Loading...
HomeMy WebLinkAboutSDP 03-07; VILLAGES OF LA COSTA NEIGHBORHOODS 3.8 & 3.9; HYDROLOGY STUDY; 2002-01-08HUNSAKER,-" &ASSOCIATES S A N D I E C 0, I N C. PLANNING ENGINEERING SURVEYING IRVINE RIVERSIDE SAN DIEGO HYDROLOGY STUDY for VILLAGES. OF LA COSTA. Neighborhoods 3.8, 3.9 & Rancho Santa Fe Road City of Carlsbad, California Prepared for: Real Estate Collateral Management Company C/O Morrow Development 1903 Wright Place Suite 180 Carlsbad, CA 92008 W.O. 2352-05 RECEIVED SEP 05 2003 August 22, 2001 ENGINEERING Revised November 21, 2001 DEPARTMENT Revised January 8., 2002 DAVE HAMMAR LEX WILLIMAN ALISA VIALPANDO DANA SEGUIN Raymond L. Martin, R.C.E. Project Manager Hunsaker & Associates.San Diego, Inc. OFESS/0 NO. 4867 jm V Exp.6/30/04 I 10179 Huennekens St. San Diego, CA 92121 (858) 5584500 PH (858) 558-1414 F www.HunsakerSD.com InfoHunsakerSD.com T8wim IWalts2352W05aO44oc w.o. 2352.06 9.DP bS-C Villages of La Costa P.A. 3.8, 3.9 & R.S.F.R. Hydrology Study TABLE OF CONTENTS SECTION. Executive Summary Introduction Vicinity Map Summary of Results References Methodology & Model Development City of San Diego Drainage Design Criteria Rational Method Hydrologic Analysis Rational Method Hydrology 100-Year Peak Flow for P.A. 3.8, 3.9 100-Year Peak Flow for Rancho Santa Fe Road Hydraulic Analysis IV 100-Year Peak Flow Analysis Curb Inlet Design V 100-Year peak Flow Analysis Brow Ditch Design VI 100-Year Peak Flow Analysis Reference Data VII Hydrology Map (pocket) TWtb Xc w.o. 2352-Os is IECT Villages of La Costa P.A. 3.8, 3.9 & R.S.F.R. Hydrology Study -. EXECUTIVE SUMMARY Introduction The purpose of thiê report is to develop a storm drain system that will convey 100- year flows per the County of San Diego Drainage Design Manual. This drainage report covers drainage improvements for Neighborhoods 3.8, 3.9 and Rancho Santa Fe Road and will address the following: Developed condition 100-year Peak Discharge (site runoff) Hydraulic Analysis Curb Inlet Design Brow Ditch Design VICINITY MAP N.T.S. Figure 1 TB 235ZeO4.doc w.o. 2352.0 Villages of La Costa P.A. 3.8, 3.9 & R.S.F.R. Hydrology Study Existing Condition Presently, the site is within the Batiquitos Lagoon drainage basin and is drained .by San Marcos Creek and Encinitas Creek. The Batiquitos Lagoon drainage basin is within the Carlsbad Watershed, one of 11 major drainage basins within the San Diego Hydrologic Region. Rancho Santa Fe Road, R.S.F.R., currently runs West of the proposed Neighborhoods 3.8 and 3.9. Prior to development of this project, this portion of existing R.S.F.R. will be abandoned. Per Dokken Engineering Rancho Santa Fe Road Improvement Plans (Project No. 3190, Dwg No. 368-2), the improved R.S.F.R. will be constructed East of Neighborhoods 3.8 and 3.9. Proposed Project Oaks South (Neighborhoods 3.8, 3.9) is a proposed 161-unit residential development within the Villages of La Costa, which is located in the City of Carlsbad (see Figure 1).* The proposed project will be built concurrent or after the City improves Rancho Santa Fe Road, which includes several drainage facilities, sized for development of this site. This project sizes and sets curb inlets where indicated by Dokken's Plans. For a discussion on this project's relationship to the City of Carlsbad Master Drainage & Storm Water Quality Plan, please see the "Preliminary Hydrology Study for Villages of La Costa The Ridge and The Oaks" (Hunsaker & Associates, April 2001) Results 100-year flows were calculated using the Modified Rational Method (Section IV). Offsite drainage values from the north were based upon "Preliminary Hydrology for Villages of La Costa", Hunsaker & Assoc. San Diego, April 2001. Layout of the storm drain system (Section IV) is designed to convey 100-year peak flows. Line "A" outlets into an existing 24" RCP stub. The tailwater condition of Line "A" is "free outfall" per Dokken Drainage and Grading Plans (Project No. 3190, Dwg No. 368-2). Line "B" outlets into an existing 36" RCP. The hydraulic analysis for Line "B" was continued to the downstream end of the existing pipe to completely analyze the system. Line "C" outlets into an existing 48" RCP running under Rancho Santa Fe Road. An elevation of 442.00' was assumed as a tailwater condition per Dokken Drainage and Grading Plans (Dwg No. 368-2, sheet no. 48). To satisfy the 2-year storm 4 fps velocity requirement, a rating curve was developed based on FlowMaster's normal depth calculations. The rating curve plots the flow for a 2-year event (which, from a ratio of P6 values, in this case is approximately T8b he23W.005'.aO44oc w.o 2352.C6 Villages of La Costa P.A. 3.8, 3.9 & R.S.F.R. Hydrology Study 50% of the 100-year storm) versus various slopes. Thus based on a 100-year flow and given slope, it can be determined if the pipe meets this requirement. Pipes over 24" were not considered because at a minimum slope of 0.50%, the 100-year flow would have to be at least 7 cfs, in which case the pipe would be greatly oversized. (See Section V for calculations.) This report sized a total of thirty-four (34) inlets (Section V); fifteen (15) for Neighborhoods 3.8, 3.9 and (19) for Rancho Santa Fe Road. The inlets along the existing R.S.F.R. will be extended to match the improved curb. All inlets were sized for 100% interception of 100-year peak flows. Four (4) brow ditches were also sized to convey 100-year flows. Brow ditches (Section VI) were designed using FlowMaster software. Brow ditches are assumed to have the characteristics of a circular pipe. FlowMaster is used to calculate depth of flow. During calculations, 6 inches of free board is assumed. Conclusions Once developed, all runoff from the neighborhoods within Oaks South will continue to drain to San Marcos Creek and Encinitas Creek. The proposed storm drain system is sized to safely convey the 100-year peak flow through the development. References Preliminary Hydrology. for Villages of La Costa. Hunsaker & Assoc. San Diego: April 25,2001. Addendum to Preliminary Hydrology for Villages of La Costa. Hunsaker & Assoc. San Diego: October 23, 2001. Drainage and Grading Plans for Rancho Santa Fe Road. Dokken Engineering. April 2001. Master Drainage & Storm Water Quality Management Plan. City of Carlsbad. March 1994. Drainage Design Manual. City of San Diego: April 1984. Standard Drawings. City of San Diego: July 1980. Drainage Design and Procedure Manual. County of San Diego: April 1993. TW*b hepa2352OaO4ioc W.G. 2352.5 Villages of La Costa P.A. 3.8, 3.9 & R.S.F.R. Hydrology Study METHODOLOGY & MODEL DEVELOPMENT City of Carlsbad Drainage Design Criteria The 100-year storm must be confined between the curbs. If no established storm discharge flows are available, then the Rational Method should be used to determine peak discharge rates. The onsite and offsite areas are presented on a 1" = 100' scale and 1" = 200' scale hydrology maps, respectively. All proposed and existing drainage facilities, as well as drainage courses, have been denoted on these hydrology maps. Also, for each drainage basin, the drainage area to each catch basin is noted on the hydrology map. Rational Method Hydrologic Analysis Computer Software Package - AES-99 Design Storm - 100-year return interval Land Use - Single-family residential onsite; mostly paved areas offsite Soil Type - Hydrologic soil group 0 was assumed for all areas. Group D soils have very slow infiltration rates when thoroughly wetted. Consisting chiefly of clay soils with a high swelling potential, soils with a high permanent water table, soils with clay pan or clay layer at or near the surface, and shallow soils over nearly impervious materials, Group D soils have a very slow rate of water transmission. Runoff Coefficient - In accordance with the County of San Diego standards, single- family residential areas were designated a runoff coefficient of 0.55 while natural areas were designated a runoff coefficient of 0.45. When a watershed encompasses solely pavement conditions, a runoff coefficient of 0.95 was selected. Rainfall Intensity - Initial time of concentration values were determined using the County of San Diego's overland flow nomograph for urban and natural areas. Per City of San Diego standards, a maximum 10-minute time increment is added to the initial natural sub basins. Downstream Tc values are determined by adding the initial natural sub basin time of concentration and the downstream routing time. Intensity values were determined from the lntensity-Duration Frequency curve chart from the County of San Diego's Drainage Design Manual. TB 4oc w.e. 2352-OS Villages of La Costa R.A. 3.8, 3.9 & R.S.F.R. Hydrology Study Method of Analysis - The Rational Method is the most widely used hydrologic model for estimating peak runoff rates. Applied to small urban and semi-urban areas with drainage areas less than 0.5 square miles, the Rational Method relates storm rainfall intensity, a runoff coefficient, and drainage area to peak runoff rate. This relationship is expressed by the equation: Q = CIA, where: Q = The peak runoff rate in cubic feet per second at the point of analysis. C = A runoff coefficient representing the area - averaged ratio of runoff to rainfall intensity. = The time-averaged rainfall intensity in inches per hour corresponding to the time of concentration. A = The drainage basin area in acres. To perform a node-link study, the total watershed area is divided into subareas which discharge at designated nodes. The procedure for the subarea summation model is as follows: Subdivide the watershed into an initial sub area (generally I lot) and subsequent sub areas, which are generally less than 10 acres in size. Assign Upstream and downstream node numbers to each sub area. Estimate an initial T by using the appropriate nomograph or overland flow velocity estimation. Using the initial T, determine the corresponding values of I. Then Q = C I A. Using Q, estimate the travel time between this node and the next by Manning's equation as applied to the particular channel or conduit linking the two nodes. Then, repeat the calculation for Q based on the revised intensity (which is a function of the revised time of concentration) The nodes are joined together by links, which may be street gutter flows, drainage swales, drainage ditches, pipe flow, or various channel flows. The AES-99 computer sub area menu is as follows: SUBAREA HYDROLOGIC PROCESS Confluence analysis at node. Initial sub area analysis (including time of concentration calculation). Pipeflow travel time (computer estimated). Pipeflow travel time (user specified). Trapezoidal channel travel time. Street flow analysis through subarea. User - specified information at node. T8:wvi I,mpos%235Z402.doc wo. 2252.05 Villages of La Costa P.A. 3.8, 3.9 & R.S.F.R. Hydrology Study Addition of subarea runoff to main line. V-gutter flow through area. Copy main stream data to memory bank Confluence main stream data with a memory bank Clear a memory bank At the confluence point of two or more basins, the following procedure is used to combine peak flow rates to account for differences in the basin's times of concentration. This adjustment is based on the assumption that each basin's hydrographs are triangular in shape. If the collection streams have the same times of concentration, then the Q values are directly summed, Qp = Qa + Qb; T = T3 = Tb If the, collection streams have different times of concentration, the smaller of the tributary Q values may be adjusted as follows: The most frequent case is where the collection stream with the longer time of concentration has the larger Q. The smaller Q value is adjusted by the ratio of rainfall intensities. QP = °a + Qb (la/lb); T = Ta In' some cases, the collection stream with the shorter time of concentration has the larger Q. Then the smaller Q is adjusted by a ratio of the T values. ' QpQb Qa (T/Ta)Tp Tb Tft.mm 3C54ac w.o. 2352-05 Villages of La Costa P.A. 3.8, 3.9 & R.S.F.R Hydrology Study Rational Method: Hydrology 100-Year Peak Flow P.A. 3.813.9 Tuab o352CO.dac w.a. 2352.06 * * a * * * * * * * * * * * * * * * * * * a * * * * * * * * * * * * a * * * * * * * a * * * * * * a * a ** * * * * a * * * * * * * * * * * * * * * * * RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/99 License ID 1239 Analysis prepared by: Hunsaker & Associates San Diego, Inc. 10179 Huennekens Street San Diego, California (619) 558-4500 Planning Engineering Surveying ****a**aa******aa********* DESCRIPTION OF STUDY *a*****aaaa*******aaaaa**a * Villages Of La Costa - P.A. 3.8,3.9 * * Developed Condition 100-Year Analysis * * W.O. #2352-11 a * a **a *** **** ** **********a*a **a*a**a*******a ** a *a** a***a* **aa aa* ****aa FILE NAME: H:\AES99\2352\11\DEV100.DAT TIME/DATE OF STUDY: 19:48 2/ 7/2002 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.900 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED +--------------------------------------------------------------------------+ I I I Line "C" I +--------------------------------------------------------------------------+ * *** *** ****a**aa*******a**a ***aaaa a a *a ***a***a**a**aa**** ** ***a **** *** ** ** FLOW PROCESS FROM NODE 124.00 TO NODE 124.00 IS CODE = 7 ---------------------------------------------------------------------------- >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODEccc.c.c USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 14.78 RAIN INTENSITY(INCH/HOUR) = 3.80 TOTAL AREA(ACRES) = 45.30 TOTAL RUNOFP(CFS) = 20.70 +--------------------------------------------------------------------------+ The flow and area values for node 124 come from the "PRELIMINARY I I HYDROLOGY STUDY FOR VILLAGES OF LA COSTA THE RIDGE & THE OAKS". I +--------------------------------------------------------------------------+ * * * a a a * * * * * * * * a * * * * * * * * * * * * * * * * a * * * * * * * * * a * * * * * * * * * * * * * *a * * * * * a * * a * a * * * * * * * * FLOW PROCESS FROM NODE 12400 TO NODE 6.00 IS CODE = 3 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA-c<<<< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< DEPTH OF FLOW IN 27.0 INCH PIPE IS 21.2 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 6.2 UPSTREAM NODE ELEVATION = 447.30 DOWNSTREAM NODE ELEVATION = 441.86 FLOWLENGTH(FEET) = 1012.27 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) 20.70 TRAVEL TIME(MIN.) = 2.73 TC(MIN.) = 17.51 * * * * * * * * * * * * * * * * * * * * * * * * * * * * *•* * * a * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 Is CODE = 10 ---------------------------------------------------------------------------- >>>>MAIN-STREAN MEMORY COPIED ONTO MEMORY BANK 1$ 1 <<ccc FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSISc.c.cc< SOIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT - .5500 INITIAL SUBAREA FLOW-LENGTH = 310.00 UPSTREAM ELEVATION - 519.30 DOWNSTREAM ELEVATION = 515.60 ELEVATION DIFFERENCE - 3.70 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) - 16.433 100 YEAR RAINFALL INTENSITY(INCH/HOUR) - 3.547 SUBAREA RUNOFF(CFS) = 1.56 TOTAL AREA(ACRES) = 0.80 TOTAL RUNOFF(CFS) = 1.56 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 6 ---------------------------------------------------------------------------- >,>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREAcccc< UPSTREAM ELEVATION = 515.60 DOWNSTREAM ELEVATION = 477.76 STREET LENGTH(FEET) = 850.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 18.50 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) - 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 9.71 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH (FEET) 0.38 HALFSTREET FLOODWIDTH (FEET) = 12.77 AVERAGE FLOW VELOCITY (FEET/SEC.) 5.55 PRODUCT OF DEPTH&VELOCITY - 2.12 STREETFLOW TRAVELTIME(MIN) = 2.55 TC(MIN) - 18.99 100 YEAR RAINFALL INTENSITY(INCH/HOUR) - 3.231 SOIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) - 9.17 SUBAREA RUNOFF(CFS) = 16.30 SUMMED AREA(ACRES) 9.97 TOTAL RUNOFF(CFS) = 17.86 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = 0.45 MALFSTREET FLOODWIDTH(FEET) = 16.24 FLOW VELOCITY(FEET/SEC.) 6.48 DEPTH*VELOCITY = 2.92 FLOW PROCESS FROM NODE 3.00 TO NODE 5.00 IS CODE = 3 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<.c<cc >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<ccc DEPTH OF FLOW IN 24.0 INCH PIPE IS 16.7 INCHES PIPEFLOW VELOCITY (FEET/SEC.) - 7.6 UPSTREAM NODE ELEVATION = 467.40 DOWNSTREAM NODE ELEVATION = 467.00 FLOWLENGTH(PEET) = 40.00 MANNING'S N 0.013 ESTIMATED PIPE DIAMETER (INCH) = 24.