Loading...
HomeMy WebLinkAboutSDP 2020-0006; AMAZON VEHICLE STORAGE; PRIORITY PROJECT HYDROLOGY STUDY; 2021-05-10PRIORITY PROJECT HYDROLOGY STUDY FOR: AMAZON VEHICLE STORAGE PALOMAR FORUM PARCEL 'A' CARLSBAD, CA SDP2020-0006 DWG530-6A GR2021-0013 PREPARED FOR: Greystar Inc. 444 South Cedros Avenue Solana Beach, CA 92075 PREPARED BY: EXCEL ENGINEERING 440 State Place Escondido, CA 92029 Tel: (760) 745-8118 Project No: 18-032 DATE PREPARED: May JO, 2021 Hydrology Study TABLE OF CONTENTS 1.0 Project Description 1.1 Project Purpose 1.2 Project Proposed facilities 2.0 Vicinity Map 3.0 Site Map 4.0 Description of Watershed 4.1 Existing Conditions Topography 4.2 Existing Conditions + Project Conditions Topography 4.3 Hydrologic Unit Contribution 5.0 Methodology 5.1 Hydrology Software 5.2 Routing Software 5.3 Hydraulics Software 6.0 Calculations 6.1 Determine the Watershed that affects the project 6.2 Calculate Runoff Coefficient 6.3 Calculate Storm Flows using the Rational Method 6.4 Calculate Pipe Sizes 7.0 Mitigation Measures 7.1 Mitigation of Increased Runoff 7.2 Check Capacity of Existing Downstream Storm Drain Facilities 8.0 Summary 9.0 References 10.0 Declaration Of Responsible Charge 11.0 Attachments Attachment A – Site Map Attachment B – Figures & Tables from the SD Hydrology Manual 2003 Attachment C – Watershed Information Watershed Map Soils Index Map Rainfall Isopluvial Maps Attachment D – Previously Approved Improvement Plans and Drainage Study Attachment E – Post Developed Q Calculations Attachment F – Pipe Size Calculations Attachment G – Post Developed Hydrology Map Hydrology Study 2 1.0 PROJECT DESCRIPTION 1.1 Project Purpose The purpose of this project is to receive approval from the City of Carlsbad on a Site Development Plan (Minor) to construct a parking lot in Lots 6 and 7 (also referred to as Parcel ‘A’ per COC Rec. Doc. No. 2006-0557341) as well as the associated infrastructure and improvements on the existing 5.9-acre parcel. 1.2 Project Proposed Facilities The project is proposing to build a parking lot with an approximately 164,361 square feet of AC pavement. As part of this project, associated improvements will include the 308 parking spaces with 15% of the site to be landscaped throughout the parking areas, slopes and, frontages. All necessary utilities (storm, sewer, water, dry, etc.) will be installed as part of the project and tie into existing stubs provided for the site by City of Carlsbad DWG No. 399-4. Normal uses of such a development will generate storm water runoff with the potential to carry pollutants to off-site tributaries. Biofiltration basins are planned to be incorporated throughout the site to treat and detain runoff from impervious and landscaped areas. Greystar Incorporated is the recorded owner of the project sites. Hydrology Study 3 2.0 VICINITY MAP 3.0 SITE MAP Please see Attachment A – Site map 4.0 DESCRIPTION OF WATERSHED 4.1 Existing Conditions Topography The site is currently a mass graded pad being served by Grey Hawk Court and Eagle Drive, served by utilities (sewer, water, recycled water, storm drain, and dry utilities) based on City of Carlsbad approved drawing numbers 399-4, 399- 4A. The existing mass graded pad drainage flows to the northwest corner and is collected in two existing basins located at the north edge of the site. These basins flow into an existing storm drain pipe that runs east to west along the north edge of the project. This existing pipe connects into an existing storm drain system at Eagle Drive. There is also a small corner on the southeast corner of the site and a strip on the western side that do not flow into the onsite storm drains. Flows from these areas flow along Grey Hawk Court and end at a street inlet on Eagle Drive where they meet with flows coming from the existing onsite pipes. VICINITY CITY OF OCEANSIDE PACIFIC OCEAN 78 CITY OF MAP Y OF MARCOS Hydrology Study 4 4.2 Existing Conditions + Project Conditions Topography The Palomar Forum Lots 6 and 7 (Parcel ‘A’ per COC Rec. Doc. No. 2006- 0557341) industrial project layout proposes to install a large parking field across the site. The main drive aisle accessing the site from Eagle Drive is at the southwestern end of the site. The parking lot drains north west towards the proposed biofiltration systems. Once within the water quality treatment systems, the stormwater infiltrates through the treatment medium into underdrains that route the flows to the private onsite storm drainage system. This system uses new piping to direct the flows to the existing storm drain structures and ties into the existing storm drainage system at Eagle Drive. As calculated below, and summarized further in Section 8, Lots 6 and 7 (Parcel ‘A’ per COC Rec. Doc. No. 2006-0557341) discharges a peak 100-year flows at less than those shown on DWG No. 399-4 and the Hydrology and Hydraulic Study for Palomar Forum revised February 3, 2003 (see Attachment D). On Sheet 16 of DWG 399-4 and page 29 of the Hydrology and Hydraulic Study for Palomar Forum, the project pipe flowrate is shown as 43.8 CFS at our proposed project connection in the existing main storm drain. Drainage patterns and basin areas have been detailed and are further shown in the Attachments on the Post- Development Hydrology Basin Map. This project proposed post-developed condition flowrate is 36.74 CFS, less than the previously designed allowable 43.8 CFS. 4.3 Hydrologic Unit Contribution The project site is within the Carlsbad Hydrologic Unit, Agua Hedionda HA, Los Monos HSA (904.31). After drainage leaves the site, it flows into the existing storm drain system on Eagle Drive, flowing north. 5.0 METHODOLOGY This study complies with the 2003 San Diego Hydrology Manual. The rational method as presented in Section 3 of that manual and workbook examples were followed. 5.1 Hydrology Software The “Rational Hydrology Method, San Diego County (2003 Manual)” module of the CIVILCADD/CIVIL DESIGN Engineering software version 7.9 is used in this study. This software was also used to developed hydrographs from the rational method results. This procedure also complies with the 2003 San Diego Hydrology Manual as presented in Section 6. 5.2 Routing Software No routing calculations were performed for this site at this time. Should further routing be required upon further development of the site and possible site plan changes causing discharge rates to increase above the predeveloped rates, the Hydrology Study 5 existing hydromodification/water quality treatment ponds can be used as flow control facilities. To show this is the case, Hydraflow Hydrographs 2004 by Intelisolve would then be used in this step. The hydrograph developed from the rational method is then manually entered into this software and routed into each detention pond. 5.3 Hydraulics Software The hydraulics calculations were performed on the Hydraflow Express Extension v.10.4 http://www.autodesk.com/civil3d-stormwater. For the pipe flows on Palomar Forum Lots 6 and 7 (Parcel ‘A’ per COC Rec. Doc. No. 2006-0557341), there are no increase in flow being released from the private storm drainage system at the single discharge point at the northwest corner of the site are expected versus the mass-graded (pre-developed) conditions that the infrastructure was designed for. Therefore, all downstream effects from stormwater velocities have already been accounted for by the existing downstream reports and the plans approved for construction. 6.0 CALCULATIONS One hydrologic calculation will be done at this stage. Due to the “pre- development” 100-year peak flowrates already being determined for existing conditions as part of DWG No. 399-4 and the previously approved Hydrology and Hydraulic Study for Palomar Forum (see Attachment D). The existing 100-year peak flowrates of the site is 43.8 CFS, the intent of the post development calculation done as part of this report is to verify the 100-year flowrates expected from the post developed conditions are lower than what has been previously designed as part of the master drainage design. These numbers will be used to size the proposed storm drain pipes and to doublecheck if the existing storm drain outlet facilities are adequate. Since this project met all conditions within the parameters of the software used, no further hydraulic calculations were used. Determine the Watershed that affects the project Please see the “Watershed Map” in Attachment C 6.1 Calculate Runoff Coefficient Based on NRCS maps show that this project site is in type “C” and “D” soil. The previous hydrology calculations done also showed type “D” soils. For the post development condition, we are going to use coefficients for “C” and “D” soil in order to best represent the actual site. As stated in section 3.1.2 of the San Diego Hydrology Manual on the second paragraph, “impervious percentage (% Impervious) as given in Table 3-1 for any area, shall govern the selected value for D.” For all areas to remain pervious post-construction a “c” factor of c=0.41 is used. The remainder of the site’s “c” factors will be based on the percentage of Hydrology Study 6 imperviousness within that subarea. The Land use chosen from table 3-1 of the San Diego Hydrology Manual (see attachment B) with a corresponding impervious area to that land use to be used in the hydrology software. 6.2 Calculate Storm Flows using the Rational Method The 100-year post developed storm flows were calculated for this project to be 36.74 CFS. This is less than the previous 100-year peak flowrate of 43.8 CFS shown on the approved drawings & drainage study for this site for the originally developed the pads. Please see “Post Developed Q Calculations” in Attachment E for the developed conditions. 6.3 Calculate Pipe Size A check was performed in order to confirm that the proposed trench drain outflow pipe and BMP-B outflow pipe sizes could handle the 100-year post developed storm flows. In a worst-case scenario both the 6” trench drain outlet pipe and 8” Basin outflow pipe have the capacity to handle the full Q100 of the Subarea Add of 0.591 cfs. Please see “Pipe Size Calculations” in Attachment F for the analysis and Please see “Post Developed Q Calculations” in Attachment E for the developed conditions. 7.0 MITIGATION MEASURES A Storm Water Quality Management Plan (SWQMP) has been prepared for this project to discuss treatment and flow control of the lower flows (2-year and 10- year). This Hydrology study analyzes the higher 100-year flows. 7.1 Mitigate Increase Runoff As discussed above, the post developed runoff rate is 36.74 CFS for Lots 6 and 7 (Parcel ‘A’ per COC Rec. Doc. No. 2006-0557341) at the outfall in Eagle Drive. The flowrate shown on DWG No. 399-4 downstream of this project’s collection point is 43.8 CFS Node 120 in the approved Hydrology and Hydraulic Study for Palomar Forum (see Attachment D). The proposed site development decreases the expected peak flows and therefore no further mitigation is required. 7.2 Check Capacity of Existing Downstream Storm Drain Facilities Since peak flows are reduced, no further capacity analysis of downstream storm drain facilities is necessary. Hydrology Study 7 8.0 SUMMARY This project will not negatively impact the existing downstream storm drain facilities. The resulting 100-year flowrates from the proposed development are less than those calculated and accounted for as part of the Palomar Forum project (CT 99-06) where pads were graded out and infrastructure installed to account for the expected development type that this site conforms to. 9.0 REFERENCES County of San Diego, Department of Public Works, Flood Control Section, June 2003 San Diego County Hydrology Manual Hydrology Study 10.0 DECLARATION OF RESPONSIBLE CHARGE I hereby declare that I am the engineer of work for this project. That I have exercised responsible charge over the design of the project as defined in section 6703 of the business and professions codes, and that the design is consistent with current design. I understand that the check of the project drawings and specifications by the City of Carlsbad is confined to a review only and does not relieve me, as engineer of work, of my responsibilities for project design. ENGINEER OF WORK Excel Engineering 440 State Place Escondido, CA 92029 Tel-(760)745-8118 Fax -(760)745-1890 Project Number: 20-061 Robert D~ 45629 Registration Expire: December 31 , 2022 8 Hydrology Study ATTACHMENT A SITE MAP Lots 6 and 7 Post Development 11:-:J:"-·" /,_.•a11,., .. """'''~ ---~.Ml /~... I,~;:. ";;~'!; • , ';.!,'!"-••' ,.: .-.-, ';.. I ,_ I -~~----■--fr;~-~---=v=+'='~~""-i - - - -llit.--41frl -() ~.,,,., BNP-D I ·• ~ • .,J. • .,.,_,,lllltf I i tf, ~,. ~----1-_... -~ -~---- t\ ~-TI . --"~♦••• •• t / -,L_;_ -ii-~~ -, ◊ ◊ ~ r:-r ~il~: ~ • ~---rf ~_,,,r" ~ "" "'3/. ;s; \ .~ ........ -............... ' a ,/ '-~ ........ . .. . ... .... '::: .. :::.-,_~ ..... ..._ .7 ~ -;;,:couRT ;R[i HA ---------· ~-ox LEGEND If~(£, ... ,ur~~ Ii<. \.~ ----------- $1'.-~-~,4 6U.'....')W> ·---------· ...-.:n'M.11.!F ~ PALOMAR FORUM LOTS 6 AND 7 POST DEVELOPl',·IENT Hydrology Study ATTACHMENT B FIGURES & TABLES FROM THE SD HYDROLOGY MANUAL 2003 San Diego County Hydrology Manual Section: 3 Date: June 2003 Page: 6 of 26 Table 3-1 RUNOFF COEFFICIENTS FOR URBAN AREAS Land Use Runoff Coefficient “C” SoilTypeNRCS Elements County Elements % IMPER. A B C D Undisturbed Natural Terrain (Natural) Permanent Open Space 0* 0.200.250.300.35Low Density Residential (LDR) Residential, 1.0 DU/A or less 10 0.27 0.32 0.36 0.41 Low Density Residential (LDR) Residential, 2.0 DU/A or less 20 0.34 0.38 0.42 0.46 Low Density Residential (LDR) Residential, 2.9 DU/A or less 25 0.38 0.41 0.45 0.49 Medium Density Residential (MDR) Residential, 4.3 DU/A or less 30 0.41 0.45 0.48 0.52 Medium Density Residential (MDR) Residential, 7.3 DU/A or less 40 0.48 0.51 0.54 0.57 Medium Density Residential (MDR) Residential, 10.9 DU/A or less 45 0.52 0.54 0.57 0.60 Medium Density Residential (MDR) Residential, 14.5 DU/A or less 50 0.55 0.58 0.60 0.63 High Density Residential (HDR) Residential, 24.0 DU/A or less 65 0.66 0.67 0.69 0.71 High Density Residential (HDR) Residential, 43.0 DU/A or less 80 0.76 0.77 0.78 0.79 Commercial/Industrial (N. Com) Neighborhood Commercial 80 0.76 0.77 0.78 0.79 Commercial/Industrial (G. Com) General Commercial 85 0.80 0.80 0.81 0.82 Commercial/Industrial (O.P. Com) Office Professional/Commercial 90 0.83 0.84 0.84 0.85 Commercial/Industrial (Limited I.) Limited Industrial 90 0.83 0.84 0.84 0.85 Commercial/Industrial (General I.) General Industrial 95 0.87 0.87 0.87 0.87 *The values associated with 0% impervious may be used for direct calculation of the runoff coefficient as described in Section 3.1.2 (representing the pervious runoff coefficient, Cp, for the soil type), or for areas that will remain undisturbed in perpetuity. Justification must be given that the area will remain natural forever (e.g., the area is located in Cleveland National Forest). DU/A = dwelling units per acre NRCS = National Resources Conservation Service 3-6 11 12 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 0.6 0.5 0.4 0.3 0.2 0.1 ' ' , ""r-,. ,r-- ' ,, .... ' ' ' .... ' .... ' , ,,, ._r,,, r-... .... r-...' r--' ,' •, ,,_ ' "' ,, . ' .... , , " ' ,,_ ... r-... • '"" . 'r-... , r--, ,,_ ' ' r-... .... ' • ,,_ ,, ,, r,,, " • r-..., i-., ', ,,_ . ' r--" , ', ... ',,_ r-... 'r-.. " ,, "' ,, ,,_ '-r-... " ., , ... ,,_ ,, 'i-. ', ',,_ ' 5 6 7 8 9 10 15 20 30 Minutes " ,-,_ ,-,_ i-,_ " 40 50 Duration EQUATION I = 7.44 P5 D-0.645 I = Intensity (in/hr) p6 = 6-Hour Precipitation (in) D = Duration (min} ,, ,, , .... ' ,, ,, :r-' ' I• ' ' I' 'r-. ' ,, " 1, ,,_ ' ,, !',I', " ', ,, l',r-' " ,. ' r-.... , l'r-, ' ,. ,,_ ,, I", f""r-, " ' ,, ' " " l•r-, ', ' ,, " 2 3 4 Hours 5 6 0) ± 0 ~ 7) ro " 6.0 -g 5.5 ~ 5.0 g 4.5 '§' " 4.0 16 3.5 ~ 3.0 2.5 2.0 1.5 1.0 Intensity-Duration Design Chart -Template Directions for Application: (1} From precipitation maps determine 6 hr and 24 hr amounts for the selected frequency. These maps are included in the County Hydrology Manual (10, 50, and 100 yr maps included in the Design and Procedure Manual). (2) Adjust 6 hr precipitation (if necessary} so that it is within the range of 45% to 65% of the 24 hr precipitation (not applicaple to Desert). (3) Plot 6 hr precipitation on the right side of the chart. (4) Draw a line through the point parallel to the plotted lines. (5) This line is the intensity-duration curve for the location being analyzed. Application Form: (a) Selected frequency ___ year p (b} P5 = ___ in., P24 = __ .~ = %(2l 24 (c) Adjusted P6<2l = ___ in. (d} tx = __ min. (e} I = __ in./hr. Note: This chart replaces the Intensity-Duration-Frequency curves used since 1965. P6 1 1.5 2 2.5 3 3.5 4 I 4.5 5 5.5 6 Duration I I I I I I I I I I I 5 2.63 3.95 5.27 6.59 7.90 9.22 10.54 11.86 13.17 14.49 15.81 7 2.12 3.18 4.24 5.30 6.36 7.42 8.48 9.54 10.60 11.66 12.72 10 1.68 2.53 3.37 4.21 5.05 5.90 6.74 7.58 8.42 9.27 10.11 --,5 1.30 1.95 2.59 3.24 3.89 4.54 5.19 5.84 6.49 7.13 7.78 20 1.08 1.62 2.15 2.69 3.23 3.77 4.31 4.85 5.39 5.93 6.46 25 0.93 1.40 1.87 2.33 2.80 3.27 3.73 4.20 4.67 5. ll_ 5.60 30 0.83 1.24 1.66 2.07 2.49 2.90 3.32 3.73 4.15 4.56 4.98 --40 0.69 1.03 1.38 1.72 .?.c07_ 2.41 2.76 3.10 3.45 3.79 4.13 50 0.60 0.90 1.19 1.49 1.79 2.09 2.39 2.69 2.98-3.28 3.58 60 0.53 0.80 1.06 1.33 1.59 1.86 2.12 2.39 2.65 2.92 3.18 90 0.41 0.61 0.82 1.02 1.23 1.43 1.63 1.84 2.04 2.25· 2.45 120 0.34 0.51 0.68 0.85 1.02 1.19 _1.36 1.53 1.70 1.87 2.04 150 0.29 0.44 0.59 0.73 0.88 1.03 1.18 1.32 1.47 1.62 1.76 180 0.26 0.39 0.52 0.65 0.78 0.91 1.04 1.18 1.31 1.44 1.57 240 0.22 0.33 0.43 0.54 0.65 0.76 0.87 0.98 1.08 1.19 1.30 300 0.19 0.28 0.38 0.47 0.56 0.66 0.75 0.85 0.94 1.03 1.13 360 0.17 0.25 0.33 0.42 0.50 0.58 0.67 0.75 0.84 0.92 1.00 FIGU RE ~ San Diego County Hydrology Manual Section: 3 Date: June 2003 Page: 12 of 26 Note that the Initial Time of Concentration should be reflective of the general land-use at the upstream end of a drainage basin. A single lot with an area of two or less acres does not have a significant effect where the drainage basin area is 20 to 600 acres. Table 3-2 provides limits of the length (Maximum Length (LM)) of sheet flow to be used in hydrology studies. Initial Ti values based on average C values for the Land Use Element are also included. These values can be used in planning and design applications as described below. Exceptions may be approved by the “Regulating Agency” when submitted with a detailed study. Table 3-2 MAXIMUM OVERLAND FLOW LENGTH (LM) & INITIAL TIME OF CONCENTRATION (Ti) .5% 1% 2% 3% 5% 10% Element* DU/ Acre LM Ti LM Ti LM Ti LM Ti LM Ti LM Ti Natural 50 13.2 70 12.5 85 10.9 100 10.3 100 8.7 100 6.9 LDR 1 50 12.2 70 11.5 85 10.0 100 9.5 100 8.0 100 6.4 LDR 2 50 11.3 70 10.5 85 9.2 100 8.8 100 7.4 100 5.8 LDR 2.9 50 10.7 70 10.0 85 8.8 95 8.1 100 7.0 100 5.6 MDR 4.3 50 10.2 70 9.6 80 8.1 95 7.8 100 6.7 100 5.3 MDR 7.3 50 9.2 65 8.4 80 7.4 95 7.0 100 6.0 100 4.8 MDR 10.9 50 8.7 65 7.9 80 6.9 90 6.4 100 5.7 100 4.5 MDR 14.5 50 8.2 65 7.4 80 6.5 90 6.0 100 5.4 100 4.3 HDR 24 50 6.7 65 6.1 75 5.1 90 4.9 95 4.3 100 3.5 HDR 43 50 5.3 65 4.7 75 4.0 85 3.8 95 3.4 100 2.7 N. Com 50 5.3 60 4.5 75 4.0 85 3.8 95 3.4 100 2.7 G. Com 50 4.7 60 4.1 75 3.6 85 3.4 90 2.9 100 2.4 O.P./Com 50 4.2 60 3.7 70 3.1 80 2.9 90 2.6 100 2.2 Limited I. 50 4.2 60 3.7 70 3.1 80 2.9 90 2.6 100 2.2 General I. 50 3.7 60 3.2 70 2.7 80 2.6 90 2.3 100 1.9 *See Table 3-1 for more detailed description 3-12 14 3-3 15 I-w w LL z w l) z <( I-Cl) 0 w Cl) a:: :::> 0 l) a:: w i 2.50% slope-~ - 2.0-+--~~ 100 i----~1~-5~--r -+-_-_-_-_---,-,.