Design Optional analyses for Critical Coarse Manual. Sediment Yield Area Determination 6.2.1 Verification of Geomorphic Landscape Units Onsite 6.2.2 Downstream Systems Sensitivity to Coarse Sediment 6.2.3 Optional Additional Analysis of Potential Critical Coarse Sediment Yield Areas Onsite Attachment 2c Geomorphic Assessment of Receiving Channels (Optional) V Not performed See Section 6.3.4 of the BMP Design Manual. Included Attachment 2d Flow Control Facility Design and Structural BMP Drawdown V Included Calculations (Required) See Chapter 6 and Appendix G of the BMP Design Manual C C C ,. 1111 .. 11111' ' ... Ill" I .. C - ATTACHMENT 2a r .. ,. ... ,. l ... ,,. .. ,. ' .. r 11111 - SWQMP for: Carlsbad Raceway Lots 13-15 ADJ 06-07 Use this checklist to ensure the required information has been included on the Hydromodification Management Exhibit: The Hydromodification Management Exhibit must identify: • Underlying hydrologic soil group • Approximate depth to groundwater • Existing natural hydrologic features (watercourses, seeps, springs, wetlands) • Critical coarse sediment yield areas to be protected (if present) • Existing topography • Existing and proposed site drainage network and connections to drainage offsite • Proposed grading • Proposed impervious features • Proposed design features and surface treatments used to minimize imperviousness • Point(s) of Compliance (POC) for Hydromodification Management • Existing and proposed drainage boundary and drainage area to each POC (when necessary, create separate exhibits for pre-development and post-project conditions) • Structural BMPs for hydromodification management (identify location, type of BMP, and size/detail) ANTICIPATE[) AN!J POTENTIAL POLLUTANTS CENERATF!J BY LAN!J USE TYPE PER MO!JFL BMP !JES!CN MANUAL JUNE 2015 PRIORITY PRO,J£CT CATEGORIES H£A VY ORGANIC S£OIM£NT N//1R/£NTS METALS COMPOUNDS TRASH & 0£BRIS OXYGEN 0£MANOINC SUBSTANCES OIL & BACTERIA CREASE & VIRUSES P£Sl1C/0£S COl,fl,f£RCIAL 0£V£LOPM£NT P(t) > ON£ ACRE PAR/(/NC LOTS P(t) X = AN11CIPATEO P = POTEN11AL P(!) P(2) P(t) X (!) A POTEN11AL POLLUTANT IF LANDSCAPING EXISTS ONS/lE. X P(5) X P(!) (2) A POTEN11AL POLLUTANT IF TH£ PR0,1£CT /NCL//OES //NCOY£R£0 PARK/NC AREAS. X X (3) A POTEN11AL POLLUTANT IF LANO //SE INVOL Y£S FOOD OR ANIMAL WASTE PRODUCTS. (4) INCL//0/NC P£1ROL£//l,f HYDROCARBONS. (5) INCL//0/NC SOL Y£NTS. P(3) P(5) P(!) BIO-FILTRATION SUMMARY TABLE £fT£C11Y£ A! A2 AJ B C 0 OMA-/0 ORA/NS TO T/'P£0FBMP AREA (INCH) {INCH) (INCH) (INCH) (INCH) {INCH) TOP OF CLEAN UPPER (SOF!} RISER MEO/A GRAVEL BASIN 01/T OR/RC£ OMA-9 N/,4 S£LF-M/11CA 110N OMA-!O BMP-£ BIORL TRA 110N 4963.00 6 !2.0 6.0 !8.0 JJ OMA-!! N/,4 SELF-Ml 11CA 110N OMA-!2 BMP-F BIORL TRA 110N !509.6 !O !2.0 6.0 !8.0 JJ OMA-!J BMP-C BIORL TRA 110N !!71.9 !O !2.0 6.0 !8.0 JJ OMA-!4 BMP-H BIORL TRA 110N !4500.0 6 !2.0 6.0 !8.0 JJ OMA-!5 N/,4 SELF-Ml 11CA 110N / / / / / / - I / / DMA-9 IMPERVIOUSNESS=0% 0.34 ACRES BOXRIS£R / / / / I I / / / / / I / / 7 / I 0/1£RFZOW ORIRC£S OIAM£TER £ STR//CTVR£ FEET SIZE //PP£R LO~R (INCHES) (INCH) (INCH) !.5 J6XJ6 !.O 2.5 24x24 0.50 2.5 J6XJ6 0.50 !.5 J6XJ6 !.5 / I I I / I I I I I I I I I 7 I I I I I / I I I I I I I I I I I I I I I I I I I IMPERMEABLE LINER? YES YES YES YES I I I \ I / I I I I I I I I I I I I I I I I I I I / I / I / I I I I I I I I / I I / I I I / / I I I I I I I --I I I r I I I / I I I I I I I / / / / / I / I £ DISTANCE /"ROI,/ TO£ OF SLOP£ TO LINER 'RNAL SIZING OF LINER PER SOIL ENGINEERS RECOM'MENOA 110NS STORM DRAIN 01/llET PER PLAN -- " \ \ ------- \ \ \ \ \\\ \ /,,,-_,. \ / / I / I ....,. -----' '- OYERFZOW STR//CTVRE ANO MAINTENANCE ' ' '-'-' ' ACCESS CLEAN 01/T ' -- TOP OF BASIN sz NOT TOSCAL£ I I / / APRON FOR ENERGY DISS/PATER 0/JllET /£ PER PLAN ' 1/,, . 'OUSNESS=O% iXl V ---< It I I P+· I I l ·:v.,. .:··. / . ·-;i; ·: '*:· SDP 16-19 LEGEND OMA BOUNDARY (EXTENTS) ■ ••• ■ OMA BOUNDARY PROPOSED CRAOE ·---· A. C. (7RUCK ROUlE) A. C. (PARK/NC) I u I 1//////1 PCC ,. BIOFIL TRA TION r\cc~·->:c,Yc-~>~•-·'-·cl 4» PEA CRA /IEL ~ ~U??;;QJ,:-: CRA /IEL STORA CE SUB-CRADE SOIL /IELOCITY 0/SSIPA!ER K '(Z;-Y,, \ S \\I . C,.A . 0 'ATCH BASIN PER PLAN SCH 40 PVC MAL£ ADAPTER (Mi!PxSoC) SCH 40 PVC 1HR£A0£0 £NO CAP (fPl} --OR/LL OR/RC£ HOLE AT FZOH!.INE OF £NO CAP (SIZE PER BIO-BASIN DETAIL) CLASS II PERM STORAGE LAYER OR/RCE OETAIL NOT TO SCALE 1/, ··1· I ·--."-'----.· ... .,,__ . ". -_· . . 1/, 1/, ·-. :~ . _·-.;, · .. _-',/.-. -.. ·'"'. . . I I_. l'f§£TAiE!J SL/JP£ ' -.•;,,•-"'• " ·. v, __ 1.1 ·. "--.,j,, .. 'V JI!. Y Sf.OP£ .·-:,.;-. -.· -.i; __ I Iv; . *" ' 'j;,_ . . v; "' 1/, 1/, 1/, 1/, 1/, PLAN11NC PER LANDSCAPE PLAN MAX'"'·-•···.-· ,,, 'k. ·"1 1 'f . . . "' ' -••-·-. < .. ·. ·.,,__ -:,,. ·-1 I . -"'·-··. __ SLOP: ~'!luJi:t ai'AIVOIJT f :. _;f:~ .. ~-~--'--, ~-~ -~ ~-\k" :. 1/, .,, . . .::....:... ·~ __:::__ _·----'-____:__ ·"' APRON FOR ENERGY 0/SS/PA TER 4'-6' DROP /"ROM' Cl/RB CUT TO APRON PLAN WEW NOT TO SCALE SCALE t:· 40' 1/, C//i 'B CLIT !.5' Oil 1/NC A ------0 40 80 !20 HYOROLOG/CAL Slfl GROUP TH£ H/1?0LOC/CAL SOIL CROUP FOR !HIS SITE IS T/'P£ (0) NOTE: APPROXIMATE DEPTH TO !60 CRO//NOWA 1ER IS CREA TER !HAN 20' li:<,#1 ENGINEERING CARLSBAD RACEWAY LOT 13-15 ADJ 06-07 l.1/lD ~NG• EN~NEERING • SURl{)1NG 440 STA lE PLACE, ESCOtllllO, CA 92029 PH {760)745-8118 FX (760)745-1890 I I I I I I I I I I I C Appendix I: Forms and Checklists Downstream Systems Requirements for Form 1-10 Preservation of Coarse Sediment Supply When it has been determined that potential critical coarse sediment yield areas exist within the project site, the next step is to determine whether downstream systems would be sensitive to reduction of coarse sediment yield from the project site. Use this form to document the evaluation of downstream systems requirements for preservation of coarse sediment supply. Project Name: Project Tracking Number / Permit Application Number: 1 Will the project discharge runoff to a hardened J ti! Hardened MS4 Goto2 MS4 system (pipe or lined channel) or an un-system lined channel? J Un-lined channel Goto4 2 Will the hardened MS4 system convey sediment J Convey Goto3 (e.g., a concrete-lined channel with steep slope and cleansing velocity) or sink sediment (e.g., flat slopes, constrictions, treatment BMPs, or ponds with restricted outlets within the system J ti! Sink Goto7 will trap sediment and not allow conveyance of coarse sediment from the project site to an un- lined system). ,.. I .. 3 What kind of receiving water will the hardened J Un-lined channel Goto4 MS4 system convey the sediment to? J Lake Goto7 J Reservoir J Bay J Lagoon Goto6 J Ocean 4 Is the un-lined channel impacted by deposition J Yes Goto7 of sediment? This condition must be documented by the local agency. J No GotoS 1-32 February 2016 -........ _....__,.__.....,_., ______ _ .. .. .. .. C ,.. I .. .. I llt .. .. ... 1111 .. I 11111 .. ' 1111 - Appendix I: Forms and Checklists Form 1-10 Page 2 of 2 5 End -Preserve coarse sediment supply to protect un-lined channels from accelerated erosion due to reduction of coarse sediment yield from the project site unless further investigation determines the sediment is not critical to the receiving stream. Sediment that is critical to receiving streams is the sediment that is a significant source of bed material to the receiving stream (bed sediment supply) (see Section 6.2.3 and Appendix H.2 of the manual). 6 End -Provide management measures for preservation of coarse sediment supply (protect beach sand supply) . 7 End -Downstream system does not warrant preservation of coarse sediment supply, no measures for protection of critical coarse sediment yield areas onsite are necessary. Use the space below to describe the basis for this finding for the project. The basis for this finding came as a result of an observation on the WMAA maps that showed a critical coarse sediment area in the proposed project site of lots 13-15. After following the Downstream Systems Requirements for Preservation of Coarse Sediment Supply; it was determined that no further action for protection is necessary since the storm water will travel to treatment BMPS and sediment will sink. Project site will travel to to an existing 72" RCP pipe per DWG. 409-lA; once it has reached the existing RCP it will travel westward until it reaches the detention basin designed during the mass grading of Carlsbad Raceway sized, per Drainage Reports per C.T. 98-10, C.T. 99-06. 1-33 February 2016 .. ----·--- ... T "' t ,,. T .. T t .. T - CONCEPT WATER QUALITY PLAN For CARLSBAD RACEWAY, C.T. 98-10 And PALOMAR FORUM, C.T. 99-06 June 2001 Prepared For: RACEWAY PROPERTIES 12672 Camino Radiante San Diego, CA 92130 And DA VIS PARTNERS 1420 Bristol St. North, Suite 100 Newport Beach, CA 92660 Prepared by O'DAY CONSULTANTS 5900 Pasteur Ct., Suite 100 Carlsbad, CA 92008 Tim Carroll RCE 55381 f f f ,. t i ' i ,,, r ,. -r -"" I ,.. I .. I .. I • .. I 111111 I I ~ I - TABLE OF CONTENTS Section 1.0 Introduction .................................................................................................... I 2.0 Project BMP Plan Implementation ................................................................ 1 2.1 Construction BMP Options ................................................................ 1 2.2 Post Construction BMP Options ........................................................ 2 2.3 BMP Options for Future Development .............................................. 3 2.4 Sizing Criteria .................................................................................... 4 2.5 Pollutant Loads .................................................................................. 5 2.6 Project Detention Basins .................................................................... 6 2. 7 SWPPP Monitoring ............................................................................ 6 3.0 Conclusion ..................................................................................................... 7 FIGURES 1 Water Quality and Drainage Control Plan APPENDICES 1 Construction BMP's 2 Post-Construction Treatment Control BMP' s \\ODA YPDC\admin\MSOFFICE\ WlNWORD\98 IO 12\NPDES Cover Sheet and Table of Contents.doc .. I .. ,. I -I .. , ,. ~ .. , • , - .. 1 .. , • , • , • , .. , - 1.0 Carlsbad Raceway/Palomar Forum Storm Water Pollution Prevention INTRODUCTION 981012 June 29, 2001 Page 1 of7 Federal, state and local agencies have established goals and objectives for storm water quality in the region. The proposed project, prior to the start of construction activities, will comply with all federal, state and local permits including the National Pollution Discharge Elimination System (NPDES) from the Regional Water Quality Control Board and the erosion control requirements from the City of Carlsbad grading ordinance. Compliance with the NPDES will require the applicant to file a Notice oflntent (NOi) with the State Water Quality Control Board (SWQCB), apply Best Management Practices (BMP's) and develop a storm water pollution prevention plan (SWPPP) . This project will provide guidelines in developing and implementing best management practices (BMP's) for storm water quality. These include both source control BMP's and treatment control BMP's. Source control BMP's prevent contact between the storm water and the pollution source. Treatment control BMP's are those that treat the storm water to remove the pollutant. 2.0 PROJECT BMP PLAN IMPELMENTATION The proposed project can be broken down into four distinct phases: construction, post construction, future development and individual lots. Construction would be the period when the project is being mass graded and all improvements shown on the tentative map are being installed. Post construction would occur when all mass grading has been completed and improvements have been installed. These include mass graded lots, major storm drain system, temporary desilting basins on each lot, all slopes have been landscaped and irrigated and three permanent storm water quality basins have been installed. Future development occurs when the mass graded lots are precisely graded, developed and improved for a specific use. These would include, but not limited to, buildings, parking lots, additional landscaping and treatment control NPDES facility on each lot. The last phase would be for the individual lots to maintain, update and revise their SWPPP. 2.1 Phase 1. Construction The greatest potential for short-term water quality impacts to the drainage basin would be expected during and immediately following the grading and construction phases of the project when cleared and graded areas are exposed to rain and storm water runoff. Improperly controlled runoff could result in erosion and sediment transportation into the existing drainage basin. During construction, the objectives for implementing BMP's as .. .. .. , .. , .. , • , .. , .. , - 981012 June 29, 2001 Page 2 of7 described in the "California Storm Water Best Management Practice Handbook", are for the following: practice good housekeeping, contain waste, minimize disturbed areas, stabilize disturbed areas, protect slopes and channels, control site perimeter and control internal erosion. To mitigate storm water pollution, mostly sediment, during construction, both BMP's for contractor activities and BMP's for erosion and sedimentation shall be used. BMP's for contractor activities include the following: Managing dewatering and paving operations and structure construction and painting. Management of material delivery, use and storage. Spill prevention and control. Waste management for solid, hazardous and sanitary waste, contaminated soil, concrete. Vehicle and equipment cleaning, fueling and maintenance. Contractor, employee and subcontractor training. BMP's for erosion and sedimentation control include the following: Vegetative stabilization such as hydroseeding or mulching. Physical stabilization such as dust control, geotextiles and mats, construction road stabilization and stabilized construction entrance . Diversion of run-off using earth dikes, temporary swales and drains. Velocity reduction using outlet control, check dams and slope roughening. Sediment trapping using silt fence, gravel bag barrier, inlet protection, sediment traps and basins. A storm water pollution prevention plan (SWPPP) will be prepared and approved prior to issuance of a grading permit. The approved SWPPP shall be implemented during the construction phase. The SWPPP will consist of the selected BMP's, guidelines and activities to carry out actions which will prevent the pollution of storm water runoff. The SWPPP will also include the monitoring and maintenance of the construction BMP's during the construction phase . 2.2 Phase 2. Post Construction Of the three phases the post construction phase should generate the least amount of urban pollutants, sediment and erosion. The pollutants most likely to be generated during this phase will be hydrocarbons, heavy metals, fertilizers, waste, trash and oil and grease. The post construction phase begins when grading has been completed, slopes have been landscaped and irrigated, the storm drain system, temporary desilting basins and the permanent water quality basins have been installed. During this phase a combination of the following source and treatment control BMP's shall be implemented . ________ , ... __ ..__,.__,, ..• ,...,.,.,..,.,.~.•~ . .. I' - Source Control BMP's Street/Storm Drain Maintenance Non storm water discharge to drains Waste handling and disposal Landscaping and grounds maintenance Over watering activities Employee training Treatment Control BMP's Storm drain outlet controls 981012 June 29, 2001 Page 3 of7 Temporary desilting basins on each lot (to be replaced with a permanent NPDES facility when the lot is developed) Permanent water quality basins This phase will continue until all individual lots within the project have been developed. As each lot is developed, the temporary desilting basins will be replaced with permanent BMP measures that will be appropriate for the specific use of each lot. The permanent water quality basins shall be sized in accordance with the volume/flow based criteria per the California Regional Water Quality Control Board, San Diego Region Order No. 2001-01. 2.3 Phase 3. Future Development When each individual lot is developed, it shall provide both source control and treatment control BMP's as described in the "California Storm Water Management Practice Handbook" for industrial and commercial projects. Each development shall use source control BMP's and one or more of the following treatment control BMP's: Source Control BMP's Non-storm water discharges Vehicle and equipment fueling, cleaning and maintenance Material management and storage Outdoor storage of materials and by-products Waste handling and disposal Building and grounds maintenance Building repair, remodeling and construction Over-water activities Employee training C ~ C Q C Q C Q C C C Q C ~ - - Treatment Control BMP's Infiltration Wet ponds Constructed wetlands Biofilters Extended detention basins Media filtration Oil/water separators and water quality inlets Multiple systems 981012 June 29, 2001 Page4 of7 Since a PIP permit is required for each development, the specific BMP' s for each development will be determined prior to discretionary approval. As required prior to issuance of a permit, a storm water pollution prevention plan will also be prepared and implemented for each lot. The SWPPP consist of guidelines and activities to select and carry out actions which prevent the pollution of storm water discharge. In addition to the selected BMP's for each lot, the permanent water quality basins, located downstream, will serve as additional treatment and a failsafe BMP in removing pollutants from storm water runoff prior to discharge into the existing natural drainage course. At a minimum, all treatment control BMP's should be inspected and maintained annually as described in the Best Management Handbooks and the approved SWPPP. 2.4 Sizing Criteria The sizing of the treatment control BMP's shall comply with the volume/flow based criteria per the California Regional Water Quality Control Board, San Diego Region Order No. 2001-01. As required by the RWQCB and the City of Carlsbad, the project, depending on the type ofBMP, will use one or both of the following numeric sizing criteria: Volume based BMP is volume of runoff produced from a 0.6" storm event. Flow based BMP is volume of runoff produced from rainfall of 0.2 in./hr. For a typical 1 acre development, the minimum size for a structural BMP would be: Area: Storm event: Direct runoff: 1 acre 0.6" 0.12" Min. volume: (43,560 sf)(0.12")/(12"/ft) = 436 cf The minimum volume is for storage and does not include freeboard, maintenance area, inlet/outlet control, access etc. . ·•· ---·------ I I' 1-r~ 1-f ._ I "-f 1-• I., W~I. I_• ,_. -~ --~ 1::.... --~ •--r..:.i. I _Ill W.::.JII ~---r::11 ~ ~ !.:i ~~I ~ i..,Cl ~ "'-'2. NO SCALE © 1 999 O'Ooy Consultants, Inc. PERMANENT BASIN CARLSBAD RACEWAY AND PALOMAR FORUM N.P.D.E.S. EXHIBIT VEGETATED CHANNEL H @ 1 :.. I. 0 TEMPORARY DES/LT/NG BASIN □ POST-CONSTRUCTION 'PERMANENT' N.P.O.E.S. FACILITY +--EXISTING ORA/NAG£ COURSE MOO ""'-C-1 CMI E"""'"""° s... ,oo Plclnnln9 CarllNd. Ccllfomlo l20III Proc ... 790-131-7700 $uNtylftO ,_ 7'0-~1-NIO -~ ... - Go'\,IIIS\97I03S\ZIIPIIEs.Dli/G Dl-o6-t6 5'1!7'54 II" PST 1111m: t736S1II; tnacllO; t73SAIW'; N22MAP; tl22CIIO .. ~ .. ,. .. ,. I· .. C .. 1-. C ,. I .. .. ., .. .. .. .. ~ - HYDROLOGY AND HYDRAULIC STUDY FOR CARLSBAD RACEWAY C.T. 98-10 J.N. 981012/5 DECEMBER 20, 2002 REVISED: APRIL 17, 2003 REVISED: JUNE 20, 2003 BY O'DA Y CONSULT ANTS 2710 LOKER AVENUE WEST, SUITE 100 CARLSBAD, CA 92008 (760) 931-7700 1--. 'i. tc ,,.. " ! .. Ir .... t t t t• t t I. ... • Iii ~ Ill - RANCHO CARLSBAD CHANNEL & BASIN PROJECT (Job Number 13182) June 30, 1998 Prepared for: C_ity of-Carlsbad 2075 Las Palmas Drive Carlsbad, California 92009• l S76 Dennis . . . g, M.S. R.C.E. #3283 8 Exp. 6/02 Prepared By: . Rick Engineerin1 Company Water Resources Division 5620 Friars Road San Diego, California 92110-2596 (619) 291-0707 [ _ Preliminary designs were pcrfonncd for each proposed detention facility to determine the • outlet works required to achieve maximum detention, while maintaining the height and storage · C volume below DSOD jurisdictional limits. The preliminary design of each detention facility and the .. I .. ,. ... ,. .. c• C C - results for each detention facility design are described below. The most upstream proposed detention facility in Agua Hedionda Creek is at Melrose Drive. This facility will be a flow-through detention basin. Melrose Drive runs north-south and cmrently ends just s~uth of Aspen Way near the Carlsbad Corporate boundary. Future 'plans call for the extension of Melrose Drive to Palomar Airport Road. An existing reinforced concrete box (RCB) culvert conveys flow under Melrose Drive and is 10 feet wide by 7 feet high. The existing Melrose Drive embankment provides minimal detention because of the RCB's luge capacity. Hydro logic calculations show that a 36-inch diameter opening at this location will detain the peak flow discharge from approximately 450 cubic feet per second (cfs) to 180 cfs. There are two alternatives for creating the 36-inch opening. One is to replace the existing culvert with a 36-inch RCP and the other · is to construct a concrete banier at the inlet with a 36-inch diameter opening. The resultant storage volume and ponded water surface elevation (WSEL) with the new outlet works will be approximately 41 acre-feet and 329 feet, respectively. This will create an inundation area of approximately seven acres. The estimated outlet velocities for the tint and second alternative will be 25 and 13 feet per second (fps), respectively. The velocity under the tint alternative is greater than the maximum desired velocity of 20 fps. The velocity calculation assmned that the proposed 36-inch RCP was constructed at the slope of the existing culvert, which is one percent. If this alternative is selected, the final culvert design should analp.e methods for reducing the outlet velocity, such as placing the culvert at a flatter slope or using multiple small diameter culverts. A ~dBy: llic:t Enpaccm1 Compuy • Water llesourca Division 8 DCB;MDL:emnllleport/J.13111.001 07/01/91 I r--w ~ ..-~, r--~"1 • r--, r-, r-w r-, r~ r, r, • ,. .--, r ' r~-,. rr-. ,--, ,-, r, r1 Table2 Snmw•ry of Propo,ed Detelltioa Jadlitia Ruebo Carllbad Claauel ud Duin Project 100-yeu, 24-laolU' Storm Event •· ;~1:~~'\1~~!~~~-~-~i-~~-1~~~ Melrose 450 180 36" RCP 329 41 7 13 (Alt. 2) (south of 25 (Alt. 1) AapenWay) Faraday I 1,050 I 780 I 6'xTRCB I 240 I 49 I 7 19 BJB I l,S60 I 1,200 I 1-lO'xT RCB I 15 I 49 I 1S 19 ct48"RCP BJ I 670 I 350 I 6'x3'RCB I 76 I 48 I 8 19 ....... By: Rick l!apmiua Qmpmy· W•RmDIYiliaa DCB:MD~~l3112.001 12 07/01191 ~- ~ I • - San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Rational method hydrology program based on Version 3.2 San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 06/19/03 ------------------------------------------------------------------------CARLSBAD RACEWAY BASIN.1 06-19-03 G:\ACCTS\971035\RACEOl.OUT ********* Hydrology Study Control Information********** O'Day Consultants, San Oeigo, California -S/N 10125 Rational hydrology study storm event year is Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 57.7% San Diego hydrology manual 'C' values used Runoff coefficients by rational method 100.0 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 101.000 to Point/Station 102.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type group A group B group C group D Initial subarea flow distance Highest elevation= 511.40(Ft.) Lowest elevation -510.20(Ft.) 0.000 0.000 0.000 1.000 ] 60.00(Ft.) Elevation difference= 1.20(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.66 min. TC• [1.8*(1.l-C)*distanceA.5)/(% slopeA(l/3)] TC= [1.8*(1.1-0.9500)*( 60.00A.5)/( 2.00A(l/3))= Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for .a 100.0 year Effective runoff coefficient used for area (Q=KCIA) Subarea runoff -0.075(CFSl Total initial stream area= O.OlO(Ac.) 1.66 storm is C = 0.950 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 103.000 **** STREET FLOW TRAVEL TIME+ SUBAREA FLOW ADDITION**** Top of street segment elevation= 510.200(Ft.) End of street segment elevation= 445.000(Ft.) Length of street segment = 2440.000(Ft.) C Ce C C I Jill - Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) 32.000(Ft.) Distance from crown to crossfall grade break 30.500(Ft.) Slope from gutter to grade break (v/hz) a 0.020 Slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width= 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's Nin gutter= 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown= 0.0150 Estimated mean flow rate at midpoint of street= 0.18l(CFS) Depth of flow= 0.115(Ft.), Average velocity= 2.281(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 1.SOO(Ft.) Flow velocity= 2.28(Ft/s) Travel time= 17.83 min. Adding area flow to street Decimal fraction soil group A Decimal fraction soil group B = Decimal fraction soil group C = Decimal fraction soil group D = [INDUSTRIAL area type TC= 0.000 0.000 0.000 1.000 22.83 min. Rainfall intensity= 2.968(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C Subarea runoff= 7.923(CFS) for 2.810(Ac.) Total runoff= 7.998(CFS) Total area= 2.82(Ac.) Street flow at end of street• 7.998(CFS) Half street flow at end of street 7.998(CFS) Depth of flow= 0.363(Ft.), Average velocity= 4.276(Ft/s) Flow width (from curb towards crown)= 13.413(Ft.) 0.950 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.000 to Point/Station 106.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 433.49(Ft.) Downstream point/station elevation= 432.22(Ft.) Pipe length = 43. 23 (Ft.) Manning's N = 0. 013 No. of pipes= 1 Required pipe flow 7.998(CFS) Given pipe size= 18.00(In.) Calculated individual pipe flow • 7.998(CFS) Normal flow depth in pipe= 8.40(In.) Flow top width inside pipe= 17.96(In.) Critical Depth= 13.15(In.) Pipe flow velocity= 9.89(Ft/s) Travel time through pipe= 0.07 min. Time of concentration (TC) = 22.90 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.000 to Point/Station 106.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 1 Stream flow area= 2.820(Ac.) Runoff from this stream= 7.998(CFS) Time of concentration= 22.90 min. Ce .. .. ,. I 11111 - Rainfall intensity= 2.962(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 105.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type group group group group A= B 0.000 0.000 = 0.000 C D Initial subarea flow distance Highest elevation= 469.00(Ft.) Lowest elevation= 448.00(Ft.) 1.000 ] 630.00(Ft.) Elevation difference• 21.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 4.54 min. TC= [1.8*(1.l-C)*distanceA.5)/(% slopeA(l/3)) TC= [l.8*(1.1-0.9500)*(630.00A.5)/( 3.33A(l/3)]= Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year Effective runoff coefficient used for area (Q-KCIA) Subarea runoff= 51.587(CFS) Total initial stream area= 6.870(Ac.) 4.54 storm is C = 0.950 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 105. 000 to Point/Station · 106. 000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 440.29(Ft.) Downstream point/station elevation= 431.55(Ft.) Pipe length • 121.32(Ft.) Manning's N = 0.013 No. of pipes a 1 Required pipe flow 51.587(CFS) Given pipe size= 30.00(In.) Calculated individual pipe flow 51.587(CFS) Normal flow depth in pipe= 14.44(In.) Flow top width inside pipe= 29.98(In.) Critical Depth= 27.82(In.) Pipe flow velocity= 22.06(Ft/s) Travel time through pipe= 0.09 min. Time of concentration (TC) = 5.09 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 105.000 to Point/Station 106,000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 2 Stream flow area= 6.870(Ac.) Runoff from this stream= 51.587(CFS) Time of concentration= 5.09 min. Rainfall intensity= 7.812(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 107.000 to Point/Station 108.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil group A= 0.000 _ .. __________ _ .. I .. .. I .. .. 1111 .. .. .. .. - Decimal fraction soil group B = Decimal fraction soil group C = Decimal fraction soil group D = [INDUSTRIAL area type Initial subarea fl.ow distance = Highest elevation= 470.00(Ft.) Lowest elevation= 465.00(Ft.) 0.000 0.000 1.000 ) 90. 00 (Ft.) Elevation difference= 5.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) -1.45 min. TC -[1.8*(1.l-C)*distanceA,5)/(% slopeA(l/3)) TC= [1.8*(1.1-0.9500)*( 90.00A.5)/( 5.56A(l/3))= Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year Effective runoff coefficient used for area (Q=KCIA) Subarea runoff= 0.075(CFS) Total initial stream area= O.OlO(Ac.) 1. 45 storm is C = 0.950 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 108.000 to Point/Station 109.000 **** STREET FLOW TRAVEL TIME+ SUBAREA FLOW ADDITION**** Top of street segment elevation= 465.000(Ft.) End of street segment elevation= 445.000(Ft.) Length of street segment = 870.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 32.000(Ft.) Distance from crown to crossfall grade break = 30.SOO(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) ~ 0.020 Street flow is on (1) side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property· line (v/hz) 0.020 Gutter width~ 1.500(Ft.) Gutter hike from flowline = 1.SOO(In.) Manning's Nin gutter= 0.0150 Manning's N from gutter to grade break= 0.0150 Manning's N from grade break to crown= 0.0150 Estimated mean flow rate at midpoint of street -0.107(CFS) Depth of flow= 0.097(Ft.), Average velocity= 1.889(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 1.500(Ft.) Flow velocity= 1.B9(Ft/s) Travel time= 7.67 min. Adding area flow to street Decimal fraction soil group A= Decimal fraction soil group B • Decimal fraction soil group C Decimal fraction soil group D [INDUSTRIAL area type TC= 0.000 0.000 0.000 1.000 12.67 min. Rainfall intensity= 4.338(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = Subarea runoff 3.462(CFS) for 0.840(Ac.) Total runoff= 3.537(CFS) Total area= 0.85 (Ac.) Street flow at end of street= 3.537(CFS) Half street flow at end of street= 3.537(CFS) Depth of flow= 0.295(Ft.), Average velocity= 3.317(Ft/s) Flow width (from curb towards crown)= 9.976(Ft.) 0.950 C r .. - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station. 109.000 to Point/Station 106.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 433.22(Ft.) Downstream point/station elevation = 432 .. 22 (Ft.) Pipe length • 5.26(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = · 3.537(CFS) Gi•en pipe size= 18.00(In.) Calculated individual pipe flow = 3.537(CFS) Normal flow depth in pipe= 3.38(In.) Flow top width inside pipe= 14.07(In.) Critical Depth -8.61(In.) Pipe flow velocity= 15.36(Ft/s) Travel time through pipe= 0.01 min. ·Time of concentration (TC) = 12.68 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Stati'on 109. 000 to Point/Station 106. 000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 3 Stream flow area= 0.850(Ac.) Runoff from this stream= 3.537(CFS) Time of concentration= 12.68 min. Rainfall intensity= 4.337(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 7.998 22. 90 · 2.962 2 51. 587 5.09 7.812 3 3.537 12.68 4.337 Qmax(l) = 1. 000 * 1.000 * 7.998) + 0.379 • 1.000 * 51.587) + 0.683 * 1.000 * 3 .. 537) + = 29.971 Qmax(2) = 1. 000 * 0.222 . ' 7. 998) + 1. 000 * 1.000 * 51 .. 587) + 1.000 * 0.402 * 3.537) + 54.785 Qrnax(3) 1. 000 * 0.554 * 7.998) + 0.555 * 1.000 * 51. 587) + 1.000 * 1. 000 * 3.537) + 36.603 Tota'! of 3 streams to confluence: Flow rates before confluence point: 7.998 51.587 3.537 Maximum flow rates.at confluence using above data: 29.971 54.785 · 36.603 Area of streams before confluence: 2.820 6.870 0.850 Results of confluence: Total flow rate= 54.785(CFS) Time of concentration= 5.092 min. Effective stream area after confluence 10.540(Ac.) C - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.000 to Point/Station 135.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 433.00(Ft.) Downstream point/station elevation= 423.33(Ft.) Pipe length = 255.ll(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 54.785(CFS) Given pipe size= 30.00(In.) Calculated individual pipe flow 54.785(CFS) Normal flow depth in pipe= 18.26(In.) Flow top width inside pipes 29.28(In.) Critical Depths 28.23(In.) Pipe flow velocity= 17.53(Ft/s) Travel time through pipe= 0.24 min. Time of concentration (TC) = 5.33 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 135.000 to Point/Station 110.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream.point/station elevation= 423.00(Ft.) Downstream point/station elevation= 407.75(Ft.) Pipe length 266.37(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 54.785(CFS) Given pipe size= 30.00(In.) Calculated individual pipe flow 54.785(CFS) Normal flow depth in pipe= · 16.02(In.) Flow top width inside pipe= 29.93(In.) Critical Depth= 28.23(In.) Pipe flow velocity·s 20.54(Ft/s) Travel time through pipe= 0.22 min. Time of concentration (TC) = 5.55 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 135.000 to Point/Station 110.000 **** CONFLUENCE OF MAIN STREAMS**** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area= 10.540(Ac.) Runoff from this stream= 54.785(CFS) Time of concentration= 5.55 min. Rainfall intensity= 7.389(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 140.000 to Point/Station 141.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil group A= 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group C • 0.000 Decimal fraction soil group D = 1.000 [RURAL (greater than 1/2 acre) area type Time of concentration computed by the natural watersheds nornograph (App X-A) r - Ce - TC= [11.9*length(Mi)A3)/(elevation change)]A.385 *60(min/hr) + 10 min. Initial subarea flow distance = 140.00(Ft.) Highest elevation= 451.00(Ft.) Lowest elevation= 445.00(Ft.) Elevation difference= 6.00(Ft.) TC=[(ll.9*0.0265A3)/( 6.00)]A.385• 1.18 + 10 min.• 11.18 min. Rainfall intensity (I) = 4.704 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.450 Subarea runoff= 0.402(CFS) Total initial stream area= 0.190(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 141.000 to Point/Station 142:000 **** IMPROVED CHANNEL TRAVEL TIME**** Upstream point elevation= 445.00(Ft.) Downstream point elevation= 429.00(Ft.) Channel length thru subarea = 160.00(Ft.) Channel base width = O.OOO(Ft.) Slope or 'Z' of left channel bank= 1.000 Slope or 'Z' of right channel bank= 1.000 Estimated mean flow rate at midpoint of channel= 0.836(CFS) Manning's 'N' • 0.015 Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 0.836(CFS) Depth of flow= 0.333(Ft.), Average velocity= 7.529(Ft/s) Channel flow top width= 0.666(Ft.) Flow Velocity= 7.53(Ft/s) Travel time = 0.35 min. Time of concentration= 11.53 min. Critical depth= 0.535(Ft.) Adding area flow to channel Decimal fraction soil group A 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [RURAL (greater than 1/2 acre) area type Rainfall intensity= 4.610(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational rnethod,Q•KCIA, C = 0.350 Subarea runoff= 0.662(CFS) for 0.410(Ac.) Total runoff= 1.064(CFS) Total area= 0.60(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 142.000 to Point/Station 110.000 **** SUBAREA FLOW ADDITION**** Decimal fraction soil group A= 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group.C = 0.000 Decimal fraction soil group D 1.000 [RURAL (greater than 1/2 acre) area type Time of concentration= 11.53 min. Rainfall intensity 4.610(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q•KCIA, C 0.450 Subarea runoff= 1.597(CFS) for 0.770(Ac.) Total runoff= 2.661(CFS) Total area= 1.37(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ II" .. II" ' 11111 .. ' 11111 I"' 11111 .. 11111 "" .. - -.. -.. ... .. .. .. ,.. .. - ATTACHMENT 2b ~ .. ' ... ·-~ ,'-Ii ' -· ►--· .•. ,_.-.. ~. . ~·,··-~·, , ... ,,_ • i. -• ~ .•. -~···~ '-' ~••...-.. ,✓ •• ~ >•.~ .-~·~ "·-.••• ··-•' " ---..•• ,\ . , •• -~ .. -~,.-. ,· -· .. . . ·····~ .. ".• ,..,. . ._ .. '"· ·""' . ""•·~ ,, ................ ··.er: .............. . ~. -........... 1-,.,.... ·---. . ··-t·-............. ., .. . .. -------__ ... _ .. ..................... . .. .. ............ . . ······.. .. .. ... ··:· :. ··::::.J ....... :· ·~.:·.:·.-i.:.:r. .. -.·. ········· .. ·.:~::, . ........... . .. ····" ...... .. -----·-· ······· ................ . ..... . ................. . iii~~ ·'.i ~· ·~····· . . . . . --...... . ......... ~-=-=::::::: .. :: .. :.•:··, .. ::~ .... ···!-····"· ····-•r""•·· .t: ~ .... .. .......... ..... . ..... . .................. .. ...... . ...... . ........... .. .;······t.,;::::.: .. ··::··--· ..... ... . . ... .. .. •..... .. .................... "······ . ......... + ... ·":·:·:··:. . •-:1.:· ·--.. . ... ( ........... . . ........ !--··· .. ................. ~ .. . ,, ... ........ ' . .... ; .... ...... r ...... . ······1:::::· ... ~ .. :: .. ·· . .. ,,,... . ... J.":i-;:··· ····1--.. , .... ....... ....... -...,. . ·····~·- .. : ......... . ........ .................. . ' ................. . ·--·-· _,.. ..... ,. ...... . ·:.:~.::·· . ~--------:::·:--: .. : .... :t.:·::.... :·-A----.... . --t··••.,,.. .... .... . . . :::.+,-···-+-t-·+-··---•,,.,+. ··__,--··-........ ... ·············'L ···""'· .... :; ffl!!/1!!,i ... ·1--·· •• ... ,. .................... . ... ·::.:·.:·:::: :::·:·::.::.-:-:, :.-.:·::.:.: :t :·.::::::::·:I·::::::-- .. _ ...... I .:.',• . ....... . . , ................... . ··"t·····"'··· ' ········. ······· . ·:··:· " ······" ......... .. . ···'t·-- .. , .. f ........ . .. ·••······ :.-.r::. ::::·:.:: ... ... :,:.:. ........ .: .. · ......•. :::~. ............. , . ........ ........ ·-+-······ .. .. ··+···· ·;·· .... § . ... . ... . ............... ~········"' . · .. ;:; ..... ,1: ·:t ~ Hm .,,om• """""" ,•~•• ••••• ' ~·· ~ ·" ·--··· ---·· """" .. ... "'~'" .. , .::.:·::~.-,.--- ..... ~ _,.,]J ... """" .----·-···· ....... T'-"'"" ·~··"" ... ,o ------ . . ... . ,. .. ... .., .-i: ....... ::: .. ·::,:: "'=° ..... ; ,:ff ·;::, .. "'·:Iii ..... ·,-fll.. .. .. ··-.. . .,. ~--· . -~-··· "' . . """"' '"""'" .... """ ..... ---·· ,----· _, . _ _,_ -........... .. ............. t -*=:::.:: ..... ••..... 1.:.: . .-: .. ., . ········i•--•·--•·· .............. . . ...... ..... ~.:·:·. ,.,;;··.:· :::::-r.:.::···:· . ·t··--····.. .. .......... .. .. .. ~•· CZ:..... ... . ............. . :T.~:.. . .. ~.~.7t.:.~.7.7.7 : ..... 7:: ··--· +:·~·:·: ...... . ...................... . ..•• '"F .: ............ . ' .... , .... ====J.=::: ~· . . --.-::: ·:·x;,:· -.·.::· .... :.:=: .:::·:. ' -:::·".-.·~ ·::• .. ::•=·:· ;_..~=~ ...... . . .... : .. : .. ·~···············* B :; ... :.~~:~~··• ········· ~: .. · ....... ~ ... . ... ,.9 ·.·· .. ..... ,;:;· .:.7 ::·=·:t: ·~.1:".-.·. ' , ................ .. ........ ~-·+··~ ---·-' ~".'S • == ~ ·-....... ·····'.I· ... ,..., ...... ::· =•·.;, .......... . .. .. ·:· ··-----+--·. ~' ;~ . . -ti ... ~ ---. ·-"''"' .. ,., _ ___ ,. ,.J, ' -~-:r-~-;::;:;-, ·-•. ::'+'.:+ .. -·-". :,g::r -........ ·-· . . . t ~.~B:~E~E~ 10 11 - -:.r ................. ~ .. ' ···-··r·--··--'":t : .. : ·········:::. ·· .. ~.-'· . :·.:ue· ·:--. '·:·.:·" --· : .. f ....... . .................... , ., .. 1 ....... . ................ ...... , ... : ;·;···; .......... : ...... . .. --._.._ :: •·•: ::::·.: .:::::1,· -~_..,. .... -·n.::: ~ ......... : .. . •. .......... ..... ···: . . ·I·····. ~~ . ·-· ............. .. . ..... ·--· .. . ··:·:.::: .. :::~ .. ~·::::: ... -·,···-·---·~---··---.... ·.:···· . . ::· ---·· .. ··t. ..... : ::0:Z-: ·~ ::.7 -1-····· ···-.·: --····I· .... , . . .... : •:,..-:·: '"': ~ .. :'ii; ... ':: .... , .. f:··· :::, .... ,: .... :, : , -... ·:· .. t···""· ..... . -· ..... ·-····· . ........ . .. -·+···· . ...... ,,+. .. ,---·I-· ....... . ~~{;~~·,a ..................... -... ' ... ... .. ·--.. , ... --. ... . . ..... ·--:.7::.'. ....... . ······~ .. ...... ±==±= ··········· ······ ............. ······················ ········· ..... :....... ~ ••• .... ~ ......... :: c::c= .~ :~:::: ..... :.: .. ,:::c . ~ ... ~,::. ::: .~ ...... ~-•····• t ....... ~·.... ..... ...••••••.••• ~· ···········:.:···· ... :' ·········;;;•~,~"'E, .. _ ....... : .. ~·~~ ·:·:! .. · .. :: ' - = ~ ~.~ .. . ~.=.=.•··· .... • La.::::: . - -· .. zin:···· . ri~'··· -·--·---· ··"· -.w "'"'"" ,, 12 f.J ,,,. 15 16 I ' j Cf 10' 1 SCA!£: 1 • = 40' DESIGNED BY: H,&.A.R, DATE: SEP]EMBER 2004 DRAWN BY: T.G.,G.ll SCALE: 1 • • 40' "AS -BUILT ~C?d PROJECT. MGR.· T.O.C. JOB NO.: 98--1ll12--05 1--·---------------1 P.E. ,'ffg/ EXP. /?./;JI !Oft I " BENCHMARK: DESCR IPTION: LOC/\TIO~: . STANOARO STREFr S(JR'IE:Y l,(ONUl.l£NT APPROX. TWO FEET SOUTH OF PALOMAR AIRPORT ROAD ON CENTERUNE OF I I ................... -. . ...... -............... .. . ....... .. t=:c±:c=t==t= ..... . .. .. ., .. ___ .,. -....... ··········~···· .~ .. ............. ,~ .. : ; ··~········:.·.·.· ..... : ..... , .. , ................... ·· . ...... . .. .. ~· ~•::• ... ...... ...... . ..... . ················· ~~ . ................. , ~ ··········' .. ---·- S££ SHEET No. 28 FOR ltSTA SlllER Pl.ANS ·- CAUTION II CCW'/l?ACTOH TO t!RlfY THE EXACT LOCATION (T_ EXISTING (J111Jll£S IN TH£ Fl£l.J) PRIOR ro CONSmtJC7JCWJ . ---... J = ::j ---·· -~-.. ·• ......... -··- STORM DRAIN DATA DELTA/BEARING RADIUS LENGTH N 75'!1"27" £ N 75'!7'27" £ N 75'!7'27" £ 68.00' Jf6.90' /2J.29' REMARKS 72 • li'CP ~ 2()(}()-/) • • n 72" HCP ~ 1550-l)U •• I/SE 5000 P;SI CONCR£T£ WITH 1 t/2" 8£TWE[N INS/0£ FACE ANO HEJNFOHC/118 NOTE!/ £1.EClRCWIC DATA fll£S ARE FOR H£FERENC£ ail Y ANO AR£ NOT 1() 8£ USED Fa? HORIZONTAL C¥? '-f:RT/CAI.. SlJR'Ct CONTRa · c.r. 96-10 APPROVED ,9')"" 271 0 Loker Avenue Weat Suit■ 100 Carls.bod, Cclifornia S2008 760-931-nOO fax: 760-931 -8660 WWW. Od°O)'COO!l'L.11't0nts.OC1m Ci'lil Engineerfn,g Pklnnint Processir11 S.r,ef OQ ENGINttR OF WORK: REY,WED BJ; /. ,1 DATE: ,J2:;!'~ /-f,,4, II ( .. ~-· EL CAl,ffNO REAL ~..:., LLOYD B. liU8B5 /.:>/'64,, ic:"'.l,i'll=o:l!,1,.'.....-l-J.S,.-rz..,,_..µa1 .. ~•'Re'i=1~6!::ro~f .;::!...','ov.!:~=Sfi=~~~=:'.!:1"'!.....~~------+---+--+l.l.J..11.~,=Mi1't-'{hl.