Loading...
HomeMy WebLinkAboutCD 2019-0010; CARLSBAD DESAL PLANNED DEV PER; PREFAB METAL ELECTRICAL ENCLOSURE FOUNDATION AND RETAINING WALL DESIGN FOR CARLSBAD DESAL INTAKE PUMP STATION PHASE 1; 2020-01-24I '11: l TETRA TECH RECORD COPY Prefab Metal Electrical Enclosure Foundation and Retaining Wall Design for CD2019-001 0/GR2019-0038/DWG 520-GA Carlsbad Desai Intake Pump Station Phase 1 Carlsbad, California _COVER PAGE & DESIGN CRITERIA 1/24/2020 218 PM for Poseidon Channelside 5780 Fleet Street, Suite 140 Carlsbad, California 92008 Prepared Under the Direction of tra Tech, Inc. 1 East Via Verde, Suite 240 San Dimas, CA 91773 (909) 305-2930 200-35200-19001 ,"]slZo [ -n: I TETRA TECH TABLE OF CONTENTS A. Design Criteria -Codes, Loading, and Materials ............................. A1 -A6 B. Foundation Design ........................................................... B1 -B11 C. Retaining Wall Design ...................................................... C1 -C16 _COVER PAGE & DESIGN CRITERIA 1124/20202:18 PM I~ I TETRA TECH A1 Design Criteria _COVER PAGE & DESIGN CRITERIA 8/19/2019 12:05 PM [ ,t:] TETRA TECH A2 Sheet No.: ___ of Date: 24-Jan-20 Checked By: _E_Y ______ Office: San Dimas Telephone: (909) 305-2930 Engineer: __ J_D_Q~---------------Job No.: 200-35200-19001 -----------------Subject: Prefab Metal Electrical Enclosure Foundation and Retaining Wall Design Poseidon Channelside Design Criteria Design Objectives The scope of this calculation package is the design of the foundation and anchorage for a proposed electrical enclosure. Other structural work includes design of a retaining wall on the exterior of the structure. Design Codes and References -California Building Code, 2016 edition -ASCE/SEI 7-10 Minimum Design Loads for Buildings & Other Structures -ACI 318-14 Building Code Requirements For Structural Concrete -AISC Steel Construction Manual, 14th Edition -ANSI/AISC 360-10 -ACI 530-13 Building Code Requirements and Specification for Masonry Structures Material Properties Concrete Reinforcing Steel Masonry 5000 psi Min. at 28 days 60 ksi Minimum 1500 psi Soil Properties -(Per Leighton Consulting, Inc. Geotechnical Report 12516.001, Dec. 6, 2019) Allowable Vertical Bearing Pressure 1500 psf Allowable Lateral Bearing Pressure 350 pcf Lateral Soil Active Pressure, Hae 40 pcf (Drained) Lateral Soil At-rest Pressure, Ha, 92 pcf (Undrained) Coefficient of Friction: 0.35 Loading Conditions Building Live Load Seismic Parameters Ss= 1.169 g S1 = 0.449 g _COVER PAGE & DESIGN CRITERIA 1/24/2020 2:18 PM Fa= 1 032 g Fv= 1.551 g 125 psf Sos= 0.805 g S01 = 0.464 g I -n: I TETRA TECH A3 SHEET NO. OF DATE 01/24/20 --- CHECKED BY EY OFFICE San Dimas ------- TELEPHONE 909-305-2930 -------------- ENGINEER JDQ JOB NUMBER 200-35200-19001 SUBJECT Prefab Metal Electrical Enclosure Foundation and Retaini, Poseidon Channelside Seismic Base Shear (Non-Building Structure Similar to a Building) Per ASCE 7-10 Design Spectral Response Acceleration Risk Category Soil Site Class s. = S1= Fa= Fv = Sos = 2/3S5F a = SD1 = 2/3S1Fv = Seismic Design Category (SDC) soc= Period Determination Ts= SD1/Sos = T0 = 0.2(So1'Sos) = TL= Structure Type hn = C1= x= Ta= C1h/= Seismic Response Coefficient (C 5 ) Determination Importance Factor (I) Response Modification Coefficient (R ) For O sec :S Ta :S 0.578 sec, use For 0.578 sec< Ta :S 12 sec, use For Ta> 12 sec, use For S1 > 0.6, use For any cases Cs= V= Cs W= W= V= _COVER PAGE & DESIGN CRITERIA 1/24/2020 2:18 PM III D 1.169 g 0.449 g 1.032 g 1.551 g 0.805 g 0.464 g D (Table 1.5-1) (Table 20.3-1) (Table 11.4-1) (Table 11.4-2) (Eq. 11.4-3) (Eq.11.4-4) (Table 11.6-1,2) 0.58 sec (Sec.11.4.5) 0.12 sec (Sec.11.4.5) 12.0 sec (Figures 22-16) All other structral systems 13.0 ft (Table 12.8-2) 0.020 0.75 0.137 sec (Eq. 12.8-7) 1.25 1.25 Cs= Sos x I/ R Cs= (SD1 x I)/ (Tax R) (Table 1 .5-2) (Table 15.4-2) (Other self-supporting structures) (Eq 12.8-2) Governs (Eq 12.8-3) Cs = (SD1 x TL x I )/ (T .2 x R) Cs > 0.5S1 x I / R (Eq 12.8-4) (Eq 12.8-5) Cs> 0.01g 0.805 g 0.805 WI 29.719 kip 23.911 kip (Eq 12.8-6) (Eq 12.8-1) A4 SHEET NO OF DATE 10/28/19 [ ,t:] TETRA TECH CHECKED BY EY OFFICE San Dimas TELEPHONE (909) 305-2930 ENGINEER JDQ JOB NUMBER 200-35200-19001 --------------~---------~ SUBJECT Poseidon Channe!side Electrical Prefab Building Wind Load MWFRS (Envelope Procedure) for Rigid Low-Rise Buildings (h <= 60'1 Per ASCEISEI 7-10, Chapter 26 & 28 Simplified Design Wind Pressures Mean roof height, h Horizontal Dimension of building, B Roof Angle Basic Wind Speed, V Wind Directionality Factor, Ko Risk Category Exposure Category Velocity Pressure Exposure Coefficient, K, Topographic factor: hill shape H Lh X K1 = K2 = K3 = K,, = (1 + K1K2K3)2 Gust Effect Factor, G (Rigid Buildings or Other Structures) Peak factor for back ground response, g0 Peak factor for wind response, gv Intensity of turbulence @ height Zbar, l,bar: Turbulence