Loading...
HomeMy WebLinkAboutCD 2019-0010; CARLSBAD SEAWATER DESAL PLANT; PREFAB METAL ELECTRICAL ENCLOSURE FOUNDATION AND RETAINING WALL DESIGN; 2020-01-24[J TETRA TECH RECORD copy --Initial Date Prefab Metal Electrical Enclosure Foundation and Retaining Wall Design for CD2019-0010/GR2019-0038!DWG 520-6A Carlsbad Desal Intake Pump Station Phase I Carlsbad, California 12 for Poseidon Channelside 5780 Fleet Street, Suite 140 Carlsbad, California 92008 Prepared Under the Direction of OFESS,0 94G CO Cr NO-6177 m Eric LJCTU Registered Engineer, SE. 6177 OPCAt.O# tra Tech, Inc. If East Via Verde, Su 240 San Dimas, CA 91773 (909) 305-2930 200-35200-19001 _OOVER PAGE & DESiGN CRITERIA 1l2442O 218 PM TETRA TECH TABLE OF CONTENTS Design Critena - Codes, Loading, and Materials .............................Al -A6 Foundation Design ...........................................................Bl - B11 Retaining Wall Design ......................................................Ci - C16 ILI -COVER PAGE & DESIGN CRITERIA 112412020 215 PM ['Th]TETRATECH Al .COVER PAGE & DESIGN CRITERIA 81191201912:05 PM A2 ['IL] TETRA TECH 1 • J - -- - - Sheet No.: of Date: 24-Jan-20 (ha,'kd R . / Q,,,, -. Telephone: (909) 305-2930 Engineer JDQ Job No.: 200-35200-19001 Subject: Prefab Metal Electrical Enclosure Foundation and Retaining Wall Design Poseidon Channelside Desian Criteria Design Objectives The scope of this calculation package is the design of the foundation and anchorage for a proposed electrical enclosure. Other structural work includes design of a retaining wall on the exterior of the structure. Design Codes and References -California Building Code, 2016 edition -ASCE/SEI 7-10 Minimum Design Loads for Buildings & Other Structures -ACI 318-14 Building Code Requirements For Structural Concrete -AISC Steel Construction Manual, 14th Edition - ANSI/AISC 360-10 -ACI 530-13 Building Code Requirements and Specification for Masonry Structures Material Progerties Concrete fc = 5000 psi Mm. at 28 days Reinforcing Steel f = 60 ksi Minimum Masonry I'm = 1500 psi Soil Properties - (Per Leighton Consulting, Inc. Geotechnical Report 12516.001, Dec. 6, 2019) Allowable Vertical Bearing Pressure 1500 psf Allowable Lateral Bearing Pressure 350 pcf Lateral Soil Active Pressure, H 40 pcf (Drained) Lateral Soil At-rest Pressure, Hat 92 pcf (Undrained) Coefficient of Friction: 0.35 Loading Conditions Building Live Load Seismic Parameters Ss= 1.169g S 0.4499 125 psf Fa = 1.032 9 Ss= 0.805 9 F 1.551 g Sol = 0.464 g COVER PAGE & DESIGN CRffERLA 124l2O20 218 PM 1uU1 FTD A rr,' LI A3 L•__J ' '- ' •"' ' '-• SHEET NO. OF DATE 01/24/20 CHECKED BY EY OFFICE San Dimas TELEPHONE 909-305-2930 ENGINEER JDQ )OB NUMBER 200-35200-19001 SUB)ECT Prefab Metal Electrical Enclosure Foundation and Retainit Poseidon Channelside Seismic Base Shear (Non-Building Structure Similar to a Building) Per ASCE 7-10 Design Spectral Response Acceleration Risk Category Soil Site Class Ss = Si = Fa = F = SOS = 2I3SsFa = SDI = 2/3S,Fv = Seismic Design Category (SDC) SDC= Period Determination T5 = SD1/SDS = T. = 0.2(SOI/SDS) = T1 = Structure Type hn = CI = x= T. = III (Table 1.5-1) 0 (Table 20.3-1) 1.169 g 0.449 9 1.032 g (Table 11.4-1) 1.551 g (Table 11.4-2) 0.805 g (Eq. 11.4-3) 0.464 g (Eq. 11.4-4) 0 (Table 11.6-1,2) 0.58 sec (Sec. 11.4.5) 0.12 sec (Sec. 11.4.5) 12.0 sec (Figures 22-16) All other structral systems (Table 12.8-2) 13.0 ft 0.020 0.75 0.137 sec (Eq. 12.8-7) Seismic Response Coefficient (C5) Determination Importance Factor (I) Response Modification Coefficient (R) For 0 sec :5 Ta :5 0.578 sec, use For 0.578 sec <Ta :5 12 sec, use For Ta> 12 sec, use For S1 > 0.6, use For any cases Cs = V = Cs W = W= V= 1.25 (Table 1.5-2) 1.25 (Table 15.4-2) (Other self-supporting structures) CS = S05 x I I R (Eq 12.8-2) Governs C5 = (SDI X I) I (Ta x R) (Eq 12.8-3) CS = (SDI XTLXl)/(Ta2XR) (Eq 12.8-4) C5 > 0.5S1 X I / R (Eq 12.8-5) C5 > 0.01g (Eq 12.8-6) 0.805 g I 0.805 W (Eq 12.8-1) 29.719 kip 23.911 kip -COVER PAGE & DESIGN CRITERIA 112412020 2:18 PM 1 TETRATECH SHEET NO. CHECKED BY TEI.EPMONE ENGwEER JDQ JOB NUMBER A4 OF DATE 10/28119 EY OFFICE San Dimas (9UM) U-2930 200-35200-19001 SUBJECT Poseidon Channelside - Electrical Prefab