=L'l--1 ~ ~PE-23889 EXPIRES 12-J1-o5 o·A TE ' RCE: ~ INSPECTOR . . .. ) . r- RECORD FROM: NORTH COUNTY 'vrnT!CAL CONTROL DATA R-1800 J08+76 ELEVATION: 297.25 11.S.L DATUM: NGVD 1929 DA 1E INITIAL . ENGINEER OF WORK ........... ~ REVISION DESCRIPTION DWN BY: -~-PROJECT NO. DRA~NG NO. ~~~g i~; G~I C. T. 98-f O 409-f DA 1E INITIAL OATE INlllAL OlHER APPROVAL CITY APPROVAL ..ac-.~~ -~·-·-. . . ·~~-.· --.. --~~-~·r . --c· · .. ·~----·•--.-...... -----~·---,~~~-~-~~ . . . ... , .=--......,.._,_ _____________ _ .•. :.i., •. .-.~.:..-~• -...... ----~"~:~· -,-----:-.,,.--'-:--~--'-c-C..---•~:· ., !,._. -~.....c=~--,c.-.---·-. ~-. -~·.· -~-----------------'--'. _._. •... ~ ,· . ... ... ... ... ... ,,. ' ~ ,,. ... ,,. .. ... ... ... ... .. ... .. .. ' .. Ill' .. Ill' .. - ATTACHMENT 2c . ·--· ·.:: .... -....... ··--··· ---· --...... - ..... ···:·:.::::.:··: .. · ... :.:. ~ .. .. . . --. : "':E'E'=E:= ... .. ........... ~ °""" ,.,.,_ ........ .. ~•~;: :~~•:• •~:;'.: "rr • v = --" .......... ·-- ----._ ___ , -·---y, ------"""""" --··· "". • .. --r -. "" . -~ : .... ·-~~---+-----·· ~--~ ,.•,•1 -m· ~__,_...-..: . .,.. ~ ~· -~·-. ........ •·••-•«·I ..... . '·-·-·- .............. ......... ·······-·'--········ -··---··· .. 51 ............. ........ , ~t ............. . -·········· .iw·:: .::::::::::: .. u .-.-.: ..... -· -, . . .,\.;_" ct==:;:, ... ,., .. ,,-=,, ... -":'"":·-1 ... _-r. ~--_,-~::::: :~:::-.:-:~ -·--~ .. ----~·-· . .... ·:c ~ -1 j:: -~ .. -.......... :: ..... :~ ~ ----. ----~-. -· . . .... ~~ ~1 ..... ......... . ....... ·---.. ~ = .. ~-- ,., .... , .. """"" - --~---· \ 2710 Lok.er AYenue West Sa.Ja11 100 Carlsbad, Cclifomia 920DI 760-931-7700 Fa,i:: 760-9.31-6680 www.odaycomultonh.com Civi1 Engineering ?lanninQ ProceuirNJ Survefi"11 t .. • ••• ••.•--,-" ••·•~:--a •-----_:..._.··.~~--,~-'----~ ···-----~ .... ·~- ·. , .... -, __ -· .,_ ........ ,., .. -.--.,.-.. -., •. ,=.·•-,-•.~-----•···~---•:...-<-' ···--·I . .............. ·-. .... -···· ;·,:·.i.; .... ~.-:::··: -:··~:. ---·-_x : u.. : ---·~)Ir -~':.~ ·~ fl -:~::. ~::..: --.-.... - ........... . . ... L __ , ........... . ±=±:=, - : :,,,, .::::' Z-' .. :> :.i ·'-: --------_, __ ,.t.l_ ~- •,oH··- n •••·• -•••• ""'" '"·-----. ---·-E =,:=~ .. ..... -;;J" ........... .. ·········1····· ..... '·"" _:-... . .... ·.· ....... -···I--· ··· 1--~·-r.: __ 11'-·· .. , .... ~ ·--r-.. '""" -· .. -""" ·----. ~ ............. - --~ @ ~--· .. .,_ ·ca, . --~ ·-:.,;,: ::.:;: = . •--.... l •. ~ ...... ""'" .L.. ~ ~ ---...... , .... , ,...... ----·-· ,·--·-· .. :::..-~ '. ·-- DESIGNED BY: H.R.AB. DRAWN BY: T.G.,G.ll PROJECT t.!GR.: LO,C. .. ~- ~··~ .. ":I ; .... .. .. ····--....... ..... :·:•;I . -· -• ., ... ,. ·.•,;· ••"'"'"'' o-.J •• --~- ""' ,n. .... .:_:=::_ 1 ····3i .... DA1E: SEPTEMBER 2004 SCALE: 1 • = I,(/ JOB 1'40.: 98--,012=()5 -~ -·· -~ - ......... . .. :!: -~.::~ ... :·---···--·· ... .. .. ;:-: ::~::.:,: . !--------~---'-----~ P.E. 5"S":J8 1 EXP. 1-z.111 IOI • -ENGINEER Of WORK: . --~----· ·"'·-~ ... ,.,. _., .... ; ........... . 1---· ......... -~ "''· ~ _. .. 1· t+! --~ "'. 2"::'~ .. .,_...,_ ....... ~ --~-.· - .: ... ~Mi:~~.-- ... y .~· ;·:;;, --::-t, .. ...... _ --. ..,_ DATE LOCATION: RECORD FROM: ELEVATIOtt .... ·• ..... ,1 .. ,-........ APPROX. 1400 FEET S01/'TH OF PAL()l,IAR AIRPORT ROAO ON. CENTERUNE' OF El CAAi/NO REAL NORTH COUNTY 1£RllCAL CONTROL OATA R-1800. 308+76 297.25 11.S.L. DATUM: NG',f) 1929 ' -• .•.,•.,• •• ••e ~-. ....... - -····--····· -.-. ·.;::;,;;... _ ....... ."I. , .• ___ ....... --~--. _.... ·····f.··· ... . . ... . •.. .. . · ........ . ·: . ::·,i .::,• . ... .. . .. ,., .. ..., . .;;,., .... ·~ .......... .. ----........ +----·------.... T - ............. ~·-·-- ...... ::±: .... '·'"l ·.:·.:::.:7: ·.:·::::·::: . .J •:•:::·: :~. ··:. · -.-.-.u .. ...... .. ::::::·: ::::: :z - .. '-•· -·., . ..-. ,.,_,, ••••••••••• 1 ... .,.: .... ~--· .. ·-····...-~ un•I•••••• .. ••• +-.. ............... -- ·-··-·· ~-~--.. :.:.::,· .. . :::;;;;::. ----------·· ....•.. -. . t/lsfa,; ff!,.-~ .. ··• ~ ...... __ ,:.-.-·· g ~ -•·1r =• · ,Im~ ~ . ~ = -~ r:·:: 9 o' 10' ' ' .: .. ·!,14 -.. ... i1I - +· ~--···· -.--.. ,, t .. :x::: ···~·· ..... = = ,~ •···· .-, "·----'·-" - .. : ... :.: ..... ·cc . ·.. :; .. ,: .. -~ .. ~,: -· . "'·::. ... r:J· --...... " . -,. '" ... 10 ~--. . •;·m":"'""·:· 2 J ' 5 .. --= i"ntF""" c·· , ....... ~~ t::J~ 1 .w .. === 11 , .... ., .. ---+----........ --~ ... . c:cc --.. =: .. 12 STORM DRAIN DATA DELTA/BE/IRING RADIUS LENGTI-1 N 75"!7'.27" £ l!. = 12"5J'.27" H 88"f0'5'" £ H 88"10'5'" £ l!. = 21"59'»" 98.18' 220.00' -19.50 77.J5' 9'.J7' 200.0Q' 76.77' REMARKS 72" HCP ~ 1550 D • . • + • • • • u • • ,.. + .. 20' 6 7 N 66"11'22" £ N 00•1-1•02• £ JO.#' 118.JT • • u JO . I/Cl' ~ '550-D SCALE: 1· = I,(/ CWTION II CON!RACTOH TO ~ lH£ EXACT LOCAlla{ CF E}QSTlNG IJTlllll£S IN THE RE1J) PRKR TO CONSlRIJCTIONI . ; • US£ 5000 PSI CONCN£Tf WllH 1 1/2" B£TW£EN IHSIPE FJ.C£ ANO R£/Nfi + 8£V£LEI) ON£ £ND . . . Nf)T£!I £1£CTRONIC OATA Fll.£S AR£ FOR REFERENCE (¥{/_ Y AND AR£ NOT TO BE USED RR H<RIZONTAL OR 'ellCAI. SVRl.£Y CONTHCl · C.T. fl(J-f() APPROVED QY • b :----!---::c--+...-::-=-~-=c--::--=-----'::--c--~~~----f---+----!--r--.--h=--:-:-I A. ' ~ -v~ . . l1.0'Yll B. HUBBS n>/;¥f> 'I P,;a--'··2:L~·--':'11~i--':72.':"•"-f-<;i:'!l\.,_,RE77V~IS~a>""--:f<:"liL'O~V!Cceo~c,:_,ofi'-'..':'.'0{2M~t,~!2.\l="'~t'-----+---t----+l=l{•~ ?i'l.:.:•u=-l"'lJt:dl,-""-"~ CITY ENGll'l'EER 7f° 2J88I EXPIRES 12-31-0!i D~T£ J-/f,-07 j(, 11'\ .45--BVIL( DATI: INlllAL D.4,TI: INlllAL D>.lE INITIAL ENGINEER OF WORK REVISION DESCR!PT!ON OlHER APPROVAL CITY APPROVAL , ·••-·•• _.,._· . .,L.,••• '-'·'-.,,.,,a. •.>, "." ~ DWN BY: CHKD BY· GVP Rl/'MJ BY: e.-.J PROJ ECT NO. C.T. 98-10 DRAWING NO. 409-1 I ! . _.,..,., ' 1 .--. •~ r I r -. r 1 r , ,-1 r 1 r-1 r-1 ,•'" 1 ,--, r --, r 1 r ---, ,.-1 r 1 r---, r 1 ~ -I ,. n :::c 3: m z -I N CL SWMM MODELING TO DETERMINE LID SIZES FOR HYDROMODIFICATION COMPLIANCE Prepared For: CARLSBAD RACEWAY LOTS 13-15 CARLSBAD CA 92010 DATE: November 18, 2016 REVISED: March 15, 2017 RAF INVESTMENTS 1010 S. COAST HWY 101, SUITE 103 ENCINITAS, CA 92024 Prepared By: liB~~ ENGINEERING 440 STATE PLACE ESCONDIDO, CA 92029 TEL: (760)745-81 18 V) ·-V) ~ 0 C: <( C: 0 ·-I 0 u ·-I I ·--0 0 E 0 ~ -0 ~ I ,,. ... ... ... ,. ... ... ... ... ... C C C - Table of Contents INTRODUCTION Section I Section II Section Ill Section IV Section V Section VI Section VII Pre-and Post-Development Model Setup ............................................................................ 3 System Representation ........................................................................................................... 6 Continuous Simulation Options ............................................................................................. 9 Bio-filtration As LID Control .................................................................................................. 10 Running the Simulation .......................................................................................................... 16 Result Analysis ......................................................................................................................... 16 Summary and Conclusion ....................................................................................................... 27 ATTACHEMENTS Attachment A SWMM Drainage Management Area Map Attachment B SWMM Statistics Analysis, Flow Duration Curve and Pass/Fail Table Attachment C SWMM Input Data Summary and Detail llPage .. 11111 ,. .. Ill .. .. ,,,. ... ... .. ... ... ,. .. .. .. - INTRODUCTION This report provides Hydromodification and Water Quality design based on LID (Low Impact Development) principles for a proposed Industrial site development located adjacent to LionsHead Avenue, Lots 13-15, in Carlsbad, California. The Hydromodification and Water Quality calculations were performed utilizing continuous simulation analysis to size the storm water treatment and control facilities. Storm Water Management Model (SWMM) version 5.1 distributed by USEPA is the basis of all calculations within this report. SWMM generates peak flow recurrence frequencies and flow duration series statistics based on an assigned rain gauge for pre- development, unmitigated post-development flows and post-development mitigated flows to determine compliance with the State Water Resources Control Board Order No.R9-2015-001 and Hydromodification Management Plan (HMP) requirements . Total area is, 11.48 acres for Lots 13-15 with the developed tributary area is approximately 10.58 acres. There is one point of compliance (POC) for the project in the analysis. The POC in Lots 13-15 is located approximately 574 feet from LionsHead Avenue traveling north along the property line for lot 15. The discharge from sites 13-15 will enter an existing 72" RCP storm line. It is named "POC" and is indicated on the DMA map for lot 13- 15 as such. After entering the RCP the water will discharge in a public basin east of the site . The Hydromodification and Water Quality system proposed for this project consists of 4 bio-filtration basins with one point of compliances located on the southwest of the project. This system detains storm water in the basin surface and also in the underdrain reservoir. Bio-filtration filters storm water through plant roots and a biologically active soil mix, and then releases it into the existing storm drain system which currently collects the sites storm flows. The resulting mitigated outflows are shown to be equal to or less than all continuously simulated storms based on the historical data collected from the Oceanside rain gage . Low Flow Threshold A downstream channel assessment has not been completed for this project and therefore the low flow threshold utilized for the system analysis is 10% of 2-year storm event (0.1Q2). This will be used as the low flow threshold to meet peak flow frequency and flow duration controls. 21Page SECTION I. MODEL SETUP Pre-development Model Setup The SWMM model for this projects pre-development site is analyzed using historical rain gauge data. The Oceanside gauge is utilized for this project. That data provides continuous precipitation input to a sub- catchment with its outfall based on the contributing basins imperviousness. The imperviousness parameter in SWMM is the amount of effective or directly connected impervious area. The effective impervious area is the impervious area that drains directly to the Stormwater conveyance system. The pre-development condition is a vacant land with poor cover of grass and some shrubs with no trees. For the purpose of this study, the site is assumed to have 0% of impervious surface in the existing condition. Post-Development Model Setup Figure 3 illustrates each contributing basin discharging its overland flow directly into the bio-filtration system. Each bio-filtration layer section has a similar configuration as seen as in the detail drawing below. There is no actual elevation entered in the program. The bottom elevation of the bio-filtration surface storage is assumed at Oft. Storm drain pipe is also utilized as a detention by having an orifice small flow restrictor at lower invert elevation of the downstream cleanout box and a bypass orifice/pipe to convey the bigger flow. £ o;rmow smur:IU'IE ANO llA.WICNANC£ Aet:ESS a£AN OUT CATCH BASIN OE TAIL NOT TO SCALE 3I Page .. Jlt 1~ SLOPE ,,, 'j I I I I I I , I I " I I _ 1 1 --=--=----~ VEGET ATEO SLOPE ~ --y --. PUN 1£,,, NOTTO SULE Figure-1. Typical Bio-filtration Section CLEANOUT V t Jlt 1V SLOPE Ll'OEROR.<IN PIPE "- APRON FOR EtOCY OJSSIPAT 10< ~ CUT 2◄" 41 Page Fig.2 -SWMM Post-Development with Mitigation Model LOT 13-15 ,; ,; / SI Page LI') ..... I rt") ..... l-o ...J a:; "C 0 ~ ..., C: Q) E c.. 0 ~ Q) Cl I ~ a.. ~ ~ ~ I rt") 0,0 iZ Q) 0.0 rt) a.. I.O Post-Development Drainage Management Areas (DMAs) The DMAs provide an important framework for feasibility screening, BMP prioritization and storm water management system configuration. DMAs are defined based on drainage patterns of the site and the BMPs to which they drain. Lot 13-15 DMAs 9-15 drain to the biofiltration BMPs E-H before entering the 72" RCP that runs along the property and runs to a public basin east of the project area. The self-mitigating areas DMA 9, 11 and, 15 is bypassed to the POD designated for the project site (see hydromodification exhibit) to keep pre development flows. DMA's 9, 11, and, 15 are self-mitigating and will be bypassed Note: This project is in the preliminary stages and, DMAs and BMP may be changed until final engineering. OMA Table for Lots 13-15 DMAID DMA Drains TOTAL (SQFT) TOTAL %IMP TYPE to BMP (ACRE) DMA-9 Self-mitigating N/A 14968.00 0.344 0% DMA-10 Drains to BMP BMP-E 163869.29 3.762 82% DMA-11 Self-mitigating N/A 4512.22 0.104 0% DMA-12 Drains to BMP BMP-F 18314.65 0.420 42% DMA-13 Drains to BMP BMP-G 33934.95 0.779 66% DMA-14 Drains to BMP BMP-H 254969.65 5.853 84% DMA-15 Self-mitigating N/A 8588.57 0.197 0% SECTION II. SYSTEM REPRESENTATION SWMM is a distributed model, which means that a study area can be subdivided into any number of irregular sub-catchments to best capture the effect that spatial variability in topography, drainage pathways, land cover, and soil characteristics have on runoff generation. For modeling of Hydromodification calculations, there are four main system representations: Rain gage, Sub-catchment (contributing basin or LID area), Nodes and Links. 71 Page I I lime Series Oceanside 0 0 100,000 200,000 300,000 400,000 500,000 Bapsed lime (hours) Fig. 4 -Time series rain data, which corresponds to runoff estimates for each of the 508,080 time steps (each date and hour) of the 58-year simulation period. (Inches/hour vs. elapsed time) Rain Gauge The properties of a rain gauge describe the source and format of the precipitation data that are applied to the study area. In this project, the rainfall data consist of a long-term rainfall record stored in a user- defined Time Series labeled as "Oceanside" rain gauge station. The Oceanside rain station was chosen due to its data quality and its location to the project site. The rain gauge supplies precipitation data for one or more sub-catchment areas in a study region taken from the Project Clean Water website (www.projectcleanwater.org). This data file contains rainfall intensity, hourly-recorded time interval, and the dates of recorded precipitation each hour. The Oceanside rain data has approximately 58 years of hourly precipitation data from 8/28/1951 to 5/23/2008 and generates 58 years of hourly runoff estimates, which corresponds to runoff estimates for each of the 508,080 time steps (each date and hour) of the 58 year simulation period. See figure 1 for hourly precipitation intensity graph for 58 years in inches. Sub-catchment (contributing basin or LID area) A basin is modeled using a sub-catchment object, which contains some of the following properties: Rain Gauge The rate of stormwater runoff and volume depends directly on the precipitation magnitude and its spatial and temporal distribution over the catchment. Each sub-catchment in SWMM is linked to a rain gauge object that describes the format and source of the rainfall input for the sub-catchment. Area This area is bounded by the sub-catchment boundary. Its value is determined directly from maps or field surveys of the site or by using SWMM's Auto-length tool when the sub-catchment is drawn to scale on SWMM's study area map. This Project is divided into several sub-catchments based on its outfall. 8I Page C C .. ... ,., ... .. .. Width Width can be defined as the sub-catchment's area divided by the length of the longest overland flow path that water can travel. When there are several such paths, one would use an average of their lengths to compute a width. If overland flow is visualized as running down -slope off an idealized, rectangular catchment, then the width of the sub-catchment is the physical width of overland flow. MAIN DRAINAGE CHANNEL Figure 3-11 Irregular subcatchment shape for width calculations (DiGiano et al., 1977, p.165) . The method of calculations used following Figure 3-11 involves an estimitation by Guo and Urbonas (2007). As stated in the Storm Water Management Model Reference Manual Vol. 1 A more fundamental approach to estimating both subcatchment width and slope has recently been developed by Guo and Urbonas (2007). The idea is to use "shape factors" to convert a natural watershed as pictured in Figure 3-11 into the idealized overland flow plane of Figure 3-8. A shape factor is an index that reflects how overland flows are collected in a watershed. The shape factor X for the actual watershed is defined as A/L 2 where A is the watershed area and Lis the length of the watershed's main drainage channel (not necessarily the length of overland flow). The shape factor Y for the idealized watershed is W/L. Requiring that the areas of the actual and idealized watersheds be the same and that the potential energy in terms of the vertical fall along the drainage channel be preserved, Guo and Urbonas (2007} derive the following expression for the shape factor Y of the idealized watershed: Y = 2X(l.5 -Z}(2K -X}/(2K -1) (3-12} where K is an upper limit on the watershed shape factor. Guo and Urbonas (2007) recommend that K be between 4 and 6 and note that a value of 4 is used by Denver's Urban Drainage and Flood Control District. Once Y is determined, the equivalent width W for the idealized watershed is computed as YL. Applying this approach: X =(A• 43,560 ft2/acre) / (L2) C C C .. .. .. .. .. C C C - Z = skew factor, 0.5 S Z S 1, Am = larger of the two areas on each side of the channel A= total area. This width value is considerably lower than those derived from direct estimates of either the longest flow path length or the drainage channel length. As a result, it would most likely produce a longer time to peak for the runoff hydrograph. Slope This is the slope of the land surface over which runoff flows and is the same for both the pervious and impervious surfaces. It is the slope of what one considers being the overland flow path or its area- weighted average if there are several paths in the sub-catchment. Imperviousness This is the percentage of sub-catchment area covered by impervious surfaces such as sidewalks and roadways or whatever surfaces that rainfall cannot infiltrate. Roughness Coefficient The roughness coefficient reflects the amount of resistance that overland flow encounters as it runs off of the sub-catchment surface . Infiltration Model The pre-development condition is primarily empty land with moderate vegetation cover. In the model, clay soil was used for the post-development condition and the pre-development condition for a conservative approach (yield to a higher runoff). Infiltration of rainfall from the pervious area of a sub- catchment into the unsaturated upper soil zone can be described using three different infiltration models: Horton, Green-Am pt, and Curve Number. There is no general agreement on which method of these three is the best. The Green-Ampt method was chosen to calculate the infiltration of the pervious areas based on the availability of data for this project. It is invoked when editing the infiltration property of a sub- catchment. 10 I P c1 g e Table 1-Soil Infiltration Parameter Infiltration Method Suction Head Inches (Green-Ampt) Conductivity Inches per hour (Green-Ampt) Initial Deficit (Green-Ampt) Groundwater LID Controls Snow Pack Land Uses Initial Buildup Curb Length yes/no HORTON GREEN_AMPT CURVE NUMBER 1.93 -12.60 presented in Table A.2 of SWMM Manual 0.01 -4.74 presented in Table A.2 of SWMM Manual by soil texture class 0.00 -<:;:0.45 presented in Table A.3 of SWMM Manual by hydrologic soil group The difference between soil porosity and initial moisture content. Based on the values provided in Table A.2 of SWMM Manual, the range for completely dry soil would be 0.097 to 0.375 yes/no GREEN_AMPT Hydrologic Soil Group A: 1.5 Hydrologic Soil Group B: 3.0 Hydrologic Soil Group C: 6.0 Hydrologic Soil Group D: 9.0 Hydrologic Soil Group A: 0.3 Hydrologic Soil Group B: 0.2 Hydrologic Soil Group C: 0.1 Hydrologic Soil Group D: 0.025 Note: reduce conductivity by 25%in the post-project condition when native soils will be compacted. For fill soils m post-project condition, see Section G.1.4.3. Hydrologic Soil Group A: 0.30 Hydrologic Soil Group B: 0.31 Hydrologic Soil Group C: 0.32 Hydrologic Soil Group D: 0.33 Note: m long-term continuous simulation, this value is not important as the soil will reach equilibrium after a few storm events regardless of the initial moisture content specified. NO Project Specific Not applicable to hydromodification management studies Source: Model BMP Design Manual San Diego Region Appendices, February 26, 2016 LID controls Utilizing LID controls within a SWMM project is a two-step process that: 11 I Page Creates a set of scale-independent LID controls that can be deployed throughout the study area, Assign any desired mix and sizing of these controls to designated sub-catchments. The LID control type that was selected was a bio-filtration cell that contains vegetation grown in an engineered soil mixture placed above a gravel drainage bed. Bio-filtration provides storage, infiltration (depending on the soil type) and evaporation of both direct rainfall and runoff captured from surrounding areas. For this project, we do not allow infiltration to the existing/filled soil. SECTION Ill. CONTINUES SIMULATION OPTIONS Simulation Dates These dates determine the starting and ending dates/times of a simulation and are chosen based on the rain data availability. Start analysis on 01/03/1951 Start Reporting on 01/03/1951 End Analysis on 05/23/2008 Time Steps The Time Steps establish the length of the time steps used for runoff computation, routing computation and results reporting. Time steps are specified in days and hours: minutes: seconds except for flow routing which is entered as decimal seconds. Climatology -Evaporation Data The available evaporation data for San Diego County that is similar to Lots 13-15 project conditions is taken Table G.1-1: Monthly Average Reference Evapotranspiration by ETo Zone for use in SWMM Models for Hydromodification Management Studies in San Diego County CIMIS Zone 4 (in/day). January February March April May June 0.05 0.09 0.13 0.19 0.25 0.29 July August September October November December 0.30 0.270 0.210 0.140 0.080 0.050 SECTION IV. BIO-FILTRATION AS LID CONTROL LID controls are represented by a combination of vertical layers whose properties are defined on a per- unit-area basis. This allows an LID of the same design but differing coverage area to easily be placed within different sub-catchments of a study area . During a simulation, SWMM performs a moisture 12 I Page balance that keeps track of how much water moves between and is stored within each LID layer. If the bio-filtration basin is full and water is leaving the upper weir, the flow is divided in two flows: the lower flow discharging from the bottom orifice directly draining to the point of compliance and the upper flow is routed at the top of the bio-filtration basin and after routing, discharged to the point of compliance. In this project, we used 100% of the area of this specific sub-catchment for bio-filtration. A detention basin sub routine was added at the top of the bio-filtration where a weir is added for control purposes, and the storage curve is also provided, see the next section "Modeling bio-filtration surface ponding in SWMM 5.1". 1. Surface Storage Depth When confining walls or berms are present, this is the maximum depth to which water can pond above the surface of the unit before overflow occurs (in inches). In this project, storage depths vary. Vegetation Volume Fraction It is the fraction of the volume within the storage depth that is filled with vegetation. This is the volume occupied by stems and leaves, not their surface area coverage . Normally this volume can be ignored, but may be as high as 0.1 to 0.2 for very dense vegetative growth. Based on our visual observation in the field, the average type of vegetation for this site is a low-density vegetation type. Therefore, we used 0.1 for the vegetation volume fraction assuming type of vegetation used is a low-density type. Surface Roughness Manning's n value for overland flow over a vegetative surface. Surface Slope Slope of porous pavement surface or vegetative swale (percent). 2. Soil Thickness The thickness of the soil layer in inches. We used a typical value of 18 inches soil thickness for a bio- filtration. The volume of pore space relative to total volume of soil (as a fraction). We designed it with a soil mix porosity of 0.40 maximum for a good percolation rate (Countywide Model SUSMP Table Bl -Soil Porosity Appendix A: Assumed Water Movement Hydraulics for Modeling BMPs). Field Capacity Volume of pore water relative to total volume after the soil has been allowed to drain fully (as a fraction). We used 0.2 for this soil. Below this level, vertical drainage of water through the soil layer does Bl Page not occur. (See Table 1-Soil Infiltration Parameter). Wilting Point Volume of pore water relative to total volume for a well-dried soil where only bound water remains (as a fraction). The moisture content of the soil cannot fall below this limit. We assumed the minimum moisture content within this bio-filtration soil is 0.1. Conductivity Hydraulic conductivity for the fully saturated soil is 5 inches/hour. This is a design minimum value for percolation rate. Conductivity Slope Slope of the curve of log (conductivity) versus soil moisture content (dimensionless). Typical values range from 5 for sands to 15 for silty clay. We designed this soil to have a very good percolation rate therefore the conductivity slope is 5. Suction Head The average value of soil capillary suction along the wetting front (inches). This is the same parameter as used in the Green-Am pt infiltration model. Table 1 was utilized to determine the capillary of the soil mix top layer of a bio-filtration system. The suction head will be 9.0 inches. 3. Storage Layer The Storage Layer page of the LID Control Editor describes the properties of the crushed stone or gravel layer used in bio-filtration cells as a bottom storage/drainage layer. The following data fields are displayed: Height this is the thickness of a gravel layer (inches). Crushed stone and gravel layers are vary ranging from 12 to 36 inches thick. A table is provided to summarized the BMP configurations. Void Ratio The volume of void space relative to the volume of solids in the layer. Typical values range from 0.5 to 0.75 for gravel beds. Note that porosity= void ratio/ (1 + void ratio). We designed this void ratio to have a value of 0.67. Seepage Rate The rate at which water infiltrates into the native soil below the layer (in inches/hour). This would typically be the Saturated Hydraulic Conductivity of the surrounding sub-catchment if Green-Am pt infiltration is used. Since the liner beneath the gravel layer is proposed, the seepage rate is assumed to be 0 in/hr. Clogging Factor Total volume of treated runoff it takes to completely clog the bottom of the layer divided by the void 14 I Page volume of the layer. For south east bio-filtration, a value of O was used to ignore clogging since the system does NOT consider infiltration to the native soils. Clogging progressively reduces the Infiltration Rate in direct proportion to the cumulative volume of runoff treated and may only be of concern for infiltration trenches with permeable bottoms and no under drains. We assumed zero for the clogging factor since the infiltration rate is not considered. 4. Underdrain Layer LID storage layers can contain an optional underdrain system that collects stored water from the bottom of the layer and conveys it to a conventional storm drain. The Underdrain page of the LID Control Editor describes the properties of this system. It contains the following data entry fields: Drain Coefficient and Dra in Exponent Coefficient C and exponent n that determines the rate of flow through the underdrain as a function of height of stored water above the drain height. The following equation is used to compute this flow rate (per unit area of the LID unit): q = C(h-Hdt where q is the outflow (in/hr), h is the height of stored water (inches), and Hd is the drain height. A typical value for n would be 0.5 (making the drain act like an orifice. Drain Offset Height Height of any underdrain piping above the bottom of a storage layer (inches). In this project, this value was set to 3" as the underdrain piping is at the bottom of the gravel storage layer. An additional 3" minimum of gravel is located under the gravel storage layer per detail on page 4. Table 3 -Summary of LID Drain/flow coefficient AREA BMPNAME (SQFT) BMP-E 4963.0 BMP-F 1509.6 BMP-G 1171.9 BMP-H 14500.0 Note: q = C(h-Hdt C= C A .fig X 12°·5 X 3600 o o A ORIFICE (IN) 1.0 0.5 0.5 1.5 SOIL/SAND GRAVEL (IN) (IN) C 18 33.0 0.067088508 18 33.0 0.055140589 18 33.0 0.071030151 18 33.0 0.051666388 SECTION V. MODELING B1O-FILTRATIONSURFACE PONDING The main elements used to design surface ponding in SWMM are storage units (labeled as IMP _Pond) with orifice and weir outlets. 15 I Page 1. Storage Units Storage units are drainage system nodes that provide storage volume. Physically they could represent storage facilities as small as a catch basin or as large as a lake. The volumetric properties of a storage unit are described by a function or table of surface area versus height. Storage volume is described by a storage curve, an evaporation factor and a maximum depth of storage. Storage Curve Editor I ~ Storage Curve Vi_, Curve Name SURFACE-POND Storage Curve SURFACE-PO D Description D~pth Area (ft) (ft2) 1 3489 2 1.67 '3977 3 4 s 6 7 C Load ... Save. .. OK 1.6 1.4 1.2 g1 jo.s· 0 0.6 0.4 0.2 8 OL..!11==============~ 9 Cancel 10 11 Help I CopyTo ... j Print j ! Close Figure 5 -Example Storage Curve for Storage Unit 2. Orifices SWMM's orifice-type link can be used to represent the opening along the side or bottom of the storage unit that serves as an outlet. The upstream node of the orifice is the storage unit while its downstream node would be a junction that connects it to a downstream conduit. A circular shaped orifice was selected to drain the ponding water. 3. Weirs A Rectangular-shaped weir was used to represent the weir at the stand box riser. Adding a Storage Unit, orifice and weirs to the Model The following steps are taken to define the storage unit. 1. A new Storage Curve object labeled as SURFACE_PONDING is created to represent the shape of the storage unit. 2. This storage unit was a part of bio-filtration model connected from a flow divider from Subcatchment which is assigned as LID. This conduit represents runoff that is not percolating into the soil and collected in the surface storage creating pond. 3. The two previously determined depth-area points are entered into the Curve Editor dialog for the curve SURFACE PONDING. 16 I Page C r .. ,. ,. .. C - 4. The following properties are assigned to a storage unit labeled as "Surface_Pond". Storage Curve = Tabular; Curve Name =STO-C; Invert Elevation Oft {assumption); Maximum Depth=6 ft and Initial Depth = 0 ft {the simulation starts when the pond empty). 5. Add weir represents the riser top of grate; Type=transverse; Height=l'; Crest Length=l'; inlet offset=0.00'; Discharge coefficient=3.33 . 6. Add 2 orifices as the multi-stage surface pond system connecting the storage to outfall; type=sideflow; height=0.0833'; width=0'; one inlet offset=0' the other one= 0'; discharge coeff=0.65. Sizing Orifice and Weir Similar to sizing the bio-filtration area, Orifices and Weir are sized based on the comparison between peak flow duration and the peak flow frequency for pre-and mitigated post-development conditions. Therefore, the entire model should be set up completely with assumed parameters. This calculation is an iterative process until those two comparisons meet the Hydromodification criteria. SECTION VI. RUNNING THE SIMULATION In general, the Run time will depend on the complexity of the watershed being modeled, the routing method used, and the size of the routing time step used. The larger the time steps, the faster the simulation, but the less detailed the results. Model Results SWMM's Status Report summarizes overall results for the 58-yr simulation. The runoff continuity error is -2.73 % and the flow routing continuity error is 0. 00% for Lots 13-15. When a run completes successfully, the mass continuity errors for runoff, flow routing, and pollutant routing will be displayed in the Run Status window. These errors represent the percent difference between initial storage+ total inflow and final storage + total outflow for the entire drainage system. If they exceed some reasonable level, such as 10 percent, then the validity of the analysis results must be questioned. The most common reasons for an excessive continuity error are computational time steps that are too long or conduits that are too short. In addition to the system continuity error, the Status Report produced by a run will list those nodes of the drainage network that have the largest flow continuity errors. If the error for a node is excessive, then one should first consider if the node in question is of importance to the purpose of the simulation. If it is, then further study is warranted to determine how the error might be reduced. The SWMM program ranks the partial duration series, the exceedance frequency and the return period. They are computed using the Weibull formula for plotting position. See the flow duration curve and peak flow frequency on the following pages. 17 I Page .. .. ,. .. C ... j .. .. ,. .. -.. ... .. C - SECTION VII. RESULT ANALYSIS Development of the Flow Duration Statistics The flow duration statistics are also developed directly from the SWMM binary output file. It should be noted right from the start that the "durations" that we are talking about in this section have nothing to do with the "storm durations" presented in the peak flow statistics section. Other than using the same sequence of letters for the word, the two concepts have nothing to do with each other and the reader is cautioned not to confuse the two. The goal of the flow duration statistics is to determine, for the flow rates that fall within the hydromorphologicaly significant range, the length of time that each of those flow rates occur. Since the amount of sediment transported by a river or stream is proportional to the velocity of the water flowing and the length of time that velocity of flow acts on the sediment, knowing the velocity and length of time for each flow rate is very useful. Methodology The methodology for determining the flow duration curves comes from a document developed by the U.S. Geological Survey (USGS). The first stop on the journey to find this document was a link to the USGS water site (http://www.usgs.gov/water/). This link is found in Appendix E (SDHMP Continuous Simulation Modeling Primer), found in the County Hydromodification Management Plan1. On this web site a search for "Flow Duration Curves" leads to USGS Publication 1542-A, Flow-duration curves, by James K. Searcy 1959 (http://pubs.er.usgs.gov/publication/wsp1542A). In this publication the development of the flow duration curves is discussed in detail. In Pub 1542-A, beginning on page 7 an example problem is used to illustrate the compilation of data used to create the flow duration plots. A completed form 9-217-c form shows the monthly tabulation of flow rates for Bowie Creek near Hattiesburg, Miss. For each flow range the number of readings is tabulated and then the total number of each flow rate is totaled for the year. It should be noted that while this example is for a stream with a minimum flow rate of l00cfs, for the purposes of run-off studies in Southern California the minimum flow rate of zero (0) cfs is the common low flow value. Once each of the year's data has been compiled the summary numbers from each year are transferred to form 9-217-d. On this form the total number of each flow rate is again totaled and the percentage of time exceeded calculated (as will be explained later under the discussion of our calculations). Once the data has been compiled a graph of Discharge Rate vs. Percent Time Exceeded is developed. As will be explained in the next section, the use of these curves leads to the amount of time each particular flow can be expected to occur (based on historical data). How to Read the Graphs2 Figure 1 shows a flow duration curve for a hypothetical development. The three curves show what percentage of the time a range of flow rates are exceeded for three different conditions: pre-project, 1 FINAL HYDROMODIFICATION MANAGEMENT PLAN, Prepared for County of San Diego, California, March 2011, by Brown and Caldwell Engineering of San Diego. (http://www.projectcleanwater.org/images/stories/Docs/LDS/HMP/0311 SD HMP wAppendices.pdf) 2 The graph and the explanation were taken directly from Appendix E of the Hydromodification Plan 18 I Page post-project and post-project with storm water mitigation. Under pre-project conditions the minimum geomorphically significant flow rate is 0.lOcfs (assumed) and as read from the graph, flows would equal or exceed this value about 0.14% of the time (or about 12 hours per year) (0.0014 x 365days x 24 hour/day). For post-project conditions, this flow rate would occur more often -about 0.38% of the time (or about 33 hours per year) {0.0038 x 365days x 24 hour/day). This increase in the duration of the geomorphically significant flow after development illustrates why duration control is closely linked to protecting creeks from accelerated erosion. OS0 ...----------------;:-_-_-_-_-_r..:::_-_-_-_-_-..:::_-_-_-_-_-_-_-_-_-_-_-_::;-, -+-lmper.ious Flow (cfs) 07D ----Pre-Project Flow (crs) t ---Post.Project Mitigated Flow (cts) 0.60 f --Pre-Project 0.2O5 --Pre.Project 0 10 I -----0 50 °"" ~ i 0.40 a ... ! OlO G.20 00 ....---~---.....-----------------------~ O.OQ 0.06 0.10 0.15 0.20 025 0.3,l 035 0.40 ~ Tim• ExcHd•d Figure 1. Ffow Dura,·oo ~ries Statistics for a Hypotu!liaJ! Devdopment Sam.,rio Development of Flow Duration Curves The first step in developing the flow duration curves is to count the number of occurrences of each flow rate. This is done by first rounding every non-zero flow value to an appropriate number of decimal places (say two places). This in effect groups each flow into closely related values or "bins" as they are referred to in publication 9-217d. Then the entire runoff record is queried for each value and the number of each value counted. The next step is to enter the results of the query into a grid patterned after form 9-217d. The data is entered in ascending order starting with the lowest flow first. The grid is composed of four columns. They are (from left to right) Discharge Rate, Number of Periods (count), Total Periods Exceeding (the total number of periods equal to or exceeding this value), and Percent Time Exceeded. Starting at the top row (row 1), the flow rate (which is often times zero) is entered with the corresponding number of times that value was found. The next column is the total number of values greater than or equal to that flow rate. For the first flow rate point, by definition all flow rate values are greater than or equal to this value, therefore the total number of runoff records of the rainfall record is entered here. The final column which is the percent oftime exceeded is calculated by dividing the total 19 I Page .. .. .. .. ... .. .. ... .. ... ... ... ... .. .. .. .. .. .. .. .. .. .. .. - periods exceeded by the total number of periods in the study. For the first row this number should be 100% For the next row (row 2), the flow rate, and the flow rate count are entered. The total number of periods exceeding for row 2 is calculated by subtracting Number of Periods of row 1 from the Total Periods Exceeding of line 1. This result is entered in the Total Periods Exceeding on row 2. As was the case for line 1, the final column is calculated by dividing the total periods exceeded by the total number of periods in the study. For the second row this number should be something less than 100% and continually decrease as we move down the chart. If all the calculations are correct, then everything should zero out on the last line of the calculations. The final step in developing the flow duration curves is to make a plot of the Discharge Rate vs. the Percent Time Exceeded. For the purposes of this report, the first value corresponding to the zero flow rate is not plotted allowing the graph to be focused on the actual flow rate values. The Flow Duration Analysis The Peak Flow Statistics analysis is composed of the following series of files: 1. The Flow Duration Plot 2. Comparison of the Un-Mitigated Flow Duration Curve to the Pre-Development Curve (Pass/Fail) 3. Comparison of the Mitigated Flow Duration Curve to the Pre-Development Curve (Pass/Fail) 4. The calculations for the Pre-Development flow duration curve development (USGS9217d) 5. The calculations for the Post-Development flow duration curve development (USGS9217d) 6. The calculations for the Mitigated flow duration curve development (USGS9217d) The Flow Duration Plot The Flow Duration Curves Plot is the plotting of all three (pre, un-mitigated and mitigated) sets of Discharge Rate vs. the Percent Time Exceeded data point pair lists. In addition to these curves horizontal lines are plotted corresponding to the 010 and Oit (low flow threshold) values. Within the geomorphically significant range (010 -Oit) one can see a visual representation of the relative positions of the flow duration curves. The flow duration curves are compared in an East/West (horizontal) direction to compare post development Discharge Rates to pre-development Discharge Rates. The pre- development curve is plotted in blue, the unmitigated curve is plotted in red, and the mitigated curve is plotted in green. As long as the post development curve lies to the left of the pre-development curve (mostly3), the project meets the peak flow hydromodification requirements . Pass/Fail comparison of the curves The next two sets of data are the point by point comparison of the post-development curve(s) and the pre-development curve. The Pass/Fail table is helpful in determining compliance since the plotted lines can be difficult to see at the scales suitable for use in a report. Each point on the post-development curve has a corresponding "Y" value (Flow Rate), and "X" value (% Time Exceeded). For each point on the post development curve, the "Y" value is used to interpolate the corresponding Percent Time 3 See hydromodification limits for exceedance of pre-development values 20 I rage .. .. ,. .. .. !II"' I .. ... ... ... .. .. - Exceeded (X) value from the pre-development curve. Then the Post-development Percent Time Exceeded value is compared to the pre-development Percent Time Exceeded value. Based on the relative values of each point, pass/fail criteria are determined point by point. For each set of data, the upper right hand header value shows the name of the file being displayed (ex. flowDurationPassFailMitigated.TXT). The first line of the file shows the name of the SWMM output file (* .out). The next line shows the time stamp of the SWMM file that is being analyzed. The time stamps of all of the report files should be within a minute or two of each other, otherwise there may have been tampering with the files. Each report run creates and prints all of the files and reports at one time so all the time stamps should be very close. The first column is the zero based number of the point. The next two columns show the post development "X" and "Y" values. The next column shows the value interpolated between the two bounding points on the pre-development curve. The next three columns show the true or false values of the comparison of the two "X" values. The last column shows the resultant pass or fail status of the point. There are three ways a point can pass. They are: 1. Qpost being outside of the geomorphically significant range Q1rto Q10 2. Qpost being less than Q pre 3. Qpost being less than 110% of the value of Qpre if the point is between Q1r and Q10 There are two ways that a point can fail. They are: 1. Qpost being greater than 110% of Qpre if the point is between Q1r and Q10 2. If more than 10% of the points are between 100% and 110% of Qpre for the points between Q1r and Q10 A quick scan down the last column will quickly tell if there are any points that fail. At the bottom of each set of data are the date stamp of the report to the left, and to the right is the page number/number of pages for the specific set of data (not the pages of the report!). Each new set of data has its own page numbering. Between the file name in the header row and the page numbering in the footer row, the engineer can readily scan the document for the data of interest. Plan Check Suggestions As was described under the peak flow section, is the responsibility of the reviewing agency to confirm that the data sets presented are valid results from consistent calculations, and that any and all results can be duplicated by manual methods and achieve the same results. In light of these goals, the plan checker is invited to consider the following tasks as part of the plan check process. Compare the Data Stamps for Each of the Statistics Files Used In This Analysis. As was described in the Peak Flows section, all report files should have time stamps that are nearly identical. If the time values are more than a few minutes apart then the potential for inconsistent results files should be investigated . 