intensity factor, c Minimum height, Zmin Equivalent height of sturcture, Zbar = 0.6h > Zm;n = l,bar = c(33/zbarl' "01 = Background response, Q : lntergral length scale power law exponent, EC bar Integral length scale factor, I lntergral length scale of turbulence @ Zbar, L,bar = l(zb0,l33tbar Q = squrt( 1/{1 +0.63[(B+h)/L,barH063)) G = 0.925 X [(1 + 1.7 gQ l,bar Q) / ( 1 + 1.7 gv l,barH Velocity Pressure, q, = 0.00256 ~ K,, Ko V' Wind Load (Directional & Envelope Procedure) Per ASCE_SEt 7-10 10/28/2019 11 :22 AM 12 ft 40 ft 9.5 deg (0<angle<90) 115 mph (Figure 26.5-1) 0.85 (Table 26.6-1) Ill (Table 1.5-1) B (Section 26.7.3) 0.57 (Table 28.3-1) (Figure 26.8-1) NIA 4 ft 50 ft 0 ft 0.00 0.00 0.00 1.00 (Eqt 26.8-1) (Section 26.9.4) 3.4 34 0.30 (Table 26.9-1) 30 ft (Table 26.9-1) 30 ft 0.33 (Eqt 26.9-7) 0.33 (Table 26.9-1) 320 (Table 26.9-1) 310 ft (Eqt 26.9-9) 0.91 (Eqt 26.9-8) 0 87 (Eqt 26.9-6) 16.54 psf (Eqt 28.3-1) A5 OF DATE OFFICE [ "11;] TET RA TECH SHEET NO. CHECKED BY TELEPHONE ----------- ENGINEER SUBJECT _________________________ JOB NUMBER ______ TASK Load Case A Load Case B Basic Load Cases Internal Pressure Coefficient, GCp; Enclosure Classification Gcp1 = Load Case B External Pressure coefficient, Cpt 3. Enclosed Buildings Positive 0.18 (Table 26.11-1) Negative -0. 18 Building Surface 1 2 3 4 5 6 1 E 2E 3E 4E SE 6E (Figure 28.4-1) Cp -0 45 -0.69 -0 37 -0.45 -0.40 -0.29 -0.48 -1.07 -0.53 -0.48 0.61 -0.43 Design wind pressures, p = qh (GCp1-Gcp1) ~ Eqt. (28.4-1) Building Surface 1 2 3 4 5 6 1E 2E 3E 4E 5E 6E s -10.4 -14.4 -9.15 -10.4 -9.59 -7.77 -10.9 -20.7 -11 .7 -11 13.1 -10 Wind Load (Directional & Envelope Procedure) Per ASCE_SEI 7-10 8/19/2019 12:59 PM Wind Loads Leaward Pressure: Windward Pressure: Roof Pressure: Wall area Perp. to Wind: P1 :• llpsf P w :-10.9psf Pr:-20 7psf-sin(9..5deg) • 3.416-psf 2 Av, :-L-H • 520-ft Roof Area: l\ :-L-W Wind Lateral Force: Vw :-Av,·(P1 + Pw) + Pr·l\ • 13 028-kip 7/24/2019 U.S. Seismic Design Maps Carlsbad Desai Intake Pump Station Latitude, Longitude: 33.138481, -117.338292 Go.;gle f Date Claude "Bud" ~ Lewis Carlsbad ... Y NRG Cabrillo Power Cj> SoCal Surf Lessons f+' I Design Code Reference Document Risk Category 7/24/2019, 8:43:59 AM ASCE7-10 Ill I Site Class I Type Value Ss 1.169 I S1 0.449 I SMs 1.207 SM1 0.696 Sos 0.804 l So1 0.464 Type Value soc D Fa 1.033 Fv 1.551 PGA 0.469 FPGA 1.031 PG~ 0.484 TL 8 SsRT 1.169 SsUH 1.256 SsD 1.583 S1RT 0.449 S1UH 0.457 S1D 0.647 PGAd 0.616 CRs 0.931 CR1 0,981 https:1/seismicmaps.org Description MCER ground motion. (for 0.2 second period) MCER ground motion. (for 1.0s period) Site-modified spectral acceleration value Site-modified spectral acceleration value Numeric seismic design value at 0.2 second SA Numeric seismic design value at 1.0 second SA Description Seismic design category Site amplification factor at 0.2 second Site amplification factor at 1.0 second MCEG peak ground acceleration Site amplification factor at PGA Site modified peak ground acceleration Long-period transition period In seconds Probabilistic risk-targeted ground motion. (0.2 second} D -Stiff Soil Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration Factored deterministic acceleration value. (0.2 second) Probabilistic risk-targeted ground motion. (1 .0 second) Factored uniform-hazard (2% probability of exceedance In 50 years} spectral accelerallon. Factored deterministic acceleration value. (1.0 second) Factored deterministic acceleration value. (Peak Ground Acceleration) Mapped value of the risk coefficient at short periods Mapped value of the risk coefficient at a period of 1 s A6 OSHPD Map data ©2019 I I 7 1/2 [11:] TETRA TECH B1 Foundation Design _COVER PAGE & DESIGN CRITERIA 8/19/2019 9:29 AM Client: Poseidon Channelside TETRA TE C H Subject: Prefab Building Seismic Analysis Job No: 200-35200-19001 Phone: (909) 305-2930 Seismic Analysis For Prefab Metal Building Building Length: L := 40 ft Building Width: W:= 12ft Building Height: H := 13ft Building Weight Equipment Weight Per Unit w := 375plf Length: (Assumed) VFD Cabinets: Switch Boards : MCC Cabinets: PRE Cabinets: PLC Cabinets: HVAC Units: Structure Weight (Assumed) Panel Thickness Steel Density: Panel Unit Weight: Building Surface Area: Total Weight: LI := 3-80in = 20-ft wP1 := w-L1 = 7.5-kip L2 := I 60in = 13.333· ft wP2 := w-L2 = 5-kip L3 := 60in + 84in = 12· ft wP3 := w-L3 = 4.5-kip L4 := 60in = 5· ft W p4 := W· L4 = 1.875-kip L5 := 40in = 3.333· ft wP5 := w-L5 = t.25-kip L6 := 3-40in = 10-ft wP6 := w-L6 = 3.75-kip t ·= 2-in = 0 078• in P. 64 . Psteel := 490pcf wp := Psteel'tp = 3.19-psf 2 Abs:= 2(L + W)•H + W•L = 1832-ft wp7 := Abs·wp = 5.844-kip wP := wp, + wP2 + wP3 + wP4 + wP5 + wP6 + w P7 WP = 29.7 19-kip Seismic Forces Per ASCE 7-10 Chapter 15 Seismic Parameters: Seimic Response Coefficient: Seismic Shear: :I rojects~ rvlne\35200\200-35200-19001 I up port s08 := o.804 Ip:= 1.25 cs:= 0.805 \ ales RP:= 1.25 n := 2 B2 Date: 8/19/2019 Engineer: JDQ Checked by: EY Office: San Dimas Client: Poseidon Channelside TETRATECHSubject: Prefab Building Seismic Analysis Job No: 200-35200-19001 B3 Date: 8/19/201 9 Engineer: JDQ Checked by: EY Office: San Dimas Phone: (909) 305-2930 Building Center of Gravity: c := 0.7-H = 9.J.ft (Assumed) Net Overturning Moment w/ overstrength: Anchor Diameter: Area of Anchor Bolt: Distance To The Neutral Axis: Number of Bolts Along L @ Distance c1 from neutral axis: Anchor Group Moment of Inertia: Anchor Reactions Tension Per Bolt: Shear Per Bolt: Foundation Reactions Net Overturning Moment: Reaction on Foudation Due to Seismic: Mu:= n IVu•cl -(o.9-o.2-s08)-Wp•(O.SW) = 303.606-kip-ft db := 0.75in 2 -rrdb . 2 Abolt := --= 0.442 111 4 c l := 0.5W = 72 in n 1 := 2 · round(__!:_ + I) = 24 3.5ft Mu·c , ·Abolt f1 := ----= 2.108-kip lz vu v1 := !1--= 1.994-kip n, Anchors s aced at 3'-6" Reaction used to size the anchors. Muf := IVu·cl -(0.9 -0.2-SDs)·Wp·(0.SW) = 85.898-kip-ft Muf Tu:= --= 0.179-klf W-L ...-----------, Reaction used to size the foundation. 2 00-19001\SupportDocs\CaJcs\Structural\Prefab Metal Building\Building Anchorage\Prefab Building Foundation.ec6 ENERCALC, INC. 1983-2017, Build:10.17.8.3, Ver:10.17.8.3 Description : Electrical Enclosure Foundation -Short Span CODE REFERENCES Calculations per ACI 318-11 , IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used: ASCE 7-10 Material Properties fc 112 fr =fc *7.50 \jJ Density 11. Lt Wt Factor Elastic Modulus = 5.0 ksi 530.33 psi 150.0 pcf 1.0 4,286.83 ksi d> Phi Values Flexure: Shear: 0.90 0.750 0.80 Soil Subgrade Modulus 115.0 psi I (inch deflection) Load Combination ASCE 7-10 fy -Main Rebar E -Main Rebar 60.0 ksi 29,000.0 ksi Fy -Stirrups E -Stirrups Stirrup Bar Size # Number of Resisting Legs Per Stirrup Beam is supported on an elastic foundation See foundation reactions on sheet B3. 0.179klf * 3ft = 0.537kip D(0.537) Cross Section & Reinforcing Details Rectangular Section, Width = 36.0 in, Height = 18.0 in Span #1 Reinforcing .... 40.0 ksi = 29,000.0 ksi = # 3 1.0 36" wx ta" h Span=1J.6O6 ft • • 36 in D(-0.537) #6 bars @ 12" , top & bottom 3-#6 at 3.0 in from Top, from 0.0 to 13.666 ft in this span 3-#6 at 3.0 in from Bottom, from 0.0 to 13.666 ft in this span • Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Load for Span Number 1 Uniform Load: L = 0.1250 k/ft, Extent= 0.8333 --» 12.833 ft, Tributary Width = 1.0 ft, (Live Load 125 psf) Point Load : D = 0.5370 k @ 0.8330 ft Point Load : D = -0.5370 k@ 12.833 ft DESIGN SUMMARY Maximum Bending-Stress Ratio = Section used for this span 0.008: 1 Typical Section 0.8105 k-ft 100.770 k-ft Mu : Applied Mn * Phi : Allowable Load Combination Location of maximum on span Span # where maximum occurs +1.20D+0.50Lr+1.60L + 1.60 9.647 ft Span# 1 Maximum Deflection Max Downward L +Lr+S Deflection Max Upward L +Lr+S Deflection Max Downward Total Deflection Max Upward Total Deflection Maximum Soil Pressure = Allowable Soil Pressure = 0.330 ksf at 0.00 ft LdComb: +D+L +H 1.so ksf m Cross Section Strength & Inertia Phi*Mn ( k-11) Cross Section Bar Layout Description Btm Tension Top Tension I gross Section 1 3-#6@ d=3",3-#6@ d=15", 100.77 100.77 17,496.00 Maximum Forces & Stresses for Load Combinations 0.000 in 0.000 in 0.020 in 0.009 in Design OK Moment of Inertia ( in'4 ) lcr -Btm Tension lcr -Top Tension 1,584.88 1,584.88 84 www.hllti.us Company: Specifier: Address: Phone I Fax: E-Mail: Tetra Tech JDQ 160 East Via Verde, Suite 240 (909)305-2930 I Specifier's comments: Prefab Building Anchorage 1 Input data Anchor type and diameter: Effective embedment depth: Material: Evaluation Service Report: Issued I Valid: Proof: HIT-HY 200 + HAS-E 3/4 het,ad = 6.000 in. (het,llmi = • in.) 5.8 ESR-3187 41112019 I 31112020 Design method ACI 318-14 / Chem Page: Project: Sub-Project I Pos. No.: Date: 85 ., .. :--·, .. ,~s---...... , Profis Anchor 2.8.5 Poseidon Channelside 200-35200-19001 10/28/2019 Stand-off installation: -(Recommended plate thickness: not calculated) Profile: Base material: cracked concrete, 5000, fc' = 5,000 psi; h = 18.000 in., Temp. short/long: 130/110 °F Installation: Reinforcement: hammer drilled hole, Installation condition: Dry, Installation direction: vertical downward tension: condition B, shear: condition B; no supplemental splitting reinforcement present edge reinforcement: none or < No. 4 bar Seismic loads (cat. C, D, E, or F) Tension load: yes (17.2.3.4.3 (d)) Shear load: yes (17.2.3.5.3 (c)) R -The anchor calculation is based on a rigid anchor plate assumption. Geometry [in.] & Loading [lb, In.lb) See anchor reactions on sheet 83. Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan Use 3/4" adhesive anchors spaced at 3'-6" with an embedment of 6 inches. www.hllti.us Company: Specifier: Tetra Tech JDQ Page: Project: 86 ., .. :--·, .. , .. s---..... , Profis Anchor 2.8.5 2 Address: Phone I Fax: 160 East Via Verde, Suite 240 (909)305-2930 I Sub-Project I Pos. No.: Poseidon Channelside 200-35200-19001 10/28/2019 E-Mail: 2 Load case/Resulting anchor forces Load case: Design loads Anchor reactions [lb] Tension force: (+ Tension, -Compression) Date: Anchor Tension force Shear force Shear force x Shear force y 2,108 1,994 1,994 max. concrete compressive strain: -[%0) max. concrete compressive stress: -[psi) resulting tension force in (x/y)=(0.00010.000): O [lb) resulting compression force in (x/y)=(0.000I0.000): O [lb] 3 Tension load Steel Strength* Bond Strength** Sustained Tension Load Bond Strength* Concrete Breakout Strength** Load Nu, [lb] 2,108 2,108 NIA 2,108 • anchor having the highest loading ••anchor group (anchors in tension) 3.1 Steel Strength Nsa = ESR value ~ N,a ~ Nua Variables A so.N [in.2] 0.33 Calculations Nsa [lb) 24,250 Results Nsa [lb) 24,250 refer to ICC-ES ESR-3187 ACI 318-14 Table 17.3.1.1 f.,,. [psi) 72,500 ~ steel ~ nonductile 0.650 1.000 15,762 0 Capacity + N0 (lb] 15,762 8,267 NIA 8,613 Nua [lb) 2,108 Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor ( c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan Utilization 13N = Nu.I♦ Nn Status 14 OK 26 OK NIA NIA 25 OK www.hilti.us Company: Specifier: Tetra Tech JDQ Page: Project: Address: 160 East Via Verde, Suite 240 (909)305-2930 I Sub-Project I Pos. No.: Phone I Fax: E-Mail: 3.2 Bond Strength $ N, "N"' A,.,, = seeACI 318-14, Section 17.4.5.1, Fig. R 17.4.5.1(b) A,.,,0 = (2 cN,)2 CNa = 10d ·~ C a "\I 'ffilTI 'I' eo.Na = ( 1 + 1 :.) S 1.0 'I' ed.Na = 0.7 + 0.3 {Ca,mio) S 1.0 CNa 'l' cp,Na = MAX{Ca,min, CNa) S 1.0 Cac Cac Nba ·= A a · t k,c · UN,seis · 7t · da · her Variables t k,c.uncr [psi] d, [in.] 2,379 0.750 e,,.N [in.] e,2.N [in.] 0.000 0.000 Calculations cN, [in.] A,.,, [in.2] 10.981 440.19 \j/ ec1.Na \jJ ec2,Na 1.000 1.000 Results N, [lb] CV bond 16,958 0.650 h,1 [in.] 6.000 Cac [in.] 9.934 ANaO [in.'] 482.30 \jl cp,Na 1.000 CV seismic 0.750 Date: ACI 318-14 Eq. (17.4.5.1a) ACI 318-14 Table 17.3.1.1 ACI 318-14 Eq. (17.4.5.1c) ACI 318-14 Eq. (17.4.5.1d) ACI 318-14 Eq. (17.4.5.3) ACI 318-14 Eq. (17.4.5.4b) ACI 318-14 Eq. (17.4.5.5b) ACI 318-14 Eq. (17.4.5.2) Ca.min [in.] Uoverhead 10.000 1.000 Aa 1.000 1.000 \V ed,Na 0.973 N,, [lb] 19,091 $ nonductile $ N, [lb] 1.000 8,267 Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor ( c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan t ,., [psi] 1,350 N"' [lb] 2,108 87 ,:iis., Profis Anchor 2.8.5 3 Poseidon Channelside 200-35200-19001 10/28/2019 www.hilti.us Company: Specifier: Tetra Tech JDQ Page: Project: Address: 160 East Via Verde. Suite 240 (909)305-2930 I Sub-Project I Pos. No.: Phone I Fax: E-Mail: 3.3 Concrete Breakout Strength Neb = {:::cco) \jl ed,N \j/ c,N \If cp,N Nb $ N,, 2: N"' AN, seeACI 318-14, Section 17.4.2.1, Fig. R 17.4.2.1(b} ANcO = 9 h:r IJlec.N = {1+ ~ e~) s 1.0 3 h01 ljl ed.N = 0.7 + 0.3 ( 1c5~:J S 1.0 = MAX(c,.m;, 1.5h0,),; 1 0 \jJ cp,N Cac ' Cac · Nb = kc A a ~ h~r5 Variables h01 [in.] e,,,N [in.] 6.000 0.000 Cao [in.] k, 9.934 17 Calculations AN, [in.2] AN,o [in.2] 324.00 324.00 Results N,, [lb] $ concrete 17,667 0.650 e,2.N [in.] 0.000 A, 1.000 \jl ec1,N 1.000 $ seismic 0.750 Date: ACI 318-14 Eq. (17.4.2.1a) ACI 318-14 Table 17.3.1.1 ACI 318-14 Eq. (17.4.2.1c) ACI 318-14 Eq. (17.4.2.4) ACI 318-14 Eq. (17.4.2.5b) ACI 318-14 Eq. (17.4.2.7b) ACI 318-14 Eq. (17.4.2.2a) Ca,min [in.] \jJ c,N 10.000 1.000 (, [psi] 5,000 \j/ ec2,N \Ved,N 1.000 1.000 $ nonductile $ N,, [lb] 1.000 8,613 Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor ( c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan \j/ C ,N 1.000 N"' [lb] 2,108 88 i=iiS•• Profis Anchor 2.8.5 4 Poseidon Channelside 200-35200-19001 10/28/2019 N, [lb] 17,667 www.hilti.us Company: Specifier: Address: Phone I Fax: E-Mail: 4 Shear load Tetra Tech JDQ 160 East Via Verde, Suite 240 (909)305-2930 I Page: Project: Sub-Project I Pas. No.: Date: B9 i=iiSi.i Profis Anchor 2.8.5 5 Poseidon Channelside 200-35200-19001 1012812019 Load Vu, [lb] Capacity ♦ V" [lb] Utilization 11v = V u,l♦ V n Status Steel Strength' Steel failure (with lever arm)' Pryout Strength (Bond Strength controls)" 1,994 NIA 1,994 Concrete edge failure in direction x+" 1,994 • anchor having the highest loading "anchor group (relevant anchors) 4.1 Steel Strength Vsa = av,seis (0.6 Ase,V futa) $ Vstee1:?:Vua Variables A,._v [in.2] 0.33 Calculations V,._.9 [lb] 10,185 Results V,._.9 [lb] 10,185 f,1a [psi] 72,500 4i steel 0.600 refer to ICC-ES ESR-3187 ACI 318-14 Table 17.3.1.1 av,seis (0.6 Aso.v f,,a) [lb] 0.700 14,550 $ nonductile $ V,. [lb] 1.000 6,111 Input data and results must be checked for agreement with the existing conditions and for plausibility.! PROFIS Anchor ( c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan 6,111 33 OK NIA NIA NIA 23,741 9 OK 10,565 19 OK V,, [lb] 1,994 www.hllti.us Company: Specifier: Tetra