~"',~~--,...- 0 EXAMPLE: Given: Watercourse Distance (D) = 70 Feet Slope (s) = 1.3% Runoff Coefficient (C) = 0.41 Overland Flow Time (T) = 9.5 Minutes SOURCE: Airport Drainage, Federal Aviation Administration, 1965 T= 1.8(1 .1-C)VD 3\fs 20 Cl) w I-:::> z ~ z w ~ i= s: 0 _J LL Cl z <( _J a:: w > 0 FIGURE Rational Formula -Overland Time of Flow Nomograph Nomograph for Determination of Time of Concentration (Tc) or Travel Time (Tt) for Natural Watersheds 16 .6.E Feet 5000 4000 Tc Tc L .6.E ::: ::; ::: = EQUATION (1~t)°·385 nme of concentration (hours) Watercourse Distance (miles) Change in elevation along effective slope line (See Figure 3-S)(feet) 3000 2000 300 200 30 20 10 5 .6.E SOURCE: California Division of Highways (1941} and Kirpich (1940) L MIies Feet 0.5 L 4000 ' ' 3000 ' 2000 1800 1600 1400 1200 1000 900 800 700 600 500 400 300 200 ' ' ' Tc Hours Minutes 4 3 2 ' ' ' Tc 50 40 30 20 18 16 14 12 10 9 8 7 6 5 4 3 FIGURE ~ F I G U R E SOURCE: California Division of Highways (1941) and Kirpich (1940) 3-5Computation of Effective Slope for Natural Watersheds Area “A” = Area “B” Watershed Divide Design Point Area “A” Watershed Divide L L Design Point (Watershed Outlet) Stream Profile Effective Slope Line Area “B” E 17 CJ F I G U R E SOURCE: San Diego County Department of Special District Services Design Manual 3-6Gutter and Roadway Discharge - Velocity Chart 0.13 EXAMPLE: Given: Q = 10 S = 2.5% Chart gives: Depth = 0.4, Velocity = 4.4 f.p.s. Depth RESIDENTIAL STREETONE SIDE ONLY1.5’n = .015 1 2 3 4 5 6 7 8 9 10 20 30 40 50 Discharge (C.F.S.) 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2 3 6 4 5 7 8 9 10 12 14 161820 V = 2 . 5 f . p . s . V = 3 f . p . s . V = 4 f . p . s . V = 5 f . p . s . V = 6 f . p . s . V = 8 f . p . s . V = 10 f. p . s . V = 12 f.p . s . V = 2 f . p . s .Depth 0.7 FeetDepth 0.6 FeetDepth 0.5 FeetDepth 0.4 FeetDepth 0.3 FeetDepth 0.25 FeetDepth 0.2 Feet% of Street SlopeV = 1. 5 f . p . s . 2%2%n = .0175PavedConcreteGutter 18t t ! i F I G U R E SOURCE: USDOT, FHWA, HDS-3 (1961) 3-7Manning’s Equation Nomograph s =0 .0 0 3 n =0 .0 2 SLOPE in feet per foot -sHYDRAULIC RADIUS in feet - RVELOCITY in feet per second - VE X A M P L E R = 0.6 V = 2.9 EQUATION: V = ____ R2/3 s1/21.49n 0.3 0.2 0.15 0.100.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.009 0.008 0.007 0.006 0.005 0.004 0.003 0.002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.001 20 10 9 8 7 6 5 4 3 2 1.0 0.9 0.8 0.7 0.6 0.5 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 2 3 4 10 9 8 7 6 5 50 40 30 20 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.2 0.3 0.4 GENERAL SOLUTION ROUGHNESS Coefficient - n19 CJ Hydrology Study ATTACHMENT C WATERSHED INFORMATION Soils Index Map Point Rainfall Isopluvial maps 21 [=i 1111 [=i [=i [=i [=i DPW *GIS Oepar.manr of Pu~'ic \,t,~ Gconn,•phk;lnfom.;1fk)n&,v1eas s'fiGIS We Have San D1cgn Covered! 22 V ) ,.. .J.>.L-' -lJ,M____j___j_j_i-LU_(__j_--i-J+i.-+--1-++--1--i---+----i---j----l---+-+--l--+--t-l-+-l+l--l-++++++-4--1++++++1+-l+t-+t+tt+i--t-M-·t-tttti11111n--r-1 .. --· / ."-~ 23 IL__······_·-~I Hydrology Study WATERSHED MAP A¨ AÀ A¨ A© !"_$ !"^$ !"_$ ?h !"^$ !"a$ !"_$ %&s( AÀ Aª Aª A© ?z Aª !"^$ ?z !"_$ AÛ !"^$ %&s( AÀ A× AÀ ?z !"a$ %&s( Aù !"_$ ?h !"a$ !"a$ !"^$ !"^$ !"^$ A© A© !"a$ %&s( !"a$ !"a$ A§ !"_$ !"_$ ?j !"^$!"a$ Aù A§ A§ AÀ ?j ?z AÕ Aª Aª A©AªA© AÀ A© Aª A¨ A¨ A¨ A© AÀ A© A© ?j Aq A¨ AÛ !"_$ ?j !"_$ Aù %&s( !"a$ ?h AÛ ?@65 SANTAMARGARITA P A C I F I C O C E A N R I V E R S I D E C O U N T Y B A J A C A L I F O R N I A , M E X I C O IMPERIAL COUNTYORA NG E COUNT Y SAN JUAN SANTAMARGARITA SANLUIS REY SAN DIEGUITO CARLSBAD SANDIEGOPENASQUITOS SWEETWATERPUEBLOSAN DIEGO SAN DIEGOBAY OTAY TIJUANA LAKEO'NEILL LAKEPULGAS MORRORESERVOIR BECKRESERVOIR REDMOUNTAINRESERVOIR GUAJOME LAKE LAKEHENSHAW WINDMILLLAKE SQUIRESDAM TALONELAKE HUBBERTLAKE TURNERLAKE WHALENLAKE CALAVERASLAKE SANMARCOSLAKE AQUAHEDIONDALAGOON LAKEWOHLFORD BUENAVISTALAGOON DIXONRESERVOIR SAN DIEGUITORESERVOIR BATIQUITOSLAGOON RESERVOIR SANTEERECREATIONALLAKES LINDOLAKE EL CAPITANRESERVOIR SAN ELIJOLAGOON LAKEPOWAY CORTEMADERALAKE RESERVOIR25TH MISSIONBAY MIRAMARRESERVOIR MORENARESERVOIRBARRETTLAKE LAKERAMONA MOUNTHELIXLAKE LAKEMURRAY HANSENRESERVOIR LOWER OTAYRESERVOIR SAN DIEGOBAY LAKEHODGES UPPER OTAYRESERVOIR OLIVENHAINRESERVOIR SANDIEGUITOLAGOON LOSPENASQUITOSLAGOON PALOVERDELAKE LAKEJENNINGS SANDIEGO SANMARCOS SANTEE SOLANABEACH VISTA CARLSBAD CHULAVISTA CORONADO DELMAR EL CAJON ENCINITAS ESCONDIDO IMPERIALBEACH LA MESA LEMONGROVE NATIONALCITY OCEANSIDE POWAY S.D.COUNTY Tecate Campo BoulderOaks PineValley Descanso Pala Bonsall PaumaValley MesaGrande SanOnofre De Luz Live OakPark Rainbow TwinOaks Alpine SpringValley Jamacha Jamul RanchitaSanFelipe Jacumba Boulevard GlenOaks BankheadSprings Ramona SweeneyPass OcotilloWells AguaCalienteSprings MountLaguna TierraDel Sol MorenaVillage Julian SantaYsabel PalomarMountain Potrero Dehesa Borrego Springs Margarita ValleyCenter JesmondDene Fernbrook BuckmanSprings RinconSprings BlossomValley Dulzura WarnerSprings ScissorsCrossing Cuyamaca Lilac Fallbrook Guatay HarbisonCanyon CameronCorners FelicitaRegionalPark Flinn SpringsRegional Park GopherCanyonReserve Greenfield Blue Sky RanchEcologicalReserve 4-S RanchCommunityPark AeriePark AguaCalientePark BerkeleyHeringPreserve ChristopherHill (TET) BorregoSprings Borrego SpringsPark SiteDedication Boulder OaksPreserve(South) CactusPark Cowles Mountain(Mission TrailsRegional Park) DamonLanePark DiamondTrail(TET) Dos PicosRegionalPark El CajonOperationsMaintenance Facility El CapitanPreserve GuajomeRegionalPark HellholeCanyonPreserve In-Ko-PahPark Sage HillPreserve San Elijo LagoonEcologicalReserve SantaMargaritaPreserve SantaYsabel EastPreserve SantaYsabel WestPreserve SimonPreserve KnollwoodPreserve(TET) LakeMorenaPark LakesideBaseballPark LakesideLinkagePreserve Lawrence andBarbara DaleyPreserve Live OakPark Luelf Pond /Holly OaksPreserve MagdalenaEcke OpenSpace MountOlympusPreserve MountainSprings Park Mt. GowerPreserve Old SpringsRoad Preserve Otay Mesa East(Marathon)(FurbyNorth) Pala MesaMitigationProperty QuailBotanicalGardens Reams/Thomson StelzerRegionalPark Del DiosHighlandsPreserve TijuanaRiver ValleyRegional Park Val SerenoPreserve Vallecito StageStation Regional Park& Historic Site Valley CenterCommunity Park Volcan MountainWildernessPreserve WildernessGardensPreserve Los PenasquitosCanyon Preserve Santa FeValley OpenSpace Preserve Goodan Ranch/SycamoreCanyon Preserve(Hagey 2011) SweetwaterSummit Park SweetwaterRegional Park San DieguitoRegional Park Otay P.O.M.Wolf Canyon San Luis ReyRiverPark Boulder OaksPreserve(North) StoneridgePreserve PineValleyMSCP RamonaGrasslandsPreserve Otay RanchPreserve Goodan Ranch/ SycamoreCanyon Preserve MasonWildlifeRefuge OakoasisPreserve PotreroPark EscondidoCreek Otay ValleyRegionalPark OtayRanchPOM BarnettRanchPreserve Bottle PeakPreserve William HeiseRegional Park El MonteRegionalParkHistoricFlumeCorridor Lusardi CreekOpen SpacePreserve I San Diego CountyPacific Watersheds 0 4 8 122Miles Path: P:\20141224_Pacific_watersheds\Watersheds.mxd — Date: 12/31/2014 THIS MAP/DATA IS PROVIDED WITHOUT WARRANTY OF ANY KIND, EITHEREXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIEDWARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULARPURPOSE. Note: This product may contain information from the SANDAGRegional Information System which cannot be reproduced without the writtenpermission of SANDAG. This product may contain information reproduced withpermission granted by Rand McNally & Company® to SanGIS. This map iscopyrighted by Rand McNally & Company®. It is unlawful to copy or reproduceall or any part thereof, whether for personal use or resale, without the prior,written permission of Rand McNally & Company®. Copyright SanGIS 2012 -All Rights Reserved. Full text of this legal notice can be found at:http://www.sangis.org/Legal_Notice.htm Hydrology Study ATTACHMENT D PREVIOUSLY APPROVED IMPROVEMENT PLANS & DRAINAGE STUDY C£N£1W. NOTES t TH/SftANSlll'UlSB)£$A/.L OlJ£/IFt.WSPRfl10t/S.rNf'R01£1JBr THt arr ~CAII..SIWJRE'GAR()fN(Jlfll'ROl£MOITSSHO/IINOH 7Ht$SET(Tf'WIS. .J arrAffWOVA£ fY'Jf.AH$/XDNOTliH,t1E "/Ht l£ltURR ON 0/QNWt-(Y'-IK)Rf( fliOltl H£SPONSIBl.Jl)' FOR 11£ CORRCCTION (T CHJ«:RS Nil} ~s ascoioe utJR1MJC01STR11CnatAU. PWtNClfSONS SHAU.. B£ PROltPR.Y Sl/Ofl17CJ) ro THt arr OfCll.wl FC1l N'fl'i'WAL. · .2 NOIIDl'KSHAIJ.B£COAIN£NCB)IJNllt.llU.Pflrll/TSHAl£8£EN O(JTAINE() fROM n.rartANl)O'fJ£R~"ICA~.S 4 1Jl?'.o,/f,s ~r~JJ ~ tF,/?1'~~f?PDlHC QIPRO~TACRIDl£Nr. ?. NO~ lfU fl£ NA!:€ 10 fHfSE PWIS ltfTHalT 11£ ltR117fN ~VAi. (£"'£ arr fM1MIR. NOlfJJ tllTHIH TH( RC,1ISION a:~ ON THt ~lE~l<T!HfPLANSANO~USIEir. . a OOC1NM.~,W.,CSSHMJ..1£CQl.f'THEPR(PO(rt cr me arr l)P(l(80Nf1 SKileJ8Yll£Clf>'.OIG/MIR. ' J; THC OOQNN. Mi11mOSHAl18£((fllSEl)RJRUIECTAS-8ULTCONQTl(N$ 8Yll£0ICHEOl-a'~IK:t?J(ffl!OH 10/lNAl ACCfPTAN«rF 11f!,wmK BY 1H£ arr. . . . ' ,a "WSS~/Wrl-'1'1 %u_lHElfl!M€°tCff/tfl ~11!/lLI. 9£ IIAINrAlf!EO n, • '' ~"?W~~~~'1t~ol#tlf'lltt¥.Cf/JJ$'l()f ~ANIJ511Al/.B£SOI.B..YRfSPCWS/iX.EfCRCOIFO!rMIWTOAl.! l0!::41,, " STAli AND fUIERAI. SAFETY AN/I HCAl.lll ST~ £AHS ANO R£Gtll.AllOH1 " PALOMAR FORUM C. T. 99-.06 J fJUa?£ ANT CON/C~r,(}N OR SH/,lf /JO/tlt rF vh.ff"S OH EX!SllNQ CM.W.ll lff£tAP!Rl.l!TSHAlJ..Bt 08TAIIEJ)FROJIT!-£C.M.W.ll (YFl(LAMJM/IST 8£ SIGNBJ ANOAPf'liO',f:tJ BY USJRICTENC/MIHANOCIS'fRICT SU'CR/Nlfl'([£Nl ~ ~~&ts~~SHf'-,J,,fff"'fdJ.~~:U~J COIIAENalEHT CF !IO?II' -ANY O'CQ'llOHS Slw.1 /£OU/RE /l/llnEN ffJrJff5:ilON fflfM ll£ OIS!RICT ~ 4 THCOOCTHORIZONTAI. AN{) ~TICAl.Al.JGNNENTANI) nPCfFMAlERIP.lS(T TH!f!Rf/..M£0CATW 8Clll£0( Tl£/X~CTCR()£C1( VAllCANIJBUlb/NQ SHAU. BE /Xf'fR/,l!N[/) sr 111( (JTY CFC4RI.S8AD flRE MAR:¥1AI... I ,. ~,,,~,W.-~1:1~!0Jr3S~,JJ~1Rft&W/~ !JRCONSTRl)(;TKW (T RE'GtMICD WA!lR MAINS~ C41i!2W MlJNICIPAl WAJllt /JISTR!t:T", OCTOB£R !99JOR A$AMOI0£1J. , ,, & Ni fJURt1) ~~AH() Affl.lNTOCNCCS SfAIJ.. sc PROTEC!CQ sr A€AN$ (T CAIH«1C PRO"ICCWtl. F IJflarnll/Oil'fCR C'(M>(JCT$ A SOU 'TEST IIU'(¥(f AHi) IXJIONSlRATCS ll/Af fflOlB:llON CAN lJ£ PCHFORJIBJ fl{ Cl(WO CQNST8/ICTION NOTES VICINITY ~~~Tr£ Of$!RICT~ lfU <XWOOIANAt.lERNA~:~:-,-, ... -.... ~IG-.,-... -.. -,-.... -...... -"--~ /l;,.,M-½,cf]{, ',/rrmul'fl /Yi~~ -..,,,,...._.,.__..,.""""'-"'I DflAWN EM.li.GJLI:.L9CAL.E: ASSHOMI · ,, PRO.JECTMGll'----1.0~JOBMO.~ CONSULT TS ,ooo!'<m....-C""'1 s.1i.1o,;, __ coo1-..c.,,m,...,"2.l-JII 700-0J1-?J(,cJ ' fo~ 7lO-•.ii-D~IIQ ... ~·"°"><"""~1..,l,.<,,.. ----~T --~ ------·,rr ~ C-JI "'"'9/;/,c' TIWOIH'f"O.CAA JR, RCE1 1 , ' MAP 1lflIC/J Ill$ PHO.ECT/$£~.IEP /I/THIN A~f'ARCH N<l 221-01~17 AH0221-QIZ-f/J, ll£CMF01r'MA~!FIJ«X(T1HISPH()..£C'T IS1Hl=l25j SOIJKC£ or TOPOGNAPHY ~f¥10/INONTJ£StP!ANSNIS6'f/r£RAlf1)8Y ,40il!4fl(,/'()QW'li/CSIJf/f€Y8YSANlOAOr):(LSIJRl£n (M.U.14 1991: LIGAL Q£SCJ?tPTTON; f'OIUIONrTSECllONSfJAMJf4 TOIINSHP/lsot)lltfiAIK£1ff61; SAN~.l.tiilR.4'(AHOAU lllATP<Rl!OltrT!rellfJf/4 TVIIIISHIPIISIX/J1i!W«JET,s.t'l'!ERNAHJJ/NO~IN lllC arr (T ClllSS44 CQI./Nrt (T SW oo;q STA,C (T ~ ACWlf}//,fqfOf1£CFMMl'tAT11EJEF. BASIS Of BEARINGS 11/E SAS1$ CTIEAR/MiS FOii !JIIS JIAPIS TJE sot/T/£HlYUNl (TPAfil::llWNo.!52$4 l!.N8iY5'58"1t B£Cmr:wlC DATA fl£S AR( ml RfJUi£NCE O',tY AM) AR£ NOT Tr} 8£ USE1J F(.i ~TA£ 0/i 16i'llC4L SI/Rlf'Y C(WTR(l. BENCHMARK: srANIJARiJ smar stWlfl' ll()N(ll,l[Nf ~ HOO ff.ET SOUTH fF PALOMAR ~ON.a:Nle«JH£(F > llCCCW fROlit Na?TH CWNTY \Oi'IICAL (,'ONrROL A4T.4 R-1800 J08"10 E1£YATK)N: 2S1.2S JI.SI.. D,i,T JM: NGl,9 l~I ,,.,,.,,,..,,.,....,,._,_,c;~, ...... ""'"~--.. .,,.,,,,.,,,.._ itfT/ll!EIW.0/ffNI~ ""°""" 1i!lJIJI ll.ECTRaUC OAl,f FUS AR( FOfl RUER(NC£ Ol<Y ANO AR( NOT JO BE (JS£J} f{1l Hal!ZCWrA/.. at IOJ7C'l SIJRICY ~ma. ,dJ S()ll': 1•-200' "' c1rr or v1srA .filJ.IfifJiQ HEC./fflBJ •••••••••••• -litl-- SCfll[Jf ••••••••••••••• -s- KXlSS HaLS. ••••••••• 0 WAJEJt •••••••••••••••• -r- ""' /=} .......... ---©--"- /l/4!EJI {D(ISTJ •••••••••• ~ t;l/lE lliltl£l ••••••••••• ~ f1R£~ ••••••••••• - SlREET/.kllff: ••••••••••• U 510HJ/Ul4fll ••••••••••• •:cS/.>=.== lOfMJ..., •••••••••••• @ I + 1!il...!!N? SCA££: t • • 200' --x=~ ,.,.ej,/(JJ "'" ''t&_ Y/41µ._,, TKITHrO.ClfflW..tl RC£: 5S.:llll I ECTOR: "" SffAD CQNSTIIUCT/QN NQT£S I. /'JlfNlllilJlcu:AREMlN~ ANOTOPOl'PK Z JlflUI ~ :;wa fJC FWSH l#fH -- BENCHMARK; DESCls.Pll:llt SWIIJARD STREU Sl'Hi'~Y M(1-l(Jl,l[NT 1.0CAllOM: APPROX. 140() FCCT SaJTH fY PAI.OMAR ~TROAD(N{a:Nr&1t.JNE(F fi<,w/N()l/£AL RECORO FROM: NORTH (XJ(JNfY ICR1JC4L OONrRa DATA lt-T80()3fMl-11 (l.[','ATIOlt 291.2S M.S.L DATUM: ~ 192' EASEMENT TABLE --"""' -""' COIJNTY(YS,fNOEf)() BOOK Tl¥4PACIM OCTOIEJI.( /gm m<II£ 800K f014PNX2'1l OCTOl£Jtlf,IP40 C/IY~-fl¼<CCPo81-/B1$J7 IMRQl/41981 C/IY~-fl.f/1i«Ma '6l-tJm(JI JMR(){/4!981 C/IY ~-fu;tw;rMllf-u:JlltSn JV/iF2( 1!Jif Sl.'1'(AH(ICONSTNIC!ION C/IY~-flf/1"A(ltMlfiY-0151 MAIK:lft~rm AO/Pl.,t~PU8l/Cll!lJlES $.{).C.,tt:, /J()(/f(1.M$/'kXll OCfl)IJ[Jlll,1~ ~f~AN{)//TlJTY .. ,.,,,,,, 800K}S64/'l«IJJ N'lilr:-1 1951 AERJll..tlJNl£RCROIINOPUUl/ll/10 S.D.C.N. f¼"/',«Ml 156517 AJA;UST.V;t!lff AERJll..tl.l«RCROIJNPPfJ/lJCl/fV!D S.D.C.,tt:, fl4"PM;IMa.l566f1 NA7VST'tl',19U AO/Pl. .t!JNlEiCROt/NOPUNCI/TlPB S.D.C.IC. (U/W«Ma/56610 AXUSTIT,T!IM " AERf/,/. .t IJN(£RCR()(JNI) PU8l/C l/lV10 S.D.C.1£ ~M,.2061'11 MMJl!JOll,$fM @] AOIPI..JI.INOfliCROtJNOPIJ&JC IITllfn S.D.C.,tt:, MI.J11U M4HCf<ll-l fW fill AOIPl.itlJNIXJiCROtMJPtJIJl.lCl/!lJlES "'"" ~MIJ91SI JVJK:!fl-l fW lill ADH ,t IINt£R(;lf()(IN PU8l/C 1/fVlD SJJ.C.1£. ~No.)8751 M4HClll.t tW EASEMENT NOTES: I, ~~zfftf~'f:Emfz~i:=:f:'f01'°!f:'!'j_ a«:8Ml18Jl71-f!J 1, 11£RKJlff$tl'll£1'11/JUCT(JIIS£AM'l'ONll'JN(TS4'01AMJlJWUUll1THINNfl'PI/NC STR(UOllf.tQi!M/'. -1'/EJINN """"' ,._,, ,._,, 1'1UWIX"'1/ IOIUWIX"'1/ ,.,..., ,.,..., """" "'°"" ,.,.,.,, "'°"" """" """" " t==j===t===================:t===t==t==:t==j flffOWJIOff ~A~AIAN FORVM o;,,.mir,,e:o.:,_ t--1-ioo:1 a:a,o, .. m """' ___ _,.,.,....,.-~ ............ , .... ,,_..._....,."".,,,,.,.. __ I-,, ; (j) it PLAN -EAGLE OR/VE ~\~ SCALE'! 1'•-l!J' ,,\_ . 'A'(:'/~ C -\\';, '111 11 -~ l ~U\ \"' !ilISHECTM/.. IQFOI? ll'A!fH.t SDtt:R/'V.N$ Sf:ISICIT~ 16FOHSTOOIU?AIHl'UNS SEE SJEITl,'d, 5lfOH~.tS!RIPfMl'f.ANS Jif2JI!J EJ..ECTRav/C QATA fllES ARC FOH RUFMNCE lf',tY ANO ARC NOT TO lJ£ (IS£O FOR HORt~fAI. OHl£RllCA/.~YCONTRa ~ CITY OF CARLSBAD L..±J ENGINEERJNO DEPARlMENT IMP/lOl'DID(TNJISFOe: PALOAIAH FOHUAI [AG/.£ ORIY£ 0) Pl.AN -£AGL£ OR/VE SCAi£: ,·-'I(}' r -- BENCHMARK; srANDAl?I) slllCEr sr.H?!fl U()H()Jl(Jtlf LOCATIO:t APPROX. HOOFT:ErSO(JrHCTPAI.OMAR AJRPORTROAl)ONC£N1CRUN£(¥: QCA.IIINOR£At RECORO f/lOMJ NOIUH COlJNTY \0/ICAt CONTRa. a-lTA R-1800 .106+71 lliVATION: 291.2SN.S.t.. OATU!k tl(;l,(J 1921 i, HWIN/Ml !I 'tW ARC £XC-4V--il1Ml IN lHE 'ACIMTY (TAN IJ!INHCRaJNI} HICH PR£SSVR£ NAll/RAI. GAS PffiJNC (16• G4S mANSMISSKli MAIN). l1f£ PIPEUNl 11 Ol#NED BY SXM ANO OPfR,Al[{) IN COMPlJANCE HflH FEOERAI. ANO STAT£ SA/fffli'fatA/K.WS SOCH STAN{}IJY f'£RSa'IN£1. AR£ R£PONSllU roR OflJRCINC n-lC SAFCTY PRECA/Jl/CW$ O!ZO}f ANO ltR( AUTHOOZED TO HAU lH£ £r!Z4VA!XW If IH[S£ PR[(,A(llfCWS AR[ NOT fal.OHE{): f, lH( £,IC(VATGW SH/ill CAR£RJU.Y HANO {)IQ HllHIN 2-fEET (£ TH[ NARJRN. ~S ll?ANSAIISSICN PIP£lJNE. 2. NO POHCR-OPCR,Al[() £(}(JIPAICNf SHA/1 0t' AllOHCD WTHIN 2-fECf r, A/VY f'Olrf!CH C, !Ht NATUllAl ~S mANSMISSK,W Pl'WIIC. .. ,.,.,. ..... ,oer-....... ~,..,,_.,..~,, ..... 1"$, "" ... ,.., ...... ,., .. ""'"",.._>Oll1VIII _____ 1- BENCHMARK: DESCRIPTION: STAH!)AR()Sll?eCTSUl'l£Y~f LOC,l,JK)t Af'fflOJ(, f'IQ(J FrrT SOt/1H (Y PAlOl,WI AIRPORT ROAO ON CCN!CRUNC (I' a CAll/NORCAl. RECORD fOO~ ~:00 C(J(ftl{.76',ffTICN. CQ'llHa OATA El.£VAll:Jlt 211.2S M.S.t.. llAlUlil; NG',![} 1921 HSIEETNc. 1JflRlfAIOl.5CIOPUJ/$ SEC SHEET&. IIFOIISTORIIORAINPUN$ ~-EHl1'r REVISION OESCRIPTI<Jt' O,\.Ctf\,01---·-,_, __ , -·· .. !'ff mn, IOW,1111;00W.1Cffl1'-IWIIJll,,W.....O DAll l!'llll/ll Ollt(IIAl"fAOV,t ~'II CITY OF CARI.SBAD 11'"'"'1 LLJ ENGINCERINO 01:PARTMCNT '7,f IIJPflOmJCNfl'UNSFOR: .:85 PAlOl,fAH FOHI/M J Tl6,II 1/VN COIi/if APPRO\IED dY OTY(NCIN-~ l=si\;~11 C.i:JE99~06 I 0j99~~o. . i I •· 1 , ·11 i;; -----~-ii -I,, l,r G) PLAN -GREY HAWK COURT SCA/.£: ,._ ,(0' BENCHMARK; DESCRlPOOlt STAN{)AHI) STREU SUN',£)' IIONIJM(NT LOCATI:JN: Aff',l'Q.( UO(J mr SOtJTH CT PAI.OUAR AIRPORT ROAD ON C£N'JCRUNC CT ltCAAIINORCAt RECORD rnollt MlllH C()(IJ{fr ~RllC4l C'ONTROt. DAr,f R-18(}0 J04f7' ELEVATION: 297.2, 11.S.L DATUM: · NC',Q 1921 ~,\J,1'\,U):.,_,_,_..,,. j-1 """"' M Plf -· ...,,. -;Jt '"'""'" '""'"" __ ..,_ 2& ' 81'/ XM.£:1' .. ◄'1 JjQJJJJ £1.EC!N(,,WfC DATA Flis AR( fl1i ~ a-.tY !..WJ AR£ NOT TO Of I.ISE{) Fa? HOHIZ(;WTAI. CW ICRllC4£ Stm_l£Y CCW!Ra. ------, ~ <:i'I"' ~ ~O',;p ,, ll ,Pf "--,--, I l I l,,/1_ ,~•<,I ~ ' 14 ~11 80' SCAl..e l'.,4(1' S[I SHFIT ~ I FO# ffiif"Aa' l!JPR()',Olf:Nf Pr.ANS 51ISl£CTNo.. llfiJ/lS!(RJl{ll()Jl(/'U/11 BENCHt.lARK; $TANOA/?O STREET QIRITT' AIONI/I.ICNT · APPROX. f«J/J FCCT SOl/7'11 (Y PAI.OMAR AIRPOl?T ROAD OY Ct:Nll:t?t.JNE C, ll, CAMINO Rf:AL R£COOO fROlil: NORTH COI.JNTY ',FJ?TICAf.. <XWlNa. OArA tr-180(} J()4'"·" i 1:1.