21 I Page ,. I lllr .. , .. .. ' .. ,. 1111 ,. 1111 r .. - Verify the Flow Rate Counts For each of the pre, un-mitigate and mitigated flow duration tables, a few randomly selected flow value counts should be checked against the values taken directly from the SWMM file. This can be done by opening the corresponding SWMM file, selecting the outfall node, selecting Report>Table>By Object, Setting the time format to Date/Time, selecting the appropriate node value, and clicking the OK button to generate a table of the date/time/Total Inflow values. Next step is to click in the left most header row of the SWMM table which will select the entire table. Now from the main menu select Edit>Copy To>Clipboard. Now open a new blank sheet in MS Excel (or suitable spread sheet program) select cell Al and paste the results from the clipboard into the spread sheet. Now sort the values based on the Total Inflow column. This will group all the flow values together enabling the number of occurrences of each value to be counted. At this point the a few (or all) of the counts on the various USGS9217d.txt files can be verified. Manually Verify That the Percent Exceeded Values (form USGS9217d) are Correctly Calculated The discharge rates and counts are confirmed as was described above. The top row should be the smallest runoff value {0.00cfs usually). Total Periods Exceeding of the first line should be the total number of rainfall records in the study. The percentage of Time Exceeding should be the total periods Exceeding divided by the total number of rainfall records in the study {100% for the first line). For each successive discharge rate, the total periods exceeding for the current line should be the total periods exceeding from the line above minus the number of periods from the line above. The number of periods and the number of periods exceeding should zero out at the last line. Compare Plotted Curves to Table Data Randomly check a few of the plotted points against the values verified above. Verify by Observation that the plotted values of U10and Oit are reasonable. Verify that the correct values for each of these return periods are plotted correctly on the graph. Development of the Peak Flow Statistics The peak flow statistics are developed directly from the binary output file produced by the SWMM program. The site is modeled three ways, Pre-Development, Post-Development-Unmitigated, and Post- Development-Mitigated. For each of these files a specific time period differentiating distinct storms is chosen. The SWMM results are extracted and each flow value is queried. The majority of the values for Southern California sites are zero flow. As each successive record is read, as soon as a non-zero value is read the time and flow value of that record are recorded as the beginning of an event. The first record is automatically recorded as the "tentative" peak value. As each successive non-zero value is read and the successive flow value is compared to the peak value and the greater value is retained as the peak value of the storm. As soon as a successive number of zero values equal to the predetermined storm separation value, then the time value of the last non-zero value is recorded as the end of the storm, the duration of the storm is the difference between the end time and the start time, and the peak value is recorded as the highest flow value between the start and end times. Once the entire SWMM output file is read all of the distinct storm events will have been recorded in a special list. The storms will be in the order of their occurrence. To develop the peak flow statistics table 22 I Page C ,. ... ... ... .. ... """ i .. C C C - the first step is to sort the storms in descending order of the peak flow value. Once the list is sorted then the relative rank of each storm is assigned with the highest ranking storm being the storm with the highest peak flow. There are several methods that can be used to determine which storm should be ranked above another equally valued storm. For the purposes of these studies an Ordinal ranking is used so that each storm has a unique rank number. Where two or more storms have equal flow values, the earlier storm is assigned the higher rank. This is done consistently throughout the storm record. Since we are only looking at peak flow statistics, it is assumed that the relative ranking of individual (but equal) storms is irrelevant to the calculations. The exceedance frequency and return period are both computed using the Weibull formula for plotting position. Therefore, for a specific event the exceedance frequency F and the return period in years Tare calculated using the following equations4: and T=n+l/m where m is the event's rank, nR is the total number of events and n is the number of years under analysis. Once the Peak flow statistics table is complete, a plot of Return Frequency vs. peak flow is created. All three conditions (pre, post and mitigated) are plotted on the same plot. The Peak Flow Statistics Analysis The Peak Flow Statistics analysis is composed of the following series of files: 1. The Peak Flow Frequency Plot 2. The Comparison of the Un-Mitigated Peak Flow Curve to the Pre-Development Curve (Pass/Fail) 3. The Comparison of the Mitigated Conditions Curve to the Pre-Development Curve (Pass/Fail) 4. The Peak Flow Statistics Calculation for the Pre-Development Curve . 5. The Peak Flow Statistics Calculation for the Un-Mitigated Curve. 6. The Peak Flow Statistics Calculation for the Mitigated Curve . The Peak Flow Frequency Plot The Peak Flow Frequency Curves are the plotting of all three (Pre, Un-Mitigated and Mitigated) sets of return Period vs peak flow data point pair lists. In addition to these curves horizontal lines are plotted corresponding to the 010, Os, Qi and Oit (low flow threshold) values. Within the geomorphically significant range (Q10 -Clit) one can see a visual representation of the relative positions of the peak flow curves. The peak flow curves are compared in a North/South (vertical) direction to compare post development peak flows to pre-development flows. The Pre-Development curve is plotted in blue, the unmitigated curve is plotted in red, and the mitigated curve is plotted in green. As long as the post development curve lies below the pre-development curve (mostly5), the project meets the peak flow hydromodification requirements. Pass/Fail comparison of the curves The next two sets of data are the point by point comparison of the post-development curve(s) and the pre-development curve. The Pass/Fail table is helpful in determining compliance since the plotted lines 4 Pg 169-170 STORM WATER MANAGEMENT MODEL APPLICATIONS MANUAL, EPA/600/R-09/000 July 2009 5 See hydromodification limits for exceedance of pre-development values 23 I Page ,. t .. ... ... .. ... .. ... .. C - can be difficult to see at the scales suitable for use in a report. Each point on the post-development curve has a corresponding "X" value (Recurrence Interval), and "Y" value (Peak Flow). For each point on the post development curve, the "X" value is used to interpolate the corresponding peak flow value from the pre-development curve. Then the Post-development peak flow value is compared to the pre- development peak flow value. Based on the relative values of each point, pass/fail criteria are determined point by point. For each set of data, the upper right hand header value shows the name of the file being displayed (ex. peakFlowPassFailMitigated.TXT). The first line of the file also shows this value. The next line shows the time stamp of the file that is being analyzed. The time stamps of all of the report files should be within a minute or two of each other, otherwise there may have been tampering with the files. Each report run creates and prints all of the files and reports at one time so all the time stamps should be very close. It should be noted that the SWMM.out files will not have related time stamps since each file is developed independently. The first column is the zero based number of the point. The next two columns show the post development "X" and "Y" values. The next column shows the value interpolated between the two bounding points on the pre-development curve. The next three columns show the true or false values of the comparison of the two "Y" values. The last column shows the resultant pass or fail status of the point. There are three ways a point can pass. They are: 1. Point is outside of the geomorphically significant range Q10 -Oit 2. Cli,ost being less than Q pre 3. Cli,ost being less than 110% of the value of Cli,re if the point is between Os and 0106 There are four ways that a point can fail. They are: 1. Cli,ost being greater than Cli,re if the point is between Clit and Os 2. Cli,ost being greater than 110% of Cli,re if the point is between Clit and Q10 3. If more than 10% of the points are between 100% and 110% of Cli,re for the points between Os and Q10 4. If the frequency interval for points> 100% of Cli,re is greater than 1 year for the points between Os and Q10 A quick scan down the last column will quickly tell if there are any points that fail. At the bottom of each set of data are the date stamp of the report to the left, and to the right is the page number/number of pages for the specific set of data (not the pages of the report!). Each new set of data has its own page numbering. Between the file name in the header row and the page numbering in the footer row, the engineer can readily scan the document for the data of interest. The Peak Flow Statistics Calculations There are three sets of data for the Peak Flow Statistics calculations (Pre-Development, Un-Mitigated, and Mitigated). As was the case for the pass/fail data, the upper right hand corner of each sheet has the file name. The first row of the data is the SWMM file name. The second row is the SWMM file time 6 See section on how a point can fail point number 3 hereon 24 I Page C C C C C stamp of the file being analyzed. The 4th, 5th, and 6th rows are the calculated values for Q10, Os, and Qi. These values are derived by linear interpolation between the nearest bounding points in the listing. While the relationship between the points in the peak flow analysis is not technically a linear relationship, the error introduced in using linear interpolation between such relatively close data points is assumed to be irrelevant. Finally, the footer row shows the report time and the page/number of pages of the data set. As was previously discussed, each storm listed was determined by reading the flow values directly from the binary output file from the SWMM program. The storms were then sorted in descending order of peak flow values. Then each storm was assigned a unique rank, then the Frequency and Return Period were calculated using Weibull formulas. Every discharge value for the entire rainfall record is listed in each of these lists. It should be noted that the derivation of these peak flow statistics values use full precision (i.e. no rounding off) of the SWMM output values. Since the precision of the calculations may not be the same as the SWMM program uses, and also the assignment of rank to values of equal peak flow value may differ slightly from the way SWMM calculates the tables, minor variances in the data values and/or the order of storms can be expected. Finally, as was previously stated, the values of the Return Period were plotted vs. the peak flow values to develop the peak flow frequency curves. Plan Check Suggestions As is the responsibility of the reviewing agency, any and all methods should be considered to verify that the SWMM analysis adequately models the site as far as hydrologic discharge is concerned, and that the data sets presented are valid results from consistent calculations, and that any and all results can be duplicated by manual methods and achieve the same results. In light of these goals, the plan checker is invited to consider the following tasks as part of the plan check process. Compare the Data Stamps for Each of the Statistics Files Used In This Analysis. For each set of calculations and report files, the first step of the process is to list out all the files in the report folder and delete those files. The very first step leaves the reports folder completely empty. Then as each successive step is performed, the results file is placed in the reports folder. Once all of the results files are complete, then the report file is compiled using the data directly from the files placed in the results folder. This means that the time stamps on each of the report files in the report should be within a minute or two depending on the speed of the computer. If the time values are more than a few minutes apart then the potential for inconsistent results files should be investigated. Verify A Few Random Storm Statistics For each of the Pre, Un-mitigate and Mitigated peak flow statics tables, a few randomly selected storms should be checked against the values taken directly from the SWMM file. This can be done by opening the corresponding SWMM file, selecting the outfall node, selecting Report>Table>By Object, Setting the time format to Date/Time, selecting the appropriate node value, and clicking the OK button to generate a table of the date/time/Total Inflow values. Now scroll down the list to the start date and time of the randomly selected storm. Verify that the start date, end date, and the highest flow value between the start and end date correspond to the values shown in the statistics table. Do this for a few storm to verify that the data corresponds to the SWMM output file. Verify by hand a few of the frequency and return period values. 25 I Page Compare Plotted Curves to Table Data Randomly check a few of the plotted points against the values found in the Peak Flow Frequency Tables. Verify by Observation that the values of Q1 0, Qs, Q2 and Q1r are reasonable. For each value shown on the reports, verify that the value shown for say QlO is in between the next higher return period and the next lower period. Also verify that the correct values for each of these return periods are plotted correctly on the peak flow frequency graph. Manually Verify That the Pass Fail Table Is Correctly Calculated Select at random several points on each of the pass/fail tables to verify that the values for post X/Y and interpolated Y look reasonable. Also check that the various test results are shown accurately in the chart and also the final pass/fail result looks accurate. Drawdown Time of Bio-filtration Surface Ponding The drawdown time for hydromodification flow control facilities was calculated by assuming a starting water surface elevation coincident with the peak operating level in the bio-filtration facility such as the elevation at the weir or the emergency spillway overflow. The instruction from the county of San Diego Department of Environmental Health (DEH) limits the drawdown time hydromodification flow control facilities to 96 hours. This restriction was implemented as mitigation to potential vector breeding issues and the subsequent risk to human health. See Attachment C for Drawdown time of each pond and derivations of drawdown times for BMPs. Certification from the landscape architect will be obtained to allow for the higher drawdown times. FJow Grate D SOIL V Poro 11:y n Sewet Figure 6 -Drawdown time (illustration does not depict the actual pond) 26 I Page I VII. SUMMARY AND CONCLUSION Hydromodification calculations were performed utilizing continuous simulation to size storm water control facilities. SWMM (Storm Water Management Model) version 5.1 distributed by USEPA was used to generate computed peak flow recurrence and flow duration series statistics. There are several tributary areas planned as industrial use treated by 4 biofiltration basins on Lots 13-15 labeled as BMP-# (Best Management Practices) with a total tributary area of approximately 10.48 acres. The areas were grouped based on its outfall and were analyzed for pre-development and mitigated post-development conditions; Whole Basin A drains to one point of compliance (POC). The analyzed SWMM runs attached show that the proposed bio-filtration facilities provided with variety of orifice flow control at the base of the gravel storage configured as shown in Figure 1 is in compliance with the HMP and BMP Manual. Lot 13-15 On POC, The flow duration curve on the following page shows the existing condition 18.4 hours (0.210%x365daysx24 hour/day= 18.4 hours). With the proposed square footage of LID areas and orifices acting as the low flow restrictor configured as shown in Figure 1 the duration of the flow is 18.0 hours {0.205%x365daysx24 hour/day =18.0 hours). This flow duration is lower than the existing condition. Therefore, this study has demonstrated that the proposed optimized bio-filtration basin is sufficient to meet the current HMP and SUSMP criteria (See Table 5). Excel Engineering 6 5 4 i 3 s "' a:: 2 J 0 ii: 0 -1 -2 0.00 (Table 5) 0.05 Flow Duration Curves 0.10 -Pre Oovelopmenl O10{5.687ofs) 0.15 (%) Percent Time Exceedance -PM1 Oave~f'll M tigattd • 011 (0.3875ofs) 0.20 27 I Page Excel Engineering STATISTICS ANALYSIS OF THE SWMM FILES FOR: DISCHARGE NODE: POC ANALYSIS DETAILS Statistics Selection: Nodes/Total Inflow Stream Susceptibility to Channel Erosion: High (Qlf = (0.l)Q2) Assumed time between storms (hours): 24 PRE-DEVELOPMENT SWMM FILE SWMM file name: V:\16\16024\engineering\GPIP\current\Storm -Lot-13-15\SWMM\SWMM CURRENT\LOT 13- 15\16024 PRE DEVELOPED LOT 13-15 SWMM.out SWMM file time stamp: 11/15/2016 10:30:47 AM Selected Node to Analyze: POC POST-DEVELOPMENT MITIGATED SWMM FILE SWMM file name: V:\16\16024\engineering\GPIP\current\Storm -Lot-13-15\SWMM\SWMM CURRENT\LOT 13- 15\16024 POST MITIGATED LOT 13-15 SWMM.out SWMM file time stamp: 3/13/2017 1:44:46 PM Selected Node to Analyze: POC MITIGATED CONDITIONS RESULTS For the Mitigated Conditions: Peak Flow Conditions PASS Flow Duration Conditions PASS The Mitigated Conditions peak flow frequency curve is composed of 723 points. Of the points, 5 point(s) are above the flow control upper limit (Ql0), 562 point(s) are below the low flow threshold value (Qlf). Of the points within the flow control range (Qlf to Ql0), 156 point(s) have a lower peak flow rate than pre-development conditions. These points all pass. There are no points that failed, therefore the unmitigated conditions peak flow requirements have been met. The Mitigated Conditions flow duration curve is composed of 100 flow bins (points) between the upper flow threshold (cfs) and lower flow threshold (cfs). Each point represents the number of hours where the discharge was equal to or greater than the discharge value, but less than the next greater flow value. Comparing the post- development flow duration curve to the pre-development curve, 99 point(s) have a lower duration than pre- development conditions, and 1 point(s) have a duration that exceeds the pre-development by less than 10%, and for less than 10% of the curve length. These points all pass. There are no points that failed, therefore the unmitigated conditions flow duration requirements have been met. V:\16\16024\engineering\GPIP\current\Storm -Lot-13-15\SWMM\SWMM CURRENT\LOT 13-15\Statistics Reports\eoc\statistics Resuits-eoc pdf 3/13/20171:50:51 PM software version: 1.0.6103.20271 ---- Excel Engineering Peak Flow Frequency Curves 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .......... . 9 .......................................... ·-· ............ ·-· ............ . 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ......... . -7 ......................................... J!? C, -6 -:-............ -:-·✓-'· ....... -:-............ -:-............ -:-............ -:-............ -:-.. . ~ .2 5 LL ... •'• ............ -·............. . ......................................... •'• .. . ~ cu 4 Cl) .: ... }. .. J ....... : .............. : .............. : .............. : .............. : .............. : ... . a. 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .......... . 2 1 0 -Pre Development l · • • • · • · • · · •· · · · • · · · · · · · · • •· · · · · · · · · · · • • · ·. · · · · · · · · · · · · · ·• · · · · · · · · · · 1::;: ~~~ 1:;;;~eat Mitigated ............ -: ............. -: ............. -: .............. : ........... -¼-05 (4.782cfs) · · · · -¼-02 (3.675cfs) . : : : ; -¼-Olf (0.3675cfs) 0 10 20 30 40 50 60 Return Period (Years) I r'I .--,--. r, r"I r-~ .--1 r 1 r 1 r 1 ,-1 r·-1 r1 r 1 r-1 r -1 r 1 r· 1 r1 Excel Engineering peakFlowPassFailMitigated.TXT ComparePost-Development Curve to Pre-Oevelopmerifeurve post-development SWMM file: V:\16\16024\engineering\GPIP\current\Storm -Lot-13-15\SWMM\SWMM CURRENT\LOT 13-15\16024 POST MITIGATED LOT 13-15 SWMM.out post-development time stamp: 3/13/2017 1 :44:46 PM Come_ared to: pre-development SWMM file: V:\16\16024\engineering\GPIP\current\Storm -Lot-13-15\SWMM\SWMM CURRENT\LOT 13-15\16024 PRE DEVELOPED LOT 13-15 SWMM.out pre-development time stamp: 11/15/2016 10:30:47 AM ~~ .,,_q_ q_O<,; I I i-r- , 1,,0 I /...,;.. 0 0 i..0 1,,0 i cP . ~"5 0~ 0~ 0~ ~ I ~,o I ~~ q_<: .,,_<:::J <:::) .,,_I-.,,_--1 "'"' ~ " ~ 0 ~ ~ ,.,.<a &· q_O q_<: ff' ,._O .,,_'1 q_v ,. 0 ~ ~ i oq 0 I 58.00 f 9.64 9.42 FALSE FALSE FALSE Pass-Qpost Above Flow Control Upper Limit ~1~ . 29.00 • 7 .03 6.63 FALSE j FALSE FALSE Pass-C,,Ost Ab<we Flow CoITTrol Uppe, Umtt ___ 2 __ 4 19.33 , 6.40 6.56 FALSE I FALSE FALSE Pass-Qpost Above Flow Control Upper Limit 3 14.50 6.34 6.40 FALSE FALSE FALSE Pass-Qpost Above Flow Control Upper Limit --4---·· 11.60. 5.85 5.83 FALSE FALSE FALSE Pass-Qpost Above Flow Control Upper Limit __ 5_ -~I__ 9.67 5.41 5.66 TRUE FALSE FALSE Pass-Qpost < Qpre t= 6 ] 8.29 5.36 5.65 TRUE FALSE FALSE Pass-Qpost < Qpre Z_ 7.25 5.36 5.60 TRUE FALSE FALSE Pass-Qpost < Qpre 8 , 6.44 5.13 5.31 TRUE FALSE FALSE Pass-Qpost < Qpre 9 7 5.80 1 4.89 ! 5.13 i TRUE i FALSE l FALSE Pass-Qpost < Qpre 10 I 5.27 I 4.63 1 4.79 I TRUE I FALSE ' FALSE Pass-Qpost < Qpre 11 • 4.83 I 4.36 I 4.78 I TRUE I FALSE I FALSE Pass-Qpost < Qpre --~ 1---·--1-2--7= 4.46 , 4.00 _ 1 4.71 1 TRUE _ i FALSE I FALSE Pass-Qpost < Qpre -----i _13 __ 1 4.14 [3·_86 . 4.68 I TRUE I FALSE I FALSE Pass-Qpost < Qpre 14 i 3.87 3.8? [ 4.67l TRUE L FALSE _ _J FALSE _ P~s-Qpost < Qpre 15 3.63 3.79 4.63 TRUE FALSE FALSE Pass-Qpost < Qpre 16 __ ~ _ -~ 3. 78 r=_4.fil_____ TRUE FALSE FALSE Pass-Qpost < Qpre 17 3.22 3.69 4.51 TRUE FALSE FALSE Pass-Q st< Qpre ~--l-1-3.05 i 3.65 4.48 TRUE FALSE FALSE Pass-Qpost < Qpre 19 : · 2.90 I 3.63 4.44 TRUE FALSE FALSE Pass-Qpost < Qpre r _ 20 2. 76 I 3.61 _ 1 4.30 I TRUE _ I FALSE : FALSE Pass-Qpost < Qpre ==l f---21 _j_ 2.64 -+-3.49 4.27 1 TRUE I FALSE FALSE Pass-Qpost < Qpre -~----I -2.52 326 --~-4.05 1 TRUE I FALSE FALSE Pass-Qpost < Qpre 23 J 2AL_ ! __ 3.15 __ . 4.02 I TRUE I FALSE FALSE Pass-Qoost < Qpre 24 1 2.32 I 3.12 ' 3.93 I TRUE I FALSE I FALSE Pass-Qpost < Qpre r--25 1 2.23 I 3.07 I 3.76 TRUE , FALSE , FALSE Pass-Qpost < Qpre 26 I 2.15 3.05 __i_ 3.74 TRUE FALSE I FALSE Pass-Qpost < Qpre r----27 I 2.07 I ~ ' 3.70 TRUE FALSE I FALSE Pass-Qoost < Qpre --I 28 -2.00 I 3.oo---i 3.68 TRUE I FALSE FALSE Pass-Qpost < Qpre f--29 I _ 1.93 I 2.97 I 3.60 TRUE FALSE i FALSE Pass-Qpost < Qpre ~J 1.87 · ___ 2.!3_§__ i 3.59 TRUE FALSE I FALSE Pass-Qpost < Qpre 31 I 1.81 =-i 2.64 3.48 TRUE FALSE I FALSE Pass-Qpost < Qpre t==:fa--~ ~=+. _ ___g._!;~ II 3.32 -1----TRUE -~ FALSE I FALSE Pass-Qpost < Qpre ---~ 33 I 1.71 , 2.58 3.30 TRUE , ~ FALSE ' FALSE Pass-Qpost < Qpre 3/13/2017 1:50 PM 1/18 ,-· 1 I r, r, r-. r, r, r-, ,. 1 r-1 r 1 r~-, ,. 1 r l r1 ,, r, r·"'I r .. , r", ' 1 Excel Engineering peakFlowPassFailMitigated.TXT I I I I !..0 ~i!t< I ... ~ 0 ~o !..0 !..0 (fl I ~ 0'75 0.::,, I (fl (fl o\o .,.,_q_ .,.,_<::J I ()0 t.. ~"1 "(:S i-q_~ ~ " q_O<-; «f q_O<-; I q_'-0 i (flo 0<-; .,.,_"1 q_tt><-; 0~ 0<-; I (fl 34 1.66 2.55 3.23 TRUE FALSE FALSE Pass-Qpost < Qpre 35 1.61 2.46 3.17 TRUE FALSE FALSE Pass-Qoost < Qpre 36 1.57 I 2.45 3.16 TRUE FALSE FALSE Pass-Qpost < Qpre I .__E__ 1.53 2.44 3.16 TRUE FALSE FALSE Pass-Qpost < Qpre I ~~ 1.49 2.33 3.13 TRUE FALSE FALSE Pass-Qpost < Qpre 39 1.45 I 2.30 3.09 : TRUE FALSE FALSE Pass-Qpost < Qpre 40 1.42 2.23 3.05 TRUE FALSE FALSE Pass-Qpost < Qore 41 1.38 2.06 3.03 TRUE FALSE FALSE Pass-Qpost < Qpre 42 1.35 2.00 3.03 TRUE FALSE FALSE Pass-Qpost < Qpre 43 ______l 1.32 1.98 3.01 l TRUE FALSE FALSE Pass-Qpost < Qore 44 • 1.29 I - 1.85 2.96 i TRUE i FALSE FALSE Pass-Qpost < Qpre ~§__1= 1.26 ·--1.84 2.95 TRUE FALSE I FALSE Pass-Qpost < Qpre 46 I 1.23 1.83 2.93 TRUE FALSE FALSE Pass-Qpost < Qore 47 i 1.21 I 1.83 2.92 I TRUE ' FALSE FALSE Pass-Qpost < Qore I -48 1.18 1.78 2.92 TRUE FALSE I FALSE Pass-Qpost < Qpre ~- 49 1.16 1.73 I 2.88 TRUE FALSE I FALSE Pass-Qpost < Qpre ~. 50 1 1.14 1.66 2.82 I TRUE I FALSE FALSE Pass-Qpost < Qpre 51 1.12 1.63 2.76 I TRUE i FALSE FALSE Pass-Qpost < Qpre 52 _J___ 1. 09 1.61 2.74 TRUE FALSE I FALSE Pass-Qpost < Qpre ~___g_ . 1.07 ! 1.61 I 2.74 TRUE FALSE FALSE Pass-Qpost < Qpre 54 1.06 1.59 2.68 TRUE i FALSE FALSE Pass-Qpost < Qpre ·--55 1.04 1.55 I 2.67 TRUE I FALSE I FALSE Pass-Qpost < Qpre 56 1.02 I 1.55 2.62 TRUE FALSE FALSE Pass-Qpost < Qpre 57 1.00 1.54 2.62 TRUE . FALSE FALSE Pass-Qpost < Qpre -0.98 1.51 2.60 TRUE FALSE FALSE Pass-Qpost < Qpre 58 I 59 ·-~0.97 ! 1.51 2.60 TRUE FALSE I FALSE Pass-Qpost < Qpre 60 0.95 1.51 2.55 TRUE : FALSE FALSE Pass-Qpost < Qpre 61 0.94 1.50 i 2.51 TRUE FALSE FALSE Pass-Qpost < Qpre 62 0.92 1.48 2.51 TRUE FALSE FALSE Pass-Qpost < Qpre ~.~. 0.91 .~. 1.47 i 2.49 TRUE FALSE I FALSE Pass-Qpost < Qpre 64 0.89 1.45 2.49 TRUE FALSE FALSE Pass-Qpost < Qpre -65 0.88 I 1.41 2.42 I TRUE FALSE FALSE Pass-Qoost < Qpre 66 0.87 1.39 I 2.42 TRUE FALSE FALSE Pass-Qpost < Qpre 67 0.85 1.39 2.41 TRUE FALSE FALSE Pass-Qpost < Qpre 68 1 ~ ' 136 2.41 TRUE FALSE : FALSE Pass-Qpost < Qpre I-------~-----'--------" 69 0.83 --t--1.35 2.40 TRUE FALSE FALSE Pass-Qpost < Qpre 70 0.82 1.32 2.38 i TRUE I FALSE FALSE Pass-Qpost < Qpre 71 --. 0.81 . 1.28 I 2.36 TRUE FALSE FALSE Pass-Qpost < Qpre 72 I 0.80 _J_ 1.25 =+=2.35 TRUE FALSE FALSE Pass-Qpost < Qpre 73 I 0.78 -~ 1.23 2.31 I TRUE I FALSE FALSE Pass-Qpost < Qpre ~ . . 2. 30 ··-·---·~ 74 0.77 TRUE FALSE FALSE I Pass-Qpost < Qpre -~ 75 0.76 1.21 2.28 TRUE FALSE FALSE Pass-Qoost < Qore 3/13/2017 1:50 PM 2/18 I r-'I r, r~ r1I r,,. r 1 r 1 r 1 ,., r-1 r· 1 ' 1 r 1 ,-1 r -, r, r, r1 Excel Engineering peakFlowPassFailMitigated.TXT ~>!l< '!',..q qo"' ! I ~ ~ 0 0 ~0 ~0 cfo ' -~ ,-S ; 0~ ~ : (fo cfo ~\o i ~~ ' ~ 0 r:; r,; 'l>"' ~<:,-qO q~ (foO 0~0 ~-, q <:foo I r,,o 1· <J <>0 l ,.,_t-,.,_-, ," I J c-~-0.75 1 1.17 2.24 ' TRUE FALSE FALSE Pass-Qpost < Qpre 77 0.74 1.16 2.21 TRUE FALSE FALSE Pass-Qpost < Qpre 78 0.73 1.12 2.18 TRUE FALSE FALSE Pass-Qpost<Opre 79 =t' 0.73 1.12 2.17 1 TRUE FALSE ! FALSE Pass-Qpost<Opre ~ 0. 72 : 1.11 I 2.15 ; TRUE FALSE FALSE Pass-Qpost < Qpre 1 1-----------81--_I -0.71 ~/ 1.10 ! 2.14 -I TRUE FALSE FALSE Pass-Qpost < Qpre · ------I 82 0.70 1.08 [ __ 2.12 J TRUE FALSE FALSE Pass-Qpost < Qpre 83 0.69 1.07 2.12 I TRUE ; FALSE FALSE Pass-Qpost < Qpre_ 84 I 0.68 1.03 2.08 1 TRUE I FALSE FALSE Pass-Qpost < Qpre_ ~ I 0.67 1.03 I 2.05 I TRUE i FALSE FALSE Pass-Qpost < Qpre_ ~-0.67 1.03 / 2.03 J TRUE I FALSE FALSE Pass-Qpost < Qpre 87 I 0.66 I 0.99 2.01 TRUE ' FALSE : FALSE Pass-Qpost < Qpre 88 -+ 0.65 I 0.99 ~ _ 2.00 I TRUE FALSE FALSE Pass-"-«lpre 89 0.64 I 0.98 I 1.98 TRUE FALSE FALSE Pass-Qpost < Qpre 90 i 0.64 I 0.98_----f--_ 1.96 TRUE FALSE FALSE Pass-Qpost < Qpre 11 c_____[I_---+--0.63 I 0.96 , 1.95 TRUE FALSE , FALSE Pass-Qpost < Qpre 92 __L_ 0.62 I 0.96 1.94 1 TRUE FALSE FALSE Pass-Qpost < Qpre r== 93 1 0.62 I 0.96 1 1.91 I TRUE I FALSE I FALSE Pass-Qpost < Qpre 94 I 0.61 0.93 I 1.91 TRUE FALSE FALSE Pass-Qpost < Qpre __ J)L___ __ 1 0.60 I _ 0.91 1.90 TRUE , FALSE FALSE Pass-Qpost < Qpre 96 0.60 0.91 1.87 TRUE FALSE FALSE Pass-Qpost < Qpre ~ 1 0.59 i 0.88 I 1.82 TRUE I FALSE FALSE Pass-Qpost < Qpre 98 I 0.59 0.87 ! 1.81 TRUE FALSE I FALSE Pass-Qpost < Qpre 99 1 0.58 0.82 1.77 -TRUE FALSE FALSE Pass-Qpost < Qpre 100 I 0.57 0.82 i 1.76 TRUE FALSE FALSE Pass-Qpost < Qpre o--101 , 0.57 0.81 I 1.74 TRUE FALSE FALSE Pass-Qpost < Qpre ~-I 0.56 0.81 I 1.71 , TRUE : FALSE L_ FALSE Pass-Qpost < Qpre t== 103 ~ 0.56 0.81 1.71 TRUE I FALSE FALSE Pass-Qpost < Qpre 104 0.55 _ 0.79 1.70 I TRUE I FALSE FALSE Pass-Qpost < Qpre 105 0.55 0.79 I 1.69 I TRUE I FALSE FALSE Pass-Qpost < Qpre 1---~ 0.54 0.79-j_ 1.68_~' TRUE FALSE FALSE 1Pass-Qpost < Qpre ,v, v . ..,.. v.,o 1.67 TRUE I FALSE j_ FALSE I Pass-Qpost < Qpre 108 0.53 0.75 1.62 TRUE FALSE FALSE I Pass-Qpost < Qpre 109 I 0.53 ±= 0.74 1.60 TRUE I -FALSE FALSE Pass-Qpost < Qpre 110 0.52 0.74 1.56 TRUE FALSE FALSE Pass-Qpost < Qpre r111~ 0.52 --+--0.73 -+ 1.56 TRUE FALSE FALSE Pass-Qpost < Qpre 112 I 0.51 0.72 I 1.55 TR_!JE L FALSE \_ FALSE [P~s-Qpost < Qpre 113 1 0.51 -r---0. 72 1.55 TRUE FALSE FALSE Pass-Qpost < Qpre 1----D4 --=--o.50··-----r-~_ 0.71 _ 1.55 TRUE FALSE _ FALSE Pass-Qpost < Qpre 115 ..i._ 0.50 • 0.70_-+ __ 1.53 -TRUE -+--FALSE , FALSE Pass-Q st< Qpre --116 _L__._0,_§()__ I 0.69 1.53 I TRUE =+=-FALSE ' FALSE Pass-Qpost < Qpre ~--------__, 117 1 0.49 0.67 , _ 1.52 __ , ______IB_UE -FALSE~-~ FALSE Pass-Qpost < Qpre 3/13/2017 1:50 PM 3/18 r 1 I ..,,., r"W r-, r, r, r, r-1 , .. 1 r -, ,,. 1 r1 r 1 r-1 ,,-·-, r~, r"'I r·'"I r,.-, r·~1 Excel Engineering peakFlowPassFailMitigated.TXT ~0 ~ 0 0 ~0 ~0 ~ I :<._ 'l< ~ ~ ~ ~ ~ o\o ✓-~ ~ 0 <>0 0 /,. '7 "<:s ~ ~ ~~ ~ 1 0<:j ~ ~ "-I 'b-'? ~.o ~~ I ~o I ~~ 0~ O~o ~-, I~ L___________ ~ ~o I i--------118 0.49 ··1 0.65-. 1.52 TRUE FALSE FALSE Pass-Qpost < Qpre ---1 119 0.48 1 0.64 1.51 TRUE FALSE FALSE Pass-Qpost < Qpre 120 0.48 0.64 1.50 TRUE FALSE FALSE I Pass-Qpost < Qpre 121 I 0.48 I 0.63 I 1.48 I TRUE I FALSE I FALSE Pass-Qpost < Qpre C 122 . , 0.47 0.63 1.46 I TRUE I FALSE i FALSE Pass-Qpost < Qpre I 123 E 0.47 · 0.62 1.46 , TRUE I FALSE I FALSE Pass-Qpost < Qpre ~ 1---------~-0.46 I 0.62° I 1.45 I TRUE I FALSE I FALSE Pass-Qoost < Qpre I 125 0.46 I 0.61 I 1.44 I TRUE I FALSE I FALSE Pass-Qoost < Qpre 126 I 0.46 ! . 0.60 --1.41 TRUE I FALSE I FALSE Pass-Qpost < Qpre 1--~=+ 0.45 I 0.60 1.40 I TRUE ! FALSE I FALSE Pass-Qpost < Qpre 128 0.45 0.59 1.40 I TRUE FALSE FALSE Pass-Qpost < Qpre 129 ! 0.45 -0.57 1.39 I TRUE FALSE ' FALSE Pass-Qpost < Qpre --1 130 I 0.44 ! .. 0.57 _ . 1.37 1 TRUE FALSE FALSE Pass-Qpost < Qpre 131 0.44 , 0.57 1.36 , TRUE FALSE FALSE Pass-Qpost < Qpre ~ 0.44 I 0.56 1.35 I TRUE I FALSE FALSE Pass-Qpost < Qpre I ~-. 0.43 0.54 --, 1.35 I TRUE FALSE , FALSE Pass-Qpost < Qpre I 134 I 0.43 0.52 I 1.35 I TRUE I FALSE I FALSE Pass-Qpost < Qpre 135 0.43 0.52 1.32 ,-TRUE FALSE FALSE Pass-Qpost < Qpre 136 0.42 0.51 1.32 TRUE FALSE FALSE Pass-Qpost < Qpre . 1t=t7 0.42 0.50 1.31 TRUE FALSE FALSE Pass-Qpost < Qpre --138 0.42 0.50 1.30 TRUE FALSE FALSE Pass-Qpost < Qpre 139 .--0-.41 I 0.50 1.29 TRUE FALSE FALSE Pass-Qpost < Qpre --·-- 140 0.41 0.48 1.29 TRUE FALSE FALSE Pass-Qpost < Qpre ~ 41 . 0.41 . 0.47 1.27 TRUE FALSE FALSE Pass-Qpost < Qpre 0.41 0.47 1.27 TRUE FALSE FALSE Pass-Qpost < Qpre 143 . 0.40 0.46 1.26 TRUE FALSE FALSE Pass-Qpost < Qpre 144 0.40 0.46 1.25 TRUE FALSE FALSE I Pass-Qpost < Qpre 145 0.40 0.45 1.24 TRUE FALSE FALSE / Pass-Qpost < Qpre 146 ±1 -0.40 0.44 1.24 ! TRUE I FALSE FALSE Pass-Qpost < Qpre t 147 _ 0.39 1 0.43 I 1.21 I TRUE FALSE FALSE Pass-Qpost < Qpre ~ I 0.39 0.43 I 1.21 I TRUE FALSE FALSE Pass-Qpost < Qpre 149 0.39 , 0.43 ! 1.19 J TRUE J FALSE FALSE Pass-Qpost < Qpre 150 0.38 0.41 1.18 I TRUE I FALSE I FALSE Pass-Qpost < Qpre 151 0.38 . 0.41 1.18 1 TRUE I FALSE I FALSE Pass-Qpost < Qpre E 152 --,---~. 0.38 0.40 I 1.18 I TRUE , FALSE I FALSE Pass-Qpost < Qpre . ,_ ___ 15_3_ , 0.38 0.39 ' 1.18 I TRUE I FALSE I FALSE Pass-Qpost < Qpre 154 =i=-0.37 . 0.39 1.17 . TRUE. , FALSE I FALSE Pass-Qpost < Qpre ~ ~ 0.37 J _ 0.39 -r--1.16 I TRUE 1 -· FALSE I FALSE Pass-Qpost < Qpre r=-1_\5_6 __ E'. 0.37 -1. ·-0.38 · .. r-1.15 . TRUE I FALSE ! FALSE IPass-Qpost < Qpre I' [~ 157__ 0.37 __;__ 0.38 ~-1.10_---+-_ TRUE I FALSE FALSE Pass-Qpost < Qpre _ 158 0.37 . 0.37 1.09 I TRUE __J__ __ FALSE I FALSE Pass-Qpost < Qpre --·---- 159 0.36 1 0.37 1.08 TB_UE _____L_ FALSE I FALSE Pass-Qpost < Qpre 3/13/2017 1:50 PM 4/18 I r-11 .. -... r~ l"°'W r, r-1 r 1 ,-1 r 1 r 1 f I r 1 r 1 r1 r, r, r, r=, r -w Excel Engineering peakFlowPassFailMitigated.TXT &0 ~ . 0 0 ~ ~ .,_{<> 1 0 O ,.s§-,.s§-, I -~ f,,. ~ I ~ ~ V' V' o,o ~~ "'-q_ ,o <:l <>0 "'-I, "'-.., ..._,,;;:, ~ q_o~ _J ~-:-q_ _ __j__ q_O'} -~-q_,0 o'l ____J__ o<f~ _o~~-oc}=..,-~--t-cq_~'ll'-r<>-~-~----------------l 160 ' 0.36 I 0.37 + 1.06 TRUE FALSE FALSE Pass-Qpost < Qpre 161 I 0.36 0.36 1.06 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 162 , 0.36 0.36 1.06 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 163 0.35 __J__ 0.36 / 1.04 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ,__ 164 0.35 --------i__ _____Q1§_ --~ ___ 1.01 i FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ----1 165 0.35 , 0.32 1.00 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold • vv v,vv v-v, • •VV FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 167 0.35 0.31 0.99 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 168 I 0.34 ' 0.31 1 0.98 I FALSE I FALSE I FALSE I Pass-Qpost Below Flow Control Threshold 169 _ . 0.34 1 , 0.30 0.98 ! FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold _170 ----r-0.34 _ 0.29 --+-0.98 FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold ,____ 171 I 0.34 ! 0.28 , 0.97 -1 FALSE : FALSE FALSE Pass-Qpost Below Flow Control Threshold ---11£_-----t--0.34 =+' 0.28 -_ ' 0.96 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ! ---:r?L___j_ 0.33 0.28 · 0.96 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~4____j -0.33 -~ ==t--0.93 FALSE -FALSE I FALSE Pass-Qpost Below Flow Control Threshold 175 0.33 0.27 1 0.92 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 176 I 0.33 0.27 0.92 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 177 I -0.33 0.26 ~ 0.91 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold E 178 I 0.32 0.26 I 0.91 =+ FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold --- =-179 I 0.32 _;_____Q.~j _______QJ}_l _ FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 180 I 0.32 i 0.25 0.91 , FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold _181 I 0.32 . 0.21 -I 0.88 i .. FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 1----182 i 0.32 D.20 1 0.85 J FALSE I FALSE I FALSE Pass-Qpost Below Flow Control Threshold 183 0.32 0.20 0.84 FALSE FALSE FALSE [ Pass-Qpost Below Flow Control Threshold 184 i 0.31 1 0.20 I 0.83 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 185 1 0.31 0.20 [ 0.79 FALSE -FALSE FALSE Pass-Qpost Below Flow Control Threshold 186 0.31 0.20 0.78 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~-0.31 0.19 0.78 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold -188 0.31 0.19 ---1----0.73 ' FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 1 189 0.31 , 0.18 --+--0. 73 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold I ~ 190 i ---0-.30 I 0.17 -~--FALSE FALSE -FALSE Pass-Qpost Below Flow Control Threshold 191 0.30 0.17 0.73 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 1------192 _ _____;_ 0.30 ' 0.17 [ 0.69 FALSE FALSE : FALSE Pass-QpostBelowFlowControlThreshold 193 i 0.30 : 0.17 0.69 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 194 ___J__ 0.30 -=t 0.17 , _0.68 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 195 -,----0.30 · 0.17 == 0.68 [ _ FALSE FALSE ' FALSE Pass-Qpost Below Flow Control Threshold ~96 _. I 0.29 0.16 __:__ 0.67 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ---l 197 0.29 ! 0.16 0.67 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold I --198 ~---~. _ ~=!_ _ 0.16 I 0.66 / FALSE I FALSE I FALSE Pass-Qpost Below Flow Control Threshold ~ 199 0.29 . 0.16 1 0.66 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold r~ ---l-~0.29 ___ .. __ 0.16 --_ -• ___ o~c____i=ALSE _ FALSE __ +--FALSE Pass-Qpost Below Flow Control Threshold 201 ! 0.29 0.16 i 0.66 I FALSE ==t FALSE __ , __ FALSE Pass-Qpost Below Flow Control Threshold 3/13/2017 1:50 PM 5/18 I r-1 r, r--w r ... r-w r-1 r 1 r·1 r 1 f'I ,--, ,-1 r 1 ,-1 r, r,, r, r, Excel Engineering peakFlowPassFailMitigated.TXT 1 ~ ~ I ~ ~ ~ f... i ~ ' ~o ~o ~ ~ o\o 1'..~ r,\~ ()0 ()0 t, • -, ,._ .._<:::i ~ ' ~ 0 ~ ~' ~o : ~f ~o ~--0~o 0~o ~-, I ~~ ~J : ~'b' ~·-~·---~-~--------~ 202 . 0.29 0.16 0.65 FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold 0.16 n "A v-V"T __ ~l ___£_AL~ , _ FALSE i FALSE I Pass-Qpost Below Flow Control Threshold 204 0.28 0.16 0.64 FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold 205 0.28 0.16 0.64 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ___ __QJ§_ 0.62 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 207 0.28 0.16 0.62 FALSE FALSE FALSE Pass-Q st Below Flow Control Threshold 208 0.28 0.16 0.62 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 209 0.28 0. f6 0.61 FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold E~l 0.28 0.16 0.60 I FALSE I FALSE ' FALSE Pass-Qpost Below Flow Control Threshold 211 0.27 0.16 0.59 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 212 0.27 0.15 0.59 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold --~----,--0.27 0.15 J 0.59 FALSE -FALSE FALSE Pass-Qpost Below Flow Control Threshold 214 0.27 0.15 0.58 , FALSE ' FALSE ! FALSE Pass-Qpost Below Flow Control Threshold 215 0.27 0.15 0.57 : FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 216 0.27 f 0.15 0.57 I FALSE -FALSE FALSE Pass-Qpost Below Flow Control Threshold ~ ~--0.27 -i 0.15 _ 0.56 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold -I 218 0.27 1 0.15 0.56 FALSE , FALSE I FALSE Pass-Qpost Below Flow Control Threshold 219 l 0.26 0.15 0.55 FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold e--220 0.26 I 0.15 ; 0.55 I FALSE I FALSE I FALSE Pass-Qpost Below Flow Control Threshold 221 I 0.26 I 0.15 I 0.55 I FALSE ! FALSE I FALSE Pass-Qpost Below Flow Control Threshold I 222 I 0.26 0.15 . 0.55 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold I 223 0.26 I-0.15 i 0.54 FALSE I FALSE I FALSE Pass-Qpost Below Flow Control Threshold 224 0.26 j 0.15 J 0.52 FALSE J FALSE 1 FALSE Pass-OQOSt Below Flow Control Threshold 225 [ 0.26 I 0.15 I 0.52 I FALSE FALSE i FALSE Pass-Qpost Below Flow Control Threshold 226 , 0.26 , 0.15 0.52 i FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 227 0.25 I 0.15 0.52 I FALSE -FALSE I FALSE Pass-Qpost Below Flow Control Threshold I 228 r-0.25 ~-~ 0.51 I FALSE FALSE : FALSE Pass-Qpost Below Flow Control Threshold I 229 0.25 0.15 , 0_.50 l FALSE : FALSE J FALSE Pass-Qpost Below Flow Control Threshold 230 _ ! 0.25 -+--_Q._1_L.. 0.50 I FALSE I FALSE I FALSE I Pass-Qpost Below Flow Control Threshold ---1 ~~~---0.25 __()._1_§__ i _ 0~ FALSE _ I. FALSE I FALSE I Pass-Qpost Below Flow Control Threshold 232 I 0.25 0.15 ~ 0.49 FALSE , FALSE FALSE Pass-Qpost Below Flow Control Threshold 233 0.25 i -0:15 . 