Loading...
HomeMy WebLinkAboutSP 211C; HME CORPORATE HEADQUARTERS; DRAINAGE STUDY; 2015-11-13,.. .. ,.. ,.. ... .. 1111 ... ... ... .. ... ... ... ,.. 1111 .... .. .. .. ... ... ... ... ... ... ... ... DRAINAGE STUDY For HIGH-TECH CARLSBAD, CA Prepared for: Gregg Hamann 3575 Kenyon Street San Diego Ca 92110 619-4407424 Prepared by: R·E·C Consultants, Inc . Bruce Robertson REC Consultants, Inc 2442 Second Avenue San Diego, CA 92101 Telephone: 619-232-9200 Report Prepared: November 13, 2015 ... ... ,... ... ... .. ... .. ... ... 1111111 ... ,.. ... .. ... ... ,.. ... ... .. .. ... ... ... ... ... .. .. .. High-Tech Drainage Study TABLE OF CONTENTS Chapter 1 -Executive Summary 1.1 Introduction 1.2 Summary of Existing Conditions 1.3 Summary of Developed Conditions 1.4 Summary of Results 1 .5 References Chapter 2 -Methodology 2.1 County of San Diego Drainage Design Criteria 2.2 Design Rainfall Determination 2.2.1-100-Year, 6-Hour Rainfall lsopluvial Map 2.2.2 -100-Year, 24-Hour Rainfall lsopluvial Map 2.3 Runoff Coefficient Determination 2.3 Rainfall Intensity Determination 2.4 Urban Watershed Overland Time of Flow Nomograph 2.5 County of San Diego Intensity-Duration Curves 2.6 Model Development Summary (from County of San Diego Hydrology Manual) Chapter 3-100-Year Hydrologic Analysis for Existing Conditions Chapter 4-100-Year Hydrologic Analysis for Developed Conditions Chapter 5 -Hydrology Maps SECTION II Ill IV V ... .. ... ... .. .. ... .. ... .. ... -.... .. ,.,.. ... ,. - ... .. ... ... 1111 ... ... ... ... .. .. -,.. .. High-Tech Drainage Study CHAPTER 1 -EXECUTIVE SUMMARY 1.1 -Introduction The High-Tech Whiptail Loop project site is comprised of Lots18 and 19 of the existing Carlsbad Oaks North development. The project is located north of the Bobcat Ct. and Whiptail Loop E intersection . Lots 18 and 19 are mass graded per the "As Built" plan for the Carlsbad Oaks North Phase 2 C.T. 97-13 project. Runoff from Lot 18 drains to one of two onsite basins. Discharge from the easternmost basin is conveyed to an existing Modified Type 'F' catch basin and Spillway via an existing 24-inch HOPE stormdrain. Runoff from the westernmost basin is also conveyed to this catch basin via an existing 24-inch HOPE stormdrain . Runoff from the catch basin is conveyed via a 24-inch RCP stormdrain to the existing stormdrain line beneath Whiptail Loop E which ultimately outlets at the intersection of Whiptail Loop E. and Faraday St. Runoff from Lot 19 drains in a southeasterly direction toward an existing basin which discharges to an existing 24-inch RCP stormdrain. The stormdrain line then connects to an existing Type B curb inlet. Runoff from both the stormdrain and inlet is then conveyed to an existing 24-inch RCP storm drain line beneath Whiptail Loop W. which ultimately outlets at the intersection of Whiptail Loop W. and Faraday St. The storm drain system within Whiptail Loop has been sized in anticipation of full development of Lots 18 and 19. This study analyzes and verifies that the anticipated 100-year runoff from is equal to or less than the capacity of the existing system. For hydromodification analysis, two (2) points of comparison (POC) have been designated downstream of the project site for hydrologic analysis purposes . The project site lies outside any FEMA 100-year floodplain zones therefore no Letters of Map Revision will be required . Treatment of storm water runoff from the site has been addressed in a separate report -the "Storm Water Mitigation Plan High-Tech" by REC. Hydromodification (HMP) analysis has been presented within the "Technical Memorandum: SWMM Modeling for High-Tech", dated November 2015 by REC. Per County of San Diego drainage criteria, the Modified Rational Method should be used to determine peak design flowrates when the contributing drainage area is less than 1.0 square mile. Since the total watershed area discharging from the site is less than 1.0 square mile, the CIVIL-D computer software was used to model the pre & post developed condition runoff response per the Modified Rational Method . - ,.. ... ... .. .. - ... .. .. .. ... ... .... llllt .. .. .. ...., .. .. .. .. -.. High-Tech Drainage Study Methodology used for the computation of design rainfall events, runoff coefficients, and rainfall intensity values are consistent with criteria set forth in the "County of San Diego Drainage Design Manual". A more detailed explanation of methodology used for this analysis is listed in Chapter 2 of this report . 1.2 -Summary of Existing Conditions Currently, the High-Tech Whiptail Loop Lots 18 and 19 project site is composed of two mass-graded lots. The lots have been graded, per City of Carlsbad project CT 97-13, in anticipation of full development of Lots 18 and 19 . Runoff from Lot 18 drains to one of two onsite sedimentation basins. Discharge from the easternmost basin is conveyed to an existing Modified Type 'F' catch basin and spillway via an existing 24-inch HOPE stormdrain. Runoff from the westernmost basin is also conveyed to this catch basin via an existing 24-inch HOPE stormdrain. Runoff from the catch basin is conveyed via a 24-inch RCP stormdrain to the existing stormdrain line within Whiptail Loop . Runoff from Lot 19 drains in a southeasterly direction toward an existing basin which discharges to an existing 24-inch RCP stormdrain. The stormdrain line then connects to an existing Type B curb inlet. Runoff from both the stormdrain and inlet is then conveyed to an existing 24-inch RCP storm drain line within Whiptail Loop . Table 1 below summarizes the existing condition design 100-year peak flow from the project site. The flow values provided are per C.T.97-13 Drawing No. 415-9J. TABLE 1 -Summary of Existing Condition Flows* Impervious 100-Year Lot Discharge Location Peak Flow Percentage cfs 18 24-inch RCP (POC-1 ) 0% 24.0 19 24-inch RCP (POC-2) 0% 22.0 *Flow values per City of Carlsbad Project NO. C.T. 97-13 Drawing No. 415-9J Sheet 17 and 18. (provided) -... -.. .. ,,,,. ... ... -.... -... ... .. .... tllll - .. .. ... 111111 .. High-Tech Drainage Study 1.3 -Summary of Developed Conditions The High-Tech Whiptail Loop Lots 18-19 project has a total area of 405,543.6 sf (9.3 ac). The proposed project will involve the construction of a 108,610sf office building and 76, 735sf of landscaping. The remaining 220, 198sf will be composed of a parking lot and sidewalks . The project includes onsite storm drain improvements to convey flows to the two- existing 24-inch RCP beneath Whiptail Loop as pre-development conditions. These discharge locations are designated as 3.01 .6 and 1.01 .6. Refer to "Post-Developed Condition" hydrology exhibit. Per County of San Diego criteria, runoff coefficients of 0.35 and 0.85 were assumed respectively for the open landscaped space and commercial developed areas. Per County of San Diego rainfall isopluvial maps, the design 100-year rainfall depth for the site area is 2.94 inches. Table 2 below summarizes the developed condition design 100-year peak flow from the project site. TABLE 2 -Summary of Developed Condition Flows Drainage Impervious 100-Year Discharge Location Area Percentage Peak Flow (Ac) (cfs) 3.01 .6 (POC-1) 3.56 66% 16.00 1.01 .6 (POC-2) 5.73 74% 15.00 Prior to discharging from the project site, developed site runoff is intercepted by one of five dual purpose onsite biofiltration best management practice (BMP) detention facilities. Sizing for the proposed facilities is in accordance standards set forth by the Regional Water Quality Control Board and the County of San Diego's Storm Water Standards (see "Storm Water Mitigation plan for High Tech" by REC). These basins serve to meet water quality, hydromodification and peak flow requirements for the project site . - ... .. JIii .... -... ... .. .. .... - ... ... .. - ,.. ... ... - JIii .. High-Tech Drainage Study 1.4 -Summary of Results Table 3 summarizes developed and anticipated build out condition 100-year peak flow rates at the discharge locations from the High Tech site. Per County of San Diego rainfall isopluvial maps, the design 100-year rainfall depth for the site area is 2.96 inches . Discharge Location Lot 18 3.01.6 Lot 19 1.01 .6 TABLE 3 -SUMMARY OF PEAK FLOWS Condition Existing Developed Existing Developed Difference 100 Year Peak Dischar e cfs 24.0 16.0 -8.0 22.0 15.0 -7.0 As shown in the above table, the development of the proposed High Tech project site will result in a net discharge that is lower than the design allowance capacity of the existing infrastructure. All developed runoff will receive water quality treatment in accordance with the site specific SWMP. Additionally, the POCs are HMP compliant as analyzed in the Hydromodification Technical Memo . Final storm drain and inlet design details will be provided at the final engineering phase of the development. 1.5 -References "County of San Diego Hydrology Manuaf', dated June 2003 "Storm Water Mitigation Plan for High Tech", dated November 2015 by REC Consultants . "Technical Memorandum: SWMM Modeling for High Tech", dated October 2015 by REC Consultants - -... ,. .. - ... -- -,.. .. ... .. - High-Tech Drainage Study CHAPTER2 METHODOLOGY-RATIONAL METHOD PEAK FLOWRATE DETERMINATION .. 