('.l~n::~, 2v2s 1,1.S.t.. · w.n.ri.t: f(;'.O ,n, "~"-""'"'~" ,_,, __ ~w ";, lt:Dlo .. _MW,,,.,.,"""'" ....... "".,,....,...,.,, .. ,.,...,.,,. REMARKS a l"'C•CL/51118661 -.-- JiJ2JI!/ £1_£C'TR(,NIC'/)ATA /US AR£ FOR RfJEROla il'\tt ANO AR£ NOT TO 8E ~ flll HOmlONTAJ. OR '€RllCAL Sl!Hlfl' CONTRa. CTlll CITY OF CARISBAD 11":ul 0 PLAN ,,-£AGL£ DRIVE SCAl.FJ ,._ ,w• ,:.,.._ """""'--"'.._"-""'~ "AS-BUILT " o✓Gl,4,,,-,, OM~ ~~SCM!1 .0.JQ'._ -;;:;"a-!( ~ -occ"'o~N'"7s"uTih Ts -1-'-"""'_"_"'_''_'_.., __ =_.,_•_o,-_rn_,c_..,,1 p.[,5S"lll rxP._!'1.f.J.1J.r;.a o~T[ 51.ll•!ClCI e,.1,1,.1,e.:11o<nlof200I ro~ 7!~9-11-~ •••.odof<OON!<>,\1,00<II BENCHMARK: l.OCAT!O~: APPROX. 1'00 FaT Sot/TH C, PALOMAR AIRPORT ROAD ON a:NlCJ?I.INC CF a CAMINOllf:AL RECCP.D FR:»I: NOIUH COIJNTY La'TIC.AL CON7RCt o,m R-!800 :J06-f16 E.lE'l'ATlOlt 291.25 11.S.L DAM!: NC',D 1921 WARN/II(} II ' >W ARCD'CAVAllll(J/N 111£ 11C/NTfCTANlffa'/?CROUNDHK)I PRfSSlJl?C NATllllAI. w!S Plf'fl.lN[ (18' 00 l'f?ANSJNSSION 1,/AIH}. !H£Pffllll£/S 0/tNE/} BYSOCJ:£ AND t:roi'A!EOIN COMPUANa Hllll mJERAJ. ,4N{) swr SAFETY RfGl.f.AlJONS. ·SIJC&f STANOBY P£HSONN£1. ARE RfSf'ONS!lU FOR lNFOHCINC TH! SAFETY PRECAf/llONS BEl.0/f, ANO A~ A(JlHORfl'EQ TO HA£r lH£ ~VAJ7QV IF TH£S£ PRfCAUllONS AR! NOT Fal.OH£!J.· !. ll-lCCXG-iVATOR SHAll CARERJUYHANO 1W W!HIN 2-fEET(;f" !Ht NAllJRAl G-4S TRANSMISSION PtPE1JN£ 1',&JJf)N__fJ Ct:Wll?ACTfR TO J,fRJfY lJIE £Mer l~llON rF EXJSllN(; /J71JTIES IN lH£ FlElJ)PRfa? TO CQ¥SlRI.ICTKM ~t"t' CITY OF CARISB Ll.LJ EflGINEERINO DEPARTMENT ~===l===~===================:!:===l~==t:==:t==:::l WAT£~ RfCrctD ~;~:Asc;;;;JIFONI REVISION DESCRIPTION ~\.Im\><l,tf'f\-P'111-""0 •-H'CQI """"•••tr ,,rn,.,,,,.,.,..,~""""-''"'"""'"""'"'""l.:"'~ .. >lll.l,II £A!;t;OR/VC PLAN -TIGER RIJN COIJRT BENCHMARK: DESCJiL"nott STANl)ARI) sma:r SURI£)" /KJM/AICNT LOC,o.TIO~ APPROX. UOO FCCT S()()nf C, PAI.OMAR AIRPORT ffOAO ON CCNlCRUNI: Of' a CW!NIJRCAl RfC{)RO FROlt NO/WI (XJ!JN/Y ~~ CCNTIU CATA fl-18()0 J08-l-11 ELE'/Al10:t , 291.25 AI.S.L ~TUM: Na'.fJ 1921 DAIi IHJIV,L OJIDN'Pf!OVAI,. DATI: 11,1111.',1. CHYAl'l'ROW1L ,L _ -- I I I I I T BENCHMARK; SrAfl/JAlltJ SrREC"7SUl'lfl"/tlCIMIMENf t.OCArKlft ~ 14ao rccr SOl/fli er PAI.OMAR ~r HOAD ON aN~ QI' flt;MIIN(JfilrAt RECO~ FROM! NORTH COI/NTY la>f/C4L C(;('fli'C( OAfA R-1/J(/{) XMrll ll.C'.'ATIOtt 2//7.2S 1/.S.1.. Ol,rut,j: NC',fJ 1921 REv1SION OESCRI.P-TION - . --· ---· --···· .. -- PLAN -£AGL£ OR/VE SCAl.f':,l'-,fO' ~ . DESK;NEDBYl.:....it.ua....!),j\Tti~ "AS-BUILT " .l'\,1 ~ '"'"''"'-"-"'------''""'~~ ,;,/ok ,.,,, PROJECTl,l(;R,~JO!NO.~ ----C O N S ul.T ~ : P.(. 5n~1 [XP.~ OAT[ ~IIOO Poo'.,.r e,..-t e .. 1.i.oo1,c.111om1o9~ ,110-01-noo r .... ...a-oJl-f!0>"6 •••·• .. ,.,..,OUlonto,..,,. BENCHMARK: SCl!i!EEflmlmtfSUW-ACE/IJfflO'.OENflt'.ANS SCC$1EITN4 l?FatWA!£R~Xf/CifftA!fS SffSl£rfNil. 5IFOIIS/6Nll{(JIS~Pf.ANS OCSCRf'TIO~: SfANIJARJ) SrREU stl/\'~ lt/CIIIIJMCNf LOC4.00II: NfflO.t: /,f(l(JfU.f SOtlrHOF"PAI.OIIAR A/RPORTNOA/JONCEN~C, """""""' S-!JilltT J;,j/LfJQfJ..Jf awmAcTON ro IOi'FY TH£ mer lOCAllON CF fXISllN(; 1.lfl.lllES IN THE flf1J) PR«R TO ca-;smucTlCWI occooo rROM: NO(UNC'O'./Nrr ',,f]?llCAl. CO/VfRa OATA R-f800 J08f7' 8.f.VAOO~ 297.2$ 1.1.S.{,, D,4,11.J~: NG'.1) f921 REVISION_ DESCRIPTION '; ~-!___ -_-:ff! \}t' :I l, _, _ _:-~ -If----;r. ~;:JP-_:-=-=~-=-- WAIININO II }WAR£ [,ttZ,(VAllN() IN 1IE ',,!C/NITY fY AH lH«RGR(X/N() HIQI PH£SSlJRE NAlURAl G-1S Pff1JN£ (1$• G-1S mANSJIISSKh MAIN) !HE PIPEUNC IS OHN[{) 8Y SOC~ ANO CffRA "f£D IN mflJANC£ WlH F£{)[RAt ANO STA~ SAFETY R£GUA110NS. SXM STiWOBY PERSONNEL ME REPONSIEU FOR {J{FORCINC !HE SA/TTY PH[CA()!ICNS 8ll01( ANO Al?t A()THORIZEIJ TO HALT THC [XCAVAllON tr THESE PRfCA()llONS ARf NOT FOllO/1£(}: 1. lllf ~VAll:W SHAU CARf.R.A-lY HANO{}~ llllf/N 1-ffIT ()f 1H( NA MAt G-1S TRANSMISSK;W PIPWNf. 1. NO POHC!l-<.11f]WED EQV/PAlfNT S1fAl.l 8E Al1OH£0 Hlll#N 1-ffET or ANY PORTIOH or TH£ NATVRAl G,1$ llWISNISSION M'l1JN£ set ~r No S RR S7R£U !l,IPRO'.Gl£NI PUN$ HSIEUll411FC111/'AlfR.tSEil£/lPUII$ SCCSl£UNr,. $7rctrSICNIMJ.tS~PUNS J;&J/J]Q/iJ/ CONTRACTai TO l-£Rl'Y lHf EYACT lOCA T10N rF OJSllN(] (lllJllES IN n£ flEl.D PRIOR TO ccwsmvcrm .!1!}Kj/ l1.£CTHl:WIC DATA fl£S AR( flR /?fHRCNC£ {)',[Y ANO AR£ NOT TO 8E 11!£0 fOH flOOZ(l{fAI. OR l-£Rll00 st@£Y CONTRC¥. ~"II CITY OF CARJ..'3BAD I~ LlLJ ENGINEERINO D£PAAlMENT -r,,.... flllliJC STOW MAIN l'tAN$ ~ 85 PALOAIAH FOR/JAi £AC/.£ OR/Yf C.f.H-()1 -,~--'-1·-·r·---.-, ---------------~ ----------------------------. ----- __,-----E~t~~~:f=:~~;;:__~ 1, .. i,' ~ ; '!'. '· .. ~ PlAN -GREY HAWK CO/JRT ,SCA/£ ,•,.w· TT----- BENCHMARK: OCSCffi!ON: SrAHOARD STRfff SIIH;fYJ,IONIJJID(T LOCAT!O~ APPRO.I:: H()(J/TETsa.JTHrYPAl.OMAR NRPORTROAl)ONCO.l'ERUNC<E ElCAJ,lfNOIICAL R£CORD fROlt NOIUH COVNTY >,eil!CAL CONmot DATA R-l{l(JIJ JQ6,f76 El..tV,1J10ff: 297.2$ ll.S.L C-'TI.IM: WV!J 19/1 SEE SHECT No. 21 AS· v1t.r RE'v'lSION DESCRIPTION ~----"""'""" e-i,_, ,~~• ... ,:'I ---tWAIJl.l•wn.i-. .. ,,,.,.. ono N'l'RP'IAL SlCSl£UHo.lFOIISfH"ACCIJ6'1(0fDENTPV,N$ sec :xccr NIJ. ,, Fr:R .,lfA • sna PUN$ SC(SJEITN(I. S7FOIJSICNM•S""1Wll'tANS MlJJJ/ ElECll?(NC DATA fl£S AR( ffR R£l1RENC£ Ql(Y ANO AR£ NOT R1 8£ //!El) ffR HCWIZ(,WfAL cw I0/,0!£ Slm'tfY cr.wma. ~I CITY OF CARI.SHAD 11 '"""1 ~. ENCINEERINO DCPARlMEHT . "H. PlllltJC STO/iJI /JRNJI PUNS FOR: 8, PALOl.tAH fOH/111 GIIEY I/Alf/( COi/RT C.f,91-()1 ~ EXP~18.-~o\'~/oV' c~l.99~06 I 0J99~4° l 6/(AO!NG NOTES RCou,.o,im "' 1,,.,,.,,, "·,. "' ~Xt~~'l.:rc~i..:t~., I mt! f. 11111 Pl.All SIIP(RSEOCS ML 0'1£11 l'UJ,'1 fWO'JMI.Y Al'PROIIED 81' TH£ CITY \ ; PALOMAR FORUM C. r ~ 99-06 WOKK TQ Bf OQN£ n£cPK,N;ilCMS/14UC'ONSISfOF nc Cf:',IISTflV;/1(JI( <7AU.Cf/1$Ni1~ IOflH ~Il/1JKIIG£ F~OiOSION CIJV!Ra.(~MI) ~(Y~~AU.~~'f,,AS"il'ifk,C!rfrfNIS~ :::a:~~~=':,~: :I~~ ~~TIO!t DF n.: G4RlSBADMVN/flPM, tot/€, NCSOI.IITIOK OF CO,'fDITIONAL APAl'OVM, c,rr STAll!MHOS Cl/I onc• AJ>DITIONAL ~!ITS LIS,TCO ~OJI AS lHCY MiO'' PCIITAIJI TO nos PRO.JC". Tl£ £/tSINllR Ill /ICSPONS!Bi.C CHARGC SHM.L RCV/S£ TH£SE f'UJr$ tf#CII t,()N.COl,FOlll,IJ.NCC IS 0,ISC01£RCO. S. (lfT A1¥11'()VAl 0, l'f.JWS (>0€1 NOT Ra/Cl£ ffl£ Pfi'UtnR OK £11$/NffR-W• //tf;R,rf"flOIINCSl'ONS/6/LITYFOIITHCCORMCrtON_OF CRRORS A!IO CN/SS/0/"1 ~~f~D ~::c~W~::::·/i,/~MIKJISION! $1iA/.L Br PRO!tP7ll' 4. A /U(;HT,0F-WAf PCRMITFl10M 7H£ CITY £116/NCCfl WILL 11¥ NCOIIINCO F~ ANT lltl,l',I' IN 11ft: Pl/tlf.lC R/OHT (JF ll)lY.PRICA, TO l'l:RltllT !SWAN(:£, A CC:RTlrtCATC OF /N$/JIWfCC /Ill/ST BC F!UD NAII/Nfl THE CITY OF CAR!S8AD AS ~ :r~~-i:'3/o: °tr: ::::.::11?:,:? ::(ff,,~~,~-"~ fflZfy'"J'W,J'~ lfM.:'¼;i;'Z ·~1')f,ji;,,;r w,ll' HJ s. VNL£SSCXCl#'TCD6Y Stf;f/(JIIIJ()l.t,/S OI" me I/Ii/FORM /JVILOl!IOCO!IC, ~r;:,;;;'1,J:;~!l'tt~I'!t1m~~z,.1116lfr r /!if)'_ NCO.II/NC st:FARATC 6. tfq lltl'i\( SHALL 8C CCMICNCCD 1/NT/L ALL P/;1111/f,S HA~ BffN OIJrAIIVt."I) FN(MI r. ~::;:~n:/:::::::~~;;:~IKCJo«s NO( Ailrl!Qfi,n ANY W()GJ( OIi GIW)INf ro 8( PCRFORMCII '""" THE PRCl'OITY OHNCJl'S PCRMISSION hAS 8CC/t OITAl/1/CQ AM) A t'Atl/J QRAQI~ PCR!tll', i.4S 6£CN ISS/ICIJ. ,. =-1:,;1s~'fJWf~/::/::H~~!Hf!~t:f:s;:;~1~,,HRg;g_ ~RO~ N'PIIOl'RIAT( SHtU OF ~ Pl.ANS ANO THC fl 116 SIEEf. ,, r,;r.:rilt:'ri~~~,:f~Nl'flOl'CRTY10F THC CITY W'CIBEINI 10. THC ()1118/N/J. l)IMWIN8 SMoll.l IIC 110'/SCII TO RU1.£C, AS-flVILT CfHill/Tl(/flfJ :~rr~ ENIIIICE/1·0,•MJ/i/( P/110/I TO FINAL ACCUTANCC OF THE WOIIK IIY THC JI. ACCESS FOIi FIRr ANI OTICII OICHfiCIICI' viH1ct.EI SHAU /JI M1111rA1NEI '" THC f'ROJC(;f SI rf AT AU TIAES Dllft/W COIIS""fTIO!I. fl. ~~ TRCNCHES ARC WITH/II ClfY £ASCl,£Jflf. . . ' CAT/OIi R£r;;.RD/N/J "PORTIS MOUIRE/J TROUCQ ~AQIIKI C':if'ff'fiFinfi~ 8£ CONSTRrltTE/J Ill CATIONSANQTHE UM/NARY SOUS ID. ~°!:,l!A'J,':"S RCi°tJ/:CTE,$/!vi": StfJ~l/'u,/f"t/E't:u..rlf/tl"OF'~'i/:2:~~ CAATIM!VI~ £(}/Hf'MCNf, CQIISTRIICTION EQlll/'fellf AHi) ANY OTHCII ASSOCIATED Gl!Al)/t,0 £1)///PMENT SI/Al£ BEL /MITE(} TD THf PERIOD BCT'M::C/1 r,oo A.II. ANQ SIINS£T(ACND.4Y,MONDAY~F/IIIJAYAH{J NO £AIITHJDVINI OIi GRAD/I/$ ~RATIONl $liAI..L IJt CONfWCTEIIONHCCl(CflPSO,HOl.lOArt./ALISTO,CJfY HOLi/JAYS /II-VAII.A!IUATTUICN6/NCC/llftfPCl'MllLIIT CWNTC!I.J II, All !Yf·tfU I/Alf ffl{[ff SIIALL {l{ fl@IITT£D'sr P< CQNTIIACTQII TD me U. N.t SI.OPCS SHAl.L Br IRRIGATED, SfAIIIU~I), l'UNTED liJIIJ/DII ffYD/IOSl:C/JEI) ll'ITHIJITEJI/IOJD.4Y10FTHtTIIE_fflt£M:!jSl.~IS fllKJt/GJfT TO CRAN ASSHOttNOltnCAl'PROYC/JaRAIJINll'UNS. j ii. I.AH()SCAP/11/J SI/Alt OfACCCW'f./51£1) OltAl.£ SlJJl'CS AMI Pl.OS AS 1/£1)////ICD 81' 1'HEClfYOFCAR1.SBA:1Ulf()SCAPEMANIIAI., TH£ I.AN()SCAPINfJ Pc.ANS FOIi nus Pfl()JECT, DRA.WIN1 llr'. '9S·4l., I.NO/OR AS QIR£CTEO sr THt" C/Tr 2,. ~1=11~"7:~c~:(Rt" !JIATAU CONT1rAC1'0!'fs SI/Al.L ~, ...... re TICIIQ\'KOFTHESE GP.Al)/HIP!ANSrlTHTlfATSHOttNOIIBOTHTHt" LANOSCA/¥ AHi) IRNl6ATIOII Pl.ANS AHfJ 11£ lll'IIOVCAEKT Pt.ANS AS RlOIJIRCD FO!'f THIS IIQllll' Ill ACCORIJANCE WITH THC lAN()SCAPC ~ TIME Rf(JIJ/ROCNTf. JO. STORM DRAIN l'IPC SH.Alt 8£ R£I/JFDRCEI) CONCRETE PIPE WITH /I MINIMAi D·LtM/J 0, /,MO. FO/ll'llll'ATESTOIIIIDflAI/IIPll'CS, /IP TO IS"P~ MAY 8£ IITl!U£D MOl'/DC/J DCPTH IS USS THAN,, r££f AND BACfffRtCII WITH J/f" NOCK PCflSDN$11 S•4 Tl'PC •c• AIID PIP£ MCCTS,ASTMHANDAHP JOJ4 FCII SCH JS $0/./D lll!H PIP€. IIDCft BACdltL SHAU BE IIRA/'ff{) WITH MIRAFI 14(} OIIC(XIIV.ALCl/f. , JI. /fHt.'11£ Mt £XISTIIIO PIP£ LINE IS TO BC A8/lfl{)Of/£11 AS A fff:Sllt.f; (JF THC GRAOIW aPtRATION, IT SHAH 8( REUOVEO WITHIN TIICNrr Fftr OF B/IIL/JIN8 OR STR££TANCASAND R£Pt.ACED WITN PRCffRr..YCfl'l'ACTC() SQ/LS. 1/11 Qfll(Jt AIICAS TIit Pll'C WILL BC PlWGfO WI TH CONCHHC OR NCMOl'EII AS Af'PNOVE{) er THE CITY CNSIN££fl AHfJ/OR TJC GEOTCCHNIC/lL CNGINCCR. 1 '2. r,,r COIITRACTCII SHAL, VCNIFY THC LOCA{ID/11 OF ALL 'cx1sr1,;q FAC/LIT/CS (A/l{)V,: (lf;()VM) AII/J (/Nf)C/1 O/IOtlNDJ WITHIN THC PN(}J(Cf SITE SIIFFIC/CIITtr NEAD OF ~/NO TO f'CRMIT THC l?CVISICJI 0, TH£ GRAP/NI Pf.ANS IF IT IS FDilN(J fHAf THC ACf'IIAL LOCATIONS ARE !JI COIIR.ICT WWI THC l'ff(;P()$£() -· JJ. me COIITf/ACf(;/1 SJIAl.L NOT/Fr All{CTED 1/Tl!ITY C<M'JJIIES /SU BtlowJ " tosr I Fl.f.L WORfWl'J DAY$ PR/OIi ro START/NO fiHAll/f'g NCA/1 TIC/II FAC!Llfltl AHi) SHALL COOliOINATC TIC~ 11'/TH A COl#'AIIY RU'WESCIITATIYC. ~~ SCRt'ICI N.CRf l'ACIFIC IICI.L ~A~c.:;~::,s I STDIIJI/JRAIIIJ ~ITY Of' CAl1U4AIJ ISCIIO.WAT£/I I NECLAIIEI WATER/ ~SAII/J/£(;11/TO WATCIIOIST/IICT "llVCAQIA COI/NfYWATCltOISTlflCf "YAl.UC/TOl ltllTEltlllSTRICT 4«1VENHAII/UTClt/JISTIIICT •B«NA S.ANfrATIOlt/JISTIIICT •Af N'PffOl'NIAT£ J-, P(RMIT COll"t/ANCC HCIJlll/iDCNfS, ,.,00.~;.41» (OODJ"°'l.JU, (fJOO}Mil-OllJ /761))4».174/,• 1160/434-lJ(/() 1760J<IJ4.l/2I. /161)JlJS·1'50 116l)JrSJ.01n '""'""•r>l6() /161)/r,J,6461 /'60Jl?J,IJ40 fK ,,,_, A. FQ/1 CW11fPtlf9 Gl{AD/lfO· THEAPP!ICANT H/f/£SA C/1'1! £N6/fiEEII, ${)/tS CN/JINCCP, ANO/Oil GCOl.(XJIST T{) Gfllr TECHJI/CAl., Allr!CC, (JIS£RW AN{) CONT/IOI.. T1E -"IWK IN f'R'J61/ESS (l!l.11.U(JA.IJ CA/11.SIIAPMIINICIPAL Co«, I 8, ffl{(/R TD ((NA/ APfflOVA/ Qf I 1/f/M{(t'g ocf'H,r-TH£ l'OLLOW/NtJ HCNIITS Ml/ST sr SI/UM/ fTCQ '" me Cl rr CNfi/Nt."fR rlA me PROJECT INSPCCTOII {IS.11.120 A.10} CA/If.~ Alf~ICIPAL CODE, /II FINAL flEPONriJrsUP£HVISIN6 GR,A0/1,b'tNfilNCCR srATl~AtL 6/IADIN!I ISCOW't.Cll", All Effl)S/fJNCONTnot., SL0/'!1'1.ANflr,f All() INIUMTION /JR£ INSTAI.LE/J IN CONFCll?Ml;ll(:C WITH CITY C{)l)CIINfJ WAl'PIIO'ICD PLANS /OBTAINSJ'Jl'!CO, COI.PI.JANC£ UTTEIIFRCM CITYEIIGINEat/NODl:l'ARn.ENf/. , (ti AS-811/U filMOINtJ Pf.All, 1 IJJ N£PDRT FROM THE SOILS £N(I/N£EP, 'MOCH 1/NCL/IOCS 7,fc~'ffs1/c°'id,.C:!/'!: ~Cl;~~:: A~1=..r,:: ;: rmD AND WORATONY TESTS. TIC R£PC1Rr SHA:LL ALSO INCLIJOCA Sf.ATCl,CNf sr TH£ SOILS £11811/CCJI !JIAT THI rJf/ADl!#ll:llS /Xlt'C IIIAC"1RfJANCrW/TlfTIERE(Xll/iD!ENTSANfJ ll(CCMl;J/DAT/ONS ot/TllNE/J IN TIICPRCl.,IMINARYSOILSIICl'Ollr ANl)AII/YSll'l'f.EJE/lfTS 11-CIIETO. r · t . ,,, RCPCRTWITHAS·8/11Lf(;<{t_(J6/Cl'I.AII, ·1FllfOU/llf(}!!Jy nc J!I. IIM.CSS., GRA/JIC:O'~,r ro, THIS PRDJ{CT IS ISS/JC{) WITHl/111 O.vt Ill >f:A/1 AFTC/1 r1£CITYCN6JHECll·S N'Pli'Ot'AL, T1fCSEP!A/fSMtY8Efl£WlllfQ TO BC 1(£Sllt/ll/rtCO f0/1 l'UHCl£Cft. Pf.AHr:H£t;I( FEES 'If/LL BC IK(XI//IC{) FOfl JI. : s:l~=r TITlCI) .(iE01fCHN(f.Al j,l"DA,C AND GRAD/Nf ,,), NQ'(l)f PMAH48' f9l1W fflP,Jll( D.4TEll F£6RUIJ/r ,. 2002, l'Rt:J'ANEI) Br VINJE, MIODLETOII ENSINCEIIINtJ SHAtL SE CONSI/JCl/£JI AS PART OF THIS G/W)llf'J Pl.Alt. Alf.I fiRA/lllf'J SI/Al.L fK DOM IN A~ WIT/f THE RCCOWCIIDATIOIIS A,W, SPCClflCATIONS COIITAJNt/J lllSA/D$Q/LS liEPOIIT. .1 THC CC/NllUCrott SHAU. IO!l'"Y THC LXAlla'I OF AU D!Sll/llJ FAaJTC i (AIJ01£CliQIJM)AII/Jl,IN()Olr;l{WHI) •1H1N JHCPNrJ.ECfS/1£StfflC£Nn.r Al£AIJ OF THC CQ,IS!Rl,JCT!(1{ 70 f'004T THC /€',l'Sl{,WS fY fH£ CONSlR1/Cr,qf "!i:'1~':::. THArTHCACIUo4!. lOCA»aiSN1!" IN tqFUCf Wfff, ~CHd/NllR 'ff: :18"811YAI '11P fl.fl 1!0'MIN!t1Am f11_10R TD Bff/NN/Nlf Pf ~ u. =~r:'"!~~,,~ ;rt/ t:,:#o'':: :;:»'ci-'!:' ;;:~:re~ £ARTHWORK Q(JJJ{TIT/£$ W,U/ BfHCi"r-WHMCfOIIAMYPlBR/1 @ll.W'Gf(JCf/l(f1('M Nf.WS QCfHl:f flWTft Qf AIJ.IACCIIT STRfETl Al A RfSlf.( OF TIC fillADIN6 P"Q'AT/Q#. "· 8Rf/SH SHAl.t Br f/DIJVED ONLY WIT1illl r,c M("A. TO BC fi/WJ£/J. ND Tf/£ES ARC TOBCROIOYCD IINLESS SPCCIFICAUYNQTE(JOIITH£PUJ/. U . ALL ARCA$ SIIAl.l 8( GIWJEI) TO 1/fiAIII.CIIADl/rS liESIA.TINfi Ill 11/C PONO/N'J OF lt/4TU ff NDr P(RJl!TTED. Alt CMTICII SIMLES A!tD /J/TCJES $hALL HO!VE A 2!1. ~-,.,.,::~::c~o A Sl~,'1(/J AKP !APP/i'OYCP scr 0, ENOS/DI CONrROt. Pf.AliS. EROS/OJI CDIITROt. SH.AL£ !l(AS SH<M'liAII/J AS APPf101/CD Br MCITfCl$/N£CIIOlfAIDlff£CTEDBYTH£~CT INSP£CTOfl. 21. ~!'cc~!/fio..~/'sc't,-~'ff_D,:: 1,~iNl~~E Tfc/!°°!":'A A ,,,c':,.m::, OROERI.YCON/JITICII. ALL STONES, HOOTS 0/IQTICIIDESNIS SHALL BC RtJIOW:D , ... ""°"o "", "'' """"" "" i "" ""'"'"· 0/f!~ flj;----1t!,!!!!Lf!. DPCRr:.....lil,JSUL I liDEfMJ...•JIUl!lil...~ ; NO~ I. 11ESCQIJANTllfiARCFQIIBa,DIIIGPIJRPOSESO'Lr. AND As:sl!AE NtJ SHR!Nl(ACC. t:a/TRACTD/1 Ta l£W"Y, TO ffSSATISFACl10N I. CON/RACTr:JIISHNJ.SlJ/Jl/lfAN/JlilWl£AffROt'AtfROMC1TT FOlf li,41.( lf(XJTfS l'Rlal TO HAll..tl(J DfRT OIi CONSTIM:11()11 MATfRIN.Sl(JCMFROltll!C~IC:. ' ,'l(OJ[CT LOCATION nf$ PRO.EC! IS LOCA!fb iilfHIN ~ Pilli'al. NO. 221-Dto-r,1 l,N/J221-0IZ-10.f/lCCAJIORNiA~,r~fTTHSPR().£Cr IS, .lii1::61i4 SOUi/Cf or TOPOGIIAPHY Tr¥'()CRNWY SHOltN ON 11/fXf'tMS W,f$~1CJ) Bf ADIJAJ. rr:POUiAPHICSUl'ICYBYSANlOAlK.At.SUNICl'S ON.UY4 1897. l{CAl O[SCRIPTION: POIUIONfYSEC!!CHSIJA!ffJ 14 TOIIWSHP1/SOll/'1' fi.AM%l ll(Sf, SANIOINAR(NJ~ANOAU 7HATP<Rll(NfT5ff!Oll4 TO#NSHl'flsaJ/'1'M/"l'X J!Uf, W/fJfJiN,4/a,f(J~ W !1£C,Tf(Y~ CWNTY(FSANoo;Q 51A,CfT~ ~TDll£(lll(V,tPUfliORT. s. Q. 6. it £. NOTES: WARNIN(J!J l'WAll€Cl'c.AVAnY::IN lH€\4CIN/fY0,Ali~HIQI l'Rts:stRCNATURN.GUff'El.JNE(fl"G.U lRANSMrS:Sla'iMAJN). THCPIPO.JNll'SOl#C08YstJCMANDa>m4lITJIN(:(Mf'fJAJ,/C£ WTHffl)(:RN.AJ{!)STAltSHHYf/CctA.ATIONS SIJCKSTAND6Y f£RSalNa ARE RESPa-lSl8I.£ RR Orr~ THE SAFUr Pf?Cc.AIITIONS~Ol(AH!J~A/fTHCl?tZE1)TOHN.fTHC ot:AVA71QV F 11£SE PflECAVfJONS ~ HOT RJl.f.011£{}; 1. THE Cl'c.AVAml" SH.Ail. CARUIA.i.Y H/tND Ole ltlTHIN 2-fC!r (T 1H£NATIJllAlG.4S !RANS!tl/SSIOIIPll'fUN€. .Z N(J l'OltCR-CV'fRA.TCD C'1ll/PMCNT 9'Al.l. /JC ,4/J.0/Ef) /tl/HJN 1-f"ffT OF ANr ~llOfi (Y' THC NA!WW. GAS !RANSN,SSION f'lffiJNC .i CONrACTUNDEJi'Gl!(}I./NSCR'ACEAIERT(/1.S.A.) AT 1-800-117-2600 Af wsr 48 HOURS Q(FOl?C BfCINNINC: ANI' ~<" E~t'Ai?GW 4. AN Sl)(';K STANODY IS ~QUIR£D l'll£N OICCl!IC: /till/IN 1()-F!CT CT THC NAn;.i;:-tL GAS 1RANSJIIS5KX"I f'/l'fUfl£. ~ Y ANY CONTACT IS MADc 1#7}1 lHC NATIIIW. GAS lRANSl,IISS/ON f'1PfUIIC OI? ,rs CGl,4~ nrH IF n/0?£ IS NO lfSla'.£ DA.Ito!~ SDC4i£ Jlf.lSr BE NOIIF/£O /JIMCO/MELY Ar 80tJ-"1-7J4J SO THAT PROPfR RfPAll?S CAH BE MAtJC TO """'""' VICINITY MAP IIHV'STI.YfJfHAf/lfCC1«KOFl'RO.CCflJl'.A.//IN'.JANO !l'EC#"ICAIIONSBY11COIY(TCW'.5li"4D{)(ErN0f /E1C/€~ . ASDl'.JM'lll0Flltl0C CTIIY/lt5P'.MSlfJllr£Yfr:Rl'RO£Cf ~ .,. D~YCONSU.TAlflS. NC. :;,WPASl1.1JflClS1l:,J(J(J OO!S4A,1CAJfai!IA92004-7Jl7 r"::?<7.A' ,.,,,kb_ nM(HHra CNrmX.J.. ,R, fl.C.£M155J81 C\1!12/Jl/"'(il OWNER's C[l(T{FICATE 01/'NEl(/SIIBO/V!OEI(: .. , ,. . C/Vil £NCIN££Rl/l,NO S/JRVQOI(; O~YCGW$U.TAN~INI:. 590(JPASrct/Rcrol't SUIC" /(}(} """""""""' (160)SJ/-,110() lKj{J;/lKIIIC /JATA fl£S «FOR,,,,,;.;.,. Cll.Y AMJ ARC NOT TO BE USED Fal Hal/ZONrAl. ai 16i'nc.4l.5Ui'ICY.C'afTRa. .;;; OI" l'WtS .A.YfJ SPECTICAfr.;16 Ml) RflJIJlfl£JIOIT C1lrJJ ON TH£S£ l'YJfs. ff£~ ~ 51IIU (J£ POIITJRllEJI IN~ ltfTI( !NC fa..J.Olf'iN/l ~ Ct.lili(Jff"Ar ll£TW(,Y-~ .• ,.~~COO£. I. SWIONlf)SFO/fOCSICN.tWHSlRIJCTJOll(T~#tliJl1!ll'fl(M}l(JlfrlN1JCaTYOF~ .I T11S SCTOFl'WIS. 4, Jlf,S«Vfl(J('(,',Qr.5DJl,50»;.M.q~5a.1':;(;Jl(l,4Tfl)O(;!OIJC/l /l,1CJOI J llCSiil.lOiR!ISl'«FQ,f/ONSfCIIP<.J!V:J;t;IOO'CQHSJf/l.JCflON{Ck{DlfJOOI(). 4 SlllSIIEl"ORTrND~T!ONSBrtw€l lfl@t7Q!lfN&llU(flf; IJAJUJFURfMY42()()l 7. Tl~WloctO~Sll.'((;A/rOORAWJNC'Sl.'VOAS~Yf£11'UEJJBrl1CC1fYOf'~S-~ ;! =W=S~m"~=-=-=~ttf'=:~~!!'J('· I ~=~=.t.PEPnf"I./IDlf#t<~IISfo/lT"Arrt111ccNJrt~1Di1$tn'Be.fl' ~ ~ ~ ~=lf"~~,,/1J"-b'M.!fsl11fforf!:::fl,!~r VMY. Qf-5CR/PTJQN ,SIJIJ(JtfSK)N (J()(JN{J4/i'Y •• {,f§!N':CONl(}(//f. fflCPOS(J)tailOf.111 •• DA'ftJCHflH .• aJT/IUtN. D/IST/M; Sl'Of a.l'.M:W .•.• ll1Stw';R~EU'A1lJlt •• D1SlM Sla'O. . Cl.IT OIi FU SUY'C IHS, . fl.D#IH~!KW •• /H$eSl.lff".AC£!r'rXD.£YATKJNS •. flNISIEl)(i;P.A/£SPOflW14TKJNS •• ---"'-······~ _.__...a.---··.·::-M~-··~. .. ~.1.::::·7::: . ... "::J~l]« -'if'L.-,fL. .-fjL /JliOfl~ICJf, • .l}--7' rtPf 'ii'. ---U\!~ lrlil'olCl"m .............. .l}-7'rtPf?Y •. -;---:un HJP-1111' ••.••••••••••••••• .D-~. H.D.P.t.RfSCA.t~IC"(IIANCORII-IJOIIEl}(.IN.). T'IPfr'C.fCH~StN{MOO.POISHt.J) . .D-7 •. rtPf ~·cu:,wm, . .IJ-,. V-trPCl£AIJWAll. ••••...•••.. .D-n .. JIJ"RCl'SroRJIOfWlt •• .. •• ,.1)-6(}., -s,---0 Ci] @J n 24"f(f;PSroRJIUfWIII •.•.•.••••. .J)-6(J •••••••••• -==-~"" ll"RCl'STORJIIJl'.A/K •••••••••• .1)-6(} •• · ••• ./)-6(} .• .... --·~- ll"H.D.P.£S!OOIDIWK(lwcrJtt!#-IJOII E(ll.WJ •. J)-6D .• --50--- tl'H.D.P.t. ST®'DIWK{NWC()lfff-OM£QIIIYJ., .D-/JIJ. , --50--- JIJ".H.D.P.l. STOOIIKWK(,wo;wll-(J GlffW/V.} •• J)-/JIJ •• --50--- 5TII-UWJl~ •..••••.••• .lJ-6D., NUN'lfOli{!WIC()IIJI-DOltrotWJ .• .lJ-60., ~Mi.(5rSU'Nkll'PCJMl} ••. .c-, .. NIClfatlO'r{rx,,(fWIIIU.11-l'tAIEORrou:v) .• IJ())(CtUtHTIKNCKAlL . ' .,J)-17.' .---l . -~-c . )= =( __ :( , . ) OfWITllY 850 /f '5QV 280CY ,o~ "~ rn ,~ IQISV u,v 8'/f nv 2f!IV u,v ,0/f .J2/~li i'"o/li'CJTY OF CARl1lBAD ILm ~===t===~===================:t===t==+====t===l~ ,, CHClNC[RIH<I DCPARTMCNT /9 BENCHMARK; STA}l()AR() S!RlCfSUl';f'YJICMIAICNf N'PRQI(. 