0.46 i FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 234 0.25 I 0.15 1 0.45 I FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold _ 235 I 0.25 I 0.15 I 0.44 I FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 236 0.25 I 0.15 I 0.44 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 237 0.24 i 0.15 ' . --~.. 1 FALSE i FALSE FALSE Pass-Qpost Below Flow Control Threshold - 238 , 0.24 I 0.15 I 0.42 I FALSE I FALSE FALSE , Pass-Qpost Below Flow Control Threshold ~39 =t=-0.24 I 0.15 I 0.41 FALSE I FALSE ' FALSE Pass-Qpost Below Flow Control Threshold --~ 1 0.24 I 0.15 0.41 / FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 241 __ . •--0.24 __;_ _0~ , 0.41 FALSE I FALSE I FALSE Pass-Qpost Below Flow Control Threshold 242 _____J_ 0.24 ! 0.15 =i,=o.41 I FALSE ' FALSE FALSE Pass-Qpost Below Flow Control Threshold 243 _ [ .. 0-:-24 ----0.15 , 0:-41---r FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ·-- 3/13/2017 1:50 PM 6/18 r, • r·-, r, .... r--w .. , r1 r 1 f I r 1 ,·-1 ,-1 r 1 ,.-1 r1 r I r, r, r, r-" Excel Engineering pea kFlowPassFa i IM itigated. TXT I I I I I 1,.0 I ~;;.. 1,.0 <10 (§i I ~~ 0 ~o ~ I ~~ 0~ I ~ I o\o "'-q_ I "'-<J <::)0 I "-I, I "'-'1 ,1:> i q_~ " q_Or.,; ~-:-q_Or.,; q_<..0 or,; or,; "'-'1 q_'t,r.,; I oq oq or.,; I I I (§i I _______ --.------------_ 244 I 0.24 0.15 0-40 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 245 : 0.24 0.14 I 0.40 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 246 0.24 : 0.14 0.40 I FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 247 0.23 0.14 I 0.40 FALSE FALSE FALSE Pass-Qnnst Below Flow Control Threshold 248 I 0.23 0.14 0.39 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~0.23 -0.14 0.39 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~ 249 I 250 0.23 i 0.14 0.39 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 251 ! 0.23 0.14 0.39 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 252 0.23 0.14 ! 0.38 FALSE FALSE : FALSE Pass-Qpost Below Flow Control Threshold ~ 253 0.23 ' 0.14 0.38 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~ 254 0.23 0.14 0.37 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 255 0.23 0.14 0.37 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 256 0.23 0.14 0.36 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 257 I 0.23 0.14 0.36 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~--258 -+ -· 0.22 0.14 : 0.36 FALSE I FALSE i FALSE Pass-Qpost Below Flow Control Threshold 259 0.22 0.14 0.36 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 260 I 0.22 0.14 0.35 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold '------261 0.22 I 0.14 0.32 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 262 0.22 i 0.14 0.32 FALSE FALSE 1 FALSE Pass-Qpost Below Flow Control Threshold 263 I 0.22 0.14 I 0.32 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold I ~ 0.22 0.14 ! 0.31 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 264 I 265 I 0.22 I 0.14 0.30 : FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 266 ' 0.22 0.14 i 0.30 FALSE FALSE : FALSE Pass-Qpost Below Flow Control Threshold 267 0.22 0.14 0.29 --FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 0.22 0.13 ! 0.29 I FALSE ' FALSE FALSE Pass-Qpost Below Flow Control Threshold 268 269 I ' --0.22 0.13 I 0.28 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ' -- 270 0.21 0.13 0.28 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 271 0.21 0.13 ' 0.27 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold --~--+--0.21 I 0.13 0.27 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold , ---273 0.21 0.13 ' 0.27 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 274 0.21 cff §------t 0.25 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ' 275 0.21 0.13 : 0.24 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold -1 -FALSE I FALSE Pass-Qpost Below Flow Control Threshold 276 0.21 0.13 0.23 FALSE 277 I 0.21 0.13 I 0.23 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 278 1-_Q._?_!__± __Q._13 0.22 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 279 · 0.21 0.13 0.22 FALSE i FALSE FALSE Pass-Qpost Below Flow Control Threshold C----------C----_,_ __ ---- 280 ~-0.21 ---i-0.13 i 0.21 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold _ 281 I 0.21 1 0.13 0.21 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold FALSE --FALSE FALSE Pass-Qpost Below Flow Control Threshold 282 I 0.21 +--0.13 0.21 1 283 I 0.20 L----0.13 _ 0.20 FALSE i FALSE FALSE Pass-Qpost Below Flow Control Threshold ~-284----~~ Q.1-3---0.20 -FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold ~-~-----+--285 i 0.20 0.13 i 0.20 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 3/13/2017 1:50 PM 7/18 I r, r, r~ r, r, r, r .. 1 ,-· I r 1 ,-1 r1 r, r,, r·1 r, r, r, r, Excel Engineering peakFlowPassFail Mitigated. TXT ~'l< ~q_ q_O~ vSo/- q_'-0 ~~ I ~o I ()0 ~ q_O~ &0 0 &0 &0 (fl ~ (fl (fl o\o V ' 0~ .S:,~ ' -1 (fl 0-1 ' ~ ~~ q_ttt,;. ~ : r--0 ~/., ~.., ...._....,,;;:, (Po L 286 · I 0.20 I · 0.13 I 0.20 FALSE I FALSE FALSE I Pass-Qpost Below Flow Control Threshold I, 287 I 0.20 I 0.13 0.19 , FALSE I FALSE FALSE I Pass-Qpost Below Flow Control Threshold 288 I 0.20 I 0.13 I 0.19 I FALSE I FALSE i FALSE Pass-QpostBelowFlowControlThreshold ~ 0.20 I 0.13 I 0.18 I FALSE i FALSE I FALSE Pass-Qpost Below Flow Control Threshold 1 290 0.20 I. 0.13 ! 0.18 I FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 291 0.20 J 0.13 0.18 1 FALSE FALSE ! FALSE Pass-QpostBelowFlowControlThreshold ----------I 292 0.20 0.13 I 0.17 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 293 , 0.20 -i 0.13 I 0.17 I FALSE FALSE I FALSE I Pass-Qpost Below Flow Control Threshold 294 0.20 0.12 0.17 FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold 1 29~·-+ 0.20 0.12 0.16 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ------I 296 0.20 0.12 0.15 FALSE FALSE FALSE Pass-Qp_ost Below Flow Control Threshold ,__ __ .297 I 0.20 I 0.12 0.15 ! FALSE I FALSE ! FALSE Pass-Qpost Below Flow Control Threshold 298 0.19 0.12 0.14 FALSE I FALSE : FALSE Pass-Qpost Below Flow Control Threshold 299 0.19 I 0.12 1 0.14 FALSE ! FALSE FALSE Pass-Qpost Below Flow Control Threshold 300 i 0.19 0.12 . I 0.14 FALSE : _· FALSE FALSE Pass-Qpost Below Flow Control Threshold 301 I 0.19 I 0.12 I 0.13 , FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 302 0.19 I 0.12 0.13 I FALSE I FALSE , FALSE Pass-Qpost Below Flow Control Threshold 303 0.19 0.12 0.13 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 304 0.19 0.12 0.12 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 0.19 0.12 I 0.12 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 0.19 0.12 0.11 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold .,u, 0.19 0.12 ' 0.11 FALSE FALSE FALSE Pass-QpostBelowFlowControlThreshold ,____ 308 0.19 0.12 0.11 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 309 0.19 0.12 0.10 FALSE FALSE FALSE Pass-QpostBelowFlowControlThreshold 310 0.19 0.12 0.10 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 311 0.19 0.12 0.10 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 312 0.19 0.12 L 0.08 FALSE FALSE FALSE j Pass-Qpost Below Flow Control Threshold 313 0.19 0.12 0.08 FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold 314 I 0.18 I 0.12 I 0.08 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold . __ 315 I .Q.!L-t--0.12 I 0.08 . FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ---1 E 316 , 0.18 I 0.12 0.08 FALSE I FALSE FALSE Pass-QpostBelowFlowControlThreshold _ 317 j . 0.18 I _QJ_g___ 1 0.07 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 318 J_~ 0.18 1 0.12 I 0.07 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 319 .l-__ 0.18 0.12 I 0.07 FALSE FALSE ' FALSE Pass-Qpost Below Flow Control Threshold ~ --~_0.18 --+· 0.1_2 0.07 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold I, 321 0.18 I 0.12 0.06 FALSE ' FALSE FALSE Pass-Qpost Below Flow Control Threshold 322 , 0.18 I 0.12 , 0.06 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~ 1 0.18 I 0.12 J 0.05 I FALSE J FALSE FALSE Pass-Qpost Below Flow Control Threshold 324 I 0.18 0.12 0.05 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 325 0.18 , 0.12 0.05 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold r ~ ----i -· 0.18 . I· 0.12 0.04 I . FALSE ··-FALSE FALSE Pass-Qpost Below Flow Control Threshold 327 ; 0.18 0.12 _L___ 0.04 , FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 3/13/2017 1:50 PM 8/18 r, I r, r, r, ~~ r-w ...-1 f' l r 1 r 1 ,,, ,···1 r~-, ,. 1 r·'l r·, r"I r1 r, Excel Engineering peakFlowPassFailMitigated.TXT :<... 1l< .,..,_q qO~ &0 ~ 0 0 &0 &0 ~ 0 ...s 0~ ~ o'l ~ (!g\o ,,~ .,..,_<J ,l .,..,_1, .,..,_.,, "" '< ~ 0 ~ ' ~ A ~~ q. q't,"' I ~<:--qo q~ ~o j o~o o~~, L 328 I 0.18 0.12 0.04 FALSE ! FALSE FALSE Pass-Q st Below Flow Control Threshold 329 0.18 0.12 0.04 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 330 0.18 0.12 0.03 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 331 0.18 0.11 0.03 FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold 332 I · 0.17 0.11 0.03 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 333 0.17 0.11 0.03 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 334 I 0.17 0.11 0.02 FALSE~ FALSE FALSE , Pass-Qpost Below Flow Control Threshold ··--·---335 0.17 0.11 ~ 0.02 FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold 336 0.17 0.11 , 0.02 FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold 337 I 0.17 , 0.11 0.02 1 FALSE I FALSE I FALSE Pass-Qpost Below Flow Control Threshold ~ 0.17 0.11 I 0.01 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold .~•~ i 0.17 0.11 i 0.01 FALSE FALSE ! FALSE Pass-Qpost Below Flow Control Threshold 340 . 0.17 0.11 I 0.01 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 341 0.17 0.11 ! 0.01 i FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold ·-~-0.17 1 0.11 / 0.00 · FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold t= ~-0.17 1 0.11 0.00 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold I 344 1 0.17 0.11 0.00 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold I 345 I 0.17 J 0.11 i 0.00 FALSE 1 FALSE FALSE Pass-Qpost Below Flow Control Threshold 346 j _ _ 0.17 0.11 -0.01 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 347 1 0.17 .-I 0.11 -0.01 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 1---348 0.17 I 0.11 -0.01 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 349 0.17 0.11 -0.01 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 350 0.17 0.11 -0.02 FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold 351 0.17 0.11 -0.02 I FALSE i FALSE I FALSE Pass-Qpost Below Flow Control Threshold I 352 0.16 0.11 . ·-, -0.02 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold I I 353 .. 0.1 tf . 0.11 I -0.02 l FALSE FALSE ' FALSE Pass-Qpost Below Flow Control Threshold ~ 354 : 0.16 0.11 ! -0.03 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 355 i 0.16 0.11 , -0.03 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 356 I 0.16 0.11 -0.03 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 357 0.16 0.11 -0.03 FALSE FALSE i FALSE Pass-Qpost Below Flow Control Threshold 358 1 0.16 0.11 I -0.03 , FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 359 • 0.16 . 0.11 I -0.04 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~ . t· 0.16 I 0.11 . ! -0.04 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 361 0.16 0.11 -0.05 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 362 I 0.16 0.11 -0.05 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold --~363 • 0.16 0.11 I -0.05 FALSE FALSE i FALSE Pass-Qpost Below Flow Control Threshold 364 , 0.16 ' 0.11 I -0.05 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 365 _± 0.16 t 0.11 I -0.06 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 366 0.16 0.11 -0.06 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold E 367 · 0.16 0.11 , -0.06 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold _368 ' 0.16 , 0.11 1 -0.06 : FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 369 t--0.1_6 __ · · 0.11 l____ -0.06 I FALSE ! FALSE I FALSE Pass-Qpost Below Flow Control Threshold ----1 3/13/2017 1:50 PM 9/18 r, I r, r, r, r, r, I" 1 r-· 1 r· 1 ,., 1 ,. .. 1 , ... , r ., r~-, r-., r, r, r, r, r-1 Excel Engineering pea kFlowPassFail Mitigated. TXT I ,-t> I •• ◊ I I ! !,.0 ! I !,.0 !,.0 I ~ I -~ "~ I I ~o 0~ ~ I o\o . ~~ .,,._q_ I ()0 .,.,_J... .,.,_-, .... ~ ~ "_I . ," I " q_O~ ~<:-q_O~ q_<..0 I 0~ o~~ .,.,_.., q_tt>~ I 0~ 0~ i ! ~ --370 0.16 0.11 -j -0.07 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 371 0.16 0.11 -0.07 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 372 ! 0.16 0.11 -0,07 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 373 0.16 0.10 i -0.07 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 374 0.16 0.10 -0.07 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 375 0.15 i 0.10 -0.08 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 376 0.15 0.10 I -0.08 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold I 377 I 0.15 0.10 I -0.08 FALSE FALSE i FALSE Pass-Qpost Below Flow Control Threshold 378 0.15 0.10 -0.08 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold . ---379 0.15 ! 0.10 I -0.08 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 380 0.15 0.10 -0.09 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ·--381 0.15 i 0.10 -0.09 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~ 382 I 0.15 ! 0.10 -0.09 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 383 0.15 0.10 -0.09 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 384 0.15 0.10 -0.09 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold -385· 0.15 : 0.10 I -0.10 I FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold --386-I 0.15 0.10 -0.10 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 387 0.15 0.10 I -0.10 FALSE FALSE i FALSE Pass-Qpost Below Flow Control Threshold 388 0.15 : 0.10 -0.10 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ·~ -· 389 ! 0.15 I 0.10 -0.10 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold -· 390· 0.15 0.10 -----0.11 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold -391 0.15 0.10 I -0.11 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 392 0.15 : 0.10 -0.11 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 393 0.15 I 0.10 -0.11 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 394 I 0.15 j 0.10___1_ -0.11 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold -395 0.15 0.10 -0.12 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold -· 396 0.15 0.10 I -0.12 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold I 397 0.15 0.10 -0.12 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 398 0.15 0.10 -0.12 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 399 0.15 i 0.10 I -0.12 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 400 0.15 0.10 -0.12 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 401 0.14 I 0.10 -0.13 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 402 0.14 0.10 -0.13 FALSE FALSE i FALSE Pass-Qpost Below Flow Control Threshold 403 0.14 ~0.10 -0.13 FALSE FALSE ! FALSE Pass-Qpost Below Flow Control Threshold 404 1 _ __QJ 4__ I 0.1 o -0.13 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 405 0.14 I 0.10 -0.13 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 406 0.14 0.10 : -0.13 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ··-407 ' 0.14 0.10 -0.14 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 408 ' 0.14. ---0.10 ± -0.14 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 409 0.14 I 0.10 -0.14 FALSE FALSE FALSE . Pass-Qpost Below Flow Control Threshold ~-410 0.14 I 0.10 i. -0.14 FALSE i FALSE FALSE Pass-Qpost Below Flow Control Threshold -411 0.14 0.10 -0.14 FALSE FALSE ' FALSE Pass-Qoost Below Flow Control Threshold 3/13/2017 1:50 PM 10/18 I ir, r--w r~-~ ..-·-w r, .,.-, r· I , ' r 1 r 1 r 1 r 1 ,, , . ., r ''1 r 1 r, ,....~ ,·-··-., Excel Engineering peakFlowPassFailMitigated.TXT !.-0 ~ 0 0 !.-0 !.-0 (fl ~ ~ -S ~ ~ (fl (fl o\o .,.,.~ e.,'t:> ()0 ()0 .,,,_t-.,,,_-, ··-"<::', OF.> '< ~ 0 (:> (:> -, ~ &,.~ e,O ~'I: .s::, ,._O .,,,_ I ,. '< O'l O'< ~c,; ' ~ 1------412-r0.14 0.10 -0.15 FALSE FALSE O FALSE IPass-OI>QstBelowFlowControlThreshold j-~ ~~'-) 413 ! 0.14 -1 0.10 -0.15 I FALSE l FALSE l FALSE Pass-QpostBelowFlowControlThreshold ~ I 0.14 0.10 i -0.15 · FALSE ' FALSE i FALSE Pass-QpostBelowFlowControlThreshold 415 ~.14 i 0.10 I -0.15 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 416 I 0.14 I 0.10 I -0.15 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 417 0.14 I 0.09 -0.15 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold -~-I 0.14 1 0.09 I -0.16 I FALSE I FALSE I FALSE Pass-Qpost Below Flow Control Threshold __ _ r---419 0.14 I 0.09 I -0.16 I FALSE J FALSE J FALSE Pass-Qpost Below Flow Control Threshold 420 I 0.14 I 0.09 I --0.16 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold E 421 ' 0.14 0.09 -0.17 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold -42_2 __ i 0.14 1 ~9 -0.17 FALSE FALSE FALSE Pass-QpostBelowFlowControlThreshold 423 , 0.14 0.09 -0.17 [ FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 424 0.14 0.09 -0.17 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 425 0.14 0.09 -0.17 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshok:1- 426 0.14 ' 0.09 -0.17 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold -i >-----427 0.14 I 0.09 -0.17 FALSE FALSE FALSE Pass-OQost Below Flow Control Threshold 428 I 0.14 ! 0.09 I -0.18 I FALSE ! FALSE I FALSE Pass-Qpost Below Flow Control Threshold ~ I 0.14 I 0.09 -0.18 FALSE FALSE ' FALSE Pass-Qpost Below Flow Control Threshold 430 1 0.14 0.09 -0.18 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 431 I 0.13 0.09 I -0.18 FALSE --t-----FALSE FALSE Pass-Qpost Below Flow Control Threshold [ ~~-[ 0.13 0.09 I -0.18 FALSE --. FALSE FALSE Pass-Qpost Below Flow Control Threshold 433 0.13 I 0.09 -0.18 I FALSE I FALSE I FALSE Pass-Qpost Below Flow Control Threshold 434 I 0.13 I 0.09 I --0.19 _ _£AL~ J__ FALSE _J f ALSE _ Pa~s-Qpost Below Flow Control Threshold 435 0.13 0.09 -0.19 FALSE _j__ FALSE -~ FALSE I Pass-Qpost Below Flow Control Threshold 436 · ~-I 0.09 ---+------0.19 I FALSE I FALSE : FALSE Pass-Qpost Below Flow Control Threshold 437 0.13 0.09 I -0.19 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 438 0.13 0.09 , -0.19 ! FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~ -0.13 0.09 I -0.19 ' FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 1---440 1 0.13 0.09 -0.19 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ·-----=. ~ 441 I 0.13 . . . __ 0_.Q~__J_ -0.20 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold J 442 0.13 1 0.09 i -0.20 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold I 443 _ _QJ_3 __ r __ _Q,QL I -0.20 · FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 444 . 0.13 0.09 -0.20 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold I ±' 0.13 . 0.09_-+ -0.20 FALSE FALSE FALSE Pass-QpostBelowFlowControlThreshold ------+= . 0.13~ . 0.09----t _ -0.20 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold -~ ___ 0J_3_ 1 0.09 , -0.21 1 FALSE i FALSE FALSE Pass-Qpost Below Flow Control Threshold -----i 448 1 0.13 0.09 ! -0.21 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 449 I 0.13 0.09 , -0.21 FALSE FALSE FALSE , Pass-Qpost Below Flow Control Threshold - §Q____j_ __ 0.13 .. i 0 .. 09 I -0.21 FALSE FALSE FALSE i Pass-Qpost Below Flow Control Threshold __§_1 ---+--__()._11_ • . _ _Q.09 _J -0.21 ' FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold __ t 452 . 0.13 t 0.09 -0.21 I FALSE FALSE _ 1 FALSE Pass-Qpost Below Flow Control Threshold 1 453 I 0.13 1 0.09 _i -0.21 , FALSE • FALSE __ ! _fALSE !Pass-Qpost Below Flow Control Threshold I 3/13/2017 1:50 PM 11/18 I r-11 r---. r··~ r,i r"W ..--, r 1 ,-1 r 1 f 1 r 1 r 1 ,-· 1 r..., r, r, r, r, r-1 Excel Engineering peakFlowPassFailMitigated.TXT ', I I I I ~0 I I ,.\ i 0 0 ~ I ~ ~ I ,.S"" ! 0~ 0 ~ 0 !I 0~ (fl' I ,;;g\o ~~ .,...~ ~.._'o I ~ <::)0 t-. ,,., . "" ~ ~o"" I &.~ r,O,;;. '1 ~.._0 ~o,;;. I' .s:,,;;. I "'-_., ' <ltt"" l y ! '<. ! CJ (jl/ ~0<,; <-------+-I --+---i • o 454 · -Cl.13-f 0.09 -0.22 / FALSE ' FALSE ; FALSE Pass-Qpost Below Flow Control Threshold 455 1 0.13 0.09 I -0.22 , FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold ~. 456 0.13 I 0.09 I -0.22 ' FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 457 0.13 0.09 1 -0.22 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 458 0.13 0.09 • -0.22 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 459 i 0.13 I 0.09 -1 -0.22 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~. 460 0.13 1 0.09 I -0.22 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 461 0.13 0.09 I -0.22 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 462 1 0.13 0.09 1 -0.23 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~ 463 . 50.13 , 1 0.08 -0.23 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 464 _ 0.13 0.08 I -0.23 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~ 465 , 0.12 0.08 I -0.23 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 466 I 0.12 0.08 -0.23 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 467 0.12 0.08 I -0.23 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold - 468 1 0.12 0.08 ! -0.23 FALSE ~ __ FALSE I FALSE Pass-Qpost Below Flow Control Threshold - ~-46_9 __ -=r===-0.12 0.08 I -0.24 FALSE i FALSE FALSE Pass-Qpost Below Flow Control Threshold -~ ,__ __ 47_0 ___ _i___ 0.12 . / 0.08 -0.24 ' FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 471 1 0.12 i 0.08 • -0.24 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 472 1' 0.12 0.08 I -0.24 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 473 . 0.12 0.08 -0.24 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 474 0.12 ! 0.08 L -0.24 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 475 0.12 ; 0.08 I -0.24 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 476 I 0.12 0.08 t· -0.24 1 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold -- 477 0.12 0.08 1 -0.25 FALSE FALSE l FALSE Pass-Qpost Below Flow Control Threshold 478 I 0.12 0.08 I -0.25 1 FALSE ' FALSE I FALSE Pass-Qpost Below Flow Control Threshold 479 0.12 0.08 I -0.25 : FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 480 0.12 0.08 -0.25 / FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 481 . -~-f-----0.08 =L==-0.25 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 482 ++--0.12 i 0.08 -0.25 FALSE i FALSE FALSE Pass-Qpost Below Flow Control Threshold ~ 483 _ __ 0.12 4 __Q._Q_~ _ _ -0.25 ! _ FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ,__ __ 4_84_ 0.12 --+ 0.08 ' -0.25 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 485 0.12 . 0.08 · -0.26 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 486 0.12 ~ 0.08 I -0.26 1 FALSE , FALSE FALSE Pass-Qpost Below Flow Control Threshold 487 0.12 0.08 I -0.26 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 488 0.12 0.08 I -0.26 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 489 0.12 0.08 1 -0.26 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 490 0.12 0.08 I -0.26 FALSE FALSE , FALSE Pass-Qpost Below Flow Control Threshold ~ 491 0.12 0.08 .. 1 -0.26 j FALSE I ·-FALSE FALSE Pass-Qpost Below Flow Control Threshold 492 0.12 0.08 -0.26 . FALSE FALSE ! FALSE Pass-Qpost Below Flow Control Threshold ~--493 _· --t· __ 0.12 _ _ _Q.()!3__ -+--.J)gZ__ _ · FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold -- 494 _ __Q.!L --i_ 0.0!3__ _J_ -0.27 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold __ 495 : 0.12 --t 0.08 -0.27 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 3/13/2017 1:50 PM 12/18 I r..--.. r, r, r"1I r-11 r--, r 1 r 1 r 1 ,-1 r -, r ·-, r -, r, r~-, r--, r, r, Excel Engineering peakFlowPassFailMitigated.TXT ~~ "'-q ~o~ ! ! 0 ()0 r--0 t,. ~ ..__~ ~~ ~ 0v ~ ~ "- 1..0 i~ ,.,,J ~~ ~i;I ~ 0 ~ 0 1• (§l~0 I cfl'0 o\o(§l i ~~ qO ~~ ' (PO O~O ..s:,~~ I ----~----~-----------+---c,_N _____ +----------------------< 1 496 I 0.12 0.08 -0.27 I FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 497 1 0.12 0.08 -0.28 : FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 498 I 0.12 I 0.08 l -0.28 ' FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 499 I 0.12 I 0.08 -0.28 FALSE FALSE ' FALSE Pass-Qpost Below Flow Control Threshold 500 I 0.12 I 0.08 I -0.28 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold r-~-I _ 0.12 I 0.08 I -0.28 FALSE -FALSE FALSE Pass-Qpost Below Flow Control Threshold 502 0.12 I 0.08 I -0.28 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 503 0.12 0.08 -0.28 FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold 504 0.12 0.08 I -0.28 i FALSE FALSE ] FALSE Pass-Qpost Below Flow Control Threshold ,__505 0.12 0.08 __ I_ -0.28 _ FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold ----t 506 0.11 0.08 7 -0.29 FALSE FALSE , FALSE Pass-Qpost Below Flow Control Threshold 507 0.11 0.08 -0.29 FALSE FALSE -i FALSE Pass-Qpost Below Flow Control Threshold 508 1 0.11 0.08 -0.29 FALSE FALSE ! FALSE Pass-Qpost Below Flow Control Threshold 509 ~ 0.11 +=ffio._o~--+_--0.29 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 510 0.11 0.0!3_____J_ -0.29 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold F-511---+ 0.11 0.08 !-· -0.29 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 512 I _ 0.11 0.08 -0.29 FALSE FALSE FALSE Pass-Q ost Below Flow Control Threshold 513 , 0.11 0.08 -0.29 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 514 0.11 0.08 -0.29 I FALSE I FALSE ! FALSE Pass-Qpost Below Flow Control Threshold 515 0.11 0.08 -0.30 I FALSE I FALSE , FALSE Pass-Qpost Below Flow Control Threshold 516 0.11 0.08 -0.30 1 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ,__ __ 517 0.11 0.08 I -0.30 I FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 518 0.11 0.08 j -0.30 I FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 519 0.11 0.08 --0.30 1 FALSE 1 FALSE j_ FALSE Pass-Qpost Below Flow Control Threshold 520 I 0~11 0.07 -0.30 ' FALSE I FALSE I FALSE Pass-Qpost Below Flow Control Threshold ~ 521 I 0.11 0.07 -0.30 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 522 I 0.11 1 0.07 -0.30 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 523 / 0.11 I 0.07 -0.30 FALSE FALSE / FALSE Pass-Qpost Below Flow Control Threshold 524 . 0.11 =± 0.07 -0.31 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 525 0.11 0.07 1 -0.31 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 526 . ~--I 0.07 I -0.31 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 527 0.11 0.07 I -0.31 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold -~ 528 --+--0.11 ~ 0.07 ! -0.31 1 FALSE FALSE i FALSE Pass-Qpost Below Flow Control Threshold 529 · 0.11 0.07 -0.31 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~~ 0.11 · , _ 0.07 E0.31 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold t 531 1 0.11 --+ 0.07 -0.31 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 532 __j__ 0.11 [ 0.07 -0.31 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold +-0.11 I 0.07 1 -0.31 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold :,;j4 ___L 0.11 ; 0.07 i--0.32 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold F 5--~ -0.11 -7 _ 0.07 1 -0.32 I FALSE i FALSE i FALSE Pass-Qpost Below Flow Control Threshol!1 __ _ ---1. 0.11 I 0.07 -0.32 FALSE FALSE ± FALSE Pass-Qpost Below Flow Control Threshold 537-___l ~-i--0.07 -0.32 -~ FALSE___l _ FALSE _ FALSE Pass-Qpost Below Flow Control Threshold 3/13/2017 1:50 PM 13/18 ,..----, ' r-w rw r-w r-w .. --. r-1 f 1 r 1 f 1 f 1 r l r ' r 1 ,. 1 ,-., r ~·, r1 r, Excel Engineering peakFlowPassFailMitigated.TXT ' .1.\o/-0 0 A-0 ,4;}0 \ <fl II ~ I ~ 0~ 0~ O'< V' ~,· r,\'t::, <J <J '!}..t-'!}...., ," ' ~ 0 r,; r,; I-------------~"---+---.0 ... of of ✓" • I 538 I 0.11 0.07 I -0.32 FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold :<,..i .,,..~ ~oc; ~l ~~ ~tr,, 539 0.11 I 0.07 -0.32 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 540 0.11 0.07 -0.32 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold E~ 541 ⇒ 0.11 I _ 0.07 ~ -0.32 I FALSE ' FALSE I FALSE Pass-Qpost Below Flow Control Threshold 542 0.11 i 0.07 -0.32 FALSE FALSE ! FALSE Pass-Qpost Below Flow Control Threshold ~ ----0.11 0.07 --0.32 I -FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold --- 544 1 0.11 0.07 -0.33 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ,___ 545 0.11 -1 0.07 -0.33 FALSE I FALSE FALSE Pass-Qoost Below Flow Control Threshold 546 0.11 0.07 -0.33 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 547 0.11 0.07 -0.33 FALSE FALSE , FALSE Pass-Qpost Below Flow Control Threshold 548 1 0.11 0.07 --0.33 1 FALSE FALSE ! FALSE Pass-Qpost Below Flow Control Threshold 549 I 0.11 1 0.07 -0.33 I FALSE FALSE I FALSE i Pass-Qpost Below Flow Control Threshold 550 0.11 0.07 -0.33 FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold 551 0.11 0.07 -0.33 FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold ,__ 552 __ +--0.11 0.07 -0.33 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ----l 553 0.11 0.07 -0.33 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 554 0.11 0.07 -0.33 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 555 0.10 I 0.07 -0.34 I FALSE FALSE I FALSE Pass-Qoost Below Flow Control Threshold 1--556 0.10 I 0.07 -0.34 I FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold I, ---557 I 0.10 I 0.07 I -0.34 I FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold t==~ I 0.10 i 0.07 I -0.34 i FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 559 0.10 0.07 -0.34 FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold 560 0.10 0.07 -0.34 FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold 561 0.10 0.07 -0.34 FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold 562 0.10 0.07 -0.34 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 563 0.10 0.07 -0.34 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 564 0.10 0.07 -0.34 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 565 0.10 0.07 -0.35 FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold 1 566 0.10 0.07 1 -0.35 I FALSE I FALSE I FALSE Pass-Qpost Below Flow Control Threshold 567 0.10 0.07 I -0.35 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ---568 0.10 0.07 I -0.35 FALSE FALSE ' FALSE Pass-Qpost Below Flow Control Threshold 1 569 0.10 0.07 1 -0.35 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ,___=57=-'0_~ , 1 0.10 , 0.07 -0.35 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold --~ 571 ~-0.07 ~1 -0.35 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold , 572 _ ~----+ 0.07 _ -0.35 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold ~ ; 0.10 -, 0.07 -, -0.35 FALSE ' FALSE FALSE Pass-Qpost Below Flow Control Threshold L-~~1--------o:To------r -----0:07------:--0.35 FALSE i FALSE FALSE Pass-Qpost Below Flow Control Threshold 1-l----~57=-'5_ _ 0.10 0.07 , -0.35 1 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 576 1 0.10 0.07 I -0.35 i FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~ ~0J_Q__~~ 0.07 I -0.36 FALSE I FALSE , _ FALSE Pass-Qpost Below Flow Control Threshol~~------c--~--f 0.10 , _ 0.07 -0.36 1 FALSE I FALSE --I FALSE I Pass-Qpost Below Flow Control Threshold 579 0.10 I 0.07 _L__ -0.36 FALSE FALSE~-~-_ FALSE Pass-Qpost Below Flow Control Threshold 3/13/2017 1:50 PM 14/18 r, • ..---,. ~ .. w--w W-'W w-w r 1 r 1 r 1 r 1 ' 1 r l r 1 ' 1 I" -I f"1 ,~ .. r·~ r, r-1 Excel Engineering peakFlowPassFailMitigated.TXT I ' 1,.0 I •. ~~· I . <f ~o I/'° 1,.0 1,.0 ~ i§-~ ~ o\o <l.'o l-'!,.."1 ._<:5 j-r} " <l.'l,"j ::"j . 0 o"j ' '!,.."1 ~<:-<:Po ~ ! o"j i o<:l -' ·- I 580 0.10 0.07 -0.36 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 581 0.10 0.07 -0.36 l FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 582 0.10 I 0.07 -0.36 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 583 0.10 0.07 I -0.36 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 584 0.10 0.07 -0.36 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 585 0.10 ! 0.07 I -0.36 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 586 0.10 0.06 -0.36 FALSE FALSE i FALSE Pass-Qpost Below Flow Control Threshold -~ 587 0.10 0.06 -0.36 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 588 0.10 0.06 -0.37 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 589 0.10 0.06 -0.37 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 590 0.10 0.06 -0.37 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~----591 I 0.10 0.06 -0.37 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 592 0.10 0.06 -0.37 FALSE ! FALSE FALSE Pass-Qpost Below Flow Control Threshold 593 0.10 0.06 -0.37 FALSE i FALSE FALSE I Pass-Qpost Below Flow Control Threshold ---594 0.10 0.06 -0.37 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 595 0.10 0.06 -0.37 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold -596-I 0.10 0.06 -0.37 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 597 0.10 0.06 -0.37 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold I 598 I 0.10 0.06 -0.37 FALSE FALSE : FALSE Pass-Qpost Below Flow Control Threshold 599 0.10 0.06 -0.37 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold ~600 0.10 0.06 I -0.37 i FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 601 0.10 0.06 -0.38 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 602 I 0.10 0.06 -0.38 FALSE FALSE i FALSE Pass-Qpost Below Flow Control Threshold 603 0.10 0.06 -0.38 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 604 0.10 0.06 -0.38 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 605 0.10 0.06 -0.38 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 606 0.10 0.06 ' -0.38 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 607 0.10 0.06 -0.38 FALSE FALSE ' FALSE Pass-Qpost Below Flow Control Threshold 608 0.10 0.06 -0.38 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 609 0.10 0.06 -0.38 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold --610-0. fa-~-0.06 I -0.38 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 611 0.10 0.06 -0.38 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 612 I 0.10 0.06 ! -0.38 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 613 --0.09 ! 0.06 -0.39 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 614 0.09 j 0.06 -0.39 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold --615 0.09 0.06 ! -0.39 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 616 , 0.09 0.06 -0.39 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold -~7-~ 0.09 0.06 + -0.39 FALSE FALSE I FALSE Pass-Qoost Below Flow Control Threshold I _, ---618 _ _J__ __ -0.09 i 0.06 -0.39 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 619 • 0.09 0.06 -0.39 FALSE FALSE ---FALSE Pass-Qpost Below Flow Control Threshold =--~-----l--(),Q!L__-1-0.06 --I_ -0.40 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 621 I 0.09 0.06 i -0.40 FALSE FALSE l FALSE Pass-Qoost Below Flow Control Threshold 3/13/2017 1:50 PM 15/18 I ~-, .--, r1 r-·-w ...... r· I r 11 f" I r 1 r·-, r 1 ,,. 1 f" 1 r"I r~, ..--"I r, r, Excel Engineering pea kFlowPassFa i IM itigated. TXT I ~>!l< '!<..~ ~o~ I ~0 -.Si;-. ~o ~o &0 <:1'0 o\o~ ~' ~o ~~ (foo 0~o o<fl}, I i~ ~~ ~'l> ~ ~<f' .<f' .,• I •'" -,,~ I 622 I 0.09 0.06 -0.40 FALSE ' FALSE FALSE Pass-Qpost Below Flow Control Threshold 623 ! 0.09 0.06 -0.40 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 624 0.09 0.06 -0.40 FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold 625 I 0.09 0.06 I -0.40 i FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 626 I 0.09 0.06 I -0.40 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 627 . 0.09 0.06 I -0.40 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold P 0.09 0.06 • -0.40 FALSE FALSE ' FALSE Pass-Qpost Below Flow Control Threshold 0.09 0.06 I -0.40 i FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 630 . _ 0.09 0.06 I -0.40 ' FALSE , FALSE FALSE Pass-Qpost Below Flow Control Threshold ~ I 0.09 0.06 I -0.40 FALSE i FALSE FALSE Pass-Qpost Below Flow Control Threshold 1---~~6~3~2_ 0.09 i 0.06 -0.40 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold I 633 0.09 -0.06 _ -0.41 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold I, 634 0.09 0.06 -0.41 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 635 --0.09 0.06 ' -0.41 , FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold L1-~-_ ~6~36c---' 0.09 _ 0.06 _ I -0.41 1• FALSE -FALSE FALSE Pass-Qpost Below Flow Control Threshold I, 637 I 0.09 0.06 -0.41 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 638 0.09 0.06 -0.41 FALSE FALSE FALSE I Pass-Qp_ost Below Flow Control Threshold 639 0.09 0.06 -0.41 FALSE FALSE FALSE i Pass-Qpost Below Flow Control Threshold 640 . 0.09 I 0.06 1 -0.41 FALSE I FALSE I FALSE Pass-Qpost Below Flow Control Threshold 641 0.09 I 0.06 -0.41 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 642 0.09 --0.06 ---0.41 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold -~ 643 0.09 I 0.06 -0.41 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 644 : 0.09 I 0.06 -0.41 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold --- 645 0.09 0.06 i -0.41 FALSE FALSE / FALSE / Pass-Qpost Below Flow Control Threshold 646 0.09 0.06 I -0.41 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~ 0.09 0.06 --0.41 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~ 0.09 0.06 -0.42 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 649 0.09 0.06 -0.42 FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold 650 0.09 0.06 -0.42 FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold 651 0.09 . ____L__ _ Q.QL_____ I -0.42 1 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 652 0.09 I 0.06 ' -0.42 j FALSE FALSE -~: _ FALSE Pass~ Qpost Below Flow Control Threshold 653 0.09 0.06 -0.42 FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold 654 0.09 '. 0.05 =t= -0.42 I FALSE I FALSE i FALSE Pass-Qpost Below Flow Control Threshold 655 0.09 ' 0.05 -0.42 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold I= 656 r 0.00 ~ t -~-= -0.42 FALSE FALSE FALSE Pass-Qpost B~ow F"" Cootrol Th,osh"" , 657 0.09 0.05 -0.42 i FALSE FALSE i FALSE Pass-Qpost Below Flow Control Threshold ~-L _ __Q.09 -= 0.05 i -0.42 I FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 659 +. _ ~-~ 0.05 i -0.42 I FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 660 i _ 0.09 0.05 1 -0.42 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 661 + 0.09 _ 1 0.05 ~ _ -0.43 i FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold _ L-~ 0.09 -----+ 0.05 ----r--0.43 _ I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~ 663 0.09 I 0.05 -0.43 I FALSE FALSE 1 FALSE Pass-Qpost Below Flow Control Threshold 3/13/2017 1:50 PM 16/18 r--, I r"I r-, II I ..--. r'I r, r 1 ,,-1 ' 1 r 1 r 1 r 1 r 1 r· 1 ,--I r-, r-'I ,.--, Excel Engineering peakFlowPassFailMitigated.TXT ~i .,,,.~ ~oc; I I I ~~ ~ ... "o~ ~~ ~0 0 0 1,.0 1,.0 (fo ~ ~ (fo (fo o\o ()0 r,0 I,. '1 ...._<:> ~ V ~ .,,,_ " o<:i ,._0 .s:,<:i .s:,<:i -, I ~ ~ O"I O"I o~ 0~ I I I ~~ ~ ~'t;<:i F 664 0.09 [ 0.05 -0.43 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 665 0.09 0.05 -0.43 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold BE666 i 0.09 I 0.05 -0.43 I FALSE I FALSE [ FALSE Pass-Qpost Below Flow Control Threshold ~ 0.09 I 0.05 , -0.43 1 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold ---: ~ 0.09 f 0.05 I •0.43 , FALSE . FALSE FALSE Pass• Qpost Below FWW CootrolTh""hokl I 669 , 0.09 1 0.05 I -0.43 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 670 0.09 I 0.05 -0.43 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold fil_1__ __ ~ 0.09 I 0.05 -0.43 FALSE : FALSE FALSE Pass-Qpost Below Flow Control Threshold 672 0.09 ' 0.05 1 -0.43 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 673 0.09 : 0.05 + -0.43 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ---1 I .=01• I 0.09 I 0.05 ; · -0.43 FALSE FALSE FALSE Pa,s-Qpost BOOW Flow com,01 Thresho~ 675 0.09 0.05 i -0.43 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~ ~ 0.09 0.05 ' -0.44 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 677 0.09 , 0.05 -0.44 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 678 I-0.09 1 0.05 ' -0.44 ' FALSE : FALSE FALSE Pass-Qpost Below Flow Control Threshold 679 0.09 I 0.05 I -0.44 I FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 680 I 0.08 0.05 -0.44 FALSE FALSE , FALSE Pass-OQost Below Flow Control Threshold C 681 I 0.08 ;_ 0.05 -0.44 I FALSE FALSE i FALSE Pass-Qpost Below Flow Control Threshold 682 I 0.08 1 0.05 -0.44 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 683 · 0.08 I 0.05 -1 -0.44 ! FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold E __fill£___ 1~ _ 0.08 0.05 I -0.44 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~ 685 J 0.08 0.05 I -0.45 I FALSE FALSE ' FALSE Pass-Qpost Below Flow Control Threshold 686 , -0.08 I 0.05 . -0.45 ' FALSE FALSE , FALSE Pass-Qpost Below Flow Control Threshold 687 1 0.08 . 0.05 I -0.45 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~-t--o-.08 . 0.05 _ _____(___ -0.45 I FALSE FALSE ! FALSE Pass-Qpost Below Flow Control Threshold ,____ __ 68_9_ 0.08 I · · -0.05 · --0.45 , FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold ~ ~ 0.05 -0.45 , FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold bl:11 u.utj 1 0.05 I -0.45 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 692 0.08 0.05 I_ -0.45 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ---t ~~ 0.08 1 _ 0.05 -I -0.46 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 694 0.08 ' 0.05 -0.46 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~~ 0.08 / 0.05 -0.46 ' FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold -1 I =6% T-0.08 : . 0.05 . I -0.46 1 FALSE FALSE FALSE , Pass-Qpost Below Flow Control Threshold 697 0.08 ~~_J_ .. -0.46 FALSE _ __ FALSE FALSE Pass-Qpost Below Flow Control Threshold 698 Q.QL__➔ __ 0.05 _ _L_ _ -0.46 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 699 I 0.08 J. __ 0.05 _ ___ -0.46 FALSE __ FALSE I FALSE Pass-Qpost Below Flow Control Threshold 700 0.08 ' 0.05 -0.46 , FALSE FALSE , FALSE Pass-Qpost Below Flow Control Threshold ,___ 701 -_--o-. ..----' -o.os O -0.47 I FALSE I FALSE FALSE Pass-Qpost BeWW Flow Co,rt,ol Th,eshokl I _ 702 _ --+ 0.08 I 0.05 [ -0.47 FALSE L FALSE FALSE Pass-Qpost Below Flow Control Threshold E 703 0.08 ] 0JJ§___J -0.47 FALSE --+-FALSE FALSE Pass-Qpost Below Flow Control Threshold :____1Q!_____-__-:---0.Q8 0.05 -0.47 FALSE --+ FALSE ! FALSE Pass-Qpost Below Flow Control Threshold I 705 I 0.08 1 0.0_§ -0.47 , FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 3/13/2017 1:50 PM 17/18 .. 