Building - Wind Load MWFRS (Envelope Procedure) for Rigid Low-Rise Buildings (h <= 601 Per ASCE/SEI 7-10, Chapter 26 & 28 Simplified Design Wind Pressures Mean roof height, h 12 ft Horizontal Dimension of building, B 40 ft Roof Angle 9.5 deg (0cangle<90) Basic Wind Speed, V 115 mph (Figure 26.5-1) Wind Directionality Factor, Kd 0.85 (Table 26.6-1) Risk Category III (Table 1.5-1) Exposure Category B (Section 26.7.3) Velocity Pressure Exposure Coefficient, K0 0.57 (Table 28.3-1) Topographic factor: (Figure 26.8-1) hill shape N/A H 4 f L,1 50 ft x Oft (1= 0.00 K2 = 0.00 K3 - 0.00 K=(1 + K1K2K3)2 1.00 (Eqt 26.8-1) Gust Effect Factor, G (Rigid Buildings or Other Structures) (Section 26.9.4) Peak factor for back ground response, go 3.4 Peak factor for wind response, g, 3.4 Intensity of turbulence @ height z, l r: Turbulence intensity factor, c 0.30 (Table 26.9-I) Minimum height, z,,, 30 ft (Table 26.9-1) Equivalent height of sturcture, zbw = 0.6h > z = 30 ft lzar = C(33/Zar)"°' = 0.33 (Eqt 26.9-7) Background response, Q: lntergral length scale power law exponent, €I1 0.33 (Table 26.9-1) Integral length scale factor,I 320 (Table 26.9-1) lntergral length scale of turbulence © z, Lztr = 4zJ33) 310 ft (Eqt 26.9-9) Q = squrt( 1/{1+0.63[(B+h)/L r))0 )} 0.91 (Eqt 26.9-8) C = 0.925 x[(1 + 1.7 go Ib, Q)/( 1 + 1.7 g,, lzr)J 0.87 (Eqt 26.9-6) Velocity Pressure, q= 0.00256 K,1 K, Kd V' 16.54 psf (Eqt 28.3-1) Wind Load (Oedloind & Envelope Pmcedure) Per ASCE 551 7-10 1W2512010 11.fl AM [Uulb]TETRATECH (. BI COVER PACE & DESIGN CRITERIA 811912019 9:29 AM I, Client: Poseidon Channelside Subject Prefab Building Seismic Analysis Job No: 200-35200-19001 4% TETRA TECH Phone: (909) 305-2930 Seismic Analysis For Prefab Metal Building Building Length: L:= 4011 Building Width: W:= 1211 Building Height: H:= 1311 Building Weight Equipment Weight Per Unit w:= 375p1f (Assumed) Length: VFD Cabinets: L1 := 3•80in = 20- ft W1 := w•L1 = 7.5-kip Switch Boards: L2:= 160m = 13.333•ft W2 := w•L2 = 5-kip MCC Cabinets: L3 := 60m + 841n = 12.11 W3 := w•L3 =4.5-kip PRE Cabinets: := 60in = 5-ft W := w•L4 = 1.875•kip PLC Cabinets: L5 := 40in = 3.333-ft W,5 := w•L5 = 1.25-kip HVAC Units: L6:= 3.40m = 10.11 W := w•L6 = 3.75-kip Structure Weight (Assumed) Panel Thickness t := --in = 0.078-in 64 Steel Density: Psteel := 490pcf Panel Unit Weight: Ivp:= = 3.19•psf Building Surface Area: Abs := 2(L + w).H + W•L = 1832.112 W,7 := Abs.wp = 5.844-kip Total Weight: w, := pi + Wp2+ wp3 + w + w,5 + w,6 + w,7 W, = 29.719-kip Seismic Forces Per ASCE 740 Chapter 15 Seismic Parameters: SDS := 0.804 R := 1.25 Seimic Response Coefficient: Cs : 0.805 Seismic Shear. := = 23.924-kip Date: 8/19/2019 Engineer JDQ Checked by: EY Office: San Dimas Client: Poseidon Channelside Job No: 200-35200-19001 -rET RA -r E c HSubiect: Prefab Building Seismic Analysis it Phone: (909) 305-2930 Date: 8/19/2019 Engineer: JDQ Checked by: EY Office: San Dimas Building Center of Gravity: c:= 0.7.!-! = 9.1-ft (Assumed) Net Overturning Moment w/ overstrength: M := fl I'uCI - (0.9— 0.2.SDS).WP.(0.5W) = 303.606•kip•ft Anchor Diameter: db := 0.75in 7tdb 2 Area of Anchor Bolt: Abolt := = 0.442 in 2 Distance To The Neutral c := 0.5W = 72 in Axis: Number of Bolts Along L © Distance c1 from n1 := 2. round - + I 24 neutral axis: 3.5ft Anchor Group 2 " Moment of Inertia: 'z := A,t.(( ci .ni) = 54965.305 in 4 Anchor Reactions Reaction used to size Tension Per Bolt: f1 Mu.cl.Abo,t = 2.108. kip _ the anchors. lz := Vu Shear Per Bolt: V,:= = I .994•kip ni Foundation Reactions Net Overturning Moment: Muf := —(0.9— 0.2.SDS).Wp.(0.5W) = 85.898.kip•ft Muf N...4Reaction used to size Reaction on Foudation := - = 0.I79.klf Ithe foundation. Due to Seismic: I II Building'tBuilng Anthoragefab Building Fouailo41.e Beam on Elastic Foundation ENERcALC, INC. 1983.2017, BuiltlO.17.&3, Ve1O.17.I3 Description: Electrical Enclosure Foundation - Short Span CODE REFERENCES Calculations per ACI 318-I1, IBC 2012, CBC 2013, ASCE 7-10 Load Combinations Used: ASCE 7-10 Material Properties fc = 5.0 ksi Phi Values Flexure: 0.90 fir = fc * 7.50 = 530.33 psi Shear: 0.750 41 Density = 150.0 pof p1 = 0.80 2, LtWtFactor 1.0 Elastic Modulus 4,286.83 ksi Soil Subgrade Modulus 115.0 psi I (inch deflection) Load Combination ASCE 7-10 C fy - Main Reber = 60.0 ksi Fy - Stirrups = 40.0 ksi E - MainRebar = 29,000.0 ksi E - Stirrups =29,000.0ksi Stirrup Bar Size # = # 3 Number of Resisting Legs Per Stirrup 1.0 Beam is su000rted on an elastic foundation. :0.537) D(-0.537) See foundation reactions on sheet 133. 