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CPS) 17.86 TRAVEL TIME(MIN.) = 0.09 TC(MIN.) = 19.07 FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE - ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCEcc<.cc TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 19.07 RAINFALL INTENSITY (INCH/BR) = 3.22 TOTAL STREAM AREA (ACRES) = 9.97 PEAK FLOW RATE (CFS) AT CONFLUENCE = 17.86 FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS.c<.c.cc SOIL CLASSIFICATION IS "Do SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 240.00 UPSTREAM ELEVATION = 485.00 DOWNSTREAM ELEVATION - 477.76 ELEVATION DIFFERENCE= 7.24 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 10.615 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.702 SUBAREA RUNOFF(CFS) = 0.70 TOTAL AREA(ACRES) = 0.27 TOTAL RUNOFF(CFS) = 0.70 FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE - ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCEccc< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUESC.C< TOTAL NUMBER OF STREAMS = 2 - CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.61 RAINFALL INTENSITY(INCH/HR) = 4.70 TOTAL STREAM AREA(ACRES) = 0.27 PEAK FLOW RATE (CFS) AT CONFLUENCE = 0.70 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 17.86 19.07 3.222 9.97 2 0.70 10.61 4.702 0.27 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 12.93 10.61 4.702 2 18.34 19.07 3.222 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 18.34 Tc(MIN.) = 19.07 TOTAL AREA(ACRES) = 10.24 ** ** * * ** * ***** ********** * ******************* ************* ******** **** FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 3 ----------------------------------------------------------------------------- >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA.ccccc >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ccc<c DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.7 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 16.7 UPSTREAM NODE ELEVATION = 466.67 DOWNSTREAM NODE ELEVATION = 441.86 FLOWLENGTH(FEET) = 322.03 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 2. PIPEFLOW THRU SUBAREA(CPS) - 18.34 TRAVEL TIME(MIN.) = 0.32 TC(MIN.) = 19.39 **************************************************************************** FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE - 11 ---------------------------------------------------------------------------- >>,>,CONFLUENCE MEMORY BANK * 1 WITH THE MAIN-STREAM MEMORY.cccc.c ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 18.34 19.39 3.187 10.24 * * MEMORY BANK * 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 20.70 17.51 3.404 45.30 ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (NIL) (INCH/HOUR) 1 37.87 17.51 3.404 .2 37.72 19.39 3.187 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 37.87 Tc(MIN.) = 17.51 TOTAL AREA (ACRES) = 55.54 **************************************************************************** FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = 12 ---------------------------------------------------------------------------- >>>>>CLEAR MEMORY BANK * 1 <cc< FLOW PROCESS FROM NODE 6.00 TO NODE 10.00 IS CODE 3 ---------------------------------------------------------------------------- >>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA.c.ccc >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<cc DEPTH OF PLOW IN 30.0 INCH PIPE IS 24.0 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 9:0 UPSTREAM NODE ELEVATION = 440.86 DOWNSTREAM NODE ELEVATION = 439.68 FLOWLENGTH(FEET) = 119.13 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER(INCH) = 30.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 37.87 TRAVEL TIME(MIN.) = 0.22 TC(MIN.) = 17.74 **************************************************************************** FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE = ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCEcccc.c TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 17.74 RAINFALL INTENSITY (INCH/HR) = 3.38 TOTAL STREAM AREA(ACRES) = 55.54 PEAK FLOW RATE(CFS) AT CONFLUENCE - 37.87 FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 Is CODE = 21 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS.cc.ccc SOIL CLASSIFICATION IS AD" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 420.00 UPSTREAM ELEVATION = 500.40 DOWNSTREAM ELEVATION = 486.30 ELEVATION DIFFERENCE - 14.10 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) = 13.550 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.017 SUBAREA RUNOFF(CPS) = 1.77 TOTAL AREA(ACRES) = 0.80 TOTAL RUNOFF(CPS) = 1.77 FLOW PROCESS FROM NODE 8.00 TO NODE 9.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA.c<ccc UPSTREAM ELEVATION = 486.30 DOWNSTREAM ELEVATION = 471.49 STREET LENGTH(FEET) = 500.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAX = 16.50 INTERIOR STREET CROSSFALL (DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF • 2 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 5.24 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH (FEET) = 0.29 HALFSTREET FLOODWIDTH (FEET) - 7.95 AVERAGE FLOW VELOCITY (FEET/SEC.) = 3.49 PRODUCT OF DEPTH&VELOCITY - 1.00 STREETFLOW TRAVELTIME(MIN) 2.38 TC(MIN) = 15.94 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.618 SOIL CLASSIFICATION IS "D - SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 3.50 SUBAREA RUNOFF(CFS) = 6.96 SUMMED AREA (ACRES) = 4.30 TOTAL RUNOFF (CFS) = 8.73 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = 0.33 HALFSTREET FLOODWIDTH(FEET) = 10.01 FLOW VELOCITY (FEET/SEC.) - 3.90 DEPTH*VELOCITY = 1.27 FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 3 ------------------------------------------------------------------ >>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA.c.c.ccc >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<c<cc ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.4 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 19.4 UPSTREAM NODE ELEVATION = 462.02 DOWNSTREAM NODE ELEVATION = 440.68 FLOWLENGTH(FEET) = 109.57 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 8.73 TRAVEL TIME(MIN.) = 0.09 TC(MXN.) = 16.03 * * *** ****** * ********* ***** *** *** ***** ******* ***** FLOW PROCESS FROM NODE 10.00 TO NODE 10.00 IS CODE = ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCEcc<.cc >>,>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES.cc.c< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 16.03 RAINFALL INTENSITY ( INCH/ER) = 3.60 TOTAL STREAM AREA(ACRES) = 4.30 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.73 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 37.87 17.74 3.376 55.54 2 8.73 16.03 3.604 4.30 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 44.21 16.03 3.604 2 46.05 17.74 3.376 COMPUTED CONFLUENCE ESTIMATES AREAS FOLLOWS: PEAK FLOW RATE(CFS) = 46.05 Tc(MIN.) = 17.74 TOTAL AREA (ACRES) = 59.84 FLOW PROCESS FROM NODE 10.00 TO NODE 16.00 IS CODE = 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<.c<cc >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< DEPTH OF FLOW IN 39.0 INCH PIPE IS 27.3 INCHES PIPEFLOW VELOCITY (FEET/SEC.) - 7.4 UPSTREAM NODE ELEVATION - 439.18 DOWNSTREAM NODE ELEVATION = 438.67 FLOWLENGTH(FEET) = 103.53 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES 1 PIPEFLOW THRU SUBAREA(CFS) = 46.05 TRAVEL TIME(MIN.) = 0.23 TC(MIN.) = 17.97 FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<.cc.cc TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 17.97 RAINFALL INTENSITY(INCH/HR) - 3.35 TOTAL STREAM AREA(ACRES) = 59.84 PEAK FLOW RATE(CFS) AT CONFLUENCE = 46.05 FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS.c.cccc SOIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 280.00 UPSTREAM ELEVATION = 488.00 DOWNSTREAM ELEVATION - 478.00 ELEVATION DIFFERENCE - 10.00 URBAN SUBAREA OVERLAND TIME OF PLOW (MINUTES) = 10.838 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCE/HOUR) - 4.639 SUBAREA RUNOFF(CFS) = 0.54 TOTAL AREA(ACRES) = 0.21 TOTAL RUNOFF(CFS) = 0.54 * * *** ****** ********** * ********* ***** * ** ****** *********** **** ****** FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA.ccc<c UPSTREAM ELEVATION = 478.00 DOWNSTREAM ELEVATION - 458.00 STREET LENGTH(FEET) = 450.00 CURB HEIGHT (INCHES) = 6. STREET HALFWIDTH (FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAX = 18.50 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) - 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF - 1 **TRAVELTIME COMPUTED USING MEAN PLOW(CFS) = 1.84 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.24 HALFSTREET FLOODWIDTH (FEET) = 5.84 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.01 PRODUCT OF DEPTH&VELOCITY = 0.97 STREETFLOW TRAVELTIME(MIN) = 1.87 TC(MIN) = 12.71 100 YEAR RAINFALL INTENSITY(INCH/HOUR) - 4.186 SOIL CLASSIFICATION IS DM SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) - 1.14 SUBAREA RUNOFF(CFS) = 2.62 SUMMED AREA(ACRES) • 1.35 TOTAL RUNOFF(CFS) - 3.16 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH (FEET) = 0.29 HALFSTREET FLOODWIDTH (FEET) = 8.15 FLOW VELOCITY(FEET/SEC.) = 4.04 DEPTH*VELOCITY = 1.17 FLOW PROCESS FROM NODE 13.00 TO NODE 16.00 IS CODE = 3 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA.ccccc >>>>>USXNG COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.0 INCHES PIPEFLOW VELOCITY(FEET/SEC.) - 16.1 UPSTREAM NODE ELEVATION = 451.63 DOWNSTREAM NODE ELEVATION = 440.17 FLOWLENGTH(FEET) = 43.25 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 3.16 TRAVEL TIME(MIN.) = 0.04 TC(MIN.) = 12.75 FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCEccccc TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 12.75 RAINFALL INTENSITY(INCH/HR) = 4.18 TOTAL STREAM AREA(ACRES) = 1.35 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.16 FLOW PROCESS FROM NODE 14.00 TO NODE 15.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSISccc.c< SOIL CLASSIFICATION IS "D SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH • 240.00 UPSTREAM ELEVATION = 461.00 DOWNSTREAM ELEVATION = 458.00 ELEVATION DIFFERENCE = 3.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) = 14.238 100 YEAR RAINFALL INTENSITY(INCH/HOUR) - 3.890 SUBAREA RUNOFF(CFS) = 1.13 TOTAL AREA(ACRES) = 0.53 TOTAL RUNOFF(CFS) = 1.13 FLOW PROCESS FROM NODE 15.00 TO NODE 16.00 IS CODE = 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA.C<CC >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) c.cc<c ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 1.6 INCHES PIPEFLOW VELOCXTY(FEET/SEC.) = 14.6 UPSTREAM NODE ELEVATION = 443.67 DOWNSTREAM NODE ELEVATION = 440.17 FLOWIJENGTH(FEET) = 7.28 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 1.13 TRAVEL TIME(MIN.) - 0.01 TC(MIN.) • 14.25 FLOW PROCESS FROM NODE 16.00 TO NODE 16.00 IS CODE = ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE.C.C.CC< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUESc.cccc TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 14.25 RAINFALL INTENSITY (INCH/HR) = 3.89 TOTAL STREAM AREA(ACRES) = 0.53 PEAK FLOW RATE (CFS) AT CONFLUENCE = 1.13 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 46.05 17.97 3.348 59.84 2 3.16 12.75 4.177 1.35 3 1.13 14.25 3.889 0.53 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. * * PEAK FLOW RATE TABLE * * STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) I 41.13 12.75 4.177 2 43.72 14.25 3.889 3 49.56 17.97 3.348 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 49.56 Tc(MIN.) = 17.97 TOTAL AREA(ACRES) = 61.72 FLOW PROCESS FROM NODE 16.00 TO NODE 17.00 IS CODE - 3 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA.c.cc.cc >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< DEPTH OF FLOW IN 39.0 INCH PIPE IS 28.9 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 7.5 UPSTREAM NODE ELEVATION = 438.34 DOWNSTREAM NODE ELEVATION = 437.78 FLOWLENGTH(FEET) = 113.14 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 39.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 49.56 TRAVEL TIME(MIN.) = 0.25 TC(MIN.) = 18.22 +--------------------------------------------------------------------------+ ILine"B +--------------------------------------------------------------------------+ FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSISccccc SOIL CLASSIFICATION SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 360.00 UPSTREAM ELEVATION = 486.50 DOWNSTREAM ELEVATION = 479.80 ELEVATION DIFFERENCE = 6.70 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) = 15.271 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3. 719 SUBAREA RUNOFF(CFS) = 2.25 TOTAL AREA(ACRES) = 1.10 TOTAL RUNOFF(CFS) = 2.25 FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREAccccc UPSTREAM ELEVATION 479.80 DOWNSTREAM ELEVATION = 446.06 STREET LENGTH(FEET) = 570.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.50 INTERIOR STREET CROSSFALL(DECIMAL) - 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 3.65 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH (FEET) = 0.29 HALFSTREET FLOODWIDTH(FEET) = 7.95 AVERAGE FLOW VELOCITY (FEET/SEC.) = 4.88 PRODUCT OF DEPTH&VELOCITY - 1.39 STREETFLOW TRAVELTIME(MIN) = 1.95 TC(MIN) = 17.22 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.441 SOIL CLASSIFICATION IS D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT= .5500 SUBAREA AREA(ACRES) = 1.48 SUBAREA RUNOFF(CFS) = 2.80 SUMMED AREA(ACRES) = 2.58 TOTAL RUNOFF(CFS) = 5.05 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) 0.31 HALFSTREET FLOODWIDTH(FEET) = 8.98 FLOW VELOCITY(FEET/SEC.) = 5.47 DEPTH*VELOCITY = 1.67 FLOW PROCESS FROM NODE 22.00 TO NODE 25.00 IS CODE = 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUB.AREAccc.cc >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.9 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 12.9 UPSTREAM NODE ELEVATION = 440.50 DOWNSTREAM NODE ELEVATION = 436.95 FLOWLENGTH(FEET) = 36.50 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 5.05 TRAVEL TIME(MIN.) - .0.05 TC(MIN.) = 17.27 FLOW PROCESS FROM NODE 25.00 TO NODE 25.00 IS CODE = ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<.c<cc TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 17.27 RAINFALL INTENSITY (INCH/HR) = 3.44 TOTAL STREAM AREA(ACRES) = 2.58 PEAK FLOW RATE (CFS) AT CONFLUENCE = 5.05 FLOW PROCESS FROM NODE 23.00 TO NODE 24.00 IS CODE = 21 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSISccc.cc SOIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH - 270.00 UPSTREAM ELEVATION = 484.80 DOWNSTREAM ELEVATION = 482.10 ELEVATION DIFFERENCE = 2.70 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) = 16.267 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.570 SUBAREA RUNOFF(CFS) = 1.57 TOTAL AREA(ACRES) = 0.80 TOTAL RUNOFF(CFS) - 1.57 FLOW PROCESS FROM NODE 24.00 TO NODE 25.00 IS CODE - 6 ---------------------------------------------------------------------------- >>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREACCC<C UPSTREAM ELEVATION = 482.10 DOWNSTREAM ELEVATION - 446.06 STREET LENGTH(FEET) = 615.00 CURB HEIGHT(INCHES) - 6. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.50 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CPS) = 4.58 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) 0.31 HALFSTREET FLOODWIDTH(FEET) = 8;98 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.96 PRODUCT OF DEPTH&VELOCITY = 1.52 STREETFLOW TRAVELTIME(MIN) = 2.07 TC(MIN) = 18.33 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.305 SOIL CLASSIFICATION IS "U" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREACACRES) - 3.30 SUBAREA RUNOFF(CFS) - 6.00 SUMMED AREA(ACRES) = 4.10 TOTAL RUNOFF(CFS) = 7.57 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = 0.35 HALFSTREET FLOODWIDTH(FEET) = 11.04 FLOW VELOCITY(FEET/SEC.) = 5.66 DEPTH*VELOCITY - 1.97 ************a*************************************************************** FLOW PROCESS FROM NODE 25.00 TO NODE 25.00 IS CODE = >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCEccccc >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUEScccc.c TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 18.33 RAINFALL INTENSITY(INCH/HR) = 3.30 TOTAL STREAM AREA(ACRES) - 4.10 PEAK FLOW RATE (CFS) AT CONFLUENCE - 7.57 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 0.00 0.00 Infinity 0.00 2 5.05 17.27 3.435 2.58 3 7.57 18.33 3.305 4.10 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 0.00 0.00 Infin 2 12.33 17.27 3.435 3 12.43 18.33 3.305 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 12.43 Tc(MIN.) = 18.33 TOTAL AREA(ACRES) = 6.68 FLOW PROCESS FROM NODE 25.00 TO NODE 29.00 IS CODE = 3 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA.c.c.ccc >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<c<c ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.9 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 12.5 UPSTREAM NODE ELEVATION = 436.62 DOWNSTREAM NODE ELEVATION = 423.08 FLOWLENGTH(FEET) = 295.62 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES - PIPEFLOW THRU SUBAREA(CFS) = 12.43 TRAVEL TIME(MIN.) = 0.39 TC(MIN.) = 18.73 FLOW PROCESS FROM NODE 29.00 TO NODE 29.00 IS CODE - 1 >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE.c.cc.cc TOTAL NUMBER OF STREAMS 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 18.73 RAINFALL INTENSITY(INCH/HR) = 3.26 TOTAL STREAM AREA(ACRES) = 6.68 PEAK FLOW RATE (CFS) AT CONFLUENCE = 12.43 FLOW PROCESS FROM NODE 26.00 TO NODE 27.00 IS CODE - 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSXS<<CC< SOIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 375.00 UPSTREAM ELEVATION = 499.90 DOWNSTREAM ELEVATION = 488.00 ELEVATION DIFFERENCE = 11.90 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) -. 13.047 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.116 SUBAREA RUNOFF(CFS) = 2.26 TOTAL AREA (ACRES) - 1.00 TOTAL RUNOFF(CFS) = 2.26 FLOW PROCESS FROM NODE 27.00 TO NODE 28.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREAc.ccc.c UPSTREAM ELEVATION = 488.00 DOWNSTREAM ELEVATION = 430.00 STREET LENGTH(FEET) = 625.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.50 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 COMPUTED USING MEAN FLOW(CFS) = 4.69 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH (FEET) = 0.29 HALFSTREET FLOODWIDTH(FEET) = 7.95 AVERAGE FLOW VELOCITY(FEET/SEC.) 6.26 PRODUCT OF DEPTH&VELOCITY = 1.79 STREETFLOW TRAVELTIME(MIN) = 1.66 TC(MIN) = 14.71 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.809 SOIL CLASSIFICATION IS "D SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 2.33 SUBAREA RUNOFF(CFS) = 4.88 SUMMED AREA(ACRES) = 3.33 TOTAL RUNOFF(CFS) = 7.15 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) 0.32 HALFSTREET FLOODWIDTH(FEET) = 9.49 FLOW VELOCITY(FEET/SEC.) = 7.01 DEPTH*VELOCITY = 2.22 **************************************************************************** FLOW PROCESS FROM NODE 28.00 TO NODE 29.00 IS CODE = 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREAC<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) cccc< ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.5 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 29.5 UPSTREAM NODE ELEVATION = 425.51 DOWNSTREAM NODE ELEVATION = 423.08 FLOWLENGTH(FEET) = 3.25 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES - PIPEFLOW THRU SUBAREA(CFS) = 7.15 TRAVEL TIME(MIN.) = 0.00 TC(MIN.) = 14.71 FLOW PROCESS FROM NODE 29.00 TO NODE 29.00 IS CODE - ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<c<c< >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES.ccc<c. TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 14.71 RAINFALL INTENSITY (INCH/ER) = 3.81 TOTAL STREAM AREA (ACRES) = 3.33 PEAK FLOW RATE(CFS) AT CONFLUENCE - .7.15 ** CONFLUENCE DATA STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 12.43 18.73 3.260 6.68 2 7.15 14.71 3.809 3.33 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 17.78 14.71 3.809 2 18.54 18.73 3.260 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 18.54 Tc(MIN.) = 18.73 TOTAL AREA(ACRES) = 10.01 FLOW PROCESS FROM NODE 29.00 TO NODE 36.00 IS CODE = 3 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUEAREA.cc.c.c.c >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.9 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 16.5 UPSTREAM NODE ELEVATION = 422.58 DOWNSTREAM NODE ELEVATION = 417.20 FLOWLENGTH(FEET) = 72.91 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) 18.54 TRAVEL TIME(MIN.) 0.07 TC(MIN.) = 18.80 FLOW PROCESS FROM NODE 36.00 TO NODE 36.00 IS CODE = 10 ---------------------------------------------------------------------------- >>>>MAIN-STREA14 MEMORY COPIED ONTO MEMORY BANK It 1 <<ccc FLOW PROCESS FROM NODE 30.00 TO NODE 31.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSISccccc SOIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 380.00 UPSTREAM ELEVATION = 456.90 DOWNSTREAM ELEVATION = 453.10 ELEVATION DIFFERENCE = 3.80 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) = 19.299 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.197 SUBAREA RUNOFF(CFS) = 2.81 TOTAL AREA(ACRES) = 1.60 TOTAL RUNOFF(CFS) = 2.81 FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 6 >>,.>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA.ccccc UPSTREAM ELEVATION = 453.10 DOWNSTREAM ELEVATION = 427.00 STREET LENGTH(FEET) • 800.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH (FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.50 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 7.14 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.37 HALFSTREET FLOODWIDTH (FEET) 12.07 AVERAGE FLOW VELOCITY (FEET/SEC.) = 4.53 PRODUCT OF DEPTH&VELOCITY = 1.67 STREETFLOW TRAVELTIME(MIN) - 2.94 TC(MIN) = 22.24 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.918 SOIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 5.40 SUBAREA RUNOFF(CFS) = 8.67 SUMMED AREA(ACRES) = 7.00 TOTAL RUNOFF(CFS) - 11.48 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH (FEET) 0.42 HALFSTREET FLOODWIDTH(FEET) 14.65 FLOW VELOCITY (FEET/SEC.) = 5.07 DEPTH*VELOCITY = 2.13 FLOW PROCESS FROM NODE 32.00 TO NODE 35.00 IS CODE = 3 ---------------------------------------------------------------------------- >>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA.c.c.c.c.c >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.3 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 14.5 UPSTREAM NODE ELEVATION = 421.16 DOWNSTREAM NODE ELEVATION = 418.55 FLOWLENGTH(FEET) - 36.50 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 11.48 TRAVEL TIME(MIN.) = 0.04 TC(MIN.) - 22.28 FLOW PROCESS FROM NODE 35.00 TO NODE 35.00 IS CODE = ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCEc<<cc TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 22.28 RAINFALL INTENSITY (INCH/HE) = 2.91 TOTAL STREAM AREA(ACRES) = 7.00 PEAK FLOW RATE(CFS) AT CONFLUENCE = 11.48 FLOW PROCESS FROM NODE 33.00 TO NODE 34.00 Is CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIScc.ccc SOIL CLASSIFICATION IS "DM SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 280.00 UPSTREAM ELEVATION = 461.20 DOWNSTREAM ELEVATION = 458.40 ELEVATION DIFFERENCE = 2.80 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) 16.566 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.528 SUBAREA RUNOFF(CFS) = 1.65 TOTAL AREA(ACRES) = 0.85 TOTAL RUNOFF(CFS) - 1.65 FLOW PROCESS FROM NODE 34.00 TO NODE 35.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>,>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREAccccc UPSTREAM ELEVATION = 458.40 DOWNSTREAM ELEVATION = 427.00 STREET LENGTH(FEET) = 1120.00 CURB HEIGHT(INCHES) - 6. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAX = 16.50 - INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF RALFSTREETS CARRYING RUNOFF 3. TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 7.64 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH (FEET) = 0.38 HALFSTREET FL000WIDTH(FEET) = 12.59 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.49 PRODUCT OF DEPTH&VELOCITY = 1.70 STREETFLOW TRAVELTIME(MIN) = 4.16 TC(MIN) = 20.73 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.054 SOIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 7.16 SUBAREA RUNOFF(CFS) = 12.03 SUMMED AREA(ACRES) = 8.01 TOTAL RUNOFF(CFS) = 13.68 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = 0.45 HALFSTREET FLOODWIDTH(FEET) = 16.20 FLOW VELOCITY (FEET/SEC.) = 4.99 DEPTH*VELOCITY = 2.25 FLOW PROCESS FROM NODE 35.10 TO NODE 35.00 IS CODE = 7 ---------------------------------------------------------------------------- >>.>USER SPECIFIED HYDROLOGY INFORMATION AT NODEccccc USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 20.73 RAIN INTENSITY(INCH/HOUR) = 3.05 TOTAL AREA(ACRES) = 4.56 TOTAL RUNOFF(CFS) = 7.78 +---------------------------------------------------------------------------+ Node 35.1 represents the bypass inlet where 7.78 cfs I is intercepted and the reamining 6.10 cfs flows into I I Node 61 of line I +--------------------------------------------------------------------------+ FLOW PROCESS FROM NODE 35.00 TO NODE 35.00 IS CODE - 1 >>,>>DESIGNATE INDEPENDENT STREAM FOR CONPLUENCEcc<.cc >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<.ccc< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 20.73 RAINFALL INTENSITY(INCH/HR) = 3.05 TOTAL STREAM AREA(ACRES) = 4.56 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.78 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 11.48 22.28 2.914 7.00 2 7.78 20.73 3.053 4.56 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 18.74 20.73 3.053 2 18.91 22.28 2.914 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 18.91 Tc(MIN.) = 22.28 TOTAL AREA(ACRES) = 11.56 FLOW PROCESS FROM NODE 35.00 TO NODE 36.00 IS CODE = 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREAccccc >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<cc DEPTH OF FLOW IN 24.0 INCH PIPE IS 19.3 INCHES PIPEFLOW VELOCITY(FEET/SEC.) - 7.0 UPSTREAM NODE ELEVATION - 418.22 DOWNSTREAM NODE ELEVATION = 417.70 FLOWLENGTH(FEET) = 64.87 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 18.91 TRAVEL TIME(MIN.) = 0.16 TC(MIN.) = 22.44 FLOW PROCESS FROM NODE 36.00 TO NODE 36.00 IS CODE • 11 >>>>CONFLUENCE MEMORY BANK U 1 WITH THE MAIN-STREAM MEMORY.c.c.c.cc * * MAIN STREAM CONFLUENCE DATA * * STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 18.91 22.44 2.901 11.56 ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 18.54 18.80 3.252 10.01 * * PEAK FLOW RATE TABLE * * STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 35.41 18.80 3.252 2 35.45 22.44 2.901 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 35.45 Tc(MIN.) = 22.44 TOTAL AREA(ACRES) • 21.57 FLOW PROCESS FROM NODE 36.00 TO NODE 36.00 IS CODE = 12 ---------------------------------------------------------------------------- >>>>>CLEAR MEMORY BANK U 1 cccc FLOW PROCESS FROM NODE 36.00 TO NODE 37.00 IS CODE = 3 ----------------------------------------------------------------------------- >>>>>COMPUTE PIPEFLOW TRAVETJTIME THRU SUBAREAc<<.c.c >>>>>USXNG COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) c<c<c DEPTH OF FLOW IN 27.0 INCH PIPE IS 17.6 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 12.9 UPSTREAM NODE ELEVATION = 416.70 DOWNSTREAM NODE ELEVATION = 408.64 FLOWLENGTH(FEET) 320.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) - 35.45 TRAVEL TIME(MIN.) = 0.41 TC(MIN.) = 22.85 FLOW PROCESS FROM NODE 37.00 TO NODE 37.00 IS CODE = 8 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW.cc'c'cc 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.867 SOIL CLASSIFICATION IS "D SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 16.50 SUBAREA RUNOFF(CFS) = 26.02 TOTAL AREA(ACRES) = 38.07 TOTAL RUNOFF(CFS) = 61.47 TC(MIN) = 22.85 +--------------------------------------------------------------------------+ I The addition of flow at Node 37 comes from La Costa Vale (Unit No. 3). I I 10.8 acres from the 18" storm drain within the subdivision and I 5.7 acres from existing inlet along the connector road. I +--------------------------------------------------------------------------+ FLOW PROCESS FROM NODE 37.00 TO NODE 38.00 IS CODE = 3 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBARRAcc<cc >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< DEPTH OF FLOW IN 30.0 INCH PIPE IS 19.6 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 18.1 UPSTREAM NODE ELEVATION = 408.64 DOWNSTREAM NODE ELEVATION = 400.00 FLOWLENGTH(FEET) 200.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) - 30.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 61.47 F TRAVEL TIME(MIN.) - 0.18 TC(MIN.) = 23.03 ..*......*a*......*..*...**.....aa..a.a....a*.*****a.aaa*......*.........a.. FLOW PROCESS FROM NODE 38.00 TO NODE 38.00 IS CODE = 8 >>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOWc<.c.c< 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.853 SOIL CLASSIFICATION IS - RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 SUBAREA AREA(ACRES) = 1.08 SUBAREA RUNOFF(CFS) = 1.39 TOTAL AREA(ACRES) 39.15 TOTAL RUNOFF(CFS) = 62.86 TC(MIN) = 23.03 +_+ The addition of flow at Node 38 comes from an existing 12" RCP per dwg. I I no. 176-2. I + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + FLOW PROCESS FROM NODE 38.00 TO NODE 39.00 Is CODE - 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREAccc.cc >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)c<c<< DEPTH OF FLOW IN 27.0 INCH PIPE IS 19.9 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 20.0 UPSTREAM NODE ELEVATION - 400.00 DOWNSTREAM NODE ELEVATION = 380.58 FLOWLENGTH(FEET) 340.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 27.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) 62.86 TRAVEL TIME(MIN.) = 0.28 TC(MIN.) = 23.32 FLOW PROCESS FROM NODE 39.00 TO NODE 39.00 IS CODE = B ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOWcc.ccc 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.830 SOIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) - 1.10 SUBAREA RUNOFF(CFS) = 1.71 TOTAL AREA(ACRES) = 40.25 TOTAL RUNOFF(CFS) = 64.57 TC(MIN) = 23.32 +--------------------------------------------------------------------------+ I The addition of flow at Node 39 comes from Paseo Lupina runoff. I The flow enters the system through an exising curb inlet. I +--------------------------------------------------------------------------+ +--------------------------------------------------------------------------+ I Line "A" I +--------------------------------------------------------------------------+ FLOW PROCESS FROM NODE 50.00 TO NODE 51.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<.c.ccc SOIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT .5500 INITIAL SUBAREA FLOW-LENGTH = 340.00 UPSTREAM ELEVATION = 441.40 DOWNSTREAM ELEVATION = 438.00 ELEVATION DIFFERENCE = 3.40 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 18.255 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.314 SUBAREA RUNOFF(CFS) = 1.59 TOTAL AREA(ACRES) = 0.87 TOTAL RUNOFF(CFS) = 1.59 FLOW PROCESS FROM NODE 51.00 TO NODE 52.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREAc.c.c.c.c UPSTREAM ELEVATION = 438.00 DOWNSTREAM ELEVATION = 403.00 STREET LENGTH(FEET) • 420.00 CURB HEIGHT(INCHES) • 6. STREET HALFWIDTH (FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.50 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAIELTIME COMPUTED USING MEAN FLOW(CFS) = 3.36 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH (FEET) = 0.26 HALFSTR.EET FLOODWIDTH(FEET) = 6.91 AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.64 PRODUCT OF DEPTH&VELOCITY = 1.49 STREETFLOW TRAVELTIME(MIN) = 1.24 TC(MIN) = 19.50 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 3.177 SOIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT - .5500 SUBAREA AREA(ACRES) = 2.03 SUBAREA RUNOFF(CFS) = 3.55 SUED AREA(ACRES) = 2.90 TOTAL RUNOFF(CFS) = 5.13 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH (FEET) = 0.30 HALFSTREET FLOODWIDTH (FEET) = 8.46 FLOW VELOCITY (FEET/SEC.) = 6.15 DEPTH*VELOCITY - 1.82 FLOW PROCESS FROM NODE 52.00 TO NODE' 55.00 IS CODE = 3 ------------------------------------------------------------------------ >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREAc.c.cc.c >>>>>tJSING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.4 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 4.3 UPSTREAM NODE ELEVATION = 395.84 DOWNSTREAM NODE ELEVATION - 395.66 FLOWLENGTH(FEET) = 36.50 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 5.13 TRAVEL TIME(MIN.) - 0.14 TC(MIN.) = 19.64 FLOW PROCESS FROM NODE 55.00 TO NODE 55.00 IS CODE - ---------------------------------------------------------------------------- >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCEc.c.c.cc TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 19.64 RAINFALL INTENSITY(INCH/HR) = 3.16 TOTAL STREAM AREA(ACRES) = 2.90 PEAK FLOW RATE (CFS) AT CONFLUENCE = 5.13 FLOW PROCESS FROM NODE 53.00 TO NODE 54.