1 I .--'I r-,. ~ .,--,. r-1 r 1 r 1 ,. 1 r 1 r 1 r 1 r 1 r 1 ,---I r 1 r--. r, r-'I r I Excel Engineering peakFlowPassFailMitigated.TXT l I ! I 1,.0 "~ : ,._;;,, ,l,o I ,l,o 1,.0 1,.0 ~ ~ I ~--5 0~ ~ o\o .,._'?. (;)0 (;)0 ~t-~-, ..._G ~ ! '?.~ I " I ~~ q_O~ r} q_<.0 0~ o<f~ .,._-, q_'b' ~~ i q_O I 0~ o<f~ I ~~ 0.08 I 0.05 I -0.47 I FALSE FALSE FALSE 1 Pass-Qpost Below Flow Control Threshold 707 0.08 ' 0.05 -0.47 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 708 0.08 0.05 -0.47 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ,_______ 709 0.08 0.05 -0.47 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 710 0.08 0.05 -0.47 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~---·· FALSE FALSE Pass-Qpost Below Flow Control Threshold ~-711 0.08 0.05 -0.48 I FALSE -~ 712 0.08 0.05 -0.48 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 713 0.08 0.05 -0.48 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 714 0.08 0.05 -0.48 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ,__________ 715 0.08 0.05 -0.48 FALSE I FALSE ! FALSE Pass-Qpost Below Flow Control Threshold i 716 0.08 0.05 I -0.48 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 717 i 0.08 0.05 -0.48 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 718 I 0.08 i 0.05 -0.48 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 719 0.08 0.05 -0.48 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~720 0.08 0.05 -0.48 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold --721 0.08 0.05 -0.48 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 722 i 0.08 0.05 -0.48 FALSE : FALSE I FALSE Pass-Qnnst Below Flow Control Threshold 3/13/2017 1:50 PM 18/18 1 r, r -w .-, r---w irw r 1 r 1 r , r 1 r 1 r I r 1 r 1 r-1 r , .,--, r ~ r-, r -"I Excel Engineering peakFlowStatisticsPre.csv SWMM.out file name: V:\ 16\ 16024\engineering\GPIP\current\Storm -Lot-13-15\SWMM\SWMM CURRENT\LOT 13-15\ 16024 PRE DEVELOPED LOT 13-15 SWMM.out --SWMM.out time stamp: 11/15/201610:30:47 AM 010: 5.687 -05: 4.782 02: 3.675 Peak Flow Statistics Table Values Rank Start Date End Date I Duration Peak I Frequency Return Period 1 1995/01/04 16:00:00 1995/01/04 23:00:00 8 9.42 0.31% 58 2 1969/02/24 00:00:00 1969/02/25 21 :00:00 46 6.633 0.62% 29 3 2003/02/25 15:00:00 ' 2003/02/25 22:00:00 8 6.563 0.92% 19.33 4 1958/02/03 04:00:00 1958/02/04 14:00:00 35 6.397 1.23% 14.5 5 1980/02/20 19:00:00 1980/02/21 06:00:00 12 5.832 1.54% 11.6 --6 1978/02/28 18:00:00 1978/03/01 10:00:00 ! 17 5.656 1.85% 9.67 7 2004/10/27 02:00:00 2004/10/27 11 :00:00 10 I 5.654 2.15% 8.29 ---· ----8 1952/01/16 08:00:00 1952/01/1617:00:00 10 5.604 2.46% 7.25 9 2005/02/18 06:00:00 ! 2005/02/19 01 :00:00 20 I 5.306 2.77% 6.44 --10 1978/02/10 02:00:00 1978/02/10 07:00:00 6 5.132 3.08% 5.8 11 1958/04/01 12:00:00 1958/04/01 22:00:00 11 4.787 3.38% 5.27 12 1965/11/22 08:00:00 i 1965/11/23 06:00:00 23 4.78 3.69% 4.83 ___ 1_3 __ 1982/03/17 11 :00 :00 1982/03/18 04:00:00 18 4.709 4.00% 4.46 --- 14 I 1993/01/13 20:00:00 1993/01/14 07:00:00 12 4.677 4.31% 4.14 15 1991/12/2915:00:00 1991/12/30 04:00:00 14 I 4.672 4.62% 3.87 16 1998/02/22 15:00:00 1998/02/24 01 :00:00 35 4.629 4.92% 3.63 17 1998/02/03 15:00:00 1998/02/03 23 :00 :00 9 4.609 I 5.23% .3.41 --18 1980/01/28 20:00:00 I 1980/01/30 00:00:00 29 4.506 5.54% 3.22 19 1978/01/16 18:00:00 1978/01/17 03:00:00 10 4.485 5.85% 3.05 ·---20 2000/10/29 22:00:00 I 2000/10/30 01 :00:00 4 4.442 6.15% 2.9 21 ' 1978/01/04 16:00:00 1978/01/04 21 :00:00 6 4.303 6.46% 2.76 22 1998/02/16 17:00:00 1998/02/18 00:00:00 32 4.27 6.77% 2.64 23 2008/02/22 02:00:00 2008/02/22 11 :00:00 10 4.047 7.08% 2.52 24 1979/01/1513:00:00 I 1979/01/15 16:00:00 4 4.019 7.38% 2.42 25 ' 1980/03/02 21 :00:00 1980/03/03 10:00:00 I 14 3.935 7.69% 2.32 26 1983/02/27 16:00:00 1983/02/27 20:00:00 5 3.763 8.00% 2.23 27 I 1983/01/29 00:00:00 1983/01/29 04:00:00 5 3.741 I 8.31% 2.15 I --28 I 1970/12/19 03:00:00 1970/12/19 05:00:00 3.705 I --------3 8.62% 2.07 29 1986/02/14 23:00:00 1986/02/15 09:00:00 11 3.675 8.92% 2 30 1961/12/01 20:00:00 1961/12/02 16:00:00 21 3.602 9.23% 1.93 31 1998/02/1415:00:00 I 1998/02/15 00:00:00 10 I 3.589 9.54% 1.87 ---· 32 1977/08/17 02:00:00 1977/08/17 04:00:00 3 3.476 9.85% 1.81 --33-~,-1960/04/27 08:00:00 1960/04/27 12:00:00 ; 5 3.321 I 10.15% 1.76 ---3¾-----1 1979/01/06 00:00:00 I 1979/01/06 08:00:00 9 3.301 10.46% 1.71 I 35 2008/01/27 00:00:00 2008/01/27 22:00:00 23 I 3.234 10.77% 1.66 -36 I 2005/01/11 01 :00:00 2005/01/11 09:00:00 9 3.166 11.08% 1.61 i --~ 1968/03/08 05:00:00 +---1968/03/08 12:00 :00 8 3.161 11.38% 1.57 --38 1972/01/16 21 :00:00 1972/01/17 00:00:00 i 4 3.156 i 11.69% '1.53 -~~ 1980/02/1618:00:00 1980/02/16 21 :00:00 4 3.132 : 12.00% 1.49 -- 3/13/2017 1:51 PM 1/8 1 r-w ...---w r, ~ r·'I ,. 1 r-1 r 1 r 1 r 1 r 1 r 1 r 1 r , r--, .---, r -w r, r 1 Excel Engineering peakFlowStatisticsPre.csv Rank Start Date End Date Duration Peak Frequency I Return Period 40 1978/01/1417:oo:oo 1978/01/1506:0o:oo 14 3.093 I 12.31% 1 1.45 I 41 2005/01/0904:00:00 1 2005/01/0923:00:00 20 3.051 12.62%1.42 42 2005102121 03:oo:oo I 2005/02/23 08:0o:oo 54 3.034 12.92% I 1.38 C 43 1962/01/20 14:00:00 I 1962/01/20 21 :00:00 8 3.03 13.23% 1.35 44 1 1983/03/01 13:oo:oo -1983/03/04 09:0o:oo 69 3.011 13.54% 1.32 45 ! 1980/02/1722:00:00 1980/02/1909:00:00 36 2.961 13.85% 1.29 46 2008/01/0623:00:00 2008/01/0702:00:00 4 2.947 14.15% 11.26 47 2004110120 09:oo:oo , 200411012015:oo:oo I 7 2.93 14.46% 1.23 48 1960101112 02:00:00 , 1960101112 09:oo:oo I 8 2.925 14.77% 1.21 I 49 1988/12/24 21:00:00 1988/12/25 01:00:00 I -5 _ 2.919 15.08% 1.18 3 50 1971/12/2407:00:00 1971/12/2500:00:00 I 18 2.881 15.38% 1.16 ~-51 I 1952/11/1513:00:00 1952/11/1514:00:00 I 2 I 2.819 ! -15.69% l1.14 ----t 52 1 1993/01/1512:00:00 I 1993/01/1709:00:00 46 2.763 16.00% 1.12 I--53 1963/09/1818:00:00 I 1963/09/18 22:00:00 5 2.744 16.31% 1.09 54 1980/01/10 23:00:00 ' 1980/01/1213:00:00 39 2.74 16.62% 1.07 L. 55 I 2003/02/11 17:00:00 --2003/02/12 21 :00:00 29 2.684 16.92% 1.06 I 56 1994/02/0323:00:00 I 1994/02/0411:00:00 I 13 2.666 17.23% 1.04 57 1986/03/15 22:00:00 1986/03/16 19:00:00 22 2.622 17.54% 11.02 58 1993/01/18 09:00:00 1993/01/1816:00:00 8 2.62 17.85% 11 ~ I 1985111111 09:00:00 198511111113:00:oo 5 2.602 18.15% 1 o.98 60 . 1983/12/2418:00:00 1983/12/25 12:00:00 19 2.595 18.46% 0.97 61 1992/02/1217:00:00 I 1992/02/13 08:00:00 ~ 16 I 2.552 18.77% 0.95 i-----62 1997/01/1216:00:00 I 1997/01/13 08:00:00 1 17 1 2.507 19.08% 0.94 63 I 2004/02/26 04:00:00 I 2004/02/26 10:00:00 7 1 2.507 19.38% 0.92 64 ! 1995/03/11 02:00:00 ' 1995/03/12 01 :00:00 24 2.487 19.69% 0.91 1: t----------------65 1966/12/0502:00:00 -I 1966/12/0513:00:00 -12 2.485 i 20.00% 0.89 §.EL _ --_ _ _ 1981/03/19 20_:00:0Q_ __ I 1981/03/19 22:00:00 • 3 2.419 20.31% 0.88 67 1957/01/13 04:00:00 7 1957/01/13 10:00:00 7 2.417 20.62% 0.87 68 1991102127 18:oo:oo 1991103101 12:00:00 I 43 -I 2.408 I 20.92% o.85 69 1993/02/1812:00:00 1993/02/1813:00:00 2 2.406 21.23% 10.84 70 1967/12/18 17:00:00 1967/12/19 12:00:00 20 2.4 21.54% 0.83 71 1963/03/1700:oo:oo 1963/03/1703:0o:oo 4 2.379 21.85% I0.82 1 72 _I 2005/01/0308:00:00 I 2005/01/0411:00:00 I 28 I 2.356 22.15% 0.81 73 I 1993/02/0801:00:00 I 1993/02/0811:00:00 1 11 1 2.347 22.46% 0.8 ~-I 1960/02/01 22:00:00 J 1960/02/02 02:00:00 5 , 2.312 22.77% 0.78 ~~-I 1995/03/05 09:00:00 1995/03/06 00:00:00 16 i 2.297 23.08% 0. 77 1 76 1969/01/24 08:00:00 1969/01/26 21 :00:00 62 2.284 I 23.38% 0.76 77 2003/03/1517:oo:oo 2003/03/1618:oo:oo 26 2.244 23.69% I0.75 78 1994/03/24 22:00:00 1994/03/25 02:00:00 5 2.209 24.00% 10.74 79 1954/01/1916:00:00 I 1954/01/19 23:00:00 8 I 2.183 24.31% 0.73 I 80 1957/01/2803:00:00 I 1957/01/2910:00:00 32 I 2.171 24.62% 0.73 _ 81 1969/02/06 08:00:00 I 1969/02/0617:00:00 10 1 2.147 24.92% 0.72 82 1996/11/2119:00:00 1996/11/2204:00:00 10 2.142 25.23% 0.71 t r 1965/11/1613:00:00 , 1965/11/1619:00:00 7 2.123 : 25.54% 0.7 I H1958/02/19 13:oo:oo I 1958/02/19 16:oo:oo 4 __ _ 2.118 ___ 25.85% o.69 -~--I 198010211401:00:oo I 198010211502:00:oo 26 2.076 26.15% o.68 86 , 2004/12/31 14:00:00 ! 2004/12/31 16:00:00 l 3 2.05 ! 26.46% 0.67 3/13/2017 1:51 PM 2/8 1 ,-~ r-w ..-, r, r--. r 1 ~ 1 r 1 r 'I r 1 r 1 r -, r· 1 r " r , r 'I r-'W r, r ·, Excel Engineering peakFlowStatisticsPre.csv Rank Start Date I End Date Duration Peak I Frequency Return Period ~-.. 87 1985/11/29 07:00:00---~ 1985/11/29 15:00:00 9 2.03 26.77% 0.67 ~ 88 1963/11/20 07:00:00 1963/11/21 07:00:00 25 2.006 27.08% 0.66 89 1959/02/11 09:00:00 1959/02/1114:00:00 6 I 2.001 27.38% 0.65 ~ 90 1 2007/11/30 08:00:00 2007/11/30 21 :00:00 14 I 1.98 27.69% 0.64 91 I --1991/03/25 06:00:00 i 1991/03/27 06:00:00 I 49 1.961 28.00% 0.64 ~ 92 1983/11/2423:00:00 1983/11/2502:00:00 I 4 1.954 28.31% 0.63 - 93 1988/11/2508:00:00 ... 1988/11/2511:00:00 4 1.941 28.62% 0.62 94 I 1987/12/1618:00:00 1987/12/1710:00:00 17 1.911 28.92% 0.62 ~ 95 1986/11/1803:00:00 1986/11/1807:00:00 5 1.905 29.23% 0.61 96 I 1988/12/21 04:00:00 1988/12/21 08:00:00 5 1 1.897 29.54% 0.6 97 1975/04/0816:00:00 1975/04/0900:00:00 9 1.871 29.85% 0.6 98 1983/01/27 08:00:00 I 1983/01/27 14:00:00 : 7 1.818 30.15% 0.59 99 2003/04/14 15:00:00 I 2003/04/14 23:00:00 1 9 1.807 30.46% 0.59 100 1982/12/22 23:00:00 I 1982/12/23 00:00:00 2 1.768 30.77% 0.58 101 2001/02/1417:00:00 2001/02/14 20:00:00 4 1.764 31.08% 0.57 ~ 102 I 1960/01/1417:00:00 ··-1960/01/14 22:00:00 6 1.742 31.38% 0.57 ··- 103 i 1952/01/1722:00:00 1952/01/1809:00:00 12 1.712 31.69% 0.56 ~~ 1992/02/15 13:00:00 1992/02/15 17:00:00 I 5 1, 71 32,00% 0,56 105 1983/10/01 01 :00:00 1983/10/01 03:00:00 3 1.698 32.31 % 0.55 ~---:ros 1958/04/07 03:00:00 1958/04/0716:00:00 14 1,694 I 32.62% 0.55 101 1958/03/1519:oo:oo 1958/03/1613:0o:oo 19 1.684 ___ 3_2 __ 9-2°-1/0----+-o_-54 __________ ~ ~ 108 . 1958/03/20 23:00:00 1958/03/22 08:00:00 34 1.669 33.23% 0.54 109 1956/04/1221:00:00 1956/04/1319:00:00 23 1.621 33.54% 0.53 110 1965/04/08 14:00:00 1965/04/09 02:00:00 1 13 1.598 33.85% 0.53 111 1967/01/2217:00:00 1967/01/23 00:00:00 8 1.562 34.15% 0.52 ------.- 112 2004/12/2809:00:00 2004/12/2910:00:00 26 1.558 34.46% 0.52 --113 1992/01/0719:00:00 1992/01/08 00:00:00 6 1.553 34.77% 0.51 114 I 1977/12/29 06:00:00 1977/12/30 02:00:00 j 21 1.552 35.08% 0.51 115 1995/01/10 19:00:00 ! 1995/01/12 15:00:00 45 1.551 35.38% 0.5 116 2005/01/07 14:00:00 2005/01/07 21 :00:00 . 1 8 1.53 35.69% 0.5 ---117 1983/04/2003:00:00 1983/04/2006:00:00 4 1.527 36.00% 0.5 -~ -118 1978/02/1217:00:00 I 1978/02/14 01:00:00 33 1.516 36.31% 0.49 119 1988/04/20 09:00:00 I 1988/04/21 07:00:00 23 1.516 36.62% 0.49 120 1965/12/10 08:00:00 1965/12/10 10:00:00 3 1.512 36.92% 0.48 121 I 1966/02/07 22:00:00 1966/02/08 01 :00:00 4 1.502 37.23% 0.48 122 2002/11/0817:00:00 2002/11/0819:00:00 1 3 I 1.481 37.54% 0.48 123 I 2001/02/25 17:00:00 2001/02/27 17:00:00 I 49 1.462 37.85% 0.47 124 . 2002/12/2017:00:00 2002/12/20 22:00:00 ! 6 1.462 38.15% 0.47 125 1990/02/17 18:00:00 1990/02/17 19:00:00 2 1.449 I 38.46% 0.46 ~-· 126 2001/01/2616:00:00 i _ 2001/01/27 00:00:00 9 1.437 38.77% 0.46 127 1973/11/22 23:00:00 1973/11/23 02:00:00 4 1.411 39.08% 0.46 128 I 1952/11/30 01:00:00 1952/11/30 05:00:00 5 1.404 39.38% 0.45 129 -+-1977/01/05 19:00:00 1977/01/07 06:00:00 I 36 1.397 39.69% 0.45 ·- -~O __ -+· 1980/01/09 05:00:00 i 1980/01/09 18:00:00 14 1.395 40.00% .... o_.4_5 ____________ _. 131 1954/02/1319:00:00 I .. 1954/02/13 23:00:00 5 .. 1.37 40.31% 0.44 -·-132----r-1993/01/0605:00:00 i 1993/01/0801:00:00 45 1.359 40.62% +-0-.44--- -133 I 1952/03/0714:00:00 1952/03/08 09:00:00 20 , 1.353 40.92% 0.44 3/13/2017 1:51 PM 3/8 1 r, r--,. w, r, r, r 1 r 1 r , r , r 1 r 1 r ·--w r· 1 r.,,, ,--, r, r, r, r -, Excel Engineering peakFlowStatisticsPre.csv Rank i Start Date ! End Date I Duration Peak ! Frequency I Return Period I I I 134 1997/01/1516:00:00 1997/01/15 20:00:00 5 I 1.349 41.23% 0.43 135 1957/05/11 01:00:00 1957/05/11 03:00:00 3 1.348 41.54% 0.43 -136 2004/02/22 07:00:00 ' 2004/02/23 06:00:00 24 1.32 41.85% 0.43 137 i 2005/04/28 08:00:00 2005/04/28 09:00:00 2 1.316 42.15% 0.42 ·--· r--· ·~ 138 1987/10/12 10:00:00 1987/10/12 17:00:00 8 1.306 42.46% 0.42 139 1998/01/2917:00:00 1998/01/29 22:00:00 6 1.304 42.77% 0.42 ~ 140 1956/01/26 20:00:00 1956/01/27 08:00:00 13 1.292 43.08% 0.41 141 1952/03/15 20:00:00 1952/03/16 06:00:00 11 1.289 43.38% 0.41 142 i 1977/01/03 04:00:00 1977/01/03 06:00:00 3 1.273 43.69% 0.41 143 --i 1991/03/20 07:00:00 1991/03/21 10:00:00 ! 28 -1.266 44.00% 0.41 144 1993/02/19 19:00:00 1993/02/19 23:00:00 5 1.265 44.31% 0.4 145 1967/03/13 20:00:00 1967/03/13 22:00:00 3 1.249 44.62% 0.4 146 1988/01/17 11 :00:00 1988/01/17 12:00:00 2 1.237 44.92% 0.4 147 1997/01/25 23:00:00 1997/01/26 07:00:00 9 1.235 45.23% 0.4 ~ ~ -1958/04/03 10:00:00 1958/04/03 14:00:00 5 1.212 -45.54% 0.39 ---·---149 1992/01/05 09:00:00 1992/01/06 04:00:00 20 1.208 45.85% 0.39 150 1978/09/05 18:00:00 1978/09/05 19:00:00 I 2 I 1.186 I 46.15% 0.39 151 f----1999/01/26 22:00:00 1999/01/27 00:00:00 3 1.183 : 46.46% 0.38 I f--------152 --1983/03/24 03:00:00 1983/03/24 06:00:00 4 1.182 46.77% 0.38 153 2007/01/30 23:00:00 2007/01/30 23:00:00 1 1.178 47.08% 0.38 --~ 1972/11/1612:00:00 1972/11/17 11 :00:00 24 1.175 47.38% 0.38 155 1981/03/01 11 :00:00 1981/03/02 14:00:00 28 1.167 47.69% 0.37 156 1973/02/13 00:00:00 1973/02/13 04:00:00 i 5 1.161 48.00% 0.37 157 1992/03/20 23 :00 :00 1992/03/21 00:00:00 2 I 1.153 48.31% 0.37 158 1998/02/07 17:00:00 1998/02/08 22:00:00 30 I 1.102 48.62% 0.37 --f 1955/01/18 16:00:00 I --1955/01/18 20:00:00 1.094 48.92% 0.37 --159 I 5 -160 1964/11/17 16:00:00 1964/11/17 20:00:00 5 1.084 49.23% 0.36 161 1957/01/07 14:00:00 1957/01/07 20:00:00 7 1.061 49.54% 0.36 162 1972/11/1414:00:00 1972/11/1417:00:00 4 1.058 49.85% 0.36 163 i 1982/12/07 23:00:00 1982/12/08 01 :00:00 3 1.057 I 50.15% 0.36 164 1976/07/22 11 :00:00 1976/07/22 14:00:00 4 1.041 50.46% 0.35 165 1952/12/02 01 :00:00 1952/12/02 02:00:00 2 1.006 50.77% 0.35 166 1951/12/29 23:00:00 1951/12/30 13:00:00 15 1.001 51.08% 0.35 167 1992/12/0715:00:00 I 1992/12/07 16:00:00 2 0.997 51.38% 0.35 168 1978/01/0917:00:00 1978/01/10 23:00:00 / 31 0.99 51.69% 0.35 169 1986/03/10 07:00:00 1986/03/10 19:00:00 i 13 0.983 52.00% 0.34 170 1959/12/24 12:00:00 1959/12/24 14:00:00 I 3 0.982 I 52.31% 0.34 -· 171 1967/11/21 13:00:00 1967/11/21 15:00:00 3 0.977 ' 52.62% 0.34 -172 I 1967/11/3016:00:00 1967/11/3017:00:00 2 0.971 52.92% 0.34 173 I 1990/01/17 00:00:00 i 1990/01/17 03:00:00 4 0.962 53.23% 0.34 -- 174 2001/01/11 05:00:00 2001/01/11 09:00:00 5 0.959 53.54% 0.33 175 I 1995/01/25 11 :00:00 1995/01/26 11 :00:00 25 0.926 53.85% 0.33 176 I 1962/02/08 10:00:00 1962/02/08 19:00:00 ' 10 ' 0.925 54.15% 0.33 _ ___11Z ==i= 1991/03/19 00:00:00 _J__ 1991/03/19 04:00:00 5 0.921 54.46% 0.33 178 1981/11/2803:00:00 1981/11/28 21:00:00 19 0.908 54.77% 10.33 _ 179 . I -2000/03/0517:00:00 --t-2000/03/05 21 :00:00 5 0.907 55.08% 0.32 -~ 180 I 2001/12/0917:00:00 2001/12/09 21 :00:00 5 0.907 55.38% 0.32 3/13/2017 1:51 PM 4/8 • r , .--w ,-1 r" •-"' r 1 r I r 1 r , r 1 r 1 r , r , r ~ r 1 , , r, r, w ~ Excel Engineering peakFlowStatisticsPre.csv Rank I Start Date End Date Duration Peak Frequency Return Period I --·· 181 1973/03/11 12:00:00 1973/03/11 22:00:00 11 0.906 55.69% 0.32 182 1995/01/07 19:00:00 1995/01/08 08:00:00 14 0.876 56.00% 0.32 183 ! 1968/12/2519:00:00 ' 1968/12/25 19:00:00 I 1 0.851 56.31% 0.32 184 1984/12/27 04:00:00 1984/12/27 20:00:00 I 17 0.839 56.62% 0.32 185 1974/03/08 01 :00:00 1974/03/08 11 :00:00 11 0.827 56.92% 0.31 ~ 186 1985/12/11 04:00:00 1985/12/11 06:00:00 3 0.789 57.23% 0.31 -- ~ 187 1976/09/10 05:00:00 1976/09/10 11 :00:00 7 0.782 57.54% 0.31 188 i 1970/02/28 16:00:00 ' 1970/03/02 04:00:00 37 0.775 57.85% 0.31 ------189 2006/03/11 07:00:00 2006/03/11 08:00:00 I 2 0.734 58.15% 0.31 190 1954/03/2213:00:00 1954/03/23 16:00:00 28 0.731 58.46% 0.31 191 ! 1980/03/05 23:00:00 1980/03/06 13:00:00 15 -0.731 58.77% 0.3 -~ 192 1970/11/3015:00:00 1970/11/30 23:00:00 l 9 0.725 59.08% 0.3 193 1967/11/19 08:00:00 1967/11/19 17:00:00 10 0.691 59.38% 0.3 194 1970/03/04 23:00:00 1970/03/05 01 :00:00 3 0.687 I 59.69% 0.3 195 1965/04/03 05:00:00 1965/04/03 08:00:00 4 0.683 60.00% 0.3 196 1966/12/0619:00:00 1966/12/06 22:00:00 4 0.681 60.31% 0.3 197 1965/12/16 04:00:00 1965/12/16 09:00:00 6 0.675 60.62% 0.29 198 i 1973/03/20 08:00:00 ' 1973/03/20 11 :00 :00 4 0.673 60.92% 0.29 199 2001/11/2417:00:00 2001/11/24 20:00:00 4 I 0.662 61.23% 0.29 200 1994/02/17 12:00:00 1994/02/1712:00:00 1 0.659 61.54% 0.29 201 1967/01/24 18:00:00 1967/01/25 00:00:00 7 0.659 61.85% 0.29 202 1969/02/22 03:00:00 1969/02/22 08:00:00 6 0.656 62.15% 0.29 203 1954/03/30 04:00:00 ! 1954/03/30 07:00:00 4 0.647 62.46% 0.29 --204 1976/07/1514:00:00 1976/07/15 16:00:00 3 0.643 62.77% 0.28 ~ -205 1982/02/10 14:00:00 I 1982/02/10 20:00:00 7 0.641 63.08% 0.28 --206 2008/01/05 07:00:00 2008/01/05 07:00:00 1 0.636 63.38% 0.28 207 --t 2006/10/14 01 :00:00 2006/10/14 01 :00:00 1 0.624 63.69% 0.28 208 1960/03/01 05:00:00 I 1960/03/01 06:00:00 ___ ~ 2 0.622 64.00% 0.28 ' 209 2006/04/04 20:00:00 I 2006/04/04 23:00:00 I 4 0.619 64.31% 0.28 210 l 1978/03/11 21 :00:00 1978/03/12 11 :00:00 15 0.609 I 64.62% 0.28 ~211 1972/01/18 22:00:00 1972/01/19 04:00:00 7 0.604 64.92% 0.28 -- 212 1979/11/07 18:00:00 1979/11/0719:00:00 2 0.592 65.23% 0.27 213 1952/01/13 04:00:00 1952/01/13 13:00:00 10 ; 0.592 65.54% 0.27 214 1955/01/10 10:00:00 I 1955/01/10 11 :00:00 2 0.589 65.85% 0.27 215 1965/12/2919:00:00 1965/12/29 20:00:00 ! 2 0.576 66.15% 0.27 216 1998/05/1217:00:00 I 1998/05/12 20:00:00 4 0.572 66.46% 0.27 I 217 1969/02/20 04:00:00 1969/02/20 06:00:00 3 0.566 I 66.77% 0.27 --218 I 1957/04/20 16:00:00 1957/04/20 18:00:00 0.563 67.08% 0.27 3 219 1977/03/25 01 :00:00 1977/03/25 04:00:00 I 4 0.556 67.38% 0.27 ~ 220 1979/03/19 03:00:00 1979/03/20 04:00:00 0.555 67.69% 0.26 - 1 I 26 i ~ 221 1982/04/01 09:00:00 1982/04/01 12:00:00 4 0.552 ' 68.00% 0.26 ----222 I 1978/03/30 15:00:00 1978/03/31 05:00:00 15 0.551 68.31% 0.26 223 t 1985/11/25 04:00:00 1985/11/25 05:00:00 I 2 0.548 68.62% 0.26 224 1984/11/2417:00:00 1984/11/24 21 :00:00 5 0.536 68.92% 0.26 225 1957/02/28 23:00:00 1957/03/01 11 :00:00 I 13 0.523 69.23% 0.26 I _L I 226 1993/03/28 02:00:00 I 1993/03/28 04:00:00 3 0.521 I 69.54% 0.26 227 1 1982/01/01 09:00:00 1982/01/01 10:00:00 2 0.521 69.85% 0.26 -- 3/13/2017 1:51 PM 5/8 I r • r -w r~-. r" r-t r 1 r 1 r , , , r 1 r 1 ,. 1 r 1 r , r--~ r, r-, r, r 1 Excel Engineering peakFlowStatisticsPre.csv Rank J___ Start Date __ ! End Date I Duration Peak ] Frequency j Return Period 22a l 1s1s10210111:oo:oo 1 1s1s1021os 02:00:00 34 o.s19 10.1s% 0.2s -------------1 229 2005/02/11 20:00:00 2005/02/12 00:00:00 5 0.507 70.46% 0.25 230 I 1982/01/05 09:00:00 1982/01/05 13:00:00 5 0.499 70.77% 0.25 231 1954/01/2411:00:00 1954/01/2415:00:00 I 5 0.496 ' 71.08% 0.25 232 1958/01/25 04:00:00 1958/01/25 05:00:00 2 -0.491 71.38% 0.25 233 J 1967/04/11 08:00:00 1967/04/11 10:00:00 --C-----3 0.487 71.69% 0.25 - 234 1966/12/0315:00:00 1966/12/0317:00:00 I 3 0.462 72.00% 0.25 235 I 1996/12/11 09:00:00 1996/12/1118:00:00 10 0.454 72.31% 0.25 236 1975/03/10 12:00:00 1975/03/11 00-:00:00 13 0.441 72.62% 0.25 --~--- 237 ! 1970/12/21 08:00:00 1970/12/21 09:00:00 2 0.44 72.92% 0.25 ~--238 1973/03/08 13:00:00 1973/03/08 15:00:00 3 0.429 73.23% 0.24 239 i 1976/02/06 04:00:00 1976/02/06 06:00:00 3 0.419 73.54% 0.24 240 1984/12/18 22:00:00 1984/12/20 03:00:00 30 0.414 73.85% 0.24 241 1978/02/0512:00:00 1978/02/0611:00:00 24 0.414 74.15% 0.24 242 i 1986/09/25 05:00:00 1986/09/25 05:00:00 i 1 0.413 74.46% 0.24 243 I 1995/04/1810:00:00 1995/04/1812:00:00 1 3 0.412 74.77% 0.24 f--------244-1978/03/0414:00:00 1978/03/04 16:00:00 3 0.406 I 75.08% 0.24 245 1957/10/14 05:00:00 1957/10/14 05:00:00 1 1 0.405 75.38% 0.24 ,__ __ 2_46_ i 2000/02/20 17:00:00 i 2000/02/21 20:00:00 28 i 0.402 75.69% 0.24 --- ,___2_4_7 ---+--1958/01/26 09:00:00 1958/01/26 10:00:00 , 2 0.398 76.00% 0.24 248 I 1959/02/21 11 :00:00 1959/02/21 12:00:00 I 2 0.395 76.31% 0.23 ~-249 1979/03/28 09:00:00 1979/03/28 10:00:00 2 0.392 76.62% 0.23 ----+--------------.1 250 1951/11/2305:00:00 1951/11/2305:00:00 1 0.391 I 76.92% 0.23 251 I 1964/01/21 07:00:00 1964/01/21 08:00:00 2 0.389 77.23% 0.23 252 i 1974/12/0409:QQ:Q0 1974/12/0409:00:QQ 1 0.386 -7-7-.54-0/c-o---+-0-.2-3-----------------i 253 1981/01/2918:00:00 1981/01/29 19:00:00 I 2 0.38 77.85% 0.23 --~~---t--1988/11/14 07:00:00 ! _ 1988/11/14 08:00:00 2 0.378 I 78.15% 0.23 255 l 2004/10/18 07:00:00 2004/10/18 07:00:00 1 0.367 78.46% 0.23 256 I 1993/11/30 04:00:00 1993/11/30 04:00:00 1 0.365 78.77% 0.23 257 1994/02/0714:00:00 1994/02/0716:00:00 3 0.364 79.08% 0.23 ~-~ 1981/03/05 05:00:00 1981/03/05 08:00:00 4 0.358 79.38% 0.23 ~-259 -1966/02/06 14:00:00 1966/02/06 16:00:00 3 ! 0.356 79.69% 0.22 260 1976/07/08 13:00:00 1976/07/08 14:00:00 2 i 0.355 80.00% 0.22 261 2001/04/07 17:00:00 ---, 2001/04/07 18:00:00 2 0.346 80.31% 0.22 262 1985/02/0911:00:00 1985/02/0912:00:00 2 0.324 80.62% 0.22 -------- 263 ' 1998/01/09 17:00:00 1998/01/09 19:00:00 3 0.323 80.92% 0.22 264 1964/01/22 08:00:00 I 1964/01/22 08:00:00 1 0.322 81.23% 0.22 265 1966/01/30 07:00:00 1966/01/30 20:00:00 ! 14 0.308 81.54% 0.22 266 1969/02/18 08:00:00 1969/02/18 15:00:00 8 0.3 81.85% 0.22 ~ 267 i 1996/02/27 21 :00:00 1996/02/27 21 :00:00 1 ' 0.299 82.15% --f-C0-.2-2 ______________ -- 268 ~-1979/03/17 05:oo:oo 1979/03/17 05:oo:oo I 1 1 o.287 1 82.46% 0.22 -- 269 ~--1954/11/11 02:00:00 1954/11/1110:00:00 --r---9 0.285 82.77% 0.22 ~-270 -1987/02/25 01 :00:00 + 1987/02/25 02:00:00 ·. 2 --+----0.284 83.08% 0.22 --271 ~ 1983/02/26 13:00:00 --+---1983/02/26 13:00:00 II 1 0.278 I 83.38% 0.21 ~ 272 i--_ 1983/11/1219:00:00 _ 1983/11/1219:00:00 1 1 0.274 i 83.69% 0.21 ------==---- 273 I 1974/01/08 03:00:00 ~ 1974/01/08 05:00:00 3 0.269 84.00% 0.21 1------27_4__ 1994/03/20 05:00:00 1994/03/20 06:00:00 I 2 0,247 84,31% 0,21 3/13/2017 1:51 PM 6/8 • r, r~, r, .-.,. .,, r'I ,. 1 r 1 r , r , r 1 r 1 r 1 r-1 r-·"I r-, ,--, r" w 1 Excel Engineering peakFlowStatisticsPre.csv Rank I Start Date _ l__ End Date ! Duration Peak Frequency Return Period ~~5 I 1960/11/0520:00:00 I 1960/11/0521:00:00 i 2 ' 0.247 I 84.62% 0.21 276 I 1981/02/09 05:00:00 1981/02/09 06:00:00 i 2 0.244 I 84.92% 0.21 277 1998/03/2517:00:00 -+-1998/03/25 19:00:00 3 0.226 85.23% 0.21 278 I 1998/03/31 17:00:00 1998/03/31 19:00:00 3 0.226 85.54% 0.21 279 1963/02/09 23:00:00 + 1963/02/11 00:00:00 26 0.225 85.85% 0.21 ~ 280 --1983/03/06 05:00:00 -, 1983/03/06 06:00:00 2 0.221 86.15% 0.21 - --281 ! 1965/11/14 23:00:00 ' 1965/11/15 01 :00:00 3 0.211 86.46% 0.21 282 1993/01/31 00:00:00 1993/01/31 00:00:00 1 0.207 86.77% 0.21 283 1994/03/07 02:00:00 1994/03/07 06:00:00 5 0.207 87.08% 0.21 -254 1952103119 00:00:00 1 1952103119 02:00:00 1 3 0.204 87.38% 0.2 285 2003/12/2518:00:00 2003/12/25 18:00:00 I 1 1 0.201 87.69% 0.2 286 ! 1975/03/08 09:00:00 I 1975/03/08 09:00:00 1 1 0.2 88.00% 0.2 287 1959/02/16 19:00:00 1959/02/16 20:00:00 2 0.199 88.31 % 0.2 288 1962/02/21 06:00:00 1962/02/21 07:00:00 2 0.188 88.62% 0.2 289 1971/12/2717:00:00 t-1971/12/2814:00:00 I 22 0.184 88.92% 0.2 290 1982/03/14 23:00:00 1982/03/14 23:00:00 --I 1 0.18 89.23% ___,-0-.2-------- 291 1955/02/27 20:00:00 1955/02/27 20:00:00 I 1 0.176 89.54% 0.2 292 , 1958/02/25 08:00:00 1958/02/25 08:00:00 1 1 I 0.173 89.85% 0.2 293 2002/12/1617:00:00 2002/12/1617:00:00 1 0.171 90.15% 10.2 --29'f' 1999/04/12 02:00:00 1999/04/12 03:00:00 2 0.167 I 90.46% 0.2 -295 1952/12/20 12:00:00 I 1952/12/20 13:00:00 2 0.163 90.77% 0.2 296 1979101131 08:00:00 1919101131 09:00:00 2 o.15~6--f----9"---1--'--.o'-"8--'--%'-----______,--=-o=.2---------------l 297 1952/04/10 17:00:00 i 1952/04/10 18:00:00 2 0.154 91.38% 0.2 298 2001 ,02113 11:00:00 I 2001 ,02,13 11:00:00 1 0.14 91.69% 0.2 299 197610211001:00:oo t 191510211008:00:oo 2 o.138 __ 9~2_.0~0--'--% __ +-'o_.1~9 ___________ _, ~ 300 1954/03/25 02:00:00 I 1954/03/25 04:00:00 3 0.136 ' 92.31% 0.19 301 1963/09/1717:00:00 1 1963/09/1717:00:00 1 0.132 92.62% 0.19 -302 1952101120 06:oo:oo--' --1952101120 06:00:00----r---_T ___ ~ o.132 92.92% 0.19 303 1980/12/0712:00:00 1980/12/0712:00:00 1 0.13 93.23% 0.19 304 1983/02/08 06:00:00 1983/02/08 06:00:00 1 0.121 93.54% 0.19 305 I 1997/12/0617:00:00 1997/12/0617:00:00 1 0.118 93.85% 0.19 306 1977/05/09 02:00:00 1 1977/05/09 02:00:00 1 0.115 94.15% 0.19 307 1965/02/06 21:00:00 1965/02/06 22:00:00 2 0.114 94.46% 0.19 308 2007/04/2015:00:00 I 2007/04/20 15:00:00 1 1 0.108 94.77% 0.19 ~09 -1977/12/26 06:00:00 I 1977/12/26 06:00:00 1 0.106 __ 95_._08_o/c_o_-+-0_.1_9 __________ __, 310 196611110116:00:oo I 196611110116:00:oo 1 0.103 95.38% 0.19 311 1980/01/18 04:00:00 1980/01/18 04:00:00 1 I 0.096 I 95.69% 0.19 312 1973/02/1511:00:00 1973/02/1511:00:00 1 0.095 I 96.00% 0.19 313 1970/01/1618:00:00 1970/01/1619:00:00 2 0.085 96.31% 0.19 ~314 1980/03/26 00:00:00 1980/03/26 00:00:00 -+----1 0.084 96.62% 0.19 315 +-1984/12/0801:00:00 1 1984/12/0801:00:00 1 -0.082 96.92% 0.18 ---- 316 1957/03/1610:00:00 ! 1957/03/1610:00:00 1 ! 0.08 , 97.23% 0.18 311 199510212613:oo:oo ! 199510212613:oo:oo I 1 0.08 , 97.54% 0.18 318 1976/02/0822:00:00 1976/02/0822:00:00 , 1 0.073 97.85% 0.18 319 1998/02/19 17:00:00 . 1998/02/19 17:0o:oo I 1 0.067 +--__ 9_8._15_0_1/0_--+_o._18 ____________ _ ~ 320 , 1998/04/1117:00:00 =I= 1998/04/1117:00:00 7 1 0.067 98.46% 0.18 --~ 321 1992/03/23 03:00:00 : 1992/03/23 03:00:00 1 0.066 98.77% 0.18 3/13/2017 1:51 PM 7/8 • ...-, r·, .-~,, .-.. , r, f 1 , 1 r , , , r· 1 r 1 r 1 r 1 .---. r-, r , r , r, • , Excel Engineering peakFlowStatisticsPre.csv Rank I Start Date End Date I Duration I Peak Frequency Return Period I i ~·~2 I 2006/02/28 06:00:00 2006/02/28 06:00:00 I 1 0.063 99.08% 0.18 323 I 2001/01/12 11 :00:00 2001/01/12 11 :00:00 I 1 0.059 99.38% 0.18 324 l 1965/12/14 17:00:00 1965/12/14 17:00:00 I 1 0.054 99.69% 0.18 -End of Data················· i i 3/13/2017 1:51 PM 8/8 • ..---, ,---,. .,, r-w ,-~ ,-1 r 1 r 1 , , r~ ,.-~ r----. r· 1 r·, r,, r~, r, r-, r, Excel Engineering peakFlowStatisticsPostMitigated.csv SWMM.out file name: V:\16\16024\engineering\GPIP\current\Storm -Lot-13-15\SWMM\SWMM CURRENT\LOT 13-15\16024 POST MITIGATED LOT 13-15 SWMM.out SWMM.out time stamp: 3/13/2017 1 :44:46 PM 010: 0.000 05: 0.000 .. ~ 02: 0.000 Peak Flow Statistics Table Values Rank Start Date End Date I Duration I Peak Frequency Return Period 1 1995/01/0310:00:00 1995/01/17 21:00:00 ' 348 9.637 0.13% 58 2 1969/02/18 10:00:00 1969/03/01 12:00:00 267 7.029 : 0.26% 29 3 1980/02/13 14:00:00 1980/02/24 15:00:00 266 6.405 0.39% 19.33 4 ! 1978/02/27 09:00:00 1978/03/07 21 :00:00 205 6.343 0.53% 14.5 5 1958/02/0307:00:00 I 1958/02/0800:00:00 114 5.847 0.66% 11.6 6 1982/03/14 15:00:00 , 1982/03/21 21 :00:00 175 5.408 0. 79% 9.67 7 2003/02/25 07:00:00 1 2003/03/02 13:00:00 I 127 5.364 0.92% 8.29 8 1965/11/22 07:00:00 ! 1965/11/27 04:00:00 -118 5.363 1.05% 7.25 9 1998/02/14 09:00:00 1998/02/28 00:00:00 328 5.133 1.18% 6.44 10 1980/01/28 02:00:00 1980/02/02 19:00:00 138 4.885 , 1.31% 5.8 ·~ 11 I 1978/01/03 21:00:00 1978/01/2117:00:00 429 ; 4.628 1 1.45% 5.27 12 1978/02/05 13:00:00 1978/02/17 05:00:00 281 4.362 1.58% 4.83 13 I-· 1991/02/2719:00:00 1991/03/04 20:00:00 122 4.002 1.71% 4.46 14 1952/01/13 06:00:00 1952/01/2118:00:00 205 3.862 1.84% 4.14 -15 1979/01/05 10:00:00 1979/01/11 01 :00:00 136 3.817 1.97% 3.87 16 1968/03/08 00:00:00 1968/03/11 21:00:00 94 3.785 2.10% 3.63 17 2008/02/20 12:00:00 2008/02/26 23:00:00 156 l 3.777 1 2.23% 3.41 - -· 18 2005/02/18 07:00:00 2005/02/26 20:00:00 206 3.688 2.37% 3.22 19 1980/01/09 05:00:00 1980/01/16 04:00:00 168 3.651 2.50% 3.05 ~-·~-20~-1986/02/13 11 :00:00 1986/02/19 01 :00:00 135 3.628 2.63% 2.9 21 2004/12/28 10:00:00 2005/01/14 19:00:00 418 3.612 I 2.76% 2.76 22 1997/01/12 16:00:00 1997/01/18 22:00:00 151 I 3.495 2.89% 2.64 23 1991/12/28 04:00:00 1992/01/02 11 :00:00 128 3.255 3.02% 2.52 24 1993/01/06 05:00:00 1993/01/22 02:00:00 382 3.146 3.15% 2.42 25 1966/12/03 07:00:00 1966/12/10 06:00:00 168 3.123 3.29% 2.32 . ~ 26 1983/12/2413:00:00 1983/12/2918:00:00 126 3.068 3.42% 2.23 ~-27 1996/11/2117:00:00 1996/11/2513:00:00 93 3.053 : 3.55% 2.15 ~. 28 1995/03/03 13:00:00 1995/03/0912:00:00 144 3 3.68% 2.07 - 29 1995/03/11 03:00:00 1995/03/15 08:00:00 102 I 2.999 3.81 % 2 30 2004/10/27 03:00:00 2004/10/31 11 :00:00 105 2.966 3.94% 1.93 31 1962/01/20 14:00:00 1962/01/2513:00:00 120 2.864 4.07% 1.87 ,__ __ _ ,__ __ 3_2_. 1983/02/24 03:00:00 1983/03/0819:00:00 305 2.638 4.20% 1.81 _ 33 1992/02/1216:00:00 1992/02/18 22:00:00 1 151 2.58 4.34% 1.76 ,__ __ 34 1977/08/1619:00:00 1977/08/21 07:00:00 109 2.578 4.47% 1.71 35 2007/11/30 09:00:00 I 2007/12/04 09:00:00 97 2.547 1 4.60% 1.66 e-----36 1969/01/2410:00:00 1969/01/3113:00:00 172 i 2.463 4.73% 1.61 --+--------37 1965/11/14 20:00:00 1965/11/20 20:00:00 145 ··-· I 2.453 4.86% 1.57 ---·--· ____ _ 38 -~--2008/01/05 05:00:00 I 2008/01/1013:00:00 -+---129 2.445 4.99% 1.53 ------·----··~ i-----3-9 1980/03/02 22:00:00 1980/03/0913:00:00 I 160 2.326 5.12% 1.49 3/13/2017 1:51 PM 1/17 • r• r, , ... 1 r--. f"'1 r-, r1 r, ,-, r, r., r1· r1 ,-, r, ~--~ r, r-, r1 Excel Engineering peakFlowStatisticsPostMitigated.csv Rank Start Date End Date Duration Peak Frequency I Return Period 1----40 I 1967/01/2218:oo:oo 196710112801:00:oo 1 128 --2.297 5.26% 1.45______ ---i ~ I 1998/02/03 08:00:00 1998/02/12 01 :00:00 210 2.227 5.39% 1.42 1---------42 · 2000/10/29 23:00:00 2000/11/02 02:00:00 76 2.061 5.52% 1.38 43 I 1963/11/20 05:00:00 1963/11/24 14:00:00 106 2.002 I 5.65% 1.35 p I 2003/04/1406:00:00 2003/04/1814:00:00 I 105 1.975 5.78% 1.32 45 1976/12/3016:00:00 1977/01/1014:00:00 263 1.847 5.91% 1.29 46 · 2003/02/11 11 :00:00 2003/02/17 00:00:00 i 134 1.835 6.04% 1.26 47 1954/01/18 21:00:00 1954/01/27 06:00:00 202 1.83 6.18% 1.23 48 2004/10/1708:00:00 2004/10/2401:00:00 162 1.829 6.31% 1.21 .__ :~ ~~~:~g~~~~ ~::gg:gg i ~~~:~g~~~ ~::gg:gg ~:~ ~:;~! I ::~~ ~:~: 51 1963/09/1708:00:00 1963/09/2204:00:00 117 1.661 6.70% 11.14 52 1971/12/22 09:oo:oo 1971/12/30 15:0o:oo 199 1.628 6.83% 1 1.12 I 53 1958/04/0110:00:00 1958/04/1023:00:00 230 1.614 6.96%1.09 ,__ __ 54 I 1985111111 01:00:00 198511111515:oo:oo 105 1.607 1.10% 1.07 55 1972/01/16 21 :00:00 1972/01/22 04:00:00 128 1.594 7.23% 1.06 56 I -1958103120 20:00:00 1958103125 15:00:00 116 1 _552 7.36% 1.04 57 1--1970/12/17 01 :00:00 1970/12/24 11 :00:00 179 1.546 7.49% -+-111_.0_2 ____________ _, 58 1979/01/14 22:00:00 1979/01/2016:00:00 139 1.544 7.62% 1 59 1961/12/01 22:00:00 1961/12/05 23:00:00 98 1.512 7.75% 10.98 1---60 1969/02/0610:00:00 J 1969/02/0921:00:00 84 1.51 7.88% 0.97 61 : 2001/02/1312:00:00 2001/02/18 05:00:00 114 I 1.51 8.02% 10.95 I 62 I 198111011114:oo:oo 1981110116 03:00:00 110 · 1.498 8.15%0.94 63 I 1991/03/1901:00:00 I 1991/03/3012:00:00 ' 276 1.484 I 8.28% 0.92 64 , 1985/11/2908:oo:oo 1985/12/0419:0o:oo 132 1.475 I 8.41% o.91 I~-i 1967/12/1818:oo:oo I 1967/1212300:00:oo 103 1.448 , -8.54% o.89 I, I 66 ! 1956/04/12 23:oo:oo I 1956/04/17 00:00:00 -98 1.406 I 8.67% o.88 67 I 1987/12/1614:00:00 I 1987/12/21 02:00:00 , 109 1 -1.392 I 8.80% 0.87 68 1994/02/03 23:oo:oo 1994/02/1 o 01:00:00 153 1.387 8.94% I 0.85 69 1960/04/27 07:00:00 1960/04/30 14:00:00 I 80 I 1.36 9.07% 0.84 1---70 2008101127 02:00:00 -------r--2008101131 05:oo:oo I 100 ! 1.347 9.20% o.83 71 I 1950102101 22:00:00 I 1960/02/0506:oo:oo I 81 : 1.325 9.33% o.82 72 I 1975/04/0808:oo:oo I 1975/04/1215:oo:oo 104 1.285 9.46% o.81 L 13 195510313115:00:oo 1955104113 15:00:00 313 1.248 9.59% o.8 L-74 1993/02/1813:00:00 1993/02/2515:00:00 171 1.229 9.72% I0.78 ___________ __, 75 1967/03/1311:00:00 1967/03/17 05:00:00 91 1.227 9.86% 0.77 76 1952/11/1417:oo:oo 1952/11/1912:0o:oo 116 1.214 9.99% I0.76 i----~;~~--~----, ~:;~g~~~; ~~:gg:gg I ~:~~g~~~ ~~:gg:gg I --~16 ~:~~: I ~g:~~~ g:;~ I, -~----+ 1983/01/27 09:00:00 I 1983/02/0115:00:00 _ I 127 1.122 i 10.38% 0.73 80 --+ 1986/11/1719:oo:oo I 198611112112:00:oo . 90 1.119 , 10.51% o.73 ~-1960/01/1013:00:00 · 1 1960/01/18 03:00:00 I 183 I 1.114 10.64% 0.72 82 ~ -1988/12/1512:00:00 1988/12/29 02:00:00 327 · 1.098 10.78% 0.71 o----~8~3 1957/01/26 07:00:00 1957/02/02 03:00:00 165 1.075 10.91% 0.7 -~-_J 1986/09/24 02:00:00 I 1986/09/28 04:00:00 _ 99 __ 1.069 11.04% o.69 __ 85 1965/12/0910:00:00 i 1965/12/1818:00:00 225 1.032 11.17% 0.68 86 2007/01/30 16:00:00 1 2007/02/02 07:00:0Q____ 64 1.02L__ l 11.30% 0.67 ~ 3/13/2017 1:51 PM 2/17 • r----. • 1 r 1 r w 1 ·1 r 1 r 1 r 1 r , r 1 ,-1 r " r 1 r , r ~. r w r, r-·~ r 1 Excel Engineering peakFlowStatisticsPostMitigated.csv Rank Start Date End Date ' Duration Peak Frequency I Return Period : _j -87 1993/02/07 23:00:00 I 1993/02/12 03:00:00 101 1.025 11.43% 0.67 88 1963/03/17 01 :00:00 1963/03/20 12:00:00 84 0.993 11.56% 0.66 89 I 2005/04/28 09:00:00 2005/04/30 20:00:00 60 0.988 11.70% 0.65 90 1963/02/09 19:00:00 1963/02/1512:00:00 138 0.984 l 11.83% 0.64 91 1957/01/13 06:00:00 1957/01/16 16:00:00 83 0.979 ' 11.96% 0.64 92 1967/11/19 09:00:00 1967/11/2414:00:00 126 0.965 12.09% 0.63 93 1992/12/0710:00:00 I 1992/12/10 16:00:00 79 0.963 12.22% 0.62 94 1992/01/03 12:00:00 1992/01/11 10:00:00 191 0.963 12.35% 0.62 95 1958/02/1910:00:00 1958/02/22 15:00:00 78 0.932 12.48% 0.61 96 i 1982/12/22 12:00:00 1982/12/2512:00:00 73 0.913 12.61% 0.6 97 1951/12/29 06:00:00 1952/01/02 21 :00:00 : 112 0.911 12.75% 0.6 98 1958/03/1518:00:00 1958/03/19 19:00:00 98 0.883 12.88% 0.59 99 I 2001/02/23 19:00:00 2001/03/03 02:00:00 176 0.871 13.01% 0.59 100 1986/03/0818:00:00 --, 1986/03/19 14:00:00 261 0.824 13.14% 0.58 ·--~-101 1952/03/0710:00:00 1952/03/14 21 :00:00 180 0.819 13.27% 0.57 102 1977/05/08 00:00:00 i 1977/05/13 03:00:00 124 0.814 13.40% 0.57 103 1962/02/07 22:00:00 I 1962/02/13 01 :00:00 124 0.808 13.53% 0.56 104 1958/01/25 04:00:00 1958/01/29 16:00:00 ' 109 0.808 13.67% 0.56 -· 105 1984/12/26 17:00:00 1984/12/30 23:00:00 103 0.792 13.80% 0.55 106 ' 1985/11/2418:00:00 I 1985/11/28 08:00:00 87 0.791 I 13.93% 0.55 -~ I 1997/01/23 09:00:00 1997/01/2917:00:00 153 I 0.79 14.06% 0.54 108 2005/02/11 04:00:00 I 2005/02/15 23:00:00 116 0.78 14.19% ,0.54 109 1994/03/24 23:00:00 1994/03/28 12:00:00 86 0.754 14.32% 0.53 110 I 1970/02/28 16:00:00 1970/03/07 09:00 :00 162 0.745 14.45% 0.53 111 I 1981/11/26 23:00:00 I 1981/12/02 08:00:00 130 0.736 I 14.59% 0.52 ----112 i 1977/12/25 20:00:00 I 1978/01/01 19:00:00 168 0.734 14.72% 0.52 113 1972/11/14 17:00:00 I 1972/11/20 07:00:00 135 0.723 14.85% 0.51 -114 ----1981/02/25 22:00:00 --l 1981/03/08 03:00:00 I 246 0.719 14.98% 0.51 115 I 1990/02/17 12:00:00 1990/02/21 08:00:00 93 0.714 i 15.11% 0.5 116 1970/11/28 22:00:00 ' 1970/12/04 03:00:00 126 : 0.701 15.24% 0.5 -- 117 2006/10/14 02:00:00 2006/10/16 05:00:00 52 0.689 15.37% 0.5 -118 1976/09/10 02:00:00 ' 1976/09/14 06:00:00 101 0.668 15.51% 0.49 119 1978/09/05 19:00:00 : 1978/09/09 09:00:00 I 87 0.649 15.64% 10.49 120 i 1981/03/19 21 :00:00 1981/03/22 14:00:00 66 0.641 15.77% j0.48 121 1974/03/08 02:00:00 1974/03/1114:00:00 I 85 0.637 15.90% 0.48 ·-122 ' 1999/01/25 08:00:00 1999/01/29 19:00:00 108 0.629 16.03% 0.48 -123 1954/11/11 01:00:00 1954/11/14 22:00 :00 94 0.629 16.16% 0.47 124 1974/01/0717:00:00 1974/01/11 11 :00:00 91 0.62 16.29% 0.47 125 1983/11/11 21 :00:00 1983/11/15 17:00:00 93 0.617 16.43% 0.46 126 _J 1988/11/24 03:00:00 i 1988/11/28 06:00:00 100 0.611 16.56% 0.46 127 1979/11/07 19:00:00 1979/11/10 02:00:00 56 0.604 i 16.69% 0.46 128 I 2002/11/0810:00:00 2002/11/12 01 :00:00 88 0.603 ' 16.82% 0.45 129 1994/03/07 02:00:00 1994/03/10 01 :00:00 72 0.594 I 16.95% 0.45 130 1976/02/04 11 :00:00 1976/02/13 11 :00 :00 217 0.574 17.08% 0.45 ~~ 2001/01/10 22:00:00 2001/01/15 11 :00:00 110 I 0.569 17.21% 0.44 --·--1957/05/14 05:00:00 r 132 -l-1957/05/10 12:00:00 90 0.568 17.35% 0.44 ------, -- 133 1988/01/17 07:00:00 i 1988/01/20 19:00:00 85 0.558 17.48% 0.44 3/13/2017 1:51 PM 3/17 , I' • • -w r , r , ,.-=, r 1 ,. 1 .,. 1 t 1 , 1 r 1 r 1 r I r -, , 1 r-, t , r-'I r 1 Excel Engineering pea kFlowStatisticsPostMitigated.csv Rank Start Date End Date Duration Peak Frequency I Return Period -~---I 1992/03/20 21 :00:00 I 1992/03/25 19:00:00 119 1 0.538 I 17.61 % 0.43 l -135 ~ 1976/07/22 13:oo:oo I 1976/07/25 06:oo:oo 66 o.519 I 17.74% o.43 136 1983/11/24 23:00:00 1 1983/11/2716:00:00 66 0.517 I 17.87% 0.43 137 1979/03/27 07:00:00 1979/03/31 01:00:00 91 0.513 I 18.00% 0.42 138 1952/11/30 02:00:00 i 1952/12/0415:00:00 : 110 0.504 i 18.13% 0.42 139 1960/02/28 21 :oo:oo I 1960/03/03 23:0o:oo i 99 o.498 I 18.27% o.42 140 1983/04/1804:oo:oo I 1983/04/2311:oo:oo I 128 I o.498 I 18.40% 0.41 141 1982112/08 00:00:00 1982112110 16:0o:oo 65 o.477 18.53% I0.41 142 I 1954/03/20 13:oo:oo 1954/03/27 18:oo:oo 174 o.472 18.66% o.41 L----'---14=3--1988/04/20 03:00:00 1988/04/25 04:00:00 122 0.47 18.79% 0.41 144 200110112614:oo:oo 2001101130 03:oo:oo 86 o.464 18.92% I0.4 145 2003;03;1510:00:00 2003/03/1916:oo:oo 103 0.461 19.05% I0.4 146 : 1988/02/02 03:00:00 l 1988/02/05 12:00:00 82 ' 0.449 / 19.19% 0.4 147 1978/03/30 15:oo:oo I 1978/04/03 16:oo:oo 98 o.436 I 19.32% 0.4 L 148 --1981/02/08 20:00:00 1 1981/02/11 23:00:00 76 0.434 I 19.45% 0.39 149 1981/12/30 09:00:00 1982/01/08 05:00:00 213 0.433 i 19.58% 0.39 150 . I 1988/04/14 20:00:00 I 1988/04/18 14:00:00 91 0.431 I 19.71% 0.39 151 1983/09/2912:0o:oo I 1983/10/04 04:oo:oo 113 i o.414 19.84% /0.38 ~ 52 1~ 1996/12/0919:00:00 1 1996/12/1418:00:00 120 0.413 19.97% 0.38 -1966/02/0613:00:00 ' 1966/02/10 22:00:00 106 0.398 20.11% 10.38 ,________ 1985/12111 05:oo:oo 1985/12/14 02:00:00 10 o.391 20.24% o.38 l1 155 . 1983/03/17 04:00:00 1983/03/27 01 :00:00 , 238 0.388 20.37% 0.37 I 156 1976/07/1514:oo:oo I 1976/07/18 01:00:00 66 o.387 20.50% o.37 157 I 1975/03/08 10:00:00 I 1975/03/14 19:00:00 154 0.38 20.63% 0.37 .__ 158 _ 1967/04/11 09:oo:oo _J__ 1967/04/1407:oo:oo 71 _ I o.378 20.76% o.37 159 , 1982/01/20 06:00:00 1982/01/24 05:00:00 : 96 0.374 I 20.89% 10.37 ~ I 1968112125 20:00:00 I 196811212812:00:oo i 65 1 o.373 I 21.02%0.36 -151 _____ T 195511110115:oo:oo 195511111016:00:00 14 ; o.31 21.16% 10.36 t 162_---j---1992/02/06 10:00:00 i 1992/02/11 04:0o:oo I 115 0.361 I 21.29% o.36 163 _1957/02/2821:00:00 1957/03/0402:00:00 ' 78 0.359 21.42% 0.36 164 _1973/11/2300:00:00 1973/11/2514:00:00 ,-63 0.356 21.55% 0.35 155 1959;0210805:oo:oo 1959;0211415:00:00 1 155 o.35 21.68% o.35 166 198110112808:00:oo I 1981102101 21:00:00 I 110 o.311 21.81% -Q.35 167 + 1984/12/1810:oo:oo I 198411212216:00:oo 103 I o.309 21.94% o.35 L 168 -_ · 1918112111 01 :oo:oo 1918112121 23:00:00 119 o.308 22.08% o.35 169 I 1994/03/19 05:00:00 1994/03/22 22:00:00 90 ' 0.305 22.21% 0.34 ,_____1_Z()___ : 1993/06/0514:00:00 1993/06/0717:00:00 52 0.304 , 22.34% 0.34 171 1995/04/16 09:00:00 1995/04/21 06:00:00 118 0.292 22.47% 0.34 172 1965/02/06 02:00:00 I 1965/02/09 11 :oo:oo 82 o.283 22.60% 0.34 t= 173 _ . 1955/01/16 11 :00:00 ___ 1955/01/21 19:00:00 _ 129 0.283 22.73% 0.34 ~ 174 1976/03/01 17:00:00 1976/03/04 22:00:00 78 0.28 22.86% 0.33 !ZL___J 1974/12/04 07:00:00 1974/12/07 02:00:00 68 I 0.275 23.00% 0.33 ------ 176 i 1991/01/0915:00:00 1991/01/1114:00:00 ' 48 0.271 23.13% 0.33 E ~;~ 1_·. ~:;:~~~~~~ 6!;~~;~~ -+-_ ~:;:~~~~~~ ~~;~~;~~ ~-16:5 °ci~:: ~;:~:~ --· ~:;; --- --~--' _ 1954101121 09:00:00 -1--195410112501:00:oo r 95 0.256 23.52% . 1 0.32 180 1961/01/2610:00:00 1961/01/29 05:00:00 ~--68 _ __J 0.255 23.65% 0,32 I 3/13/2017 1:51 PM 4/17 , r·-, r~, r, r~ ,-;, r~1 ..-, r-w ,1 r1 r-w r-'I r1 r, r-1 r, ,, r~ r, Excel Engineering peakFlowStatisticsPostMitigated.csv Rank I Start Date -~ End Date ! Duration Peak Frequency Return Period 1982/02/09 23:00:00 1982/02/13 08:00:00 i ---0.249 23.78% 0.32 181 82 -182 1971/04/1412:00:00 1971/04/16 17:00:00 54 0.214 23.92% 0.32 183 1959/12/24 11 :00:00 1959/12/27 02:00 :00 64 0.205 24.05% 0.32 184 1973/02/11 09:00:00 I 1973/02/17 02:00:00 138 0.203 I 24.18% 0.32 185 2006/02/27 22:00:00 2006/03/04 00:00:00 99 0.201 24.31% 0.31 --186 1992/03/02 09:00:00 1992/03/05 08:00:00 I 72 0.201 24.44% 0.31 187 1954/03/16 23:00:00 1954/03/19 10:00:00 I 60 0.199 24.57% 0.31 188 1995/01/24 01 :00:00 1995/01/28 17:00:00 113 0.189 24.70% 0.31 189 2006/04/04 19:00:00 2006/04/07 17:00:00 71 0.187 24.84% 0.31 190 I 1957/01/05 12:00:00 1957/01/12 05:00:00 162 0.179 24.97% 0.31 191 1977/03/25 00:00:00 1977/03/27 20:00:00 69 0.168 I 25.10% 0.3 192 1973/03/20 09:00:00 1973/03/23 03:00:00 67 0.166 25.23% 0.3 193 1994/02/1712:00:00 1994/02/20 21 :00:00 82 0.166 25.36% 0.3 194 1978/03/09 19:00:00 1978/03/14 22:00:00 124 0.166 25.49% 0.3 195 1 1990/01/17 02:00:00 1990/01/20 01 :00:00 72 0.165 25.62% 0.3 196 1964/11/17 15:00:00 -i----1964/11/20 04:00:00 62 0.165 I 25.76% 0.3 197 1970/02/10 05:00:00 i 1970/02/13 14:00:00 82 0.164 I 25.89% 0.29 198 1959/02/21 12:00:00 1959/02/24 08:00:00 i 69 0.164 26.02% 0.29 --199 1985/02/09 08:00 :00 1985/02/11 21 :00:00 62 0.163 I 26.15% 0.29 --200 i 2002/12/20 12:00:00 I 2002/12/23 23:00:00 84 0.162 26.28% 0.29 201 1987/01/06 22:00:00 I 1987/01/09 15:00:00 66 0.162 26.41% 0.29 202 1962/03/18 20:00:00 1962/03/21 15:00:00 68 0.161 26.54% 0.29 ----- 203 I 2000/02/20 16:00:00 2000/02/25 11 :00:00 116 0.16 26.68% 0.29 204 I 1990/04/0410:00:00 1990/04/06 19:00:00 i 58 0.16 26.81% 0.28 --205 1959/02/16 06:00:00 1959/02/19 06:00:00 73 0.159 26.94% 0.28 -- 206 1974/10/28 12:00:00 I 1974/10/31 17:00:00 78 0.157 27.07% 0.28 207 1973/03/05 11 :00:00 1973/03/1413:00:00 219 0.156 27.20% 0.28 --208 ' 1996/10/30 15:00:00 1996/11/01 22:00:00 --------56--------0.156 27.33% 0.28 209 1969/01/14 02:00:00 1969/01/16 18:00:00 I 65 0.156 27.46% 0.28 210 1993/03/26 02:00:00 1993/03/30 07:00:00 102 I 0.156 27.60% 0.28 -211 2003/12/25 03:00:00 2003/12/28 00:00:00 70 0.156 27.73% 0.28 212 1982/11/0917:00:00 I 1982/11/12 20:00:00 76 0.156 27.86% 0.27 213 1998/01/2913:00:00 1998/02/01 05:00:00 65 0.155 27.99% 0.27 214 I 1998/11/08 10:00:00 1998/11/10 18:00:00 57 0.155 28.12% 0.27 215 i 1999/04/11 23:00:00 1999/04/14 06:00:00 56 0.153 28.25% 0.27 216 1982/04/0112:00:00 1982/04/04 19:00:00 80 0.153 28.38% 0.27 217 1955/04/30 22:00:00 I 1955/05/03 21 :00:00 I 72 0.153 28.52% 0.27 218 1966/01/30 10:00:00 1966/02/02 00:00:00 I 63 0.152 28.65% 0.27 219 I 2000/03/04 20:00:00 2000/03/09 12:00:00 113 0.152 28.78% 0.27 220 1979/10/20 04:00:00 I 1979/10/22 18:00:00 63 0.152 28.91% 0.26 ------- I 1989/03/28 06:00:00 0.152 29.04% 0.26 221 1989/03/2513:00:00 66 -222 1969/11/06 21 :00:00 1969/11/11 03:00:00 103 0.151 29.17% 0.26 I 223 2001/04/07 13:00:00 2001/04/1113:00:00 97 0.151 29.30% 0.26 224 I 1988/11/14 08:00:00 1988/11/1610:00:00 51 0.151 29.43% 0.26 225 I 1952/01/25 06:00:00 1952/01/27 13:00:00 I 56 0.151 29.57% 0.26 ------- 226 1983/04/29 08:00:00 1983/05/02 23:00:00 I 88 0.151 ! 