2.1 -County of San Diego Design Criteria - - -■ ... -... ... ... -.i -... - -... ... --.. ,. -,. -- ,.. - - --... ,. -- "-1 ... .. San Diego County Hydrology Manual Date: June 2003 SECTION3 Section: Page: RATIONAL METHOD AND MODIFIED RATIONAL METHOD 3.1 THE RA DONAL METHOD 3 1 of26 The Rational Method (RM) is a mathematical formula used to determine the maximum runoff rate from a given rainfall. It has particular application in urban storm drainage, where it is used to estimate peak runoff rates from small urban and rural watersheds for the design of storm drains and small drainage structures. The RM is recommended for analyzing the runoff response from drainage areas up to approximately 1 square mile in size. It should not be used in instances where there is a junction of independent drainage systems or for drainage areas greater than approximately 1 square mile in size. In these instances, the Modified Rational Method (MRM) should be used for junctions of independent drainage systems in watersheds up to approximately 1 square mile in size (see Section 3.4); or the NRCS Hydrologic Method should be used for watersheds greater than approximately 1 square mile in size (see Section 4). The RM can be applied using any design storm frequency (e.g., 100-year, 50-year, 10-year, etc.). The local agency determines the design storm frequency that must be used based on the type of project and specific local requirements. A discussion of design storm frequency is provided in Section 2.3 of this manual. A procedure has been developed that converts the 6-hour and 24-hour precipitation isopluvial map data to an Intensity-Duration curve that can be used for the rainfall intensity in the RM formula as shown in Figure 3-1. The RM is applicable to a 6-hour storm duration because the procedure uses Intensity-Duration Design Charts that are based on a 6-hour storm duration. 3.1.1 Rational Method Formula The RM formula estimates the peak rate of runoff at any location in a watershed as a function of the drainage area (A), runoff coefficient (C), and rainfall intensity (I) for a duration equal to the time of concentration (T 0), which is the time required for water to 3-1 -... ... .. ... ... .... --.. -.. ,... - 1111111 - - ,.. ... ... .... ... .. - High-Tech Drainage Study CHAPTER2 METHODOLOGY-RATIONAL METHOD PEAK FLOWRATE DETERMINATION 2.2 -Design Rainfall Determination - -... --- -- ... .. ... -.. .. -... High-Tech Drainage Study CHAPTER2 METHODOLOGY-RATIONAL METHOD PEAK FLOWRATE DETERMINATION .. 2.2 -100-Year, 6-Hour Rainfall lsopluvial Map - ... -- -,. ... .. ... .. • g 1-- 1n ;:: ~ 1n ~ g ~ ~ ~ . . Orange I . rs I j j j j 33•31r 33 30 ~ • I .6, .• 1...... .... • :'-.<.... (;) .... ,.i.· : ···:····1~.s ... ::~·.·::::: .. / ./~:::·· /~ :1 ' ••. q;-.. : \~:>······· (,;-: Riverside County \ :::::::t ·, ,,., '·.:: ·<<\ '<~f . ·•. \. I f · ___ __::~',_'4 <,/;i~'\ ("·•.\ .. s•· )~~:) • •• J ..• -········"---=- '-'?-.5 ··········;·······J~j1s· -0 ~ ~I '·'····--......... J·•., •,_ ·· .. "w I \ -~ •~ ] \ ✓ .. k.~¥:A ~e· 0 ('l ~ I)) ".) <Yit---\ ... •···"'t~·· --· : : ~ , + t t-~-,-. . •• • I l , .'' • 1 • 1 ~ e -, •, • • •• •• • • ' 32••5• I ~ ~--~ ! ········ · .. _,{····· -· . ~·-···~~ ~··~ : ··\ ~,~ ... : \ ·-.~ + • 1·00· 3 'O CD -, ~ 12•45• 32"30' 32"30' ~ .. ~ ,t 8 +-1-~ ~ ~ F,:.. J... ~ -.t-"t CD C0 <0 .... ,r-.-.... T"'" County of San Diego Hydrology Manual • Rainfall Isopluvials 100 Yea.r Rainfall Event -6 Hours lsopluvial (inches) DPW ~GIS ~tll\..-:t'" ...... "'-""'"'~,$~ ~ S~GIS \\I,._ HJ.,°' S:ui. Da:gu Cm-<:K<l! N lHISW#'l&~WmtelJTW'1MN<TYOFNttlOICl.Ems.EO"M:S: + °"-•--••n...,..,,o,nEWUEDW-...ra OIi ~MIIIJTY NC> ll'llWUFot APMTIO.UII ~ ~s.,ocs,,,,,_......._ .... ..,._,.,.,_..........,...., ... aN«¥,O__,,,.. .,...,.,..._~....,--... ,__~ ... __,_........,.-w). n.......,....., ........ ~'l!Pidl--,.-o,MIN-,.......,.,......"n.-............ 3 0 3 Miles ~ -- -- - -- -... -.. -.. High-Tech Drainage Study CHAPTER2 METHODOLOGY -RATIONAL METHOD PEAK FLOWRATE DETERMINATION .. 2.2 -100-Year, 24-Hour Rainfall lsopluvial Map .. ... - ,.. .. .. .. ,,,. -.. .... ,. 0 "' i:.. "' (. g ~ "' ~ 1!! ~ ~ ~ ~ 33•30• v1a11~v I . $h I I I • • I I C:rnm~ :_ :~.!Y ~~-33"30' :lj;fl}' Riverside County r-.. ·•.,. ·•: , .. / · 33•1 ······--- '33·00' : _;__,-,,s,u.: L ~ / , .. :i:;::I; :'.I'.~:)· ·.L -0 I)) (1 0 3 'U CD ::!. 32'45' 32"30' ~ ::: (') l') I)) -:, ♦ .... t /i /':J·[./ "' 8 "' ~ i:.. t ~ M e x ' ~ :::.~::::::·.:i·) ~). ~:)}\\~::, \I\ ······· ~ () 0 C: a '< •••• -.. --32"45' ,.>~_J;~ :· ·• ····•1 ~ ·. . I ~'j" "' 32"30' ~ County of San Diego Hydrology Manual • Rainfall Isop/uvials 100 Year Rainfall Event-24 Hours lsopluvial (inches) DPW ~GIS ~ S1iiGIS .,.__,,,,~~ a..--l>'t,,"""'"'s_._ \\;'I! 1-fJ\L "=,n nii..gt> cn ... crc,.1! +N ~i:=.=-"'~;;'~'t~~MY~~~s: OF~MUTY~RnrE.S&FOllAPN'tTICU,M~ c.,,,w.ia..Gdi.M._."-- ,,,_~ ... -.....,_ __ MH),IIG~ ----~.,..--IN,....___,.._ _.........,.,1,1,MWl n..,..._~OGIIIIIII......_....,_ __ .,.... .. .....,.....,.,_..,n--............. 3 0 3 MIies E -I --... - -.. --... -... ,... ,.. ----,.. ... -... ... .. .. ,,. .. High-Tech Drainage Study CHAPTER2 METHODOLOGY-RATIONAL METHOD PEAK FLOWRATE DETERMINATION 2.3 -Runoff Coefficient Determination r 1 t 1 r , 1 1 I I f I San Diego County Hydrology Manual Date: June 2003 11 fl fl IJ Table 3-1 f 1 I I ( ' I 1 1 I Section: Page: RUNOFF COEFFICIENTS FOR URBAN AREAS Land Use I Runoff Coefficient "C" Soil Type NRCS Elements Coun Elements %IMPER. A B C Undisturbed Natural Terrain (Natural) Permanent Open Space 0* 0.20 0.25 0.30 Low Density Residential (LDR) Residential, 1.0 DU/ A or less 10 0.27 0.32 0.36 Low Density Residential (LDR) Residential, 2.0 DU/A or less 20 0.34 0.38 0.42 Low Density Residential (LDR) Residential, 2.9 DU/A or less 25 0.38 0.41 0.45 Medium Density Residential (MDR) Residential, 4.3 DU/A or less 30 0.41 0.45 0.48 Medium Density Residential (MDR) Residential, 7.3 DU/A or less 40 0.48 0.51 0.54 Medium Density Residential (MDR) Residential, 10.9 DU/A or less 45 0.52 0.54 0.57 Medium Density Residential (MDR) Residential, 14.5 DU/A or less 50 0.55 0.58 0.60 High Density Residential (HDR) Residential, 24.0 DU/ A or less 65 0.66 0.67 0.69 High Density Residential (HDR) Residential, 43.0 DU/A or less 80 0.76 0.77 0.78 Commercial/Industrial (N. Com) Neighborhood Commercial 80 0.76 0.77 0.78 Commercial/Industrial (G. Com) General Commercial 85 0.80 0.80 0.81 Commercial/Industrial (O.P. Com) Office ProfessionaVCommercial 90 0.83 0.84 0.84 Commercial/Industrial (Limited I.) Limited Industrial 90 0.83 0.84 0.84 Commercial/Industrial (General I.) General Industrial 95 0.87 0.87 0.87 fl fl fl 11 3 6 of26 D 0.35 0.41 0.46 0.49 0.52 0.57 0.60 0.63 0.71 0.79 0.79 0.82 0.85 0.85 0.87 *The values associated with 0% impervious may be used for direct calculation of the runoff coefficient as described in Section 3 .1.2 (representing the pervious runoff coefficient, Cp, for the soil type), or for areas that will remain undisturbed in perpetuity. Justification must be given that the area will remain natural forever (e.g., the area is located in Cleveland National Forest). DU/ A = dwelling units per acre NRCS = National Resources Conservation Service 3-6 ----,,,,. ,,,. --,,,. - -... ... --,.. -,.. --... -- --... ... -... ... High-Tech Drainage Study CHAPTER2 METHODOLOGY -RATIONAL METHOD PEAK FLOWRATE DETERMINATION 2.4 -Urban Watershed Overland Time of flow Nomograph fl fl ,1 fl f1 fl fl (1 fl fl fl 11 fl II fl fl fl fl fl r UJ w LL z UJ (.) z ~ Cl) c w Cl) 0::: :::::, 0 (.) 0:: w i ,ool ~1%i5lope~L, V'I' >' i? >'I _.,, 130 Cl) UJ r ::::> z 0 20 ~ z -UJ ::E j:: ~ 0 ....I LL Cl z ~ 0::: UJ > 0 -0 EXAMPLE: Given: Watercourse Distance (D} = 70 Feet Slope (s} = 1.3% Runoff Coefficient (C} = 0.41 Overland Flow Time (T} = 9.5 Minutes T = 1.8 (1.1-C} VD 3'fs SOURCE: Airport Drainage, Federal Aviation Administration, 1965 FIGURE Rational Formula -Overland Time of Flow Nomograph 3-3 ---... -,,,. .... ,.. -- -----.... ,,_ ... ,,,. - ..,, ,.. - -... .... ... ,,,,.. .... ... .... High-Tech Drainage Study CHAPTER2 METHODOLOGY-RATIONAL METHOD PEAK FLOWRATE DETERMINATION 2.5 -County of San Diego Intensity- Duration Curve r 1 I I r 1 10. 0 r-.,-,.._-._.,i-,o,.._ 9.o--..+--a---..-1 r , r ' f 1 f 1 I I ' 1 r 1 f I I I l I I ' 7.0t--1.....,-+--f"ol::l-f'""'"""~""""i!-P-H 6.01-""rt-+~-+~tt"c!-'Nc~~~'llt+t-t+f+t+ ~ ,l !111111111111111111111111 = 7.4.11.r-~n·v.0-+o 5·°FN:.:I i1 ti1'1::rrtl1W4i 1111 '111 1111111111111: -~::~=::=:~:~::::~~: I :~II; II l I l 11111111 r-5 = 6-Hour Precipitation (in) ~-v 1111111111 u : uurauon \ffiln} .... "' ·-mt-U~lill-~1111111111111111111 '"illllln l ~IITT'Hllimtlllm 1~'~ ~~ ... ~ <t> -I 111 rt ~ &illlll . I . . l ~ ~ ' ' "", ~ "'~~ o 'Ill~ ~~~ ~ ./"', .. , ... ~"' ~~ ~ 5; .... """"-' ... ~ 4' . ' I .._r-,. 