0.179k1f * 3ft = 0.537kip L(0.125) 36" wx Th'J1 Span=IJ.bbb ft Cross Section & Reinforcing Details #6 bars @ 12" , top & bottom - - Rectangular Section, Width = 36.0 in, Height = 18.0 in Span #1 Reinforcing.... 3-#6 at 3.0 in from Top, from 0.0 to 13.666 ft in this spa 346 at 3.0 in from Bollom, from 0.0 to 13.666ftin this span Applied Loads Service loads entered. Load Factors will be applied for calculations. Beam self weight calculated and added to loads Load for Span Number I Uniform Load: L = 0.1250 klft, Extent = 0.8333 ->> 12.833 ft. Tributary Width = 1.0 ft, (Live Load 125 psf) Point Load: D = 0.5370 k @0.8330 ft Point Load: D = -0.5370k @ 12.833 ft DESIGN SUMMARY Maximum Bending Stress - 0.008: ____ 1 ______ Maxintiibeflection -1 Section used for this span Typical Section Max Downward L+Lr+S Deflection 0.000 in Mu: Applied 0.8105 k-ft Max Upward L+Lr+S Deflection 0.000 in Mn * Phi: Allowable 100.770 k-ft Max Downward Total Deflection 0.020 in Load Combination +1.20D40.50+1.60L+1.60 Max Upward Total Deflection 0.009 in Location of maximum on span 9.647 ft Span # where maximum occurs Span #1 Maximum Soil Pressure = I 0.330 ksf at 0.00 ft LdComb: +D+L+H Allowable Soil Pressure = 1.50 ksf Cross Section Strength & Inertia Phi'Mn(k-ft) Moment of Inertia (in*4) Cross Section Bar Layout Description BtmTension Top Tension Igross lcr-Bfrnlension la-TopTension Section I 3-46 @ d=3,3-#6 @ d=15, 100.77 100.77 17,496.00 1,584.88 1,584.88 Maximum Forces & Stresses for Load Combinations • • • • www.hlltl.us Company: Tetra Tech Specifier: JDQ Address: 160 East Via Verde, Suite 240 Phone I Fax: (909)305-2930 I E-Mail: Profis Anchor 2.8.5 Page: 2 Project: Poseidon Channelside Sub-Project I Pos. No.: 200-35200-19001 Date: 10/28/2019 2 Load case/Resulting anchor forces Load case: Design loads Anchor reactions [lb] Tension force: (+Tension, -Compression) Anchor Tension force Shear force Shear force x Shear force 1 2,108 1,994 1,994 0 max. concrete compressive strain: - max. concrete compressive stress: - [psi] resulting tension force in (x/y)=(0.000I0.000): 0 (ib] resulting compression force in (xty)=(0.000/0.000): 0 Jib] 3 Tension load Load Nua Fib] Capacity $ Nn fib] Utilization pN = NUJ$ Nn Status Steel Strength 2,108 15,762 14 OK Bond Strength 2,108 8,267 26 OK Sustained Tension Load Bond Strength* N/A N/A N/A N/A Concrete Breakout Strength** 2,108 * anchor having the highest loading anchor group (anchors in tension) 3.1 Steel Strength Nss = ESR value refer to ICC-ES ESR-3187 + Nu 2~Nun AC1318-l4 Table l7.3.1.1 Variables '.,N run.21 gina [psi] 0.33 72,500 Calculations Nu fib] 24,250 8.613 25 OK Results Nss fib] $ stw $ nonducas $ Nsa Jib] N [lb] 24,250 0.650 1.000 15,762 2,108 Input data and re541t5 must be checked for agreement with the existing conditions and for plauxibility! PROFIS Anchor (C) 2003-2009 Hlfti AG, FL-9494 Schaan Hint Is a registered Trademark of Hint AG, Schaan YA www.hiltl.us Profis Anchor 2.8.5 Company: Tetra Tech Specifier: JDQ Address: 160 East Via Verde, Suite 240 Phone I Fax: (909)305-2930 I E-Mail: 3.2 Bond Strength Na =(ANaO )e&,iacp.wa Nta No Nn AN,= see ACI 318-14, Section 17.4.5.1, Fig. R 17.4.5.1(b) = (2 Cp4a)2 CNa =10d1 I woa= (1 + eN) 1.0 a =0.7+0.3():51.0 cNa 'V cp,Na = MAX(. t) 1.0 CacCac Nba O k a *t,c ap seis ir do- her Page: 3 Project: Poseidon Channelside Sub-Project I Pos. No.: 200-35200-19001 Date: 10/28/2019 ACI 318-14 Eq. (17.4.5.1a) ACI 318-14 Table 17.3.1.1 ACI 318-14 Eq. (17.4.5.1c) ACI 318-14 Eq. (17.4.5.1d) ACI 318-14 Eq. (17.4.5.3) ACI 318-14 Eq. (17.4.5.4b) ACI 318-14 Eq. (17.4.5.5b) ACI 318-14 Eq. (17.4.5.2) Variables T k,çunc [psi] . d [in.] h [in.) Camin [in.] ao,iead T k.c [psi) 2,379 0.750 6.000 10.000 1.000 1,350 [in.] e [in.] Cac [in.] X a Ui.seIs 0.000 0.000 9.934 1.000 1.000 Calculations c,1, [in.] A, [in.2] A [in.2] 'V edNa 10.981 440.19 482.30 0.973 Vec1.Na We,Na Wcp,Na Nballb] 1.000 