29.70% 0.26 ·-~ 227 1951/12/12 01 :00:00 1951/12/14 10:00:00 58 0.151 29.83% 0.26 3/13/2017 1:51 PM 5/17 J .---, ,-,-,. r•, r 11 ,--, •· 1 ,,, , r 1 , · 1 r~ 1 r 1 r 1 r 1 r-, r -1 r ~ r , r y r , Excel Engineering peakFlowStatisticsPostMitigated.csv Rank ! Start Date _J End Date i Duration Peak 1 Frequency Return Period 228 1962/02/19 13:00:00 1962/02/23 10:00:00 94 0.151 29.96% 0.25 229 1971/02/17 00:00:00 1971/02/19 13:00:00 62 0.15 30.09% 0.25 230 2007/04/20 16:00:00 2007/04/23 17:00:00 74 0.15 30.22% 0.25 231 1986/02/08 00:00:00 1986/02/10 14:00:00 63 0.149 30.35% 0.25 232 1960/09/11 05:00:00 1960/09/13 09:00:00 1 53 0.149 30.49% 0.25 f----------I 233 1984/11/24 19:00:00 1984/11/26 21 :00:00 I 51 0.148 30.62% 0.25 ·-234 1955/01/10 06:00:00 1955/01/12 17:00:00 60 0.148 30.75% 0.25 235 1996/01/31 06:00:00 ' 1996/02/04 05:00:00 96 0.148 30.88% 0.25 ·- 236 1986/04/06 04:00:00 I 1986/04/08 11 :00:00 56 0.148 31.01% 0.25 f--------237 1958/03/06 12:00:00 1958/03/09 01 :00:00 62 0.148 31.14% 0.25 f----· 238 1979/01/30 21 :00:00 1979/02/04 07:00:00 107 0.148 31.27% 0.24 ·- f---239 1959/04/26 06:00:00 : 1959/04/28 07:00:00 50 0.147 31.41% 0.24 240 1992/12/27 22:00:00 1992/12/30 23:00:00 74 0.147 31.54% 0.24 241 1957/04/20 17:00:00 i 1957/04/23 14:00:00 70 I 0.147 31.67% 0.24 --242 1979/03/01 11 :00:00 1979/03/03 17:00:00 55 0.146 31.80% 0.24 f-----•243 1969/03/21 15:00:00 1969/03/23 21 :00:00 I 55 0.146 31.93% 0.24 - ~ 244 2006/03/10 19:00:00 2006/03/13 16:00:00 ! 70 0.146 32.06% 0.24 245 I 2001/12/0914:00:00 2001/12/11 22:00:00 57 0.145 32.19% 0.24 246 2002/12/16 14:00:00 2002/12/19 02:00:00 61 0.145 32.33% 0.24 247 1993/01/31 01:00:00 1993/02/02 01 :00:00 49 0.145 32.46% 0.24 ~--248 ~ ! 1994/01/25 01 :00:00 1994/01/2818:00:00 90 0.144 32.59% 0.23 249 1964/12/2710:00:00 1964/12/30 03:00:00 66 0.142 32.72% 0.23 250 1958/02/25 09:00:00 1958/02/27 07:00:00 ! 47 0.142 32.85% 0.23 251 1976/08/30 12:00:00 1976/09/01 10:00:00 I 47 0.141 32.98% 0.23 252 1957/10/14 02:00:00 ·-➔ 1957/10/16 07:00:00 54 0.141 33.11% 0.23 -253 1974/12/28 10:00:00 I 1974/12/31 06:00:00 69 0.14 33.25% 0.23 254 1986/01/30 05:00:00 ! 1986/02/02 13:00:00 81 0.14 33.38% 0.23 ~-255 1 1959/12/21 03:00:00 1959/12/23 07:00:00 53 : 0.14 33.51% 0.23 256 1987/12/04 22:00:00 1987/12/06 23:00:00 I 50 0.14 33.64% 0.23 257 1998/03/25 16:00:00 ! 1998/03/30 10:00:00 115 0.14 33.77% 0.23 258 1997/12/06 14:00:00 1997/12/09 09:00:00 68 0.14 33.90% 0.23 259 1986/12/06 09:00:00 1986/12/09 01 :00:00 65 0.14 34.03% 0.22 260 1987/02/23 20:00:00 1987/02/27 09:00:00 86 0.138 34.17% 0.22 261 ' 1957/12/05 05:00:00 1957/12/07 11 :00:00 55 0.138 34.30% 0.22 262 1982/11/2914:00:00 l 1982/12/0210:00:00 69 0.137 34.43% 0.22 f------~ ! 1983/12/03 17:00:00 1983/12/05 16:00:00 I 48 0.137 34.56% 0.22 f--------264 I 1952/12/20 13:00:00 1952/12/22 10:00:00 46 I 0.136 34.69% 0.22 I 265 2001/11/2414:00:00 2001/11/26 18:00:00 53 0.136 34.82% 0.22 266 1986/10/09 22:00:00 1986/10/12 07:00:00 58 0.136 34.95% 0.22 267 1980/12/0414:00:00 1980/12/09 03:00:00 110 0.135 35.09% 0.22 - 268 1995/02/14 04:00:00 1995/02/16 15:00:00 60 i 0.135 35.22% 0.22 269 1993/11/30 05:00:00 i 1993/12/02 02:00:00 46 0.135 35.35% 0.22 270 1952/02/29 23:00:00 1952/03/03 07:00:00 57 0.134 35.48% 0.22 271 L 1955/02/26 14:00:00 1955/03/01 16:00:00 75 0.134 35.61% 0.21 272 1998/01/09 16:00:00 1998/01/12 17:00:00 74 0.134 35.74% 0.21 -·----------+--1990/05/28 09:00:00 1990/05/30 08:00:00 48 0.133 35.87% ------ _ 273_ i 0.21 274 1952/04/10 14:00:00 1952/04/12 16:00:00 51 I 0.133 36.01% 0.21 3/13/2017 1:51 PM 6/17 ' ,--, r-, •-.._ r, r-, ,·1 r-1 r 1 , ·, r· 1 r 1 r· 1 r I r , r~, r, r , rt w 1 Excel Engineering peakFlowStatisticsPostMitigated.csv Rank Start Date j End Date I Duration ! Peak I Frequency Return Period -· I 275 2005/12/31 19:00:00 2006/01/04 19:00:00 97 i 0.133 I 36.14% 0.21 I 276 1980/01/17 23:00:00 1980/01/20 19:00:00 69 I 0.133 36.27% 0.21 277 1967/11/30 17:00:00 1967/12/02 12:00:00 44 0.132 36.40% 0.21 278 I 1998/05/12 15:00:00 1998/05/14 21 :00:00 55 I 0.131 ' 36.53% 0.21 279 I 1972/12/0416:00:00 1972/12/09 08:00:00 113 0.131 36.66% 0.21 -· 280 1965/12/29 20:00:00 1966/01/01 16:00:00 69 0.131 36.79% 0.21 281 I 1984/12/08 02:00:00 1984/12/09 19:00:00 42 0.131 36.93% 0.21 282 1980/03/26 01 :00:00 1980/03/27 18:00:00 I 42 0.129 37.06% 0.21 283 1959/12/10 01 :00:00 I 1959/12/11 22:00:00 I 46 0.129 37.19% 0.21 284 1960/11/05 23:00:00 ~-1960/11/08 04:00:00 ! 54 ! 0.129 37.32% 0.2 I l ---285 1999/03/25 16:00:00 1999/03/27 12:00:00 45 I 0.128 37.45% 0.2 286 ' 1957/03/1612:00:00 1957/03/18 05:00:00 42 0.127 I 37.58% 0.2 287 1975/02/03 11 :00:00 1975/02/06 03:00:00 65 0.127 ! 37.71% 0.2 288 1953/01/0619:00:00 I 1953/01/09 22:00:00 76 0.127 I 37.84% 0.2 289 1984/10/17 08:00:00 1984/10/18 23:00:00 40 0.126 37.98% 0.2 ~ 290 I 2004/04/02 00:00:00 2004/04/03 15:00:00 40 0.126 38.11% 0.2 291 1980/10/16 07:00:00 ~-1980/10/17 22:00:00 40 0.126 38.24% 0.2 292 1955/02/16 22:00:00 1955/02/19 07:00:00 58 0.125 38.37% 0.2 293 2006/05/22 06:00:00 i 2006/05/23 23:00:00 42 0.125 38.50% 0.2 294 1951/08/28 11 :00:00 1951/08/30 16:00:00 54 0.125 38.63% 0.2 -. ·-295 1960/11/2619:00:00 1960/11/28 11 :00:00 41 0.124 38.76% 0.2 ~---2000/02/11 18:00:00 2000/02/16 00:00:00 103 38.90% 296 ! I 0.124 0.2 297 1963/11/15 19:00:00 1963/11/17 10:00:00 ! 40 0.124 39.03% 0.2 298 2004/12/05 14:00:00 2004/12/07 08:00:00 43 0.124 39.16% 0.2 299 ! 1962/03/06 10:00:00 1962/03/08 11 :00:00 50 0.124 39.29% 0.19 300 --1-1979/02/21 03:00:00 1979/02/24 01 :00:00 71 -39.42% -----0.124 0.19 301 , 1996/12/27 18:00:00 1996/12/29 19:00:00 50 0.123 39.55% 0.19 -----------+ 1987/04/04 10:00:00 1987/04/06 07:00:00 46 0.123 39.68% 0.19 302 303 1975/11/2719:00:00 1975/11/30 11 :00:00 65 0.123 39.82% 0.19 304 1969/01/19 00:00:00 1969/01/23 05:00:00 102 0.123 I 39.95% 0.19 ~ 305 1973/11/17 07:00:00 1973/11/20 11 :00:00 77 0.122 I 40.08% 0.19 ~ 306 2005/10/16 20:00:00 2005/10/20 00:00:00 77 0.122 40.21% 0.19 --307 1982/09/26 06:00:00 1982/09/28 07:00:00 50 0.122 40.34% 0.19 308 2000/04/17 20:00:00 2000/04/19 23:00:00 52 0.121 40.47% 0.19 309 1951/11/23 07:00:00 1951/11/24 19:00:00 37 0.121 I 40.60% 0.19 --1965/01/25 21 :00:00 40.74% 310 I 1965/01/24 09:00:00 37 0.12 0.19 311 2006/03/29 00:00:00 2006/03/30 21 :00:00 46 0.12 40.87% 0.19 312 1952/12/30 22:00:00 1953/01/01 18:00:00 45 0.12 41.00% 0.19 313 i 1999/02/04 17:00:00 1999/02/06 16:00:00 I 48 0.119 41.13% 0.19 ~-314 1961/11/20 18:00:00 1961/11/22 07:00:00 38 0.119 41.26% 0.19 315 1996/03/12 21 :00:00 1996/03/15 02:00:00 i 54 i 0.119 41.39% 0.18 ~--316 1960/01/25 23:00:00 1960/01/2715:00:00 41 ' 0.119 41.52% 0.18 317 1996/02/25 12:00:00 j.. 1996/02/29 10:00:00 95 0.119 41.66% 0.18 318 1963/09/04 10:00:00 1963/09/06 01 :00:00 40 0.119 41.79% 10.18 ·--·--~ -2000/10/28 21 :00:00 - I 2000/10/26 11 :00:00 59 0.118 41.92% 0.18 --~ --l-·--·--2007/08/2613:00:00 2007/08/28 00:00:00 36 0.118 42.05% 0.18 ~ •--1998/03/3116:00:00 1998/04/03 04:00:00 61 0.117 42.18% 0.18 321 i I 3/13/2017 1:51 PM 7/17 , r 1 .--, f · t. • 1 r-J •· 1 r ·, r 1 ,,, , 1 r 1 r 1 r , .,." 1 r·1 r~ r, r, • 1 Excel Engineering peakFlowStatisticsPostMitigated.csv Rank Start Date End Date ·--L Duration Peak Frequency Return Period 322 1958/09/2403:00:00 1958/09/2517:00:00 I 39 0.117 42.31% 0.18 -323 1963/04/1707:00:00 1963/04/1822:00:00 -40 0.117 42.44% 0.18 324 2004/02/03 02:00:00 2004/02/05 04:00:00 I 51 0.117 42.58% 0.18 ,___ __ 32_5 __ --+_ 1955/04/2206:00:00 1955/04/2320:00:00 39 0.116 42.71% 0.18 -- 326 I 1990/06/0916:00:00 : 1990/06/12 00:00:00 57 0.116 42.84% 0.18 ,___3_2_7__ 1980/03/1017:00:00 1980/03/1203:00:00 35 f 0.116 42.97% 0.18 328 1970/01/1619:00:00 1970/01/1808:00:00 38 0.116 43.10% 0.18 329 1980/04/22 14:00:00 1980/04/24 15:00:00 50 0.116 I 43.23% 0.18 330 1961/11/25 05:00:00 1961/11/27 08:00:00 52 0.115 43.36% 0.18 331 1968/02/13 06:00:00 1968/02/14 20:00:00 39 0.115 i 43.50% 0.18 332 2007/12/07 08:00:00 2007/12/10 03:00:00 68 0.115 I 43.63% 0.18 333 1995/03/21 14:00:00 1995/03/25 00:00:00 83 0.115 43. 76% 0.17 334 1996/02/21 05:00:00 1996/02/2310:00:00 54 0.114 43.89% 0.17 335 1954/12/1001:00:00 1954/12/1118:00:00 42 0.114 44.02% 0.17 -- 336 1975/02/09 09:00:00 1975/02/11 12:00:00 52 0.114 44.15% 0.17 337 I 2006/02/1806:00:00 2006/02/2019:00:00 62 .. 0.113 44.28% 0.17 338 -, 1964/03/23 01 :00:00 1964/03/25 12:00:00 60 0.113 I 44.42% 0.17 1-------339 1974/03/0212:00:00 1974/03/04 08:00:00 45 0.113 1 44.55% 0.17 340 1967/04/18 22:00:00 1967/04/23 07:00:00 106 0.113 I 44.68% 0.17 ,___3_4_1 -----1959/01/0608:00:00 1959/01/0718:00:00 35 0.113 44.81% 0.17 342 1954/03/30 06:00:00 1954/03/3116:00:00 35 0.113 : 44.94% 0.17 343 1990/04/1700:00:00 1990/04/1822:00:00 47 0.112 45.07% 0.17 344 2006/12/10 02:00:00 2006/12/11 22:00:00 45 0.112 45.20% 0.17 345 i 1972/11/1110:00:00 1972/11/1219:00:00 34 0.112 45.34% 0.17 -346 1983/02/0217:00:00 1983/02/0414:00:00 46 0.112 45.47% 0.17 347 1979/02/14 06:00:00 ---·1 . --1979/02/1514:00:00 I 33 0.112 45.60% 0.17 348 I 2007/12/1902:00:00 -2007/12/2021:00:00 I 44 0.112 45.73% 0.17 1-----34_9__ , 1962/02/15 22:00:00 1962/02/18 06:00:00 1 57 0.112 45.86% +0-.-17 __________ ___, 350 1973/02/28 04:00:00 1973/03/01 16:00:00 37 0.112 45.99% 0.17 t----3-51---+--1983/04/12 10:00:00 I 1983/04/1417:00:00 ! 56 0.111 46.12% 0.17 352 1965/03/12 18:00:00 ' -1965/03/15 04:00:00 59 0.111 46.25% 0.17 -· --- 353 1968/04/01 21 :00:00 T 1968/04/03 13:00:00 41 0.111 46.39% 0.16 354 1988/01/0517:00:00 -1-1988/01/0701:00:00 33 0.11 46.52% 0.16 355 1957/06/10 05:00:00 I 1957/06/1112:00:00 32 0.11 46.65% 0.16 356 1953/03/02 01 :00:00 1953/03/03 08:00:00 32 0.11 46. 78% 0.16 -357 195311111419:00:oo 195311111616:00:oo 46 l 0.11 46.91% 0.16 ~-358 1957/10/31 02:00:00 1957/11/0112:00:00 35 0.11 47.04% 0.16 359 1957/12/1512:00:00 1957/12/1814:00:00 75 ' 0.109 47.17% 10.16 -360 1977/12/1803:00:00 1977/12/1913:00:00 35 I 0.109 47.31% 0.16 361 2008/02/0310:00:00 2008/02/05 06:00:00 45 0.108 I 47.44% 10.16 ---362 1 195310412122:00:00 1953104130 01:00:00 52 0.108 , 47.57% 10.16 -- ~-363 1968/11/14 20:00:00 1968/11/16 09:00:00 38 0.108 : 47.70% 0.16 364 ~--1955/11/14 09:00:00 1955/11/1515:00:00 : 31 0.107 i 47.83% 0.16 -365 1982101/28 21:00:00 I 1982101130 01:00:00_-"-_ 35 0.101 1 47.96% 0.16 366 1976/04/13 06:00:00 I 1976/04/1418:00:00 i 37 0.107 1 48.09% 0.16 1---3-67-, 1952/11/23 03:00:00 L.__1952/11/2416:00:00 38 0.107 ----48.23% 0.16 ---- 368 I 1982/03/26 00:00:00 1 1982/03/2710:00:00 ' 35 0.107 48.36% 0.16 __________ __, 3/13/2017 1:51 PM 8/17 I 11 JI fl\ II 11 fl fl fl f I r I f I f 1 J I f 1 f I f I I I r 1 r 1 Excel Engineering peakFlowStatisticsPostMitigated.csv Rank Start Date End Date Duration Peak Frequency I Return Period L 369 1966/1011 o 15:00:00 1966/10111 20:00:00 30 0.106 48.49% o.16 370 1953/02/23 12:00:00 1953/02/25 01 :00:00 38 0.106 48.62% 0.16 371 1957/02/2308:00:00 1957/02/2416:00:00 33 0.106 48.75% 10.16 L__--=.3:...c72=---2001/03/06 17:00:00 2001/03/09 01 :00:00 57 0.105 48.88% 0.16 373 1982/11/1903:00:00 1982/11/21 02:00:00 48 0.105 49.01% 0.16 374 1996/01/21 21:00:00 1996/01/2312:00:00 40 0.105 49.15% 0.16 375 1987/10/31 08:00:00 1987/11/0219:00:00 60 0.105 49.28% 10.16 376 1955/03/11 03:00:00 1955/03/12 08:00:00 30 0.104 49.41% 10.15 ;~~ ~::~~~!~~~ ~i:~~:~~ ~::~~!~~~ ~!:~~:~~ ~~ ~:~~: :::~~: 1~:~; 379 1978/11/21 19:00:00 1978/11/23 05:00:00 35 0.104 49.80% 0.15 380 1982/01/10 22:00:00 1982/01/12 09:00:00 36 0.103 49.93% 10.15 381 1954/01/12 07:00:00 1954/01/14 06:00:00 48 0.103 50.07% 0.15 382 1970/01/10 00:00:00 1970/01/12 20:00:00 69 0.103 50.20% 0.15 383 1996/12/06 02:00:00 1996/12/07 11 :00:00 34 0.103 50.33% I 0.15 ~ 1978/11/10 19:00:00 1978/11/14 07:00:00 85 0.103 50.46% 0.15 I---385 1971/10/1611:00:00 1971/10/1812:00:00 50 0.103 50.59% 0.15 ,____ 386 1993/12/1119:oo:oo 1993/12/13 04:oo:oo 34 0.102 50.72% 1 0.15 I 387 1978/01/30 14:00:00 1978/02/01 02:00:00 37 0.102 50.85% 0.15 .___ 388 1963/04/26 05:00:00 1963/04/2710:00:oo 30 0.102 50.99% 1 0.15 I 389 1985/01/0714:00:00 1985/01/09 06:00:00 41 0.101 51.12% 0.15 390 1958/03/2716:00:00 1958/03/2818:00:00 27 0.101 51.25% )0.15 391 1975/04/17 09:00:00 , 1975/04/1812:00:00 I 28 I 0.101 i 51.38% 10.15 I 392 1985/01/2818:00:00 -1---1985/01/30 04:00:00 1 35 l 0.101 I 51.51% 0.15 393 1969/04/06 00:00:00 I 1969/04/07 01 :00:00 I 26 i 0.1 I 51.64% 0.15 - 394 1995;0311315:·oo:oif :--1995;03115 23:00:00 I 54 1 --0.099 51.77% 0.15 ~ 1976/04/1518:00:00 1976/04/17 09:00:00 40 0.099 51.91% 0.15 ~ T 1983/11/2011:00:00 ~1953;11121 21:00:00 35 o.099 52.04% 0.15 -~- 397 1989/02/09 18:00:00 I 1989/02/11 06:00:00 37 0.098 52.17% 0.15 398 I 1983/02/06 15:00:00 j 1983/02/09 09:00:00 67 0.098 52.30% 0.15 1----399 j 2005/03/22 23:00:00 j 2005/03/24 00:00:00 26 0.098 , 52.43% 0.15 -~ 400 1984/12/16 06:00:00 1984/12/17 06:oo:oo 25 o.098 52.56% I o.15 ,___4_0_1_ 1988/08/24 07:00:00 1988/08/2517:00:00 35 0.098 52.69%0.15 402 I 1990/01/31 03:00:00 1990/02/01 03:00:00 j 25 0.097 52.83% 0.14 ~ 1-1984/04/2800:oo:oo 1984/04/2900:oo:oo ! 25 o.097 52.96% 0.14 I .----4-04 ----_ 1974;0312110:00:00 1974/03/2810:00:oo I 25 o.097 53.09% 0.14 --I 405 ,~ 1991110121 02:00:00 ---1991110128 13:00:00 I 36 o.097 53.22% 0.14 406 1987/02/13 23:00:00 -._ 1987/02/15 00:00:00 i 26 0.097 53.35% 0.14 1--407 1967/03/3114:oo:oo I 1967/04/0113:oo:oo 24 o.096 53.48% o.14 408 1958/03/1104:00:00 4--1958/03/1300:00:00 i 45 0.096 I 53.61% 0.14 I f---409_---1_ 1982/12/2921:00:00 1982/12/3021:00:00 I 25 0.096 , 53.75% 0.14 _ --410 1987/03/22 03:00:00 -1987/03/23 03:00:00 j 25 0.096 l 53.88% 0.14 - :~~ ~::~~~~~: ~::~~:~~ ~::~~~~~~ ~i:~~:~~ ~; -r ~:~:: ;::~1~ :~:~: 413 1975/12/20 17:00:00 1975/12/2119:00:00 27 ' 0.096 54.27% 10.14 ----~----------<1 414 -2004/03/02 02:00:00 2004/03/03 05:00:00 -28 --+-0.095 54.40%0.14 _____ ---~~==== 415 199010210414:00:oo 199010210514:oo:oo 25 --__J 0.095 54.53% 10.14 3/13/2017 1:51 PM 9/17 , w, ,., , , ~-, r 1 , 1 , , r 1 , , r 1 r 1 r 1 r I J"1 r I f 1 r , r , r 1 Excel Engineering peakFlowStatisticsPostMitigated.csv ~-Rank .. -+---Start Date End Date Duration Peak Frequency !Return Period ----·--- 416 1971/01/12 22:00:00 1971/01/14 04:00:00 31 0.095 54.66% 0.14 417 1978/11/2412:00:00 1978/11/2513:00:00 26 0.095 54.80% 0.14 418 1987/03/05 23:00:00 1987/03/0713:00:00 : 39 0.094 54.93% 0.14 ~J.!}__ -·-l 1993/01/0210:00:00 ~_1993/01/0312:00:00 .. 1. 27 0.094 55.06% 0.14 I t==420 ___ --1977/05/2407:00:00 ~ ___ 1977/05/2508:00:00 ____ , __ 26 0.094 55.19% 0.14 ----- 421 1997/01/03 09:00:00 ! 1997/01/0410:00:00 i 26 0.094 55.32% 0.14 422 1953/10/22 09:00:00 1953/10/23 08:00:00 I 24 0.094 I 55.45% 0.14 423 1964/11/0916:00:00 1964/11/1117:00:00 50 0.093 55.58% 10.14 424 200110311 o 11:00:00 2001103111 23:oo:oo 31 o.093 l 55. 72% I 0.14 ·---425 1976/11/12 04:00:00 1976/11/13 05:00:00 26 0.093 55.85% 10.14 426 2007/02/11 14:00:00 2007/02/12 17:00:00 28 0.093 55.98% 0.14 427 1963/03/2813:00:00 1963/03/2913:00:00 25 0.093 56.11% 10.14 428 1990/01/1314:00:00 1990/01/1510:00:00 45 0.093 56.24% 10.14 429 1960/11/03 22:00:00 1960/11/0419:00:00 22 0.092 56.37% 10.14 430 1995101121 06:oo:oo , 1995101122 04:oo:oo I 23 0.092 56.50% o.14 431 1951/12/1911:00:00 1951/12/2010:00:00 i 24 0.092 56.64% 0.14 432 1998/12/01 19:00:00 , 1998/12/02 17:00:00 1 23 0.091 56. 77% 0.13 I I 433 1979112121 08:oo:oo -197911212210:00:oo : 27 0.091 56.90% 0.13 I 434 1994/11/1014:00:00 ---1994/11/1112:00:00 23 0.091 57.03% 0.13 435 -1996/01/16 22:00:00 1996/01/17 20:00:00 , 23 0.091 57.16% 0.13 I 436 -~--:~ --1957105121 01:00:00 1957105122 05:00:00 , 23 0.091 57.29% --o:i3 437 I 1955/01/31 02:00:00 1955/02/01 05:00:00 I 28 0.09 57.42% 0.13 438 1985/02/02 06:00:00 1985/02/04 06:00:00 I 49 0.09 57.56% 0.13 439 1984/12/11 00:00:00 1984/12/13 03:00:00 , 52 0.09 57.69% 0.13 440 --1971/02/23 06:00:00 -, 1971/02/24 02:00:00 !---· 21 0.09 57.82% 0.13 ---441--1957/10/2106:00:06 --1 -. 1957/10/22 02:00:00 ---I 21 0.09 57.95% 0.13 -I -442 195510110201:00:oo I 195510110302:00:oo I 26 o.o9 , 58.08% 0.13 • 443 I 1951/12/05 03:00:00 I 1951/12/06 03:00:00 I 25 0.089 i 58.21% 0.13 .. 444 1981/04/19 00:00:00 1981/04/20 03:00:00 28 0.089 58.34% 10.13 445 , 1989/03/0213:00:00 1989/03/0316:00:00 28 I 0.089 58.48% 0.13 446 _ ~~-: __ . 1989/05/1410:00:00 -· 1989/05/1604:00:00 43 ~--0.089 58.61% 0.13 -------, ,____4-47 1965/09/1621:00:00 1965/09/1808:00:00 36 I 0,089 58.74% 0.13 1 448 1955/11/1715:oo:oo 1955/11/1814:oo:oo 24 I o.089 58.87% 0.13 • ,____4-49 ,_ -1960/11/13 02:00:00 1960/11/13 21:00:00 20 I 0.088 1 59.00% 0.13 450 1962/01/13 03:00:00 1962/01/13 22:00:00 20 I 0.088 59.13% 0.13 1--451 1 -1964/10/1514:00:00 1964/10/1609:00:00 20 I 0.088 I 59.26% 0.13 452 1997/12/1818:0o:oo 1997/12/1918:oo:oo 25 o.087 59.40% 10.13 453 1980/03/2114:00:00 1980/03/2219:00:00 30 0.087 59.53% 0.13 ~4=54~_~ __ 19~9_2/~0-=-3/..c.08~04_:0~0~:0~0---+--1~99~2/~0~3~/0-'-9..c.06-=-:-'-00~:0~0~---1-----=27'------+---'-0.=0"'-86'-------+----=5-=-9.=6-=-6°=1/o_---+0c..c.-"13'------------------1 r--· 455 2004/11/21 09:00:00 2004/11/2203:00:00 19 0.086 59.79% 0.13 456 1995/12/13 06:00:00 1995/12/14 05:00:00 24 0.086 59.92% 10.13 I--------457 1977/03/1615:00:00 1977/03/2218:00:00 148 0.086 60.05%0.13 458 1985/03/2710:00:00 1985/03/29 02:00:00 41 0.086 60.18% 10.13 .---_4_5_9_ 1956/12/06 05:00:00 __j_ 1956/12/07 00:00:00 _________ go_______ 0.086 I 60.32% 0.13 I 460 195211212811:00:oo 195211212911:00:oo 25 0.086 60.45% 0.13 461 -~ 2007/02/28 08:00:00 2007/03/0113:00:00 30 0.086---. -60.58"/o 0.13-- 462 1995/06/1600:00:00 1995/06/1718:00:00 43 0.086 60.71% 0.13 _________ _ 3/13/2017 1:51 PM 10/17 1 r • ,-·-. r 1 r , ,-1 ,. 1 ~· I r" I f 1 r 1 r 1 r 1 r -, , .. 1 r ,, r 1 r ~, r,1 r1 Excel Engineering peakFlowStatisticsPostMitigated.csv Rank Start Date End Date i Duration Peak Frequency Return Period 463 i 1982/09/16 14:00:00 1982/09/18 08:00:00 43 0.085 60.84% 0.13 464 I 1958/05/11 12:00:00 1958/05/12 10:00:00 ! 23 0.085 60.97% 0.13 465 2001/02/20 19:00:00 2001/02/21 17:00:00 23 0.085 61.10% 0.13 -·-466 2006/03/21 04:00:00 2006/03/21 23:00:00 20 0.084 61.24% 0.12 ·-467 1956/02/23 20:00:00 1956/02/25 06:00:00 35 0.084 61.37% 0.12 468 ' 1994/12/25 04:00:00 : 1994/12/25 23:00:00 20 0.084 ! 61.50% 0.12 469 1957/05/1910:00:00 I 1957/05/20 04:00:00 19 0.084 ' 61.63% 0.12 I 470 I 1989/02/04 01 :00:00 1989/02/05 11 :00:00 35 0.083 ! 61.76% 0.12 -· 471 1961/03/28 08:00:00 ' 1961/03/29 10:00:00 27 0.083 i 61.89% 0.12 472 i 1973/02/06 07:00:00 1973/02/07 23:00:00 41 0.082 62.02% 0.12 ----473 1998/11/28 09:00:00 1998/11/2918:00:00 34 0.081 62.16% 0.12 -· 474 2005/03/0413:00:00 2005/03/05 20:00:00 32 0.081 62.29% 0.12 475 : 2002/03/18 01 :00:00 2002/03/18 20:00:00 20 0.081 62.42% 0.12 476 1957/04/18 05:00:00 1957/04/19 02:00:00 22 0.081 i 62.55% 0.12 477 1996/03/05 00:00:00 1996/03/05 16:00:00 17 : 0.081 ' 62.68% 0.12 --478 1975/03/22 11 :00:00 1975/03/23 04:00:00 18 ~ 0.08 62.81% 0.12 --· 479 1998/01/03 19:00:00 1998/01/05 06:00:00 36 0.08 ' 62.94% 0.12 480 2007/02/19 09:00 :00 2007/02/20 01 :00:00 17 0.08 63.07% 0.12 481 2008/01/23 23:00:00 2008/01/25 03:00:00 29 0.08 63.21% 0.12 ----482 1992/03/27 08:00:00 1992/03/27 23:00:00 16 0.079 63.34% 0.12 --· ·-· 483 1984/11/13 11 :00:00 1984/11/14 02:00 :00 16 0.079 63.47% 0.12 484 1983/12/09 19:00:00 1983/12/10 10:00:00 16 0.079 I 63.60% 0.12 485 1985/10/22 02:00:00 1985/10/22 17:00:00 16 i 0.079 63.73% 0.12 486 2001/11/29 19:00:00 2001/11/30 13:00:00 19 ! 0.079 63.86% 0.12 487 2003/05/03 19:00:00 2003/05/04 13:00:00 19 0.079 63.99% 0.12 ~488 1991/03/1517:00:00 1991/03/16 07:00:00 15 0.079 64.13% ·-0.12 489 1965/01/01 00:00:00 1965/01/01 15:00:00 16 0.079 64.26% 0.12 ------------490 ' 1977/01/29 05:00:00 1977/01/29 19:00:00 15 0.079 64.39% 0.12 491 ' 2005/09/20 07:00:00 2005/09/20 21 :00:00 15 0.079 64.52% 0.12 492 I 1989/01/0719:00:00 1989/01/08 09:00:00 15 0.078 64.65% 0.12 .. 493 1987/03/15 12:00:00 1987/03/16 02:00:00 15 0.078 64.78% 0.12 494 1989/02/02 10:00:00 1989/02/03 00:00:00 15 0.078 64.91% 0.12 495 1984/12/03 11 :00:00 1984/12/04 01 :00:00 15 O.D78 65.05% 0.12 496 1974/01/01 08:00:00 1974/01/01 22:00:00 15 0.078 ! 65.18% 0.12 497 1999/06/02 04:00:00 1999/06/03 00:00:00 21 I 0.078 I 65.31% 0.12 --498 1976/07/27 02:00:00 1976/07/27 17:00:00 16 i 0.078 I 65.44% 0.12 499 1989/01/23 22:00:00 1989/01/2413:00:00 -· 16 0.078 i 65.57% 0.12 500 1971/12/04 04:00:00 1971/12/0419:00:00 16 0.078 65.70% 0.12 501 1978/04/15 22:00:00 1978/04/16 13:00:00 16 0.078 i 65.83% 0.12 ~ 1985/09/18 14:00:00 1985/09/19 05:00:00 ·-· 16 i 0.078 i 65.97% 0.12 502 I ... ~--503· 2003/11/12 09:00:00 i 2003/11/13 12:00:00 28 0.077 66.10% 0.12 504 1959/10/01 06:00:00 I 1959/10/01 21 :00:00 16 ' 0.077 66.23% 0.12 505 1977/02/22 05:00:00 1977/02/22 20:00:00 I 16 0.077 66.36% 0.12 -1983/08/18 11 :00 :00 1983/08/19 02:00:00 16 ! O.D76 66.49% 506 0.12 1990/01/0210:00:00 1990/01/03 01 :00:00 16 -+--507 I ! O.D76 66.62% 0.11 --508 .. I ----1987/07/1712:00:00 1987/07/18 03:00:00 16 i O.D76 66.75% 0.11 I ---+-1969/12/09 16:00:00 I 14 509 1969/12/09 03:00:00 0.076 66.89% 0.11 3/13/2017 1:51 PM 11/17 I r • ,-, r -, ..---, r·, .-~, ,~ 1 , 1 r 1 ,-1 r 1 r , r -, , 1 r 1 ,,--1 r -, r-· I Y-1 Excel Engineering peakFlowStatisticsPostMitigated.csv Rank J_ ____ ___ Start Date ___ End Date Duration Peak Frequency Return Period ---------510 ---+--1999/01/2011:00:00 1999/01/21 13:00:00 27 0.076 67.02% 0.11 ~-511 ____ +_ 1971/03/1310:00:00 1971/03/13 23:00:00 ! 14 0.076 67.15% 0.11 512 : 1969/04/03 07:00:00 1969/04/03 23:00:00 17 0.076 67.28% 0.11 513 1997/02/10 23:00:00 1997/02/1113:00:00 I 15 0.076 67.41% 0.11 514 2007/10/13 11 :00:00 2007/10/14 00:00:00 14 0.076 67.54% 0.11 -----------··---·---515 2002/02/17 20:00:00 2002/02/18 11 :00:00 I 16 0.076 67.67% 0.11 ·-516 1958/02/13 08:00:00 I 1958/02/13 21 :00:00 14 0.076 67.81% 0.11 517 1973/02/03 23:00:00 l 1973/02/04 13:00:00 15 0.076 ! 67.94% 0.11 518 1975/01/30 18:00:00 1975/01/31 07:00:00 14 0.076 i 68.07% 0.11 ------·----1996/04/18 05:00:00 519 1996/04/18 19:00:00 15 0.075 I 68.20% 0.11 ~--520 1983/01/22 19:00:00 1983/01/26 00:00:00 -78--~ 0.075 -r--68.33% 0.11 521 1952/12/1712:00:00 I 1952/12/18 05:00:00 18 0.075 I 68.46% 0.11 522 1962/05/14 21 :00:00 1962/05/15 17:00:00 21 0.074 68.59% 0.11 523 1975/12/12 20:00:00 I 1975/12/13 08:00:00 13 0.074 68.73% 0.11 524 1952/04/08 02:00:00 ' 1952/04/08 19:00:00 18 0.074 68.86% 0.11 525 1978/04/08 15:00:00 : 1978/04/09 07:00:00 17 0.074 68.99% 0.11 526 1981/04/02 08:00:00 1981/04/03 00:00:00 17 I 0.074 69.12% 0.11 527 2001/12/0419:00:00 I 2001/12/05 09:00:00 15 0.074 69.25% 0.11 528 1953/04/20 13:00:00 1953/04/21 01 :00:00 13 0.074 69.38% 0.11 529 1982/03/28 23:00:00 1982/03/29 15:00:00 17 i 0.074 69.51% 0.11 530 1972/10/20 04:00:00 1972/10/20 22:00:00 19 0.073 69.65% 0.11 531 1973/01/10 03:00:00 I 1973/01/10 14:00:00 12 0.073 69.78% 0.11 ---------------------------532 1954/12/04 02:00:00 ! 1954/12/04 12:00:00 11 I 0.072 69.91% 0.11 533 1960/03/28 06:00:00 : 1960/03/28 18:00:00 13 0.072 70.04% 0.11 534 2006/12/17 03:00:00 2006/12/17 16:00:00 14 I 0.072 70.17% 0.11 -, __ ----------·-------535 1953/11/0512:00:00 1953/11/06 09:00:00 22 0.072 70.30% 0.11 536 1975/04/25 10:00:00 1975/04/25 21 :00:00 12 0.072 70.43% 0.11 537 2001/11/12 19:00:00 2001/11/13 23:00:00 29 0.072 70.57% 0.11 538 1971/05/07 22:00:00 1971/05/08 10:00:00 13 0.072 70.70% 0.11 539 1987/03/25 01 :00:00 1987/03/26 09:00:00 33 0.071 i 70.83% 0.11 540 1978/03/22 18:00:00 1978/03/24 02:00:00 L-----33 0.071 I 70.96% 0.11 I 541 1977/02/24 19:00:00 1977/02/25 11 :00:00 I 17 0.071 71.09% 0.11 542 1992/12/18 04:00:00 1992/12/18 14:00:00 11 0.071 71.22% 0.11 543 1962/05/27 14:00:00 1962/05/28 01 :00:00 12 0.07 71.35% 0.11 544 I 2000/11/30 11 :00:00 2000/11/30 21 :00:00 11 ! 0.07 71.48% 0.11 --545 ' 1999/09/18 19:00:00 1999/09/19 05:00:00 11 0.07 71.62% 0.11 546 I 1967/12/08 03:00:00 1967/12/08 19:00:00 17 i 0.07 71.75% 0.11 -547 1999/06/04 02:00:00 1999/06/04 12:00:00 11 : 0.07 71.88% 0.11 -- 548 ' 2006/12/27 11 :00:00 2006/12/27 20:00:00 10 i 0.07 72.01% 0.11 ·-549 2007/02/23 00:00:00 2007/02/23 10:00:00 11 0.07 72.14% 0.11 550 1963/10/16 13:00:00 1963/10/16 23:00:00 11 0.07 72.27% 0.11 551 1995/12/2313:00:00 1995/12/23 22:00:00 10 I 0.07 72.40% 0.11 552 I 1957/01/20 20:00:00 1957/01/21 09:00:00 14 0.069 72.54% 0.11 553 I 1976/04/04 06:00:00 1976/04/05 09:00:00 28 ___ ~ 0.069 72.67% 0.11 554 i 2006/04/14 16:00:00 2006/04/15 20:00:00 29 0.069 72.80% 10.11 ·-1962/02/25 10:00:00 ---. ----10.11 555 i 1962/02/25 00:00:00 11 0.069 72.93% ---556 I 1975/04/06 01 :00:00 1975/04/07 02:00:00 26 0.069 73.06% 0.1 3/13/2017 1:51 PM 12/17 r~~ ,-, ,-, ~ r-,, r-1 r 1 r I t" 1 r 1 r 1 , , r -, , 1 ,-1 r · 1 r , , 1 r 1 Excel Engineering peakFlowStatisticsPostMitigated.csv Rank I Start Date I End Date Duration l Peak Frequency Return Period I I i 557 I 1964/02/29 08:00:00 i 1964/02/29 17:00:00 10 l 0.069 73.19% 0.1 -~ 558 I 1953/12/0412:00:00 1953/12/04 22:00:00 11 0.069 73.32% 0.1 559 1960/04/23 11 :00 :00 i 1960/04/24 12:00:00 26 0.069 73.46% 0.1 560 1996/01/25 16:00:00 i 1996/01/26 02:00:00 11 0.069 73.59% 0.1 561 1993/11/23 05:00:00 1993/11/23 14:00:00 10 0.068 73.72% 0.1 ~-562 -:----1969/03/10 13 :00 :00 1969/03/11 05:00:00 17 0.068 73.85% 0.1 563 i 1994/04/24 08:00:00 1994/04/24 17:00:00 10 0.068 73.98% 0.1 564 ! 1974/05/19 11 :00:00 1974/05/19 20:00:00 10 0.068 74.11% 0.1 565 1967/11/26 22:00:00 1967/11/27 06:00:00 9 0.068 74.24% 0.1 566 ! 2001/01/08 19:00:00 2001/01/09 04:00:00 10 0.068 74.38% 0.1 567 j 1970/04/17 01 :00:00 1970/04/17 11 :00:00 11 0.068 74.51% 0.1 568 i 1993/12/14 21:00:00 1993/12/15 13:00:00 17 0.068 74.64% 0.1 569 : 1998/05/06 19:00:00 1998/05/07 06:00:00 12 ! 0.068 74.77% 0.1 570 I 1965/12/22 04:00:00 1965/12/22 21 :00:00 18 0.067 74.90% 0.1 571 2004/03/26 12:00:00 2004/03/26 22:00:00 11 I 0.067 75.03% 0.1 ~ --572 i 1957/10/1113:00:00 1957/10/11 22:00:00 10 0.067 75.16% 0.1 573 i 1999/03/11 16:00:00 1999/03/12 01 :00:00 10 ! 0.067 75.30% 0.1 574 2001/04/21 12:00:00 2001/04/21 22:00:00 11 : 0.067 75.43% 0.1 575 1956/04/27 06:00:00 1956/04/27 18:00:00 13 I 0.067 75.56% 0.1 576 1964/02/15 11 :00:00 1964/02/15 20:00:00 10 0.067 75.69% 0.1 577 1968/01/28 03:00:00 1968/01/28 11 :00:00 9 0.067 75.82% 0.1 578 1962/03/23 02:00:00 1962/03/23 10:00:00 -----+---9 --! 0.066 75.95% 0.1 -------579 1964/03/02 15:00:00 1964/03/02 23:00:00 I 9 0.066 76.08% 0.1 580 1955/04/26 14:00:00 1955/04/26 22:00:00 9 I 0.066 76.22% 0.1 581 I 2000/09/23 03:00:00 2000/09/23 10 :00 :00 8 I 0.066 76.35% 0.1 -· ------582 I 1951/11/20 06:00:00 1951/11/21 07:00:00 26 0.066 76.48% 0.1 583 1957/11/14 21 :00:00 1957/11/15 04:00:00 8 0.066 76.61% 0.1 584 r 2005/03/19 05:00:00 2005/03/20 09:00:00 29 0.066 I 76.74% 0.1 585 I 1999/04/01 21 :00:00 1999/04/02 05:00:00 9 0.065 76.87% 0.1 586 ! 1963/11/06 18:00:00 1963/11/07 02:00:00 9 0.065 77.00% 0.1 587 I 2002/09/29 20:00:00 2002/09/30 05:00:00 10 0.065 77.14% 0.1 588 1966/01/27 09:00:00 1966/01/27 22:00:00 14 0.064 77.27% 0.1 589 1969/03/13 05:00:00 1969/03/13 13:00:00 9 0.064 77.40% 0.1 590 I 1971/04/26 08:00:00 1971/04/26 15:00:00 8 0.064 77.53% 0.1 591 I 1999/04/07 12:00:00 1999/04/07 19:00:00 8 0.064 77.66% 0.1 -592 1965/03/07 02:00:00 1965/03/07 09:00:00 8 0.064 77.79% 0.1 593 I 1960/03/13 08:00:00 1960/03/13 14:00:00 7 0.063 77.92% 0.1 594 : 2000/11/11 04:00:00 2000/11/11 10:00:00 7 0.063 78.06% 0.1 595 1961/03/1514:00:00 1961/03/15 21 :00:00 8 0.063 78.19% 0.1 596 I 1984/01/15 20:00:00 1984/01/16 16:00:00 21 0.063 78.32% 0.1 ~ 597 I 2000/01/25 20:00:00 2000/01/26 02:00:00 7 0.062 78.45% 0.1 I --598 1952/12/06 08:00:00 1952/12/06 13:00:00 6 0.061 78.58% 0.1 ~ 599 2002/04/24 16:00:00 2002/04/24 21 :00:00 6 0.061 78.71% 0.1 600 1956/05/10 03:00:00 1956/05/10 08:00:00 6 0.061 78.84% 0.1 601 I 1951/10/08 10:00:00 ~-+----1951/10/0815:00:00 I 6 0.061 ! 78.98% 0.1 --· 22 0.061 79.11% 602 1980/04/28 19:00 :00 ~ 1980/04/29 16:00:00 0.1 603 1964/01/18 21 :00:00 1964/01/19 03:00:00 7 0.061 I 79.24% 0.1 3/13/2017 1:51 PM 13/17 I r---,. ..... -, r"~.,. r·-... r-, .~ , r ·· 1 r 1 r--1 r-1 ,---, r "'1 r, ,..--,i r, r1 ,---, .-, r-w Excel Engineering peakFlowStatisticsPostMitigated.csv Rank Start Date i End Date l Duration Peak Frequency Return Period 604 1987/12/2915:00:00 i 1987/12/30 12:00:00 i 22 0.061 79.37% 0.1 605 ' 1963/03/15 08:00:00 1963/03/15 13:00:00 6 0.061 79.50% 0.1 606 1983/10/0713:00:00 1983/10/0810:00:00 I 22 0.061 79.63% 0.1 607 1999/01/31 14:00:00 1999/01/31 18:00:00 5 i 0.061 79.76% 0.1 --608 1963/12/10 02:00:00 1963/12/10 08:00:00 7 I 0.061 79.89% 0.1 609 1967/01/31 05:00:00 1967/01/31 12:00:00 8 0.06 80.03% 0.1 ~ 610 1965/07/30 01 :00:00 1965/07/30 05:00:00 5 0.06 80.16% 0.1 611 1995/05/01 15:00:00 1995/05/01 20:00:00 6 0.06 80.29% 0.1 612 2004/04/17 16:00:00 2004/04/17 21 :00:00 6 0.06 80.42% 0.1 613 1996/10/01 13:00:00 1996/10/01 18:00:00 6 0.06 80.55% 0.1 614 1960/03/23 13:00:00 1960/03/23 17:00:00 5 0.06 80.68% 0.09 615 1953/03/20 10:00:00 I 1953/03/20 16:00:00 7 0.06 80.81% 0.09 616 1963/04/08 10:00:00 i 1963/04/0815:00:00 6 0.06 80.95% 0.09 617 1998/12/19 22:00 :00 1998/12/20 02:00 :00 I 5 0.06 81.08% 0.09 ~ 618 1997/01/22 05:00:00 1997/01/22 09:00:00 I 5 0.059 81.21% 0.09 619 I 2008/01/22 08:00:00 2008/01/2212:00:00 5 0.059 81.34% 0.09 620 I 1997/04/03 21 :00:00 1997/04/04 01 :00:00 5 0.059 81.47% 0.09 ~ 621 2004/02/18 20:00:00 2004/02/19 00:00:00 5 0.059 81.60% 0.09 I --622 2006/11/27 14:00:00 2006/11/2718:00:00 5 0.059 81.73% 0.09 623 1996/02/12 17:00:00 1996/02/12 21 :00:00 5 0.059 81.87% 0.09 624 2005/12/03 04:00:00 2005/12/03 08:00:00 ' 5 I 0.059 ' 82.00% 0.09 625 2004/12/08 11 :00:00 2004/12/08 15:00:00 5 ! 0.059 82.13% 0.09 ---------------------626 1972/10/17 07:00:00 1972/10/17 11 :00:00 5 I 0.059 82.26% 0.09 ----627 1963/06/11 17:00:00 1963/06/11 20:00:00 4 0.059 82.39% 0.09 628 i 1993/02/26 23 :00 :00 1993/02/27 03:00:00 5 0.059 82.52% 0.09 629 -r 1964/03/13 03:00:00 1964/03/13 07:00:00 5 82.65% --------0.058 0.09 630 I 1965/01/0713:00:00 1965/01/0716:00:00 4 0.058 82.79% 0.09 ~-631 1996/01/28 09:00:00 1996/01/2813:00:00 5 0.058 82.92% 0.09 632 2006/03/07 04:00:00 2006/03/07 08:00:00 5 0.058 83.05% 0.09 ~--633 1988/11/10 15:00:00 1988/11/11 15:00:00 I 25 0.058 83.18% 0.09 -----· -· ----~--634 1951/10/11 03:00:00 I 1951/10/11 06:00:00 I 4 0.058 83.31% 0.09 635 1983/01/1815:00:00 1983/01/19 15:00:00 I 25 0.058 83.44% 0.09 I 636 1980/05/09 16:00:00 1980/05/10 18:00:00 27 0.058 i 83.57% 0.09 637 2008/02/1417:00:00 2008/02/14 20:00:00 i 4 I 0.058 83.71% 0.09 638 1969/05/05 15:00:00 1969/05/05 18:00:00 4 I 0.058 I 83.84% 0.09 639 1992/10/30 22:00:00 1992/10/31 01 :00:00 4 0.058 83.97% 0.09 ~-1958/11/11 09:00:00 1958/11/11 12:00:00 4 --I 84.10% 640 0.058 0.09 641 2007/09/22 16:00:00 2007/09/22 19:00:00 4 ! 0.057 I 84.23% 0.09 642 2004/01/03 00:00:00 2004/01/03 03:00:00 : 4 0.057 ' 84.36% 0.09 ~-643 1955/12/04 13:00:00 1955/12/04 15:00:00 3 0.057 ' 84.49% 0.09 : i 1969/03/09 06:00 :00 --1969/03/09 08:00:00 -I 84.63% ·-------644 3 I 0.057 I 0.09 645 I 2003/11/01 13:00:00 : 2003/11/01 14:00:00 2 0.056 I 84.76% 0.09 -646 1981/01/12 14:00:00 1981/01/12 15:00:00 2 0.056 84.89% 0.09 647 ' 1972/09/06 08:00:00 1972/09/0610:00:00 3 0.055 85.02% 0.09 648 1985/10/07 14:00:00 I 1985/10/07 15:00:00 I 2 0.055 85.15% 0.09 ----649 1977/07/1518:00:00 1977/07/15 19:00:00 ' 2 0.055 85.28% 0.09 650 1964/06/09 16:00:00 1964/06/09 17:00:00 2 0.055 85.41% 0.09 3/13/2017 1:51 PM 14/17 I 11 w-11 r-1 r , r1 r, r 1 r 1 r 1 ,-· I r I r 1 r , r · 1 r-. r-1 r , ,-, r1 Excel Engineering peakFlowStatisticsPostMitigated.csv Rank Start Date i End Date Duration Peak Frequency I Return Period I ---· 651 I 1953/01/14 01 :00:00 I 1953/01/14 02:00:00 2 0.055 85.55% 0.09 652 . j_ 1951/10/15 13:00:00 1951/10/15 14:00:00 i 2 0.055 85.68% 0.09 653 I 1977/07/2215:00:00 1977/07/22 16:00:00 I 2 0.055 85.81% 0.09 654 1992/03/31 18:00:00 1992/03/31 19:00:00 I 2 0.055 85.94% 0.09 655 1981/03/1416:00:00 I 1981/03/14 17:00:00 I 2 0.055 86.07% 0.09 ·---656 1992/03/29 16:00:00 1992/03/29 17:00:00 2 0.055 86.20% 0.09 657 1990/01/2214:00:00 1990/01/22 15:00:00 2 0.055 86.33% 0.09 658 1983/12/1918:00:00 1983/12/19 19:00:00 2 0.055 I 86.47% 0.09 659 1977/07/20 13:00:00 1977/07/20 14:00:00 2 0.055 86.60% 0.09 -·-660 1977/07/27 16:00:00 1977/07/27 17:00:00 2 0.055 : 86.73% 0.09 --··---661 1987/12/11 09:00 :00 1987/12/11 10:00:00 2 0.055 86.86% 0.09 662 I 1997/01/02 08:00:00 I 1997/01/02 09:00:00 2 0.055 86.99% 0.09 663 1978/11/15 13:00:00 1978/11/15 14:00:00 2 I 0.055 87.12% 0.09 664 1983/05/06 12:00:00 1983/05/06 13:00:00 2 I 0.055 87.25% 0.09 665 I 1978/04/07 05:00:00 1978/04/07 06:00:00 I 2 0.055 87.39% 0.09 ~ 666 1979/11/12 15:00:00 1979/11/12 16:00:00 I 2 0.055 87.52% 0.09 667 1971/12/13 10:00:00 1971/12/13 11 :00:00 2 ! 0.055 87.65% 0.09 668 1980/05/02 15:00:00 1980/05/02 15:00:00 1 0.055 87.78% 0.09 669 1984/11/1619:00:00 1984/11/16 19:00:00 1 0.055 87.91% 0.09 -~--670 1983/01/0512:00:00 ; 1983/01/05 13:00:00 i 2 0.055 88.04% 0.09 -·-· 671 1983/03/28 12:00 :00 1983/03/28 12:00 :00 1 0.055 88.17% 0.09 672 1977/09/10 02:00:00 1977/09/10 02:00:00 1 0.055 88.30% 0.09 673 1983/11/18 03:00:00 1983/11/18 04:00:00 2 0.055 88.44% 0.09 . -674 I 1986/03/0111:00:00 1986/03/01 12:00:00 2 0.055 88.57% 0.09 --I----675 1986/02/23 10:00:00 1986/02/23 11 :00:00 2 0.055 88.70% 0.09 -----. -· -·· 676 1982/02/17 05:00:00 1982/02/17 06:00:00 2 0.055 88.83% 0.09 ~ 677 1980/05/08 14:00:00 1980/05/0815:00:00 2 0.055 88.96% 0.09 678 1970/04/27 14:00:00 I 1970/04/27 15:00:00 2 0.055 I 89.09% 0.09 679 1979/01/25 18:00:00 1979/01/25 19:00:00 2 0.055 89.22% 0.09 680 1983/12/15 17:00:00 1983/12/15 18:00:00 2 0.055 89.36% 0.09 681 1987/02/03 16:00:00 1987/02/03 17:00:00 ' 2 I 0.055 89.49% 0.09 : 682 1980/03/18 20:00:00 1980/03/18 21 :00:00 2 0.055 89.62% 0.09 683 1982/04/11 23:00:00 I 1982/04/12 00:00:00 2 : 0.055 89.75% 0.09 684 1991/12/18 07:00:00 1991/12/18 08:00:00 I 2 ' 0.055 89.88% 0.09 685 1980/04/01 19:00:00 ... ,-1980/04/01 20:00:00 2 0.055 90.01% 0.09 -686 1987/11/14 05:00:00 i 1987/11/14 06:00:00 I 2 ! 0.055 90.14% 0.09 687 1991/03/1106:00:00 I 1991/03/11 07:00:00 2 0.055 90.28% 0.08 688 1978/04/25 20:00:00 1978/04/25 21 :00:00 I 2 I 0.055 90.41% 0.08 689 1978/12/01 22:00:00 1978/12/01 23:00:00 2 0.055 90.54% 0.08 690 . 1984/11/23 09:00:00 1984/11/2310:00:00 2 0.055 90.67% 0.08 --r--1973/12/01 22:00:00 1973/12/01 23:00:00 2 0.055 90.80% 0.08 ---~-691 692 1972/01/09 12:00:00 I 1972/01/09 13:00:00 2 0.055 90.93% 0.08 I 693 1978/09/16 15:00:00 1978/09/16 16:00:00 2 0.055 91.06% 0.08 ·-694 1976/06/10 13:00:00 1976/06/10 14:00:00 2 0.055 I 91.20% 0.08 695 -t 1980/01/07 11 :00:00 1980/01/07 12:00:00 2 0.055 91.33% 0.08 ~ 1992/05/17 22:00:00 .. - 2 ----~ 696 1992/05/17 21 :00 :00 0.055 91.46% 0.08 -1987/10/23 10:00:00 1987/10/2311:00:00 2 0.055 I 91.59% 0.08 697 I 3/13/2017 1:51 PM 15/17 1 w1 r·1 r, ., r1 w• r1 r1 r 1 ,-1 r 1 r, r·1 ,-1 r 1 ,-1 r l f -, r-· 1 Excel Engineering peakFlowStatisticsPostMitigated.csv Rank ! Start Date End Date Duration I Peak ! Frequency Return Period -~ 698 1989/01/05 22:00:00 1989/01/05 23:00:00 2 I 91.72% I 0.055 I 0.08 699 I 1985/02/20 23:00:00 1985/02/21 00:00:00 2 0.055 91.85% 0.08 700 1980/04/21 06:00:00 1980/04/21 07:00:00 2 0.055 91.98% 0.08 701 I 1986/11/05 16:00:00 1986/11/0517:00:00 2 0.055 92.12% 0.08 702 1988/05/29 10:00:00 1988/05/29 11 :00:00 2 0.055 I 92.25% 0.08 ~ -703 1967/03/29 10:00:00 1967/03/29 11 :00:00 2 0.055 92.38% 0.08 ~--704 1977/01/26 04:00:00 1977/01/26 05:00:00 2 0.055 92.51% 0.08 705 1981/11/1616:00:00 1981/11/16 17:00:00 2 0.055 92.64% 0.08 706 I 1984/02/10 08:00:00 1984/02/10 09:00:00 2 0.055 92.77% 0.08 707 1966/01/20 03:00:00 ' 1966/01/20 04:00:00 2 0.055 92.90% 0.08 708 1979/11/05 02:00:00 -. r 1979/11/05 03:00:00 2 0.055 93.04% 0.08 709 1981/01/11 10:00:00 1981/01/11 11 :00:00 2 0.055 93.17% 0.08 710 1982/09/15 10:00:00 1982/09/15 11 :00:00 2 0.055 I 93.30% 0.08 I 711 1983/01/17 09:00:00 I 1983/01/17 10:00:00 2 0.055 I 93.43% 0.08 --712 1984/07/15 18:00:00 I 1984/07/15 19:00:00 2 0.055 93.56% 0.08 --·----713 1986/04/01 12:00:00 1986/04/01 13:00:00 2 0.055 93.69% 0.08 714 1987/01/2811:00:00 1987/01/28 12:00:00 2 0.055 93.82% 0.08 715 1992/05/06 03:00:00 1992/05/06 04:00:00 2 0.055 93.96% 0.08 716 1976/11/2714:00:00 1976/11/27 15:00:00 I 2 0.055 94.09% 0.08 ------ 717 : 1982/05/06 17:00 :00 1982/05/06 18:00:00 2 0.055 94.22% 0.08 1985/04/21-21 :00:00 1985/04/21 22:00:00 -94.35% 0.08 ----718 2 0.055 --719 1977/07/14 12:00:00 1977/07/14 13:00:00 2 0.055 94.48% 0.08 -------720 1977/09/0510:00:00 1977/09/05 11 :00:00 I 2 0.055 94.61% 0.08 721 1979/05/07 14:00:00 I 1979/05/07 15:00:00 2 0.055 94.74% 0.08 -· ·-722 1981/12/21 05:00:00 I 1981/12/21 06:00:00 2 0.055 94.88% 0.08 ~ ---723 1984/11/0810:00:00 1984/11/08 11 :00:00 2 I 0.055 95.01% 0.08 ----~ 724 1982/10/26 10:00:00 1982/10/26 11 :00:00 2 0.055 95.14% 0.08 725 1985/10/06 10:00:00 1985/10/06 11 :00 :00 2 0.055 95.27% 0.08 726 I 1990/08/15 11 :00 :00 1990/08/15 12:00:00 2 0.055 95.40% 0.08 727 I 1979/10/05 02:00:00 1979/10/05 03:00:00 2 0.055 95.53% 0.08 ·-· 728 : 1976/05/07 04:00:00 1976/05/07 05:00:00 2 0.055 I 95.66% 0.08 729 i 1982/06/17 16:00:00 1982/06/17 17:00:00 I 2 0.055 I 95.80% 0.08 730 1987/08/1413:00:00 1987/08/14 14:00:00 i 2 0.055 I 95.93% 0.08 731 1991/12/0914:00:00 1991/12/09 15:00:00 2 0.055 96.06% 0.08 732 I 1988/03/01 01 :00:00 -, 1988/03/01 02:00:00 2 0.055 96.19% 0.08 ----733 i _ 1989/06/0410:00:00 I 1989/06/04 11 :00:00 I 2 0.055 96.32% 0.08 734 I 1989/11/2615:00:00 2 0.055 96.45% 0.08 1989/11/26 14:00:00 735 j 1976/06/30 20:00:00 1976/06/30 21 :00:00 2 I 0.055 96.58% 0.08 --736 1981/10/11 11 :00:00 2 0.055 96.71% 0.08 . 1981/10/11 10:00:00 i --737 i 1990/05/13 20:00:00 1990/05/13 21 :00 :00 2 ' 0.055 96.85% 0.08 -738 1--1990/12/20 11 :00:00 1990/12/20 12:00:00 2 1-0.055 96.98% 0.08 I 739 I 1977/10/05 22:00:00 1977/10/05 23:00:00 2 0.055 97.11% 0.08 740 ± 1979/08/1918:00:00 I 1979/08/19 19:00:00 -+-2 0.055 97.24% 0.08 741 1976/06/0112:00:00 1976/06/01 13:00:00 2 0.055 97.37% 0.08 ~-1~-I-~= 1983108106 08:00:00 ______J 1983/08/06 09:00:00 i 2 0.055 97.50% 0.08 1991/07/31 16:00:00 2 I 97.63% ----- ~743 1991/07/3115:00:00 _ 0.055 0.08 744 i 1956/04/1116:00:00 1956/04/11 16:00:00 1 0.055 97.77% 0.08 3/13/2017 1:51 PM 16/17 I I' 11 I' .. ,. r ~ r· • r 11 r 11 r 1 r 1 ' 1 r 1 r 1 ,. 1 ,.,,1 ' -'I r-, .,--..,. F"~ ~~ r1 Excel Engineering peakFlowStatisticsPostMitigated.csv Rank Start Date End Date t Duration Peak Frequency I Return Period i -· -~ 745 1991/12/19 15:00:00 1991/12/1915:00:00 I 1 0.055 97.90% 0.08 746 1991/03/14 00:00:00 1991/03/14 00:00:00 1 0.055 98.03% 0.08 747 1979/12/25 14:00:00 1979/12/25 14:00:00 1 0.055 I 98.16% 0.08 748 1987/02/05 16:00:00 1987/02/05 16:00:00 1 0.055 98.29% 0.08 749 1987/11/18 02:00:00 1987/11/18 02:00:00 1 0.055 98.42% 0.08 --~-750 1981/03/18 21 :00:00 1981/03/18 21:00:00 1 0.055 98.55% 0.08 751 1987/10/28 05:00:00 1987/10/28 05:00:00 i 1 0.055 98.69% 0.08 752 1981/05/01 16:00:00 1981/05/01 16:00:00 1 0.055 I 98.82% 0.08 753 ' 1981/03/10 22:00:00 1981/03/10 22:00:00 1 0.055 98.95% 0.08 -754 : 1977/12/23 08 :00 :00 1977/12/23 08:00:00 1 0.055 99.08% 0.08 755 I 1989/12/01 15:00:00 1989/12/01 15:00:00 1 I 0.055 99.21% 0.08 756 1981/04/26 22:00:00 1981/04/26 22:00:00 1 0.055 99.34% 0.08 757 1984/01/04 20:00:00 I 1984/01/04 20:00:00 1 0.055 99.47% 0.08 758 1982/02/08 17:00:00 i 1982/02/08 17:00:00 ! 1 0.055 99.61% 0.08 759 1991/01/04 02:00:00 r ___ 1991/01/04 02:00:00 I 1 0.055 99.74% 0.08 760 I 1968/12/11 13:00:00 1968/12/11 13:00:00 1 0.054 99.87% 0.08 -End of Data-----------------I 3/13/2017 1:51 PM 17/17 Excel Engineering 6 5 4 -J! u 3 -s cu 2 a::: 3 .2 1 u. 0 -1 -2 Flow Duration Curves Pre Development --r 010 (5.687cfs) - -Post Development Mitigated --r Qlf (0.3675cfs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... . -.., .................................... -.................... -........................... . . . . . . . . . . . ·.· ................... ·.................... . .................. ·.· ..... . . ., ................................................. . U') 0 0 .... N N ci ci . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... · Flow Duration PreDevelopment=365( days )x24(hr/day)x0.210(% )= 18.4(hours/year) Flow Duration Mitigated Post Development=365(days)x24(hr/day)x0.205(%)=18.0(hours/year) • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • .. • • • • • • • • • • • • • • • • • • • • -••••••••••••••••••• '! ••••••• 0.00 0.05 0.10 0.15 0.20 (%) Percent Time Exceedance I I' I .. ' I -. Ir' w If' I r I r I ' 1 f 1 r I r 1 r 1 ,-1 ,--"1 ,., .. -1 ,..,-.--, r·1 r"t Excel Engineering flowDurationPassFailMitigated.TXT Compare Post-Development Curve to Pre-Development Curve post-development SWMM file: V:\16\16024\engineering\GPIP\current\Storm -Lot-13-15\SWMM\SWMM CURRENT\LOT 13-15\16024 POST MITIGATED LOT 13-15 SWMM.out post-development time stamp: 3/13/2017 1 :44:46 PM Compared to: pre-development SWMM file: V:\16\16024\engineering\GPIP\current\Storm -Lot-13-15\SWMM\SWMM CURRENT\LOT 13-15\16024 PRE DEVELOPED LOT 13-15 SWMM.out pre-development time stamp: 11/15/2016 10:30:47 AM ---- &01 0<!> I 0<!> &0 &0 <y+~ +~ <y+~ o\o ~~ '/,.0 «l · «l o\<j; o\o I ~ <l:-tr; o\o ..... ~ : l< "'-q_ ~ o\o o\o "'-t-"'-.., " q_Or.,; «'-0 ~ ~ or.,; or.,; I~ (;)0 I (;)0 "'-.., q_ "'-' <y+~ +~ or.,; I I q_Or.,; I q_<..0 i o\o o\<f +~ i o(i 0 0.37 0.21 0.21 TRUE FALSE FALSE Pass: Post Duration < Pre Duration -----~ 1 0.42 0.18 0.19 TRUE FALSE FALSE Pass: Post Duration < Pre Duration 2 0.47 0.16 0.18 TRUE FALSE I FALSE Pass: Post Duration < Pre Duration 3 0.53 0.14 0.17 TRUE FALSE FALSE Pass: Post Duration < Pre Duration 4 0.58 0.12 0.15 TRUE FALSE FALSE Pass: Post Duration < Pre Duration 5 0.64 0.11 0.14 TRUE FALSE I FALSE Pass: Post Duration < Pre Duration f------------6 0.69 0.10 0.13 TRUE FALSE I FALSE Pass: Post Duration < Pre Duration 7 0.74 0.09 0.12 TRUE FALSE I FALSE Pass: Post Duration< Pre Duration 8 0.80 0.08 I 0.11 TRUE FALSE I FALSE Pass: Post Duration< Pre Duration -9 0.85 0.08 0.11 I TRUE FALSE FALSE Pass: Post Duration< Pre Duration I 10 I 0.90 0.07 0.10 TRUE FALSE FALSE Pass: Post Duration < Pre Duration 11 : 0.96 i 0.07 0.10 TRUE FALSE FALSE Pass: Post Duration < Pre Duration 12 1.01 I 0.06 0.09 TRUE I FALSE FALSE Pass: Post Duration < Pre Duration 13 1.07 0.06 0.08 TRUE FALSE FALSE Pass: Post Duration < Pre Duration 14 1.12 ! 