1.._, ~ ~~ ~ .... ' ~ ~ -· .._ I• ~ 6.0 "Q. ~~ • ' "' ... ~ 5.5 ~ ·-_ ij tt,U,I ····••. . . . . . . . . . . . . ~-lllllffifflfllffl ~~ i !;ttM u I ! f _ . -w. I I I l'Kl I I1I l I I U II I RII 3.0 , , , , , , , ,. ""'""""""1iilllllllllllllltl'Md:IIIIIIIIIIIII I "N:1 0.3 i T \ l lllllllllllllllllllllllllllllffill 11111111" rm. 2.0 1.5 0.21 1 I I I I I I I I I I I II II I II llllllllllllllllllll 11111111111111111111111111 I I I I II I II I llllffl411111111 n 1.0 ·--1-·,l, __ ,.._ 1111mmm~~·······- I 1 0.1 I l I I I I I I 1 I I I I I I I I I ' I I 111 I II 111 j II 11/ q I I I 'I I I I II I II II" l ll lJ !Ip II I I I I I I I I I l I i I I I I I I 5 6 7 8 9 10 15 20 30 Minutes 40 50 2 3 4 5 6 Hours Duration Intensity-Duration Design Chart -Template t I I I I I f ' I I r 1 Directions for Application: (1) From precipitation maps determine 6 hr and 24 hr amounts for the selected frequency. These maps are included in the County Hydrology Manual (10, 50, and 100 yr maps included in the Design and Procedure Manual). (2) Adjust 6 hr precipitation (if necessary) so that it is within the range of 45% to 65% of the 24 hr precipitation (not applicaple to Desert). (3) Plot 6 hr precipitation on the right side of the chart. (4) Draw a line through the point parallel to the plotted lines. (5) This line is the intensity-duration curve for the location being analyzed. Application Fonn: (a) Selected frequency ___ year p (b) P6 = in. P24 = ---2. = %<2> --' --'P24 -- (c) Adjusted P6<2> = __ in. (d) tx = __ min. (e) I = ___ in./hr. Note: This chart replaces the Intensity-Duration-Frequency curves used since 1965. P6 1 -1.5. 2 -2.5 . 3 3.5 4 4.5 5 5.5 6 Duration I 1·1·1 1·1·1 I I I I 5 2.63 3.95 5.27 6.59 7.90 9.22 10.54 11.86 1317 14.49 15.81 1 2.12 ·3.18 4.24 · 5.30 · 6.36 1.42 8.48 · 9.54 10.so· 11.66· 12.12 10 1.68 2.53. 3.37 4.21 . 5.05. 5.90 6.74 . 7.58 , 8.42 . 9.27 , 10.11 15 1,30 · 1_95' 2.59-3.24. 3.89. 4.54. 5.19 -5.84. 6.49. 7.13. 7.78 20 1.os · 1.62 · 2.15 2.69 · 3.23 · 3.n · 4.31 · 4.85 · 5.39 · 5.93 · 6.46 25 0.93 1.40. 1.87-2.33. 2.80 -3.27. 3.73 . 4.20 . 4.67 . 5.13 . 5.60 30 0.83 -1 .24. 1.66 2.07. 2.49. 2.90. 3.32 . 3.73 . 4.15 . 4.56 ' 4.98 40 0.69 . 1.03· 1.38-1.72 2.07 2.41° 2 76 -3.10 3.45 -3.79 . 4.13 50 o.60 ·0_90· 1.19 1.49 1.19 2.09· 2.39 2.69 2.98 3.28 · 3.58 60 053 oso 1.os 133·1_59·1.86·2.12 2_39·2.65·2_92·3_18 90 o.41 ·0.61 o.82 1.02 1.23· 1.43 1.63 1.84 2.04 · 2.25 · 2.45 120 o.34·0.5t"o.68·0.ss·1.02·1.19·1.36·1.53 1.10·1.81·2.04 150 0.29·0.«·0_59"0.73·0.88 1.03· 1.18 1.32 1.47.1.621.76 1ao 0.26 ·0_39·0_52·0.65·0.18·0.9t' 1.04 · 1.18 · 1.31 · 1.« · 1.57 240 0.22 . 0.33. 0.43. 0.54 0.65. 0.76. 0.87 . 0.98 . 1.08 . 1.19 , 1,30 300 0.19 ·o.28:o.38·o.41·0.56·o.66· o.75 · o.85 · o.94 · 1.03 · 1.13 360 0.11 ·0.25·0_33· o.42·0.so·o.ss· o.67 · 0.15 · o.84 · o.92 · 1.00 f 1 FIGURE ~ ----,.,, ... - - - --- - ,,,. ... High-Tech Drainage Study CHAPTER2 METHODOLOGY-RATIONAL METHOD PEAK FLOWRATE DETERMINATION -2.6 -Model Development Summary -(from County of San Diego Hydrology Manual) ... ... ... ,... ... - ... ,,.. .... --,.. -... -,,.. -- ----- - --... ... ,,.. -,,,,. ... ,.. ... .. ... San Diego County Hydrology Manual Date: June 2003 3.2 DEVELOPING INPUT DATA FOR THE RATIONAL METHOD Section: Page: 3 20of26 This section describes the development of the necessary data to perform RM calculations. Section 3.3 describes the RM calculation process. Input data for calculating peak flows and Tc's with the RM should be developed as follows: 1. On a topographic base map, outline the overall drainage area boundary, showing adjacent drains, existing and proposed drains, and overland flow paths. 2. Verify the accuracy of the drainage map in the field. 3. Divide the drainage area into subareas by locating significant points of interest. These divisions should be based on topography, soil type, and land use. Ensure that an appropriate first subarea is delineated. For natural areas, the first subarea flow path length should be less than or equal to 4,000 feet plus the overland flow length (Table 3-2). For developed areas, the initial subarea flow path length should be consistent with Table 3-2. The topography and slope within the initial subarea should be generally uniform. 4. Working from upstream to downstream, assign a number representing each subarea in the drainage system to each point of interest. Figure 3-8 provides guidelines for node numbers for geographic information system (GIS)-based studies . 5. Measure each subarea in the drainage area to determine its size in acres (A). 6. Determine the length and effective slope of the flow path in each subarea. 7. Identify the soil type for each subarea. 3-20 r 1 f I f 1 f I f I f I f 1 I 1 f 1 r 1 f I t I I I 'I I I 1 f I f I f I I l ,.,..., Study Area SC .r· : . l ( ~, l--! I ,/ ·. /f l-· Study Area LA © Defina Study Areas (Two-Letter ID) © Define Maps (or Subregions on Region Buis) © Define Modal Subareas on Map Buis . .. -·· . .. .... : . . . . . • . . . .. . , . ·· _.-~ .. -··-~=~-----·-------·--~ . . . . .. ..... •·" : .--: .. ·· . ... ..... / ....... •· .... . , ...... . © Define Major Flowpaths in Study Area © Defina Regions on Study Area Buis Subarea ID• (LA010112) N::=-1 Study ,.:a:: 1 1 l © Define Model Nodes (Intersection of Subarea Boundaries with Flowpath Lines) GIS/Hydrologic Model Data Base Linkage Setup: Nodes,Subaraas,Unks LA 01 01 © Number Nodes FIGURE ~ ---.. - -.... -... - -... -.. - -.... ... .,,. -- ,.. ... - -.. ... ,,.. ... -... San Diego County Hydrology Manual Date: June 2003 Section: Page: 3 22of26 8. Determine the runoff coefficient (C) for each subarea based on Table 3-1. If the subarea contains more than one type of development classification, use a proportionate average for C. In determining C for the subarea, use future land use taken from the applicable community plan, Multiple Species Conservation Plan, National Forest land use plan, etc. 9. Calculate the CA value for the subarea. 10. Calculate the UCA) value(s) for the subareas upstream of the point(s) of interest. 11. Determine P6 and P24 for the study using the isopluvial maps provided in Appendix B. If necessary, adjust the value for P6 to be within 45% to 65% of the value for P24. See Section 3.3 for a description of the RM calculation process. 3.3 PERFORMING RATIONAL METHOD CALCULATIONS This section describes the RM calculation process. Using the input data, calculation of peak flows and Tc's should be performed as follows: 1. Determine Ti for the first subarea. Use Table 3-2 or Figure 3-3 as discussed in Section 3.1.4. If the watershed is natural, the travel time to the downstream end of the first subarea can be added to Ti to obtain the Tc. Refer to paragraph 3.1.4.2 (a). 2. Determine I for the subarea using Figure 3-1. If Ti was less than 5 minutes, use the 5 minute time to determine intensity for calculating the fl.ow. 3. Calculate the peak discharge flow rate for the subarea, where Q, = UCA) I. In case that the downstream flow rate is less than the upstream flow rate, due to the long travel time that is not offset by the additional subarea runoff, use the upstream peak flow for design purposes until downstream flows increase again. 3-22 --... .. --.. --- - - - - ,.. ,_ ,.. ... ,,. ... - .... .. ... ... ... ... -... San Diego County Hydrology Manual Date: June 2003 4. Estimate the Tt to the next point of interest 5. Add the Tt to the previous Tc to obtain a new Tc, Section: Page: 6. Continue with step 2, above, until the final point of interest is reached. 3 23 of26 Note: The MRM should be used to calculate the peak discharge when there is a junction from independent subareas into the drainage system. 3.4 MODIFIED RATIONAL METHOD (FOR JUNCTION ANALYSIS) The pwpose of this section is to describe the steps necessary to develop a hydrology report for a small watershed using the MR.M. It is necessary to use the MRM if the watershed contains junctions of independent drainage systems. The process is based on the design manuals of the City/County of San Diego. The general process description for using this method, including an example of the application of this method, is described below. The engineer should only use the MRM for drainage areas up to approximately 1 square mile in size. If the watershed will significantly exceed 1 square mile then the NRCS method described in Section 4 should be used. The engineer may choose to use either the RM or the MRM for calculations for up to an approximately I-square-mile area and then transition the study to the NRCS method for additional downstream areas that exceed approximately 1 square mile. The transition process is described in Section 4 . 3.4.1 Modified Rational Method General Process Description The general process for the MRM differs from the RM only when a junction of independent drainage systems is reached. The peak Q, Tc, and I for each of the independent drainage systems at the point of the junction are calculated by the RM. The independent drainage systems are then combined using the MRM procedure descn'bed below. The peak Q, Tc, and I for each of the independent drainage systems at the point of the junction must be calculated prior to using the MRM procedure to combine the independent drainage systems, as these 3-23 --- .. --- - --- - - --- --- .... .. ... ... .. San Diego County Hydrology Manual Date: June 2003 Section: Page: 3 24of26 values will be used for the MRM calculations. After the independent drainage systems have been combined, RM calculations are continued to the next point of interest. 