Tech JDQ Page: Project: Address: 160 East Via Verde, Suite 240 (909)305-2930 I Sub-Project I Pos. No.: Phone I Fax: E-Mail: 4.2 Pryout Strength (Bond Strength controls) Vcp =kcp[ (~8 3 0) \Ved,Na \j/ cp,Na Nba] $ V,, ;, V,. A,.,. seeACI 318-14, Section 17.4.5.1, Fig. R 17.4.5.1(b) A,.,ao = (2 CNa)2 CNa = 10d -C a \/ :/i'll'5 ljl oc.Na = (1 +\~) $ 1.0 CNa \V ed.Na = 0.7 + 0.3 {Ca.min) S 1.0 CNa = MAX(Ca,min CNa) < 1 0 \V cp,Na Cac ' Cac -· Nba = A a · t k,c · UN.seis · TI · da · her Variables ~~_kcp Uoverhead 2 1.000 e,,.N [in.] e,2.N [in.] 0.000 0.000 Calculations CNa [in.] ANa [in.2] 10.981 440.19 \.j/ ec1,Na \j/ ec2,Na 1.000 1.000 Results V,, (lb] $ concrete 33.915 0.700 t k,c,uncr [psi] 2,379 Cao [in.] 9.934 ANaO [in.2] 482.30 \j/ C ,Na 1.000 $ seismic 1.000 Date: ACI 318-14 Eq. (17.5.3.1a) ACI 318-14 Table 17.3.1.1 ACI 318-14 Eq. (17.4.5.1c) ACI 318-14 Eq. (17.4.5.1d) ACI 318-14 Eq. (17.4.5.3) ACI 318-14 Eq. (17.4.5.4b) ACI 318-14 Eq. (17.4.5.5b) ACI 318-14 Eq. (17.4.5.2) da [in.] h01 [in.] 0.750 6.000 Aa UN,seis 1.000 1.000 \j/ ed,Na 0.973 N,a (lb] 19,091 $ nonductile 1.000 Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor ( c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan Ca.min [in.] 10.000 V,. [lb] 1,994 B10 •=iiS•• Profis Anchor 2.8.5 6 Poseidon Channelside 200-35200-19001 10/28/2019 1 ,., [psi] 1,350 www.hllti.us Company: Specifier: Tetra Tech JDQ Page: Project: Address: 160 East Via Verde, Suite 240 (909)305-2930 I Sub-Project I Pas. No.: Phone I Fax: E-Mail: 4.3 Concrete edge failure In direction x+ (Av,) Vcb = A-lV ed,V \V c,V \If h,V \j/ parallel,V vb v,o $ v,,;ev,. Av, see ACI 318-14, Section 17.5.2.1, Fig. R 17.5.2.1(b) Avco = 4.5 C~1 \jl .,.v = ( 1 + \e~ ) :. 1 .0 3ca, \jl ed.V = 0.7 + 0.3( 1 _';~,1):, 1.0 = -fuZhc,1;, 1.0 \Vh.V -\J~ ' vb = 9 A a "'Mc c!l Variables c., [in.] c,2 [in.] 10.000 10.000 10 [in.] ,_ ' 6.000 1.000 Calculations Av, [in.2] Av,o [in.2] 375.00 450.00 Results V,, [lb] Q) concrete 15,093 0.700 e,v [in.] 0.000 d, [in.] 0.750 \jl ec.V 1.000 $ seismic 1.000 5 Combined tension and shear loads PN Pv c; 0.255 0.326 5/3 Date: ACI 318-14 Eq. (17.5.2.1a ACI 318-14 Table 17.3.1.1 ACI 318-14 Eq. (17.5.2.1c) ACI 318-14 Eq. (17.5.2.5) ACI 318-14 Eq. (17.5.2.6b) ACI 318-14 Eq. (17.5.2.8) ACI 318-14 Eq. (17.5.2.2b) \jl c,v h, [in.] 1.000 18.000 f, [psi] \jJ parallel,V 5,000 1.000 \jl ed,V \jl h.V 0.900 1.000 Q> nonductile $ V,0 [lb] 1.000 10,565 Utilization PN,v [%] Status 26 OK Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor ( c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan V, [lb] 20,125 V,. [lb] 1,994 B11 ., .. :--·1""1~5---...... Profis Anchor 2.8.5 7 Poseidon Channelside 200-35200-19001 10/28/2019 ["II:] TETRA TECH C1 Retaining Wall Design _COVER PAGE & DESIGN CRITERIA 8/19/2019 9:29 AM [ It) TETRA TECH Client: Poseidon Channelside Subject: Retaing Wall Loads Job No: 200-35200-19001 Phone: (909) 305-2930 C2 Date: 10/28/2019 Engineer: JDQ Checked by: VMR / EY Office: San Dimas Lateral Loads on Wall Height of Wall: Height ofWallAbove Soil: Portion on Wall Retaining Soil: Width of Wall: Unit Weight of\/Vall: Importance Factor: Seismic Lateral force coefficient: Seimic Wall Lateral Force: Soil Seismic Pressure: Total Lateral Force Per Unit Length of Wall: rojects rv,ne hwall := 6-fl hretaining := hwall -ha= 5·ft wwall := I ft DLwall := 84psf s0 s := o.so4 le := 1.25 C5 := 0.4-Sos· le = 0.402 Fp := C5·DLwall = 33.768-psf (Per the 2016 CBC, it is not necessary to consider seismic Esoil := Opcf earth pressure if the retained height is 6 feet or less.) Fp_lol := Fp = 33.768-psf !\35200\200-35200-19001 \SupportDocs\Calcs\Structural\Prefab Metal Bulldlng\Retaining WalnRetaining Wall.ec6 ENERCALC, INC. 1983-2017, Build:10.17.8.3, Ver.10.17.8.3 C3 Description : Retaining Wall -s·-o· Max Retaining (Static) @ilie~ Retained Height Wall height above soil Slope Behind Wall Height of Soil over Toe = Water height over heel Vertical component of active Lateral soil pressure options: USED for Soil Pressure. -7 5.00 ft 1.00 ft 0.00: 1 12.00 in 0.0ft NOT USED for Sliding Resistance. NOT USED for Overturning Resistance. ~ Wall Stability Ratios Overturning = 3.86 OK Sliding = 1.57 OK Total Bearing Load = 4,424 lbs ... resultant ecc. = 7.25 in Soil Pressure@Toe = 1,183 psf OK Soil Pressure @ Heel 292 psf OK Allowable = 1,500 psf Soil Pressure Less Than Allowable ACI Factored @Toe 1,420 psf ACI Factored @ Heel = 350 psf Footing Shear@Toe 6.0 psi OK Footing Shear@ Heel = 6.0 psi OK Allowable 100.6 psi Sliding Cales (Vertical Component NOT Used) Lateral Sliding Force 1,594.7 lbs less 100% Passive Force --952.8 lbs less 100% Friction Force = 1,548.11 lbs Added Force Req'd = 0.0 lbs OK .... for 1.5 : 1 Stability 0.0 lbs OK Load Factors Dead Load Live Load Earth, H Wind, W Seismic, E 1.200 1.600 1.600 1.000 1.000 I Soil Data ] Allow Soil Bearing = 1,500.0 psf Equivalent Fluid Pressure Method Heel Active