0.05 0.08 TRUE ! FALSE FALSE Pass: Post Duration < Pre Duration 15 1.17 0.05 0.07 TRUE FALSE FALSE Pass: Post Duration < Pre Duration -----16 1.23 0.05 0.07 TRUE FALSE FALSE Pass: Post Duration < Pre Duration 17 1.28 0.04 0.06 TRUE FALSE FALSE Pass: Post Duration < Pre Duration ~ 18 1.33 0.04 0.06 TRUE FALSE i FALSE Pass: Post Duration< Pre Duration 19 1.39 0.04 0.06 TRUE FALSE : FALSE Pass: Post Duration< Pre Duration 20 1.44 0.04 0.05 TRUE FALSE FALSE Pass: Post Duration< Pre Duration ~-21 1.50 0.04 0.05 TRUE FALSE I FALSE Pass: Post Duration< Pre Duration 22 1.55 0.03 0.05 TRUE FALSE FALSE Pass: Post Duration< Pre Duration ~ 23 1.60 0.03 0.04 TRUE FALSE I FALSE Pass: Post Duration< Pre Duration 24 1.66 0.03 i 0.04 TRUE FALSE ! FALSE Pass: Post Duration< Pre Duration 1.71 0.04 TRUE . --- FALSE FALSE Pass: Post Duration< Pre Duration 25 0.03 26 1.76 0.03 1 0.04 TRUE FALSE FALSE Pass: Post Duration < Pre Duration 27 I 1.82 0.03 I 0.04 i TRUE FALSE FALSE Pass: Post Duration < Pre Duration ~--28 : 1.87 0.02 0.03 TRUE FALSE FALSE Pass: Post Duration < Pre Duration 29 1.93 0.02 0.03 TRUE i FALSE FALSE Pass: Post Duration < Pre Duration 30 1.98 I 0.02 I 0.03 TRUE FALSE FALSE Pass: Post Duration < Pre Duration 31 2.03 ! 0.02 0.03 TRUE FALSE i FALSE Pass: Post Duration< Pre Duration 3/13/2017 1:51 PM 1/3 ' ir• If .. "I If"''.,. llr"1I If ·-w r 1 r 1 r· I ~· 1 ,. 1 , ... , r·1 ,~ 1 r ·1 r~·-1 r·· 1 ,--, r~ r-, Excel Engineering flowDurationPassFailMitigated.TXT ! I I 1..0 00! J>: 1..0 1..0 <_y+~ 0 0 ' +~ +~ o\o ~i ~0 «l' : «l · o\<j; : o\<f o\o ~ ,,_q_ Q:-~ o\o / 0\o ,,_1,, 1',,-, ._,(:) t· ~ " q_Or,; ~ ~ or,; or,; q_~r,; «.'o ,,_<:>0 <::)0 1',,-, +~ <y+~ 0~ I o~ q_,0 o\<j; +~ ' q_ o\o i I o\<j; 32 I 2.09 I 0.02 0.03 TRUE FALSE FALSE Pass: Post Duration < Pre Duration 33 2.14 0.02 0.03 TRUE FALSE FALSE Pass: Post Duration < Pre Duration 34 2.19 0.02 0.03 TRUE FALSE FALSE Pass: Post Duration < Pre Duration -35 2.25 0.02 0.02 TRUE FALSE FALSE Pass: Post Duration< Pre Duration 36 2.30 0.02 0.02 TRUE FALSE FALSE Pass: Post Duration < Pre Duration 37 2.36 0.02 0.02 I TRUE i FALSE FALSE Pass: Post Duration< Pre Duration 38 2.41 0.02 0.02 TRUE FALSE : FALSE Pass: Post Duration < Pre Duration ~. ··-39 2.46 0.01 i 0.02 TRUE FALSE FALSE Pass: Post Duration < Pre Duration 40 I 2.52 i 0.01 I 0.02 TRUE FALSE : FALSE Pass: Post Duration < Pre Duration ... 41 2.57 0.01 i 0.02 TRUE FALSE I FALSE Pass: Post Duration < Pre Duration 42 2.62 0.01 0.01 TRUE FALSE FALSE Pass: Post Duration < Pre Duration 43 ' 2.68 0.01 0.01 TRUE FALSE : FALSE Pass: Post Duration < Pre Duration I 44 2.73 0.01 0.01 TRUE FALSE FALSE Pass: Post Duration < Pre Duration 45 2.79 0.01 0.01 TRUE FALSE FALSE Pass: Post Duration< Pre Duration 46 2.84 0.01 0.01 TRUE FALSE FALSE Pass: Post Duration< Pre Duration 47 2.89 0.01 0.01 TRUE FALSE FALSE Pass: Post Duration< Pre Duration 48 2.95 0.01 0.01 TRUE FALSE FALSE Pass: Post Duration< Pre Duration ·-49 3.00 0.01 0.01 TRUE FALSE FALSE Pass: Post Duration< Pre Duration ~ 50 3.05 ~-0.01 ' 0.01 TRUE I FALSE FALSE Pass: Post Duration < Pre Duration ·-! ' I ~· 3.11 I FALSE FALSE Pass: Post Duration < Pre Duration 51 --l 0.01 0.01 TRUE 52 3.16 0.01 0.01 TRUE : FALSE FALSE Pass: Post Duration < Pre Duration 53 3.22 0.01 0.01 TRUE FALSE FALSE Pass: Post Duration < Pre Duration 54 3.27 0.01 0.01 TRUE FALSE FALSE Pass: Post Duration < Pre Duration 55 3.32 0.01 0.01 TRUE FALSE FALSE Pass: Post Duration< Pre Duration --· 56 3.38 0.01 0.01 TRUE FALSE FALSE Pass: Post Duration < Pre Duration 57 3.43 0.01 0.01 TRUE FALSE FALSE Pass: Post Duration< Pre Duration 58 3.48 0.01 0.01 TRUE FALSE FALSE Pass: Post Duration< Pre Duration 59 3.54 0.01 0.01 TRUE FALSE FALSE Pass: Post Duration< Pre Duration ~-· 3.59 -0.01 TRUE FALSE FALSE Pass: Post Duration< Pre Duration 60 0.01 ·-· 61 3.64 0.01 0.01 TRUE FALSE FALSE Pass: Post Duration< Pre Duration 62 3.70 0.00 0.01 TRUE FALSE FALSE Pass: Post Duration < Pre Duration .. 3.75 I 0.00 0.01 TRUE FALSE FALSE Pass: Post Duration < Pre Duration 63 I ·--·· 64 3.81 0.00 0.01 I TRUE FALSE FALSE Pass: Post Duration < Pre Duration -3.86 0.00 0.01 ~-TRUE FALSE .. FALSE Pass: Post Duration < Pre Duration 65 --3.91 i _Q.QQ__~ 0:01·~·-f----TRUE FALSE FALSE Pass: Post Duration< Pre Duration 66 ~ 67 ' 3.97 0.00 I 0.01 TRUE FALSE FALSE Pass: Post Duration < Pre Duration ~-68~=t-4.02 I 0.00 0.01 TRUE FALSE FALSE Pass: Post Duration< Pre Duration 4.07 -· 0.00 0.01 TRUE FALSE FALSE Pass: Post Duration< Pre Duration 69 I 70 4.13 0.00 0.01 TRUE FALSE FALSE Pass: Post Duration < Pre Duration -· 71 4.18 0.00 0.01 TRUE FALSE FALSE Pass: Post Duration < Pre Duration 3/13/2017 1:51 PM 2/3 I W--I r1 r~ I'"". I r-11 r 1 r 1 r 1 r 1 r 1 r 1 f 1 r 1 r I r I r I ' -, ,., Excel Engineering flowDurationPassFailMitigated.TXT ~'!!< ~~ ~oc,; I ~ ~ ~ ~ ~ c,0 c,0~ +q +q o{i-,r;-0 «_,-'r! 1 «_,-'r! o\<j; o\<j:, ~\o ... ~ o\0 o\o , /., ,'7 I '\.-.; ,... ~ ~ !':>' !':>' ' «.'O <t <>0 ,.,o ,.,o I ~'7 ' ~ 0 +"' ~f" ' o<:i ~~ ,i· ~'b' i i ~O 1 ~~ o\<j; o\o <y+ q I ~ 72 I __ 4.24 I 0.00 i 0.01 --TRUE I FALSE FALSE Pass: Post Duration < Pre Duration I, 73 ! 4.29 0.00 + 0.01 TRUE FALSE FALSE Pass: Post Duration < Pre Duration I, 74 1 4.34 1 0.00 0.01 I TRUE FALSE FALSE Pass: Post Duration < Pre Duration -75 I 4.40 0.00 ~·-'--0.01 TRUE FALSE FALSE Pass: Post Duration< Pre Duration 76 I 4.45 : 0.00 ----; 0.00 I TRUE FALSE I FALSE Pass: Post Duration < Pre Duration 77 4.50 0.00 0.00 TRUE FALSE FALSE I Pass: Post Duration < Pre Duration 78 4.56 0.00 0.00 TRUE FALSE FALSE Pass: Post Duration < Pre Duration 79 4.61 0.00 0.00 TRUE FALSE FALSE Pass: Post Duration < Pre Duration 80 4.67 I 0.00 I 0.00 ! TRUE FALSE i FALSE Pass: Post Duration < Pre Duration ,__ __ ___131___ j 4.72 _-0.00 + 0.00 i TRUE FALSE FALSE Pass: Post Duration< Pre Duration 82 4.77 , 0.00 0.00 TRUE FALSE : FALSE Pass: Post Duration< Pre Duration I 83 4.83 0.00 0.00 TRUE -FALSE FALSE Pass: Post Duration< Pre Duration 84 4.88 -0.00 0.00 TRUE FALSE I FALSE Pass: Post Duration < Pre Duration 85 4.93 0.00 -• 0.00 TRUE FALSE FALSE Pass: Post Duration < Pre Duration I r 86 ! 4.99 --~ 0.00 1 0.00 TRUE FALSE FALSE Pass: Post Duration < Pre Duration I 87 5.04 0.00 0.00 TRUE FALSE FALSE Pass: Post Duration < Pre Duration 88 1 5.10 0.00 0.00 TRUE FALSE FALSE Pass: Post Duration< Pre Duration 89 j. 5.15 I 0.00 -0.00 TRUE ' FALSE FALSE Pass: Post Duration< Pre Duration 90 1 5.20 0.00 1 0.00 TRUE I FALSE FALSE Pass: Post Duration < Pre Duration I 91 5.26 ~ 0.00 0.00 TRUE FALSE FALSE Pass: Post Duration< Pre Duration 92 5.31 0.00 0.00 TRUE FALSE FALSE Pass: Post Duration< Pre Duration ----1 93 5.36 ' 0.00 0.00 TRUE I FALSE FALSE Pass: Post Duration < Pre Duration 1---~~-5.42 0.00 i 0.00 TRUE FALSE FALSE Pass: Post Duration < Pre Duration 95 5.47 0.00 1 0.00 TRUE ' FALSE FALSE Pass: Post Duration < Pre Duration 96 i 5.53 0.00 I 0.00 TRUE FALSE FALSE Pass: Post Duration < Pre Duration 97 I 5.58 0.00 I 0.00 TRUE FALSE FALSE Pass: Post Duration < Pre Duration 98 5.63 0.00 0.00 TRUE FALSE FALSE Pass: Post Duration< Pre Duration 99 5.69 0.00 0.00 FALSE TRUE FALSE Pass: Post Duration <10% Over Pre Duration 3/13/2017 1:51 PM 3/3 r-I ~ I .. .. .. ,,. .. .. ,,. .. ,,. ... .. .. .. .. - Excel Engineering USGS9217dPre.csv Duration Table Summary at Project Discharge Point - file name: V:\16\16024\engineering\GPIP\current\Storm -Lot-13-15\SWMM\SWMM CURRENT\LOT 13-15\16024 PRE DEVELOPED LOT 1 time stamp: 11/15/201610:30:47 AM -----·-----·----------- ------· -------- DISCHARGE Number of periods when discharge was equal to or greater than DISCHARGE column but less than that shown on the next line --· ----·--r ----- b"' ~~o, bJ> ~rz, !Zi rz,'li -:s,' ~'If ;§J <v+(f <v+<:J ~v~ 0 qlli ~<$ d-;._,J>"' 0 <i:)~ ~ 0' -<.~ (;){a ~ q0 ~ ~.;:, ~ v0 ~~ q0'-----------1 0.37 93 1042 0.210 __ 2 ___ -----0.42 949 ---------63 0.191 ~---------- 3 0.47 65 886 0.178 -4 0.53 63 821 0.165 f---------·------------·-· . - 5 0.58 51 758 0.152 -------·-----1-------6 0.64 52 707 0.142 ·-·-7 0.69 41 655 0.132 ------8 0.74 46 614 0.123 ---------·---9 0.80 36 568 0.114 ~· --· -----10 0.85 28 532 0.107 ·---· ------11 0.90 33 504 0.101 -------------12 0.96 36 471 0.095 ~----·---13 ··-1.01 435 --------25 0.087 r------14 1.07 28 410 --0.082 ------- -·-15 1.12 30 382 0.077 -·-----------16 1.17 18 I 352 0.071 I-----------------17 1.23 22 334 0.067 I---·---· --· ------18 1.28 21 312 0.063 ------··---19 1.33 14 291 0.059 -----· 20 1.39 19 277 0.056 f------------·------·-21 1.44 I 258 15 0.052 ------22 1.50 ! 12 243 0.049 23 1.55 -· -=r ----231 ·--15 0.046 ~-24 1.60 8 216 --·----t--0.043 --25 1.66 ---·--208 --0.042 =+-14 ··-26 1.71 9 ----194 ------· 0.039 27 1.76 10 .. 185 0.037 ---I 28 -· 1.82 --_:-· -T. -·· 5 -. 175 ··-0.035 -· --29 1.87 I 11 170 0.034 ~---------30 1.93 I 9 159 0.032 ---------31 1.98 ~ 6 150 0.030 -·-------·-·------· 32 2.03 8 144 0.029 ----·--33 2.09 -· 136 ------5 t 0.027 ---~-34 2.14 131 --· ------ ------8 -· 0.026 35 2.19 --- -9 123 ! 0.025 36 ------2.25 I ------------------------ --I 4 114 0.023 37 .. 2.30 7 ----- -----·· j -· 110 0.022 38 2.36 -·· 7 103 0.021 ---___ _._ 39 2.41 I . --+---96 0.019 7 -·· 40 2.46 I ------· -89 - _J 0.018 7 ---41--------------- 2.52 I 4 82 0.016 42 2.57 1· -· ·-. 78 --------7 0.016 ·-----·---· I --------- 43 2.62 2 71 i 0.014 I----------I --·----·-44 2.68 2 69 0.014 ~------45 --2.73 7 __ ----·-- ' 3 67 0.013 --. I . -. ----· 46 2.79 1 64 0.013 -47 --2.84 r-·--· 63 0.013 1 ----· -~------J -2.89 i 3 62 0.012 >-----------+-. ·--------· --49 2.95 --t----: 59 0.012 ~-50 ·---· --------gs--·> ------- 3.00 --~ 0.011 51---· 3.05 -2 50 0.010·---- 3/13/2017 1:51 PM 1/2 .. ... .. .. ... ... ... ... ,.. ,,. ,,. ,,. ... i .... ... ... ,. I .. - Excel Engineering ~0 ~ 0~ ~v~ ~cs <i)~ o' ()'<a I---------52 3.11 I ---53 3.16 ----~-54 3.22 55 3.27 -~~----3.32 57 3.38 -----58 3.43 --59 3.48 ------- 60 3.54 -----61 3.59 --62 3.64 63 3.70 ----·-64 3.75 -----65 3.81 66 3.86 67 3.91 -----68 3.97 --69 4.02 70 4.07 71 4.13 I ---72 --4.18 73 4.24 74 4.29 75 --4.34 + 76 4.40 -~-----t-- 77 --.. 4.45 ----t-----78 4.50 I 79 4.56 L 80 4.61 I 81 4.67 I --82 4.72 --83 4.77 ------t---84 4.83 85 4.88 86 --4.93 -------r 87 --4.99 I 88 5.04 ---·-89 5.10 --90 5.15 ---91 5.20 92 I 5.26 ----------- -----------93 5.31 ---------94 5.36 ~ -----·-95 5.42 i------------96 5.47 -~--------97 --------5.53 ---98 5.58 ~---99 5.63 ~--------100 5.69 ----------End of Data----------------- 3/13/2017 1:51 PM be,, i...~ q_0 ~ -:sf'' ~v~ 4 ------3 ---1 ----2 ------1 --0 1 0 1 --1 ---1 2 --2 0 0 1 1 1 --1 0 --0 -----1 1 0 1 2 1 --2 1 -----3 0 2 0 0 0 --·-0 0 1 0 0 ----1 0 0 -0 0 0 1 2 0 USGS9217dPre.csv Jf°-' J>'l,'o 0 c,0 «l <v..., ·i><:, 0 t'-~~ ~q_ ~ ~d-tr, ~cl' q_0 ------------48 0.010 --44 0.009 ----41 0.008 -----40 0.008 --·--------·-38 0.008 --37 0.007 ------37 0.007 --36 0.007 --36 0.007 ------35 0.007 ----34 0.007 ---33 0.007 ---31 0.006 . ------- 29 0.006 ------29 0.006 ---------29 0.006 -28 0.006 27 0.005 26 0.005 -------~ 25 0.005 -25 0.005 -----------25 0.005 ---------~ 24 0.005 ---23 0.005 -----23 0.005 ---22 0.004 ---20 0.004 --19 0.004 ----17 0.003 16 0.003 ----------13 0.003 ------13 0.003 11----0.002 -----11 0.002 --···------11 0.002 ---11 0.002 ----11 0.002 n--0.002 --10 0.002 ----10 0.002 -10 0.002 ------9 0.002 --9 0.002 -------9 0.002 --------9 0.002 ---9 0.002 --------9 0.002 -------8 --t-_--0.002 6 ---0.001 -- 2/2 .. .. ... ... ... ... ' .. ... ... ... .. ... .. ... 1111 - Excel Engineering USGS9217dPostMitigated.csv 1---D_u_ra_t_io_n_T_ab_le_S_um_m_a~ry_a_t _P_ro~je_ct_D_i_sc_h_a~rg~e_P_o_in_t ___________________________ _ file name: V:\16\16024\engineering\GPIP\current\Storm -Lot-13-15\SWMM\SWMM CURRENT\LOT 13-15\16024 POST MITIGATED LOT 1 1--ti_m_e __ s_ta_m~p_: _3/_1_3/_2_01_7_1_:44_:4_6_P_M _____________________________________ _ ---------------------------------------------------- DISCHARGE Number of periods when discharge was equal to or greater than DISCHARGE column but less than that shown on the next line -------------. 1- ~ ... ~~~ <;;~ -----+-----------r-1 -&<:-o., --bJ, ~<t ~w"' ~ q_"' ... ~b"' I <v+<!f>'li rl,<v+c."''li rJ' ~<.. ' 1..,J>"' ,(._~ ◊'· .,,..,,. ,,, --r ,__,l·,.,. ...,J>~._-2-05 __ _ ----------+----1~13~ , 896 0.180 ------+------------ ----1 0.37 2 0.42 --83 783 0.157 --+------~83~----700 ----0-.1-4_1 __ ---- ---f------6~5~----+-----6~1=7-----+-------0-.1-24---·· --- +------------+----4~1----552 ---+---------0-.1-1_1 __ -- 3 0.47 4 0.53 ---· - 5 0.58 6 0.64 t-------- ----f------6_0_ ---511 0.103 7 0.69 ---8 0.74 39 451 0.091 +-----------+--~ 28 412 0.083 9 ---0.80 ---------- 10 -+----------f------------+--------------+ -----~--------0.85 26 384 0.077 -------I---------< 22 358 0.072 ~-11 ----0.90 ------+---------------12 0.96 40 336 0.068 ----+----------f-----------------+----. -·---------- --------t-------------1----2_0 ___ ---+---__ 2_96 ____ --, _________ 0_.0_6_0 ____ _ 21 276 0.055 f--13 --1.01 14 1.07 -----------------------< 19 255 0.051 e--15 1.12 --------+f------------+-----------+--------------------------< ---------+-------~-0 __ ---+--~~: ~:~:~ 16 1.17 ~ 17 1.23 --------14 ---+----_2~1~1------,-----~o_.0~4~4-____ _ 13 203 0.041 ---+----------+-------~8--190 ---+-----o~.0~35-------1 ----f-------~10-----182 0.037 -------+----------+---------------+----------- 18 1.28 i--------------19 1.33 ~--20 1.39 21 1.44 ------______ 13 ___ -~ 172 __ 0._0_35 _____ _ 22 1.50 >-------5 159 0.032 -------+----------+-----------+··---------------< 23 1.55 ------------t----__ 11 -+-----_ 154 0.031 7 143 0.029 24 1.60 I----•-25 1.66 ---------- --------+------1 _ ___ _ 136 ______ o_.0_2_1 ___ _ 1 ~ _ 135 _ _o_.0~2~1 ____ _ _____ ,__ ----;_o ____ ~---~~-~~= ------t-------g~:~g~~!~ ----- 26 1.71 I--------27 -1.76 I----·· 28 1.82 29 1.87 ~-5 111 0.022 ____ __,_ ___ -5 106 -+-----0~.0~2~1------- t----~-----+-----~8---~--101 ~o~.0~20 ___ _ --------+----------------- ----------+----1~---+---_ -~-------_____ 0._0_19 __ ----- ____ 3_ 92 0.018 ____ _ ~ =-l== =~ --I g:g~ ~ ------------;--~~ -=-~~ ~~-I --~:~~i ~---=:-___ -_ --5 ---t 70 ----0-.0-1_4 ___ -_-_-_ --~---f-_ _ 5 _ --_ 65 0.013 3 60 1 ___ o_.0~1~2 ___ _ 3 57 0.011 --------+------------ -~-~~~~-====---_:_--____ ~-------i; HU -_-:_===== -----3 50 I 0.010 -----l -t------:~:::::_~--------: -_-:-:~ ~--~-----g-:g_g_: __ _ -------+----2 ----,--_ 41 , 0.008 30 1.93 ~--31 1.98 ---32 2.03 ~---33 ~--- 2.09 r--------34 2.14 --~ 2.19 ----·· 36 2.25 --37 ----------2.30 ---38 -------2.36 ---. 39 --+ 2.41 ----40 2.46 ---------r1~ 2.52 41 -----42 2.57 -------43 2.62 -----44 2.68 -------45 2.73 -----46 I 2.79 --47 -----t----2.84 -48 2.89 ---49 --2.95 ~---50 3.00 ------------ -------j ------+-- ---------- -·-·-·---- 51 3.05 3 39 0.008 3/13/2017 1:51 PM 1/2 ... .. 11111 .. .. '"" ,.. .. ... ... ,,,. '"" ... ... 1111 .. .. .. .. - Excel Engineering ~0 ~ <;;-tr; ~v~ 0 ~<$ ~~ Q' <!:l ----52 3.11 1---------------53 3.16 54 3.22 ~-----------55 3.27 I--------56 3.32 ------3.38 L____ ___ 57 ---- ~----58 _ 3.43 59 3.48 ----60 3.54 ~-----------61 3.59 ------62 3.64 63 3.70 64 3.75 65 3.81 66 3.86 ---·--67 3.91 68 3.97 69 4.02 t-------70 4.07 71 4.13 ~ 72 4.18 ---·-·-73 4.24 ------74 L____ _____ 4.29 75 L___ __ ------4.34 76 4.40 --77 4.45 ~ ----78 4.50 1---------79 4.56 --80 4.61 -------81 4.67 ~-----·· 82 4.72 I--------83 4.77 --84 4.83 ~ --85 4.88 -86 4.93 --87 4.99 ~------88 5.04 89 5.10 ~-90 5.15 -------91 ~--5.20 92 5.26 93 5.31 94 5.36 ---95 5.42 ------96 5.47 ~---~--97 5.53 -98 5.58 99 5.63 ------100 5.69 ~-------End of Data---------------------- 3/13/2017 1:51 PM USGS9217dPostMitigated.csv i..,J>"' Jf<:t,, bJ> ll,(lj q_0 <v+c'f <v+c; & i'"' 0 -:s!' -<.~ ~v~ q_0 ~ ~ c,0 ,,..,~ q_'B --+---------------·-_-+=----36 ---0.007 ------3 ---------------------0 33 0.007 --0.007 1 33 --------0 32 0.006 --------1 32 0.006 ----1 31 0.006 --------__ ,,_ ----2 30 0.006 ------1 28 0.006 --------0 27 0.005 ----------------------3 27 0.005 -----2 24 0.005 --------------1 22 0.004 ------3 21 0.004 1 18 0.004 ---1 17 0.003 ----0 16 0.003 -----1 16 0.003 ---·--------------1 15 0.003 ----0 14 0.003 -------0 14 0.003 ---0 14 0.003 -------------0 14 0.003 ------0 14 0.003 -----------· -------~ 1 14 0.003 --.------0 13 0.003 --·------0 13 0.003 --------0 13 0.003 0 13 0.003 -------,---13 0.003 1 I 12 ---------0.002 ---0 -~ 0 ---12 0.002 ·------------·---0 12 0.002 -----------1 12 0.002 --~ --1 11 0.002 -------------0 10 0.002 -------------0 10 0.002 0 10 0.002 ----------- 1 10 0.002 0 9 0.002 ---------------------- 0 9 0.002 -------·-------------0 9 0.002 -2 9 0.002 --·+~ 0.001 f--------1 -------0 0.001 ----------·--0 . 6 0.001 1--------0 --~-----------~ I 6 0.001 ----6----0.001 -0 -6--0.001 -0 ---------------6----0.001 0 ---- 2/2 ... ~ ,. .. ,. .. ... .. ... .. ,. ... .. ... ... ,. ... ... • .. ... .. .. C .. I .. - Excel Engineering END OF STATISTICS ANALYSIS I ..,., .--w r--,. rw ,-,~ f' 1 f I r I f I r 1 ' 1 r ·1 ,-1 r 1 , 1 r1 r-, ,-•'I Excel Engineering Underdrain and Drawdown Results The following table summarizes the underdrain coefficients used for each of the BMP units and translates the C factor coefficient to an equivalent round orifice diameter based on 1/16th inch increments. The drawdown equations are based on standard falling head drawdown theory. The primary drawdown number of interest is the surface drawdown based on vector concerns. The various soil and gravel storage layer calculations consider the void ratio and porosity of the respective layer. It should be noted that these drawdown calculations only consider the volume of water within the biofiltration units. If the biofiltration unit utilizes any storage above the berm height, then that storage drawdown is in addition to the values shown in the table below. Those calculations, if present, are shown elsewhere in the report. The derivation and explanation of the equations used to determine the values displayed in the chart are discussed in the following two sections of this portion of the report. * ., E "' z ... "' u .c :::, V) BMP-H BMP-G BMP-F BMP-E * VI VI ., u e Q. 0 ::::; BMP-E BMP-F BMP-G BMP-H * ~ "' ., < 0 ::::; 4963.01 1509.6 1171.9 14499.99 o- QJ .E ~ ~ "i: ......... 0 .... I 0 ~ <.:: ;§ 16 8 8 24 1 0.5 0.5 1.5 *._ 0 ~ ~ u 0 :::, 0.067088508 0.055140589 0.071030151 0.051666388 * I 't: :::, VI I- * I -~ I- 5.6732 8.5027 8.4804 5.8076 The character • in the column heading indicates that the values was read directly from the SWMM inp file. Assume: orifice coefficient Co= 0.61, void ratio for surface= 1.0, centroid of underdrain orifice is located at h=0 18 18 18 18 * ~ ~ 0 t; I- 36 36 36 36 ~ ! C: 0.4 0.4 0.4 0.4 * ~ ! ., 0.67 0.67 0.67 0.67 C: ~ ,: ::. 0 ., "0 u !~ ... :::, 0 VI 11.2 20.2 15.7 14.9 ~ C: ~ ] "' -0~ 16.1 19.6 15.2 20.9 C: ~ ,: ::. 0 ., "0 00 ,: ~ "' 0 ...... 0 V) 71.8 87.3 67.8 93.2 § C: ~ "0 ,: "' -...... 0 ::. 99.1 127.1 98.6 129.0 Inp File Name: V:\16\16024\engineering\GPIP\current\Stonn -Lot-13-15\SWMM\SWMM CURRENT\LOT 13-15\16024 POST MITIGATED LOT 13-15 SWMM.inp File Date: 11/15/2016 2:26:50 PM SWMM C Factor and Drawdown Results r1 ... .. C ,.. I .. .. L .. i .. ... .. ... .. ... ... ... .. I ... .. Ill C C - Excel Engineering Underdrain C Factor Equations Based on the slotted drain example in the SWMM Drain Advisor (EPA SWMM 5.1 Help/Contents/Reference/Special Dialog Forms/LID Editors/LID Control Editor/LID Drain System/Drain Advisor) the underdrain coefficient C is the ratio of the orifice area (total slot area) to the LID area times a constant (60,000) . SWMM Ex: If the drain consists of slotted pipes where the slots act as orifices, then the drain exponent would be 0.5 and the drain coefficient would be 60,000 times the ratio of total slot area to LID area. For example, drain pipe with five 1/4" diameter holes per foot spaced 50 feet apart would have an area ratio of 0.000035 and a drain coefficient of 2. The 60,000 constant in the above example corresponds to the combined constants in the standard orifice equation: (Standard Orifice Equation) q=CoAo.fig ..fh (cfs) and (SWMM Underdrain Equation (per unit area)) q=q/Auo or q=CoAo;Auo.fig ..fh (Cfs/sf) With a Co=0.6 and converting .fig to units of inches and hours the constant becomes 60,046. So the underdrain C factor per unit area of the LID becomes: C=60,046 A/Auo (in"'112/hr) and q=C*hl/2 inp File Listing .. " .. ... ... .. ... ,,.. .. ... .. ... ,,. ... .... .. 11111 .. .. - Excel Engineering Drawdown Equations The drawdown equations presented in the chart are the drawdown times for the respective layers within the biofiltration unit (only). If the biofiltration unit includes storage ponding above the berm height, then the drawdown time for the storage portion is in addition to the values shown in the chart. Those calculations (if present) are shown elsewhere in the report. For most cases the storage drawdown time will be comparatively short as compared to the biofiltration drawdown times. To derive a general formula that relates drawdown time for each layer of the biofiltration unit in terms of the SWMM C factor, we set the change in water volume with respect to time equal to the standard orifice equation (found in the County Hydraulics manual): dh q = dt nAp = CoAo.J2gh Where n = porosity of the layer, Ap = area of the BMP unit, Co = orifice coefficient, Ao = area of the orifice, and g = gravity constant. The porosity n for the surface layer is 1.0, and the values for the soil and storage layers read from the SWMM LID definitions. Solving the definite integral from hl to h2 Solving for T: f h=h2 J,t=T CoAo.f[g h-0·5dh = --------dt h=h1 t=o nAp CoAo.f[g 2(ill -ill)= A (T) n P Or 2n( ill -ill) = C (T) where: C = CoAo.fig (in"112/hr) Ap T = zn( ../h'i.-vfii_) (hr) C Where h2(in) is the total beginning head above the underdrain orifice at t=O and hl(in) is the total ending head above the orifice at t=T. Ex: h2 for surface= depth of gravel storage plus depth of soil layer plus berm height, and hl for surface= depth of gravel storage plus depth of soil layer. inp File Listing i ill .. .. .. .. ,. ' .. .. .. .. .. .. .. -.. .. -.. llt -... .. ... .. .. .. .. .. • .. .. -.. - 16024 Lot 13-15 Predevelopment ;;Project Title/Notes [OPTIONS] ; ;option FLOW_UNITS INFILTRATION FLOW_ROUTING LINK_OFFSETS MIN_SLOPE ALLOW_PONDING SKIP_STEADY_STATE START_DATE START_TIME REPORT_START_DATE REPORT_START_TIME END_DATE END_TIME SWEEP_START SWEEP_END DRY_DAYS REPORT_STEP WET_STEP DRY_STEP ROUTING_STEP INERTIAL_DAMPING NORMAL_FLOW_LIMITED FORCE_MAIN_EQUATION VARIABLE_STEP LENGTHENING_STEP MIN_SURFAREA MAX...TRIALS HEAD_TOLERANCE SYS_FLOW_TOL LAT_FLOW_TOL MINIMUM_STEP THREADS value CFS GREEN_AMPT KINWAVE DEPTH 0 NO NO 08/28/1951 05:00:00 08/28/1951 05:00:00 05/23/2008 23:00:00 01/01 12/31 0 01:00:00 01:00:00 01:00:00 0:00:30 PARTIAL BOTH H-W 0.75 0 12.557 8 0.005 5 5 0. 5 1 [EVAPORATION] ; ;Data source Parameters ------------------------------'' CONSTANT DRY_ONLY 0.0 NO 16024 PRE DEVELOPED LOT 13-15 SWMM,inp [RAINGAGES] ; ;Name Format Interval SCF source FILE ; ; oceanside oceanside IN INTENSITY 1:00 [SUBCATCHMENTS] ;;Name Rain Gage ; ; LOTS13-15 [SUBAREAS] ; ; subcatchment ; ; LOTS13-15 oceanside N-Imperv 0.012 [INFILTRATION] ;;subcatchment suction 9 N-Perv 0.1 Ksat 0.025 LOTS13-15 [OUTFALLS] ; ;Name Elevation Type ; ; POC 0 [REPORT] ;;Reporting Options INPUT NO CONTROLS NO FREE 1.0 outlet POC S-Imperv 0.05 IMO 0.33 Stage Data "R:\Rain gage dat\Oceanside ALERT Station.dat" Area %Imperv width %Slope curbLen snowPack 10.8150 0 S-Perv 0.10 Gated NO Page 1 647.6 1.5 0 Pctzero RouteTo PCtRouted 25 OUTLET Route To .. .. .. ~ 16024 PRE DEVELOPED LOT 13-15 SWMM.inp SUBCATCHMENTS ALL NODES ALL .. LINKS ALL -... ... .. ,,,, .. .. .. -.. ,,. .. .. .. .. ..., --.. • .. .. ,. • .. .. - [TAGS] [MAP] DIMENSIONS -2500.000 0.000 12500.000 10000.000 units None [COORDINATES] ; ;Node ; ; POC [VERTICES] ; ;Link [Polbgons] ;;su catchment --------------'' LOTS13-15 LOTS13-15 LOTS13-15 LOTS13-15 LOTS13-15 LOTS13-15 LOTS13-15 LOTS13-15 LOTS13-15 LOTS13-15 LOTS13-15 LOTS13-15 LOTS13-15 LOTS13-15 LOTS13-15 LOTS13-15 LOTS13-15 LOTS13-15 [SYMBOLS] ; ;Gage ··--------------'' oceanside [BACKDROP] x-coord 45. 317 x-coord x-coord -------------------1888.218 -1273.917 -1072.508 -649.547 -347.432 -226.586 -448.137 3076.536 3580.060 8544. 814 8564.955 9018.127 8937.563 8434.038 7960.725 4506.546 4133. 938 -1908.359 x-coord -------------------1022.155 Y-Coord 6656.596 v-coord v-coord ------------------9375.629 8267.875 8197.382 7663.646 7713.998 7562.941 7411.883 1701.913 2024.169 5266.868 5146.022 5448 .137 9123.867 8851.964 9093.656 9174.220 9375.629 9325.277 Y-Coord ------------------6445.116 FILE "v:\16\16024\engineering\GPIP\current\Storm\SWMM\PDF\16-024-SWMM-DMA EXHIBIT-PREDEV LOT 13-15-Model.jpg" DIMENSIONS -2500.000 0.000 12500.000 10000.000 Page 2 ,. .. V:\ 16\ 16024\engineering\GPIP\current\Storm -Lot-13-15\SWMMISWMM CURRENTiLOT 13-15\ 16024 POST MIT/GA TED LOT 13-15 SWMM.inp Tuesday, May 23, 2017 1 :33 PM 16024 Lot 13-15 Postdevelopment ,_ ;;Project Title/Notes • [OPTIONS] ; ;Option ,-FLOW UNITS INFILTRATION • FLOW ROUTING LINK OFFSETS ,-MIN SLOPE 11111 ALLOW PONDING SKIP STEADY STATE ... START DATE i.. START TIME REPORT START DATE --_.. REPORT_START_TIME END DATE ... END TIME SWEEP START 111111 SWEEP END -.., DRY DAYS REPORT STEP WET STEP !"" DRY STEP • ROUTING STEP ..-INERTIAL DAMPING NORMAL FLOW LIMITED -FORCE_MAIN_EQUATION VARIABLE STEP ... LENGTHENING STEP Ila MIN SURFAREA MAX TRIALS HEAD TOLERANCE ,-SYS FLOW TOL • LAT FLOW TOL MINIMUM STEP ... THREADS .. ... [EVAPORATION] ; ; Data Source ,,-------------- ._ CONSTANT DRY ONLY Value CFS GREEN AMPT KINWAVE DEPTH 0 NO NO 08/28/1951 05:00:00 08/28/1951 05:00:00 05/23/2008 23:00:00 01/01 12/31 0 01:00:00 01:00:00 01:00:00 0:01:00 PARTIAL BOTH H-W 0.75 0 12.557 8 0.005 5 5 0.5 1 Parameters 0.0 NO [RAINGAGES] ; ;Name Format Interval SCF 1.0 IN ,,-------------- ,. Oceanside INTENSITY 1:00 ~ dat \Oceanside ALERT Station. dat" Oceanside [SUBCATCHMENTS] Rain Gage ,. ; ;Name Ill Width %Slope CurbLen ,,-------------- ------------------------r DMA-14 Oceanside .. 636.59 1. 3 0 DMA-10 Oceanside ,. 646.76 1 0 ~ DMA-12 Oceanside 223 1.5 0 DMA-13 Oceanside .. .. - Outlet SnowPack BMP-H BMP-E BMP-F BMP-G -1- Source FILE "R:\Rain gage Area %Imperv ---------------- 5.520 84 3.648 82 0.386 42 0.752 66 ,-,-·-~ -·-. .. Ii. V:\16\16024\engineering\GPIP\cu"ent\Storm -Lot-13-15\SWMM\SWMMCURRENT\LOT 13-15\16024 POST MITIGATED LOT 13-15 SWMM.inp Tuesday, May 23, 20171:33 PM 144 1 0 ,-BMP-E Oceanside sto-e 0.113935 0 . 211.9 0 0 11111 BMP-F Oceanside sto-f 0.034656 0 14.5 0 0 ~ BMP-G Oceanside sto-g 0.026903 0 41. 76 0 0 Ill BMP-H Oceanside sto-h 0.332874 0 57.23 0 0 .. ~ [SUBAREAS] ;;Subcatchment N-Imperv N-Perv S-Imperv S-Perv PctZero RouteTo ,. PctRouted ,,--------------------------------------------------------------------------.. ---------- DMA-14 0.012 0.1 0.05 0.1 25 OUTLET ... DMA-10 0.012 0.1 0.05 0.1 25 OUTLET DMA-12 0.012 0.1 0.05 0.1 25 OUTLET a. DMA-13 0.012 0.1 0.05 0.1 25 OUTLET BMP-E 0.012 0.1 0.05 0.1 25 OUTLET ,. BMP-F 0.012 0.1 0.05 0.1 25 OUTLET I BMP-G 0.012 0.1 0.05 0.1 25 OUTLET ... BMP-H 0.012 0.1 0.05 0.1 25 OUTLET ,,. [ INFILTRATION] ... ;;Subcatchment Suction Ksat IMD ,,--------------------------------------------.. DMA-14 9 0.01875 0.33 ' DMA-10 9 0.01875 0.33 ... DMA-12 9 0.01875 0.33 DMA-13 9 0.01875 0.33 .. BMP-E 9 0.01875 0.33 ... BMP-F 9 0.01875 0.33 BMP-G 9 0.01875 0.33 ,,. BMP-H 9 0.01875 0.33 ... [LID_ CONTROLS] ; ;Name Type/Layer Parameters .. ,,---------------------------------- BMP-E BC '-a BMP-E SURFACE 5.673164025 0.0 0 0 5 BMP-E SOIL 18 0.4 0.2 0.1 5 .. 5 1.5 i.. BMP-E STORAGE 36 0.67 0 0 BMP-E DRAIN 0.06363 0.5 3 6 ~ BMP-F BC I .. BMP-F SURFACE 8.5027 0.0 0 0 5 BMP-F SOIL 18 0.4 0.2 0.1 5 ,. 5 1.5 .. BMP-F STORAGE 36 0.67 0 0 BMP-F DRAIN 0.05511 0.5 3 6 .. BMP-G BC ~ BMP-G SURFACE 8.4804 0.0 0 0 5 BMP-G SOIL 18 0.4 0.2 0.1 5 5 1.5 ,. BMP-G STORAGE 36 0.67 0 0 .. BMP-G DRAIN 0.07099 0.5 3 6 ,. BMP-H BC BMP-H SURFACE 5.80761 0.0 0 0 5 .. BMP-H SOIL 18 0.4 0.2 0.1 5 5 1.5 .. ill -2- - ,. L. V:\ 16\ 16024\engineering\GP/P\current\Storm -Lot-13-15\SWMMISWMM CURRENTiLOT 13-15\ 16024 POST MIT/GA TED LOT 13-15 SWMM.inp Tuesday, May 23, 2017 1 :33 PM BMP-H STORAGE 36 0.67 0 0 "BMP-H i• .. [LID_USAGE] ;;Subcatchment C ~~~~=~~-----=~~~rv DRAIN LID Process RptFile 0.05093 0.5 3 6 Number Area Width DrainTo ------------------------------------------------------------ BMP-E .. 0 ~ BMP-F 0 .. BMP-G 0 .. BMP-H 0 .. [OUTFALLS] ._ ; ;Name 0 0 0 0 ,,-------------- .. POC .. BMP-E 1 4963.01 0 BMP-F 1 1509.60 0 BMP-G 1 1171. 90 0 BMP-H 1 14499.99 0 Elevation Type Stage Data Gated 0 FREE NO InitSat 0 0 0 0 Route To [STORAGE] ,. ; ;Name Name/Params Elev. MaxDepth Fevap InitDepth Psi Shape Curve -,,-------------- Ill Sto-G Sto-G .. Sto-H Sto-H flll Sto-F ._ Sto-F Sto-E _. Sto-E ._ [WEIRS] ; ;Name _. Qcoeff Gated ,,--------------.. .. .. 11111 ---------- STO-H-TG 3.33 STO-G-TG 3.33 STO-F-TG 3.33 STO-E 3.33 -------- NO NO NO NO 0 0 0 0 N/A From Node EndCon -------- Sto-H 0 Sto-G 0 Sto-F 0 Sto-E 0 ~ [XSECTIONS] ;;Link Shape Barrels Culvert "" I I--------------------------.. -------------------- 11111 STO-H-TG STO-G-TG STO-F-TG Ill STO-E ,. [CURVES] RECT OPEN RECT OPEN RECT OPEN RECT OPEN Ksat IMD -------------------------------- 0.1667 0 TABULAR 0 0 0.3333 0 TABULAR 0 0 0.1667 0 TABULAR 0 0 0.5 0 TABULAR 0 0 To Node EndCoeff Surcharge Type RoadWidth CrestHt RoadSurf ---------- POC 0 POC 0 POC 0 POC 0 Geoml 0.333 0.1667 0.1667 0.1667 ------------------------------ TRANSVERSE 0 YES TRANSVERSE 0 YES TRANSVERSE 0 YES TRANSVERSE 0 YES Geom2 Geom3 Geom4 ------------------------------ 12 0 0 12 0 0 8 0 0 12 0 0 lllt ; ;Name Type X-Value Y-Value ,,-------------- Sto-E Storage O 4963.20 -3- - .. .. V:\ 16\ 16024\engineering\GPIP\cu"ent\Storm -Lot-13-15\SWMM\SWMM CURRENT\LOT 13-15\ 16024 POST M/TIGA TED LOT 13-15 SWMM.inp Tuesday, May 23, 2017 1 :33 PM Sto-E 0.5 5512.80 [ ~to-F 11111 Sto-F r Sto-G .. Sto-G , Sto-H Ill Sto-H I. [REPORT] ;;Reporting Options ,. INPUT NO .. CONTROLS NO SUB CATCHMENTS ALL ,. NODES ALL ~ LINKS ALL [TAGS] Storage Storage Storage 0 0.1667 0 0.1667 0 0.3333 1070.10 1603.90 825.80 1098.88 13764.50 15018 .. Gage Oceanside Oceanside ,, .. [MAP] ,. DIMENSIONS -2500.000 0.000 12500.000 10000.000 Units None ... [COORDINATES] .. ; ;Node X-Coord Y-Coord ,,--------------------------------------------------.. POC -20.141 6744.713 Sto-G 6894.014 8792.934 ,. Sto-H -976.447 7448.479 ' Sto-F 7571.148 7752.699 1111. Sto-E 5961. 727 4425.908 .. [VERTICES] ... ; ;Link X-Coord Y-Coord ,,---------------------------------------------------STO-H-TG -1231.600 6898.921 STO-H-TG -1133.464 6555.447 -STO-G-TG 6000.981 7890.088 STO-G-TG 4970.559 7605.496 ,.. STO-F-TG 6668.302 6604.514 .. STO-F-TG 3478.901 6898.921 STO-E 5736.016 5230.618 ,. STO-E 2134.446 6555.447 I. [Polygons] ;;Subcatchment X-Coord Y-Coord .. ,,-------------------------------------------------- ~ DMA-14 1666.667 3987.915 DMA-14 -448.137 7391.742 DMA-14 -226.586 7512.588 ,. DMA-14 -347.432 7734 .139 .. DMA-14 -679.758 7693.857 DMA-14 -1253. 776 8288.016 ,.. DMA-14 -1908. 359 9355.488 DMA-14 4184.290 9355.488 ii. DMA-14 4486.405 9194.361 DMA-14 6450.151 9174.220 ,. DMA-14 6470.292 8952.669 ~ DMA-14 6329.305 8922.457 DMA-14 6299.094 8449.144 DMA-14 7024.169 7260.826 ~ -4- -----·~·-~ ·---s~-------~ .,.~,,.,,.._ .. ._ V:\16\16024\engineering\GP/P\current\Storm -Lot-13-15\SWMMISWMM CURRENT\LOT 13-15\16024 POST MITIGATED LOT 13-15 SWMM.inp Tuesday, May 23, 20171:33 PM DMA-14 1646.526 4038.268 ... DMA-10 3046.324 1722.054 DMA-10 3469.285 1973.817 .. DMA-10 5614.300 3383.686 DMA-10 7024.169 4290.030 ,.. DMA-10 8232.628 5065.458 ._ DMA-10 8534.743 5226.586 DMA-10 8554.884 5125.881 DMA-10 9038.268 5397.784 ... DMA-10 8786.506 5417.925 .,. DMA-10 8705.942 5679.758 DMA-10 8313.192 5931.521 ... DMA-10 8282.981 6304.129 DMA-10 7507.553 7532.729 111111 DMA-10 1656.596 4038.268 DMA-10 3066.465 1691. 843 ,,. DMA-12 8997.986 5387.714 DMA-12 8836.858 5407.855 .. DMA-12 8716. 012 5659.617 DMA-12 8333.333 5941. 591 ... DMA-12 8282.981 6314.199 ... DMA-12 7809.668 7069.486 DMA-12 8091.641 7190.332 ... DMA-12 8182.276 7724.068 DMA-12 8061. 430 7895.267 1111, DMA-12 8212.487 8006.042 DMA-12 8393.756 8046.324 -DMA-12 8746.224 8076.536 DMA-12 8987.915 8076.536 .. DMA-12 8987.915 5387.714 DMA-13 7804.929 7047.716 ... DMA-13 7502.814 7571.382 ... DMA-13 6999.289 7249.126 DMA-13 6324.566 8437.444 ... DMA-13 6274.214 8940.969 DMA-13 6425.271 8940.969 ... DMA-13 6425. 271 9162.520 DMA-13 7935.845 9112.168 .. DMA-13 8389.017 8860.405 .. DMA-13 8942.894 9142.379 DMA-13 8942.894 8084.977 DMA-13 8691.132 8084.977 ~ DMA-13 8187.607 8034.625 .. DMA-13 8036.550 7863.426 DMA-13 8157. 396 7752.651 "" DMA-13 8056.691 7228.985 DMA-13 7784.788 7027.575 -BMP-E 3444.109 2117.321 BMP-E 5770.393 3617.825 ~ BMP-E 5760.322 3668.177 a. BMP-E 3293.051 2384.189 BMP-E 3444.109 2107.251 BMP-F 8680.765 7968.278 ~ BMP-F 8333.333 7968.278 --BMP-F 8534.743 7615.811 BMP-F 8444.109 7530.211 r BMP-F 8494.461 7439.577 BMP-F 8680.765 7505.035 Ila BMP-F 8695.871 7968.278 BMP-F 8343.404 7958.207 .. BMP-G 7729.104 8922.457 .. BMP-G 7809.668 9003.021 BMP-G 8202.417 8700.906 BMP-G 8131.923 8620.342 ,. ~ -5- -__ , ''"' ·~~-"'""' _..., ....... _ .. ~ V:\16\16024\engineering\GPIP\current\Storm -Lot-13-15\SWMM\SWMMCURRENT\LOT 13-15\16024 POST MITIGATED LOT 13-15 SWMM.inp Tuesday, May 23, 20171:33 PM BMP-G 8001.007 8569.990 .. BMP-G 7749.245 8922.457 I BMP-H -976.838 8209.970 .. BMP-H 886.203 9166.667 BMP-H 1782.477 9166.667 ,. BMP-H 1782.477 9101.208 i BMP-H -407.855 7756.798 ... BMP-H -609.265 7741. 692 BMP-H -775.428 7857.503 ~ BMP-H -976.838 8209.970 ii., [SYMBOLS] .. ; ;Gage X-Coord Y-Coord ,,--------------------------------------------------... Oceanside -629.406 8892.246 [BACKDROP] -., FILE "V:\16\16024\engineering\GPIP\current\Storm -Lot-13-15\SWMM\SWMM CURRENT\LOT 13-15\16-024-DMA EXHIBIT-LOT 13-15-pre.jpg" 1111 DIMENSIONS -2500.000 0.000 12500.000 10000.000 ... .. ... ... ... .. 1111 .. .. - -6- SWQMP for: Carlsbad Raceway Lots 13-15 ADJ 06-07 A A Structural BMP Maintenance Information Use this checklist to ensure the required information has been included in the Structural BMP Maintenance Information Attachment: Preliminary DesignlPlanninglCEQA level submittal: Attachment 3 must identify: • Typical maintenance indicators and actions for proposed structural BMP(s) based on Section 7.7 of the BMP Design Manual level su i ta : Attachment 3 must identify: • Specific maintenance indicators and actions for proposed structural BMP(s). This shall be based on Section 7. 7 of the BMP Design Manual and enhanced to reflect actual proposed components of the structural BMP(s) • How to access the structural BMP(s) to inspect and perform maintenance • Features that are provided to facilitate inspection (e.g., observation ports, cleanouts, silt posts, or other features that allow the inspector to view necessary components of the structural BMP and compare to maintenance thresholds) • Manufacturer and part number for proprietary parts of structural BMP(s) when applicable • Maintenance thresholds for BMPs subject to siltation or heavy trash(e.g., silt level posts or other markings shall be included in all BMP components that will trap and store sediment, trash, and/or debris, so that the inspector may determine how full the BMP is, and the maintenance personnel may determine where the bottom of the BMP is . If required, posts or other markings shall be indicated and described on structural BMP plans.) • Recommended equipment to perform maintenance • When applicable, necessary special training or certification requirements for inspection and maintenance personnel such as confined space entry or hazardous waste management .. ... ... ... ... ... ,.. .. .... .. - ... .. .... .. -.. .. .. .. 11111 .. • .. .. • .. .. .. - ATTACHMENT 3 .. .. .. ... .. ... .. ... ... ... ... ... .. ... II .. .. 1111 ... .. - Attachment 3 Operation and Maintenance Information .. .. .. ... ... .. ,.. ... .... ,.. .. .... ,. .. ,.. .. .. .. .. .. .. 1111 .. Ill ,.. .. .. .. - ATTACHMENT 3 1.1 Operations, Maintenance and Inspection 1.1.1 Structural BMP Ownership and responsible party for permanent O&M The parties responsible for maintenance during the construction phase of the BMPs identified and Source Controls specified in this document . Develo er's Name: Adam Robinson Address: 3209 LionsHead Ave. Carlsbad, CA 92010 Owner's Name: Adam Robinson Address: 3209 LionsHead Ave. Carlsbad, CA 92010 Maintenance Funding Mechanism: Funding Source or sources for long-term operation and maintenance of each BMP identified in this document. By certifying the PDP SWQMP the applicant is certifying that the funding responsibilities have been addressed and will be transferred to future owners . Owner's Name: Adam Robinson Address: 3209 LionsHead Ave. Carlsbad, CA 92010 (:;ity: Carlsbad, CA 92029 Email Address: adam@rafpacificagroup.com Phone Number: (760)743-0300 1.1.2 Expected Maintenance actions for the Biofiltration BMP 1. Watering plants daily 2. Removing sediment, thrash and debris 3. Re-mulching areas as necessary 4. Treat diseased vegetation or replace 5. Mowing turf areas (6" grass height optimum) 6. Repairing erosion at inflow points 7. Repairing outflow structures 8. Un-clog the orifice plate located at the box and the underdrain .. ... 111111 ... ,. ... 111111 ... .. .. 111111 ,.. ... .. .. ,.. 111111 ... .. .. - 1.1.3 Operation and Maintenance (O&M) Plan An O&M Plan will be prepared for the proposed project and submitted for approval by the City of Carlsbad prior to grading permit issuance. The O&M Plan describes the designated responsible party to manage the stormwater BMP(s), employee's training program and duties, operating schedule, maintenance frequency, routine service schedule, specific maintenance activities, copies of resource agency permits, and any other necessary activities. At a minimum, maintenance agreements shall require the inspection and servicing of all structural BMPs per manufacturer or engineering specifications . Parties responsible for the O&M Plan shall retain records for at least 5 years. These documents shall be made available to the City for inspection upon request at any time. While the PDP SWQMP must include general O&M requirements for structural BMPs, the PDP SWQMP may not be the final O&M Plan. 1.1.4 Project BMP Verification The applicant's Engineer of Record and/ or the City Engineer must verify through inspection of the site that the BMPs have been constructed and implemented as proposed in the approved WQTR. The inspection must be conducted and City approval must be obtained prior to granting a certificate of occupancy. This approval may be verified through signatures on the as-built plans, specifically on the BMPsheet. 1.1.5 Annual BMP Operation and Maintenance Verification The BMP owner must verify annually that the O&M Plan is being implemented by submitting a self-certification statement to the City. The verification must include a record of inspection of the BMPs prior to the rainy season (October 1st of each year). 1.2 Requirements for Construction Plans 1.2.1 BMP Identification and Display on Construction Plan Plans for construction of the project (grading plans, improvement Plans, and landscaping plans) must show all permanent site design, source control, and structural BMPs, and must congruent with the PDP SWQMP. Structural BMP Summary BMP City BMP ID Latitude; APN BMPType Effective Name number Longitude Area (Sq.Ft) E 221-881-16 Biofiltration 4963.00 F 221-881-16 Bio filtration 1509.60 G 221-881-16 Bio filtration 1171.90 H 221-881-16 Bio filtration 14500.00 I r 11 r 11 r 11 w-1 r· 1 r 1 r 1 r 1 ,. 1 r l r 1 r 1 r 1 r 1 r 1 r·1 ..-· 1 1.2.2 Structural BMP Maintenance Information on Construction Plans Plans for construction of the project provide sufficient information to describe maintenance requirements (threshold and actions) for structural BMPs. BMPTYPE Biofiltration/ TC-32 INSPECTION Inspect soil and repair eroded areas monthly Inspect semi-annually for damage to vegetation and prior to October 1 to schedule summer maintenance. Inspect before major rainfall events to ensure the Biofiltration pond are ready for runoff. Perform additional inspections after periods of heavy runoff. Check for debris and litter, and areas of sediment accumulation semi-annually MAINTENANCE Water plans daily for 2 weeks at project completion. Remove sediment, trash and debris Remulch areas as necessary Treat diseased vegetation or replace Mow turf areas (6" grass height optimum) Repair erosion at inflow points. Repair outflow structures. r· 1 r ., Unclog the underdrain especially the low flow orifice. Refer to TC-32 CASQA literature for more detail. ,. ' ... ... ,.. ... ,. ... ,. ,. .... ... ... ... .. 11111 .. 1111 .. f 1111 .. ... - OPERATION & MAINTENANCE (O&M) PLAN 1111 1111 .. .. ... ... .... .. .. .. .... ,... Contents 1. PROJECT DESCRIPTION .................................................................................................. 1 2. OPERATION & MAINTENANCE PLAN ............•................•..............•............................ 1 3. Operation & Maintenance of BMP'S .............................................................................•.•.. 1 A. Training .............................................................................................................. 2 B. Landscaping ...................................................................................................... 2 C. Irrigation System ................................................................................................ 5 D. Roof Drains ........................................................................................................ 5 E. Trash Storage Areas .......................................................................................... 5 F. Storm Water Conveyance System Stenciling and Signing ................................. 5 G. Biofiltration ......................................................................................................... 6 H. Outlet Structures ................................................................................................ 6 I. Vector Management Control Requirements ........................................................ 6 ...., ATTACHMENTS ... ... ..... .... ,. .. .. .. ,.. .. .. .. .. 