3.4.l Procedure for Combining Independent Drainage Systems at a Junction Calculate the peak Q, Tc, and I for each of the independent drainage systems at the point of the junction. These values will be used for the MRM calculations. At the junction of two or more independent drainage systems, the respective peak flows are combined to obtain the maximum flow out of the junction at Tc• Based on the approximation that total runoff increases directly in proportion to time, a general equation may be written to determine the maximum Q and its corresponding Tc using the peak Q, Tc, and I for each of the independent drainage systems at the point immediately before the junction. The general equation requires that contributing Q's be numbered in order of increasing Tc. Let Qi, T1, and 11 correspond to the tributary area with the shortest Tc. Likewise, let (b, T2, and Ii correspond to the tributary area with the next longer Tc; Q3, T3, and l3 correspond to the tributary area with the next longer Tc; and so on. When only two independent drainage systems are combined, leave Q3, T 3, and l3 out of the equation. Combine the independent drainage systems using the junction equation below: Junction Equation: Ti< T2 < T3 3-24 --- ,.. -- -... -------,.., - -... --... -----... .... .. ... ... San Diego County Hydrology Manual Date: June 2003 Section: Page: 3 25 of26 Calculate Qr1, Qn, and Qn. Select the largest Q and use the Tc associated with that Q for further calculations (see the three Notes for options). If the largest calculated Q's are equal (e.g., Qr1 = Qn > Qn), use the shorter of the T0's associated with that Q. This equation may be expanded for a junction of more than three independent drainage systems using the same concept. The concept is that when Q from a selected subarea ( e.g., Qi) is combined with Q from another subarea with a shorter Tc ( e.g., Qi), the Q from the subarea with the shorter Tc is reduced by the ratio of the rs (I2fl1); and when Q from a selected subarea (e.g., Qi) is combined with Q from another subarea with a longer Tc (e.g., Q3), the Q from the subarea with the longer Tc is reduced by the ratio of the Tc's (T2'f 3). Note #1: At a junction of two independent drainage systems that have the same Tc, the tributary flows may be added to obtain the Qp, This can be verified by using the junction equation above. Let Q3, T3, and l3 = 0. When T 1 and T2 are the same, 11 and l2 are also the same, and T1ff2 and l2il1 = 1. T1/f2 and I2il1 are cancelled from the equations. At this point, QTl = Qn = Qi + Q2. Note #2: In the upstream part of a watershed, a conservative computation is acceptable. When the times of concentration (Tc's) are relatively close in magnitude (within 100/o), use the shorter Tc for the intensity and the equation Q = l:(CA)I. Note #3: . An optional method of determining the Tc is to use the equation Tc= [(l: (CA)7.44 P6)/Q] 1.ss This equation is from Q = L(CA)I = L(CA)(7.44 P6'Tc·645 ) and solving for Tc. The advantage in this option is that the Tc is consistent with the peak flow Q, and avoids inappropriate fluctuation in downstream flows in some cases . 3-25 ----... --------------------- 11111111 -... ---... .... ... -.. ... - High-Tech Drainage Study CHAPTER3 100-Year Hydrologic Analysis for Existing Conditions ~:·-··_;:,· . .::.--=------ :;.:.. ~- -· ---· ., " .. :-- or<•• -••~ -~ .... ,., .... --·=•~ - .,__ .. . ~~--...... - ;~t-'\.•;:-;-+ ';.\,.. --i" . ... f0i;:·n:J:_ ... :t::::.--~--· -----·~ ,~-- .. ~.· ·------.--.-···· .. , . -·· .. •-' "~•-~--•• •••· •~n• n•••• .. :, ,~,f }?i~;:::,, .. ,. ~---·--··· ···--~=· •-n • • •• ' •• ····-··. ._., ... ~. -· ~F····-. . ......... . 1-·· ••• _ ••• -. ~ :::·:. ,--· -••,O ~-•••M•••••r •-••• •~~ .-~-...... . ---' ·--•··· -"'.'.-::: ~-···""'" -:,.·:..-::. . -··-... - ....... ,,. -- ·-·-<-'"'-'" • H••• ..•.. ~ . . '··--·--~--,-J- .. ,... ~. , .. ~ ___ ;; -- .. ~,--···-· , ~.... .. -- ···.±:.::,:.t::~~1·--= ·-:;+· ·~ ......... ·----' ··--· •. ..... _ ;-4-. __ snr• •~• ··--.......... ., .•... ~----.... ,. ·---·~:-.: ;:;::::-. ' : = ...... '""-'••· ,.,.,.,.., --~~ ' -~ .~-·-. .I-·· -~3:if'.~~~ . .. l ·.1'"':r -~·,:;; ·:.: .. : . ·---~ . - . ]::·-· ....... -.·.·;.:. , .. =1::-'""···· ·-----· . .• t:::.·::i:· . <,L' -.~~. . ');';: .. ·: ·::c · , . _·: ... ··t ··,tc~ . --::,-;:,-.r.__,. ;,,·:~;::·r -C-n• ... :~t···· '•• .-.-·:::: ..... 'lt, ........ ··-· -·~ ---~-.... . -~·~ ---· ---·--.~ .. , . ~-"" .'.":.'. ~ .... -·1-·' ...... . ..,.,,._,.;-- .. ~ ·!.:..;"" ··•~ ;i ,- ---~ .. ...,..~ ·~I ••y ••-•• •••-ie• -•• -1'.l.f.¼v~:""-:-.... .. . -~~-...... . NOTE!! ··--~---. .,;., ... ~---,.1,.-1. ElECTRON!C OA TA FILES AR£ FOR REFERENCE ONLY AND ARC NOT TO 8£ USBJ FOR HORIZONTA.l OR VERTICAL SURvEY CONTROL :;±·.;..•;· '. r --.... :.-; ·:~ ..... ·• ;.:_ :;:; __ :;:...:. "-7 • ••• -.l--:·~"'.-t;;;·::·': -"::-:.·:~ .. -·""""T::-: . ± ·J.:· ... 36 27i0 Loker A•lenw~ W-s:si: StJil-e 100 C'!Jrl<>bc:;id, C□!ifornic:1 '9201D 160-93~-7700 r'-ri:,:: 760-931 -8680 1v•m~.a-dayoonst1itonts.oom ~.,,:,:-.--· ...... -~--. =•·· --- I I I FUTURE G] Ch-:il Engineering Ptrmni'ng Proe1a!ssin.g $1.1rve}'lfilS;: •--··T " i.:.-=::;.: h" • •• . -•-= ·i:: ... .:· ::-:.:;'.: -.. -~ ....... . --·•-""• ·-~-.. _,._ i--:::-::-, .-.. --~ """''" ~--·I:.~-:; ••••.. :-:-.:-..... ·:=:; ... ., ..... --··co •. ,;~;-•. :,·. ·::t::::.:~: .• ,. ........ ~,..::· .. -..-:-. .-__ ~.--:.::..·· •'"· . . _,: -:-: ... "..':~:..'": .,.._. ·•. :_ . ~--·· ..• ,..~ L ,_ ~ M ·-•"' ., ,_. L¥ . :.\ .·t,:--;;;. -: -,,_ - l== ,. ....... . ~ .... .. 37 38 39 PLAN·-WNIP[All LOOP SCAl£: DESIGNED BY: H.R.AV.L. DATE· NOVEMBER, 20051 SCALE: 1" = 40' DRAWN BY: _.G"".,,C=••_T,.c/sco',~- PROJECT MGR.;__LO,C. -··-JOB NO.: 96-1005 ENGlNEER OF WORK: D/ffE: 11//4 nM01iff 0. CARROLL, JR, RCE: 55351 I" = 40' "AS-BUILT ~.(~/ rrMiiril.~f;tk~--~ P.E. 5538{ EXP .. !2/3!/to , REVI ED ~._.·,~t;~~t~ ... ,· ~ •-.,_ •••H -· .. ·-·· ~•u• '""""" •-=• •• ·-........ ·'."._" --·· ~.-• .. i.-.,;:c; -:.:.. "'"'"" ··-··· .,_., ··-·· •-···-· .. .,_." ., ... :-. ·.: .~:~:---::: -··· ., ... ., ..•.. ....... --·~· ·-- --~ '~ .~.::':".: . ~~· :~ .. ~.~.~;.~~+.- ···--····--· ----~ ... :.:;.cc.-::::. :::.c. ·. . .. . . , -·--· ~.d_::··~·•j .\ ... . · ......... E. .. · ·-· ... ----;;'"..:.i::... -•• M•~• ~,r,, ~~: .. ;.':;.,. •~~ ~,M. • .,,., ..... , .. ~.::;:· 1:·~ ... ~ ~::: ·:·\;'t::: :~~=~ ~~~. ·········"··F--· --·· ... , ... . •.. . -· .. .. DATE DATE ---~~----~-, . ·---. ,. --• .. ,,.,., -·--- --•= ., .. ,.,.;... ~ ., ....... , ·~:r.::--;:-:,~:~·:-·· ....... . , .,. -'~·--~•;... , ...... :---._ ·::-~,\:}1:~:?::42:'.~ --: . : . .•... -::~-:. ~~ ·:.-:~:.~ ~:.~ ,_ ....... -····· . ._, ...... . -~ ····-· ... ,. ... ., .. , .. •••L--••-••••• •--•· ,.,,,_. ·-·-· ··-·· ... , .......... -··· 40 Oi:"Nf"U MA°K· !JL. \JI I I l\i • 41 i ... ,_.,.,cc:c. _ .... ,. __ -··-. ----,_, ., . -' . ..... ~ . --··· .. ~~..,.,• --·---~· O[SCRIPTION: 2' ALUMWUM DISC STAMPED GPS CONTROi PT. 2002 LOCATION: IN 5/0E!f4LK NOR f/-1 SID£ OF PALOAfA!i' AIRPORT ROAD, 300 FEET IIEST Or 1.-'Ei.ROSE fll?.11:F . RECORD FROM: R.0.5. NO. 17271 (Pl NO. 7?) ELEVATION: 444.00 M.S.i. DATliM: NG VD 1929 .............. '-• •· ··-.· .. ~,:;-.:::::~ _. __ - c~·:1:cc:· f::;;· ,. -·+· ~ ----~-,+,~~----., i.......:.::.·. ·-·••' _,, ·--~ ...... ,· .. -~ •~•~v~~ n •••••- -w-vv ... •"'.:..,±.:;·---·•·' ·-•··~--. ······•· ' ...... -_ ~·-..... . __ --:; ~.--· ------- -'-;::-;::. :::·._ -··-·-~ ·-- .. ····-. ... ·-t-" ··- __ c,,.;,:. •. -.~ ---=: ·:.-;::;: .. ::.· . ·-·--~· .,,., ..... -·~ ~· _, •J• ... ----·----·· -.·~---.. · .. ---~ -, •... =--... -~--..... ,.,r,, ···--· -~--., . ••• •• •n•-• • -~. -.... -; .. , ...• --·-. ......... ---· ·----··---··· ··-· ,.,~--· --· -·--· .... ,_, . ._ r, -····· ····· ' . .. ··-~ -~----e .... ·-.. -·._. __ .. _ ---··-··~ .. , ·-· -···~ , .... ·---~ ' ...... ., ····-· .. .. ......... ..•... . .. , . ----~ ··-··· -----~•-··· .. -· "' ..... .., .... ·-·. ·-...... ··------..... ···----· __ , __ ., __ _ !...... •••• --· -···~ -~· ---· --~·-~ . -_,._, __ -:.:: ... ·- ;-,--_'._' ·:.:·:.: . .:: .. -·· ---· ,-, . ---·~ . .. u-•- -. ···"" ··-··-~-· ,,_. --~~,-... .-J~~=_.--- .... _ ·;; · ~..-- -···· .. -······ ·---· .... ~ ~-·-·--------.,_,. ~-. '... . .... ~·-· ;•;::::: ', ___ ~--·~::i: . •-::····: •-:;'..:::f. .. J'·· ..... -~ •"·"'" __ : __ ..... • .... ~~•·f .. .. , ... ·.--···-. ~----~-· . ,-.... ·-ij,.·. '::'""" ··-...... ---,· ·-·-··--··· ~--~--~-... -~ ....... _,~-·-· ···-· ·-, ...... ---·-· ..... -••• • .h • •-•••• -•-•• ·---· ... -.. ..... : ' . - +· NL •aLs<• • •'-•n ••••• --· ·•-· -.,.,. ~---~ ---~--·-·-·--- . ~~:::.1::::-~ ~<:Ei_N..,;;li=E""""R-'ll¼N,~:(~D~_ ~,,,;,,;,T,.;..;A~, -~ DElTA/BEARiNG RADIUS LENGTH i 1 ' N 89'28'0," !f I 458.82' .. ~==-~ ·-·-· -.. -· ~.,. -~------~··---.. ~---.. -··- ~~ ••••• L-_-;--~• • ····--~·.---• -:::':;::: -::---=~~ ;...::: :-,;;. £ -· .,.._ ___ .. •u•• ._-, .,.,., :::_, -•· .I-·-:,·;-_ ·;:.;:::: _ .•.. · tn··· · . , ... .. . ::...::..:: .,.:; .. ~- • ::::.::-:::. u,:--.:.. -··---· .. ::;-·.::: .. .. ·E·-----· ., .. , ..... . .. .... ---·---· ... ~ -·-·-•~..:. ... ,. ~- ~~-~-:~~~ ...... , _ ... . --·-· .•. .,.:f.,...v, ~ ......... ~--:::::.::.