1f(/(} f"ffT SOilTH CT PM.OIJAR AJRPa/f ROAD (IN CCNTUI/..INE OF a CMIOOR!AJ. RE:CORD JllOM: NORl"H ClJlJNTr \£/ITICAJ, CCW!lWI.. CArA fl-1800 JC61ll £1..CVA~Ctt 297.2311.S.L ~ATUM: N(;,,f) 192/J t==j===t===================:t===t==t==:t==j ~ ANP ~£;;; ;;; ~===1===~===================:t===~==t===1===1r.,a~'s7.i"ifr======""""="=..,.9 S·~/ F?fVISE S#T. ti ,J If REVfSION _ _DESCRIPTION G,\..(JBS\91HOf2\~6ffAG01,Dw'G l•ll-2003 'J,!<,U ~" PH ..,._..,,WCI _ /l.J99-08 I 0jl9~/} I! IL ---,! ~• ,rpc ~-CI.A1!J U /llEJf 'lhf~~ NCLBOSE DR /CITY OF CA8lSBAQ) or £#GMUI .1!JLfi1JJ; "'""" SHEET 9. I SHEET 8 -+ .lfil...MN: SCALE: t'",. 200' , . ' ~ DATE ,&r SOU::,·• 200' BENCHMARK: SfANIJAl{()SlRCCTS/.IIM:YJ,/C/IM/0/T lOCATIQ~: ~JflF'<i'f/JiJ: ';:"'AR ~CORD Ille.! ~:a ~r:.761£Rf/CA£ CONmot. PATA Cl£VATICH: 297.25 M.S.L OATUlil: NC1e 1929 RfVISION_ DESCRIPTJOH J'A.G: P111f. OICNl"A.ll r:flsrll~crNJlf.M)£{) £AGLE D8/Vf UGCH RUN COURT C8CY '1ti}Jfg COURT N/ISCAU W CITY OF C J.SBAD Lill ENGINEERING DEPARTM£NT /9 CRADINQff.AHSFOll: PAlOVAR fORl/1,f I.I ,. rn [iJ ffl [j] m [iJ m [iJ [j] fill {ill [ill [ill Bl @I I CCWCRElEANC11(!?/X.W: SSID:',,t::r.co.Y'.1/Clf DETAIL -DES/LT/NG BASIN OUTLET DETAIL ! ~ NOTf{J~ ' J/8"Xrl"X12"Sl!El.PI.AlE I .-1 ANTI-SEEP RING D{[AI~ DETAIL -GRATE ASSEMBLY N()T,rJSCAi£ NOTE/ HOT oii c'M.vANIZf AU s;m N7[NFABHICA!!CN llOst:AJI, I •. .EASEMENT TABLE .. · """" ""' """"" '"" """'""' COiJN1Y(TS-W D£~ f){)()K!c>64f'AC(f96 OCfOllfll,Z 1910 A[RN.,tllNtOGf?OIJNOPI.J«JCl/11.116 S.0.(;.lt£. IJ()()I( 1014 PA(;£2-fl ~!c«Rll,1910 f'IIBUCHa'l).tllllJ!U CllY!Ya4/?t.SfJAJJ f/U/PA!:£N1J. {M-092SIJ1 ¥J.RCJf1l!l988 Pl/fJUCROOJ .tll!llfil£5 • CITY/YOW:.S:00 fUfi"AGEMJofJfrWZX/6 Nl,/r.:Hf4l:.66 --·-CITYOFCA/if.SIJAD FU/l'A(;£Nl19I-OJ01'8SO .M£2~ {!lfll Sl.(/P(-',Nf}(X}/{SllllJCl!OH Cl!'/OF'~.500 fl.£,/f'A(;£No, l:l92-Cl/5!5/. IJ.IRCI( 1-( 1992, ~ A[ll..it. ,t/JNCClCR()ljf((PIJm./Cl/!!l!O s.o.c.1tt. {1()0((1065,PAliE?I OCIV(JQflf,!9tO Qf..l'ili;·~Al/0/Jl/Uff, "'"'""' 900K1506,PAGFIJJ N1'?1. -1 1951 ACR'.At .t l)N[l(RCl{OUNOP/JfJt!Clm.J/6 S.D.C.6£. fllr/t'A!Jft/'11"6597 A/JGI.JST21, I/JU AUdM.,tl.lNl£H.;ROVNUPIIBUC/JllJ!U S.D.C.K. flt.£/l'A(El,b. 1:-,U!l AIIWSllf. f/JM AER'.AJ. .i' ~ PIJf¥ Ull.J!ES s.o.c.K. flE/PACC Nr,, /55UO AWIJST27, 19~ AERW.,t ~Pf.l!l.!C//!1.l!U S.0.(Uff:. IU/PIG[~2057-ll ~ I~ l96J AEP.W..tl)NIXRCROtJNIJ Pf.l(l,IC/J!IUlCS 5.{).(l.,k£. FU.,/i>AG£,'ib.J9NI 11NiCH_2-1196l A£Rvt .t ~~/)1R.J/U s.ac.M. f¼"/'AGt"MJ..1$751 llh?C/fl-1 !961 IOW. ,tl.!f«R'JROIIMJPrJl«vm.no S.IJ.G.ltt. ru;,i>A/iENo.J9151 IWiQ/2-l,1951 • . i ,,,,.,,,.. ""'"" """"' TORDWN ,ORD,WN fOilcNJA!{()(H/) !O~AFWlfXHO '°'°'I" """"' """"' ,,,,,.., 1'11£- ""°"" ,,,,_ TOl<l<'JN ""'""' (/(J/!£T !'ff f'fR fl,,AN 12mD. CATCH BASIN 4: SPILLWAY NOSCAlE . CONCK/£ SP/li.ll'Ar SM.AK l(J/)-7() --~-} I . rih'. I '. . ~---~~ 12mD. CONC8£T£ SP/ll WAY NOsa<E ~ ~ -=a~-'..---· I . . ! GRADED SWAL C O TOP 0£ SLOP£ """" EASEMENT NOTES:! ,. CJJflfj,'Jo~~~~!/&'f:rm,}=:.r,,~iiff ,f/fo~ ~-Ml 2&111,.:0, 2.· ll£NJ;Hl$(Y' TllcPIJIJtJC 10 IIS(AHf PQRTIOI( OF swwm llWW WlllflNANYPI.JtJtK: smar OH ~,110: · ! ~ 0£SICNEDaY,,AL__(1ATE,~... "AS-BUiLT It 0/ ~ ORAW)(iV1~SC~l£1.AS....Sl:lll'I --::;;:: ~~/ ~J"ZJ/_. '(i-,/,---PRDJCCT W<.R,tJ.Q.lj.__JOB NO.~ · · ~-~ C O N S V L T C;,1 :;,.,:, ENGINE~~ or WORK: i P.E • ..-~n, EXP,...J2.l1t#lt. 0,0.TE :£-:::· -'-~,,,--, I/ ,i '"' "'4, M I TMOlHY 0. ~ -~~~f 1· SfECTOif ~ ·• ..:z/203/f'-- BENCHMARK: OCSCRIP1101t STA/fOARO S!RIIT Si/Rlf:r AICWI.IMENT LDC.-ITIOO; AffRa.l: UOOffff SOiJ!HOFPAlc.tAR AIRPORT.ROAi) OH CCN!(Nt.JN! (F a CAAIIN()!?£A( R£COR~ rRO!it NOf<TH COUNTY \.f"RTC4.l CON!Rot. DATA R-/{!()(J J(J6+1d lliVATlc»t 291.2:S /l~S./.. ,DATU~: NGtti 1929 S£CUON 'Q-Q' -. ALL-WEATHCR ACCESS 80.AO "'""' SCE$11CCfNa. fl SECTION <1-A • -· PioTRA!L NOSC<<E S{CT/QN '8-8' NOSC<E 2Z~fNo.4 SECTION ··c-c' """" Sff 9afNo. II STANOPIP£ 0£WAT£RINO HOLE OATA TA6L£ LOT HOLE HOLE NO. DIAMETER EUVATIO)( STANDPll't: l (CASrOASIN) r IOIJIJ., IJ/f'" 1•-'lJ.(} fJ/f'" 1•-11'.(} fJ/f'" 111/U 1.J/1" 1•m., If/I" 10427.I ,,,· 10-12$.I 11/2" lOtJl.(} IS/)(jfH &45..✓. f 1/1' 1 0 t}J.(} j ,. 101.MJ) lllrYlllflJ,l,S!N z• 101.J,.O ~ IJ/f'" I O,f'l"-S I J/f'" f O l!U I J/#" I 0-105.f IJ/#" f0,j{)8_4 I 1/2' 11402.S ,,,1;· 10~.s J:IQlIJJ llEClRQ,/fC DATA fl{£S AR( FON RU&£NC£ (MY AN(} .4'if" NOT IQ 8£ /JSEO FON HOli!ZONTAI. OH_t,0?71CAL S?IHID'C(,W!Ra. Sff SHEET No. 5 '--, '~ ' :~.. ' ·. ' /J-~ \ ~--~ .. ' . - ~ ' • ~~~l\i-M'fi/. - ~ \ tr; ~ BENCHMARK: APPROX. !,wt) mr SO/JrH OF PAl.OMAR IVPl'ONTRf»!) OM com;fff.lNCOI" B. CAMINO RCAL RCCQlO /1!"': NORlN COI/NrY l<RllCAt CONrROf.. DATA R-1800 J06fl$ ELE\'ATW 2!11.2$ /,/.$,/. OAT\Jl,t: NCl-0 /$ii '(l~'{li C'' REVISION_ DES~RIPTION :l,..,,....,"""<r\_,,..,,..,.,.,. ,.,. . ..,,, , .. .,.,,,.. ,.., • ..,,,,...., ,.,,,~...,'""'"'v,c ............. ,,~-..,»•"""'"""''"""'""' I ,oo· SC'Ul l'•'jt/ WARNINIJ!I raJ AR£ EXCAVATING IN TH( 'ilCINITY (TAN UNtJERGRWNO H«iH fflfSSIJRE NA TVRAL GAS PIPt1.IN( (16• GAS TRANSMISSION MAIN) THE PIPEJJN£ IS OHNf!) BY SOG&C ANO a'tRA TED IN COMPUANCf /IITH ff0£RAt ANO STA'ff SAF'frYRfGtlf.AllONS. SXM STANOOY PlRSONNll ARC RESPONS/81.£ FOR llVFORCING M SNTrY ffl[CAIJTN:WS oaol( ANO ARt Al/lH<YrlZEO TO HAI.T 1H{ ,!XCA VA llQV .T ll-lfSC PRECAIITK11$ AR£ NOT fat OD f, TH£ !XCAVATOH SH.All CARFRUY HANO 0/G f'llHIN 2-FEET CF !Hf NATlJl?Al GAS !RANSMISSJON PIPBJNE. Z NO POHCR-ri£HATED EQIJll'NENT SHAU 0£ AllOHCO W!HIH 2-f[£f fY ANY PORl!QV fY THE NAllJRAl CAS TRANSMISSION Plf'WN[. JiQJIJ "STABlllAllON ms· ANO "KErWAY TC£ nu.~ R£Qi/lRflJ FOH Sl(P[S ADJACENT 17) PAL.OMAR AIR.FONT /i'OAD. SE£ S'OI.S 1?£P'(Ji?T FOR NTMS. .wJJQliJ/ caf!RACTOH llJ l£RIFY '/H£ EXACT l~llON (T EXISTINC Ull/TES IN llf£ flfl.PPRIORllJCOHSTRIJClJONI 1iQifjJ Ei.ECTRaWC l}Al:4 fl.ES AR£ FOR R£HN!NCC CllY AHi) ARE' NOT ro 0£ IISCI) FOH HOR!ZClvTAL OR IOX-U SIJR',£Y CON!Ra. ·· ----fs"'."76m CITY OF CARLSBAD L_LJ £NGINE£RING D£PART~ENT CRADIN(}f'UNSfORI PALOMAR FOR//!,( PROJECT NO, DRAWING NO C.T. 99-06 J99-.fA -I --__ ......l._ __ --J~ I b ;;; ~ ,· -'A SEE SHEET No. 8 ' 0[SICNEOIY• ! ',, 1 DRAWl'IBY, J.&.._p,.1£:~1-"""Ao-;:::=---"'""'~!::iii='""',~ S-BUILT " -~,::,.-::: ~-;., • " ~·" $/ r.,p,.a.p,;,,,_ ~ Yt DATE JO BENCHMARK: OC~TIO~: STAHDARQ STR£CT Sl/Rlf"Y ,,,.,.,,,.,,,., LOCATION: ~ ....,,..,,.,._,.r ~~Al'%%r&1,t/J:.'::™M l!(~tl«)M: am"" 'fJCJ:"'f,f,':,,""""''°"'"'°';' . V.S.L DATI.1\1: NClifJ 1929 HYDROLOGY AND HYDRAULIC STUDY FOR PALOMAR FORUM CT 99-06 J.N. 011010-05 JANUARY 4, 2002 REVISED MARCH 12, 2002 REVISED SEPTEMBER 12, 2002 REVISED DECEMBER 6, 2002 REVISED FEBRUARY 3, 2003 BY O'DAY CONSULTANTS 2710 LOKER A VENUE WEST, SUITE 100 CARLSBAD, CA 92008 (760) 931-7700 RECEIVED MAY 1 3 ZUU4 ENGINEERING OEPARTMi::NT TABLE OF CONTENTS • INTRODUCTION ...................................................................................................... 2 PROCEDURE ............................................................................................................ 2 CONCLUSION .......................................................................................................... 3 HYDROLOGY AND HYDRAULICS ...................................................................... 4 AREA DRAINING TO STREET 'A'............................................................ 5 AREA DRAINING TO MELROSE DRIVE ................................................. 94 TEMPORARY OFF-SITE (SECONDARY ACCESS ROAD) .................... 122 INLET SIZING .............................................................................................. 139 RIP-RAP ......................................................................................................... 152 TEMPORARY DESILTING BASIN CALCULATIONS ............................ 156 APPENDIX ................................................................................................................ 189 INTENSITY-DURATION DESIGN CHART .............................................. 190 • 100-YR6-HRPRECIPITATION .................................................................. 191 100-YR 24-HR PRECIPITATION ................................................................ 192 SOILS MAP ................................................................................................... 193 RUNOFF COEFFICIENTS ........................................................................... 194 NOMOGRAPH FOR TIME OF CONCENTRATION-NATURAL ............ 195 URBAN TIME OF FLOW CURVES ........................................................... 196 "RANCHO CARLSBAD CHANNEL 4 BASIN PROJECT" REPORT ...... 197 60-SCALE DRAINAGE MAP -5 SHEETS (POCKET) 100-SCALE DRAINAGE MAP -TEMPORARY -1 SHEET (POCKET) • 1 INTRODUCTION • This study is an evaluation of the stormwater runoff for the final design of Palomar Forum Industrial Park, a 70 acre, 12 lot project located on the northerly side of Palomar Airport Road, near the City of Vista. The purpose of this study is to determine the facilities needed to meet the requirements stated in the "Standards for Design and Construction of Public Works Improvements in the City of Carlsbad.,, • • PROCEDURE The hydrology study followed the procedure in the San Diego County Drainage Manual for a 100-year storm. For this location, P6 = 3.0 and P24 = 5.2. Times of concentration were based on the following: For Natural Areas: Tc =i:O 11 ~ L~l385 + IO minutes For Urban Areas: Tc= 1.8 (1.1-C}®, withaminimumof5 minutes !ls Additional time in pipes or channels was based on the average velocity in those facilities. Intensity was determined by: I= 7.44 P6 T 6 •·645 The rational method was used to determine flows: Q = CIA, where Q = flow in cubic feet per second C = runoff coefficient, based on land use and soil type. For this project, the soil type was all 'D' I = intensity A = area, in acres W:\MSOFFICE\WINWORD\0I I0IO\HYDROLOGY AND HYDRAULIC STUDY.doc • • • A Hydraulic Study was then done to confirm pipe sizes and eliminate pressure flow. This was done using a form taken from the Virginia Department of Highways and Transportation "Drainage Manual." CONCLUSION Any increase in flow over existing conditions is accounted for with the detension basin on the east side of Melrose Drive. This basin is based on a study done by Rick Engineering for the City of Carlsbad (see Appendix). All pipes are sized to eliminate pressure flow with the exception of the last reach of the storm drains coming out of Melrose Drive. These pipes will be underwater when water ponds in the detension basin. The pipe at the downstream end of Street 'A', Node 170 to Node 172 is temporary and will be realigned with the Carlsbad Raceway Project. W:\MSOFFICE\WINWORD\011010\HYDROLOGY AND HYDRAULIC STUDY.doc • • • HYDROLOGY & HYDRAULICS • • • AREA DRAINING TO STREET'A' (EAGLE DR.) • • • San Diego county Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c) 1993 Rational method hydrology program based on Version 3.2 San Diego County Flood Control Division 1985 hydrology manual Rational Hydrology Study Date: 02/05/03 PALOMAR FORUM PROPOSED CONDITIONS INTERIOR BACKBONE SYSTEM 12-3-02 G:\ACCTS\981022\FORUM.OUT ********* Hydrology Study Control Information********** O'Day Consultants, San Deigo, California -S/N 10125 Rational hydrology study storm event year is Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5.200 Adjusted 6 hour precipitation (inches) = 3.000 P6/P24 = 57.7% San Diego hydrology manual 'C' values used Runoff coefficients by rational method 100.0 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 101.000 to Point/Station 102.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type group group group group A= 0.000 B = 0.000 C = 0.000 D = 1.000 Initial subarea flow distance = Highest elevation= 511.20(Ft.) Lowest elevation= 510.20(Ft.) Elevation difference= 1.00(Ft.) ] 50.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.52 min. TC= [1.8*(1.l-C)*distanceA.5)/(% slopeA(l/3)) TC= [1.8*(1.1-0.9500)*( 50.00A.5)/( 2.00A(l/3))= Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year Effective runoff coefficient used for area (Q=KCIA) Subarea runoff= 0.375(CFS) Total initial stream area= 0.050(Ac.) 1.52 storm is C = 0.950 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 103.000 **** STREET FLOW TRAVEL TIME+ SUBAREA FLOW ADDITION**** Top of street segment elevation= 510.200(Ft.) End of street segment elevation= 467.800(Ft.) Length of street segment = 1940.000(Ft.) • • • Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 51.000(Ft.) Distance from crown to crossfall grade break = 49.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width= 1.500(Ft.) Gutter hike from flowline = 1.S00(In.) Manning's Nin gutter= 0.0150 Manning's N from gutter to grade break= 0.0150 Manning's N from grade break to crown= 0.0150 Estimated mean flow rate at midpoint of street= 0.886(CFS) Depth of flow= 0.205(Ft.), Average velocity= 2.377(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 5.491(Ft.) Flow velocity= 2.38(Ft/s) Travel time= 13.60 min. TC= 18.60 min. Adding area flow to street Decimal fraction soil group A= 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type Rainfall intensity= 3.387(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.950 Subarea runoff= 8.752(CFS) for 2.720(Ac.) Total runoff= 9.127(CFS) Total area= 2.77(Ac.) Street flow at end of street= 9.127(CFS) Half street flow at end of street= 9.127(CFS) Depth of flow= 0.389(Ft.), Average velocity= 4.094(Ft/s) Flow width (from curb towards crown)= 14.69l(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.000 to Point/Station 104.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 459.00(Ft.) Downstream point/station elevation= 440.00(Ft.) Pipe length = 48.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 9.127(CFS) Given pipe size= 18.00(In.) Calculated individual pipe flow = 9.127(CFS) Normal flow depth in pipe= 4.52(In.) Flow top width inside pipe= 15.61(In.) Critical Depth= 14.02(In.) Pipe flow velocity= 26.26(Ft/s) Travel time through pipe= 0.03 min. Time of concentration (TC) = 18.63 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 105.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 439.67(Ft.) Downstream point/station elevation= 429.00(Ft.) Pipe length = 269.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 9.127(CFS) 1 • • • Given pipe size= 18.00(In.) Calculated individual pipe flow = 9.127(CFS) Normal flow depth in pipe= 8.32(In.) Flow top width inside pipe= 17.95(In.) Critical Depth= 14.02(In.) Pipe flow velocity= ll.44(Ft/s) Travel time through pipe= 0.39 min. Time of concentration (TC) = 19.03 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 105.000 to Point/Station 115.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 428.00(Ft.) Downstream point/station elevation= 423.57(Ft.) Pipe length = 109.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 9.127(CFS) Given pipe size= 30.00(In.) Calculated individual pipe flow = 9.127(CFS) Normal flow depth in pipe= 6.73(In.) Flow top width inside pipe= 25.03(In.) Critical Depth= 12.07(In.) Pipe flow velocity= ll.09(Ft/s) Travel time through pipe= 0.16 min. Time of concentration (TC) = 19.19 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 105.000 to Point/Station 115.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 1 Stream flow area= 2.770(Ac.) Runoff from this stream= 9.127(CFS) Time of concentration= 19.19 min. Rainfall intensity= 3.320(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 107.000 to Point/Station 108.000 **** INITIAL AREA EVALUATION**** User specified 'C' value of 0.680 given for subarea Initial subarea flow distance = 190.00(Ft.) Highest elevation= 476.00(Ft.) Lowest elevation= 470.00(Ft.) Elevation difference= 6.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 7.10 min. TC= [l.8*(1.l-C)*distanceA.5)/(% slopeA(l/3)] TC= [l.8*(1.1-0.6800)*{190.00A.5)/( 3.16A(l/3)]= 7.10 Rainfall intensity (I) = 6.303 for a 100.0 year storm Effective runoff coefficient used for area {Q=KCIA) is C = 0.680 Subarea runoff= l.629(CFS) Total initial stream area= 0.380(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 108.000 to Point/Station 110.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME**** 8 • • • Estimated mean flow rate at midpoint of channel= Depth of flow= 0.340(Ft.), Average velocity= ******* Irregular Channel Data*********** Information entered for subchannel number 1 : Point number 'X' coordinate 1 0.00 2 100.00 3 200.00 'Y' coordinate 1.00 o.oo 1.00 Manning's 'N' friction factor= 0.030 Sub-Channel flow = 30.108(CFS) flow top width= 68.056(Ft.) velocity= 2.600(Ft/s) area= 11.579(Sq.Ft) Froude number= 1.111 Upstream point elevation= 470.000(Ft.) Downstream point elevation= 432.000(Ft.) Flow length= 1300.000(Ft.) Travel time = 8.33 min. Time of concentration= 15.44 min. Depth of flow= 0.340(Ft.) Average velocity= 2.600(Ft/s) Total irregular channel flow= 30.108(CFS) Irregular channel normal depth above invert elev. = Average velocity of channel(s) = 2.600(Ft/s) Sub-Channel No. 1 30.108(CFS) 2.600(Ft/s) 0.340(Ft.) critical depth= critical flow critical flow critical flow 0.355(Ft.) top width= velocity= area= 71.094(Ft.) 2.383(Ft/s) 12.636(Sq.Ft) Adding area flow to channel User specified 'C' value of 0.850 given for subarea Rainfall intensity= 3.820(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.850 Subarea runoff= 43.156(CFS) for 13.290(Ac.) Total runoff= 44.785(CFS) Total area= 13.67(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 115.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 426.40(Ft.) Downstream point/station elevation= 423.57(Ft.) Pipe length = 80.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 44.785(CFS) Given pipe size= 30.00(In.) Calculated individual pipe flow = 44.785(CFS) Normal flow depth in pipe= 16.41(In.) Flow top width inside pipe= 29.87(In.) Critical Depth= 26.65(In.) Pipe flow velocity= 16.30(Ft/s) Travel time through pipe= 0.08 min. Time of concentration (TC) = 15.52 min . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ • • • Process from Point/Station 110.000 to Point/Station **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 2 Stream flow area= 13.670(Ac.) Runoff from this stream= 44.785(CFS) Time of concentration= 15.52 min. Rainfall intensity= 3.807(In/Hr) Summary of stream data: Stream No. 1 2 Qmax(l) Qmax(2) Flow rate (CFS) 9.127 44.785 = 1.000 * 0.872 * = 1.000 * 1.000 * TC (min) 19.19 15.52 1.000 * 1.000 * 0.809 * 1.000 * 9.127) 44.785) 9.127) 44.785) Total of 2 streams to confluence: Flow rates before confluence point: 9.127 44.785 Rainfall Intensity (In/Hr) 3.320 3.807 + + = 48.177 + + = 52.165 Maximum flow rates at confluence using above data: 48.177 52.165 Area of streams before confluence: 2.770 13.670 Results of confluence: Total flow rate= 52.165(CFS) Time of concentration= 15.517 min. Effective stream area after confluence= 16.440(Ac.) 115.000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 115.000 to Point/Station 116.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 423.07(Ft.) Downstream point/station elevation= 419.21(Ft.) Pipe length = 296.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 52.165(CFS) Given pipe size= 36.00(In.) Calculated individual pipe flow 52.165(CFS) Normal flow depth in pipe= 21.87(In.) Flow top width inside pipe= 35.16(In.) Critical Depth= 28.18(In.) Pipe flow velocity= ll.60(Ft/s) Travel time through pipe= 0.43 min. Time of concentration (TC) = 15.94 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 116.000 to Point/Station 134.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 418.71(Ft.) Downstream point/station elevation= 417.72(Ft.) Pipe length = 149.00(Ft.) Manning's N = 0.013 to • • • No. of pipes= 1 Required pipe flow = 52.165(CFS) Given pipe size= 42.00(In.) Calculated individual pipe flow = 52.165(CFS) Normal flow depth in pipe= 24.33(In.) Flow top width inside pipe= 41.47(In.) Critical Depth= 27.l0(In.) Pipe flow velocity= 9.03(Ft/s) Travel time through pipe= 0.27 min. Time of concentration (TC) = 16.22 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 116.000 to Point/Station 134.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 1 Stream flow area= 16.440(Ac.) Runoff from this stream= 52.165(CFS) Time of concentration= 16.22 min. Rainfall intensity= 3.700(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 131.000 to Point/Station 132.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil group group group group A= 0.000 B = 0.000 C = 0.000 D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 100.00(Ft.) Highest elevation= 544.00(Ft.) Lowest elevation= 536.00(Ft.) Elevation difference= 8.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.35 min. TC= [l.8*(1.l-C)*distanceA.5)/(% slopeA(l/3)] TC= [1.8*(1.1-0.9500)*(100.00A.S)/( 8.00A(l/3)]= Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year Effective runoff coefficient used for area (Q=KCIA) Subarea runoff= 0.375(CFS) Total initial stream area= 0 .050 (Ac.) 1.35 storm is C = 0.950 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 132.000 to Point/Station 133.000 **** STREET FLOW TRAVEL TIME+ SUBAREA FLOW ADDITION**** Top of street segment elevation= 536.000(Ft.) End of street segment elevation= 430.500(Ft.) Length of street segment = 500.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 32.000(Ft.) Distance from crown to crossfall grade break = 30.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [l] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 II • • • Gutter width= l.500(Ft.) Gutter hike from flowline = l.500(In.) Manning's Nin gutter= 0.0150 Manning's N from gutter to grade break= 0.0150 Manning's N from grade break to crown= 0.0150 Estimated mean flow rate at midpoint of street= 0.5ll(CFS) Depth of flow= 0.115(Ft.), Average velocity= 6.419(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= l.500(Ft.) Flow velocity= 6.42(Ft/s) Travel time= 1.30 min. TC= 6.30 min. Adding area flow to street Decimal fraction soil group A= 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type Rainfall intensity= 6.8ll(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.950 Subarea runoff= 4.659(CFS) for 0.720(Ac.) Total runoff= 5.034(CFS) Total area= 0.77(Ac.) Street flow at end of street= 5.034(CFS) Half street flow at end of street= 5.034(CFS) Depth of flow= 0.240(Ft.), Average velocity= 8.425(Ft/s) Flow width (from curb towards crown)= 7.254(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 133.000 to Point/Station 133.000 **** SUBAREA FLOW ADDITION**** User specified 'C' value of 0.880 given for subarea Time of concentration= 6.30 min. Rainfall intensity = 6.8ll(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.880 Subarea runoff = 30.207(CFS) for S.040(Ac.) Total runoff= 35.24l(CFS) Total area= 5.8l(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 133.000 to Point/Station 133.000 **** SUBAREA FLOW ADDITION**** Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type group group group group A = B = C = D = 0.000 0.000 0.000 1.000 Time of concentration= 6.30 min. Rainfall intensity= 6.811(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = Subarea runoff= 3.688(CFS) for 0.570(Ac.) Total runoff= 38.929(CFS) Total area= 6.38(Ac.) 0.950 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 133.000 to Point/Station 134.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= Downstream point/station elevation= IZ 422.69(Ft.) 418.72(Ft.) • • • Pipe length = 43.00{Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 38.929{CFS) Given pipe size= 24.00{In.) Calculated individual pipe flow = 38.929{CFS) Normal flow depth in pipe= 12.94{In.) Flow top width inside pipe= 23.93{In.) Critical depth could not be calculated. Pipe flow velocity= 22.56{Ft/s) Travel time through pipe= 0.03 min. Time of concentration {TC) = 6.33 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 133.000 to Point/Station 134.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 2 Stream flow area= 6.380{Ac.) Runoff from this stream= 38.929{CFS) Time of concentration= 6.33 min. Rainfall intensity= 6.789{In/Hr) Summary of stream data: Stream No. 1 2 Qmax{l) Qmax(2) Flow rate {CFS) 52.165 38.929 = 1.000 * 0.545 * = 1.000 * 1.000 * TC (min) 16.22 6.33 1.000 * 1.000 * 0.390 * 1.000 * 52.165) 38.929) 52.165) 38.929) Total of 2 streams to confluence: Flow rates before confluence point: 52.165 38.929 Rainfall Intensity (In/Hr) 3.700 6.789 + + = 73.385 + + = 59.290 Maximum flow rates at confluence using above data: 73.385 59.290 Area of streams before confluence: 16.440 6.380 Results of confluence: Total flow rate= 73.385(CFS) Time of concentration= 16.218 min. Effective stream area after confluence= 22.820(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 134.000 to Point/Station 134.000 **** SUBAREA FLOW ADDITION**** group group group group A B C D = = = = 0.000 0.000 0.000 1.000 Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type Time of concentration= Rainfall intensity= Runoff coefficient used 16.22 min. 3.700(In/Hr) for a 100.0 year storm for sub-area, Rational method,Q=KCIA, C = \3 0.950 • • • Subarea runoff= Total runoff= 2.004(CFS) for 0.570(Ac.) 75.389(CFS) Total area= 23.39(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 134.000 to Point/Station 130.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 417.22(Ft.) Downstream point/station elevation= 413.00(Ft.) Pipe length = 211.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 75.389(CFS) Given pipe size= 42.00(In.) Calculated individual pipe flow = 75.389(CFS) Normal flow depth in pipe= 21.73(In.) Flow top width inside pipe= 41.97(In.) Critical Depth= 32.SS(In.) Pipe flow velocity= 15.00(Ft/s) Travel time through pipe= 0.23 min. Time of concentration (TC) = 16.45 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 134.000 to Point/Station 130.000 **** CONFLUENCE OF MAIN STREAMS**** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area= 23.390(Ac.) Runoff from this stream= 75.389(CFS) Time of concentration= 16.45 min . Rainfall intensity= 3.666(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 122.000 to Point/Station 123.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil group group group group A= 0.000 B = 0.000 C = 0.000 D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 105.00(Ft.) Highest elevation= 472.S0(Ft.) Lowest elevation= 467.S0(Ft.) Elevation difference= S.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.64 min. TC= [l.8*(1.1-C)*distanceA.S)/(% slopeA(l/3)] TC= [l.8*(1.1-0.9500)*(105.00A.S)/( 4.76A(l/3)]= Setting time of concentration to s minutes Rainfall intensity (I) = 7.904 for a 100.0 year Effective runoff coefficient used for area (Q=KCIA) Subarea runoff= 0.375(CFS) Total initial stream area= 0.0S0(Ac.) 1.64 storm is C = 0.950 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 123.000 to Point/Station 124.000 • • • **** STREET FLOW TRAVEL TIME+ SUBAREA FLOW ADDITION**** Top of street segment elevation= 472.S00(Ft.) End of street segment elevation= 462.000(Ft.) Length of street segment = 530.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 41.000(Ft.) Distance from crown to crossfall grade break = 39.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on (l] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width= l.500(Ft.) Gutter hike from flowline = l.500(In.) Manning's Nin gutter= 0.0150 Manning's N from gutter to grade break= 0.0150 Manning's N from grade break to crown= 0.0150 Estimated mean flow rate at midpoint of street= 0.533(CFS) Depth of flow= 0.18l(Ft.), Average velocity= 2.094(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 4.282(Ft.) Flow velocity= 2.09(Ft/s) Travel time= 4.22 min. TC= 9.22 min. Adding area flow to street Decimal fraction soil group A= 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type Rainfall intensity= 5.327(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.950 Subarea runoff= 4.25l(CFS) for 0.840(Ac.) Total runoff= 4.626(CFS) Total area= 0.89(Ac.) Street flow at end of street= 4.626(CFS) Half street flow at end of street= 4.626(CFS) Depth of flow= 0.323(Ft.), Average velocity= 3.379(Ft/s) Flow width (from curb towards crown)= ll.393(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 124.000 to Point/Station 125.000 **** STREET FLOW TRAVEL TIME+ SUBAREA FLOW ADDITION**** Top of street segment elevation= 462.000(Ft.) End of street segment elevation= 438.500(Ft.) Length of street segment = 380.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 26.000(Ft.) Distance from crown to crossfall grade break = 24.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [l] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width= l.500(Ft.) Gutter hike from flowline = l.500(In.) Manning's Nin gutter= 0.0150 Manning's N from gutter to grade break= 0.0150 Manning's N from grade break to crown= 0.0150 Estimated mean flow rate at midpoint of street= 4.704(CFS) ts • • • **** STREET FLOW TRAVEL TIME+ SUBAREA FLOW ADDITION**** Top of street segment elevation= 472.S00(Ft.) End of street segment elevation= 462.000(Ft.) Length of street segment = 530.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 41.000(Ft.) Distance from crown to crossfall grade break = 39.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width= 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's Nin gutter= 0.0150 Manning's N from gutter to grade break= 0.0150 Manning's N from grade break to crown= 0.0150 Estimated mean flow rate at midpoint of street= 0.533(CFS) Depth of flow= 0.181(Ft.), Average velocity= 2.094(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 4.282(Ft.) Flow velocity= 2.09(Ft/s) Travel time= 4.22 min. TC= 9.22 min. Adding area flow to street Decimal fraction soil group A= 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [ INDUSTRIAL area type Rainfall intensity= 5.327(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.950 Subarea runoff= 4.251(CFS) for 0.840(Ac.) Total runoff= 4.626(CFS) Total area= 0.89(Ac.) Street flow at end of street= 4.626(CFS) Half street flow at end of street= 4.626(CFS) Depth of flow= 0.323(Ft.), Average velocity= 3.379(Ft/s) Flow width (from curb towards crown)= 11.393(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 124.000 to Point/Station 125.000 **** STREET FLOW TRAVEL TIME+ SUBAREA FLOW ADDITION**** Top of street segment elevation= 462.000(Ft.) End of street segment elevation= 438.500(Ft.) Length of street segment 380.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) = 26.000(Ft.) Distance from crown to crossfall grade break = 24.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width= 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's Nin gutter= 0.0150 Manning's N from gutter to grade break= 0.0150 Manning's N from grade break to crown= 0.0150 Estimated mean flow rate at midpoint of street= 4.704(CFS) 15 • • • Depth of flow= 0.278(Ft.), Average velocity= 5.176(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 9.152(Ft.) Flow velocity= 5.18(Ft/s) Travel time= 1.22 min. TC= 10.44 min. Adding area flow to street Decimal fraction soil group A= 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type Rainfall intensity= 4.916(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c = 0.950 Subarea runoff= 0.140(CFS) for 0.030(Ac.) Total runoff= 4.767(CFS) Total area= 0.92(Ac.) Street flow at end of street= 4.767(CFS) Half street flow at end of street= 4.767(CFS) Depth of flow= 0.279(Ft.), Average velocity= 5.192(Ft/s) Flow width (from curb towards crown)= 9.202(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 125.000 to Point/Station 130.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 431.00(Ft.) Downstream point/station elevation= 414.67(Ft.) Pipe length = 103.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 4.767(CFS) Given pipe size= 18.00(In.) Calculated individual pipe flow = 4.767(CFS) Normal flow depth in pipe= 4.l0(In.) Flow top width inside pipe= 15.l0(In.) Critical Depth= 10.07(In.) Pipe flow velocity= 15.72(Ft/s) Travel time through pipe= 0.11 min. Time of concentration (TC) = 10.55 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 125.000 to Point/Station 130.000 **** CONFLUENCE OF MAIN STREAMS**** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area= 0.920(Ac.) Runoff from this stream= 4.767(CFS) Time of concentration= 10.55 min. Rainfall intensity= 4.883(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 126.000 to Point/Station 127.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type ,~ • • • Initial subarea flow distance = 50.00(Ft.) Highest elevation= 469.20(Ft.) Lowest elevation= 468.20(Ft.) Elevation difference= 1.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.52 min. TC= [l.8*(1.l-C)*distanceA.5)/(% slopeA(l/3)) TC= [l.8*(1.1-0.9500)*( 50.00A.5)/( 2.00A(l/3))= 1.52 Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff= 0.375(CFS) Total initial stream area= 0.050(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 127.000 to Point/Station 128.000 **** STREET FLOW TRAVEL TIME+ SUBAREA FLOW ADDITION**** Top of street segment elevation= 468.200(Ft.) End of street segment elevation= 459.000(Ft.) Length of street segment = 880.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 51.000(Ft.) Distance from crown to crossfall grade break = 49.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width= 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's Nin gutter= 0.0150 Manning's N from gutter to grade break= 0.0150 Manning's N from grade break to crown= 0.0150 Estimated mean flow rate at midpoint of street= 0.601(CFS) Depth of flow= 0.204(Ft.), Average velocity= 1.637(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 5.438(Ft.) Flow velocity= 1.64(Ft/s) Travel time= 8.96 min. Adding area flow to street Decimal fraction soil group A= Decimal fraction soil group B Decimal fraction soil group C = Decimal fraction soil group D = [INDUSTRIAL area type TC= 0.000 0.000 0.000 1.000 13.96 min. Rainfall intensity= 4.076(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = Subarea runoff= 4.647(CFS) for 1.200(Ac.) Total runoff= 5.022(CFS) Total area= 1.25(Ac.) Street flow at end of street= 5.022(CFS) Half street flow at end of street= 5.022(CFS) Depth of flow= 0.364(Ft.), Average velocity= 2.677(Ft/s) Flow width (from curb towards crown)= 13.434(Ft.) 0.950 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 128.000 to Point/Station 128.000 **** SUBAREA FLOW ADDITION**** l7 • • • Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type Time of concentration = 13.96 min. Rainfall intensity = 4.076(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.950 Subarea runoff = 2.091(CFS) for 0.540(Ac.) Total runoff = 7 .113 (CFS) Total area= 1. 79 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 128.000 to Point/Station 129.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 444.S0(Ft.) Downstream point/station elevation= 443.lO(Ft.) Pipe length = 106.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 7.113(CFS) Given pipe size= 24.00(In.) Calculated individual pipe flow = 7.113(CFS) Normal flow depth in pipe= 8.SS(In.) Flow top width inside pipe= 23.00(In.) Critical Depth= ll.36(In.) Pipe flow velocity= 7.0S(Ft/s) Travel time through pipe= 0.25 min. Time of concentration (TC) = 14.21 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 129.000 to Point/Station 129.000 **** SUBAREA FLOW ADDITION**** Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [ INDUSTRIAL area type group group group group A = B = C = D = 0.000 0.000 0.000 1. 000 Time of concentration= 14.21 min. Rainfall intensity= 4.030(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = Subarea runoff= 6.546(CFS) for 1.710(Ac.) Total runoff= 13.660(CFS) Total area= 3. SO (Ac.) 0.950 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 129.000 to Point/Station 160.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 442.77(Ft.) Downstream point/station elevation= 430.00(Ft.) Pipe length = 50.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 13.660(CFS) Given pipe size= 24.00(In.) Calculated individual pipe flow = 13.660(CFS) Normal flow depth in pipe= S.60(In.) Flow top width inside pipe= 20.30(In.) Critical Depth= 15.96(In.) Pipe flow velocity= 24.Sl(Ft/s) Travel time through pipe= 0.03 min. 18 • • • Time of concentration (TC) = 14.24 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 160.000 to Point/Station 161.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 429.67(Ft.) Downstream point/station elevation= 425.35(Ft.) Pipe length = 273.