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIScccc.c SOIL CLASSIFICATION IS "Do SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 335.00 UPSTREAM ELEVATION = 439.00 DOWNSTREAM ELEVATION • 433.60 ELEVATION DIFFERENCE = 5.40 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 15.454 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.690 SUBAREA RUNOFF(CFS) - 1.48 TOTAL AREA(ACRES) = 0.73 TOTAL RUNOFF(CFS) = 1.48 FLOW PROCESS FROM NODE 54.00 TO NODE 55.00 IS CODE = 6 ----------------------------------------------------------------------------- >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA.c.c.c.c< UPSTREAM ELEVATION = 433.60 DOWNSTREAM ELEVATION = 401.00 STREET LENGTH(FEET) = 345.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAX = 16.50 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TpJELTIME COMPUTED USING MEAN FLOW(CFS) = 2.56 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH (FEET) = 0.24 HALFSTREET FLOODWIDTH(FEET) = 5.88 AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.52 PRODUCT OF DEPTH&VELOCITY = 1.35 STREETFLOW TRAVELTIME (MIN) - 1.04 TC (MIN) = 16.50 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.538 SOIL CLASSIFICATION IS 1D SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 1.11 SUBAREA RUNOFF(CFS) = 2.16 SUMMED AREA(ACRES) = 1.84 TOTAL RUNOFF(CFS) = 3.64 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = 0.27 HALFSTREET FL000WIDTH(FEET) = 7.43 FLOW VELOCITY (FEET/SEC.) - 5.43 DEPTH*VELOCITY = 1.49 FLOW PROCESS FROM NODE 55.00 TO NODE 55.00 IS CODE = ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCEcc.c.c.c >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUESc<cc< TOTAL NUMBER OF STREAMS - 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 16.50 RAINFALL INTENSITY(INCH/HR) - 3.54 TOTAL STREAM AREA(ACRES) = 1.84 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.64 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 5.13 19.64 3.162 2.90 2 3.64 16.50 3.538 1.84 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 8.23 16.50 3.538 2 8.39 19.64 3.162 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 8.39 Tc(MIN.) = 19.64 TOTAL AREA(ACRES) = 4.74 FLOW PROCESS FROM NODE 55.00 TO NODE 62.00 IS CODE = 3 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREAC<<CC >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ccc<c ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.2 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 10.6 UPSTREAM NODE ELEVATION = 395.33 DOWNSTREAM NODE ELEVATION = 374.27 FLOWLENGTH(FEET) = 550.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 8.39 TRAVEL TIME(MIN.) = 0.86 TC(MIN.) = 20.50 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * FLOW PROCESS FROM NODE 62.00 TO NODE 62.00 IS CODE = ---------------------------------------------------------------------------- >>>>.DESIGNATE INDEPENDENT STREAM FOR CONFLUENCEcc.ccc TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 20.50 RAINFALL INTENSITY(INCH/HR) = 3.08 TOTAL STREAM AREA (ACRES) = 4.74 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.39 ******* ** ** * ***** *** ************ ***** * ***************** *** ****** ********* * ** FLOW PROCESS FROM NODE 56.00 TO NODE 57.00 IS CODE = 21 >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSISccccc SOIL CLASSIFICATION IS "0" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA PLOW-LENGTH = 300.00 UPSTREAM ELEVATION = 430.50 DOWNSTREAM ELEVATION • 425.50 ELEVATION DIFFERENCE = 5.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) • 14.463 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.851 SUBAREA RUNOFF(CFS) = 1.27 TOTAL AREA(ACRES) = 0.60. TOTAL RUNOFF(CFS) = 1.27 FLOW PROCESS FROM NODE 57.00 TO NODE 58.00 IS CODE - 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA.c.c.c.cc UPSTREAM ELEVATION = 425.50 DOWNSTREAM ELEVATION = 382.00 STREET LENGTH(FEET) = 1000.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 16.50 INTERIOR STREET CROSSFALL(DECIMAL) 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 4.15 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.31 HALFSTREET FLOODWIDTH (FEET) - 8.98 AVERAGE FLOW VELOCITY (FEET/SEC.) = 4.49 PRODUCT OF DEPTH&VELOCITY = 1.37 STREETFLOW TRAVELTIME(MIN) 3.71 TC(MIN) = 18.17 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.324 SOIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 3.15 SUBAREA RUNOFF(CFS) = 5.76 SUMMED AREA(ACRES) = 3.75 TOTAL RUNOFF(CFS) = 7.03 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = 0.36 HALFSTREET FLOODWIDTH(FEET) = 11.55 FLOW VELOCITY (FEET/SEC.) = 4.84 DEPTH*VELOCITY = 1,73 * *** ******* * *** *** ********** ********** ******** *** * *** ****************** *** ** FLOW PROCESS FROM NODE 58.00 TO NODE 62.00 IS CODE = 3 ---------------------------------------------------------------------------- >>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREAc.c.cc.c >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<c< ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.5 INCHES PIPEFLOW VELOCITY(FEET/SEC.) 12.3 UPSTREAM NODE ELEVATION - 374.50 DOWNSTREAM NODE ELEVATION = 374.27 FLOWLENGTH(FEET) = 3.50 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) 7.03 TRAVEL TIME(MIN.) = 0.00 TC(MIN.) = 18.18 **************************************************************************** FLOW PROCESS FROM NODE 62.00 TO NODE 62.00 IS CODE - ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE.c<c.cc >>>,.AND COMPUTE VARIOUS CONFLUENCED STREAM VALUESc.c.c.cc TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 18.18 RAINFALL INTENSITY(INCH/HR) - 3.32 TOTAL STREAM AREA(ACRES) - 3.75 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.03 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 8.39 20.50 3.075 4.74 2 7.03 18.18 3.324 3.75 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CPS) (MIN.) (INCH/HOUR) 1 14.79 18.18 3.324 2 14.89 20.50 3.075 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 14.89 Tc(MIN.) • 20.50 TOTAL AREA(ACRES) = 8.49 * **** *********** ********************** ********** *** ** ** ****** * ** **** *** * FLOW PROCESS FROM NODE 62.00 TO NODE 62.00 IS CODE = 10 ---------------------------------------------------------------------------- >>>>>MAIN-STREAN MEMORY COPIED ONTO MEMORY BANK U 1 <c<<< FLOW PROCESS FROM NODE 59.00 TO NODE 60.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS.ccc.cc SOIL CLASSIFICATION IS AD" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT= .5500 INITIAL SUBAREA FLOW-LENGTH = 720.00 UPSTREAM ELEVATION = 478.00 DOWNSTREAM ELEVATION = 410.00 ELEVATION DIFFERENCE = 68.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 12.568 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. *CAUTION: SUBAREA FLOWLENGTH EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.216 SUBAREA RUNOFF(CFS) = 4.06 TOTAL AREA(ACRES) = 1.75 TOTAL RUNOFF(CFS) = 4.06 FLOW PROCESS FROM NODE 60.00 TO NODE 60.00 IS CODE = ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<C<< TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 12.57 RAINFALL INTENSITY(INCH/HR) = 4.22 TOTAL STREAM AREA(ACRES) = 1.75 PEAR FLOW RATE (CFS) AT CONFLUENCE • 4.06 FLOW PROCESS FROM NODE 35.10 TO NODE 60.00 IS CODE - 7 ---------------------------------------------------------------------------- >>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODEc.cccc USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 20.73 RAIN INTENSITY(INCH/HOUR) = 3.05 TOTAL AREA(ACRES) = 3.45 TOTAL RUNOFF(CFS) = 6.10 +--------------------------------------------------------------------------+ Node 35.1 represents flow by-passed at Node 35 of Line "B" I and eventually flows into Node 61 of Line "A I +--------------------------------------------------------------------------+ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * FLOW PROCESS FROM NODE 60.00 TO NODE 60.00 IS CODE - >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCEccc.cc >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUEScc.c.c.c TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 20.73 RAINFALL INTENSITY (INCH/ER) = 3.05 TOTAL STREAM AREA(ACRES) = 3.45 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.10 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 4.06 12.57 4.216 1.75 2 6.10 20.73 3.053 3.45 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. * * PEAK FLOW RATE TABLE * * STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 8.48 12.57 4.216 2 9.04 20.73 3.053 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 9.04 Tc(MIN.) = 20.73 TOTAL AREA(ACRES) = 5.20 FLOW PROCESS FROM NODE 60.00 TO NODE 61.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREAc.c.c.c.c UPSTREAM ELEVATION = 410.00 DOWNSTREAM ELEVATION = 382.00 STREET LENGTH(FEET) = 430.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH (FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAX = 16.50 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRA VELTIME COMPUTED USING MEAN FLOW(CFS) STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.38 HALFSTREET FLOODWIDTH(FEET) 12.59 AVERAGE FLOW VELOCITY (FEET/SEC.) = 6.53 PRODUCT OF DEPTH&VELOCITY = 2.47 STREETFLOW TRAVELTIME(MIN) = 1.10 TC(MIN) = 21.83 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 2.953 SOIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 2.55 SUBAREA RUNOFF(CFS) = 4.14 SUMMED AREA(ACRES) 7.75 TOTAL RUNOFF(CFS) = 13.18 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) • 0.40 HALFSTREET FLOODWIDTH(FEET) • 13.62 FLOW VELOCITY (FEET/SEC.) = 6.68 DEPTH*VELOCITY = 2.66 ******* ** * *********** ***** ********************** * ***** * ********* ******* **** * FLOW PROCESS FROM NODE 61.00 TO NODE 62.00 IS CODE = 3 ---------------------------------------------------------------------------- >>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBARZAc.c.c.c< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<ccc DEPTH OF FLOW IN 21.0 INCH PIPE IS 15.3 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 7.0 UPSTREAM NODE ELEVATION = 374.56 DOWNSTREAM NODE ELEVATION = 374.27 FLOWLENGTH(FEET) = 29.25 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 13.18 TRAVEL TIME(MIN.) - 0.07 TC(MIN.) = 21.90 FLOW PROCESS FROM NODE 62.00 TO NODE 62.00 IS CODE = 11 ---------------------------------------------------------------------------- >>>>CONFLUENCE MEMORY BANK * 1 WITH THE MAIN-STREAM MEMORYc.cccc ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 13.18 21.90 2.947 7.75 ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 14.89 20.50 3.075 8.49 ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 27.52 20.50 3.075 2 27.45 21.90 2.947 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 27.52 Tc(MIN.) = 20.50 TOTAL AREA(ACRES) - 16.24 FLOW PROCESS FROM NODE 62.00 TO NODE 62.00 IS CODE = 13 ---------------------------------------------------------------------------- >>>>>CLEAR THE MAIN-STREAM MEMORY<<c<c FLOW PROCESS FROM NODE 62.00 TO NODE 63.00 IS CODE - 3 ---------------------------------------------------------------------------- ,>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA.ccc<c. >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.0 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 5.2 UPSTREAM NODE ELEVATION = 373.94 DOWNSTREAM NODE ELEVATION = 368.91 FLOWLENGTH(FEET) = 179.79 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 1.00 TRAVEL TIME(MIN.) = 0.58 TC(MIN.) = 5.58 *********************************************e****************************** FLOW PROCESS FROM NODE 64.00 TO NODE 65.00 IS CODE = 21 ----------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA PNALYSIScc.c.c< SOIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 300.00 UPSTREAM ELEVATION = 399.60 DOWNSTREAM ELEVATION = 395.40 ELEVATION DIFFERENCE = 4.20 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) = 15.328 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.710 SUBAREA RUNOFF (CFS) 1.96 TOTAL AREA(ACRES) - 0.96 TOTAL RUNOFF(CFS) = 1.96 ** * ************* ******* ************ *** ******* ***** ****** * ***** * FLOW PROCESS FROM NODE 65.00 TO NODE 66.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA.cc.ccc UPSTREAM ELEVATION = 395.40 DOWNSTREAM ELEVATION = 370.00 STREET LENGTH(FEET) - 350.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 18.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK 16.50 INTERIOR STREET CROSSFALL(DECIMAL) - 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) - 3.42 STREETFLOW MODEL RESULTS: STREET PLOWDEPTH (FEET) = 0.27 HALFSTREET FLOODWIDTH(FEET) - 7.43 AVERAGE PLOW VELOCITY (FEET/SEC.) PRODUCT OF DEPTH&VELOCITY = 1.40 STREETFLOW TRAVELTIME(MIN) = 1.14 TC(MIN) = 16.47 100 YEAR RAINFALL INTENSITY(INCN/HOUR) = 3.542 SOIL CLASSIFICATION IS "D" SINGLE FAMILY DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 1.50 SUBAREA RUNOFF(CFS) = 2.92 SUMMED AREA(ACRES) = 2.46 TOTAL RUNOFF(CFS) = 4.88 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) 0.30 HALFSTREET FLOODWIDTH(FEET) 8.46 FLOW VELOCITY (FEET/SEC.) = 5.85 DEPTH*VELOCITY = 1.73 FLOW PROCESS FROM NODE 98.00 TO NODE 124.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS.cccc.c SOIL CLASSIFICATION IS D" RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 10.79(MINUTES) INITIAL SUBAREA FLOW-LENGTH = 200.00 UPSTREAM ELEVATION = 500.00 DOWNSTREAM ELEVATION = 450.00 ELEVATION DIFFERENCE = 50.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.653 SUBAREA RUNOFF(CFS) = 0.98 TOTAL AREA(ACRES) = 0.47 TOTAL RUNOFF(CFS) = 0.98 FLOW PROCESS FROM NODE 99.00 TO NODE 124.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS.cc<c.c SOIL CLASSIFICATION IS ND" RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED • 11.09(MINUTES) INITIAL SUBAREA FLOW-LENGTH = 290.00 UPSTREAM ELEVATION = 515.00 DOWNSTREAM ELEVATION = 450.00 ELEVATION DIFFERENCE = 65.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) - 4.570 SUBAREA RUNOFF(CFS) = 4.30 TOTAL AREA(ACRES) = 2.09 TOTAL RUNOFF(CFS) = 4.30 END OF STUDY SUMMARY: PEAK FLOW RATE(CFS) - 4.30 Tc(MIN.) = 11.09 TOTAL AREA(ACRES) = 2.09 END OF RATIONAL METHOD ANALYSIS 1 Villages of La Costa P.A. 3.8, 3.9 & R.S.F.R Hydrology Study Rational Method Hydrology 100-Year Peak Flow. Rancho Santa Fe Road 181b tep235ZC4ac wo. 82.C5 RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 1985,1981 HYDROLOGY MANUAL (C) Copyright 1982-99 Advanced Engineering Software (aes) Ver. 1.5A Release Date: 01/01/99 License ID 1239 Analysis prepared by: Hunsaker & Associates San Diego, Inc. 10179 Huennekens Street San Diego, California (619) 558-4500 Planning Engineering Surveying DESCRIPTION OF STUDY ************************ * VILLAGES OF LA COSTA * * 100-YEAR, 6-HOUR DESIGN STORM * * RANCHO SANTA FE ROAD INLETS * FILE NAME: H:\AES99\2352\1\269\RSFRS10O.DAT TIME/DATE OF STUDY: 16:53 11/27/2001 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- 1985 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.900 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS (DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL NC"-VALUES USED NOTE: ONLY PEAK CONFLUENCE VALUES CONSIDERED FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS.c.c.ccc SOIL CLASSIFICATION IS "U" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 INITIAL SUBAREA FLOW-LENGTH - 330.00 UPSTREAM ELEVATION = 530.00 DOWNSTREAM ELEVATION = 526.00 ELEVATION DIFFERENCE • 4.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) 7.667 100 YEAR RAINFALL INTENSITY(INCH/HOUR) - 5.799 SUBAREA RUNOFF(CFS) = 2.37 TOTAL AREA(ACRES) = 0.48 TOTAL RUNOFF(CFS) - 2.37 **************************************************************************** FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>,COMPUTE STREETFLOW TRAVELTIME THRU SUBAREAcc.cc.c UPSTREAM ELEVATION = 526.00 DOWNSTREAM ELEVATION = 517.00 STREET LENGTH (FEET) • 470.00 CURB HEIGHT (INCHES) = 6. STREET HALFWIDTH(FEET) = 63.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 30.