· ~.:.:::. ;· ·-·;:::~;·: . ... ., .. ~----•= ··~·· - SEWER DATA r o' 10' 5 20· StALE: 1' = 40' SEE SHEEr No. 7 fOR SURFACE f,',fPROV£M[N'fS WATER PLA,'i/5, & i?ECYCJ.ED WA 7m PLANS. , Sl:.t mm No. 415-9! FOR CRAD/1/C PLANS: CAUTION fl •• CONTRACTOR TO 1£f?IFY iliE EXACT LOCA TfON OF lX!ST!NC /JllLfllCS IN THE FJELD PRIOR TO Cot✓STRUCT!ON! ::\g511J05\Svt,mil\e'ii,~:to ?.\C611[l1 f,~. i";,i,i, ,1□p\9Ml::it:l\i'.,j•.vg }le\-' m. liJG-f 10:.'.i1,-,,rl xr,st,;; ~150581; ~~Q$riMr.r; 91JC..5B31R; £1¼5EiJ,.m..; ~WS!:!l'RO l j 80' kf;ia: DELTA/BEARING RADIUS LENGTH 1 N 89'28'0{" W -158.85' L NO I 2 J STORM DRA!lv DELTA /BEARING RADIUS LENGTH * WATf.'R-TfCHT J01WTS REMARKS 8" PVC SEWER DATA REMARKS "FfU srrE TABlE t -1.RfJ)l.li/?£1) TREATMENT 1 CONTROi. BMP TA8t.£ ~ffCHl?/i',;l.r,' J -(lf/A!fTITr i . IJ£SIU1NG !//SIN · (Nottu ___ _ 1 0.ECllfCWIC lJAlA fll.iS ARE flJf{RtFERlJ,/Cf - · ONl.Y ANfJ ARE NOT IO 8E YSEO F(I/( IIQl?IZ()NTAL M !6ila4l Sllf{V,:'/ COl•ll!rOI. I · n:ss i,,;: . "" -Z3 Fi .. ~ N(l; ~1 . SJ * 00'. 12/3.VOO * . _ ~ 1' Cl V 1 \.. ;.,,# "<- . 0/'" a,.L\',0;,. I C~/~TS ' I ' I f l 2'1'!-0 l.oK~r AiJSl11,l-l!I We$l Clv~ Engl.Hte:-r!'l9 ! Stilt~ 1-00 Pl-crrm1n,g .C-0rt®i:id, Cn!if0tr,(=G 9201 0 ?!01'::'8:iiSl~g 7~0:-_901 ~ n1Jo Sorv,ytng . Fc;i,:; 760.-S-~1-eeao www. odn ~¢1'1-sul-lic:!nts.com DESlGN(O BY: A.V~-l'LR. PATE: fEBRUAR'( 200& DRAWN BY: T.G .• (t~: SCALE: 1· ~ 50' ' PROJECT ,!OR.; l.CJ.:C~ JOB NO.: 96-lOOo E:NG!NEER -OF WORK: . -, .,..-fr"'. _, / . I -1,_' ----;:;:-"--~ DA TE:.£?-', .,::;"?c l1MOTHr 0. CA'lROll, JR, RCS; 553B1 "AS BUil T" ~ ,.,...) ---{ .u -8i~ff _,-c;;,t.-"-:._.'.__ TlMOTIIY O. CARROLL;JR. .. P.t. 5538! . EXP. tZ/3fjlO OATE- ' -REVljlWED 7Y:;, 11 Cf /1,_1.f{l!j, ·g-1.rJ { ,UJ....· ~~d-fd, fflSP£CTOR -,' DATE • i BENCHMARK: DESCRIPTION: LOCATION: 2" ALUMINUM DISC SlAMPEO CPS C0/1/,"'ROL - Pi. 2002 IN SJ!JE/1/AlK NOR.IH S/0£ OF PALOMAR AIRPORT ROAD, 300 FEET WEST OF MR.ROS[ DRIVE RECORD FROM: R.0.S. NO. /721! (Pi. NO. 7!} ELE\1/lTION: #4,00 M.S,l. DATUM: NG,V /92J 100· f.o • ~ -~ -~ :_:-.,,· _,_, ~ ~ tr,, • I APf>RO\/ED r z.4.,n t:fA) h e,:1.> (EV? 5. (, ,'.J ' 7- ' IN!l'IAl bATE 1irr!rf1AL ENGINEER OF \1/0iiK '_ •)Tlit~ AP~llO\/A!, ·Cl'fY AJ'.PRO\/AL _t-;- --· ····t -----A--....... ·-••• •-• . . .. ·--·---·---·---· --~-· '"·----------···-·-.•. , .•.•.•• :.;: •• ,f-Y"- ·--·---~ . c:::::.:: ··-·;,.: .. ~. -:-_·.:;.··1· ~. -- ...... ,.-,....., ~·-~ ·;···~:····,---' .. -...... ~--:..-.. ~ ~ :_ :::::..-~ ·~,.:'"" --~ -····- -•.--•-~·-···· ..... -,._ .. ,. .--:-__ -·--., .. --·--_, __ _ ·-..... . :-; --···. ~ .. """{:,-__ _ .n--, onro I ---~ ······•--· -·· .-··-·' ·-· •hJO""""'•• ••••. ·---~·t" ~f:·::-.-:'j;:: -~ '-·-•·"" •• -·-I--•-·· 1 ..• ··-~· •. ·•-•, -·--· -.~ ......... . -·-··· -....~ ---~· -· -·-·· ---~-- ··--+· - .. -~ ...... --.• ----•=• ... , .... --~···--· -··--······-·· ---.. , .. .. -·-... -'"-~----~ --··· --~.-.. .,. -.:·::; : .. , .. •M••••'•-~ ---1,-- :.tc __ --',_,.,. --~--~---~;-----~-................. ----. ---· -·:~--~:-, ·----~---•--···--.. ---'"':', --- •-•T ~~OTO --~-~~ -· -~:-;. ··-.. ·:;;:;: : ..... .. ,,. .... ~ ...... •••••• ~v-. ----------.-...~-n••••• •• . ·.::;. .. "".;:. .... ;:: --. ~-~ .. , -~ . ..,.. .... . ~-~ - '"-••~ o•o• T"TO -----···--~-·~·· ...... --····--··-""" ---~ -=-·=i=°:''. ==--... . -.:::=:. ~-::-::-: t.-:.·-· ••••• n-• ,-•••• • "'••••• ••" •• '"~• •••" -. :-::;:._ •• •·;I·.~ :•':._ 0~ ::•-:_: ::~J~~1i-7J~j :~J:2:'J/~~~--' --- -+ --,--~-.+--··-"··· •... }~~fj ... ~ - :-----;:::-··:-4 ----~-.·, .• ,-----~ ··-· P•••' •~•••• ,--··- ~=1 .... --, :~~I~\~-- -J---c:.-r:·"" -· ' --· -.~ .. -···. --~---_...,_:::'_ .. -_, ... ~--···-··" L'-"•.-~;_::-:--?-~~ l?i ~-:: ·.· .... ·-·-:__:-:.-:-:-:-····· 1=:::. .. ., .. . -:-:.~ ., ....... __ ,. ---·----~ ---.. ·-·-•···~---•---~···- .:.;_ ., ..... ~ ~-:I•:, 1:,-:: ·::..:. ·-~-. t=--··-· .•••. ·-----i=== ... ,.~. . ' -I::'.::::'.-=::;-;;.·:;.:: __ -1--•- -- "'.j ~~~:.:, .. =:f}-::----~ . -::I-:'~-:-~:=-: ., ·- ·-. .. . --~~ -....... .. -~--·-~ --· ~ .. ~ ·--·-~ ----· ........ __ , ...... ···-· •• 1-----. , •• ----·,·-··· ··-···•·-er"' -·· ·---. ._,_ ·.-~- 1-'-"-•• -::--:::. ~ ,---·-·-·. -. -- 1-----••---· .=i:-....=-.:-..• ," ••-• ••--• •n••-••-•• .. -~ ~~-·· -·····1-... -~-~i--·-- ·--·· ··-.,::..;·-...... .. --•--• ............... _.,. .•. - --· .-~--·--~ ~~•=f•h -n• --.... -• ····-·-···· ·--·· .. ----; -.,.:;::-:?.: C -·- ,___,~ -· ......... . ·---~~--~;---;_ :_-;_..f--.:.::.: --:·"-·., -.... --~-, __ -----... ···1 .. --~ ---··· -~ :: :":::·· ____ ::~----:;..:.::.:~.---~-- .. ----····~· -,-,~• •~L••• •n••= ~r, -. --·-·-·~--•--j .... -;,;-:;::.:::~ •• ••n• -~•u "'"" ( NOT£!! I ELECTRONIC DATA Rl[S ARE'FOR REFERENCE "l ONL y AND .4RE NOT TO BE USED FOR HORIZON1AL OR 1/ERllCAL SURVEY CONTROL "·-· ··-·· - --· ·-··-.. ·--··· .. ., .. ---·· ··•--·~---.... ,, ,. ...... -•. o ···z ~-- -_:.:... •:_:_ -, ........ ···- •-~hiv••-·••.,_ ···.:..· ::::.::..... ., -.... ..... ---· •='-• --~-~ -·--•.••••. ac••• -••• •• •c • ,. •••• • •·•=•••• --·--·-·--.,_,<_ -·-·· ··-· _____ ,. --.. r-:.-..:.:.1----:~ .~· ----.1:---- ...... :;.; .. ········-· 41 0°,h, ••••••••-•~• r '" ~--·---:;::.~~t·::~l. ~1----•. , •. ·-·----·-···-·-·-~ ·-·-----· -~ ... ---···· ----- .. . _,-:,, .. ' -----· ... . • ___ ~----:-rr:· -~~'::. · ··.-:. .'-•'.:: .... ~-::: ~.-:.·.:r :n ~--~· ·~;.=;i/-·• . .......... :: ., ..... :::;· .-::.~ ::· ·r-: . --- 42 --- 43 44 ••o• H.OLST • . -~· ···-· ... ---·---~t ••••••~,_-.,,.. •n••• • •••••• O~VH ••••• • •• •• T• . '""" --·· -----,., --.... ··-~--n • =••" •• •••• -----· ... ~· .. ••••• LO,•• --H• rT•r• -· •• 1 ·····-· ._. •••• -·--·--1-. -·-·~ .,_. ..... . ~-~ ••---· -· .. '.~:.::·. _ .... ·-~·-·-···· -···· .... . 45 PLAN -Wlf/PTAIL LOOP SCAlE: 1" "" 40' I O ~~-DESiGtlf:D SY: _!:i.R,A.)Ll. DATE: NOVEMBER I / ~ · . DRAWN BY: G.C .. T.G. SCALE: l" = 40' -_____ PROJECT IJGR.: T.O.C. JOB NO.:jtfi::-.:)005 C O r--1 S U L T . ~< T S 1-----------------_J 2G05 I ENGINEER Of '//ORK: "AS-BUILT -----C -·----A' -.// ,u-'f->-.L d4- TIMO-/W'Y 0. cARROU.:Jif P.£. 5538 I EXP. fZ/31/lo . ., ' DESCRIPTION: DATE LOCA.TION: :f.J / -··.::;.-: :--,:_ .······,---i'- -'.:'.~.:.-;{,":..":"'" _:,~:.,--,"·~ :J:::-:,.. --+···:::.'." ;:'.~-.-., ••..•. ·····'··-·-·· _, '"" ........ d:,J. ·-"-" -----,...:;: l::Ci! -·----------.. l ·~----______ · -·.r--::w·~---·,. -~"""" .. :.":-~.::-::;.: ..... " ..•. .. _----(:-·· . .... ..... __ ,j ,:· .. ·• -·-·· ··;- • ••;;,•; ~n . -,..::: _;;:.j----. ...::·. -=-·:. ···-=-r~::: ----'--•••-:• C 46 __ ),c,:c. ·-•--··, '····-i· .. ,. ... .. :;:'=:~t _._,( . .;··. -~-"ci":."; • -.. ::1::.c-.. ,. ~ ~--. . ,~ . .,.......... -~J~:·;·£ ..... ,. ..... ~~--~-.... , ~ ·--,-~ -----~---'•'" ,."·;-;'r-· -~ ;-_-;;_ .. · . ··- ::-r··"-_ ,. • .f-. --~, ·;-;:r-: ;u .. ••••-••• t-M --,-=·• ·-·-·-:- .. ~,.-~--__ ,,;;;.-,-::.:· -__ :::. .=....:..:... .-:.:·:.. ·-.--,1-•--- .... i--,.~-- • ........ t .. .:;:;;,:::;!---- ~--' .. ~; :.::.-::;y ...... . :-:-;-·---~----· 5,:·c-: ~-~---.... ~~·.-r-;-:-~ 1,-•• , ..... --·••" --. 5' 20' 1 =~~~::--= ~==~ .. --;~;~~ .. ---~~--: -. -~-: ~:... !"""""..:. ··"·. -1----:.::;.:::·----t-.::- ·--•·-l• -"'-1 ·· ~------·-···· .. ... . , .... -···· ,-., ,- ..... , ·"· ., .. -........ ·-.. ~---.... --· . ~~-· .. _,,, ..... , .......... .. .. ., •..... ·~ . --~·-··-.... , ............ . --· -.•.. ----~----. ~ •••-• u•r••• ••••••• •P•-• ., ... , ... _, ------·--·-· -~····-----··-· ···- '. :··: .. : :.:··-:. :-=--_"r--· .. ~·-· -·~·· ·--·-· ··-· ----~--. . -·-· =· •• ..... ··-·· ..... -' •• .•~.-·~ n••,•• • •~••• • ·••-•· ~ . _,1;.-;-.::---:··-·\:'·,,.., ;:._ {tf:t:.--~-: •.. 1--. ·!"""·-· -~~-.zt ::Sf::~t ,' ~ ... '"·ct ' --.~-·-· •,o ···-·--~- ·--·· ......... . .. ·-~-······ ·-·-- ~,., •• J.---,., ••••• •• • • ••••-• ""'" ~n ~-...... ~···-.... . • -·.~--J~ ••• ~ ··•- ···-·t.·:~ -~= ·-··-~ ~ ;; ~~;~-;~ ;_..:.]f:= •---, • ~"-=•rn• ~ • • •••-.v-••• -• .: .. ~·!;',:.. ··+ -·~ ........ , .... . . --... ,. ""-'" '-•---~· -~--·· "",-~ ~---~ ·-··· ~-~::::7:;::~ f:.~--·::.. - ·• t..:·--.:..--·~ :··-_ -~ft----~~--·-. ....... ,, ..•..• ~----. -~--~-· -~ ' -··· .. ······ ·---·--· .. --~ ... ~-··· --~-· .,., .. ·--· .. -~··· . .~--· ----.-·-·.~ ------~ ....... . --·· ·-·-· ..•..•... , ~······- •••• 1 ~· ·:. 0:-;;":·:-· 80' CENTERLINE 1JA TA- 1(N0)1 DELTA/BEARIN.G ! N 89"281JT"w 2 b=3/J' 47'09' RADiUS JOIJ.00' lfNGTH J07.Jf,.. !92.61 SEWER DATA -~-DELTA/BEARING RAD!LiS { 2 N 89"28'0 l • W 6 ccJ6'4709" 300. (Jf)' LENGTH 4.8fl' 192.fjf' REMARKS 8" PVC SEWER STORM DRAIN DA TA ' . DELTA/BEARING RADIUS REMARKS f 6 -,(}6'56 '45" ~-'--.L...=....= J/9,(J{J' 38.67' 24" f?CP ~ 135/J-0 '¾ '1< WllftR T/GIIT JOINTS I SCALE: 1" = 40' SEE SHEET No. 8 FOR SURFACE IMPROVEMEN~--1 WA /ER PLANS, & RECYaED »'A !ER PLANS. SEE 0/W No. 415-9I FOR GRAa'lr; PLANS. I CAlJTION II l CONlRACTQR TO VERIFY THE EXACT lOl:4 llON OF E)(fSlJNG Ulll/T!ES IN THE FIELD PRIOR TO CONSlRtJC!lot✓! 1----+----+-----·------------------+---·--t------J---1------l i CITY OF CARLSBAD ls245 1 -----------i-----------,----1----+---! ENGtNEERING DEPARTMENT STORN /JIUIN .t SEWER f'lANS FON: ~------+----:1--------------------CARLSBAD OAKS NORTH PHASE.' 2 WHIPTAIL LOOP 2' AL/JM/NUM DISC STAMP£!} CPS CONTROL Pf. 2002 IN SIDEWALK !IORll-l $/D£ OF PALG-MAR AIRPONT ROAD. 300 FEET WEST OF MEI.ROSE DRIVE ~------l-----+------, +-----+---1-----+----I CJ. 97-13 T. C. !APPRO\~D §Y~/ I ! /)f ~?f-,.,...