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 13.660(CFS) Given pipe size= 24.00(In.) Calculated individual pipe flow = 13.660(CFS) Normal flow depth in pipe= 11.72(In.) Flow top width inside pipe= 23.99(In.) Critical Depth= 15.96(In.) Pipe flow velocity= 8.97(Ft/s) Travel time through pipe= 0.51 min. Time of concentration (TC) = 14.75 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 161.000 to Point/Station 162.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 425.02(Ft.) Downstream point/station elevation= 419.00(Ft.) Pipe length = 275.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 13.660(CFS) Given pipe size= 24.00(In.) Calculated individual pipe flow = 13.660(CFS) Normal flow depth in pipe= 10.68(In.) Flow top width inside pipe= 23.85(In.) Critical Depth= 15.96(In.) Pipe flow velocity= 10.ll(Ft/s) Travel time through pipe= 0.45 min. Time of concentration (TC) = 15.20 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 162.000 to Point/Station 130.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 418.67(Ft.) Downstream point/station elevation= 414.17(Ft.) Pipe length = 35.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 13.660(CFS) Given pipe size= 24.00(In.) Calculated individual pipe flow = 13.660(CFS) Normal flow depth in pipe= 6.66(In.) Flow top width inside pipe= 21.49(In.) Critical Depth= 15.96(In.) Pipe flow velocity= 19.20(Ft/s) Travel time through pipe= 0.03 min. Time of concentration (TC) = 15.23 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 162.000 to Point/Station 130.000 **** CONFLUENCE OF MAIN STREAMS**** • • • The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area= 3.500(Ac.) Runoff from this stream= 13.660(CFS) Time of concentration= 15.23 min. Rainfall intensity= 3.853(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 75.425 16.42 3.670 2 4.767 10.55 4.883 3 13.660 15.23 3.853 Qmax (1) = 1. 000 * 1.000 * 75.425) + 0.752 * 1.000 * 4.767) + 0.953 * 1. 000 * 13.660) + = 92.022 Qmax(2) = 1. 000 * 0.642 * 75.425) + 1. 000 * 1.000 * 4.767) + 1.000 * 0.693 * 13.660) + = 62.683 Qmax (3) = 1.000 * 0.928 * 75.425) + 0.789 * 1.000 * 4.767) + 1.000 * 1.000 * 13.660) + = 87.386 Total of 3 main streams to confluence: Flow rates before confluence point: 75.425 4.767 13.660 Maximum flow rates at confluence using above data: 92.022 62.683 87.386 Area of streams before confluence: 23.390 0.920 3.500 Results of confluence: Total flow rate= 92.022(CFS) Time of concentration= 16.424 min. Effective stream area after confluence = 27.810(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 130.000 to Point/Station 135.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 412.67(Ft.) Downstream point/station elevation= 403.43(Ft.) Pipe length = 202.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 92.022(CFS) Given pipe size= 42.00(In.) Calculated individual pipe flow = 92.022(CFS) Normal flow depth in pipe= 19.20(In.) Flow top width inside pipe= 41.84(In.) Critical Depth= 35.67(In.) Pipe flow velocity= 21.50(Ft/s) Travel time through pipe= 0.16 min. Time of concentration (TC) = 16.58 min . 2.0 • • • ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 130.000 to Point/Station 135.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 1 Stream flow area= 27.Sl0(Ac.} Runoff from this stream= 92.022(CFS} Time of concentration= 16.58 min. Rainfall intensity= 3.648(In/Hr} ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 136.000 to Point/Station 137.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type group group group group A= 0.000 B = 0.000 C = 0.000 D = 1.000 Initial subarea flow distance = Highest elevation= 462.50(Ft.) Lowest elevation= 460.50(Ft.) Elevation difference= 2.00(Ft.} ] 95.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 2.05 min. TC= [l.8*(1.l-C)*distanceA.5)/(% slopeA(l/3)] TC= [l.8*(1.1-0.9500)*( 95.00A.5)/( 2.llA(l/3)]= Setting time of concentration to 5 minutes Rainfall intensity (I} = 7.904 for a 100.0 year Effective runoff coefficient used for area (Q=KCIA) Subarea runoff= 0.375(CFS) Total initial stream area= 0.050(Ac.) 2.05 storm is C = 0.950 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 137.000 to Point/Station 138.000 **** STREET FLOW TRAVEL TIME+ SUBAREA FLOW ADDITION**** Top of street segment elevation= 460.500(Ft.) End of street segment elevation= 421.500(Ft.) Length of street segment = 600.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 51.000(Ft.) Distance from crown to crossfall grade break = 49.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width= 1.500(Ft.) Gutter hike from flowline = l.500(In.) Manning's Nin gutter= 0.0150 Manning's N from gutter to grade break= 0.0150 Manning's N from grade break to crown= 0.0150 Estimated mean flow rate at midpoint of street= 0.479(CFS) Depth of flow= 0.147(Ft.), Average velocity= 3.448(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 2.599(Ft.) Flow velocity= 3.45(Ft/s) Travel time= 2.90 min. TC= 7.90 min. 21 • • • Adding area flow to street Decimal fraction soil group A= 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type Rainfall intensity= 5.885(In/Hr} for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.950 Subarea runoff= 3.075(CFS} for 0.550(Ac.} Total runoff= 3.450(CFS} Total area= 0.60(Ac.} Street flow at end of street= 3.450(CFS} Half street flow at end of street= 3.450(CFS} Depth of flow= 0.254(Ft.}, Average velocity= 4.907(Ft/s} Flow width (from curb towards crown}= 7.949(Ft.} ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 138.000 to Point/Station 138.000 **** SUBAREA FLOW ADDITION**** User specified 'C' value of 0.870 given for subarea Time of concentration= 7.90 min. Rainfall intensity= 5.885(In/Hr} for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.870 Subarea runoff= 38.910(CFS} for 7.600(Ac.} Total runoff= 42.360(CFS} Total area= 8.20(Ac.} ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 138.000 to Point/Station 135.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 406.00(Ft.) Downstream point/station elevation= 404.l0(Ft.) Pipe length = 5.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 42.360(CFS) Given pipe size= 30.00(In.} Calculated individual pipe flow = 42.360(CFS} Normal flow depth in pipe= 8.31(In.} Flow top width inside pipe= 26.85(In.) Critical Depth= 26.13(In.} Pipe flow velocity= 38.25(Ft/s) Travel time through pipe= o.oo min. Time of concentration (TC} = 7.90 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 138.000 to Point/Station 135.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 2 Stream flow area= 8.200(Ac.) Runoff from this stream= 42.360(CFS) Time of concentration= 7.90 min. Rainfall intensity= 5.884(In/Hr) Summary of stream data: Stream No . Flow rate (CFS) TC (min) 22 Rainfall Intensity (In/Hr) • • • 1 92.022 16.58 3.648 2 42.360 7.90 5.884 Qmax(l) = 1.000 * 1.000 * 92.022) + 0.620 * 1.000 * 42.360) + = 118.286 Qmax(2) = 1.000 * 0.477 * 92.022) + 1.000 * 1.000 * 42.360) + = 86.218 Total of 2 streams to confluence: Flow rates before confluence point: 92.022 42.360 Maximum flow rates at confluence using above data: 118.286 86.218 Area of streams before confluence: 27.810 8.200 Results of confluence: Total flow rate= 118.286(CFS) Time of concentration= 16.580 min. Effective stream area after confluence= 36.0l0(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 135.000 to Point/Station 139.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 403.l0(Ft.) Downstream point/station elevation= 400.63(Ft.) Pipe length = 90.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 118.286(CFS) Given pipe size= 42.00(In.) Calculated individual pipe flow = 118.286(CFS) Normal flow depth in pipe= 26.13(In.) Flow top width inside pipe= 40.73(In.) Critical Depth= 38.82(In.) Pipe flow velocity= 18.80(Ft/s) Travel time through pipe= 0.08 min. Time of concentration (TC) = 16.66 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 135.000 to Point/Station 139.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 1 Stream flow area= 36.0l0(Ac.) Runoff from this stream= 118.286(CFS) Time of concentration= 16.66 min. Rainfall intensity= 3.637(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 140.000 to Point/Station 141.000 **** INITIAL AREA EVALUATION**** User specified 'C' value of 0.850 given for subarea Initial subarea flow distance = 600.00(Ft.) Highest elevation= 442.00(Ft.) Lowest elevation= 428.00(Ft.) Elevation difference= 14.00(Ft.) Time of concentration calculated by the urban • • • areas overland flow method (App X-C) = 8.31 min. TC= [1.8*(1.l-C)*distanceA.5)/(% slopeA(l/3)] TC= [1.8*(1.1-0.8500)*(600.00A.5)/( 2.33A(l/3)]= 8.31 Rainfall intensity (I) = 5.696 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff= 20.866(CFS) Total initial stream area= 4.310(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 141.000 to Point/Station 142.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 414.00(Ft.) Downstream point/station elevation= 411.43(Ft.) Pipe length = 71.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 20.866(CFS) Given pipe size= 24.00(In.) Calculated individual pipe flow = 20.866(CFS) Normal flow depth in pipe= 11.79(In.) Flow top width inside pipe= 24.00(In.) Critical Depth= 19.63(In.) Pipe flow velocity= 13.60(Ft/s) Travel time through pipe= 0.09 min. Time of concentration (TC) = 8.40 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 142.000 to Point/Station 143.500 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 411.l0(Ft.) Downstream point/station elevation= 407.54(Ft.) Pipe length = 222.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 20.866(CFS) Given pipe size= 24.00(In.) Calculated individual pipe flow 20.866(CFS) Normal flow depth in pipe= 15.19(In.) Flow top width inside pipe= 23.14(In.) Critical Depth= 19.63(In.) Pipe flow velocity= 9.95(Ft/s) Travel time through pipe= 0.37 min. Time of concentration (TC) = 8.77 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 143.500 to Point/Station 143.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 407.04(Ft.) Downstream point/station elevation= 404.23(Ft.) Pipe length = 191.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 20.866(CFS) Given pipe size= 30.00(In.) Calculated individual pipe flow = 20.866(CFS) Normal flow depth in pipe= 13.55(In.) Flow top width inside pipe= 29.86(In.) Critical Depth= 18.63(In.) Pipe flow velocity= 9.69(Ft/s) Travel time through pipe= 0.33 min . Time of concentration (TC) = 9.10 min. • • • ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 143.000 to Point/Station 143.000 **** SUBAREA FLOW ADDITION**** Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [ INDUSTRIAL area type group group group group A= 0.000 B = 0.000 C = 0.000 D = 1. 000 Time of concentration= 9.10 min. Rainfall intensity= 5.372(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = Subarea runoff= 11.330(CFS) for 2.220(Ac.) Total runoff= 32.196(CFS) Total area= 6.53(Ac.) 0.950 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 143.000 to Point/Station 139.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 403.40(Ft.) Downstream point/station elevation= 401.63(Ft.) Pipe length = 45.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 32.196(CFS) Given pipe size= 30.00(In.) Calculated individual pipe flow = 32.196(CFS) Normal flow depth in pipe= 13.ll(In.) Flow top width inside pipe= 29.76(In.) Critical Depth= 23.18(In.) Pipe flow velocity= 15.60(Ft/s) Travel time through pipe= 0.05 min. Time of concentration (TC) = 9.15 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 143.000 to Point/Station 139.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 2 Stream flow area= 6.530(Ac.) Runoff from this stream= 32.196(CFS) Time of concentration= 9.15 min. Rainfall intensity= 5.354(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 118.286 16.66 3.637 2 32.196 9.15 5.354 Qmax(l) = 1. 000 * 1.000 * 118.286) + 0.679 * 1. 000 * 32.196) + = 140.155 Qmax(2) = 1. 000 * 0.549 * 118 .286) + 1. 000 * 1. 000 * 32.196) + = 97.134 Total of 2 streams to confluence: .z 5 • • • Flow rates before confluence point: 118.286 32.196 Maximum flow rates at confluence using above data: 140.155 97.134 Area of streams before confluence: 36.010 6.530 Results of confluence: Total flow rate= 140.155(CFS) Time of concentration= 16.660 min. Effective stream area after confluence= 42.540(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 139.000 to Point/Station 121.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 400.13(Ft.) Downstream point/station elevation= 382.00(Ft.) Pipe length = 265.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 140.155(CFS) Given pipe size= 42.00(In.) Calculated individual pipe flow = 140.155(CFS) Normal flow depth in pipe= 21.80(In.) Flow top width inside pipe= 41.97(In.) Critical depth could not be calculated. Pipe flow velocity= 27.78(Ft/s) Travel time through pipe= 0.16 min. Time of concentration (TC) = 16.82 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 139.000 to Point/Station 121.000 **** CONFLUENCE OF MAIN STREAMS**** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area= 42.540(Ac.) Runoff from this stream= 140.155(CFS) Time of concentration= 16.82 min. Rainfall intensity= 3.615(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 111.000 to Point/Station 116.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil group group group group A= 0.000 B = 0.000 C = 0.000 D = 1.000 [INDUSTRIAL area type ] Initial subarea flow distance = 360.00(Ft.) Highest elevation= 430.00(Ft.) Lowest elevation= 420.00(Ft.) Elevation difference= 10.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.64 min. TC= [1.8*(1.l-C)*distanceA.5)/(% slopeA(l/3)) TC= [1.8*(1.1-0.9500)*(360.00A.5)/( 2.78A(l/3)]= Setting time of concentration to 5 minutes 3.64 • • • Rainfall intensity (I) = 7.904 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.950 Subarea runoff= 15.919(CFS) Total initial stream area= 2.120(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 116.000 to Point/Station 117.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 410.17(Ft.) Downstream point/station elevation= 400.90(Ft.) Pipe length = 474.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 15.919(CFS) Given pipe size= 30.00(In.) Calculated individual pipe flow = 15.919(CFS) Normal flow depth in pipe= 10.80(In.) Flow top width inside pipe= 28.80(In.) Critical Depth= 16.15(In.) Pipe flow velocity= 10.00(Ft/s) Travel time through pipe= 0.79 min. Time of concentration (TC) = 5.79 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 117.000 to Point/Station 117.000 **** SUBAREA FLOW ADDITION**** Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type group group group group A= 0.000 B = 0.000 C = 0.000 D = 1.000 Time of concentration= 5.79 min. Rainfall intensity= 7.190(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = Subarea runoff= 25.343(CFS) for 3.710(Ac.) Total runoff= 41.262(CFS) Total area= 5.83(Ac.) 0.950 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 117.000 to Point/Station 118.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 400.57(Ft.) Downstream point/station elevation= 387.63(Ft.) Pipe length = 42.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 41.262(CFS) Given pipe size= 30.00(In.) Calculated individual pipe flow 41.262(CFS) Normal flow depth in pipe= 8.65(In.) Flow top width inside pipe= 27.18(In.) Critical Depth= 25.85(In.) Pipe flow velocity= 35.22(Ft/s) Travel time through pipe= 0.02 min. Time of concentration (TC) = 5.81 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 117.000 to Point/Station 118.000 **** CONFLUENCE OF MINOR STREAMS**** l7 • • • Along Main Stream number: 2 in normal stream number 1 Stream flow area= 5.830(Ac.) Runoff from this stream= 41.262(CFS) Time of concentration= 5.81 min. Rainfall intensity= 7.175(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 119.000 to Point/Station 120.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type group group group group A= 0.000 B = 0.000 C = 0.000 D = 1.000 Initial subarea flow distance = Highest elevation= 436.00(Ft.) Lowest elevation= 433.00(Ft.) Elevation difference= 3.00(Ft.) ] 75.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.47 min. TC= [1.8*(1.l-C)*distanceA.5)/(% slopeA(l/3)) TC= [1.8*(1.1-0.9500)*( 75.00A.5)/( 4.00A(l/3))= Setting time of concentration to 5 minutes Rainfall intensity (I) = 7.904 for a 100.0 year Effective runoff coefficient used for area (Q=KCIA) Subarea runoff= 0.375(CFS) Total initial stream area= 0.050(Ac.) 1.47 storm is C = 0.950 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 118.000 **** STREET FLOW TRAVEL TIME+ SUBAREA FLOW ADDITION**** Top of street segment elevation= 433.000(Ft.) End of street segment elevation= 396.500(Ft.) Length of street segment = 550.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 26.000(Ft.) Distance from crown to crossfall grade break = 24.500(Ft.) Slope from gutter to grade break (v/hz) = 0.020 Slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) Slope from curb to property line (v/hz) = 0.020 Gutter width= 1.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's Nin gutter= 0.0150 Manning's N from gutter to grade break= 0.0150 Manning's N from grade break to crown= 0.0150 Estimated mean flow rate at midpoint of street= 0.473(CFS) Depth of flow= 0.146(Ft.), Average velocity= 3.484(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 2.540(Ft.) Flow velocity= 3.48(Ft/s) Travel time= 2.63 min. TC= 7.63 min. Adding area flow to street Decimal fraction soil group A 0.000 Decimal fraction soil group B = 0.000 • • • Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type Rainfall intensity= 6.018(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.950 Subarea runoff= 2.973(CFS) for 0.520(Ac.) Total runoff= 3.348(CFS) Total area= 0.57(Ac.) Street flow at end of street= 3.348(CFS) Half street flow at end of street= 3.348(CFS) Depth of flow= 0.251(Ft.), Average velocity= 4.913(Ft/s) Flow width (from curb towards crown)= 7.812(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 118.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 2 in normal stream number 2 Stream flow area= 0.570(Ac.) Runoff from this stream= 3.348(CFS) Time of concentration= 7.63 min. Rainfall intensity= 6.018(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 41.262 5.81 7.175 2 3.348 7.63 6.018 Qmax(l) = 1.000 * 1.000 * 41.262) + 1.000 * 0.761 * 3.348) + = 43.811 Qmax(2) = 0.839 * 1.000 * 41.262) + 1.000 * 1.000 * 3.348) + = 37.957 Total of 2 streams to confluence: Flow rates before confluence point: 41.262 3.348 Maximum flow rates at confluence using above data: 43.811 37.957 Area of streams before confluence: 5.830 0.570 Results of confluence: Total flow rate= 43.811(CFS) Time of concentration= 5.810 min. Effective stream area after confluence= 6.400(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 118.000 to Point/Station 121.