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TPJVELTIME COMPUTED USING MEAN FLOW(CFS) = 4.65 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) - 0.36 HALFSTREET PLOODWIDTH (FEET) 11.59 AVERAGE PLOW VELOCITY(FEET/SEC.) = 3.18 PRODUCT OF DEPTH&VELOCITY • 1.14 STREETFLOW TRAVELTIME(MIN) 2.46 TC(MIN) = 10.13 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.846 *USER SPECIFIED (SUBAREA) COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 1.67 SUBAREA RUNOFF(CFS) = 4.45 SUMMED AREA(ACRES) = 2.15 TOTAL RUNOFF(CFS) = 6.82 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH (FEET) = 0.40 HALFSTREET FLOODWIDTH (FEET) = 13.51 FLOW VELOCITY(FEET/SEC.) = 3.51 DEPTH* VELOCITY = 1.39 FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 3 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREAcccc< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<ccc< ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.7 INCHES PIPEFLOW VELOCITY(FEET/SEC.) 8.1 UPSTREAM NODE ELEVATION = 512.00 DOWNSTREAM NODE ELEVATION = 510.00 FLOWLENGTH(PEET) - 95.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) - 18.00 NUMBER OF PIPES - PIPEFLOW THRU SUBAREA(CFS) = 6.82 TRAVEL TIME(MIN.) = 0.20 TC(MIN.) = 10.32 FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = ---------------------------------------------------------------------------- ,>>,>DESXGNATE INDEPENDENT STREAM FOR CONFLUENCEc.cc.cc TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.32 RAINFALL INTENSITY(INCH/HR) = 4.79 TOTAL STREAM AREA (ACRES) = 2.15 PEAK FLOW RATE(CPS) AT CONFLUENCE = 6.82 FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE - 21 >>,>RATIONAL METHOD INITIAL SUBAREA ANALYSISc.c.c.c< SOIL CLASSIFICATION IS D" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 INITIAL SUBAREA FLOW-LENGTH = 330.00 UPSTREAM ELEVATION - 530.00 DOWNSTREAM ELEVATION = 526.00 ELEVATION DIFFERENCE - 4.00 URBAN SUBAREA OVERLAND TIME OF PLOW (MINUTES) - 7.667 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.799 SUBAREA RUNOFF(CFS) = 2.76 TOTAL AREA(ACRES) = 0.56 TOTAL RUNOFF(CFS) = 2.76 FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>.COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA.c.c.cc.c UPSTREAM ELEVATION = 526.00 DOWNSTREAM ELEVATION = 517.00 STREET LENGTH(FEET) = 470.00 CURB HEIGHT(INCHES) =6. STREET HALFWIDTH(FEET) = 63.00 DISTANCE FROM CROWN TO CROSSPALL GRADEBREAI( - 30.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.620 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 4.83 STREETFLOW MODEL RESULTS: STREET PLOWDEPTH (FEET) = 0.36 HALFSTREET FLOODWIDTH(FEET) = 11.59 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.31 PRODUCT OF DEPTH&VELOCITY = 1.18 STREETFLOW TRAVELTIME(MIN) = 2.37 TC(MIN) = 10.04 100 YEAR RAINFALL IN?ENSITY(INCH/HOUR) = 4.875 SOIL CLASSIFICATION IS "D" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SUBAREA AREA(ACRES) = 0.99 SUBAREA RUNOFF(CFS) = 4.10 SUMMED AREA(ACRES) = 1.55 TOTAL RUNOFF(CFS) = 6.86 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = 0.40 HALFSTREET FLOODWIDTH(FEET) = 13.51 FLOW VELOCITY(FEET/SEC.) = 3.53 DEPTHVELOCITY = 1.40 ** * **•********** * ******* ****•**** ** **************** *** *****•* *** ** * FLOW PROCESS FROM NODE 12.00 TO NODE 4.00 IS CODE = 3 ---------------------------------------------------------------------------- >>>>,COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREAcc.c.cc >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<c ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.0 INCHES PIPEFLOW VELOCITY(FEET/SEC.) 17.1 UPSTREAM NODE ELEVATION = 512.00 DOWNSTREAM NODE ELEVATION = 510.00 FLOWLENGTH(FEET) - 12.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) - 18.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 6.86 TRAVEL TIME(MIN.) = 0.01 TC(MIN.) = 10.05 FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = ---------------------------------------------------------------------------- >>.DESIGNATE INDEPENDENT STREAM FOR CONFLUENCEccccc >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUESccc.c.c TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 10.05 RAINFALL INTENSITY(INCH/HR) = 4.87 TOTAL STREAM AREA (ACRES) - 1.55 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.86 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 6.82 10.32 4.787 2.15 2 6.86 10.05 4.872 1.55 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 13.56 10.05 4.872 2 13.56 10.32 4.787 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) - 13.56 Tc(MIN.) = 10.05 TOTAL AREA(ACRES) = 3.70 FLOW PROCESS FROM NODE 4.00 TO NODE 5.00 IS CODE = 3 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<cc cc >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) ccc<< DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.7 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 12.3 UPSTREAM NODE ELEVATION = 510.00 DOWNSTREAM NODE ELEVATION = 485.00 FLOWLENGTH(PEET) = 600.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 13.56 TRAVEL TIME(MIN.) = 0.81 TC(MIN.) = 10.86 FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCEcc.cc TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) 10.86 RAINFALL INTENSITY (INCH/RE) = 4.63 TOTAL STREAM AREA(ACRES) = 3.70 PEAK FLOW RATE(CFS) AT CONFLUENCE = 13.56 FLOW PROCESS FROM NODE 20.00 TO NODE 21.00 Is CODE = 21 ---------------------------------------------------------------------------- >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSISc.c.ccc *USER SPECIFIED(SUBARRA): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 280.00 UPSTREAM ELEVATION = 520.00 DOWNSTREAM ELEVATION = 508.00 ELEVATION DIFFERENCE - 12.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 10.199 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.824 SUBAREA RUNOFF(CFS) = 1.67 TOTAL AREA(ACRES) = 0.63 TOTAL RUNOFF(CFS) = 1.67 FLOW PROCESS FROM NODE 21.00 TO NODE 22.00 IS CODE = 6 >>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA.cccc< UPSTREAM ELEVATION = 508.00 DOWNSTREAM ELEVATION = 492.00 STREET LENGTH(FEET) = 375.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH (FEET) = 63.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 30.00 INTERIOR STREET CROSSFALL (DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF - 1 **VELTIME COMPUTED USING MEAN FLOW(CFS) = 3.79 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH (FEET) = 0.30 HALFSTREET FLOODWIDTH(FEET) - 8.71 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.32 PRODUCT OF DEPTH&VELOCITY - 1.30 STREETFLOW TRAVELTIME(MIN) = 1.45 TC(MIN) = 11.65 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.429 *USER SPECIFIED(SUBAREA): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 1.73 SUBAREA RUNOFF(CFS) = 4.21 SUMMED AREA (ACRES) = 2.36 TOTAL RUNOFF(CFS) = 5.89 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) - 0.34 HALPSTREET FLOODWIDTH(P'EET) = 10.63 FLOW VELOCITY(FEET/SEC.) = 4.72 DEPTHVELOCITY = 1.60 **************************************************************************** FLOW PROCESS FROM NODE 22.00 TO NODE 22.00 IS CODE = 8 >>>,>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW.c.c.cc< 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.429 SOIL CLASSIFICATION IS "D RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 SUBAREA AREA(ACRES) - 8.50 SUBAREA RUNOFF(CFS) = 16.94 TOTAL AREA(ACRES) = 10.86 TOTAL RUNOFF(CFS) = 22.83 TC(MIN) 11.65 **************************************************************************** FLOW PROCESS FROM NODE 22.00 TO NODE 5.00 IS CODE = 3 ---------------------------------------------------------------------------- >>>COMPUTE PIPEFLOW TRAVELTINE THRU SUBAREAccc.c< >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) cccc DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.3 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 10.8 UPSTREAM NODE ELEVATION =• 487.00 DOWNSTREAM NODE ELEVATION = 485.00 FLOWLENGTH(FEET) = 95.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPEFLOW THRU SUBAREA(CFS) = 22.83 TRAVEL TIME(MIN.) = 0.15 TC(MIN.) = 11.79 FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1 >,,>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCEc.cc.cc TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 11.79 RAINFALL INTENSITY (INCH/ER) = 4.39 - TOTAL STREAM AREA(ACRES) = 10.86 PEAK FLOW RATE (CFS) AT CONFLUENCE = 22.83 * * * * ** ********** * ************ ** ****** *** ****** ********* FLOW PROCESS FROM NODE 25.00 TO NODE 26.00 IS CODE = 21 ---------------------------------------------------------------------------- >>RATIONAL METHOD INITIAL SUBAREA PNALYSIS.c.cccc SOIL CLASSIFICATION IS MD" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 INITIAL SUBAREA FLOW-LENGTH - 250.00 UPSTREAM ELEVATION = 520.00 DOWNSTREAM ELEVATION • 508.00 ELEVATION DIFFERENCE = 12.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 4.218 *CAtTrION. SUBAREA SLOPE EXCEEDS COUNTY HOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.793 SUBAREA RUNOFF(CPS) = 2.37 TOTAL AREA (ACRES) = 0.41 TOTAL RUNOFF(CFS) = 2.37 FLOW PROCESS FROM NODE 26.00 TO NODE 27.00 IS CODE = 6 ------------------------------------------------------------------------- .>>.COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA<cc.cc UPSTREAM ELEVATION = 508.00 DOWNSTREAM ELEVATION = 492.00 STREET LENGTH (FEET) = 370.00 CURB HEIGHT (INCHES) = 6. STREET HALFWIDTH (FEET) = 63.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAX = 30.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 4.33 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) - 0.32 HALFSTREET FL000WIDTH (FEET) = 9.67 AVERAGE PLOW VELOCITY (FEET/SEC.) - 4.12 PRODUCT OF DEPTH&VELOCITY = 1.32 STREETFLOW TRAVELTIME(MIN) = 1.50 TC(MIN) = 7.50 100 YEAR RAINFALL INTENSITY(INCH/HOUR) - 5.883 SOIL CLASSIFICATION IS "D" COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8500 SUBAREA AREA(ACRES) = 0.78 SUBAREA RUNOFF(CFS) = 3.90 SUMMED AREA(ACRES) = 1.19 TOTAL RUNOFF(CFS) = 6.27 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = 0.34 HAIFSTREET FLOODWIDTH(FEET) = 10.63 FLOW VELOCITY (FEET/SEC.) = 5.02 DEPTH*VELOCITY = 1.70 FLOW PROCESS FROM NODE 27.00 TO NODE 5.00 IS CODE = 3 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREAcc.c.c.c >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<ccc ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.8 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 16.7 UPSTREAM NODE ELEVATION = 487.00 DOWNSTREAM NODE ELEVATION = 485.00 FLOWLENGTH(FEET) = 12.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) - 6.27 TRAVEL TIME(MIN.) = 0.01 TC(MIN.) = 7.51 FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = ---------------------------------------------------------------------------- >>>>DESIGNATE INDEPENDENT STREAM FOR CONPLUENCEc.ccc.c >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES.c<ccc TOTAL NUMBER OF STREAMS - 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 7.51 RAINFALL INTENSITY (INCH/ER) = 5.88 TOTAL STREAM AREA(ACRES) = 1.19 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.27 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 13.56 10.86 4.633 3.70 2 22.83 11.79 4.393 10.86 3 6.27 7.51 5.877 1.19 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 34.02 7.51 5.877 2 40.15 10.86 4.633 3 40.37 11.79 4.393 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 40.37 Tc(MIN.) = 11.79 TOTAL AREA (ACRES) = 15.75 FLOW PROCESS FROM NODE 5.00 TO NODE 6.00 IS CODE = 3 >>>>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREA<c.c<c >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) cc<c< DEPTH OF FLOW IN 24.0 INCH PIPE IS 17.3 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 16.6 UPSTREAM NODE ELEVATION = 485.00 DOWNSTREAM NODE ELEVATION = 457.00 FLOWLENGTH(FEET) = 600.00 MANNING'S N - 0.013 ESTIMATED PIPE DIAMETER(INCH) - 24.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 40.37 TRAVEL TIME(MIN.) • 0.60 TC(MIN.) = 12.39 FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = ---------------------------------------------------------------------------- >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE.ccccc TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) - 12.39 RAINFALL INTENSITY(INCH/HR) = 4.25 TOTAL STREAM AREA(ACRES) - 15.75 PEAK FLOW RATE(CFS) AT CONFLUENCE = 40.37 FLOW PROCESS FROM NODE 30.00 TO NODE 31.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSISc.cccc *USER SPECIFIED(SUBAREA): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .5500 INITIAL SUBAREA FLOW-LENGTH = 260.00 UPSTREAM ELEVATION = 492.00 DOWNSTREAM ELEVATION = 480.00 ELEVATION DIFFERENCE = 12.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) = 9.588 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY (INCH/HOUR) - 5.021 SUBAREA RUNOFF(CFS) - 2.26 TOTAL AREA(ACRES) = 0.82 TOTAL RUNOFF(CFS) = 2.26 FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 Is CODE - 6 >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA.CCC<< UPSTREAM ELEVATION = 480.00 DOWNSTREAM ELEVATION = 464.00 STREET LENGTH(FEET) = 370.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH (FEET) = 63.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 30.00 INTERIOR STREET CROSSFALfj(DECIMAL) - 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 3.64 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH (FEET) = 0.30 HALFSTREET FLOODWIDTH(FEET) 8.71 AVERAGE FLOW VELOCITY (FEET/SEC.) = 4.15 PRODUCT OF DEPTH&VELOCITY = 1.25 STREETFLOW TRAVELTIME(MIN) 1.48 TC(MIN) = 11.07 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.575 USER SPECIFIED(SUBAREA): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .5500 SUBAREA AREA(ACRES) = 1.09 SUBAREA RUNOFF(CFS) = 2.74 SUMMED AREA(ACRES) = 1.91 TOTAL RUNOFF(CFS) = 5.01 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = 0.32 HALFSTREET FLOODWIDTH(FEET) - 9.67 FLOW VELOCITY (FEET/SEC.) - 4.76 DEPTHVELOCITY = 1.52 FLOW PROCESS FROM NODE 32.00 TO NODE 6.00 IS CODE = 3 ----------------------------------------------------------------------------- >>.>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREAc.cc.c.c >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.3 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 7.4 UPSTREAM NODE ELEVATION = 459.00 DOWNSTREAM NODE ELEVATION = 457.00 FLOWLENGTH(FEET) 95.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 5.01 TRAVEL TIt€(MIN.) = 0.21 TC(MIN.) = 11.29 FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = ------------------------------------------------------------------- >,>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCEc.cccc TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 11.29 RAINFALL INTENSITY (INCH/ER) = 4.52 TOTAL STREAM AREA(ACRES) = 1.91 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.01 FLOW PROCESS FROM NODE 35.00 TO NODE 36.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSXSc<.c.cc *USER SPECIFIED (SUBAREA).: COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT - .6500 INITIAL SUBAREA FLOW-LENGTH - 260.00 UPSTREAM ELEVATION - 492.00 DOWNSTREAM ELEVATION = 480.00 ELEVATION DIFFERENCE = 12.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) - 7.845 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL XNTENSITY(INCH/HOUR) = 5.714 SUBAREA RUNOFF(CFS) = 2.30 TOTAL AREA(ACRES) = 0.62 TOTAL RUNOFF(CFS) = 2.30 FLOW PROCESS FROM NODE 36.00 TO NODE 37.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>.COMPUTE STREETFLOW TRAVELTIME THRU SUBAREAcc.c.c.c = flfl==== C = === ===== ==== Ca UPSTREAM ELEVATION = 480.00 DOWNSTREAM ELEVATION = 464.00 STREET LENGTH(FEET) = 370.00 CURB HEIGHT(INCHES) = 6. STREET HALFWIDTH(FEET) = 63.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREA.K a 30.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL (DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) a 3.86 STREETFLOW MODEL RESULTS: - STREET FLOWDEPTH (FEET) a 0.30 HALFSTREET FLOODWIDTH(FEET) = 8.71 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.41 PRODUCT OF DEPTH&VELOCITY = 1.32 STREETFLOW TRAVELTIME(MIN) 1.40 TC(MIN) = 9.24 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.140 *USER SPECIFIED (SUBAREA) COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .6500 SUBAREA AREA(ACRES) a 0.93 SUBAREA RUNOFF(CFS) = 3.11 SUMMED AREA(ACRES) = 1.55 TOTAL RUNOFF(CPS) = 5.41 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) 0.34 HALFSTREET FLOODWIDTH(FEET) = 10.63 FLOW VELOCITY(FEET/SEC.) = 4.34 DEPTHVELOCITY . 1.47 FLOW PROCESS FROM NODE 37.00 TO NODE 6.00 IS CODE = 3 ---------------------------------------------------------------------------- >>,.>>COMPUTE PIPEFLOW TRAVELTIME THRU SUBAREAccc.cc >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<< ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.4 INCHES PIPEFLOW VELOCITY(FEET/SEC.) = 16.0 UPSTREAM NODE ELEVATION = 459.00 DOWNSTREAM NODE ELEVATION = 457.00 FLOWLENGTH(FEET) - 12.