-.. CONRAD C. HAMMANN,~i«_i AS-MILT !;IGINEER PE 33069 EXPIRES 06/30/GB DATE--j /1\ 2710 lok-er 1-\vo?nue West 'Suii:e, 1 QG C(l rlsb<1-d, Ca!.ifc-mio 9201 G ';'$('}-9J1 -771')0 Fa:i!: 7,SCJ.-..9Jl-86B0 ww1v.,.:id,;:i;1oon:sultonts:.oorn Chill Engfneerln~ Plarin,in.g Pl"OCe!>s.[ng Sur"1e~ing !::<c?.p/ RECORD FROM: R.O.S. NO. 17271 (PT. NO. 71) DA1E INITIAL DATE l~ITIAl DATE IMITIAL OWN BY: PROJECT ,·-IO. DRAWl~~G NO.I REVISION DESCRIPTION CHKD BY: G.vP .r T. 97 13 415 n ENGll{EER OF WORKI OTHER APPR(IY/\l CITY APPRO\IM. R\IWD BY: __.;,_vJ...__ v. . --dJ I T;MOTrlY 0. CARROll, jR. ' ' DATE t.LEVATIOM: 441.00 M.S:L. DP.TUik NCvD ?929 IL_ ___ ........1.... _____________ .J._ ___ --.J ____ __j_ __ ====:°'°:::==:::"...'::-===========::::::'..'.:::::=======J ;\861C:•:'!S\-:;.~001i1V"h\1~e 2\051101 -G<Q, :~:,, f~-,p\SSOS8!1B.-d-,,g :S:c;-v 0-:, 1.r:;oe 1<1: !'.i9om :{•ef's: 960381: 9&58M.!.P: 96'J;f.:'!s.lR; 96D5BVTI.; S&05e.?R{) S££ SHEET. No. 'NOT(II !l.EC!!?ONJC DA TA FllES AR£ FOR R£F£ffiNC£ · ONL 'IAMJ AH£ 1iorro BE (JS£f) fO!i' H()fflZONTAL OR · /e7!f,Al Sl/lfl;E'Y /XJNll«:l. 4 211D LJ'Jk-Br A.-\Je::'lt.1€ W~.:-t Si;!~ 100 Corl-1;;bod, Co!l¾mi0-920~0 7!$0~ 9-J1 ~ 7700 F°tJ;(; 7;S0-931-6S80 ..,,.,,..,,w~oao~~lfor,t~ci::im C:i-.n1 Et'l-gt~eei1i1;\d P'lor"1~in::i Proces.ai119 S1:ri1e~nl:i · 1 OESIGelfD BY: A.V., HJL_ DATE: !}$RUAAY 2000 t,.,,, r.u . j.,. . ~.nt , D~AWN SY: ""·• "·"'· ~Ai.£; ~ ~-• "AS BUtL T" J'>l<OJECT MGR.: T.O.C. J:),B NO.: 96-1W5 i?UOTIIY•O: CARROLL, JR. +---------~-------'! P.£.55381' . EXP. 12/3r/to I tNGINEER OF WORK: ! ----,//~; JI I ~ + . •• . ';/ i ~L-':t TIMOTHY Q. CARROLL, JR . ·PATE 1/2-z/cq .. OATE BENCHMARK: DESCRIPTION: 2" ALUMWUM DISC STAMPE{) CPS CONTROi. pr; 2()1)2 .WCATION: IN S!/JEl'IAU< NORTH S!OE OF PAL(lj!AR AIRMRT ROAl; JOO FEET MST OF MELROSE OR/Vf · RECORD-FROM: R..O.S. NO. 17271 (PT. NO. 71) ELEVA!IO": #4.{)() M..S:l, DATUM: NGW !92/J ·-~ --~- -. "~••---...._------,_••-~• •• ,v ____ ...--~ 100' 50 SCALE: iARJr .2 . RCQfJIR£D THl'ATMENT CON11!0L BMP TABLE l/ESCH!PT!ON ()UANTm' ! f)[S/Ll/J{/J 4 Ef l EIAS,ff I Sfs'!Erji CITY OF CARLSBAD ' sH_-~_rstt'I I·•· 1-----i----+----------------t--~--t,---+-----i---i 1 · 0 EMGtNEtRING D£FARTM£NT '""' , 1--~-+---+-------------1----+--+---e----t------1;===::..::============='...::::::::::::~I GRAlJIN(J f'Uf{S fiJH: CAi?lSBAI) OAKS NORTH I ! PHASE 2 i (Ji !}J-jJ p~C"'-'f-"--=:;__-f""-'-'-'/Zfl/lS/t" '7<7T.tfl-SI/EB! f./V;// A5·BUILT 1)7 . re REWi(J) GRAOING -. lNinAl ! -~EVl SJON O.::SCRlPJ!ON APPROVED BY: , f,,.,,/. . I / ·7-'ff---OAV!D A. HAIJSE."l ·. {/S-,!G> 1 I 1 [ PE 3308 I EXP: 06/30/08 . C!TY EH!>lNEER Dp,'fE: ) I ' ' '-,~·,··,··L J OWN B'f! -~-1 l PROJECT NO. !' 9RA-Wl:i!G t-10.J I illirlA'-" '. l)AlE .. ·~ ' I CHKD .BY: · I I 1· ' _., l--o,-K-~R"L.,-A...JPL.,-P!.c...:..:lOW..;:.l-1---cmc,.....Af' ..... !'_IWY_A_L-I I R\/WD BY;__;__· 1 C. T. 97-13 1 415-91 jl · I'. \':"G-::::i-,:i.:/i=":61~•5f31-:;c:is--r•:::1.r,.,i.; 1:,.;,~ ;c,, ·ns.q 1 :i: ·22f,'TI 1, -c!f~; · 9i;:-~~r;:.,!,1".P;. g·?:;~13-:-;: 8y:-.;5 -::'L.'.L; -C'-n=;,e;'\!,.c:: r1;;. ;.";i:.D:':-'.:cr::n•-:::-~·-·. c_:1:.,.0?:-!'~:'> ·1~; %J,~,n·J ! 1_. .. -1:ci: ,~i::;c-~·;tar,; ;1::-i:.c~ r>. J; .,_1;:.,:-_i313 .nL ---.. .. --.. --... .. --.. .. .. ~ ,. Illa 1111 1111 ,. ... .... ... 111111 111111 -.. .. .. .. 1111 .. ... ... ... High-Tech Drainage Study CHAPTER4 100-Year Hydrologic Analysis for Developed Conditions --.. ... .. ... ---... --.. -.. .. .. - ... ... ... ... ,. ... ,. .. .. ... .. .. .. .. ... .. San Di ego County Rational Hydrology Program a VI LCAID' a VI LIES! GN Engineering Soft Wctr e, ( c) 1991-2005 Version 7. 5 Rational rret hod hydrology program based on San Di ego County Flood Control Division 2003 hydrology rrnnual Rational Hydrology Study DH e: 11/ 16/ 15 ********* Hydrology Study Control Inforrrntion ********** Program License Serial Nurrber 4085 Rational hydrology study storm event year is Eng 1 i s h ( i n -1 b) i n put d at a Uni t s us e d Mp data precipitation entered: 6 hour, precipitation(inches) = 24 hour pr eci pit at ion( inches) = P6/ P24 = 59. 3% 2. 940 4.960 San Di ego hydrology rrnnual ' C values used 100. 0 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.011 to Point/Station 1.012 **** I NI TI AL AREA EVALUATI CN **** Thci rrnl fraction soi 1 group A= 0.000 Thci rrnl fraction soi 1 group B = 0.000 Thci rrnl fraction soi 1 group C = 0. 000 Thci rrnl fraction soi 1 group D= 1. 000 [C~ROAL area type (Ufice Pr of e s s i on a 1 ) I rrper vi ous value, Ai = 0. 900 Sub-Area C Value = 0. 850 Initial subarea total flow distance = 46.000(Ft.) Hghest elevation= 494.250(Ft.) Lo\\est elevation= 493. 800(Ft.) Elevation difference= 0.450(Ft.) Slope= 0.978 % USER ENfRY CF I NI TI AL AREA TI ~ CF CCKENfRATI CN Ti rre of Concentration = 5. 00 rri nut es Rainfall intensity (I)= 7.746(ln/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff= 0. 329(CFS) Total initial stream area= 0. 050( k.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.012 to Point/Station 1.013 * * * * I lVPROVED CHANNEL TRAVEL TI ~ * * * * --,,,. .. .. -... .. ... ---.. - -.. .. -.. ... -... .. .... .. ,. .. .. .. .. .. ... ... ... Upstream point elevation= 493.800(Ft.) D:rn,nstreampoint elevation= 48l.650(Ft.) Channel length thru subarea = I015.000(Ft.) Channel base width = 208. 000( Ft.) Slope or 'Z' of left channel bank = 0. 000 Slope or 'Z of right channel bank= 0.000 Est i nnt ed Ill!an fl ow rate at rri dpoi nt of channel = 5. 367(CFS) Mnning's 'N = 0.013 Mxi num depth of channel = 0. 200( Ft.) Flo\\(q) thru subarea = 5.367(CFS) Thpth of flow= 0.024(Ft.), Average velocity= 1. 054( Ft/ s) Channel fl ow top width = 208. 000( Ft.) Flow Velocity= l.05(Ft/s) Travel ti Ill! = 16. 05 rri n. Ti Ill! of con cent r at i on = 2 1 . 0 5 rri n. Critical depth= 0.027(Ft.) Adding area fl ow to channel User specified 'C value of 0. 720 given for subarea Rainfall intensity= 3.065(1n/H-) for a 100.0 year storm Ef f e ct i v e r u no f f c o e f f i c i en t us e d f or t o t al a r ea (Q=KCIA) is C = 0. 720 CA= 3. 370 Subarea runoff = 9. 999(CFS) for 4. 630(Ac.) Total runoff = IO. 328(CFS) Total area= Thpt h of fl ow = 0. 036( Ft.), Aver age velocity = 0-itical depth= 0.042(Ft.) 4. 680(Ac.) 1. 3 7 0 ( Ft/ s ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.013 to Point/Station 1.014 **** PIPEFLOWTRAVEL TIM<: (User specified size)**** Upstream point/station elevation= 479.650(Ft.) D:lwnstreampoint/station elevation= 462.390(Ft.) Pipe length = 58.00(Ft.) Mnning's N= 0.013 No. of pipes = 1 Required pipe fl ow = 10. 328( CFS) Given pipe size= 12.00(ln.) Cal cul at ed i ndi vi dual pipe fl ow = 10. 328( CFS) Nornnl flow depth in pipe= 6.22(1n.) Fl ow top width inside pipe = 11. 99( In.) Critical depth could not be calculated. Pipe flow velocity= 25. 13(Ft/s) Travel ti Ill! through pipe = 0. 04 rri n . Ti Ill! of c once n t r at i on ( TC) = 2 1. 0 9 rri n. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.014 to Point/Station 1.015 **** PIPEFLOWTRAVEL TIM<: (User specified size)**** Upstream point/station elevation= 462.390(Ft.) D:lwnstream point/station elevation= 446.270(Ft.) Pipe length = 52.00(Ft.) Mlnning's N= 0.013 No. of pipes = 1 Required pipe fl ow = IO. 328( CFS) Given pipe size = 24. 00( In.) Cal cul at ed i ndi vi dual pipe fl ow = 10. 328( CFS) Nornnl flow depth in pipe= 4.65(In.) --- .. ,,. .. ... ... -,.. ---... .. - ... .. -... ... .. -.. .. .. .. -,,.. ... Fl ow t op wi d t h i n s i de pi p e = 1 8 . 9 7 ( I n. ) Critical Thpth = 13. 82(ln.) Pi pe f 1 ow ve I oc i t y = 24. 19( Ft/ s) Travel titre through pipe= 0.04 rrin. Ti ire of c once n t r at i on ( TC) = 2 1. 1 2 rri n. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.014 to Point/Station 1.015 * * * * CCNFLUEN::E CF M NCR STREAM; * * * * Along Min St r earn nunber: 1 in nor nnl st r earn nunber Stream flow area= 4.680(Ac.) Runoff fromthis stream= l0.328(CFS) Ti tre of c once n t r at i on = 2 1 . 1 2 ni n. Rainfall intensity= 3.058(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.011 to Point/Station 4.012 * * * * I NI TI AL AREA EV ALUATI CN * * * * Thci nnl fraction soi l group A= 0. 000 Thci nnl fraction soi I group B = 0.000 Thci nnl fraction soi l group C = 0.000 Thci nnl fraction soi I group D= 1. 000 [ CCM,,£RO AL a r ea type (Ufice Pr of e s s i on a I ) I rrper vi ous value, Ai = 0.900 Sub-Area C Value = 0. 850 Initial subarea total flow distance = 54.000(Ft.) Highest elevation = 488. 950( Ft.) Lo'M!st elevation= 487.000(Ft.) Elevation difference= l.950(Ft.) Slope= 3.611 % USER ENfRY CF I NI TI AL AREA TI ~ CF CCN:ENfRATI CN Ti ire of Con cent r at i on = 0. l O rri nut es Calculated TC of 0.100 rrinutes is less than 5 rrinutes, resetting TC to 5.0 rrinutes for rainfall intensity calculations Rainfall intensity (I)= 7.746(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 Subarea runoff= 0.263(CFS) Total initial stream area= 0.040(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.012 to Point/Station 4.013 * * * * I M'ROVED CTIANNEL TRAVEL TI ~ * * * * Upstream point elevation= 487.000(Ft.) DJwnst r earn point elevation = 477. 