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 387.30(Ft.) Downstream point/station elevation= 383.17(Ft.) Pipe length = 43.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 43.811(CFS) Given pipe size= 30.00(In.) Calculated individual pipe flow = 43.811(CFS) Normal flow depth in pipe= 12.15(In.) -~---------------------------------------------------, • • • Flow top width inside pipe= 29.45(In.) Critical Depth= 26.46(In.) Pipe flow velocity= 23.5l(Ft/s) Travel time through pipe= 0.03 min. Time of concentration (TC) = 5.84 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 118.000 to Point/Station 121.000 **** CONFLUENCE OF MAIN STREAMS**** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area= 6.400(Ac.) Runoff from this stream= 43.8ll(CFS) Time of concentration= 5.84 min. Rainfall intensity= 7.150(In/Hr) Summary of stream data: Stream No. 1 2 Qmax(l) Qmax(2) Flow rate (CFS) 140.155 43.811 = 1. 000 * 0.505 * = 1. 000 * 1. 000 * TC (min) 16.82 5.84 1.000 * 1.000 * 0.347 * 1.000 * 140.155) 43. 811) 140.155) 43.811) Total of 2 main streams to confluence: Flow rates before confluence point: 140.155 43.811 Rainfall Intensity (In/Hr) 3.615 7.150 + + = 162.301 + + = 92.481 Maximum flow rates at confluence using above data: 162.301 92.481 Area of streams before confluence: 42.540 6.400 Results of confluence: Total flow rate= 162.301(CFS) Time of concentration= 16.819 min. Effective stream area after confluence = 4 8 . 94 0 (Ac . ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 121.000 to Point/Station 121.000 **** SUBAREA FLOW ADDITION**** User specified 1 C1 value of 0.920 given for subarea Time of concentration= 16.82 min. Rainfall intensity= 3.615(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.920 Subarea runoff= 36.646(CFS) for 11.020(Ac.) Total runoff= 198.947(CFS) Total area= 59.96(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 121.000 to Point/Station 144.000 • • • **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 381.S0(Ft.) Downstream point/station elevation= 361.33(Ft.) Pipe length = 381.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 198.947(CFS) Given pipe size= 48.00(In.) Calculated individual pipe flow = 198.947(CFS) Normal flow depth in pipe= 26.86(In.) Flow top width inside pipe= 47.66(In.) Critical depth could not be calculated. Pipe flow velocity= 27.Sl(Ft/s) Travel time through pipe= 0.23 min. Time of concentration (TC) = 17.05 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 144.000 to Point/Station 144.000 **** SUBAREA FLOW ADDITION**** Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type group group group group A= 0.000 B = 0.000 C = 0.000 D = 1.000 Time of concentration= 17.05 min. Rainfall intensity= 3.583(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = Subarea runoff= 14.704(CFS) for 4.320(Ac.) Total runoff= 213.651(CFS) Total area= 64.28(Ac.) 0.950 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 144.000 to Point/Station 170.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 361.00(Ft.) Downstream point/station elevation= 358.33(Ft.) Pipe length = 81.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 213.651(CFS) Given pipe size= 60.00(In.) Calculated individual pipe flow = 213.65l(CFS) Normal flow depth in pipe= 28.29(In.) Flow top width inside pipe= 59.90(In.) Critical Depth= 49.SS(In.) Pipe flow velocity= 23.47(Ft/s) Travel time through pipe= 0.06 min. Time of concentration (TC) = 17.11 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 170.000 to Point/Station 170.000 **** SUBAREA FLOW ADDITION**** Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type Time of concentration Rainfall intensity= group A = 0.000 group B = 0.000 group C = 0.000 group D = 1.000 = 17.11 min. 3.575(In/Hr) 31 for a 100.0 year storm • • • Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = 0.950 Subarea runoff= 10.529(CFS) for 3.l00(Ac.) Total runoff= 224.lS0(CFS) Total area= 67.38(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 170.000 to Point/Station 171.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 358.00(Ft.) Downstream point/station elevation= 347.40(Ft.) Pipe length = 325.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 224.lSO(CFS) Given pipe size= 60.00(In.) Calculated individual pipe flow = 224.lS0(CFS) Normal flow depth in pipe= 29.16(In.) Flow top width inside pipe= 59.98(In.) Critical Depth= 50.91(In.) Pipe flow velocity= 23.66(Ft/s) Travel time through pipe= 0.23 min. Time of concentration (TC) = 17.34 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 171.000 to Point/Station 171.000 **** SUBAREA FLOW ADDITION**** Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type group group group group A= 0.000 B = 0.000 C = 0.000 D = 1.000 Time of concentration= 17.34 min. Rainfall intensity= 3.545(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = Subarea runoff= 18.184(CFS) for 5.400(Ac.) Total runoff= 242.364(CFS) Total area= 72.78(Ac.) 0.950 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 171.000 to Point/Station 172.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 347.00(Ft.) Downstream point/station elevation= 341.l0(Ft.) Pipe length = 230.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 242.364(CFS) Given pipe size= 60.00(In.) Calculated individual pipe flow = 242.364(CFS) Normal flow depth in pipe= 32.84(In.) Flow top width inside pipe= 59.73(In.) Critical Depth= 52.45(In.) Pipe flow velocity= 22.04(Ft/s) Travel time through pipe= 0.17 min. Time of concentration (TC) = 17.51 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 172.000 to Point/Station 172.000 **** SUBAREA FLOW ADDITION**** JZ • • • Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type A= 0.000 B = 0.000 C = 0.000 group group group group D = 1.000 Time of concentration= 17.51 min. Rainfall intensity= 3.522(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = Subarea runoff= 6.357(CFS) for 1.900(Ac.) Total runoff= 248.721(CFS) Total area= 74.68(Ac.) 0.950 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 172.000 to Point/Station 173.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 340.70(Ft.) Downstream point/station elevation= 333.40(Ft.) Pipe length = 220.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 248.721(CFS) Given pipe size= 60.00(In.) Calculated individual pipe flow = 248.721(CFS) Normal flow depth in pipe= 30.84(In.) Flow top width inside pipe= 59.98(In.) Critical Depth= 52.97(In.) Pipe flow velocity= 24.44(Ft/s) Travel time through pipe= 0.15 min. Time of concentration (TC) = 17.66 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 173.000 to Point/Station 173.000 **** SUBAREA FLOW ADDITION**** Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type group group group group A= 0.000 B = 0.000 C = 0.000 D = 1.000 Time of concentration= 17.66 min. Rainfall intensity= 3.503(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, C = Subarea runoff= 17.635(CFS) for 5.300(Ac.) Total runoff= 266.356(CFS) Total area= 79.98(Ac.) 0.950 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 173.000 to Point/Station 174.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 333.00(Ft.) Downstream point/station elevation= 328.00(Ft.) Pipe length = 90.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 266.356(CFS) Given pipe size= 60.00(In.) Calculated individual pipe flow = 266.356(CFS) Normal flow depth in pipe= 27.63(In.) Flow top width inside pipe= 59.Sl(In.) Critical Depth= 54.23(In.) Pipe flow velocity= 30.16(Ft/s) Travel time through pipe= 0.05 min. 33 Time of concentration (TC) = 17.71 min. • End of computations, total study area= 79.98 (Ac.) • • -0 ...Q ----• Fut1jty Nanie Melrose (south of Aspen Way) Faraday BJB BJ Prepared By: 450 1,050 1,560 670 Rick Engineering Company • Water Resources Division • Table 2 Summary of Proposed Detention Facilities Rancho Carlsbad Channel and Basin Project 100-year, 24-hour Storm Event 180 780 1,200 350 36" RCP 6'x7'RCB 1-1 0'x7' RCB &48" RCP 6'x3'RCB 329 240 75 76 12 41 49 49 48 7 7 15 8 • 13 (Alt. 2) 25 (Alt. 1) 19 19 19 DCB:MDL:emn/Report/J, ll 182.00 l 07/01/98 \--fl \ j -\ " ,f,f.?;J ©2001 O'Day Consultants, Inc. j j / I I I -' ,,) I • 4627 .. ·," '"'f' 9 I • ~If,; ', I ~ ,I • k6 rl I ;• l ' I -'i h-~ • JIM 1 ~J1$.7 I \ I , __ , - I - ,:_F:-:c -------___ 'lo ---............, _____ _ I I I SCA/.£.· N ,. = 100' -,- 1 ' I I ------------ ·:\ 'I, • " ' _/----\ - "fa78 • J.59 -~ • J;;o 9 • J605 J61 ! • J6! j _,--· \ \ \'\_ \•" \ . ' :o'..? \ '-;}, '._..6"-·~\ DESCRIPTION: LOCATION: RECORD FROM: ELEVATION: --', --.,✓ '-x ,, --•-1->:.)· 11 \ \ _,;90-"-- / ' , P.---1:.::) ____ -,,:; ------ ' \ ·STANDARD STREET SURVEY MONUMENT APPROX. 1400 FEET SOUTH OF PALOMAR AIRPORT ROAD ON CENTERLINE OF El CAMINO REAL NORTH COUNTY VERTICAL R-1800 308+76 297.25 M.S.L. CONTROL DAT,4 -- Jo' SHEET 13 OF 13 C.T. J(i' 15' 15' A.C: PAVEO ACCESS ROAO }7).,rj'- \ ---------------------- SECTION 11 ' -11 ' TYPICAL ACCESS ROAD SECTION NO SCALE o· 200' ---100 SCALE: 1 " = 1 oo' SHEETS 99-06 OFF -SITE__ -,£MPDRAR.y bR.Atrv I-\ '(DR ()LOGY PALOMAR FORUM REIi/SEO AUWST 2, 200! R£11S£0 JULY 13. 200! REIi/SEO APRIL J 2001 REIi/SEO NOV£Mt:1£R 22, 2000 REIi/SEO JUN£ 2. 200/) REIi/SEO APRIL i9, 2000 REIi/SEO JAN 12. 2000 REIi/SEO AUGUST 12, 1999 REIi/SEO MAY 12 1/199 DA!F"1w PRFPARAT/{IN -IAN/JARY ftJOO c~~~:?, DESIGNED BY: HR DA TE: JANUARY 1999 DRAWN BY: T.G. SCALE: 1. -1()0' PROJECT MGR.· T.O.C. JOB NO.: 98-1022 s ~900 Posteur Court Civ'1I Engineering ENGINEER OF WORK Suite 100 Plonning Carlsbad, Coliiomia 92008 ProcErssin9 ---;z::-c~ 760-9J1-7700 Surveying ro)(: 76D-9.31-8680 DATE: www.odcryconsultcnls.com TIMOTHY 0, CARROLL, JR. RCE: 55381 G>\JDBS\981022\9822Tl3.D\,/[j 8-3-01 1),(12119 OM [ST XR(FS: 9135t.1AP, 97.55TOPO, 9822~AP, 9821STR, 98221, 9822TCPO, 98Z2UTL, HR-Gl<D. HR-1,Ul PSO: 9822TIO ,, I I ., "i / ' ' I'. ;·1·32/5 - . .I X J24.5 •'-1.- I I . : l ·'·---."l-(r .) ,,,",i'. i i ,, X J-,?Jf X J,?JO ' -- ,. '"":1 ii/ !-I.Ji)//'/ ~/_1 / uii/., ' ::.) I I I.I r /t I I / I .' I , 10 i Ii N ,, I I ," ,-::.-,'_./ ,,, I I I I I I Ii I .. I I I I II I I I - X 5.J I X Jo59 . , I I I I ( © 1998 O'Day Consultants, Inc. I ' / Ble-~chers X J.,7.0 / / ,, ,· ,1 I X J2f4 X J572 Bleachers X --------------- I I X J44.5 X J40.7 X JJ2_6 ' / 1>· // ./,1//,)' I // ( I ! / I r ,· / / ' II )./-~----~-~----_ \, 'It!) / /-..... --s ... ¥----·-Y. l., --- X JJ4,8 ( I 1 -~:::.::~ ::'~ .f ::.~.::= :;;,_ ·: -... ', ·----·• .-·· --X JoJ:~ /.,-. ---~ _ ___.--I I\ xJ&2 / \ _,,,, ' / X ✓~-._,. -olr--- § t-~ w I X JJ6.o X J67. 4 :J-'A -• I I I _,. -.. \, -'"--_: '. . . ------· ___ .. --.. _____ --, . . #-· ' ---1 -- 4 -\ X J5J4 .\, ··~ ,,,.,-.... ··· \ ', . b ' ... li, j_ / " --·--·-·, - \ .......... ' ' ... ,· .· . ./ ' ,,,. .. ... •-'--:::-'::;,' .... <$' ,! ---· ;59?. -_ -.---. • .c• •·· •· .,,,- ___ .... ----__ .-.. ----- ---:.:~----. -· - 1 l.9 AC 2 2, 015 \ , x\Jo15 \ \ \ \ ' \ \ \ X Jli/.7 --~----- S££ SH££1 2 ----- t x J67. I ------- X J5.9,,5 -----------. ---- X J6f.5 ' ' I , P. BAS I -:~;==~ -~-: c· ' . -~,.., ,.,--,.::::... ~ - I --~'.,:, ___ . ·--(--' I ':' "'""·~.' \ \ ~-: - ~l ' ~, J725., I (', 11.·. I ,, X J47.c"J/ ----,-' ', I X J,f9,0 t :, .1 J49.7 Hdwl X J52.0 X 404.8 X Joo. 7 ',. X Jo72 X Jfi{i4 X X ¢04.8 I, -.,., ___ .-~------------·---..... --,- x J824 ,' ~ -' - '\ .• X Jo --\ I '. •'i> -l .. -,· --::: - X J78.8 , --" . - 'J...L.,.... I ' ' 7 i '1 \ X 40Y'. ',I 1 1 r-, ';_ / '._~-4~~6 ·· >'··· I,; , /J8 ·, -' ' ' -' ,/ "-., __ . X X 405.J ·----- 1 X X 400/ X 40,l. 5 X 406.7 I 1. X 402, t : . .;;;.:;,· __ _ k -~ ~---~· =0::: -_,,'iL -JO . -----;-=-···----;;;-___ _ PALOMAR FORUM SHEET50F5SH££T r------::;----~---=:...:....:....:~~=-==:-::;:-i O' 120' -----60 SCALE: 1 " = 60' DR.)!1 lw.)4 GE S Tiu.lJ Y ~ DESIGNED BY: H.R./A.B. DATE: DECEMBER 2001 , 0/ ~~ TG SCALE: 1" = 60' . DRAWN BY:~·~· --- PROJECT t.tGR.~· ~T-=C~-__ JOB NO.: 981022 , CDNSULTATS 5900 Posteur Court Suite 1 OD Carlsbad, Colifornkl 921)08 760-931-7700 Fox: 760-931-BSB0 Civil EngineerinQ Pkmnir.g Processing Surveying ENGINEER OF WORK: TIMOTHY O. CARROll G•\JOBS\98I022\9822HYIO.D'wG 12-5-2002 11•36•13 oa PST Xrefs: 9~?2MAP.GRQ, )TR.UTL, TFO ! , 02,0J,9n~P .G RD.STR,VTL.TOPO PSO: NONE RCE: 55381 •, '•-... . ·1>··, '• ,.· _,. ,- ( I -------. ,1 ) '1 I I ' I l~I "l I ' 'i< ---\ \ \ / / ' I I I I I I : I I I I I 11 ,' I I '\ . ---·-·-- ' I ' : :~'.;;:::'.;/ /'// / / / ,,·· ,,•__,,j i/1/ // /;/1 // i i I ,: ,,I I , . I / / /,/ /// / ,.<>/ ' \ I ,1/ --I \ I ' ,,' //,' ,' j /,c © 1998 O'Day Consultants, Inc. X X I i I I "·-.' \ . ---+--- -I "'-"'T ✓ \,. J / ' -----------·- ··------·-'' 410-----~~· ·' ,,::4 ,,· ,.-,, -.,-- "l sj ~ X D D 0 z X X ·~:---. .. ,/:, ' ' ' / ,, , I 1,, f fii \ ' ' ' I ' I . '. . ', ' ' ' ' ' ' ' . / /' ,' ·-·· fJ. 3' .A. . ' ' ' . ' --_ -, -~~-----. -~ ---,...-~ . -~ . ' . . ----" --:-:-. ·_ ... " --- ·_·.-~.:::>· X ' I i I i, I, I! I " I , I ' ' ' ', 1, \ \, \,-··· ' ' I : ' \ ·: \,'c•/' ,_ '., ', X X "-------4JO-- X - X "l S>i ~ X / I DRA!i I 0 0 "' 0 z ,, ~ '.:;; \ -.5.:"") ·, ,_ X I ' ,' \1 I , I ' . I'--_ ___, \ ------ X - STUDY / I " ' '· ! " ~ X I "' ~ I ;::: .,, I~ X Ix /'. I I '1 I, ' O' 120' ----c60 0 SCAL~ 1 " = 60' z / / , ,-/ i '£ /SH. I ///./' ' I ,i' / ,' ; ,' ]' I .,• I ' i ' ' I I !' I ! ' ;....,,• ' ' /f / \ / .J I\/ ' / " 'I'• I •. 'a.-a..J I I ! c. " r,.; ~ X '<, "' ::;; X C D N S U L T 5900 Pasteur Court Suite 100 Corlsbod, California 92008 760-931-7700 Fox: 760-931-8680 Clvil En9IMering Planning Processing Surveying \ I X \oitSIGNED ~Y: H.R. B. DATE: DECEMBER 2001 <fl~AWN BY,\ T.G. 0 I CALE: 1 • = 60' A>RiJJECT M~R.· T.C.~-I OB NO.: 981022 I ,-..-,----+-------,.---t-+--------, I E~GlNEER 0. , WORKi" I RCE: 55381 11M01HY 0. CARROil G1\JOBS\981022\9822HYD9.D\IG 12-5-2002 11,32,48 OM PST Xrof,: !lll22MAP,CRD,STR,VTL,T~11,02,0J,9:J5MAP,CRO.STR,IJTL,TOPO PSD: NONE X X '-\ \ ~ -- ,' --·~---~-'-'----------- .. I fl.. . ... • ··· .. , I ...... . /!1 -1// . I, .. //1/w' . ,/, ~·-..•. l.J?O A I . l I X 444.9 X 44J,9 _IA 1 nrui.. a'nnv _ Consultants, Inc. ' ! ! I ' •. I 3l",---+--l-,+-L' _jJo ( ·--.\"",.j / ,-\ ~. / I 1( / \I 1\ I · vi 1 · v\!.,...._,t \' x ~ • ' _C;y i ,' I I :✓/ I\ // / / \ f i,.-/ -._ II<. ?' "-1 / ix 461..7 / v----/. . i X 465, 4 ,o// (,,., r,, I A ., /j' I -1· ~I ~--. I ··.. I t I I I I ,( 4E!.2 AC I I I I I I ~ ·, ' \ X 464.8 :_L I I I .:..:...=>-:-:-1--,--..--1---1 .... . I \ '"~....__ -· \ ' ,.:JW ---_ 1 \;.__;,,,,. ~ -'I i /' ,' / '~"--;, ;.\ . ··-~ - ··-~-- \ X J9J2 ----,. --~• -.. >'-c ----0------ ------ . ---- J •. · .88AC •,,, ·--._ "-, •, .. _·· ·•·· ......... ~:-. ~6: -' ,_<'..?~ ·,,,, \"' . ' ', ' ' --' ' ' ' --'---' -' ?o . ' --, ---...... - ·. ~ · .. ··.... ·~-.,. 4 3 ·, ··-.,., ·-t,_ -(._ .... \ \ ·,. '. '·· ..... ~ <\·., ...... '··. __ ~ \ .. , -... \, ...... ,. ' ~\' •,.•~·· ' -._ ... ,, , ...... ,__ . '"-."-,__ I + PALOMAR FORUM DRAINAGE STUDY o· 120' -----60 SCALE: 1 " = 60' : S~£ SflEEfr 5 / r I I , __ I ,, ·,. . ' -_ "-> •• ,., •• -._ . -~,.,. .. . •. . . '•, ·. ''. ....... \ X 4706 ' I ' X J69.i\ . "b. ... . ·. . ' ' . ',, '·\. . , .. ' \ ~ ' ·. . \ \ I ' ' i j ' I ! -- r---_,,,,_ __ '" -----"" -·-........ ,----.... -- x 458.5 -------- ·------------ .• · ·oX 457.2 -T'--- X 454,8 ,-X 457.J X4j57 , . ' SH££T .J OF,155, SHEET. ,'?:~Jr DESIGNED BY: H.R.LA.B. DATE: OECEMBr\i 2001 DRAWN BY: T.G. SCALE: 1· = 60' PROJECT MGR: T.C. JOB NO.: 981022 s 5900 Pasteur Court Clvil Engir.eerinQ ENGINEER OF WORK: Suite 10D Planning Carlsbad, California 92:)08 Processing 760-931-7700 Surveying RCE: 55381 Fox: 760-931-8680 TIMOTHY 0, CARROLL G:,JDBS\981022\9822HYD8.D'w'G 12-5-2002 11=31=24 nf'l PST Xrefe: ~~i2MAP,GRD,S1R,Ull,TP01,0?,0J,97JoMAP.CRD,STR,VTl,TOPO PSO: NONE 456'.J C ' I l -/ i / ---.i.. J ----.JDO . ~-.:.::~. -. ,,,, ,.;_-. • .. -.... - ', .... '•,,, • ... , ...... ··•.,., ' '·,, ,., '·,-' -' -~ ' "'>. ~ ..... \\' >,.~ !,..,. \/ '"\ ~.. l. \. ,...._ ~·\ \\\ " \ \\ \ \ I I I ' ' I I I ·,.,_ -...... --...... ,_ ---- •., .......... -z -··-~-~ ---" . ~-·:-:·:·:·~.:~?::~::: ::(_ -. ·-x-.dF:7J " .. "••, .. ·,~ -~ ~-•~, -- .... -..........._ ',-.._,: .. ~--------x 4513:4'\,---·: :":-~---. ---~---:::>\ -,, ----c"-..... ,,,/ ........ -_.-·· ... _,.-·~...,,,_ ... --/ -____ .. , .... -----::-:.:---\ ---~-/- :•, -~~... _' --,.·-· ·--.... -- • M. ----•,,._,__-4½-------- X -f --,. ___ _ ""' -~--', ., \--( , ',--:-:---X 458,5---.., ______ _ \ ----•, ---:~:::-----X-457_2 ~ ' -r ~::::·: :•·1/ l f C 7 C ---;..."'. ~45! > -' DI ----- X 454,8 X 4,57, J . ____ ; X 4,57.2 X 458.J © 1998 O'Day Consultants, Inc. "' ',, ~.JO....Z ·. ,_ \,\ ', "G. \ /. ·-,'•,O Ir '-....... \'-~ ',,:\, • ..;; ' \ /.. '\ '\, ·, ,, -._ I ·, 1,,, \ .. ' '-.'-.,, ",, ..2:....-..... ' / "-.l / /'\ <!=' / / /' t, .J._// ' ' ---=-:;:-:- i'X' 459.6 X ./572 ,, \ X 45.9. 0 :.:::,___ ------ X .f56J X 457.,/' - /',AC I \ • \'· .• 1,··.-.. -.®. -~.\ I . -~ib . ' ', ' ' ,_' ' ', .. ,,_ '•,.,' '·<>--.:-. -, ,, ,.__ ------------··-, , __ _ ··-, •. -- ' ' ' ' ' ' -,...,,, __ . -.\. . I ' ---+ --1 "1 . -------- .._II X 452.9 X 40-,(8 X 40J.8 X 4f , "8 o' ' ' { X 404.8 t_ __..-! -~ ---- X 4¢58 --~ --"u 60 SCALE: 1' -60' -- --=-= -""'."" - •·' -__ .. ---__ ,-' __ , --__ .... / ---,- 30 / - _J. ,-· ,4 • -.-" / <t ---~ ~ __.. ...... ---· / 1-- X 4 '4.9 I ' ii '' /I // "~ /;/' ~ _,!/ ------1~--~ _,. ___ .... ----·· "><;-45J.6 ! ' ' ' X 4208 --------- ,,/ // /- ,' / I I • /1 • I I ~ I I I ......-11 ' ' ' i I ,_ I ,.J.,. '/ I ~ e ,.,.-,to/ ;;;,,· .,.. .,,...,. >-· .,.. -- ✓.-· ~----1:=·<-;:p-,-· --· .,.. :;'A~~v .,...,,.-.r_ ··· . JI ' . R FORUM DRAINAGE STlJDY 120' 5900 Posteur Court Suite 100 Corlsbod, California 92008 760-931-7700 F"ox: 760-931-8680 Civil Engineering Planning Processing Surveying SHEET 2 OF 5 SHE/ftT DESIGNED BY: _JJ!ti~L DATE: DECEMBER 2001 DRAWN BY: T.G. SCALE: 1 • = 60' PROJECT MGR,• T,C, JOB NO.: 9810Z2 ENGINEER OF' WORK: RCE: 55381 TIMOTHY 0. CARROLL G•'\J□BS\981022'\9822H"/D7.D\/G 12-5-2002 11•09•33 OM PST Xref,s; 982ZMAP1GRD,STR,IJTL,TPOI 10Z,C3,97J::iMAP ,GRO,S1R,uT;.;roPO PSO: NONE -. :.