1111 - A. O&M Exhibit Al. Inspection & Maintenance Schedule Bl. Cost Estimate Cl. BMP Training Log D1. Inspection & Maintenance Log El. Maintenance Indicators (Table 7-2) -i- .. .. .. ... .... ,,. .. ... ... ,.. ,.. ,.. ,.. .... ,.. ,.. ,. ... ... .. .. .. -.. .. - 1. PROJECT DESCRIPTION The purpose of the project is to build an industrial building with amenities, a parking lot with landscaping and several biofiltration facilities (Biofiltration) . 2. OPERATION & MAINTENANCE PLAN The Operation and Maintenance Plan (O&M) needs to address construction and post-construction concerns as shown in the Storm Water Quality Management Plan. Refer to this project's Storm Water Quality Management Plan for Information on specific BMPs . 3. Operation & Maintenance of BMP'S It shall be the responsibility of the owner to train all employees for the maintenance and operation of all BMPs, to achieve the maximum pollutant reduction, as addressed in the approved Project's SWQMP. The following schedule of (O&M's) must be followed to satisfy the Conditions of Concern and the Pollutants of Concern as addressed in the approved Project's SWQMP and the City's BMP Manual. This schedule shall include periodic inspections of all Source Control and Treatment Control BMP' s. All maintenance records for training, inspection and maintenance shall be retained and provided to the city upon request. All BMPs shall be inspected 30 days prior to October 1st each year and certified to the City Engineering Department as to their readiness to receive runoff from the annual rainfall season. The owner will also provide to the City, as part of the maintenance and operation agreement, an executed maintenance and access easement that shall be binding on the land throughout the life of the project. 1 .. ,.. .. ,.. ... .. ,.. ,.. ... .. .. ,.. .... .... ... ... .. 11111 .. 11111 - Responsible Party for O&M and For Training-Property Owner RAF Group Raceway, LLC c/o Adam Robinson A. Training 1010 S. Coast Hwy 101 Suite 103 Encinitas, CA 92024 Phone: (760) 473-0300 Training of Operation and Maintenance personnel is of primary importance to provide knowledge of the operation and maintenance ofBMPs. Proper training shall provide information that will enable employees to have in place an effective preventive maintenance program as described in this O & M manual. The responsible party mentioned above should take the course provided by the "BULDING INDUSTRIES ASSOCIATION of SAN DIEGO COUNTY" to be trained in the purpose and use of BMPs and the maintenance thereof Proper preventive maintenance will prevent environmental incidents that may be a health and safety hazard. New employees should be trained as to the purpose and proper maintenance within the first week of their employment. Employee training shall include receiving a copy of this O & M manual; a discussion on the location and purpose of site specific BMPs, such as Source Control and Treatment Control BMPs; training on how to inspect and report maintenance problems and to whom they report to; They shall be trained in site specific Pollutants of Concern so that they can evaluate the functioning of all on-site BMPs . These Pollutants are identified in section 2 of this report . A log of all training and reported inspections and maintenance problems along with what was done to correct the problem shall be keep on the premises at all times . Employees shall be periodically trained, at a minimum of once a year, to refresh their abilities to Operate and Maintain all on-site BMPs. B. Landscaping Operational and maintenance needs include: • Vegetation management to maintain adequate hydraulic functioning and to limit habitat for disease-carrying animals. • Animal and vector control. • Periodic sediment removal to optimize performance. • Trash, debris, grass trimmings, tree pruning, dead vegetation collection and removal. • Removal of standing water, which may contribute to the development of aquatic plant communities or mosquito breeding areas. • Erosion and structural maintenance to prevent the loss of soil and maintain the performance of all landscaping . 2 ... ... ,.. .. ,.. ,.. .. .. ... .. .... ,.. .. ,,.. Ill .. .. .. 1111 .. .. .. .. - Inspection Frequency The facility will be inspected and inspection visits will be completely documented: • Once a month at a minimum. • After every large storm (after every storm monitored or these storms with more than 0.50 inch of precipitation.) • On a weekly basis during extended periods of wet weather. Inspect for proper irrigation and fertilizer use, and ensure that all landscaped areas have minimum of 80% coverage . Aesthetic Maintenance The following activities will be included .in the aesthetic maintenance program: Grass Trimming: Trimming of grass will be done on all landscaped areas, around fences, at the inlet and outlet structures, and sampling structures. Weed Control. Weeds will be removed through mechanical means. Herbicide will not be used because these chemicals may impact the water quality monitoring. Functional Maintenance Functional maintenance has two components: • Preventive maintenance • Corrective maintenance Preventive Maintenance Preventive maintenance activities to be instituted for landscaped areas are: • Grass Mowing: Vegetation seed, mix within the landscaped areas, are to be designed to be kept short to maintain adequate hydraulic functioning and to limit the development of faunal habitats. • Trash and Debris: During each inspection and maintenance visit to the site, debris and trash removal will be conducted to reduce the potential for inlet and outlet structures and other components from becoming clogged and inoperable during storm events . • Sediment Removal: Sediment accumulation, as part of the operation and maintenance program at oflandscaped areas, will be monitored once a month during the dry season, after every large storm (0.50 inch), and monthly during the wet season. Specifically, if sediment reaches a level at or near plant height, or could interfere with flow or operation, the sediment shall be removed. If accumulation of debris or sediment is determined to be the cause of decline in design performance, prompt action (i.e., within ten working days) will be taken to restore the landscaped areas to design performance standards. Actions will include using additional vegetation and/or removing accumulated sediment to correct channeling or ponding. Characterization and Appropriate disposal of sediment will comply with applicable local, county, state, or federal requirements. • Landscaped areas will be re-graded, if the flow gradient has been altered. This should be a sign that the BMP is failing and the soil matrix may need to be replaced . 3 ,. .. .. ,. .. ,. ,. .. ,. ,. .. ... .. ,. ,.. ,. .. .. .. .. .. .. - • Removal of Standing Water: Standing water must be removed if it contributes to the development of aquatic plant communities or mosquito breeding areas. • Fertilization and Irrigation: fertilization and irrigation is to be keep at a minimum. • Elimination of Mosquito Breeding Habitats. The most effective mosquito control program is one that eliminates standing water over a period less than 96 hours . Corrective Maintenance Corrective maintenance is required on an emergency or non-routine basis to correct problems and to restore the intended operation and safe function of all landscaped areas. Corrective maintenance activities include: • Removal of Debris and Sediment: Sediment, debris, and trash, which impede the hydraulic functioning of landscaping and prevent vegetative growth, will be removed and properly disposed. Temporary arrangements will be made for handling the sediments until a permanent arrangement is made. Vegetation will be re-established after sediment removal. • Structural Repairs: Once deemed necessary, repairs to structural components of landscaping will be done within 10 working days. Qualified individuals (i.e., the designers or contractors) will conduct repairs where structural damage has occurred. • Embankment and Slope Repairs: Once deemed necessary, damage to the embankments and slopes of landscaped areas will be repaired within 10 working days . • Erosion Repair: Where a reseeding program has been ineffective, or where other factors have created erosive conditions (i.e., pedestrian traffic, concentrated flow, etc.), corrective steps will be taken to prevent loss of soil and any subsequent danger to the performance and use of landscaped areas as BMPs. There are a number of corrective actions than can be taken. • These include erosion control blankets, riprap, or reducing flow velocity. • Consult with an engineer and contractor to address frequently occurring erosion problems. • Elimination of Animal Burrows: animal burrows will be filled and steps taken to remove the animals if burrowing problems continue to occur (filling and compacting). If the problem persists, vector control specialists will be consulted regarding removal steps. This consulting is necessary as the threat of rabies in some areas may necessitate the animals being destroyed rather than relocated. If the BMP performance is affected, abatement will begin. Otherwise, abatement will be performed annually in September. • General Facility Maintenance: In addition to the above elements of corrective maintenance, general corrective maintenance will address the overall facility and its associated components. If corrective maintenance is being done to one component, other components will be inspected to see if maintenance is needed . Maintenance Frequency The maintenance indicators for selected BMPs are included in Attachment Al. 4 .. ,.. Ill"' ... ,. ... ,.. ... ... ,.. ... ,.. ,.. ... ,.. .. ,.. .. 1111 .. II .. 1111 - Debris and Sediment Disposal Waste generated onsite is ultimately the responsibility of the Owner. Disposal of sediments, debris, and trash will comply with applicable local, county, state, and federal waste control programs . Hazardous Waste Suspected hazardous wastes will be analyzed to determine disposal options. Hazardous wastes generated onsite will be handled and disposed of according to applicable local, state, and federal regulations. A solid or liquid waste is considered a hazardous waste if it exceeds the criteria listed in the CCR, Title 22, Article 11. C. Irrigation System Inspection Frequency and Procedure The Irrigation system shall be checked each week as a minimum. The following items shall be checked to insure that they are functioning properly: • Shut-off devices . • All piping and sprinkler heads to insure there are no leaks and that proper water spread is maintained. • All flow reducers. • Check for overspray/runoff D. Roof Drains All roof drains shall be inspected 30 days prior to October 1st of each year to insure that they are clean and free from trash and in good repair. They shall be flushed and any leaks or damages piping shall be either replaced or repaired. Where roof drains flow onto grass areas splash structures and or rock rip- rap shall be maintained so the flow from the roof drains do not cause erosion or damage to the grass area. During the rain season roof drains shall be inspected weekly and after each rain storm to insure that there is no trash and or silt build up that will restrict the run-off flow from the roof. All trash and/or silt build up shall be removed immediately . E. Trash Storage Areas • All trash storage areas shall be inspected daily to insure that they are clean from trash. Also the following shall be inspected annually 30 days prior to October 1st of each year. • Pavement is in good repair. • Drainage will not run-off onto adjacent areas. • That they remain screened or walled to prevent off-site transport of trash . • That all lids are closed and/or awnings are in good repair to minimize direct precipitation. F. Storm Water Conveyance System Stenciling and Signing • Signage/stenciling are to be inspected for legibility and visual obstruction and shall be Repaired and cleared of any obstruction within 5 working day ofinspection. 5 ... 1111111 ... ... ... ... ... ,.. ... ... ... ,.. .... ,.. .... ,.. .... -... ... ... ... ... .. 11111 Ill .. Ill Ill - • Inspection Frequency: Semi-annually, 30 days prior to October 1st each year, and monthly during rainy season . G. Biofiltration Operational and maintenance needs include: • Vegetation management to maintain adequate hydraulic functioning and to limit habitat for disease-carrying animals. • Animal and vector control. • Periodic sediment removal to optimize performance. • Trash, debris, grass trimmings, tree pruning, dead vegetation collection and removal. • Removal of standing water, which may contribute to the development of aquatic plant communities or mosquito breeding areas. • Erosion and structural maintenance to prevent the loss of soil and maintain the performance of all landscaping. • Outlet maintenance: maintain trash free; remove silt; clear clogged outlets and standing Water after 96 hours . • Signs Posted at each bmp that state the following words " PERMANENT WATER QUALITY TREATMENT FACILITY" "KEEPING OUR WATERWAYS CLEAN" " MAINTAIN WITH CARE -NO MODIFICATIONS WITHOUT AGENCY APPROVAL" H. Outlet Structures All outlet structures shall be kept functional at all times. Routine inspection and corrective maintenance shall include removal of trash sediment and debris and repair of any structural damage or clogging of orifice outlets. The minimum maintenance frequency shall be 30 days prior to October 1st each year, weekly during rainy season or within 24 hours prior to forecasts. To clean lower orifice in the event of clogging • This activity will require workers to open catch basin grates to remove debris from the lower orifice plate. • Remove grate and visually inspect lower orifice plate and blockage • Remove debris from inside of catch basin and around orifice plate • Replace grate when orifice plate and inside of catch basin are free of debris I. Vector Management Control Requirements Due to Clean Water Act requirements and mandates imposed by the Water Quality Control Board, large quantities of stormwater will be detained onsite in above ground and underground storage facilities for treatment and storage. These storage facilities are required to dewater or discharge at a very small flow rate in order to comply with these requirements. The outlet structure for the underground storage and biofiltration facility had to be sized (which varies per BMP, between 0.625" and 0.875") in order to maintain the maximum allowed discharge flow. The facility was designed to dewater in less than 96 hours. However, due to its small size and if not properly maintained regularly, it is anticipated that the outlet might have a tendency to clog frequently. Consequently, the facility may not drain within 96 hours and possibly take substantially longer time. This creates an increased risk for onsite Vector Issues and bringing their potential for severe harm to human health. 6 ... .. .. .. ... .. ... .. ... .. .. 1111 .. II 11111 II 1111 - In order to implement vector controls including minimizing the risk for mosquito-borne disease transmission, It is the responsibility of the Owner to regularly maintain the outlet structures and monitor the site after every storm event to ensure that the system ( comprising of above ground storage facilities) is dewatered in less than 96 hours. Otherwise the owner will be required to implement a vector control plan in accordance with California Department of Public Health. General guidelines to help create a project specific vector control plan for your project: 7 I w-· I r I Ir I ~· Ir I TYPEBMP Routine Action Landscaping & Proper irrigation irrigation & Fertilizer. Trash storage Trash free and areas removal of silt Roof drain Trash free and removal of silt, sedimentation & Debris Biofiltration Trash free and removal of silt. Clear Clogged outlets and Standing Water. Storm Water Must be legible at Conveyance all times and have system a clear view. Stenciling & Signing Outlet Must be kept Structures functional at all times. Clear Clogged outlets and Standing Water. Sweeping Removal of silt and debris on driveways and parking areas r 1 r 1 r 1 r 1 r I r 1 r 1 r 1 ~--. ATTACHMENT "Al" INSPECTION & MAINTENANCE SCHEDULE PREVENTATIVE MAINTENANCE AND ROUTINE INSPECTION Maintenance Maintenance Frequency MAINTENANCE Indicator ACTIVITY Less than 80% 30 days prior to October 1st each Re-seed or Re-plant. coverage year and Monthly Repair Irrigation system with-in 5-days. Visual Inspection Daily inspection Remove trash and silt Daily. Silt build up of more 30 days prior to October 1st Remove all trash and silt than 1" no trash each year and weekly during and repair any damage to rain season. roof drains, Silt build up of more Bl-annual health evaluation of Remove trash and silt - than 2" no trash, trees and shrubs. repair and reseed exposed Exposed soils, dead areas, maintain grass height vegetation, ponded Visual inspection so as not be shorter than 2" water, and excessive 30 days prior to October 15', each or higher than 5" remove all vegetation year, in addition Bl-Monthly ponded water weekly (seeTC-32) surface inspection (possibly more inspections, (See TC-32) during rainy season, and after Storm Event), Maintain as Needed. Fading of paint or Semi-annually, 30 days prior to Repaint stenciling and/or illegible letters or October 1st each year & monthly replace signs 30 days prior during rainy season to October 1st. Silt, debris, trash 30 days prior to October 1st each Silt, debris, trash accumulation, Ponding year and weekly during rainy accumulation and repair Water season or within 24 hours prior to any structural damage to rain forecasts. the outlet structures. Silt, debris, trash 30 days prior to October 1st each Sweep debris from areas accumulation year. Inspection and frequency will vary according to usage and visual inspection r, r, r-11 r-., ~-, SITE-SPECIFIC REQUIREMENTS All slopes and landscaped areas are to have a minimum coverage of 80% All trash storage areas to be free from trash and silt at all times All Roof to be free from trash and silt and in good repair All bio-filters to be free from trash and silt at all times, grass area to be free from exposed soil and maintained to proper height, ponding of water for more than 72 hours maintenance will be required Applicable to all stenciling and signs All outlet structures shall be kept functional at all times. Keep driveway and parking areas clear. .. .. ... ... ... ... .. ... .. ... • 1111 - TABLE 7-3. Maintenance Indicators and Actions for Vegetated BMPs Typical Maintenance lndicator(s) Maintenance Actions for Vegetated BMPs Accumulation of sediment, litter, or Remove and properly dispose of accumulated materials, without debris damage to the vegetation. Poor vegetation establishment Re-seed, re-plant, or re-establish vegetation per original plans. Overgrown vegetation Mow or trim as appropriate, but not less than the design height of the vegetation per original plans when applicable (e.g. a vegetated swale may require a minimum vegetation height). Erosion due to concentrated irrigation Repair/re-seed/re-plant eroded areas and adjust the irrigation flow system. Erosion due to concentrated storm Repair/re-seed/re-plant eroded areas, and make appropriate water runoff flow corrective measures such as adding erosion control blankets, adding stone at flow entry points, or minor re-grading to restore proper drainage according to the original plan. If the issue is not corrected by restoring the BMP to the original plan and grade, The County must be contacted prior to any additional repairs or reconstruction . Standing water in vegetated swales Make appropriate corrective measures such as adjusting irrigation system, removing obstructions of debris or invasive vegetation, loosening or replacing top soil to allow for better infiltration, or minor re-grading for proper drainage. If the issue is not corrected by restoring the BMP to the original plan and grade, County staff in the Watershed Protection Program must be contacted prior to any additional repairs or reconstruction. Standing water 1n biofiltration, Make appropriate corrective measures such as adjusting irrigation biofiltration with partial retention, or system, removing obstructions of debris or invasive vegetation, biofiltration areas, or flow-through clearing underdrains (where applicable), or repairing/ replacing planter boxes for longer than 96 hours clogged or compacted soils. following a storm event* Obstructed inlet or outlet structure Clear obstructions. Damage to structural components such Repair or replace as applicable. as weirs, inlet or outlet structures *These BMPs typically include a surface ponding layer as part of their function which may take 96 hours to drain following a storm event . 9 I r I I I I" I If I r I I" I f I r 1 r I r1 r 1 r' W--1 ~I r1 I' I ..--~ r 1 r 1 Accessing BMPS for Maintenance BMP to access Access Equipment BMPE Parking Lot Access to North side of BMP Lawn and vegetation care equipment. Power washer equipment for cleaning structure. Brooms for sweeping up debris. Bags for trash collection. BMPF Parking Lot Access to West side of BMP Lawn and vegetation care equipment. Power washer equipment for cleaning structure. Brooms for sweeping up debris. Bags for trash collection. BMPG Parking Lot Access to West side ofBMP Lawn and vegetation care equipment. Power washer equipment for cleaning structure. Brooms for sweeping up debris. Bags for trash collection. BMPH Parking Lot Access to South side of BMP Lawn and vegetation care equipment. Power washer equipment for cleaning structure. Brooms for sweeping up debris. Bags for trash collection. ... ... .. .... ... .. .... i ... ... - ... ... ... .... ... ... .. .. .. .. 1111 .. .. .. .. - ATTACMENT "B1" Annual Estjmateto Majntajn all BMPs Landscaping & Biofiltration Maintenance oflandscaping and bio-filters is already included in the property management responsibilities. Additional cost: Irrigation System: Inspection and maintenance of the irrigation system is already included in the property management responsibilities, Additional cost: Roof Drains: Roof drain inspection and maintenance is already included in the property management responsibilities. Training: Once a year & training of new employees within their first week of employment. Total Estimated Annual Cost to Maintain BMPs 11 Annual 10-Year $200 $2,000 $100 $1,000 $100 $1,000 $400 - ,,. ... ,,. ... ,,. .... ,,. .... ... ... ,,. ... ... ... -... .. ... .... .... .. -... .. 11111 .... .. .. 1111 • • -.. -Ill - ATTACHMENT "C1" BMP TRAINING LOG Personnel Date Type of Training Trained Trainer Mo/Day/Yr 12 .. ... .. ... .. ... ... .. ... .. -... - ,.. ... ... .... ... .... - .. ------,. .. --• - ATTACHMENT "D1" INSPECTION AND MAINTENANCE LOG BMPTYP& DATE Name of Description of BMP Date Repair made LOCATION M/D/Y Person Condition/ Description repair and Description repair Inspecting required if any made and by who 13 O&M EXHIBIT BIO-RETENTION VAX' NP1H=2.5 FT !-4 • X !8' Qli'lflCE '1 474.JJ IE 24x24' RISER CRATE OVERFI.OW SlRLICTlJRE. SET RIM 27' HICHER !HAN FG 24• NIN. TOP Sa'L llfTH HICH SANO v 1 (60-80%} ANO LIAIIT CL.AY (10-20%} \ ) ➔ -. F I irf I , , _.,._~ CON TFN T Ill TH PERNEABILI TY CREA TFR THAN 5 INCHES PER H()(JR OR PER Sll"L ENCINEER RECOMAIENOA TICW J' PEA CRA l£l flL l£R COURsE----11 INSTALL !I.IPER110US LINER, AIINIAIL/Al-~-- lmm !HICK, HIGH OENSITY POt. rE!HEI.ENE CEO.VEA/BRAN£ SHEET ALONC ENTIRE FACE OF BASIN LOCAlEO LINDER VEROL/RA RETAIN/NC WALL. LINCOAIPACTFO BOTTOM TO ALLOW /Nfll lRA new IN AREAS HfiERE AO.IACENT TOE OF SLOPE IS Hl61-/ER !HAN BOTTON OF lRENCH. J" ACRECATr BELOW lJNOERORAIN 810-RL!E"R BASIN OETAIL (BF-f BAIP-f) NOT TO SCALE 1-4• X 18" ORlflCE tJ 474.75 IE STORA/ Oli'AIN (}(Ill.ET 18' Ollll.ET PIPE LENC!H AO.A:/SJW W/!HE flELO CCWOI TIONS 0. 75' ORlflCE SEE CREEN PLAlE OETA!t. Oli'AfffNG FCW ORlflCE INSTALLATION Sa/. Al/% LAffR GRA~L t;: LA)'["R "' "' I l '--.. '--.. I PROWOE OETACHABli CAP FCY? MAIN TrNAN Hf.RE AIESH/ll?ASH R, PRO!l:CT HUR ANO, fl?OM Cl.X61NC --+-Bla?ETFNTION Sllli'FACE I :j:: d _..0.:--=? 0.?5' /JfAAIETrR FlOW _.. ><--{v RESTRICT(:¥? BOK l?ISEH NOT TO SCALE If These Sources Will Be on the Project Site ... iW N 1 Potential Sources of Runoff Pollutants [Z] A. Onsite storm drain inlets D Not Applicable Appendix E: BMP Design Fact Sheets -1-, ,. ' ... Then Your SWQMP Must Consider These Source Control BMPs 2 Permanent Controls-Show on Drawings [Z] Locations of inlets. 3 Permanent Controls-List in Table and Narrative [Z] Mark all inlets with the words "No Dumping! Flows to Bay" or similar. See stencil template provided in Appendix I-4 E-4 AA R! ,_...,..._:~~~-~ 4 Operational BMPs-Include in Table and Narrative IL] Maintain and periodically repaint or replace inlet markings. ILl Provide storm water pollution prevention information to new site owners, lessees, or operators. 0 See applicable operational BMPs in Fact Sheet SC-44, "Drainage System Maintenance," in the CASQA Storm Water Quality Handbooks at www.casqa.org/resources/bmp- handbooks /municipal-bmp- handbook. IL] Include the following in lease agreements: "Tenant shall not allow anyone to discharge anything to storm drains or to store or deposit materials so as to create a potential discharge to storm drains." February 26, 2016 1 Potential Sources of Runoff Pollutants DB. Interior floor drains and elevator shaft sump pumps 0 Not Applicable DC. Interior parking garages 0 Not Applicable 0 D1. Need for future indoor & structural pest control D Not Applicable 2 Permanent Controls-Show on Drawings 3 Permanent Controls-List in Table and Narrative D State that interior floor drains and elevator shaft sump pumps will be plumbed to sanitary sewer. D State that parking garage floor drains will be plumbed to the sanitary sewer. 0 Note building design features that discourage entry of pests. E-5 Appendix E: BMP Design Fact Sheets 4 Operational BMPs-Include in Table and Narrative D Inspect and maintain drains to prevent blockages and overflow. D Inspect and maintain drains to prevent blockages and overflow. 0 Provide Integrated Pest Management information to owners, lessees, and operators. February 26, 2016 Appendix E: BMP Design Fact Sheets 'J -. • : . -: .• -~ ';,. ~"•· ·.. • • • • ' .. • ..,. I .. ' ,._ -~-ij·~-ffffliese.'scfurcJfw fii Be l \fo ~li~ Project·Site ... ; ~~~~.:. -i:• .. "'.-·~.--. ~ ::t.~-i ~~_,_ --'. ~--_;·, ~-'·' -:.:.__~-1 -~ . . -' -. . -: . . . ; ~. ; ;, ·,~f ., {I" ~~~ /.: ": . . . : Then Your SWQMP must ~onsider These So.u!c~ ~o~~r_?_~!3!Y1Ps ,. · ·;. '.~; iJ.7j~ ;.:._--:tt :. "1l" •• -~ ,........_ 1 •• ,_ ...... ::,.,;. .. ;.... -4~~ . .-.:.'t.~, .• .-.':.J,_~ ..... a; -__ -;....:.:: - 1 Potential Sources of Runoff Pollutants 0 D2. Landscape/ Outdoor Pesticide Use D Not Applicable 2 Permanent Controls-Show on Drawings 0 Show locations of existing trees or areas of shrubs and ground cover to be undisturbed and retained. Show self-retaining landscape areas, if any. Show storm water treatment facilities. 3 Permanent Controls-List in Table and Narrative State that final landscape plans will accomplish all of the following. 0 Preserve existing drought tolerant trees, shrubs, and ground cover to the maximum extent possible. 0 Design landscaping to nurunuze irrigation and runoff, to promote surface infiltration where appropriate, and to minimize the use of fertilizers and pesticides that can contribute to storm water pollution. 0 Where landscaped areas are used to retain or detain storm water, specify plants that are tolerant of periodic saturated soil conditions. 0 Consider using pest-resistant plants, especially adjacent to hardscape. 0 To ensure successful establishment, select plants appropriate to site soils, slopes, climate, sun, wind, rain, land use, air movement, ecological consistency, and plant interactions. E-6 4 Operational BMPs-Include in Table and Narrative 0 Maintain landscaping using minimum or no pesticides. 0 See applicable operational BMPs in Fact Sheet SC-41, "Building and Grounds Maintenance," in the CASQA Storm Water Quality Handbooks at www .casqa.org/resources /bmp -handbooks/municipal-bmp- handbook. 0 Provide 1PM information to new owners, lessees and operators. February 26, 2016 1 Potential Sources of Runoff Pollutants D E. Pools, spas, ponds, decorative fountains, and other water features. 0 Not Applicable D F. Food service 0 Not Applicable 2 Permanent Controls-Show on Drawings D Show location of water feature and a sanitary sewer cleanout in an accessible area within 10 feet. D For restaurants, grocery stores, and other food service operations, show location (indoors or in a covered area outdoors) of a floor sink or other area for cleaning floor mats, containers, and equipment. On the drawing, show a note that this drain will be connected to a grease interceptor before discharging to the sanitary sewer. All cleaning for restaurant facility will be done indoors. Indoor kitchen area is connected to grease interceptor. Appendix E: BMP Design Fact Sheets 3 Permanent Controls-List in Table and Narrative D If the local municipality requires pools to be plumbed to the sanitary sewer, place a note on the plans and state in the narrative that this connection will be made according to local requirements. D Describe the location and features of the designated cleaning area. □Describe the items to be cleaned in this facility and how it has been sized to ensure that the largest items can be accommodated. E-7 4 Operational BMPs-Include in Table and Narrative D See applicable operational BMPs in Fact Sheet SC-72, "Fountain and Pool Maintenance," in the CASQA Storm Water Quality Handbooks at www.casqa.org/resources/bm p-handbooks/municipal- bmp-handbook. February 26, 2016 Appendix E: BMP Design Fact Sheets •IfTl:iese Sources WIT! 1i '.··.: ·~· ":..· ··t';' f ·)' 7-, :.c= , • .: 1· -· ; ·;. ~S: · , · ; ~~-~:~~-¢. · ,--~~..J""'~--~~... ;_ , 1 I.. ":' • •t" • -• I '•, 4 -• • .. -:,; • .,Ji,. 04 .... • ~•· ";.(~ Be-on.tlieProiectStte · · . ·!•.· -.· .·.·_ ... ·-~:~"'•~ ··• ... .-. ~ ._ ~~~ · · , -• .1. _. . ••• Then Your_ SWQMP must consider These Source Contr·oLBMPs.,. ~ .,.._D,,;;JMLJII il~LJrri,:. ,,tt·. •·: · ·,. · . · ~ · · :..,r , -: ... . . .. · .:.:~tt<v,,_ .. \ ... -,-:i-:-~1;~ ... ~-_ _----.Jil.j -· · .,_ •. 1 Potential Sources of Ill G. Refuse areas D Not Applicable ---., ... ~-J.____._ __ .. __ ..... ~ ___ , __ . _ _....__ .. ~,.,.,..~ 2 Permanent Controls-Show on Drawings Ill Show where site refuse and recycled materials will be handled and stored for pickup. See local municipal requirements for sizes and other details of refuse areas. Ill If dumpsters or other receptacles are outdoors, show how the designated area will be covered, graded, and paved to prevent run- on and show locations of berms to prevent runoff from the area. Also show how the designated area will be protected from wind dispersal. Ill Any drains from dumpsters, compactors, and tallow bin areas must be connected to a grease removal device before discharge to sanitary sewer. 3 Permanent Controls-List in Table and Narrative 0 State how site refuse will be handled and provide supporting detail to what is shown on plans. 0 State that signs will be posted on or near dumpsters with the words "Do not dump hazardous materials here" or similar. E-8 4 Operational BMPs-Include in Table and Narrative 0 State how the following will be implemented: Provide adequate number of receptacles. Inspect receptacles regularly; repair or replace leaky receptacles. Keep receptacles covered. Prohibit/prevent dumping of liquid or hazardous wastes. Post "no hazardous materials" signs. Inspect and pick up litter daily and clean up spills immediately. Keep spill control materials available on-site. See Fact Sheet SC-34, ''Waste Handling and Disposal" in the CASQA Storm Water Quality Handbooks at www.casqa.org/resources/bmp- handbooks/municipal-bmp-handbook. February 26, 2016 1 Potential Sources of Runoff Pollutants D H. Industrial processes. 0 Not Applicable D I. Outdoor storage of equipment or materials. (See rows J and K for source control measures for vehicle cleaning, repair, and maintenance.) 0 Not Applicable 2 Permanent Controls-Show on Drawings D Show process area. D Show any outdoor storage areas, including how materials will be covered. Show how areas will be graded and bermed to prevent run-on or runoff from area and protected from wind dispersal. D Storage of non-hazardous liquids must be covered by a roof and/ or drain to the sanitary sewer system, and be contained by berms, dikes, liners, or vaults. D Storage of hazardous materials and wastes must be in compliance with the local hazardous materials ordinance and a Hazardous Materials Management Plan for the site. Appendix E: BMP Design Fact Sheets 3 Permanent Controls-List in Table and Narrative □If industrial processes are to be located onsite, state: "All process activities to be performed indoors. No processes to drain to exterior or to storm drain system." □Include a detailed description of materials to be stored, storage areas, and structural features to prevent pollutants from entering storm drains. □Where appropriate, reference documentation of compliance with the requirements of local Hazardous Materials Programs for: • Hazardous Waste Generation • Hazardous Materials Release Response and Inventory • California Accidental Release Prevention Program • Aboveground Storage Tank • Uniform Fire Code Article 80 Section 103(6) & (c) 1991 • Underground Storage Tank E-9 4 Operational BMPs-Include in Table and Narrative Table and Narrative □See Fact Sheet SC-10, "Non- Storm Water Discharges" in the CASQA Storm Water Quality Handbooks at https: / /www.casqa.org/resou rces /bmo-handbooks. □See the Fact Sheets SC-31, "Outdoor Liquid Container Storage" and SC-33, "Outdoor Storage of Raw Materials" in the CASQA Storm Water Quality Handbooks at www.casqa.org/resources/bm p-handbooks/municipal-bmp- handbook. February 26, 2016 1 Potential Sources of Runoff Pollutants D J. Vehicle and Equipment Cleaning 0 Not Applicable 2 Permanent Controls-Show on Drawings D Show on drawings as appropriate: (1) Commercial/industrial facilities having vehicle / equipment cleaning needs must either provide a covered, bermed area for washing act1vit1es or discourage vehicle/ equipment washing by removing hose bibs and installing signs prohibiting such uses. (2) Multi-dwelling complexes must have a paved, bermed, and covered car wash area (unless car washing is prohibited onsite and hoses are provided with an automatic shut- off to discourage such use). (3) Washing areas for cars, vehicles, and equipment must be paved, designed to prevent run-on to or runoff from the area, and plumbed to drain to the sanitary sewer. (4) Commercial car wash facilities must be designed such that no runoff from the facility is discharged to the storm drain system. Wastewater from the facility must discharge to the sanitary sewer, or a wastewater reclamation system must be installed. E-10 3 Permanent Controls-List in Table and Narrative D If a car wash area is not provided, describe measures taken to discourage onsite car washing and explain how these will be enforced. Appendix E: BMP Design Fact Sheets 4 Operational BMPs-Include in Table and Narrative Describe operational measures to implement the following (if applicable): D Washwater from vehicle and equipment washing operations must not be discharged to the storm drain system. D Car dealerships and similar may rinse cars with water only. D See Fact Sheet SC-21, "Vehicle and Equipment Cleaning," in the CASQA Storm Water Quality Handbooks at www.casqa.org/resources/bm p-handbooks/municipal-bmp- handbook. February 26, 2016 1 Potential Sources of Runoff Pollutants K. D Vehicle/Equipment Repair and Maintenance 0 Not Applicable Appendix E: BMP Design Fact Sheets ~-• • ._ • • ~~ · ·• -.;,-_ : . • • : " •. 1 0 ,_• ~j:·~~-}-:t .'-. . ~s~~.,4 ~ ·; 'J•··· · ~ ,·, •·. -· · -· .. · • -• · • ,., • __ ,,.r,. ~:t.~--,'.i.·••~t.ts~ . ... . .. Then Your SWQMP niust consider TheseSbtii:ceCo'ntrol~BMPs ·.,• • · .. ~-,_: l, •-: ;..' · • ' • -·.r.~ ~ t ·-.• ·,-:_-.;_,·"!:Ji-'. ~.r.-.._., ., .. ~ .. •~-.-• _._ : ~r.._. ~ .:..itJ~.4 -:,,~,;;..;.<"·•·:....I~~~ ~ .. ,-~. • · •-• 'f:"..M...&--~-•..".-:.~ Permanent Controls-Show on Drawings D Accommodate all vehicle equipment repair and maintenance indoors. Or designate an outdoor work area and design the area to protect from rainfall, run-on runoff, and wind dispersal. D Show secondary containment for exterior work areas where motor oil, brake fluid, gasoline, diesel fuel, radiator fluid, acid- containing batteries or other hazardous materials or hazardous wastes are used or stored. Drains must not be installed within the secondary containment areas. D Add a note on the plans that states either (1) there are no floor drains, or (2) floor drains are connected to wastewater pretreatment systems prior to discharge to the sanitary sewer and an industrial waste discharge permit will be obtained. Permanent Controls-List in Table and Narrative D State that no vehicle repair or maintenance will be done outdoors, or else describe the required features of the outdoor work area. D State that there are no floor drains or if there are floor drains, note the agency from which an industrial waste discharge permit will be obtained and that the design meets that agency's requirements. D State that there are no tanks, containers or sinks to be used for parts cleaning or rinsing or, if there are, note the agency from which an industrial waste discharge permit will be obtained and that the design meets that agency's requirements. E-11 Operational BMPs-lnclude in Table and Narrative In the report, note that all of the following restrictions apply to use the site: D No person must dispose of, nor permit the disposal, directly or indirectly of vehicle fluids, hazardous materials, or rinsewater from parts cleaning into storm drains. D No vehicle fluid removal must be performed outside a building, nor on asphalt or ground surfaces, whether inside or outside a building, except in such a manner as to ensure that any spilled fluid will be in an area of secondary containment. Leaking vehicle fluids must be contained or drained from the vehicle immediately. D No person must leave unattended drip parts or other open containers containing vehicle fluid, unless such containers are in use or in an area of secondary containment. February 26, 2016 1 Potential Sources of Runoff Pollutants O L. Fuel Dispensing Areas 0 Not Applicable 2 Permanent Controls-Show on Drawings O Fueling areas 16 must have impermeable floors (i.e., portland cement concrete or equivalent smooth impervious surface) that are (1) graded at the minimum slope necessary to prevent ponding; and (2) separated from the rest of the site by a grade break that prevents run-on of storm water to the MEP. □ Fueling areas must be covered by a canopy that extends a minimum of ten feet in each direction from each pump. [Alternative: The fueling area must be covered and the cover's minimum dimensions must be equal to or greater than the area within the grade break or fuel dispensing area 1.] □ The canopy [or cover] must not drain onto the fueling area. 3 Permanent Controls-List in Table and Narrative Appendix E: BMP Design Fact Sheets 4 Operational BMPs-Include in Table and Narrative □ The property owner must dry sweep the fueling area routinely. See the Business Guide Sheet, "Automotive Service-Service Stations" in the CASQA Storm Water Quality Handbooks at h ttps: // www.casqa.org/resources /b mp-handbooks. 16 The fueling area must be defined as the area extending a minimum of 6.5 feet from the comer of each fuel dispenser or the length at which the hose and nozzle assembly may be operated plus a minimum of one foot, whichever is greater. E-12 February 26, 2016 1 Potential Sources of Runoff Pollutants M. Loading Docks D Not Applicable 2 Permanent Controls-Show on Drawings 0 Show a preliminary design for the loading dock area, including roofing and drainage. Loading docks must be covered and/ or graded to minimize run-on to and runoff from the loading area. Roof downspouts must be positioned to direct storm water away from the loading area. Water from loading dock areas should be drained to the sanitary sewer where feasible. Direct connections to storm drains from depressed loading docks are prohibited. □ Loading dock areas draining directly to the sanitary sewer must be equipped with a spill control valve or equivalent device, which must be kept closed during periods of operation. □ Provide a roof overhang over the loading area or install door skirts (cowling) at each bay that enclose the end of the trailer. 3 Permanent Controls-List in E-13 Appendix E: BMP Design Fact Sheets 4 Operational BMPs-lnclude in Table and Narrative 0 Move loaded and unloaded items indoors as soon as possible. 0 See Fact Sheet SC-30, "Outdoor Loading and Unloading," in the CASQA Storm Water Quality Handbooks at www.casqa.org/resources/bmp- handbooks /municipal-bmp-handbook. February 26, 2016 1 Potential Sources of Runoff Pollutants 0 N. Fire Sprinkler Test Water D Not Applicable 0. Miscellaneous Drain or Wash Water □Boiler drain lines 0 Condensate drain lines 0Rooftop equipment □Drainage sumps □Roofing, gutters, and trim □Not Applicable 2 Permanent Controls- Show on Drawings Appendix E: BMP Design Fact Sheets 3 Permanent Controls-List in Table and Narrative 0Provide a means to drain fire sprinkler test water to the sanitary sewer. □Boiler drain lines must be directly or indirectly connected to the sanitary sewer system and may not discharge to the storm drain system. 0Condensate drain lines may discharge to landscaped areas if the flow is small enough that runoff will not occur. Condensate drain lines may not discharge to the storm drain system. 0Rooftop mounted equipment with potential to produce pollutants must be roofed and/ or have secondary containment. □ Any drainage sumps onsite must feature a sediment sump to reduce the quantity of sediment in pumped water. □Avoid roofing, gutters, and trim made of copper or other unprotected metals that may leach into runoff. E-14 4 Operational BMPs-lnclude in Table and Narrative 0 See the note in Fact Sheet SC- 41, "Building and Grounds Maintenance," in the CASQA Storm Water Quality Handbooks at www.casqa.org/resources /bm p-handbooks/municipal-bmp- handbook February 26, 2016 ATTACHMENT 4