370( Ft.) Channel length thru subarea = 95.000(Ft.) Channel base width = 112. 000( Ft.) SI ope or ' Z' of I eft channel bank = 0. 000 Slope or ' Z' of right channel bank = 0. 000 Estinnted irean flow rate at rridpoint of channel = 0.761(CFS) Minning' s 'N = 0. 015 Mxi num depth of channel = 0. 100( Ft.) --... .. - Ill" .. -.. --.,. -.. -... ... ... ... .. ... ... -... ... .. .. -... .. .. .. -.. ... Flo\\(q) thru subarea = 0.761(CFS) Thpth of flow= 0.006(Ft.), Average velocity= l.077(Ft/s) Olannel flow top width= 112.000(Ft.) Flow Velocity= l.08(Ft/s) Tr ave I t i rre = 1 . 4 7 ni n. Ti rre of concentration = I. 57 rri n. Critical depth= 0.0ll(Ft.) Adding area fl ow to channel User specified 'C value of 0. 530 given for subarea Rainfall intensity= 7.746(1n/H-) for a 100.0 year storm Ef f e c t i v e r u no f f c o e f f i c i en t us e d f or t o t a 1 a r ea ( Q=KO A) is C = 0. 530 CA = 0. 151 Subarea runoff = 0.907(CFS) for 0.245(.Ac.) Total runoff= l.170(CFS) Total area= Thpth of flow= 0.008(Ft.), Average velocity= Critical depth= 0.015(Ft.) 0. 285( Ac.) I. 279( Ft/ s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.013 to Point/Station 1.015 **** PIPEFLOWTRAVEL TI!YE (User specified size) **** Upstream point/station elevation= 477.370(Ft.) lliwns tr earn point/st at ion elevation = 446. 270( Ft.) Pipe length = 319.00(Ft.) Mlnning's N= 0.013 No. of pipes = 1 Required pipe fl ow = 1. 170( CFS) Given pipe size= 9.00(ln.) Cal cul at ed i ndi vi dual pipe fl ow = I. 170( CFS) Norrml flow depth in pipe= 2.9l(ln.) Fl ow top width inside pipe = 8. 42( In. ) Critical Thpth = 5.97(1n.) Pipe flow velocity= 9.45(Ft/s) Travel ti rre through pipe = 0. 56 rri n . Ti rre of concentration ( TC) = 2. 13 rri n . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/ St at ion 4. 013 to Point/ St at ion 1. 015 **** CCWLUEl'CE CF M NCR STREAM; **** Along Min St r earn nurrber: 1 in nor rml st r earn nurrber 2 Stream flow area= 0.285(.Ac.) Runoff fromthis stream= l.170(CFS) Ti rre of con cent r at i on = 2. 1 3 rri n. Rainfall intensity= 7.746(In/H-) Summry of stream data: St r earn Fl ow rate TC Rainfall Intensity No . ( CFS) (rrin) (In/ H-) 1 10. 328 21. 12 3.058 2 1. 170 2. 13 7. 746 Qmx( 1) = 1. 000 * I. 000 * 10. 328) + 0. 395 * 1. 000 * 1. 170) + = 10. 790 Qmx( 2) = -... ,.. -... ... -- -.. --.. .. .. .. ... .. ... -... ... -.. .. ... ... .. ... ... ,,,. 1. 000 * 1. 000 * 0. 101 * 1. 000 * 10.328) + 1. 170) + = Total of 2 stream; to confluence: Flow rates before confluence point: 10.328 1.170 2. 213 Mxirrumflowrates at confluence using above data: 10.790 2.213 Area of stream; before confluence: 4. 680 0.285 Results of confluence: Total flow rate= 10.790(CFS) Ti ire of c once n t r at i on = 2 1. 1 2 3 rri n. Ef f e c t i v e s t r e a m a r e a a f t e r c on f l u e n c e = 4. 965(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.015 to Point/Station 1.016 **** PIPEFLOWTRAVEL TI~ (User specified size)**** Upstream point/station elevation= 446.270(Ft.) lliwnstreampoint/station elevation= 441.600(Ft.) Pipe length = 15.00(Ft.) Mnning's N= 0.013 No. of pipes= 1 Required pipe flow = 10.790(CFS) Given pipe size= 24.00(In.) Cal cul at ed i ndi vi dual pipe fl ow = 10. 790( CFS) Norrrnl flow depth in pipe= 4.74(In.) Fl ow t op wi d t h i n s i de pi p e = 1 9 . 1 1 (I n . ) Critical D::pth = 14.12(In.) Pipe flow velocity= 24. 54(Ft/s) Travel titre through pipe= 0.01 rrin . Ti ire of c on c en t r at i on ( TC) = 2 1. 1 3 rri n . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.021 to Point/Station 1.016 * * * * SUBAREA FLOW Alll TI CN * * * * User specified 'C value of 0. 850 given for subarea Ti ire of c once n t r at i on = 2 1. 1 3 rri n . Rainfall intensity= 3.057(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area ( ~KCI A) is C = 0. 850 CA = 4. 866 Subarea runoff= 4.087(CFS) for 0. 760(Ac.) Total runoff= 14.877(CFS) Total area= 5.725(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.016 to Point/Station 1.016 **** C<WLUEK'E CF M\I N STRE~ **** The following data inside Min Stream is listed: In Min St r earn nunher: 1 Stream flow area= 5.725(Ac.) Runoff from this stream= 14.877(CFS) Ti rre of c once n t r at i on = 2 1 . 1 3 ni n . Rainfall intensity= 3.057(1n/Hr) -... - .. -... - ... -----.. -... ... -- 1111111 --... -... - ... ... .. ... ,,. ,,,. Pr o gr a m i s now s t a r t i n g \\-i t h .Mi i n St r e a m J\b . 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.011 to Point/Station 2.012 **** I NI TI AL AREA EVALUATI CN **** Thci nnl fraction soi 1 group A= 0.000 Thci nnl fraction soi 1 group B = 0.000 Thci nnl fraction soi 1 group C = 0.000 Thci nnl fraction soi 1 group D= 1. 000 [ CCMi.£RO AL a r ea type (Ufice Pr of e s s i on a 1 ) I nper vi ous value, Ai = 0.900 Sub-Area C Value = 0. 850 Initial subarea total flow distance = 55.000(Ft.) Highest elevation = 492. 660( Ft.) Lo\\est elevation= 492.260(Ft.) Elevation difference= 0.400(Ft.) Slope= 0. 727 % USER ENfRY CF I NI TI AL AREA TI 1\,£ CF CCN::ENTRATI CN Ti rre of Con c e n t r a t i on = 5 . 0 0 ni nut e s Rainfall intensity (I)= 7.746(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q:=KCIA) is C = 0.850 Subarea runoff = 0. 211(CFS) Total initial stream area= 0.032(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/ St at ion 2. 021 to Point/ St at ion 2. 013 * * * * SUBAREA FLOW ALOI TI CN * * * * Thci nnl fraction soi 1 group A= 0. 000 Thci nnl fraction soi 1 group B = 0.000 Thci nnl fraction soi 1 group C = 0. 000 Thci nnl fraction soi 1 group D= 1. 000 [ CCMi.£RO AL a r ea type (Ufice Professional ) I nper vi ous value, Ai = 0. 900 Sub-Area C Value = 0. 850 Ti rre of concentration = 5. 00 ni n . Rainfall intensity= 7.746(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area ( Q==KCI A) is C = 0. 850 CA = 1. 022 Subarea runoff = 7. 704(CFS) for 1. 170(Ac.) Total runoff = 7. 914(CFS) Total area = 1. 202(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.013 to Point/Station 3.014 **** PIPEFLOWTRAVEL Til\,£ (User specified size) **** Upstream point/station elevation= 488.000(Ft.) Olwnstreampoint/station elevation= 474.250(Ft.) Pipe length = 364.00(Ft.) Mnning's N= 0.013 J\b. of pipes= 1 Required pipe flow = 7.914(CFS) Given pipe size = 24. 00(In.) Calculated individual pipe flow = 7.914(CFS) -.. - ... ... - ---., .. ----- -... ... Iii"' ---- ... .. ... ... ... .. .. ,,. ... Norrml flow depth in pipe= Fl ow top wi dt h i ns i de pi pe = 0-itical Thpth = 12.02(1n.) 6. 89(1 n.) 2l.72(In.) Pipe flow velocity= 10.60(Ft/s) Tr a v e I t i IIE t hr o ugh pi p e = 0 . 5 7 ni n . Ti IIE of concentration ( TC) = 5. 57 ni n. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/ St at ion 2. 013 to Point/ St at ion 3. 014 * * * * CC1'1FLUEN:E CF M NCR STREM£ * * * * Along Min St r earn nunber: 2 in nor rml st r earn nunber Streamflowarea = l.202(Ac.) Runoff from this stream= 7.914(CFS) Ti rre of c on c e n t r at i on = 5 . 5 7 ni n . Rainfall intensity= 7.223(1n/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.011 to Point/Station 3.012 **** I NI TI AL AREA EVALUATI CN **** Thci rml fraction soi 1 group A= 0.000 Thci rml fraction soi 1 group B = 0. 000 Thci rml fraction soi 1 group C = 0.000 Thci rml fraction soi 1 group D= 1.000 [CC~ROAL area type (CTfice Pr of es s i on a I ) I nper vi ous value, Ai = 0.900 Sub-Ar ea C Value = 0. 850 Initial subarea total flow distance = 79.000(Ft.) Highest elevation= 496.000(Ft.) Lo\\est elevation= 493.750(Ft.) Elevation difference= 2. 250(Ft.) Slope= 2. 848 % USER ENfRY CF I NI TI AL AREA TI ~ CF CCNENfRATI CN Ti IIE of Concentration = 5. 00 ni nut es Rainfall intensity (I)= 7.746(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KOA) is C = 0.850 Subarea runoff= 0.46l(CFS) Tot a 1 i n i t i a 1 st r ea m a r ea = 0. 070(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.012 to Point/Station 3.013 * * * * I M>ROVED CHANNEL TRAVEL TI ~ * * * * Ups tr earn point e 1 evat ion = 493. 750( Ft.) Ib'Mlstreampoint elevation= 488. 730(Ft.) Channel 1 engt h t hr u s ubar ea = 246. 000( Ft.) Channel base width = 356. 000( Ft.) Slope or 'Z' of 1 eft channel bank = 0. 000 SI ope or ' Z' of right channel bank = 0. 000 Es t i rm t e d IIE a n fl ow r a t e at ni d poi n t of c ha n n e 1 = Minning' s 'N = 0. 013 Mxi num depth of channel = Fl o \\( q) t hr u s u bar e a = 0. 200(Ft.) 4. 441( CFS) 4.44l(CFS) --.. .. ... ,.. -.. ... -... ---.. -.. .. --,.. ... - - 1111 ... .. .. .. ... ... ... .. Th pt h of f 1 ow = 0 . 0 1 3 ( Ft . ) , Av e r a g e v e 1 o c i t y = 0 . 9 2 5 ( Ft / s ) Channel flow top ~dth = 356.000(Ft.) Fl ow Ve 1 o c i t y = 0 . 92 ( Ft/ s ) Tr a v e 1 t i tre == 4 . 4 3 ni n . Ti rre of concentration = 9. 43 rri n. Critical depth= 0.017(Ft.) Adding area flow to channel User specified 'C' value of 0. 780 given for subarea Rainfall intensity= 5.144(1n/Hr) for a 100.0 year storm Effective runoff coefficient used for total area ( Q=KO A) is C = 0. 780 CA = I. 622 Subarea runoff= 7.884(CFS) for 2.0l0(Ac.) Total runoff= 8. 345(CFS) Total area= Thpt h of fl ow = 0. 020( Ft.), Aver age velocity = Critical depth= 0.026(Ft.) 2. 