Pressure = Toe Active Pressure Passive Pressure 92.0 psf/ft 92.0 psf/ft 350.0 psf/ft Soil Density, Heel Soil Density, Toe = 120.00 pct Friction Coeff btwn Ftg & Soil = Soil height to ignore for passive pressure = I Stem Construction Design Height Above Ftg Wall Material Above 'Ht' Thickness Rebar Size Rebar Spacing Rebar Placed at 120.00 pcf 0.350 0.00 in J To ft= Stem Stem OK 0.00 = Masonry in= 8.00 # 6 in = 8.00 Design Data -----User Spec fb/FB + fa/Fa Total Force @ Section Moment....Actual Moment... .. Allowable Shear ..... Actual Shear ..... Allowable Wall Weight Rebar Depth 'd' Lap splice if above Lap splice if below Hook embed into footing Masonry Data fm Fy c Solid Grouting Modular Ratio 'n' Short Term Factor Equiv. Solid Thick. Masonry Block Type Masonry Design Method = lbs= ft-I= ft-I= psi= psi= psf = in = in= in= in = psi= psi= = in= = 0.993 1,104.0 1,901.3 1,915.2 21.6 38.7 84.0 4.25 54.00 6.26 6.26 1,500 20,000 Yes 21.48 1.000 7.60 3 ASD Calculations per ACI 318-14, ACI 530-11, IBC 2015, CBC 2016, ASCE 7-10 ----- Description : Retaining Wall -5'-0' Max Retaining (Static) 1\35200\200-35200-19001\SupportOocs\Calcs\Structural\Prefab Metal Bullding\Retaining Wall\Retaining Wall.ec6 ENERCALC, INC. 1983-2017, Build:10.17.8.3, Ver.10.17.8.3 [Footing Dimensions & Strengths J I Footing Design Results Toe Width = 1.00 ft I® .t!w Heel Width 5,QQ Factored Pressure = 1,420 350 psf Total Footing Width 6.00 Mu': Upward 919 0 ft-lb Fooling Thickness 16.00 in Mu' : Downward = 261 0 ft-lb Mu: Design 658 3,042 ft-lb Key Width 8.00 in Actual 1-Way Shear = 5.99 5.98 psi Key Depth = 0.00 in Allow 1-Way Shear 100.62 100.62 psi Key Distance from Toe = 1.00 ft Toe Reinforcing = # 5112.00 fc = 4,500 psi Fy = 60,000 psi Heel Reinforcing # 5 12.00 Footing Concrete Density 150.00 pct Key Reinforcing = # 4 12.50 Min.As% = 0.0018 Other Acceptable Sizes & Spacings Cover@Top 2.00 @Btm.= 3.00 in Toe: Not req'd, Mu< S • Fr Heel: Not req'd, Mu < S • Fr Key: Not req'd, Mu < S * Fr [ Summa~ Overturning & Resisting Forces & Moments ..... OVERTURNING ..... Force Distance Moment Item lbs ft ft-lb Heel Active Pressure = 1,845.1 2.11 3,895.2 Surcharge over Heel Toe Active Pressure = -250.4 0.78 -194.8 Surcharge Over Toe Adjacent Footing Load = Added Lateral Load Load @ Stem Above Soil = Total = 1,594.7 O.T.M. = 3,700.4 Resisting/Overturning Ratio 3.86 Vertical Loads used for Soil Pressure= 4,424.0 lbs .. ... RESISTING ..... Force Distance Moment lbs ft ft-lb Soil Over Heel 2,600.0 3.83 9,966.7 Sloped Soil Over Heel = Surcharge Over Heel = Adjacent Footing Load = Axial Dead Load on Stem = • Axial Live Load on Stem Soil Over Toe 120.0 0.50 60.0 Surcharge Over Toe Stem Weight(s) = 504.0 1.33 672.0 Earth @Stem Transitions = Footing Weight = 1,200.0 3.00 3,600.0 Key Weight = 1.33 Vert. Component = Total= 4,424.0 lbs R.M. = 14,298.7 • Axial live load NOT included in total displayed( or used for overturning resistance, but is included for soil pressure ca culation. C4 Static Condition Diagrams 8.in Mas w/ #6 @ 8.in o/c Solid Grout 1'-0" #5@12.in @Toe #5@12.in @Heel ' DeSgaecs,lectl 1 r'-0" 5'-0" all horiz. reinf. ------- --6'-0" 1183.psf C5 1'-0" 6'-0" 5'-0" 2" _j J 3" ' __ .., i\35200\200-35200-19001\SupportDocs\Calcs\Structural\Prefab Metal Building\Relaining Wall\Retaining Wall.ec6 ENERCALC, INC. 1983-2017, Build:10.17.8.3, Ver.10.17.8.3 C6 Description : Retaining Wall -5'-0' Max Retaining (Seismic) I Criteria Retained Height Wall height above soil Slope Behind Wall = Height of Soil over Toe = Water height over heel Vertical component of active Lateral soil pressure options: USED for Soil Pressure. 5.00 ft 1.00 ft 0.00: 1 12.00 in 0.0 ft NOT USED for Sliding Resistance. NOT USED for Overturning Resistance. [ Surcharge Loads Surcharge Over Heel = 0.0 psf Used To Resist Sliding & Overturning Surcharge Over Toe 0.0 psf NOT Used for Sliding & Overturning Axial Load A lied to Stem Axial Dead Load 0.0 lbs Axial Live Load = 0.0 lbs Axial Load Eccentricity 0.0 in I Design Summa ~ Wall Stability Ratios Overturning = Sliding Total Bearing Load = ... resultant ecc. Soil Pressure @ Toe Soil Pressure@ Heel = 145 p OK Allowable = 1,500 ps Soil Pressure Less Than Allowable ACI Factored@Toe 1,595 psf ACI Factored@ Heel = 174 psf Footing Shear@Toe = 7.0 psi Footing Shear@ Heel 7.3 psi O Allowable = 100.6 psi Sliding Cales (Vertical Component NOT Used) Lateral Sliding Force = 1,797.3 lbs less 100% Passive Force 952.8 lbs less 100% Friction Force -, 1,548.11 lbs Added Force Req'd = 0.0 lbs OK .... for 1.5 : 1 Stability = 194.8 lbs NG Load Factors Dead Load Live Load Earth, H Wind, W Seismic, E [ Soil Data 7 Allow Soil Bearing = 1,500.0 psf Calculations per ACI 318-14, ACI 530-11, IBC 2015, CBC 2016, ASCE 7-10 Equivalent Fluid Pressure Method Heel Active Pressure = Toe Active Pressure Passive Pressure 92.0 psf/ft 92.0 psf/fl 350.0 psf/fl Soil Density, Heel = 120.00 pct Soil Density, Toe = 120.00 pct Friction Coeff btwn Fig & Soil = 0.350 Soil height to ignore for passive pressure = 0.00 in [ Lateral Load Applied to Stem Lateral Load = ... Height to Top 33.8 pit 6.00 ft 0.00 ft [ Adjacent Footing Load Adjacent Footing Load ... Height to Bottom Wind on Exposed Stem 0.0 psi [ Stem Construction J ~P Stem c.