1.000 1.000 19,091 Results Na [Ib] 1' itonti seismic Na [lb] Non [lb] 16,958 0.650 0.750 1.000 8,267 2,108 Input data and results must be checked for agreement with the existing conditions and for ptaueibllltyl PROFIS Anchor (C) 2O-2OO9 Hits AG. FL-9494 Sthaan Hi Is a registered Trademark of HItil AG, Sthaan L www.hiltLus Company: Tetra Tech Specifier: JDQ Address: 160 East Via Verde, Suite 240 Phone I Fax: (909)305-2930 I E-Mail: B8 Profis Anchor 2.8.5 Page: 4 Project: Poseidon Channelside Sub-Project I Pos. No.: 200-35200-19001 Date: 10/28/2019 3.3 Concrete Breakout Strength AN - N ()Vsd.Nvc.NVcP,NNb (0 AN, see ACI 318-14, Section 17.4.2.1, Fig. R 17.4.2.1(b) A =9h, 1 = 2e1 1.0 Vec.N (1+ 3-h;;! W.114 =01+030%) """ 51.0 ICa 1.5heq 14Icp.N=MAX ,)!s 1.0 N5 -Fir h."-' ACI 318-14 Eq. (17.4.2.1a) ACI 318-14 Table 17.3.1.1 ACI 318-14 Eq. (17.4.2.1c) ACI 318-14 Eq. (17.4.2.4) ACI 318-14 Eq. (17.4.2.5b) ACI 318-14 Eq. (17.4.2.7b) ACI 318-14 Eq. (17.4.2.2a) Variables h5 [in.] e1.,4 [in.] ec2,N [in] Ca.mis [in.) ll cpi 6.000 0.000 0.000 10.000 1.000 c [in.] k x f [psi] 9.934 17 1.000 5,000 Calculations Aft [in .2] A [in.2] W ecI.Nl' ec2,N W ed.N 11 cp,N Nb (ib) 324.00 324.00 1.000 1.000 1.000 1.000 17,667 Results Neb jib] t1t canasta 0 swMIC 4 ndjcje 0 Neb (lb] N5 jib) 17,667 0.650 0.750 1.000 8,613 2,108 Input data and restits must be thecked for agreement with the existing conditions and for p1autibIty! PROFIS Anchor (c) 2003-2009 Hifti AG, FL-9494 Schaan HI Is a registered Trademark of Hits AG. Sthaan .B9 www.hilti.us Profis Anchor 2.8.5 Company: Tetra Tech Page: 5 Specifier: JDQ Project: Poseidon Channelside Address: 160 East Via Verde, Suite 240 Sub-Project I Pos. No.: 200-35200-19001 Phone I Fax: (909)305-2930 I Date: 10/28/2019 E-Mail: 4 Shear load Load Vija (lb] Capacity $ V (Ib] Utilization p., = VJO V, Status Steel Strength 1,994 6,111 33 OK Steel failure (with lever arm) N/A N/A N/A N/A Pryout Strength (Bond Strength controls)** 1,994 23,741 9 OK Concrete edge failure indirection x+ 1,994 10,565 19 OK * anchor having the highest loading anchor group (relevant anchors) 4.1 Steel Strength V. = av,18 (0.6 An., refer to ICC-ES ESR-31 87 Vst" ? VUS ACI 318-14 Table 17.3.1.1 Variables Ai.,v [in.2] f [psi] av, (0.6 Au.v f1.) [lb] 0.33 72,500 0.700 14,550 Calculations - Vweq 10,185 Results V,a,eq Pb] 4,stew nonWcUle V. [ib] V. [lb] 10,185 0.600 1.000 6,111 1,994 Irut data and results must be checked for agreement with the e,dstlng condittons and for plausibStyl PROF1S Anchor (c) 2003-2009 HIts AG. FL-9494 Schaan Hits Is a registered Trademark afKrd AG, Schaan Page: Project: Sub-Project I Pos. No.: Date: B10 I . ITI;wMj Profis Anchor 2.8.5 6 Poseidon Channelside 200-35200-19001 10/28/2019 www.hlltius Company: Tetra Tech Specifier: JDQ Address: 160 East Via Verde, Suite 240 Phone I Fax: (909)305-2930 I E-Mail: 4.2 Pryout Strength (Bond Strength controls) Vcp kcpj s V edNa cpNt 4, V 2 V1 AN, see ACI 318-14, Section 17.4.5.1, Fig. R 17.4.5.1(b) AN. =(2C a)2 IN. =lOda 'Vj. 1 = WecNa (___ cual V ed.Na = 0.7 +0.3 1.0 cNa 1 =MAX Col.,Eta) 15i.o cac Coe N a =Xat.capsean do, hot ACI 318-14 Eq. (17.5.3.18) ACI 318-14 Table 17.3.1.1 ACI 318-14 Eq. (17.4.5.1c) ACI 318-14 Eq. (17.4.5.1d) ACI 318-14 Eq. (17.4.5.3) ACI 318-14 Eq. (17.4.5.4b) ACI 318-14 Eq. (17.4.5.5b) ACI 318-14 Eq. (17.4.5.2) Variables [psi] d [in.] h, (in.) co,.in [in.] (psi) 2 1.000 2,379 0.750 8.000 10.000 1,350 eCIN (In.) e.N (In.) c (in.) a 0.000 0.000 9.934 1.000 1.000 Calculations ia [in.] AN. (in.2) A, (in.2) V WAS 10.981 440.19 482.30 0.973 V edNa V ec2,Na V cp.N. Nba (Ib) 1.000 1.000 1.000 19,091 Results Vcp (Ib) 4' concrete 4' ,eianiic $ nonct2e 4' Vcp (Ib) V 5 (Ib) 33,915 0.700 1.000 1.000 23,741 1,994 Input data and results must be chedied for agreement with the edstIng conditions and for ptauslbatyl PROFISMthor(C)2003.2009H1prjAG,FL-9494Schan HtItsa registered TredemHjftJ AG, Schaan B11 www.hlltl.us Profis Anchor 2.8.5 Company: Tetra Tech Page: 7 Specifier: JDQ Project: Poseidon Channeiside Address: 160 East Via Verde, Suite 240 Sub-Project I Pos. No.: 200-35200-19001 Phone I Fax: (909)305-2930 I Date: 10/28/2019 E-Mail: 4.3 Concrete edge failure In direction x+ Vth = () u,ged.V ui C.V u,i hv U) pareld.V Vb ACI 318-14 Eq. (17.5.2.1a AvcG $ Vcb ;t V.0 ACI 318-14 Table 17.3.1.1 Ave see ACI 318-14, Section 17.5.2.1, Fig. R 17.5.2.1(b) Avw = 4.5 c ACI 318-14 Eq. (17.5.2.1c) = (1 +2ev ) 1.0 ACI 318-14 Eq. (17.5.2.5) Wedv = 0.7 + 0.3(j--)S 1.0 ACI 318-14 Eq. (17.5.2.6b) ~ 1.0 he ACI 318-14 Eq. (17.5.2.8) = 9 X • 4? 