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = PIPEFLOW THRU SUBAREA(CFS) = 5.41 TRAVEL TIME(MIN.) 0.01 TC(MIN.) = 9.26 FLOW PROCESS FROM NODE 6.00 TO NODE 6.00 IS CODE = ---------------------------------------------------------------------------- >>>>,DESIGNATE INDEPENDENT STREAM FOR CONFLUENCEc.cccc >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUESc.cccc TOTAL NUMBER OF STREAMS = 3 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 3 ARE: TIME OF CONCENTRATION(MIN.) = 9.26 RAINFALL INTENSITY (INCH/ER) = 5.14 TOTAL STREAM AREA(ACRES) = 1.55 PEAK FLOW RATE (CFS) AT CONFLUENCE = 5.41 ** CONFLUENCE DATA ** - STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 40.37 12.39 4.255 15.75 2 5.01 11.29 4.519 1.91 3 5.41 9.26 5.136 1.55 RAINFALL INTENSITY AND. TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 3 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CPS) (MIN.) (INCH/HOUR) i 43.26 9.26 5.136 2 47.77 11.29 4.519 3 49.57 12.39 4.255 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 49.57 Tc(MIN.) = 12.39 TOTAL AREA (ACRES) a 19.21 ** ** * * **** *** *** *** *** ** ***************************** *********** ***** ****** * FLOW PROCESS FROM NODE 40.00 TO NODE 41.00 Is CODE = 21 ---------------------------------------------------------------------------- >>>,.>RATIONAL METHOD INITIAL SUBAREA ANALYSIS.cccc: *USER SPECIFIED(SUBAREA): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .6000 INITIAL SUBAREA FLOW-LENGTH = 320.00 UPSTREAM ELEVATION = 458.00 DOWNSTREAM ELEVATION = 447.00 ELEVATION DIFFERENCE = 11.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) - 10.668 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.687 SUBAREA RUNOFF(CFS) = 2.25 TOTAL AREA(ACRES) = 0.80 TOTAL RUNOFF(CFS) = 2.25 FLOW PROCESS FROM NODE 41.00 TO NODE 42.00 IS CODE • 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREAc.ccc.c UPSTREAM ELEVATION = 447.00 DOWNSTREAM ELEVATION 426.00 STREET LENGTH (FEET) - 540.00 CURB HEIGHT (INCHES) = 8. STREET HALFWIDTH (FEET) = 63.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAX = 30.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 3.99 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH (FEET) = 0.32 HALFSTREET FLOODWIDTH (FEET) - 8.20 AVERAGE FLOW VELOCITY (FEET/SEC.) = 4.64 PRODUCT OF DEPTH&VELOCITY = 1.49 STREETFLOW TRAVELTIME (MIN) = 1.94 TC (MIN) = 12.61 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.208 *USER SPECIFIED(SUBAREA): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .6000 SUBAREA AREA(ACRES) = 1.40 SUBAREA RUNOFF(CFS) - 3.53 SUMMED AREA(ACRES)' = 2.20 TOTAL RUNOFF(CFS) = 5.78 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = 0.36 HALFSTREET FLOODWIDTH(FEET) - 10.10 FLOW VELOCITY (FEET/SEC.) - 4.78 DEPTH*VELOCITY = 1.72 FLOW PROCESS FROM NODE 50.00 TO NODE 51.00 IS CODE =. 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS.ccccc *USER SPECIFIED(SUBAREA): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .6000 INITIAL SUBAREA FLOW-LENGTH = 350.00 UPSTREAM ELEVATION 460.00 DOWNSTREAM ELEVATION = 447.00 ELEVATION DIFFERENCE = 13.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) = 10.873 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) - 4.629 SUBAREA RUNOPF(CFS) = 3.06 TOTAL AREA(ACRES) = 1.10 TOTAL RUNOFF(CFS) = 3.06 ** *********** ** * **** *************** ************** **** ** ********** * * FLOW PROCESS FROM NODE 51.00 TO NODE 52.00 IS CODE - 6 ---------------------------------------------------------------------------- >>>>,COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA.cc.c.c.c UPSTREAM ELEVATION - 447.00 DOWNSTREAM ELEVATION - 426.00 STREET LENGTH(FEET) = 520.00 CURB HEIGHT(INCHES) - 8. STREET HALFWIDTH(FEET) - 63.00 DISTANCE FROM CROWN TO CROSSPALL GRADEBREAX = 30.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) - 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **JBLTIME COMPUTED USING MEAN FLOW(CFS) = 5.57 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) - 0.36 HALFSTREET FLOODWIDTH(FEET) = 10.10 AVERAGE FLOW VELOCITY (FEET/SEC.) = 4.61 PRODUCT OF DEPTH&VELOCITY = 1.66 STREETFLOW TRAVELTIME(MIN) - 1.88 TC(MIN) = 12.75 100 YEAR RAINFALL INTENSXTY(INCH/HOUR) = 4.177 *USER SPECIFIED (SUBAREA) COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .6000 SUBAREA AREA(ACRES) a 2.00 SUBAREA RUNOFF(CFS) = 5.01 SUMMED AREA(ACRES) = 3.10 TOTAL RUNOFF(CFS) = 8.07 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = 0.40 HALFSTREET PLOODWIDTH(FEET) = 12.01 FLOW VELOCITY (FEET/SEC.) = 4.95 DEPTHVELOCITY = 1.97 * ** * ** * *** **** ********* ********** ******* ********* ******* **************** ** ** FLOW PROCESS FROM NODE 60.00 TO NODE 61.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS.c.c.ccc == Sn = == n S ==== == fl fl== = == === === SOIL CLASSIFICATION IS "D" INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9500 INITIAL SUBAREA FLOW-LENGTH = 330.00 UPSTREAM ELEVATION = 430.00 DOWNSTREAM ELEVATION a 416.00 ELEVATION DIFFERENCE a 14.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 3.030 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY (INCH/HOUR) a 6.793 SUBAREA RUNOFF(CFS) = 3.87 TOTAL AREA (ACRES) a 0.60 TOTAL RUNOFF(CFS) 3.87 FLOW PROCESS FROM NODE 61.00 TO NODE 62.00 IS CODE a 6 ---------------------------------------------------------------------------- >>>,.,COMPUTE STREETFLOW TRAVELTIME THRU SUBAREAc.c.c.cc UPSTREAM ELEVATION = 416.00 DOWNSTREAM ELEVATION = 403.00 STREET LENGTH(FEET) = 340.00 CURB HEIGHT(INCHES) a S. STREET HALPWIDTH(FEET) = 63.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAX - 30.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 TRAVELTIME COMPUTED USING MEAN FLOW(CFS) = 6.16 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.38 HALFSTREET FLOODWIDTH (FEET) = 11.05 AVERAGE FLOW VELOCITY (FEET/SEC.) a 4.36 PRODUCT OF DEPTH&VELOCITY = 1.66 STREETFLOW TRAVELTIME(MIN) - 1.30 TC(MIN) = 7.30 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.987 SOIL CLASSIFICATION IS "Do INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT a .9500 SUBAREA AREA(ACRES) = 0.80 SUBAREA RUNOFF(CFS) = 4.55 SUMMED AREA(ACRES) = 1.40 TOTAL RUNOFF(CFS) = 8.42 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH (FEET) = 0.40 HALFSTREET FLOODWIDTH (FEET) a 12.01 FLOW VELOCITY (FEET/SEC.) = 5.16 DEPTH*VELOCITY = 2.06 *********** ** * ******* * * ** * * * * ***** ************************** ** ************ ** FLOW PROCESS FROM NODE 65.00 TO NODE 66.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS.c.cc.c.c SOIL CLASSIFICATION IS "D" RURAL DEVELOPMENT RUNOFF COEFFICIENT = .4500 NATURAL WATERSHED NOMOGRAPH TIME OF CONCENTRATION (APPENDIX X-A) WITH 10-MINUTES ADDED = 11.92(MINUTES) INITIAL SUBAREA FLOW-LENGTH = 470.00 UPSTREAM ELEVATION = 480.00 - DOWNSTREAM ELEVATION = 416.00 ELEVATION DIFFERENCE = 64.00 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.363 SUBAREA RUNOFF(CFS) = 3.53 TOTAL AREA(ACRES) = 1.80 TOTAL RUNOFF(CFS) = 3.53 FLOW PROCESS FROM NODE 66.00 TO NODE 67.00 IS CODE - 6 ---------------------------------------------------------------------------- >>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA-c<<<< UPSTREAM ELEVATION = 416.00 DOWNSTREAM ELEVATION =. 403.00 STREET LENGTH(FEET) = 330.00 CURB HEIGHT(INCHES) = 8. STREET HALFWIDTH (FEET) = 63.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAI( = 30.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF - 1 **VELTIME COMPUTED USING MEAN FLOW(CFS) = 5.14 STREETFLOW MODEL RESULTS: STREET FLOWDEPTE(FEET) - 0.36 HALFSTREET FLOODWIDTH (FEET) = 10.10 AVERAGE PLOW VELOCITY (FEET/SEC.) = 4.24 PRODUCT OF DEPTH&VELOCITY = 1.53 STREETFLOW TRAVELTIME(MIN) = 1.30 TC(MIN) = 13.22 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 4.082 *USER SPECIFIED (SUBAREA) COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT - .6000 SUBAREA AREA(ACRES) = 1.30 SUBAREA RUNOFF(CFS) = 3.18 SUMMED AREA(ACRES) = 3.10 TOTAL RUNOFF(CFS) = 6.72 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = 0.38 HALFSTREET FLOODWIDTH(FEET) = 11.05 FLOW VELOCITY (FEET/SEC.) = 4.76 DEPTH*VELOCITY - 1.81 FLOW PROCESS FROM NODE 75.00 TO NODE 76.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIScccc.c USER SPECIFIED(SUBAREA): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT - .6000 INITIAL SUBAREA FLOW-LENGTH - 390.00 UPSTREAM ELEVATION = 440.00 DOWNSTREAM ELEVATION = 391.00 ELEVATION DIFFERENCE = 49.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 7.646 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY HOMOGRAPH DEFINITION. EXTRAPOLATION OF HOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.810 SUBAREA RUNOFF(CFS) = 3.83 TOTAL AREA(ACRES) - 1.10 TOTAL RUNOFF(CFS) - 3.83 FLOW PROCESS FROM NODE 70.00 TO NODE 71.00 IS CODE = 21 ---------------------------------------------------------------------------- >,>>RATIONAL METHOD INITIAL SUBAREA ANALYSISc.c.c.c< SOIL CLASSIFICATION IS "Do INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9500 INITIAL SUBAREA FLOW-LENGTH - 410.00 UPSTREAM ELEVATION - 403.00 DOWNSTREAM ELEVATION = 389.00 ELEVATION DIFFERENCE = 14.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) = 3.631 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF HOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) • 6.793 SUBAREA RUNOFF(CFS) - 4.52 TOTAL AREA(ACRES) = 0.70 TOTAL RUNOFF(CFS) = 4.52 FLOW PROCESS FROM NODE 80.00 TO NODE - 81.00 Is CODE = 21 >,>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS.cccc.c SOIL CLASSIFICATION IS "D" INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT - .9500 INITIAL SUBAREA FLOW-LENGTH = 310.00 UPSTREAM ELEVATION - 389.00 DOWNSTREAM ELEVATION = 378.00 ELEVATION DIFFERENCE = 11.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) = 3.117 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.793 SUBAREA RUNOFF(CFS) = 3.23 TOTAL AREA(ACRES) = 0.50 TOTAL RUNOFF(CFS) = 3.23 FLOW PROCESS FROM NODE 85.00 TO NODE 86.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS.c.c.cc< *USER SPECIFIED (SUBAREA): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .6500 INITIAL SUBAREA FLOW-LENGTH - 400.00 UPSTREAM ELEVATION = 400.00. DOWNSTREAM ELEVATION = 376.00 ELEVATION DIFFERENCE = 24.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) = 8.916 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 5.262 SUBAREA RUNOFF(CFS) = 3.76 TOTAL AREA(ACRES) = 1.10 TOTAL RUNOFF(CFS) = 3.76 **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE - 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS.c.ccc SOIL CLASSIFICATION IS "D" INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT - .9500 INITIAL SUBAREA FLOW-LENGTH = 320.00 UPSTREAM ELEVATION = 530.00 DOWNSTREAM ELEVATION - 526.00 ELEVATION DIFFERENCE = 4.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) = 4.484 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.793 SUBAREA RUNOFF(CFS) = 5.81 TOTAL AREA(ACRES) = 0.90 TOTAL RUNOFF(CFS) = 5.81 FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREA-c<<<< UPSTREAM ELEVATION = 526.00 DOWNSTREAM ELEVATION - 509.00 STREET LENGTH (FEET) = 740.00 CURB HEIGHT (INCHES) = 8. STREET HALFWIDTH (FEET) = 63.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAX = 30.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) - 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 **TRAVELTIME COMPUTED USING MEAN FLOW(CFS) - 8.90 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) = 0.44 HALFSTREET FLOODWIDTH(FEET) = 13.91 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.19 PRODUCT OF DEPTH&VELOCITY - 1.83 STREETFLOW TRAVELTIME(MIN) = 2.95 TC(MIN) = 8.95 100 YEAR RAINFALL INTENSITY(INCH/HOUR) - 5.250 *USER SPECIFIED(SUBAREA): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .6500 SUBAREA AREA(ACRES) = 1.80 SUBAREA RUNOFF(CPS) - 6.14 SUMMED AREA(ACRES) - 2.70 TOTAL RUNOFF(CFS) = 11.95 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = 0.47 HALFSTREET FLOODWIDTH(FEET) = 15.82 FLOW VELOCITY (FEET/SEC.) = 4.44 DEPTH*VELOCITY = 2.11 FLOW PROCESS FROM NODE 110.00 TO NODE 111.00 IS CODE = .21 ---------------------------------------------------------------------------- >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSISc.cc.cc SOIL CLASSIFICATION IS "Do INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = 9500 INITIAL SUBAREA FLOW-LENGTH = 320.00 UPSTREAM ELEVATION = 530.00 DOWNSTREAM ELEVATION = 526.00 ELEVATION DIFFERENCE = 4.00 URBAN SUBAREA OVERLAND TIME OF FLOW(MINUTES) = 4.484 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.793 SUBAREA RUNOFF(CFS) = 3.23 TOTAL AREA(ACRES) - 0.50 TOTAL RUNOFF(CFS) = 3.23 FLOW PROCESS FROM NODE 111.00 TO NODE 112.00 IS CODE = 6 >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREAcccc.c UPSTREAM ELEVATION = 526.00 DOWNSTREAM ELEVATION = 509.00 STREET LENGTH(FEET) = 770.00 CURB HEIGHT(INCHES) = 8. STREET HALFWIDTH (FEET) = 63.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK = 30.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF - 1 * *TP.AVELTIME COMPUTED USING MEAN FLOW (CFS) - 6.52 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH(FEET) - 0.40 HALFSTREET FLOODWIDTH (FEET) = 12.01 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.99 PRODUCT OF DEPTH&VELOCITY = 1.59 STREETFLOW TRAVELTIME(MIN) = 3.21 TC(MIN) = 9.21 100 YEAR RAINFALL INTENSITY(INCH/HOUR) - 5.152 *USER SPECIFIED (SUBAREA): COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT - .7000 SUBAREA AREA(ACRES) = 1.80 SUBAREA RUNOFF(CFS) = 6.49 SUMMED AREA(ACRES) = 2.30 TOTAL RUNOFF(CFS) 9.72 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH (FEET) = 0.46 HALFSTREET FLOODWIDTH (FEET) = 14.87 FLOW VELOCITY (FEET/SEC.) = 4.05 DEPTH-VELOCITY = 1.84 FLOW PROCESS FROM NODE 120.00 TO NODE 121.00 IS CODE - 23. ---------------------------------------------------------------------------- >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIScc.cc.c SOIL CLASSIFICATION IS D" INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT - .9500 INITIAL SUBAREA FLOW-LENGTH - 220.00 UPSTREAM ELEVATION = 505.00 DOWNSTREAM ELEVATION = 501.00 ELEVATION DIFFERENCE - 4.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) = 3.281 TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.793 SUBAREA RUNOFF(CFS) = 2.58 TOTAL AREA(ACRES) = 0.40 TOTAL RUNOFF(CFS) = 2.58 FLOW PROCESS FROM NODE 125.00 TO NODE 126.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>RATIONAL METHOD INITIAL SUBAREA PNAL?SISc<.ccc SOIL CLASSIFICATION IS "D" INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9500 INITIAL SUBAREA FLOW-LENGTH = 390.00 UPSTREAM ELEVATION = 501.00 DOWNSTREAM ELEVATION = 482.00 ELEVATION DIFFERENCE - 19.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) - 3.145 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.793 SUBAREA RUNOFF(CFS) = 3.87 TOTAL AREA(ACRES) = 0.60 TOTAL RUNOFF(CFS) = 3.87 FLOW PROCESS FROM NODE 130.00 TO NODE 131.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS.cc<.c< SOIL CLASSIFICATION IS 'IDN INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9500 INITIAL SUBAREA FLOW-LENGTH = 330.00 UPSTREAM ELEVATION = 507.00 DOWNSTREAM ELEVATION = 494.00 ELEVATION DIFFERENCE = 13.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) = 3.106 *CAUTION. SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.793 SUBAREA RUNOFF(CFS) • 3.87 TOTAL AREA(ACRES) = 0.60 TOTAL RUNOFF(CFS) = 3.87 PLOW PROCESS FROM NODE 131.00 TO NODE 132.00 IS CODE = 6 ---------------------------------------------------------------------------- >>>>>COMPUTE STREETFLOW TRAVELTIME THRU SUBAREAccccc UPSTREAM ELEVATION = 494.00 DOWNSTREAM ELEVATION = 464.00 STREET LENGTH(FEET) = 540.00 CURB HEIGHT(INCHES) • 8. STREET HALFWIDTH(PEET) = 63.