080( Ac. ) I. 1 9 1 ( Ft / s ) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.013 to Point/Station 3.014 **** PIPEFLOWTRAVEL TI~ (User specified size) **** Upstream point/station elevation= 486.730(Ft.) lliwnstream point/station elevation= 474.270(Ft.) Pipe length = 65.00(Ft.) Mnning's N= 0.013 NJ. of pipes = 1 Required pipe fl ow = 8. 345( CFS) Given pipe size = 18. 00(1 n.) Cal cul at ed i ndi vi dual pipe fl ow = 8. 345( CFS) NJrrrnl flow depth in pipe= 5.19(1n.) Fl ow t op ~ d t h i n s i de pi p e = 1 6 . 3 1 ( I n . ) Critical Thpth = 13.43(1n.) Pipe flow velocity= 19.77(Ft/s) Tr a v e 1 t i rre t hr o ugh pi p e = 0 . 0 5 rri n . Ti rre of c on c e n t r at i on ( TC) = 9 . 4 9 rri n . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.013 to Point/Station 3.014 * * * * CCNFLUEJ'CE CF M MR STREAM; * * * * Along Min St r earn nurrber: 2 in nor rrnl st r earn nurrber 2 Stream flow area= 2.080(Ac.) Runoff from this stream= 8.345(CFS) Tirre of concentration= 9.49 rrin. Rainfall intensity= 5.125(1n/Hr) Sumrary of stream data: St r earn Flow rate TC Rai nfal I Intensity NJ . ( CFS) ( rri n) (In/ Hr) 1 7.914 5. 57 7.223 2 8. 345 9.49 5. 125 Qmx( 1) = I. 000 * 1. 000 * 7. 914) + 1. 000 * 0.587 * 8. 345) + = 12.815 Qmx( 2) = 0. 709 * 1.000 * 7. 914) + -----... -... ------ --.. ... .. ... ... ... 1111111 .. ... ... .. .. ... ,. ... ... ... ,,.. ... 1. 000 * 1. 000 * 8. 345) + = 13. 960 Total of 2 stream; to confluence: Flow rates before confluence point: 7.914 8. 345 Mxi rrum fl ow rat es at confluence using above data: 12. 815 13. 960 Area of stream; before confluence: 1.202 2.080 Results of confluence: Total flow rate= 13.960(CFS) Ti rre of concentration = 9. 488 ni n. Effective stream area after confluence= 3.282(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.014 to Point/Station 3.015 **** PIPEFLOWTRAVEL TI~ (User specified size)**** Upstream point/station elevation= 474.270(Ft.) D:lwnstreampoint/station elevation= 467.810(Ft.) Pipe length = 38. 00(Ft.) Mnni ng' s N = 0. 013 NJ. of pipes= 1 Required pipe flow = 13.960(CFS) Given pipe size = 24. 00(1 n. ) Calculated individual pipe flow = 13.960(CFS) N:lrrml flow depth in pipe = 6. 28(1n.) Fl ow top width inside pipe = 21. 09( In. ) Critical Thpth = 16.14(1n.) Pipe flow velocity= 21. 34(Ft/s) Travel tirre through pipe= 0.03 nin. Ti rre of concentration ( TC) = 9. 52 ni n . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.014 to Point/Station 3.015 **** CXN'LUEKE CF M KR STREAM; **** Along Min St r earn nunber: 2 in nor rml st r earn nunber 1 Streamflowarea = 3.282(Ac.) Runoff from this stream= 13. 960(CFS) Ti rre of concentration = 9. 52 ni n. Rainfall intensity= 5.114(1n/H") ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5.011 to Point/Station 5.012 **** I NI TI AL AREA EVALUATI CN **** Thci rml fraction soi 1 group A= 0.000 Thci rml fraction soi 1 group B = 0.000 Thci rml fraction soi 1 group C = 0.000 Thci rml fraction soi l group D = 1. 000 [ cavtvERO AL a r ea type (CTfice Prof es s i ona 1 . ) I rrper vi ous value, Ai = 0. 900 Sub-Area C Value = 0. 850 Initial subarea total flow distance = 45. 000( Ft.) ----- - ---- -,,. - -,. ..., - - -... .. .. 11111 ... .. ... -.. ,,. ... Highest elevation= 491.240(Ft.) Lo\\es t elevation = 489. 660( Ft.) Elevation difference= l.580(Ft.) Slope= 3.511 % USER ENfRY CF I NI TI AL AREA TI M<: (F CCKENfRATI CN Ti rre of Con c e n t r a t i on = 5 . 0 0 rri nut e s Rainfall intensity (I)= 7.746(In/H-) for a 100.0 year storm Ef f e c t i v e r u no f f c o e f f i c i e n t us e d for a r e a ( Q= KCI A) i s C = 0. 8 5 0 Subarea runoff = 0. 198(CFS) Total initial stream area= 0.030(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5.012 to Point/Station 5.013 * * * * I WROVED CHANNEL TRAVEL TI M<: * * * * Upstream point elevation= 490. 730(Ft.) lliwnstreampoint elevation= 480. 300(Ft.) Channel I engt h t hru s ubar ea = 112. 000( Ft.) Channel base width = 108.000(Ft.) Slope or 'Z of left channel bank= 0.000 SI ope or 'Z' of right channel bank = 0. 000 Estirmted rrean flow rate at rridpoint of channel = 0.915(CFS) Minning' s 'N = 0. 013 Mtxi num depth of channel = 0. 100( Ft.) Flo~q) thru subarea = 0.915(CFS) Thpth of flow= 0.007(Ft.), Average velocity= l.250(Ft/s) Channel flow top width= 108.000(Ft.) Flow Velocity= l.25(Ft/s) Tr ave I t i rre = 1. 4 9 rri n . Ti rre of c once n t r at i on = 6. 4 9 rri n. Critical depth= 0.013(Ft.) Adding area flow to channel Thcirml fraction soil group A= 0.000 Thcirml fraction soil group B = 0.000 Thcirml fraction soil group C = 0.000 Thci rml fraction soi I group D = 1. 000 [ Co.f\.EROAL area type ( (X fi C e Pr Of e S S i On a l ) I nper vi ous value, Ai = 0. 900 Sub-Ar ea C Value = 0. 850 Rainfall intensity= 6.544(In/H-) for a 100.0 year storm Ef f e ct i v e r u no f f c o e f f i c i en t us e d f or t o t a I a r ea (Q=KCIA) is C = 0. 850 CA= 0. 238 Su bar ea runoff = 1. 360( CFS) for 0. 250( Ac.) Total runoff = 1. 558(CFS) Total area = Thpt h of fl ow = 0. 009( Ft.), Aver age velocity = Critical depth= 0.019(Ft.) 0.280(Ac.) 1. 546( Ft/ s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5.013 to Point/Station 3.015 **** PIPEFLOWTRAVEL TIM<: (User specified size) **** Upstream point/station elevation= 478.830(Ft.) lliwnstreampoint/station elevation= 467.810(Ft.) Pipe length = 92.00(Ft.) Mtnning's N= 0.013 :No. of pipes = 1 Required pipe fl ow = 1. 558( CFS) -... - ---.. ----- ---.. .. .. .. .. ... .. .. .. ... .. .. ... ... .. .. ,,... ... Gi v e n pi p e s i z e = .9 . 0 0 ( I n . ) Cal cul at ed i ndi vi dual pipe fl ow = 1. 558( CFS) Norrml flow depth in pipe= 3.2l(ln.) Fl ow t op wi d t h i n s i de pi p e = 8 . 6 2 ( I n . ) Critical Thpth = 6. 90(In.) Pipe flow velocity= ll.03(Ft/s) Travel tirre through pipe= 0.14 nin. Ti rre of concentration ( TC) = 6. 63 ni n . ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5.013 to Point/Station 3.015 * * * * CXff'LUE:rcE CF 1\1\I N STREAM; * * * * The following data inside Min Stream is listed: In Min St r earn nunber: 2 Stream flow area= 0.280(Ac.) Runoff fromthis stream= l.558(CFS) Ti rre of concentration = 6. 63 ni n. Rainfall intensity= 6.455(In/H-) Summry of stream data: St r earn Fl ow rate TC Rai nfal 1 Intensity No. ( CFS) ( ni n) (In/ a) 1 14. 877 21. 13 3.057 2 1. 558 6. 63 6.455 Qmx( 1) = l. 000 * 1.000 * 14. 877) + 0.474 * 1.000 * 1. 558) + = 15. 615 Qmx( 2) = 1. 000 * 0. 314 * 14. 877) + 1. 000 * 1. 000 * 1. 558) + = 6. 227 Tot al of 2 rmi n st reaIT6 to confluence: Flow rates before confluence point: 14. 877 1. 558 Mxi lllim fl ow rat es at confluence using above data: 15.615 6.227 Area of streaIT6 before confluence: 5. 725 0.280 Results of confluence: Total flow rate= 15.615(CFS) Tirre of concentration= 21.133 nin . Effective stream area after confluence = 6.005(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.015 to Point/Station 3.016 **** PIPEFLOWTRAVEL TI:rvE (User specified size) **** Upstream point/station elevation= 467.810(Ft.) lli wn s t r e am poi n t I s t a t i on e 1 e vat i on = 4 6 4 . 0 3 0 ( Ft . ) Pipe length = 22.00(Ft.) Mnning's N= 0.013 ---... .. ------ -.. -.. -- 111111 .. .. .. ... ... ... ... .. ... ... 1111 .... 111111 .... ... No. of pipes= I Required pipe flow = 15.615(CFS) Ci ven pipe size = 24. 00(1 n.) Calculated individual pipe flow= 15.615(CFS) Norrrnl fl ow depth in pipe = 6. 63( In.) Fl ow t op wi d t h i n s i de pi p e = 2 I . 4 6 ( I n . ) Critical Thpth = 17.08(1n.) Pipe flow velocity= 22. 13(Ft/s) Travel ti rre through pipe = 0. 02 ni n. Ti rre of c on c e n t r a t i on ( Tq = 2 I. 1 5 ni n . End of c o rrp u t at i on s , t o t a 1 s t u d y a r ea = 9. 2 8 7 ( Ac . ) -.. -High-Tech -Drainage Study ... ------.. ---CHAPTER 5 --.. Hydrology Maps .. 111111 .. -.. .. ... .. ... .. -... ... ... ... .. ... ... Ill"" .... r-- , I I rr. I / ~\' /, \ )- . / /~~ -( ;/;I) ( ~~1,I l -'---~480-1 -~~~----~ --·, 1 -===-=--• • > • • • • • •• .,., ~ ' •• --7 ---~-- I --1i 1.01.1 POC 1 1 -----1--{ -___,;-1-----,---- =======:I:::::'::::!::::' ===6==.===6:1 IE= 441.33 ~ _ --______ 0100_22_6 CFS =.::.=..·::...:=· =::1\::=::: _ _:: ...... ~•□.fi"f=:;=:;:::_=-=-.:_:::~·· ::==:_:_::w=.H::1_PT;A1~L ~Lo:oP~---=====...:..-~~==-==f==4 =--PER AS-BUILT . ---T ~ ----------.2 .-;:-I Consultants, Inc. ----'4..- DWG No. 4.15-91 POC IE= 464.0 Civil Engineering• Environmental 2442 Second Avenue San Diego, CA 92101 (619)232-9200 (619)232-9210 Fax LEGEND NODE ELEV. NODE NUMBER EL=1000.0 BASIN~# SUB-BASIN # 3.01.5 NODE# PROPERTY BOUNDARY ---- Qioo-24.0 CFS PER AS-BUil T DWG NO. 415-91 ' 4 ------......._ SCALE: 1" = 80' PRE-DEVELOPED CONDITION HIGH-TECH CARLSBAD, CALIFORNIA ' I I~ PROPOSE 11,i IE=462. I I' I EX. CU . 15'~ INL --~•' lf) I I ~:=======1==---=l== _==i="'===='===l==la==~~~~~~=\+=l==~~~==='===~ ~--------~ --------(4.02. y POC 1 ~IE=441.33 ~ Q100-15.00 CFS V100--24.56 FPS EL= Civil Engineering• Environmental LEGEND 2442 Second Avenue Q (CFS) San Diego, CA 92101 (619)232-9200 (619)232-921 o Fax BASIN LIMITS Consu Ito nts, Inc. SUB-BASIN BOUNDARY 2.01.3 IE=492.26 0=7.91 CFS NODE ELEV. NODE NUMBER POC 2 IE= 464.03 -- Q100 ... 16.00 CFS V,oo-21.37 FPS EL=1000.0 -------- SCALE: 1" = 80' BASIN~SUB-BASIN # 3.01.5 NODE # -------------------1 ----FLOW-LINE PROPERTY BOUNDARY POST-DEVELOPED CONDITION HIGH-TECH CARLSBAD, CALIFORNIA