415 ACI 318-14 Eq. (17.5.2.2b) Variables c [in.] c [in.] e v [in.] U) cv he [In.) 10.000 10.000 0.000 1.000 18.000 l [in.] X a de [in.] f [psi] %1) pffl 6.000 1.000 0.750 5,000 1.000 Calculations Av. [In.2) Avo [in.) 'i' ec,v U) ed,V U) h,V Vb Pb) 375.00 450.00 1.000 0.900 1.000 20,125 Results V [lb] 4 cowete # s.iwic $ non&ctae $ V b [lb] V55 [ib) 15,093 0.700 1.000 1.000 10,565 1,994 5 Combined tension and shear loads PH Pv C Utilization 13N.v [%) Status 0.255 0.326 5/3 26 OK PNV = + P' <= I lrçut data and results must be theciced for agreement with the wdsbng conditions and for plausibifityl PROFIS Mthcr (c) 2003-2009 Huh AG. FL-9494 Schoen HUll Is a registered Trademast of HUll AG. Schaan ["]TETRATECH Cl _COVER PAGE & DESIGN CRITERIA 811912019 P29 AM Client: Poseidon Channelside Subject: Retaing Wall Loads TETRATECH Job No: 200-35200-19001 J Phone: (909) 305-2930 C2 Date: 10/28/2019 Engineer: JDQ Checked by: VMR / EY Office: San Dimas Lateral Loads on Wall Height of Wall: hwall 6-ft Height of Wall Above Soil: ha I ft Portion on Wall Retaining Soil: hretaining hwall - ha = Width of Wall: wwall:= Ift Unit Weight offtIaU: DLwali 84psf SDS := 0.804 Importance Factor 1.25 Seismic Lateral force coefficient C := 0.4. SDS. le = 0.402 Seimic Wall Lateral Force: F Cswa1I = 33.768psf (Per the 2016 CBC, ft is not necessary to consider seismic Soil Seismic Pressure: := Opcf earth pressure if the retained height is 6 feet or less.) Total Lateral Force Per Unit Ft0t := Fp = 33.768•psf Length of Wall: Soil Data Calculations per ACI 318-14, ACI 530.11, IBC 2015, Allow Soil Bearing 1,500.0 psf CBC 2016, ASCE 7-10 Equivalent Fluid Pressure Method Heel Active Pressure = 92.0 psf/ft Toe Active Pressure = 92.0 psf/ft Passive Pressure 350.0 psf/ft Soil Density, Heel = 120.00 pcf Soil Density, Toe = 120.00 pcf Friction Coeff btwn Ftg & Soil = 0.350 Soil height to ignore for passive pressure = 0.00 in I Stem Construction lop Stem Design Height Above Ftg Stem OK ft = 0.00 Wall Material Above Ht' = Masonry Thickness in = 8.00 Rebar Size # 6 Rebar Spacing in = 8.00 Rebar Placed at = User Spec Design Data fb/FB + falFa = 0.993 Total Force @ Section lbs = 1,104.0 Moment-Actual ft-l- 1,901.3 Moment .... Allowable ft-l= 1,915.2 Shear.....Actual psi = 21.6 Shear.....Allowable psi = 38.7 Wall Weight psf = 84.0 Rebar Depth 'd' in = 4.25 Lap splice if above in = 54.00 Lap splice if below in = 6.26 Hook embed into footing in = 6.26 Masonry Data fm psi = 1,500 Fy psi = 20,000 Solid Grouting Yes [çeria Retained Height = 5.00 ft Wail height above soil = 1.00 ft Slope Behind Wall 0.00: 1 Height of Soil over Toe = 12.00 in Water height over heel = 0.0 ft Vertical component of active Lateral soil pressure options: USED for Soil Pressure. NOT USED for Sliding Resistance. NOT USED for Overturning Resistance. [Design Summary Wall Stability Ratios Overturning = 3.86 OK Sliding = 1.57 OK Total Bearing Load = 4,424 lbs ...resultant ecc. = 7.25 in Soil Pressure @Toe = 1,183 psf OK Soil Pressure @ Heel = 292 psf OK Allowable = 1,500 psf Soil Pressure Less Than Allowable ACI Factored @ Toe = 1,420 psf ACI Factored @ Heel = 350 psf Footing Shear @ Toe = 6.0 psi OK Footing Shear @ Heel = 6.0 psi OK Allowable = 100.6 psi Sliding Caics (Vertical Component NOT Used) Lateral Sliding Force = 1,594.7 lbs less 100% Passive Force = 952.8 lbs less 100% Friction Force = - 1,546.0 lbs Added Force Req'd = 0.0 lbs OK ....for 1.5: 1 Stability 0.0 lbs OK [Cantilevered Retaining Wall Metal BuildingiRetaining WalitRetaining WaIl.ec6 ENERCAI.C, INC. 1983.2017, Bul0.17.8.3. Ver.1O.17.8.3 Description: Retaining Wall - 5'-0 Max Retaining (Static) C3 Load Factors Dead Load 1.200 Modular Ratio 'n' = 21.48 Live Load ioo Short Term Factor 1.000 Earth, H 1600 Equiv. Solid Thick. in = 7.60 Wind, W 1.000 Masonry Block Type = 3 Seismic, E 1.000 Masonry Design Method = ASD Toe Width = 1.00 ft Heel Width = 5.00 Total Footing Width = 6.00 Footing Thickness = 16.00 in Key Width 8.00 in Key Depth = 0.00 in Key Distance from Toe 1.00 ft fc =, 4,500 psi Fy = 60,000 psi Footing Concrete Density = 150.00 pcf Mm. As % = 0.0018 Cover @ lop 2.00 @ Btrn.