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAX = 30.00 INTERIOR STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSPALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTRRETS CARRYING RUNOFF = 1 **TPJVELTIME COMPUTED USING MEAN FLOW(CFS) 6.07 STREETFLOW MODEL RESULTS: STREET FLOWDEPTH (FEET) - 0.36 HALFSTREET FLOODWIDTH (FEET) = 10.10 AVERAGE FLOW VELOCITY(FEET/SEC.) = 5.02 PRODUCT OF DEPTH&VELOCITY = 1.81 STREETFLOW TRAVELTIME(MXN) - 1.79 TC(MIN) = 7.79 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.739 SOIL CLASSIFICATION IS "D" INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT = .9500 SUBAREA AREA(ACRES) = 0.80 SUBAREA RUNOFF(CFS) = .4.36 SUMMED AREA(ACRES) = 1.40 TOTAL RUNOFF(CFS) • 8.23 END OF SUBAREA STREETFLOW HYDRAULICS: DEPTH(FEET) = 0.38 HALFSTREET FLOODWIDTH(FEET) - 11.05 FLOW VELOCITY (FEET/SEC.) • 5.83 DEPTH*VELOCITY 2.21 **************************************************************************** FLOW PROCESS FROM NODE 140.00 TO NODE 141.00 IS CODE = 21 >>>>RATIONAL METHOD INITIAL SUBAREA A14ALYS1Sc<cc< SOIL CLASSIFICATION IS MD INDUSTRIAL DEVELOPMENT RUNOFF COEFFICIENT • .9500 INITIAL SUBAREA FLOW-LENGTH - 320.00 UPSTREAM ELEVATION = 482.00 DOWNSTREAM ELEVATION 465.00 ELEVATION DIFFERENCE = 17.00 URBAN SUBAREA OVERLAND TIME OF FLOW (MINUTES) 2.768 *CAUTION: SUBAREA SLOPE EXCEEDS COUNTY NOMOGRAPH DEFINITION. EXTRAPOLATION OF NOMOGRAPH USED. TIME OF CONCENTRATION ASSUMED AS 6-MINUTES 100 YEAR RAINFALL INTENSITY (INCH/HOUR) = 6.793 SUBAREA RUNOFF(CFS) - 2.58 TOTAL AREA(ACRES) = 0.40 TOTAL RUNOFF(CFS) = 2.58 END OF STUDY SUMMARY: - PEAK FLOW RATE(CFS) = 2.58 Tc(MIN.) = 6.00 TOTAL AREA(ACRES) - 0.40 END OF RATIONAL METHOD ANALYSIS Villages of La Costa P.A. 3.8, 3.9 & R.S.F.R Hydrology Study Hydraulic Analysis 100-Year Peak Flow Analysis TBw,n PV.23X5'iCZ.c w.o. 35.Q5 LINE "A" Scenario: Base : 52 J-1 P-2 r+55 J-2 P.4 61 P-8 62 P-7 7 P.6 63 Project Engineer Hunsaker & Associates San Diego. Inc. h:\stormcad235211—iine a—.stm Huneaker & Associates San Diego, Inc StormCAD v3.0 (3191 11/20101 10:40:20 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 LINE "A" Pipe Report Label Up. Node Dn. Node Total System Flow Section Shape Section Size Mannlngs ri Length (ft) (cfs) Lip. Invert (ft) Dn. Invert (It) Slope (ft(ft) HGL In (ft) HGL Out (ft) Velocity In (ft/s) Velocity Out (ft/a) Cap (cis) P-1 52 55 5.13 Clrcula 18 Inch 0.013 36.50 395.84 395.66 0.004932 396.79 396.69 4.36 3.97 7.38 P-2 55 J-1 8.39 Clrcula 24 Inch 0.013 65.61 395.33 390.79 0.069197 396.36 391.30 5.13 13.17 59.51 P.3 J-1 J-2 8.39 Circula 24 Inch 0.013 277.17 390.48 384.29 0.022261 391.49 384.97 5.13 8.92 33.75 P-7 61 82 13.18 Clrcula 18 Inch 0.013 29.25 374.58 374.27 0.009915 377.64 377.18 7.46 7.46 10.46 P-8 58 62 7.03 Clrcula 18 Inch 0.013 3.25 374.50 374.27 0.070769 377.20 .377.18 3.98 3.98 27.94 P-4 J-2 62 8.39 Circula 24 In 0.013 207.22 383.96 374.27 0.046762 384.99 377.18 5.13 2.67 48.92 P-5 62 J-3 27.52 Circula 24 In 0.013 47.60 373.94 372.99 0.019958 376.23 375.52 8.76 8.76 31.96 P-6 J-3 63 27.52 Clrcula 24 In 0.013 132.19 372.68 368.91 0.028368 374.48 370.19 9.17 13.00 38.10 Project Engineer Hunsaker & Associates San Diego, Inc. h:stormcad.235211-IIne a-atm Hunsaker & Associates San Diego, Inc StorrnCAD v3.0 13191 11120/01 10:41:51 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 LINE "A" Node Report Label Total System Flow (cfs).__ Sump Elevation (It) Rim Elevation (It) Hydraulic Grade In (ft) Hydraulic Grade Out (It) 52 5.13 395.84 402.32 396.85 396.79 55 8.39 395.33 402.46 396.69 396.36 J-1 8.39 390.46 400.22 391.82 391.49 61 13.18 374.56 382.07 377.82 377.64 58 7.03 374.50 382.07 377.25 377.20 J-2 8.39 383.96 389.54 385.20 384.99 62 27.52 373.94 .381.77 377.18. 376.23 J-3 27.52 372.66 380.79 375.52 374.48 63 27.52 368.91 374.50 370.19 370.19 Project Engineer. Hunsaker & Associates San Diego, Inc. h:stormcad'235211\-line a-.stm Hunsaker & Associates San Diego, Inc StorrnCAD v3.0 (319J 11/20/01 10:41:39 PM © Haestad Methods, Inc. 37 Brockside Road Waterbury, CT 08708 USA (203)755-1668 Page 1 of 1 P-I 5 1-12 I Existing Portion of 30'.'R 22 Scenario: LINE "B" 0-1 Project Engineer Hunsaker & Associates San Diego, Inc. h:stormcad23521 1—lineb-1.strn Hunsaker & Associates San Diego, Inc StormCAD v3.0 [319] 02/10/02 09:52:25 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Scenario: LINE "B" Pipe Report Label Up. Node Dn. Node System Q (cfs) Shape Size Mannings n Length (ft) Up Invert (ft) Dn Invert (ft) S (ft/ft) HGL In (ft) HGL Out (ft) Velocity In (ftls) Velocity Out (ftls) Cap (cfs) P-1 22 25 5.05 Circular 18 inch 0.013 36.50 440.50 436.95 0.097280 441.36 '439.19 4.79 2.86 32.76 P-2 25 J-1 12.43 Circular 18 Inch 0.013 64.52 436.62 435.97 0.010074 438.57 437.67 7.03 7.03 10.54 P-12 32 35 11.48 Circular 18 Inch 0.013 36.50 422.18 418.55 0.098904 423.45 420.25 7.09 6.50 33.03 P-3 J-1 29 12.43 Circular 18 inch 0.013 231.10 435.64 423.08 0.054349 436.97 424.60 7.50 7.03 24.49 P-10 28 29 7.15 Circular 18 inch 0.013 3.25 425.51 423.08 0.747692 426.55 424.60 5.49 4.05 90.83 P-11 35 36 18.91 Circular 24 inch 0.013 64.87 418.05 417.20 0.013103 419.61 419.37 7.17 6.02 25.89 P4 29 36 18.54 Circular 24 inch 0.013 72.91 422.58 417.20 0.073790 424.13 419.37 7.10 5.90 61.45 P-5 36 J-2 35.45 Circular 30 Inch 0.013 252.06 416.70 409.98 0.026660 418.72 413.86 8.34 7.22 66.97 P-15 1-6 37 26.02 Circular 18 Inch 0.013 66.37 423.88 408.64 0.229622 425.37 411.71 14.74 14.72 50.33 P-8 J-2 37 35.45 Circular 30 Inch 0.013 200.33 409.65 407.64 0.010033 413.21 411.71 7.22 7.22 41.08 P.16 37 38 61.47 Circular 30 inch 0.013 111.96 407.31 402.44 0043498 409.71 405.11 12.69 12.52 85.54 P-17 38 J-3 62.86 Circular 30 Inch 0.013 175.87 402.44 394.80 0.043441 404.85 398.18 12.95 12.81 85.49 P-13 J-3 39 62.86 Circular 30 Inch 0.013 250.73 394.47 380.58 0.055398 396.88 383.40 12.95 12.81 96.54 Existing Portl 39 0-1 64.57 Circular 36 inch 0.013 125.12 379.43 378.18 0.009990 382.01 381.18 9.99 9.13 66.68 Project Engineer Hunsaker & Associates San Diego, Inc. h:\storrncad\235211-Iineb-1.stm Hunsaker & Associates San Diego, Inc StormCAD v3.0 [319] 02/10/02 10:01:22 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1686 Page 1 of 1 Scenario: LINE "B" Node Report Label Total System Flow Sump Elevation (It) (cfs) Rim Elevation (It) Hydraulic Grade in (It) Hydraulic Grade Out (ft) 22 5.05 440.50 446.06 441.44 441.36 25 12.43 436.62 446.06 439.19 438.57 32 11.48 422.16 427.05 423.61 423.45 J-1 12.43 435.64 443.69 437.67 46.97 28 7.15 425.51 430.00 426.64 426.55 35 18.91 418.05 427.05 420.25 419.61 29 18.54 422.58 429.70 424.60 424.13 36 35.45 416.70 425.12 419.37 418.72 1-6 26.02 423.88 428.98 428.07 425.37 J-2 35.45 409.65 417.80 413.86 413.21 37 61.47 407.31 424.54 411.71 409.71 38 62.86 402.44 416.06 405.11 404.85 J-3 62.86 394.47 404.41 398.18 396.88 39 64.57 379.43 384.67 383.40 382.01 0-1 1 64.57 378.18 387.39 381.18 381.18 Project Engineer Hunsaker & Associates San Diego. Inc. h:\stormcad\2352\11-lIneb-1.stm Hunsaker& Associates San Diego, Inc StormCAD v3.0 (319) 02/10/02 10:01:33 PM 0 Haestad Methods, inc. 37 Brookside Road Waterbury, CT 06708. USA (203) 755-1666 Page 1 of 1 17 LINE "C" Scenario: Base 124 15 Project Engineer Hunsaker & Associates San Diego, Inc. h:storrncad235211-IIne c-.stm Hunsaker & Associates San Diego, Inc StoniiCAD v3.0 [3191 11/20/01 10:22:53 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 08708 USA (203) 755-1666 Page 1 011 LINE "C" Pipe Report Label Up. Node Dn. Node System Q (cfs) Shape Size Mannings n Length (It) Up Invert (ft) On Invert (It) S (ft/It) HGL In (It) HGL Out (ft) Velocity In (ft/s) Velocity Out (ftls) Cap (cfs) P.16 124 1-10 20.70 Circular 24 Inch 0.013 23.91 447.30 447.18 0.005019 455.39 455.19 8.59 8.59 16.03 P.14 3 5 17.86 Circular 18 Inch 0.013 40.00 467.40 467.00 0.010000 472.06 470.91 10.11 10.11 10.50 P-17 1-10 J-1 20.70 Circular 24 Inch 0.013 171.54 446.80 445.94 0.005013 454.85 453.41 6.59 6.59 16.02 P.15. 5 J-2 18.34 Circular 18 Inch 0:013 39.31 466.87 465.88 0.020097 469.57 468.37 10.38 10.38 14.89 P-20 J-1 J-4 20.70 Circular 24 Inch 0.013 890.78 445.94 442.49 0.004994 453.01 447.22 6.59 8.59 15.99 P.18 J-2 J-3 18.34 Circular 18 Inch 0.013 238.76 465.55 453.61 0.050008 487.00 454.61 10.47 14.70 23.49 P-21 J-4 8 20.70 Circular 24 Inch . 0.013 126.04 442.49 441.86 0.004998 446.82 445.76 8.59 6.59 15.99 P-19 J-3 6 18.34 Circular 18 Inch 0.013 43.96 453.28 442.38 0.248408 454.73 445.76 10.47 10.38 52.35 P.12 6 . 10 37.87 Circular 30 Inch 0.013 119.30 441.36 439.68 0.014082 445.11 444.10 7.71 7.71 48.67 P-8 9 10 . 8.73 Circular 18 Inch 0.013 109.57 462.02 440.68 0.194761 463.16 444.10 6.04 4.94 46.35 P-9 13 18 3.16 Circular 18 Inch 0.013 43.25 451.83 440.17 0.264971 452.31 443.22 4.08 1.79 54.07 P.10 15 16 1.13 Circular 18 Inch 0.013 7.28 443.67 440.17 0.480769 444.07 443.22 3.02 0.64 72.83 134 10 16 .45.71 Circular 36 Inch 0.013 103.53 439.18 438.67 0.004926 443.71 443.22 6.47 6.47 46.81 P.7 16 17 4925 Circular 36 Inch 0.013 127.18 438.34 437.70 0.005032 442.69 442.00 6.97 6.97 47.31 Project Engineer Hunsaker & Associates San Diego, Inc. h:stormcad23521it-Iine c-strn Hunsaker & Associates San Diego, Inc StormCAD v3.0 (3191 01108102 12:25:17 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 00708 USA (203) 755-1866 Page 1 of 1 LINE "C" Node Report Label Total Jystery. Flow ON Sump Elevation (It) Rim Elevation (It) Hydraulic Grade In (It) Hydraulic Grade Out (It) 124 20.70 447.30 449.50 449.50 449.50 3 17.86 467.40 477.76 472.38 472.08 1-10 20.70 448.80 458.10 455.19 454.85 5 18.34 488.87 477.76 470.91 469.57 J-1 20.70 445.94 500.05 453.41 453.01 J-2 18.34 465.55 475.51 468.37 467.00 J-4 20.70 442.49 480.84 447.22 446.82 J-3 18.34 453.28 461.02 454.73 454.73 6 37.87 441.36 460.84 445.76 445.11 9 8.73 462.02 471.49 483.28 463.16 13 3.16 451.63 457.83 452.36 452.31 15 1.13 443.67 457.55 444.10 444.07 10 45.71 439.18 458.35 444.10 443.71 16 49.25 438.34 450.00 443.22 442.69 17 49.25 437.78 458.14 442.00 442.00 Project Engineer Hunsaker & AssocIates San Diego, Inc. h:stormcad'235211-IIne c-.stm Hunsaker & Associates San Diego, Inc StwTnCAD v3.0 (3191 01/08/02 12:25:23 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203)755-1668 Page 1 of I Worksheet Worksheet for Circular Channel Project Description Worksheet 18" RCP Flow Element Circular Chann Method Manning's Fori Solve For Channel Depth Input Data Mannings Coefflc).013 Slope 0.50 % Diameter 18 in Discharge 3.05 cis Results Depth 0.67 ft Flow Area 0.8 ft' Wetted Perlme 2.20 ft Top Width 1.49 ft Critical Depth 0.66 ft Percent Full 44.6 % Critical Slope 0.51 % Velocity 4.00 ft/s Velocity Head 0.25 ft Specific Energ 0.92 ft Froude Numbe 0.98 Maximum Disc 7.99 cis Discharge Full 7.43 cis Slope Full 0.08 % Flow Type SubcrItIcal Project Engineer H&A Employee h:V1ow-rn\2352\11velocity rating curves.fm2. Hunsaker & Associates San Diego FlowMaster v8.0 [614b] 11/21/01 08:07:11 AM © Haestad Methods, inc. 37 Brookslde Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Worksheet Worksheet for Circular Channel Project Description Worksheet Circular Channel Flow Element Circular Channel Method Manning's Formu Solve For Channel Depth Input Data Mannings Coeffic 0.013 Slope 0.6000 % Diameter 18 In Discharge 2.40 cis Results Depth 0.56 ft Flow Area 0.6 ft' Wetted Perime 1.97 ft Top Width 1.45 ft Critical Depth 0.59 It Percent Full 37.2 % Critical Slope 0.5005 % Velocity 4.01 ft/s Velocity Head 0.25 ft Specific Energ 0.81 It FroudeNumbe 1.10 Maximum Disc 8.75 cis Discharge Full 8.14 cis Slope Full 0.0522 % Flow Type 3upercritical Project Engineer H&A Employee c:haestadfmwproject1.fm2 Huneakor & Associates San Diego FiowMaster v6.O (614b1 11/20/01 03:25:52 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Worksheet Worksheet for Circular Channel Project Description Worksheet Circular Channel Flow Element Circular Channel Method Manning's Formu Solve For Channel Depth Input Data Mannings Coeffic 0.13 Slope 07000 % Diameter 18 in Discharge 1.95 cis Results Depth 0.48 It Flow Area 0.5 ft' Wetted Perinie 1.80 ft Top Width 1.40 ft Critical Depth 0.53 ft Percent Full 32.0 % Critical Slope 0.4941 % Velocity 4.00 ft/s Velocity Head 0.25 ft. Specific Energ' . 0.73 ft Froude Numbe 1.19 Maximum Disc 9.45 cis Discharge Full 8.79 cis Slope Full 0.0345 % Flow Type ;upercritical Pro" Engineer H&A Employee 0haestadfmw\project1.frn2 . Hunsaker & Associates San Diego FlowMaster v8.0 (614b1 11/20/01 03:27:47 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Worksheet Worksheet for Circular Channel Project Description Worksheet Circular Channel Flow Element Circular Channel Method Mannlngs Fomiu Solve For Channel Depth Input Data Mannings Coeffic 0.013 Slope 0.8000 % Diameter 18 In Discharge 1.65 cfs Results Depth .0.43 ft Flow Area 0.4 ft' Wetted Perlme 1.68 ft Top Width 1.35 ft Critical Depth. 0.48 ft Percent Full 28.4 % Critical Slope 0.4909 % Velocity 4.00 ft/s Velocity Head 0.25 ft Specific Energ 0.67 ft Froude Numbe 1.28 Maximum Disc 10.11 cis Discharge Full 9.39 cis Slope Full 0.0247 % Flow Type upercritical Project Engineer H&A Employee chaestadfmwproJect1.frn2 . Huneaker & Associates San Diego FlowM aster v6.0 (614b1 11/20/01 03:28:13 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 08708 USA (203) 755-1666 Page 1 of 1 Worksheet Worksheet for Circular Channel Project Description Worksheet Circular Channel Flow Element Circular Channel Method Mannlngs Formu Solve For Channel Depth Input Data Mannlngs Coeffic 0.013 Slope 6.9000 % Diameter 18 in Discharge 1.43 cfs Results Depth 0.38 It Flow Area 0.4 It' Wetted Perlme 1.59 It Top Width 1.31 ft Critical Depth 0.45 It Percent Full 25.6 % Critical Slope 0.4902 % Velocity 4.00 ft/s Velocity Head 0.25 It Specific Energ: 0.63 ft Froude Numbe 1.35 Maximum Disc 10.72 cis Discharge Full 9.96 cis Slope Full 0.0185 % Flow Type upercrltical Project Engineer H&A Employee haestadfrnwproject1.fm2 Hunsaker & Associates San Diego FlowMaster v8.0 [614b] 11/20/01 03:28:39 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1888 Page 1 of 1 Worksheet Worksheet for Circular Channel Project Description Worksheet Circular Channel Flow Element Circular Channel Method Manning's Fømiu Solve For Channel Depth Input Data Mannings Coeffic 0.013 Slope - 1.0000 % Diameter 18 In Discharge 1.25 cis Results Depth 0.35 It Flow Area 0.3 Its Wetted Perlme 1.51 It Top Width 1.27 ft Critical Depth 0.42 It Percent Full . 23.3 % Critical Slope 0.4909 % Velocity 4.00 ft/s Velocity Head 0.25 ft Specific Energ 0.60 It Froude Numbe 1.42 Maximum Disc 11.30 cis Discharge Full 10.50 cfs Slope Full 0.0142 % Flow Type 3upercritical Project Engineer: H&A Employee c\haestadwproject1.fm2 Hunsaker & Associates San Diego FlowMaster v6.O [614b] 11/20/01 03:29:10 13M C Haestad Methods, Inc. 37 Brookslde Road Waterbury, CT 06708 USA (203)755-1668 ' Page 1 of 1 Worksheet Worksheet for Circular Channel Project Description Worksheet Circular Channel Flow Element Circular Channel Method Manning's Formu Solve For Channel Depth Input Data Mannings Coeffic 0.013 Slope 1.5000 % Diameter 18 in Discharge 0.77 cfs Results Depth 0.25 It Flow Area 0.2 ft' Wetted Perlme 1.26 It Top Width 1.12 ft Critical Depth 0.33 ft Percent Full 16.6 % Critical Slope 0.4985 % Velocity 4.00 ft/s Velocity Head 0.25 It Specific Energ: 0.50 It Froude Numbs 1.70 Maximum Disc 13.84 cis Discharge Full 12.86 cfs Slope Full 00054 % Flow Type 3upercritical Project Engineer H&A Employee haestad.fmw\project1.fm2 Hunsaker & Associates San Diego FiowMaster v8.0 (614b1 11/20/01 03:29:35 PM C Haestad Methods, Inc. 37 Brookslde Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Worksheet Worksheet for Circular Channel Project Description Worksheet Circular Channel Flow Element Circular Channel Method Manning's Formu. Solve For Channel Depth Input Data. Mannings Coeffic 0.013 Slope 20000 % Diameter 18 in Discharge 0.55 cis Results Depth 0.20 ft FlowAiea 0.1 ft3 Wetted Perlme 1.11 ft Top Width 1.01 ft Critical Depth 0.27 ft Percent Full 13.2 % Critical Slope 0.5107 % Velocity 4.01 ft/3 Velocity Head 0.25 ft Specific Energ 0.45 ft Froude Numbe 1.92 Maximum Disc 15.98 cis Discharge Full 14.85 cts Slope Full 0.0027 % Flow Type 33upercritical Project Engineer H&A Employee cthaestad\fmw\project1.frn2 Hunsaker & Associates San Diego FiowMaster v6.0 [614b] 11/20/01 03:30:04 PM © Haestad Methods, Inc. 37 9rookslde Road Waterbury, CT 06708 USA (203) 755-1668 Page 1 of 1 Worksheet' Worksheet for Circular Channel Project Description Worksheet 24" RCP Flow Element Circular Chann Method Mannings Farr Solve For Channel Depth Input Data Mannings Coeffic 1.01 Slope 0.50 % Diameter 24 In Discharge 3.30 cis Results Depth 0.62 ft Flow Area 0.8 ft3 Wetted Perime 2.35 ft Top Width 1.85 It Critical Depth 0.64 ft Percent-Full 30.8 % Critical Slope 0.45 % Velocity 4.01 ft/s Velocity Head 0.25 It Specific Energ 0.87 ft Froude Numbe 1.06 Maximum Disc 17.21 cis Discharge Full 16.00 cis Slope Full 0.02 % Flow Type 3 upercrItIcal Project Engineer H&A Employee untltled.fm2 