__________ Stern OK Design Height Above Ftg ft = 0.00 Wall Material Above 'Ht" = Masonry Thickness in= 8.00 Rebar Size # 6 Rebar Spacing in = 8. 00 Rebar Placed at Design Data ---- User Spec Footing Width = Eccentricity Wall to Ftg CL Dist = Footing Type Base Above/Below Soil at Back of Wall Poisson's Ratio = fb/FB +fa/Fa 0.983 Total Force @ Section Moment. ... Actual Moment. .... Allowable Shear ..... Actual Shear. .... Allowable Wall Weight Rebar Depth 'd' Lap splice if above Lap splice if below Hook embed into footing Masonry Data fm Fye Solid Grouting Modular Ratio 'n' Short Term Factor Equiv. Solid Thick. Masonry Block Type Mason Design Method lbs= 1,306.6 ft-I= 2,509.2 fl-I= 2,553.0 psi= 25.6 psi = 51.6 psf = 84.0 in= 4.25 in = 54.00 in = 6.26 in= 6.26 psi = 1,500 psi= 20,000 = Yes = = in= = 3 ASD 21.48 1.333 7.60 S.F greater than 1.1. for Seismic Load Combo, OK 0.0 lbs 0.00 ft 0.00 in 0.00 ft Line Load 0.0 ft 0.300 Cantilevered Retaining Wall i\35200.200-35200-19001\SupportDocs\Calcs\Struclural\Prefab Metal Bullding\Relaining Wal~Relainlng Wall.ec6 ENERCALC, INC.1983-2017, Build:10.17.8.3, Ver.10.17.8.3 Description : Retaining Wall -5'-0" Max Retaining (Seismic) [Footing Dimensions & Strengths I Footing Design Results J Toe Width = 1.00 ft ~ Httt Heel Width 5.QQ Factored Pressure = 1,595 174 psf Total Fooling Width 6.00 Mu': Upward 1,023 0 ft-lb Footing Thickness 16.00 in Mu' : Downward 261 0 ft-lb Mu: Design = 762 4,015 ft-lb Key Width 8.00 in Actual 1-Way Shear 6.97 7.29 psi Key Depth = 0.00 in Allow 1-Way Shear = 100.62 100.62 psi Key Distance from Toe = 1.00 ft Toe Reinforcing = # 5 I 12.00 in fc = 4,500 psi Fy = 60,000 psi Heel Reinforcing #5 12.00in Footing Concrete Density = 150.00 pcf Key Reinforcing = #4@ 12.50 in Min. As% 0.0018 Other Acceptable Sizes & Spacings Cover@Top 2.00 @Btm.= 3.00 in Toe: Not req'd, Mu < S • Fr Heel: Not req'd, Mu < S • Fr Key: Not req'd, Mu < S * Fr [ Summary of Overturnin & Resisting Forces & Moments J ..... OVERTURNING ..... Force Distance Moment Item lbs ft ft-lb Heel Active Pressure = 1,845.1 2.11 3,895.2 Surcharge over Heel Toe Active Pressure = -250.4 0.78 -194.8 Surcharge Over Toe Adjacent Footing Load = Added Lateral Load 202.6 4.33 878.0 Load @ Stem Above Soil = Total 1,797.3 O.T.M. = 4,578.5 Resisting/Overturning Ratio = 3.12 Vertical Loads used for Soil Pressure = 4,424.0 lbs .. ... RESISTING ..... Force Distance Moment lbs ft ft-lb ---- Soil Over Heel 2,600.0 3.83 9,966.7 Sloped Soil Over Heel Surcharge Over Heel Adjacent Footing Load Axial Dead Load on Stem • Axial Live Load on Stem Soil Over Toe Surcharge Over Toe Stem Weight(s) Earth@ Stem Transitions Fooling Weight Key Weight Vert. Component 120.0 504.0 1,200.0 0.50 1.33 3.00 1.33 60.0 672.0 3,600.0 Total= 4,424.0 lbs R.M. = 14,298.7 * Axial live load NOT included in total displayed1 or used for overturning resistance, but is included for soil pressure ca1culation. C7 Use #6 bars @ 8" for stem wall reinforcement and #5 bars @ 12" for the footing reinforcement. Seismic Condition Diagrams 8.in Mas w/ #6 @ 8.in o/c Solid Grout 1·-0·] #5@12.in @Toe #5@12.in @ Heel Designer select all horiz. reinf. 33.77ps • 6'-0" 1329.3psf ca 1'-0'* 6'-0" 5'-0" 2" I J 1'-4" 3" ' -, I 1797.3# ["ft:) TETRA TECH C9 SHEET NO. OF DATE 10/28/19 CHECKED BY EY -----OFFICE San Dimas TELEPHONE 909-305-2930 ENGINEER JDQ JOB NUMBER 200-35200-19001 -----------------------SUBJECT Prefab Metal Building Foundation and Retaining Wall Design Chainlink Fence Wind Load MWFRS for Solid Freestanding Walls and Solid Signs Per ASCEISEI 7-10, Chapter 26 & 29 Simplified Design Wind Pressures Mean roof height, h Horizontal Dimension of building, B Basic Wind Speed, V Wind Directionality Factor, K,, Risk Category Exposure Category Velocity Pressure Exposure Coefficient, K, Topographic factor, K,i: Hill shape H Lh X K1 = K2 = K3 = K,1 = (1 + K1K2K3)2 Gust Effect Factor, G: Peak factor for back ground response, g0 Peak factor for wind response, 9v Intensity of turbulence @ height Ziiar, lzbar: Turbulence intensity factor, c Minimum height, Z,,,;n Equivalent height of sturcture, Zbar = 0.6h > Zmin = l,bar = c(33/Zi,8,)' "01 = Background response, Q : Integral length scale power law exponent, Ebar Integral length scale factor, I lntergral length scale of turbulence @ Ziiar, L,bar = l(zba/33) •-bar Q = sqrt( 1/{1 +0.63[(B+h)/L,bar)J0·63)} G = 0.925 X [{1+1.79a l,bar Q) / { 1 + 1.7 9v lzbar)J Velocity Pressure, q, = 0.00256 ~ K,1 Kd V2 Net Force Coefficient, c, Case:A Design Wind Force, F = qh G c,A. where, ~ = gross area of solid freestanding wall/sign \!Vind Load (Directional & Envelope Procedure) Per ASCE_SEI 7-10, 10/28/201911 ;43 AM 8 ft 93 ft 115 mph (Figure 26.5-1) 0.85 (Table 26.6-1) 111 (Table 1.5-1) B (Section 26.7.3) 0.57 (Table 29.3-1) (Figure 26.8-1) NIA 0 ft 0 ft 0 ft 0.00 0.00 0.00 1.00 (Eqt 26.8-1) (Section 26.9.4) 3.4 3.4 0.30 (Table 26.9-1) 30 ft (Table 26.9-1) 30 ft 0.33 (Eqt 26.9-7) 0.33 (Table 26.9-1) 320 (Table 26.9-1) 310 ft (Eqt 26.9-9) 0.87 (Eqt 26.9-8) 0.85 (Eqt 26.9-6) 16.54 psf (Eqt 29.3-1) 1.35 (Figure 29.4-1) 18.94 psf (Eqt 29.4-1) [ IL] TETRATECH Client: Poseidon Channelside Subject: Chainlink Fence Job No: 200-35200-19001 Phone: (909) 305-2930 Chain Link Fence Loads Design Codes and References: CBC 2016 -California Building Code ASCE 7-10 -Minimum Design Loads For Buildings and Other Structures Chain link Fence Wind Load Guide (WLG 2445) Wind Design Parameters: Exposure Category: B Occupancy Category: 111 Height: Horizontal Dimension: Maximum Post Spacing: Embedment Depth: Wind Speed: Design Wind Force: Chain Link Fabric: Chain Link Fence Post: Wind Load: H := 8ft B := 4511 S := 811 D:= l6in V := 115mph F wind := 26.3 7psf 2" Square Mesh w/ #9 wire 1.5" Dia.SCH40 Pipe F y=35 ksi C10 Date: 8/19/2019 Engineer: JDQ Checked by: EY Office: San Dimas Mesh and Fabric Size Coefficients: (2" Square Mesh wl #9 wire) See page Table 9 of WLG-2445 (Coefficient is used to calculate C\1 := 7 ·26 the effective wind load area on the chain link fabric). Design Wind Pressure: Applied Force: Moment at Support: \ \tt. local\l ER\Projects\l rvine\35200\200-35200-1 9001 \SupportOocs Fwind := I 8.94psf Fwind Pw := --= 2.609-psf Cn P wl := P w·S = 0.02087-klf 2 Pwr11 Mu:= ---= 0.668-kip-ft 2 ~See page C14 ( I le] TETRA TECH Embedded Post In Masonry: Shear Force: Check Bolt Capacity: Post Shear Strength: Post Shear Strength: Post Diameter: Post Area: Post Shear Capacity: Number of Post: Check for Breakout: Post Depth: Safety Factor: Breakout Capacity of First Bolt: Minimum edge distance: Masonry Compressive Strength: Projected Concrete Failure Area: Breakout Strength: Crushing Strength Masonry Crushing: Bearing Strength Masonry Bearing: Shear Strength Shear of Unreinforced Masonry \\ti .I ocal\l ER\ProJeds\l rv1 ne\35200\200-35200-1 9001 \Support Docs Client: Poseidon Channelside Subject: Chainlink Post in Masonry Job No: 200-35200-19001 Phone: (909) 305-2930 Vu:= 0.146kip FY:= 35ksi = 35-ksi Fnv := 0.75·Fy = 26.25-ksi dp := l.9in AP:= 0.749in2 cj>Vnb := 0.75-FnvAp = 14.746-kip "b:= I ha:= l6in cj> := 0.6 lbe := 3.8125in t~ := I 500psi Apv := (2-lbe)·lbc = 29.07i/ Bvnd := 4-Apv·✓l~·psi = 4.504-kip <!>·Bvnd = 2.702-kip vu OCR := ---= f).()54 <!>·8 vnd 4~-- fm AP Bvnc := 1050 -. ---lbf = 6.079-kip psi . 2 ' In <!>·Bvnc = 3.647-kip vu ) Abr := lbc•<lp = 7.244 in- C11 := 0 X-t~-Alx = 8.692-kip <!>·Cn = :\.215-kip V (u,) =0.0lx nb• cp•Cn DCR := ) An:= (2-lbe)·lbe = 29.07in- Vn := 3.8·An·P~·psi = 4.278-kip C11 Date: 8/19/2019 Engineer: JDQ Checked by: EY Office: San Dimas ( IL] TETRA TECH Load bearing length Minimum edge distance: Projected Concrete Failure Area: Projected Concrete Failure Area for Double Bolt: Edge Modification Factor: Concrete Breakout Strength: Nominal Concrete Breakout Strength: Service Load: \ \I1. local\l ER\Projects\J rvi ne\35200\200-35200-19001 \SupportDocs Client: Poseidon Channelside Subject: Chainlink Post in Masonry Job No: 200-35200-19001 Phone: (909) 305-2930 Vn max:= min(90·An + 0.45 V~ ,300-An)·psi = 2.682-kip -psi V n := min(V n, V n_max) = 2.682-kip <!>• V n = 1.609-kip vu OCR := ---= 0.091 (<!>•Vn) le:= lbe=3.813in da := dp = l.9in >-.a:= I cal:= lbc = 3.813in J Ave:= [(2· 1.5·cal)( I .5·ca!)] = 65.408 in- J J Avco:= 4.5·ca1-= 65.408 in- ca2 'ljJedV := 0.7 + .3----= 0.9 1.5-cal 'ljJhV := = 0.598 a Vb c H ::f ,r;J,, Jrm psfc,1 L5 -319Skfp C12 Date: 8/19/2019 Engineer: JDQ Checked by: EY Office: San Dimas Vu =0.146-kip vu OCR := -= 0.071 vcb Use a 1.5" post spaced at 8'-0" O.C. on the center of the CMU wall. 2 Chain Link Fence Wind Load Guide for the Selection of Line Post and Line Post Spacing (WLG 2445) Copyright Chain Link Fence Manufacturers Institute All rights reserved Revised, 2012 Chain Link Fence Manufacturers Institute 10015 Old Columbia Road Suite B215 Columbia, MD 21046 Ph: 301-596-2583 Fax: 301-596-2594 email: clf mihq@,aol.com www.chainlinkinfo.org . i C13 C14 TADI i:: Q Mesh and Fabric Size Coefficients (Cf1)* FABRIC 3/8" 1/2 5/8" 1" 1 ¼" 1 ¾" 2" 2¼" WIRE SIZE (O.D.) metric equiv. (mm)=> 9.5 12.7 15.8 25.4 31.8 44.5 50.8 57.1 diam. (in) diam.(mm) .#5 (0.207) 5.26 2.92 3.52 4.73 5.33 5.92 #6 (0.192) 4.88 3.30 3.75 5.06 5.71 6.37 #8 (0.162) 4.11 3.58 4.36 5.89 6.67 7.44 #9 (0.148) 3.76 1.77 2.20 2.60 3.87 4.73 6.40 I 1.26 I 8.09 10 (0.135) 3.43 1.88 2.36 2.80 4.19 5.13 6.96 7.90 8.82 11 (0.120) 3.0 2.06 2.60 3.10 4.65 5.71 7.77 8.83 9.86 12(0.113) 2.87 2.16 2.72 3.25 4.91 6.04 8.22 9.35 10.44 * -(Cf1) =1 for solid panel fence (18)