= 3.00 in Footing Design Results I in Factored Pressure 1,420 350 psf Mu': Upward 919 0 ft-lb Mu': Downward = 261 0 ft-lb Mu: Design = 658 3,042 ft-lb Actual 1-Way Shear = 5.99 5.98 psi Allow 1-Way Shear = 100.62 100.62 psi Toe Reinforcing = #5 © 12.00 in Heel Reinforcing = #5 © 12.00 in Key Reinforcing #4 © 12.50 in Other Acceptable Sizes & Spacings Toe: Not req'd, Mu < S Fr Heel: Not req'd,Mu<S'Fr Key: Not req'd, Mu < S Fr Description: Retaining Wall - 5'-O Max Retaining (Static) Footing Dimensions & Strengths C4 uuim gveinwg warnpeiauung wa ece I Cantilevered Retaining Wall Me ENERCAIC, INC. 1983-2017, Bu10.17.8.3, Vei10.17.8.3 I Summary of Overturning & Resisting Forces & Moments 1. OVERTURNING RESISTING.... Force Distance Moment Force Distance Moment Item lbs ft ft-lb lbs ft ft-lb Heel Active Pressure = 1,845.1 2.11 3,895.2 Soil Over Heel = 2,600.0 3.83 9,966.7 Surcharge over Heel Toe Active Pressure = -250.4 0.78 Surcharge Over Toe = Adjacent Footing Load = Added Lateral Load = Load @ Stem Above Soil = Total = 1,594.7 O.T.M. = ResistinglOvertuming Ratio = 3.86 Vertical Loads used for Soil Pressure = 4,424.0 lbs Sloped Soil Over Heel = -194.8 Surcharge Over Heel = Adjacent Footing Load = Axial Dead Load on Stem = Axial Live Load on Stem = Soil Over Toe = 120.0 0.50 60.0 Surcharge Over Toe = Stem Weight(s) = 504.0 1.33 672.0 Earth © Stem Transitions = 3,700.4 Footing Weight 1,200.0 3.00 3,600.0 Key Weight = 1.33 Vert. Component Total 4,424.0 lbs R.M. = 14,298.7 * Axial live load NOT included in total displayed or used for overturning resistance, but is included for soil pressure calculation. çC6 Cantilevered Retaining Wall ENERCAIC, INC. 1983.2017, Buikl:10.17.8.3, Ver.10.17.83 Description: Retaining Wall - 6-0 Max Retaining (Seismic) Soil Pressure @ Toe = 1,329 f OK Soil Pressure Heel = 145 p4 OK Allowable = 1,500 ps Soil Pressure Less Than Allowable ACI Factored @ Toe = 1,595 psf ACI Factored @ Heel = 174 psf Footing Shear @ Toe = 7.0 psi Footing Shear @ Heel = 7.3 psi 0 Allowable 100.6 psi Sliding Calcs (Vertical Component NOT Used) Lateral Sliding Force = 1,797.3 lbs less 100% Passive Force = - 952.8 lbs less 100% Friction Force = - 1,546.0 lbs Added Force Req'd 0.0 lbs OK ....for 1.5: 1 Stability = 194.8 lbs NG Load Factors Dead Load 1.200 Live Load 1.600 Earth, H .4600 Wind, W. 18Q Seismic,E 1.000 Criteria Retained Height = 5.00 ft Wall height above soil = 1.00 ft Slope Behind Wall = 0.00: 1 Height of Soil over Toe = 12.00 in Water height over heel 0.0 ft Vertical component of active Lateral soil pressure options: USED for Soil Pressure. NOT USED for Sliding Resistance. NOT USED for Overturning Resistance. I Surcharge Loads Surcharge Over Heel 0.0 psf Used To Resist Sliding & Overturning Surcharge Over Toe = 0.0 psf NOT Used for Sliding & Overturning I Axial Load Applied to Stem Axial Dead Load . = 0.0 lbs Axial Live Load = 0.0 lbs ' Axial Load Eccentricity = 0.0 in LDesign Summary Wall Stability Ratios Overturning = 3.12 Sliding = 1.32 Total Bearing Load = 4,424 ...resultant ecc. = 9.63 ISoil Data Allow Soil Bearing = 1,500.0 psf Equivalent Fluid Pressure Method Heel Active Pressure 92.0 psf/ft Toe Active Pressure = 92.0 psf/ft Passive Pressure = 350.0 psf/ft Soil Density, Heel = 120.00 pcf Soil Density, Toe = 120.00 pcf Friction Coeff btwn Ftg & Soil = 0.350 Soil height to ignore for passive pressure = 0.00 in I Lateral Load Applied to Stem Lateral Load 33.8 pIt Height to Top = 6.00 it ...Height to Bottom 0.00 ft Wind on Exposed Stem = 0.0 psf OK Ratio < 1.5! Calculations per Act 31814, ACI 530-11, IBC 2015, CBC 2016, ASCE 7-10 Adjacent Footing Load Adjacent Footing Load 0.0 lbs Footing Width = 0.00 ft Eccentricity = 0.00 in Wall to Ftg CL Dist . = 0.00 ft Footing Type Line Load Base Above/Below Soil - ft - at Back of Wall Poisson's Ratio = 0.300 I Stem Construction Top Stem Stem OK Design Height Above Ftg ft = 0.00 Wall Material Above 'HC Masonry Thickness in= 8.00 Rebar Size = # 6 Rebar Spacing in = 8.00 