·•:•'-·,.,,,',, __ _ . >< 405.J .. ----------~- 1 ___ , __ ' I i / I I I' I \\ I I \ I ) I I tr--.1 1t ,,J / I - / ' I ' I ' / / , / © 1998 O'Day Consultants, Inc. X 420.8 / l'' . ' I I \ \r' '· ', ,. t \ ' i I) \\\~)·\\\· j ( X 4n7 -~ ,, 1'- -~~-,' --:;-;__·,..__ <:"Hdwl __ _ / ,/ I _, / .I / / / i I J_ i ( i ,--:>1 I-.-• ' -. ·······1·· ----· / -1,,------,~ .··/· ··;if -/ .·········· /_:::-----430 -----. -···----- >< 4J26 -:~i• -\ I J_ : 1 •. / ..... •.• .. • '/"•·,,:, ttjl X 46. .0 SHEET 1 ctq:~ DESIGNED BY: H.R.LA.B. DRAWN BY: T.G. PROJECT MGR.· T.C. s 5900 Posteur Cc~ Civil Engineering ENGINEER OF WORK: -' Planning Carlsbad, California 92008 Processing 760-931-noo Surveying Fox: 760-931-8680 llMOlHY 0. CARROLL G•\JDBS\981022\9822HYD6.D',/G 12-5-2002 11•27•45 OM PST Xrefs: 9822MAP.GRO,S1R,Ull,TP01,02,0J.97J5MAP.GRD.STR.I/TL.10PO PSD: NONE Gate X 464,9 --.~. --. ·-------~:~ -- X 502.8 __ --------------- 5 oo ~-/ ..... \ OF 5 SHEET DATE: DECEMBER 2001 SCALE: 1" -60' JOB NO.: 981022 RCE: 55381 \ \ \ \ \ Hydrology Study ATTACHMENT E POST DEVELOPED Q CALCULATIONS Steps Taken To Analyze This Condition The Rational Method as outlined in section 3 of the June 2003 San Diego County Hydrology Manual is followed here. The software that we are using is the “Rational Hydrology Method, San Diego County (2003 Manual)” module of the CIVILCADD/CIVIL DESIGN Engineering software version 7.9. Please see the subsequent pages for the calculations. These calculations are for the Q100. The results are outlined/summarized in Section 8. 20-061 Post Development Page 1 of 13 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2019 Version 9.1 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 05/10/21 ------------------------------------------------------------------------ 20-061 Post Development ------------------------------------------------------------------------ ********* Hydrology Study Control Information ********** ------------------------------------------------------------------------ Program License Serial Number 6332 ------------------------------------------------------------------------ Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 3.000 24 hour precipitation(inches) = 5.300 P6/P24 = 56.6% San Diego hydrology manual 'C' values used ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 101.000 to Point/Station 102.000 **** INITIAL AREA EVALUATION **** ______________________________________________________________________ Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] (Office Professional ) Impervious value, Ai = 0.900 Sub-Area C Value = 0.850 Initial subarea total flow distance = 90.000(Ft.) Highest elevation = 435.000(Ft.) Lowest elevation = 431.000(Ft.) Elevation difference = 4.000(Ft.) Slope = 4.444 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 90.00 (Ft) for the top area slope value of 4.44 %, in a development type of 20-061 Post Development Page 2 of 13 Office Professional In Accordance With Figure 3-3 Initial Area Time of Concentration = 2.60 minutes TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] TC = [1.8*(1.1-0.8500)*( 90.000^.5)/( 4.440^(1/3)]= 2.60 Calculated TC of 2.597 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 7.904(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 0.430(CFS) Total initial stream area = 0.064(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 103.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** ______________________________________________________________________ Estimated mean flow rate at midpoint of channel = 5.029(CFS) Depth of flow = 0.222(Ft.), Average velocity = 3.725(Ft/s) ******* Irregular Channel Data *********** ----------------------------------------------------------------- Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 0.48 2 20.00 0.08 3 21.50 0.00 4 23.00 0.08 5 38.00 0.58 Manning's 'N' friction factor = 0.015 ----------------------------------------------------------------- Sub-Channel flow = 5.029(CFS) ' ' flow top width = 14.346(Ft.) ' ' velocity= 3.725(Ft/s) ' ' area = 1.350(Sq.Ft) ' ' Froude number = 2.140 Upstream point elevation = 431.000(Ft.) Downstream point elevation = 419.000(Ft.) Flow length = 363.000(Ft.) Travel time = 1.62 min. Time of concentration = 4.22 min. 20-061 Post Development Page 3 of 13 Depth of flow = 0.222(Ft.) Average velocity = 3.725(Ft/s) Total irregular channel flow = 5.029(CFS) Irregular channel normal depth above invert elev. = 0.222(Ft.) Average velocity of channel(s) = 3.725(Ft/s) Adding area flow to channel Calculated TC of 4.222 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 7.904(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] (Office Professional ) Impervious value, Ai = 0.900 Sub-Area C Value = 0.850 Rainfall intensity = 7.904(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.850 CA = 1.218 Subarea runoff = 9.198(CFS) for 1.369(Ac.) Total runoff = 9.628(CFS) Total area = 1.433(Ac.) Depth of flow = 0.274(Ft.), Average velocity = 4.361(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.000 to Point/Station 104.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 410.170(Ft.) Downstream point/station elevation = 405.690(Ft.) Pipe length = 248.00(Ft.) Slope = 0.0181 Manning's N = 0.015 No. of pipes = 1 Required pipe flow = 9.628(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 9.628(CFS) Normal flow depth in pipe = 9.13(In.) Flow top width inside pipe = 27.61(In.) Critical Depth = 12.42(In.) Pipe flow velocity = 7.62(Ft/s) Travel time through pipe = 0.54 min. Time of concentration (TC) = 4.76 min. 20-061 Post Development Page 4 of 13 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 104.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 1 in normal stream number 1 Stream flow area = 1.433(Ac.) Runoff from this stream = 9.628(CFS) Time of concentration = 4.76 min. Rainfall intensity = 7.904(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 201.000 to Point/Station 202.000 **** INITIAL AREA EVALUATION **** ______________________________________________________________________ Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] (Office Professional ) Impervious value, Ai = 0.900 Sub-Area C Value = 0.850 Initial subarea total flow distance = 90.000(Ft.) Highest elevation = 434.000(Ft.) Lowest elevation = 428.000(Ft.) Elevation difference = 6.000(Ft.) Slope = 6.667 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 90.00 (Ft) for the top area slope value of 6.66 %, in a development type of Office Professional In Accordance With Figure 3-3 Initial Area Time of Concentration = 2.27 minutes TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] TC = [1.8*(1.1-0.8500)*( 90.000^.5)/( 6.660^(1/3)]= 2.27 Calculated TC of 2.269 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 7.904(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 0.470(CFS) Total initial stream area = 0.070(Ac.) 20-061 Post Development Page 5 of 13 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 202.000 to Point/Station 203.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** ______________________________________________________________________ Estimated mean flow rate at midpoint of channel = 3.490(CFS) Depth of flow = 0.244(Ft.), Average velocity = 3.534(Ft/s) ******* Irregular Channel Data *********** ----------------------------------------------------------------- Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 0.50 2 0.10 0.00 3 15.00 0.45 Manning's 'N' friction factor = 0.015 ----------------------------------------------------------------- Sub-Channel flow = 3.490(CFS) ' ' flow top width = 8.111(Ft.) ' ' velocity= 3.534(Ft/s) ' ' area = 0.988(Sq.Ft) ' ' Froude number = 1.785 Upstream point elevation = 428.000(Ft.) Downstream point elevation = 420.000(Ft.) Flow length = 367.000(Ft.) Travel time = 1.73 min. Time of concentration = 4.00 min. Depth of flow = 0.244(Ft.) Average velocity = 3.534(Ft/s) Total irregular channel flow = 3.490(CFS) Irregular channel normal depth above invert elev. = 0.244(Ft.) Average velocity of channel(s) = 3.534(Ft/s) Adding area flow to channel Calculated TC of 4.000 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 7.904(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.900 Decimal fraction soil group D = 0.100 20-061 Post Development Page 6 of 13 [COMMERCIAL area type ] (Office Professional ) Impervious value, Ai = 0.900 Sub-Area C Value = 0.841 Rainfall intensity = 7.904(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.842 CA = 0.816 Subarea runoff = 5.976(CFS) for 0.899(Ac.) Total runoff = 6.446(CFS) Total area = 0.969(Ac.) Depth of flow = 0.306(Ft.), Average velocity = 4.120(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 203.000 to Point/Station 104.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 417.290(Ft.) Downstream point/station elevation = 412.670(Ft.) Pipe length = 188.00(Ft.) Slope = 0.0246 Manning's N = 0.015 No. of pipes = 1 Required pipe flow = 6.446(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 6.446(CFS) Normal flow depth in pipe = 8.48(In.) Flow top width inside pipe = 17.97(In.) Critical Depth = 11.77(In.) Pipe flow velocity = 7.87(Ft/s) Travel time through pipe = 0.40 min. Time of concentration (TC) = 4.40 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 104.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.969(Ac.) Runoff from this stream = 6.446(CFS) Time of concentration = 4.40 min. Rainfall intensity = 7.904(In/Hr) Summary of stream data: 20-061 Post Development Page 7 of 13 Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 9.628 4.76 7.904 2 6.446 4.40 7.904 Qmax(1) = 1.000 * 1.000 * 9.628) + 1.000 * 1.000 * 6.446) + = 16.074 Qmax(2) = 1.000 * 0.923 * 9.628) + 1.000 * 1.000 * 6.446) + = 15.334 Total of 2 streams to confluence: Flow rates before confluence point: 9.628 6.446 Maximum flow rates at confluence using above data: 16.074 15.334 Area of streams before confluence: 1.433 0.969 Results of confluence: Total flow rate = 16.074(CFS) Time of concentration = 4.764 min. Effective stream area after confluence = 2.402(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 105.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 405.360(Ft.) Downstream point/station elevation = 400.900(Ft.) Pipe length = 222.00(Ft.) Slope = 0.0201 Manning's N = 0.015 No. of pipes = 1 Required pipe flow = 16.074(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 16.074(CFS) Normal flow depth in pipe = 11.65(In.) Flow top width inside pipe = 29.24(In.) Critical Depth = 16.24(In.) Pipe flow velocity = 9.12(Ft/s) Travel time through pipe = 0.41 min. Time of concentration (TC) = 5.17 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 20-061 Post Development Page 8 of 13 Process from Point/Station 105.000 to Point/Station 105.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 1 in normal stream number 1 Stream flow area = 2.402(Ac.) Runoff from this stream = 16.074(CFS) Time of concentration = 5.17 min. Rainfall intensity = 7.736(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 301.000 to Point/Station 302.000 **** INITIAL AREA EVALUATION **** ______________________________________________________________________ Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] (Office Professional ) Impervious value, Ai = 0.900 Sub-Area C Value = 0.850 Initial subarea total flow distance = 90.000(Ft.) Highest elevation = 426.000(Ft.) Lowest elevation = 423.000(Ft.) Elevation difference = 3.000(Ft.) Slope = 3.333 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80.00 (Ft) for the top area slope value of 3.33 %, in a development type of Office Professional In Accordance With Figure 3-3 Initial Area Time of Concentration = 2.70 minutes TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] TC = [1.8*(1.1-0.8500)*( 80.000^.5)/( 3.330^(1/3)]= 2.70 Calculated TC of 2.695 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 7.904(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff = 0.356(CFS) Total initial stream area = 0.053(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 20-061 Post Development Page 9 of 13 Process from Point/Station 302.000 to Point/Station 303.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** ______________________________________________________________________ Estimated mean flow rate at midpoint of channel = 10.314(CFS) Depth of flow = 0.294(Ft.), Average velocity = 3.870(Ft/s) ******* Irregular Channel Data *********** ----------------------------------------------------------------- Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 0.48 2 20.00 0.08 3 21.50 0.00 4 23.00 0.08 5 33.00 0.38 Manning's 'N' friction factor = 0.015 ----------------------------------------------------------------- Sub-Channel flow = 10.314(CFS) ' ' flow top width = 20.814(Ft.) ' ' velocity= 3.870(Ft/s) ' ' area = 2.665(Sq.Ft) ' ' Froude number = 1.906 Upstream point elevation = 423.000(Ft.) Downstream point elevation = 412.000(Ft.) Flow length = 465.000(Ft.) Travel time = 2.00 min. Time of concentration = 4.70 min. Depth of flow = 0.294(Ft.) Average velocity = 3.870(Ft/s) Total irregular channel flow = 10.314(CFS) Irregular channel normal depth above invert elev. = 0.294(Ft.) Average velocity of channel(s) = 3.870(Ft/s) Adding area flow to channel Calculated TC of 4.698 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 7.904(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.500 20-061 Post Development Page 10 of 13 Decimal fraction soil group D = 0.500 [COMMERCIAL area type ] (Office Professional ) Impervious value, Ai = 0.900 Sub-Area C Value = 0.845 Rainfall intensity = 7.904(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.845 CA = 2.557 Subarea runoff = 19.857(CFS) for 2.973(Ac.) Total runoff = 20.213(CFS) Total area = 3.026(Ac.) Depth of flow = 0.367(Ft.), Average velocity = 4.567(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 303.000 to Point/Station 303.000 **** SUBAREA FLOW ADDITION **** ______________________________________________________________________ Calculated TC of 4.698 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 7.904(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 1.000 Decimal fraction soil group D = 0.000 [COMMERCIAL area type ] (Office Professional ) Impervious value, Ai = 0.900 Sub-Area C Value = 0.840 Time of concentration = 4.70 min. Rainfall intensity = 7.904(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.845 CA = 2.632 Subarea runoff = 0.591(CFS) for 0.089(Ac.) Total runoff = 20.804(CFS) Total area = 3.115(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 303.000 to Point/Station 105.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 401.600(Ft.) Downstream point/station elevation = 400.900(Ft.) Pipe length = 10.00(Ft.) Slope = 0.0700 Manning's N = 0.015 20-061 Post Development Page 11 of 13 No. of pipes = 1 Required pipe flow = 20.804(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 20.804(CFS) Normal flow depth in pipe = 10.57(In.) Flow top width inside pipe = 23.83(In.) Critical Depth = 19.61(In.) Pipe flow velocity = 15.60(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 4.71 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 105.000 to Point/Station 105.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 1 in normal stream number 2 Stream flow area = 3.115(Ac.) Runoff from this stream = 20.804(CFS) Time of concentration = 4.71 min. Rainfall intensity = 7.904(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 16.074 5.17 7.736 2 20.804 4.71 7.904 Qmax(1) = 1.000 * 1.000 * 16.074) + 0.979 * 1.000 * 20.804) + = 36.435 Qmax(2) = 1.000 * 0.911 * 16.074) + 1.000 * 1.000 * 20.804) + = 35.444 Total of 2 streams to confluence: Flow rates before confluence point: 16.074 20.804 Maximum flow rates at confluence using above data: 36.435 35.444 Area of streams before confluence: 2.402 3.115 Results of confluence: 20-061 Post Development Page 12 of 13 Total flow rate = 36.435(CFS) Time of concentration = 5.170 min. Effective stream area after confluence = 5.517(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 105.000 to Point/Station 106.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 400.600(Ft.) Downstream point/station elevation = 387.650(Ft.) Pipe length = 41.00(Ft.) Slope = 0.3159 Manning's N = 0.015 No. of pipes = 1 Required pipe flow = 36.435(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 36.435(CFS) Normal flow depth in pipe = 8.67(In.) Flow top width inside pipe = 27.20(In.) Critical Depth = 24.54(In.) Pipe flow velocity = 30.95(Ft/s) Travel time through pipe = 0.02 min. Time of concentration (TC) = 5.19 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.000 to Point/Station 106.000 **** SUBAREA FLOW ADDITION **** ______________________________________________________________________ Rainfall intensity (I) = 7.715(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [COMMERCIAL area type ] (Office Professional ) Impervious value, Ai = 0.900 Sub-Area C Value = 0.850 The area added to the existing stream causes a a lower flow rate of Q = 36.138(CFS) therefore the upstream flow rate of Q = 36.435(CFS) is being used Time of concentration = 5.19 min. Rainfall intensity = 7.715(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.846 CA = 4.684 20-061 Post Development Page 13 of 13 Subarea runoff = 0.000(CFS) for 0.022(Ac.) Total runoff = 36.435(CFS) Total area = 5.539(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.000 to Point/Station 106.000 **** SUBAREA FLOW ADDITION **** ______________________________________________________________________ Rainfall intensity (I) = 7.715(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [LOW DENSITY RESIDENTIAL ] (1.0 DU/A or Less ) Impervious value, Ai = 0.100 Sub-Area C Value = 0.410 Time of concentration = 5.19 min. Rainfall intensity = 7.715(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.831 CA = 4.762 Subarea runoff = 0.304(CFS) for 0.190(Ac.) Total runoff = 36.739(CFS) Total area = 5.729(Ac.) End of computations, total study area = 5.729 (Ac.) Hydrology Study ATTACHMENT F PIPE SIZE CALCULATIONS - r - ' V --\ J ' ,/ ~ ~ - -~ ----...... 7-v ~ -, l J ~ / __/ Hydrology Study ATTACHMENT G POST DEVELOPED HYDROLOGY MAP EVEVEVEVEVEVEVEVEVEVEVEVEVEVEVEVLOADING ZONE PALOMAR FORUM LOTS 6 AND 7 POST DEVELOPMENT SCALE· !'=JO' ------ -0 .JO 60 90 !20 LEGEND WATERCOURSE WATERSHED BOUNDARY SUB-AREA BOUNDARY NOOE NUMBER EfTECll/lE Sll/fJY AREA = 5.7 ACRES -----------