Huneaker & Associates San Diego FlowMaster v8.0 [814b] 11/20/01 06:53:38 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury CT 08708 USA (203) 755-1666 Page 1 of 1 Worksheet Worksheet for Circular Channel Project Description Worksheet - 24" RCP Flow Element Circular Chann Method Mannings Fort Solve For Channel Depth Input Data Mannings Coeffic).013 Slope 0.60 % Diameter 24 In Discharge 2.60 cis Results Depth 0.52 It Flow Area 0.7 ft Wetted Perlme 2.14 ft Top Width 1.76 It Critical Depth 0.56 ft Percent Full 26.0 % Critical Slope 0.45 % Velocity 4.00 ft/s Velocity Head 0.25 ft Specific Energ 0.77 It Froude Numbe 1.16 Maximum Disc 18.85 cis Discharge Full 17.52 cis Slope Full 0.01 % Flow Type 2upercritical Project Engineer H&A Employee untitled .fn,2 Hunsaker & Associates San Diego FlowMaster v8.0 (614b1 11/20/01 06:54:05 PM © Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Worksheet Worksheet for Circular Channel Project Description Worksheet 24 RCP Flow Element Circular Chann Method Mannlngs Forr Solve For Channel Depth Input Data Mannings Coeffl0.013 Slope 0.70 % Diameter 24 In Discharge 2.15 cis Results Depth 0.46 It Flow Area 0.5 r Wetted Perlme 1.99 ft Top Width 1.68 It Critical Depth 0.51 It Percent Full 22.8 % Critical Slope 0.45 % Velocity 4.00 ft/s Velocity Head 0.25 It Specific Energ 0.70 It Froude Numbs 1.24 Maximum Disc 20.36 cis Discharge Full 18.93 cfs Slope Full 0.01 % Flow Type 3,upercritical Project Engineer H&A Employee untitled.1m2 Hunsaker & Associates San Diego FiowMaster v8.0 (614b1 11/20/01 06:54:38 PM © Haestad Methods, inc. 37 Brookslde Road Waterbury, CT 08708 USA (203) 755-1686 Page 1 of 1 Worksheet Worksheet for Circular Channel Project Description Worksheet 24 RCP Pow Element Circular Chann Method Manning's Forr Solve For Channel Depth Input Data Mannings Coeffic).013 Slope 0.80 % Diameter 24 In Discharge 1.83 cfs Results Depth 0.41 ft Flow Area 0.5 ft' Wetted Perlme 1.87 It Top Width 1.61 It Critical Depth 0.47 It Percent Full 20.3 % Critical Slope 0.45 % Velocity 4.00 ft/s Velocity Head 0.25 It Specific Energ: 0.65 It Froude Numbe 1.32 Maximum Disc 21.76 cis Discharge Full 20.23 cts Slope Full 0.01 % Flow Type upercritical Project Engineer H&A Employee untItled .fm2 Hunsaker a Associates San Diego FlowMaster v6.0 [614b] 11/20/01 06:55:1612M © Haestad Methods, inc. 37 Brooksida Road Waterbury, CT 08708 USA (203) 755-1688 Page 1 of I Worksheet Worksheet for Circular Channel Project Description Worksheet 24" RCP Flow Element Circular Chann Method Manning's ForT Solve For Channel Depth Input Data Mannings Coeffic ).013 Slope 0.90 % Diameter 24 In Discharge 1.60 cis Results Depth 0.37 It Flow Area 0.4 ft2 Wetted Perime 1.78 ft Top Width 1.55 ft Critical Depth 0.44 It Percent Full 18.5 % Critical Slope 0.45 % Velocity 4.01 ft/s Velocity Head 0.25 It Specific Energ' 0.62 ft Froude Numbe 1.39 Maximum Disc 23.09 cis Discharge Full 21.46 cis Slope Full 0.01 % Flow Type upercritical Project Engineer. H&A Employee untltied.fm2 Hunsaker & Associates San Diego FlowMaster v6.0 (614b1 11/20/01 06:55:32 PM 0 Haestad Methods, inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of I Worksheet Worksheet for Circular Channel Project Description Worksheet 24" RCP Flow Element Circular Chann Method Manning's Forr Solve For Channel Depth Input Data Mannings Coeffic).013 Slope 1.00 % Diameter 24 in Discharge 1.40 cfs Results Depth 0.34 ft Flow Area 0.4 ft' Wetted Perlme .1.69 ft Top Width 1.50 ft Critical Depth 0.41 ft Percent Full 16.9 % Critical Slope . 0.46 % Velocity 4.00 ft/s Velocity Head 0.25 ft Specific Energ 0.59 It Froude Numbe 1.46 Maximum Disc 24.33 cfs Discharge Full 22.62 cfs Slope Full' 3.83e-3 % Flow Type uperciiticai Project Engineer H&A Employee 6tltled.fm2 Hunsaker & Associates San Diego FlowMaster v8.O (614b) 11/20/01 06:55:45 PM © Haestad Methods, Inc. 37 Brookslde Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Worksheet Worksheet for Circular Channel Project Description Worksheet 24 RCP Flow Element Circular Chann Method Manning's Fon Solve For - Channel Depth Input Data Mannings Coeffic).013 Slope 1.50 % Diameter 24 In Discharge 0.87 cis Results Depth 0.24 it Flow Area 0.2 ft3 Wetted Perlme 1.42 it Top Width 1.31 it Critical Depth 0.32 it Percent Full 12.2 % Critical Slope 0.47 % Velocity 4.00 ft/s Velocity Head 0.25 it Specific Energ 0.49 it Froude Numbe 1.73 Maximum Disc 29.80 cis Discharge Full 27.71 oft Slope Full 1.48e-3 % Flow Type upercritical Project Engineer H&A Employee untitled.frn2 Huneaker & Associates San Diego - FiowMaster v6.0 [814b] 11/20/01 08:56:17 PM 0 Haestad Methods, inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1686 Page 1 of 1 Worksheet Worksheet for Circular Channel Project Description Worksheet 24 RCP Flow Element Circular Chann Method Manning's Fori Solve For Channel Depth Input Data Mannings Coeffic3.013 Slope 2.00 % Diameter 24 in Discharge - 0.63 cis Results Depth 0.19 it Flow Area 0.2 11:2 Wetted Perlme 1.27 It Top Width 1.19 ft Critical Depth 0.27 it Percent Full 9.7 % Critical Slope 0.49 % Velocity 4.01 ftis Velocity Head 0.25 It Specific Energ: 0.44 ft Froude Numbe 1.94 Maximum Disc 34.41 cis Discharge Full 31.99. cis Slope Full 7.76e-4 % - Flow Type 3upercritical Project Engineer H&A Employee untitled .fm2 Hunsakor S Associates San Diego FlowMáster v6.O [614b] 11/20/01 06:56:44 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1686 Page 1 of 1 Worksheet Worksheet for Circular Channel Project Description Worksheet 30" RCP Flow Element Circular Chann Method Manning's Forr Solve For Channel Depth Input Data Mannlngs Coeffic).013 - Slope 0.50 % Diameter 30 In Discharge 3.50 cis Results Depth* 0.59 It Flow Area 0.9 ft Wetted Perime 2.53 ft Top Width 2.12 ft Critical Depth 0.61 It Percent Full 23.5 % Critical Slope 0.42 % Velocity 3.99 "Ns Velocity Head 0.25 It Specific Energ 0.83 ft Froude Numbe 1.09 Maximum Disc 31.20 cis Discharge Full 29.00 cis Slope Full 0.01 % Flow Type 33upercritical Project Engineer H&A Employee untltied.fm2 Hunsaker & Associates San Diego FIowMaster v8.0 (614b] 11/20/01 08:57:39 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Villages of La Costa P.A. 3.8, 3.9 & R.S.F.R. Hydrology Study - Curb Inlet Design 100-Year Peak Flow Analysis TBmm .xs%22C54oc w 2352.CS VILLAGES OF LA COSTA (161) INLET SIZING Type Of Inlet Inlet at Node Street Slope % Q(cfs) ___________ aft) _______ y(ft.) flowdepth Required Length of Opening' (ft.) Use Length' (ft.) ON GRADE 5 2.81% 0.70 0.33 0.21 2.52 5 ON GRADE 22 4.00% 5.05 0.33 0.31 14.09 16 ON GRADE 25 4.00% 7.57 0.33 0.35 19.29 21 ON GRADE 28 5.95% 7.15 0.33 0.32 19.49 21 ON GRADE 35 3.50% 7.78 * 0.33 0.37 18.98 20 ON GRADE 52 3.60% 5.13 0.33 0.32 13.98 15 ON GRADE 55 ' 3.60% 3.64 0.33 0.29 10.65 12 ON GRADE 58 2.34% 6.07 0.33 0.36 15.13 17 BYPASS FLOW = TOTAL FLOW @ NODE 35- INTERCEPTED FLOW = 13.68 - 7.78 = 6.10 CFS BYPASS FLOW INTERCEPTED @ NODE 61 Type Of Inlet Node No. Q(cfs) Required Length of Opening2 (ft.) Use Length3 (ft.) SUMP 3 17.86 8.93 10 SUMP 9 8.73 4.37 6 SUMP 13 3.16 1.58 5 SUMP 15 1.13 0.57 5 SUMP 32 1 11.48 1 5.74 1 7 SUMP 61 1 13.18 1 6.59 1 8 1 FROM EQUATION Q=0.7L(0.33+DEPTH)A3/2 (San Diego Drainage Design Manual) 2 FROM CITY OF SAN DIEGO CHART 1-103.6C (San Deigo Drainage Design Manual) LENGTH SHOWN ON PLANS (REQ'D LENGTH OF OPENING + 1 FOOT) H:EXCEL235211MNLETS RANCHO SANTA FE ROAD INLET SIZING Type of Inlet Inlet at Node Street Slope % Q(cfs) a(ft.) Wt.) Required Length of Opening' (ft.) Use Length3 (ft.) ON GRADE 132 5.62% 8.2 0.33 0.35 20.89 22 ON GRADE 126 5.62% 3.9 0.33 0.27 11.99 13 ON GRADE 121 4.64% 2.6 0.33 0.22 9.11 11 ON GRADE 112 3.96% 9.7 0.33 0.39 22.68 24 ON GRADE 102 3.96% 12.0 0.33 0.40 27.49 29 ON GRADE 12 3.02% 6.9 0.33 0.24 22.91 24 ON GRADE 3 3.02% 6.8 0.33 0.40 15.57 17 ON GRADE 27 5.31% 6.3 0.33 0.33 16.79 18 ON GRADE 22 5.31% 5.9 0.33 0.40 13.51 15 ON GRADE 37 3.84% 5.4 0.33 0.35 13.76 15 ON GRADE 32 3.84% 5.0 0.33 0.36 12.46 14 ON GRADE 52 3.84% 8.1 0.33 0.38 19.34 21 ON GRADE 42 3.84% 5.8 0.33 0.39 13.56 15 ON GRADE 67 3.84% 6.7 0.33 0.40 15.35 17 ON GRADE 62 3.84% 8.4 0.33 0.36 20.94 22 ON GRADE 76 3.84% 3.8 0.33 0.32 10.36 12 ON GRADE 71 3.84% 4.5 0.33 0.31 12.56 14 ON GRADE 86 3.84% 3.8 0.33 0.37 9.27 11 ON GRADE 81 3.84% 3.2 0.33 0.29 9.36 11 1 FROM EQUATION Q=0.7L(0.33+DEPTH)A312 (San Diego Drainage Design Manual) FROM CITY OF SAN DIEGO CHART 1-103.6C (San Deigo Drainage Design Manual) LENGTH SHOWN ON PLANS (REQ'D LENGTH OF OPENING + I FOOT) H:\EXCEL.2352\O5RSFR-INLETS.XLS Villages of La Costa P.A. 3.8, 3.9 & R.S.F.R. Hydrology Study Brow Ditch Design 100-Year Peak Flow Analysis T5n Kirepone.235MOSoMftc w. 2352-05 Brow Ditch A Worksheet for Circular Channel Project Description Worksheet Brow Ditch A Flow Element Circular Chann Method Manning's Fon Solve For Channel Depth Input Data Mannings Coeffic).013 Slope 15.00 % Diameter 24 in Discharge 0.98 cis Results Depth 0.15 ft Flow Area 0.1 ft' Wetted Perlme 1.11 ft Top Width 1.05 ft Critical Depth 0.34 ft Percent Full 7.4 % Critical Slope 0.47 % Velocity 9.26 ft/s Velocity Head 1.33 It Specific Energ 1.48 ft Froude Numbe 5.14 Maximum Disc 94.24 cis Discharge Full 87.61 cis Slope Full 1.88e-3 % Flow Type upercrltical Project Engineer: H&A Employee h:.flow-m=52%11browdI-1.frn2 Hunaaker & Associates San Diego FlowMaster v6.0 (614b3 12120/01 08:48:37 PM © Haestad Methods, Inc. 37 Brookslde Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Brow Ditch A Cross Section for Circular Channel Project Description Worksheet Brow Ditch A Flow Element Circular Chann Method Mannings Forr Solve For Channel Depth Section Data Mannings Coeffic ).013 Slope 15.00 % Depth 0.15 ft Diameter 24 in Discharge 0.98 cis 24 in ft VAN H:1 N TS Project Engineer H&A Employee 11:flow-m235211browdl-1.fm2 Hunsaker & Associates San Diego FlowMaster v8.0 [614b] 12/20/01 08:46:15 PM 0 Haestad Methods, inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Brow Ditch B Worksheet for Circular Channel Project Description Worksheet Brow Ditch B Flow Element Circular Chann Method Manning's Fort Solve For Channel Depth Input Data Mannings Coefflc).013 Slope 17.20 % Diameter 24 in Discharge 4.30 cis Results Depth 0.29 ft Flow Area 0.3 ft2 Wetted Perlme 1.57 ft Top Width 1.41 ft Critical Depth 0.73 ft Percent Full 14.6 % Critical Slope 0.45 % Velocity 15.16 ft/s Velocity Head 3.57 ft Specific Energ 3.87 ft Froude Numbe 5.97 Maximum Disc 100.92 cis Discharge Full 93.82 cis Slope Full 0.04 % Flow Type ;upercrftical 41 Project Engineer: H&A Employee h:flow-m2352\11browdI-1.frn2 Hunsaker & Associates San Diego FlowMaster v8.0 (614bJ 12/20/01 08:47:17 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of I Brow Ditch B Cross Section for Circular Channel Project Description Worksheet Brow Ditch B Flow Element Circular Chann Method Manning's Forr Solve For Channel Depth Section Data Mannings Coeffic 3.013 Slope 17.20 % - Depth 0.29 ft Diameter 24 In Discharge 4.30 cis 24 in 0.29 ft V:11\ 1-1:1 N TS Project Engineer H&A Employee h:flow-m=52%1-1.fm2 Hunsaker & Aseoclatea San Diego FiowMaster v8.0 [614b1 12/20/01 08:47:09 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1686 Page 1 of 1 Brow Ditch C Worksheet for Circular Channel Project Description Worksheet Brow Ditch C Flow Element Circular Chann Method Manning's Forr Solve For Channel Depth Input Data Mannings Coeffic ).013 Slope 1.00 % Diameter 24 in Discharge 0.90 cis Results Depth 0.27 ft Flow Area 0.3 ft2 Wetted Perime 1.51 ft Top Width 1.37 ft Critical Depth 0.33 ft Percent Full 13.6 % Critical Slope 0.47 % Velocity 3.51 ft/s Velocity Head 0.19 ft Specific Energ: 0.46 ft Froude Numbe 1.43 Maximum Disc 24.33 cis Discharge Full 22.62 cis Slope Full 1.58e-3 % Flow Type ;upercrltical Project Engineer H&A Employee h:flow-m2352\11browdi-1.frn2 Hunsaker & Associates San Diego FiowMaster v6.0 (614b) 1220/01 08:48:03 PM © Haestad Methods, Inc. 37 Brookslde Road Waterbury, CT 08708 USA (203) 755-1686 Page 1 of 1 Brow Ditch C Cross Section for Circular Channel Project Description Worksheet Brow Ditch C Flow Element Circular Chann Method Mannings Fon Solve For - - Channel Depth Section Data Mannings Coeffic).013 Slope 1.00 % Depth 0.27 It Diameter 24 In Discharge 0.90 cis 24 in 0.27 ft VAN H:1 N TS Project Engineer H&A Employee h:\fIow-m235211browdi-1.fm2 Hunsaker & Associates San Diego FlowMaster v6.0 (614b1 12/20/01 08:48:23 PM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 Villages of La Costa P.A. 3.8, 3.9 & R.S.F.R. Hydrology Study - Reference Data Tt.w,m W.O. 23520$ COUNTY OF SAN DIEGO DEPARTMENT OF SANITATION & FLOOD CONTROL 451 L riN 2-YEAR 6* HOUR PRECIPITATION '-lO--ISOPLUVIALS OF 2-YEAR 6-HOUR PRECIPITATION IN TENTHS OF AN INCH 30' 15' 33•. Prep,,d by U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION STUDIES BRANCH. OFFICE OF HYDROLOGY, NATIONAL WEATHER SERVICE 3014- 118° 45' 30' 15' 1170 - 45' 30' 15' 316' COUNTY OF SAN DIEGO DEPARTMENT OF SANITATION & 6-HOU DP. PITTIfl1FLOOD CONTROL 50-YEAR t PRECI PITATION ilVtI1P'i 20.' ISOPLUVIALS OF 50-YEAR 6-HOUR PECP1ThT 1 iEThS OF A ICH 451 p ek~~5) e—" j I I N s" I . N 101 25ç 3. CIs ç4 27.5 45 - SAN CL fr 50 15' -___ 22 3 - - \.cr4(i \\ \ -' .. 33. 20 18 22.5 45.. 18 çllLuLJ 2 Prepa ad by LTh i ) U.S. DEPARTMEi T OF COMMERCE \t V I. NATIONAl. OCEANIC AND AT IOSPIIERIC ADMINISTRATION ' SPECIAL STUDIES BRANCN.OFFICE OF it DROLOGY. NATIONAL WEATHER SERVICE 20 2 5 ()32 inir 30' I 18 • ______________________ I I .i - 1,80 45' 30' 15' 117° 45' 30' 75' 116° trised 1/85 APPENDIX XI-D COUNTY OF SAN DIEGO DEPARTMENT OF SANITATION 8. FLOOD CONTROL 451 S.. 100-YEA 6-HOUR, PRECIP1TATO ,20_' ISOPLUVIALS OF 100-YEAR 6-HOUR PflECIPiThT10i IN ISNTIHS OF AN NTil 30' 15' 330 451 Prep •d U.S. DEPARTMEN r C NATIONAL OCEANIC AND AT. OSI SPECIAL STUDIES BRANCH. OFFICE OF IF DR 30' 1- 1181 45' 30' 15' 1170 45' 30' i/or 15' 1160 AflflCTVVT VT CHART I — 103.6C to -6 0 - -4 -1 0 0 - 6 .5- -3 -9 U .4 .7- .2 -8 —j a .6- -, I' Z ID — Z .5"G z 0 w_IO 'p . w — -.6, - 0 0. Z 0.. 'p t C,l —•5 ..4 .7 o o U. :: ! .3— ; :: CL z 100*1 lei ig -.05 .2- _4 0 0. - .3 2 I4siIl of CSF Wface .2 s$d•d .511! .cuI dsprs.sa cj .15 ELEVATION SECTION REV. CITY OF SAN DIEGO — DESIGN GUIDE SHT. NO. NOMOGRAM-- CAPACITY ,CURB INLET AT SAG 15 — — — — — — U V4 FA I - - -WM••I UYAUIi _ __WA IIiWL W1JIIWA WAWII_ V on = • _IIi _ - _V B14I __ • - - - A•AUU1/AMIVAW 110111 ___ __ jr v _ • uw __ U, __ - MEMO =ME - PAlUII A WA avauu_ IN, U -_I ,r,I'nTTfl FIGURE Gutter and Roadway Discharge - Velocity Chart • 3-6 HazMaticounty Hydrogeology ManuaUGutt.r Dlscharg._V.IocIty.FH8 Headloss Coefficients for Manholes and Junctions These are typical headloss coefficients used in the standard method for estimating headloss through manholes and junctions. Type of Manhole Diagram Headloss Coefficient Trunkihie only with no - 0.5 bend at the junction Trunkline only with 45 0.6 - degree bend atjuntion Trnn1iiue only with 90 A.B. degree bend atjinictlon I . 7Trun1dine.with one lateral Small 0.6 -. • . Large 0.7 Two roughly.equivalent . : 0.8' I entrance lines with angle of <90 degrees between lines E Two roughly equivalent 0.9 ' . entrance lines with angle of . >90 degrees between lines Three or more entrance 1.0, lines .-. .. Related Information . Headloss AASHTO Method Headloss-Absolüte Method Headlosses Method Section .' Headloss HEC-22 Energy Method V : I / . /i )(?jI I N \ / T Ile All IN f N N \ — N N / — N 32 II //i 27 I 101, if i',ii7 V4f 1/f 5 6/1 6 .. I I - I j N I ( / I / - — — --f- — N 6 1 / / 101 / / N tN. _ \\.P N 02 1 2dO I J ILI 200' uu iU 4111111., Iv 1/1 I Hil I f i !1i H1!M!1 I PREPAREDBY: SHEET DEVELOPED CONDITION INLET SIZING MAP S AN 2 VILLAGE18 OF LA u4m*'OSTA ASSOCIATE OFD I E C 0, INC PLANNING 10179 Fluennekens Street RANCHO SANTA FE ROAD ENGINEERING San Diego, Ca 92121 SURVEYING PH(858)5584500 FX(858)5551414 I_ City Of Carlsbad, California File: R: \261 \&Hyd\RSFR—Devel oped.dwg .H &.A 12./21/01 N i 8O 1(185 I, 6 / \ \ \ I 52 ) -- - - - \ \ 51 Ile n / 4 7. jx PIN- Maw N 41 200 WS vW 111111 22 20 2 1 / N N N ,$i/H12 .ill yj PREPARED BY: SHEET DEVELOPED CONDITION INLET SIZING MAP JHUNSAKER VILLAGES OF L A COSTA 2 ASSOCIATE OF L! S AN D I 6 C 0, INC PLANNING 10179 Huennekens Street RANCHO SANTA FE ROAD ENGINEERING San Diego, Ca 92121 SURVEYING PH(858)5584500 FX(858)5581414 City Of Carlsbad, California File: R: \261 \&Hyd\RSFR—Developed.dwg .i_I:&./ /1) 1. /( 1.