Rebar Placed at = User Spec Design Data fb/FB+falFa = 0.983 Total Force @ Section lbs = 1,306.6 Moment ...Actual ft-I = 2,509.2 MomenL..Allowable ft-I = 2,553.0 Shear ..... Actual psi = 25.6 Shear ..... Allowable psi = 51.6 Wall Weight psf = 84.0 Rebar Depth 'd' in = 4.25 Lap splice if above in = 54.00 Lap splice if below in = 6.26 Hook embed into footing in = 6.26 Masonry Data fm psi= 1,500 ' Fyc psi= 20,000 ' Solid Grouting = Yes Modular Ratio 'n' 21.48 Short Term Factor = 1.333 Equiv. Solid Thick. in = 7.60 Masonry Block Type = 3 Masonry Design Method = ASD S.F. greater than 1.1. -1for Seismic Load ICombo. OK EWA [ntilevered Retaining Wall Metal Bulh19Retainmo WalriRetaln Watec6 1 ENERCAIC, INC. 19812017, Bu:10.17.8.3, Ver.10.17.8.3 Description: Retaining Wag - 6-0 Max Retaining (Seismic) Footing Dimensions & Strengths Toe Width 1.00 ft Heel Width = 5.00 Total Footing Width = 6.00 Footing Thickness = 16.00 in Key Width 8.00 in Key Depth = 0.00 in Key Distance from Toe = 1.00 It fc 4,50Q psi Footing Concrete Density Fy = 60,0000 = 150.00 Mm. As % = 0.0018 Cover @ Top 2.00 @ Btm.= 3.00 in Footing Design Results I IQe HQeI Factored Pressure 1,595 174 psf Mu: Upward = 1,023 0 ft-lb Mu: Downward 261 0 ft-lb Mu: Design = 762 4,015 ft-lb Actual 1-Way Shear 6.97 7.29 psi Allow 1-Way Shear = 100.62 100.62 psi Toe Reinforcing = #5 @ 12.00 in Heel Reinforcing #5 @ 12.00 in Key Reinforcing = #4@ 12.50 in Other Acceptable Sizes & Spacings Toe: Not req'd,Mu<SFr Heel: Not req'd, Mu < S * Fr Key Not req'd, Mu < 5 * Fr I Summary of Overturning & Resisting Forces & Moments I OVERTURNING RESISTING.... Force Distance Moment Force Distance Moment Item - lbs ft ft-lb lbs ft ft-lb Heel Active Pressure = 1,845.1 2.11 3,895.2 Soil Over Heel 2,600.0 3.83 9,966.7 Surcharge over Heel = Sloped Soil Over Heel = Toe Active Pressure = -250.4 0.78 -194.8 Surcharge Over Heel Surcharge Over Toe = Adjacent Fooling Load = Adjacent Footing Load = Axial Dead Load on Stem = Added Lateral Load = 202.6 4.33 878.0 * Axial Live Load on Stem Load © Stem Above Soil = Soil Over Toe = 120.0 0.50 60.0 Surcharge Over Toe = Stem Weight(s) = 504.0 1.33 672.0 Earth © Stem Transitions = Total = 1,797.3 O.T.M. = 4,578.5 Footing Weight = 1,200.0 3.00 3,600.0 ResistinglOvertuming Ratio = 3.12 Key Weight 1.33 Vertical Loads used for Soil Pressure = 4,424.0 lbs Vert. Component - Total 4,424.0 lbs R.M, = 14,298.7 * Axial live load NOT included in total displayed or used for overturning resistance, but is included for soil pressure calculation. Use #6 bars @ 8" for stem wall reinforcement and #5 bars @ 12" for the footing reinforcement. C9 - •I• - fl A 1 # II U% U cri SHEET NO. OF DATE 10/28/19 I J CHECKED BY EY OFFICE San Dimas TELEPHONE 909-305-2930 ENGINEER JOQ JOB NUMBER 200-35200-19001 SUBJECT Prefab Metal Building Foundation and Retaining Wall Design Chainhink Fence Wind Load MWFRS for Solid Freestanding Walls and Solid Signs Per ASCE/SEI 7-10, Chapter 26 & 29 Simplified Design Wind Pressures Mean roof height, h 8 It Horizontal Dimension of building, B 93 ft Basic Wind Speed, V 115 mph (Figure 26.5-1) Wind Directionality Factor, Kd 0.85 (Table 26.6-1) Risk Category Ill (Table 1.5-1) Exposure Category B (Section 26.7.3) Velocity Pressure Exposure Coefficient, K 0.57 (Table 29.3-1) Topographic factor, Ks,: (Figure 26.8-1) Hill shape N/A H Oft Lh Oft x Oft K, = 0.00 0.00 1(3= 0.00 = (1 + K1K2K3)2 1.00 (Eqt 26.8-1) Gust Effect Factor, G: (Section 26.9.4) Peak factor for back ground response, g0 3.4 Peak factor for wind response, g 3.4 Intensity of turbulence @ height Zuj9r, I: Turbulence intensity factor, c 0.30 (Table 26.9-1) Minimum height, ?,,Vn 30 ft (Table 26.9-1) Equivalent height of sturcture, Z r = 0.6h > Zrnin= 30 ft = c(33/z)°' = 0.33 (Eqt 26.9-7) Background response, Q: Integral length scale power law exponent, EbW 0.33 (Table 26.9-1) Integral length scale factor,/ 320 (Table 26.9-1) Intergral length scale of turbulence @ Z, 1-zbar = 433) b& 310 ft (Eqt 26.9-9) Q = sqrt( 1/f1 +O.63[(B+h)/L)J°°3)} 0.87 (Eqt 26.9-8) G = 0.925x((1 + 1.7 go l b, Q)I( I + 1.7 g, I)] 0.85 (Eqt 26.9-6) Velocity Pressure, q, = 0.00256 K Kzl Kd V2 16.54 psf (Eqt 29.3-1) Net Force Coefficient, C, Case: A 1.35 (Figure 29.4-1) Design Wind Force, F = q, G C,A5 178'1psf (Eqt 29.4-1) where, A9 = gross area of solid freestanding wall/sign Wed Load (Directional & Envelope Procedure) Per ASCESEI 7-10. 1012812019 11:43 AM Client: Poseidon Channelside Subject: Chainlink Fence 1JTE.TRATECH Job No: 200-35200-19001 Phone:•(909) 305-2930 C1 0 Date: 8/19/2019 Engineer: JDQ Checked by: EY Office: San Dimas Chain Link Fence Loads Design Codes and References: CBC 2016 - California Building Code ASCE 7-10 - Minimum Design Loads For Buildings and Other Structures Chain link Fence Wind Load Guide (WLG 2445) Wind Design Parameters: Exposure Category: B Occupancy Category: Ill Height: Horizontal Dimension: Maximum Post Spacing Embedment Depth: Wind Speed: Design Wind Force: Chain Link Fabric: Chain Link Fence Post: H:=8ft B := 45ft S:=8ft D:= l6in V:= 115mph Fwjfld := 26.37psf 2" Square Mesh w/ #9 wire 1.5" Dia.SCH40 Pipe F=35 ksi Wind Load: Mesh and Fabric Size Coefficients: 7 26 See page Table 9 of.WLG-2445 (Coefficient is used to calculate the effective wind load area on the chain link fabric). (2" Square Mesh w/ #9 wire) Design Wind Pressure: F,ifld := I8.94psf \_ISee page C14 I F,jfld Applied Force: P, := = 2.609•psf Cc1 v,i := P•S = 0.02087•klf P1.H2 Moment at Support: M := = 0.668-kip-ft 2 V := Pi.H = 0.167-kip Date: 8/19/2019 Engineer: JDQ Checked by: EY Office: San Dimas Client: Poseidon Channelside Subject: Chainlink Post in Masonry TETRATECH IN Job No: 200-35200-19001 Phone: (909) 305-2930 Embedded Post In Masonry: Shear Force: V 0.146kip Check Bolt Capacity: Post Shear Strength: F := 35ksi = 35•ksi Post Shear Strength: Fnv := 0.75.F = 26.25•ksi Post Diameter d := 1.9in Post Area: A := 0.749in2 Post Shear Capacity: 4Vflb := 0.75•FnyAp = 14.746-kip Number of Post: 'b Check for Breakout: Post Depth: ha := l6in Safety Factor := 0.6 Breakout Capacity of First Bolt: Minimum edge distance: Ibe:= 3.8125in Masonry Compressive Strength: 1'm := 1500psi Projected Concrete Failure Area: := (2I)•lbe = 29.07in2 Breakout Strength: Bvnd := 4Apv Jfm Psi = 4.504. kip 4.Bvnd = 2.702-kip Vu DCR:= =0.054 Crushing Strength Crushing: AMasonry nc := 1050 -2Ibf = 6.079•kip TPS' .2 In = 3.647-kip Vu OCR := = 0.04 b(4 Bearing Strength 2 Masonry Bearing: Abr 'bep = 7.244 in C := 0.84Abr = 8.60-kip = 5.215-kip Vu = 0.028 DCR Shear Strength b(4)'n) Shear of Unreinforced Masonry (21)1 = 29.07 in2 V := 3.8AnJfmpsi = 4.278-kip C12 Client: Poseidon Channelside Date: 8/19/2019 Subject: Chainlink Post in Masonry TETRATECH Job No: 200-35200-19001 Engineer: JDQ Checked by: EY Phone: (909) 305-2930 Office: San Dimas Vnm := min( + 0.45 -a 300-An)-psi = 2.682-kip psi V := min( Vn,Vn max) = 2.682-kip = 1.609-kip vu DCR := ((.v) = 0.091 Load bearing length le:= 1he = 3.813 in da := d=1.9in Xa := I Minimum edge distance: Cal 'be = 3.813 in Projected Concrete Failure Area: := 1(2•1.5•Cai)(1.5•Cai)1 = 65.408 in Projected Concrete Failure Area : 4.5Cai2 = 65.408 in2 for Double Bolt: Edge Modification Factor edV := 0.7 + .3•_a2 = 0.9 I.SCat 1.2 I1.5-Cal 'hV := J ha = 0.598 0.2 1.5 Concrete Breakout Strength: Vb [7.(7 1 ) .J].Xa.Jfm.PSI.CaI = 3.1981(ip Nominal Concrete Breakout AVc Strength: VCb AvoJ Vh\''b = Service Load: V = 0.146•kip DCR Use a 1.5" post spaced at 8'-O' O.C. on the center of —0071 the CMU wall. Chain Link Fence Wind Load Guide for the Selection of Line Post and Line Post Spacing (WLG 2445) Copyright Chain Link Fence Manufacturers Institute All rights reserved Revised, 2012 Chain Link Fence Manufacturers Institute 10015 Old Columbia Road Suite B215 Columbia, MD 21046 Ph: 301-596-2583 Fax: 301-596-2594 email: cYmihq@aol.com www.chainlinkinfo.org C13 TABLE 9 Mesh and Fabric Size Coefficients (Cf1)* FABRIC WIRE SIZE (O.D.) 3/8" 1/2 5/8" in 1 W 1 2" 2 W metric equiv. (mm) => 9.5 12.7 15.8 25.4 31.8 44.5 50.8 57.1 diam. (In) diam.(mm) 45 (0.207): 5.26 2.92 3.52 4.73 5.33 5.92 #6(0.192) 4.88 3.30 3.75 5.06 5.71 6.37 #8(0.162) 4.11 3.58 4.36 5.89 6.67 7.44 #9 (0.148) 3.76 1.77 2.20 2.60 3.87 4.73 6.40 7.26 8.09 10(0.135) 3.43 1.88 2.36 2.80 4.19 5.13 6.96 7.90 8.82 11(0.120) 3.0 2.06 2.60 3.10 4.65 5.71 7.77 8.83 9.86 12(0.113) 2.87 2.16 2.72 3.25 4.91 6.04 8.22 9.35 10.44 * - (Cfi) =1 for solid panel fence C14 (18)