HomeMy WebLinkAbout2856 WHIPTAIL LOOP; ; CBC2022-0025; PermitBuilding Permit Finaled
(city of
Carlsbad
Commercial Permit
Print Date: 09/27/2022
Job Address: 2856 WHIPTAIL LOOP, CARLSBAD, CA 92010-6708
Permit Type: BLDG-Commercial Work Class:
Parcel#: 2091201400 Track It:
Valuation: $0.00 Lot It:
Occupancy Group:
#of Dwelling Units:
Bedrooms:
Bathrooms:
Occupant Load:
Code Edition:
Sprinkled:
Project Title:
Project It:
Plan It:
Construction Type:
Orig. Plan Check#:
Plan Check#:
Description: CAMSTON WRATHER RESOURCE: HIGH PILE RACKING
Applicant:
QUALITY MATERIAL HANDLING
LISA RISNER
10156 SHARON CIR
RANCHO CUCAMONGA, CA 91730-5300-SAN
BERNARDINO
(626) 812-9722
FEE
BUILDING PLAN CHECK
CERTIFICATE OF OCCUPANCY
FIRE High Piled Storage
Property Owner:
HAMANN OAK PROPERTIES LP
1000 PIONEER WAY
EL CAJON, CA 92020
(619) 440-7424
SB1473 -GREEN BUILDING STATE STANDARDS FEE
STORAGE RACKS > 8 FT HIGH
Tenant Improvement
Permit No: CBC2022-0025
Status: Closed -Finaled
Applied: 01/20/2022
Issued: 06/29/2022
Finaled Close Out: 09/21/2022
Final Inspection: 09/21/2022
INSPECTOR: Kersch, Tim
Contractor:
QUALITY MATERIAL HANDLING INC
10156 SHARON CIR
RANCHO CUCAMONGA, CA 91730-5300-SAN
BERNARDINO
(626) 812-9722
AMOUNT
$1,242.15
$15.00
$831.00
$1.00
$1,911.00
Total Fees: $4,000.15 Total Payments To Date: $4,000.15 Balance Due: $0.00
Please take NOTICE that approval of your project includes the "Imposition" of fees, dedications, reservations, or other exactions hereafter
collectively referred to as "fees/exaction." You have 90 days from the date this permit was issued to protest imposition of these
fees/exactions. If you protest them, you must follow the protest procedures set forth in Government Code Section 66020(a), and file the
protest and any other required information with the City Manager for processing in accordance with Carlsbad Municipal Code Section
3.32.030. Failure to timely follow that procedure will bar any subsequent legal action to attack, review, set aside, void, or annul their
imposition.
You are hereby FURTHER NOTIFIED that your right to protest the specified fees/exactions DOES NOT APPLY to water and sewer connection
fees and capacity changes, nor planning, zoning, grading or other similar application processing or service fees in connection with this
project. NOR DOES IT APPLY to any fees/exactions of which you have previously been given a NOTICE similar to this, or as to which the
statute of limitation has previously otherwise expired.
Building Division Page 1 of 1
1635 Faraday Avenue, Carlsbad CA 92008-7314 I 442-339-2719 I 760-602-8560 f I www.carlsbadca.gov
{ City of
Carlsbad
COMMERCIAL
BUILDING PERMIT
APPLICATION
8-2
Plan Check CfJt, 2-0U--@S
Est. Value
PC Deposit
Date r ,
Job Address d, Cl 5 VJ WV\ I om I Loop ~0~u1te: ___ .APN: Q eq Vs10 \ y
I • l I re l-{'.)Vt"' '{(/\
Tenant Name#( 0 [Y'f:il 9 D VVV'~, resOvl Y-c.-e.., Lot#: __ J __ Year Built:_?-() __ /~------
Year Built: Jolg Occupancy:'o/s I Construction Type:11 1-lj . Fire sprinklers,YES0NO A/C:-YES0No
BRIEF DESCRIPTION OF WORK: \/Vel '{ e YX,v\ &c. ti} <3 V\ p\ \-e, COl.l-/L l D<:_J
0 Addition/New:. __________ New SF and Use,. ________ New SF and Use
______ SF Deck, SF Patio Cover, SF Other (Specify) ___ _
□Tenant Improvement: ____ SF, Existing Use: ______ Proposed Use: _____ _
____ SF, Existing Use: Proposed Use: _____ _
PRIMARY APPLICANT .
Name: L\4:)G\ ~SO-e :C
Address:\O \S l o a vm CJ ((le,
City: ~0 J,ioC..Ucam ffl5\tste: vA Zip:9 IJSO
Phone: \.ol,lo ~ I'd.. 9 • e::;a. :Vf:± ;)o--0
Email: )?ey:: fY\ I ;::,@ Q f)'\jj· I~ 6 , <..D'fY"\
DESIGN PROFESSIONAL
Name: <t-Jo.Xe"?'h Pu\ \C.. \-\'1 wcd 0
Address: \ ~ ~7 vJ I'\ ~v\-\-~
city: GA v~~tate= vB zip: g o so
Phone: °\ Dot -sq ( O -\ ;iS I
Email: ~ 0o6@sedll\(;. (Q{Y;
, Architect State License: Ul---lR\eQ 55'. -e. {\ 0 I f).e ~
\l;I MCO 6q FT
PROPERTY OWN ER
Name· ~ .. pP.-1. L ~11,,( { e. L--P
Addre~00h 9 wn;;; W ct ;
City: f=.\., Lq) OV""'. State: ffi Zip:q q; D ~O
Phone: \ o(C] -!..fY D -1 ½ ol L---1 (;xe3 \-\ G\t'(\C\ I'\ \I"\
Email: ________________ _
CONTRACTOR OF RECORD ,
Business Na me: WA a. l l::hg fY\O.Jv(\ ell fu v-JI ti'.'£1 · 1 hv .
Address: \£_l5 lo 9/\.av[,h u v uLG
City: Oo B,,u g <Y'9Q €90 State: lv,--Zip: q 17 c O
Phone: lfLLP -'6 \":J..-9 7 0-0-..
Email: f'ev m r½,@ OM t\-I 0 G , C a/Y;
CSLB License#: ] ~ ( I O O Class: Coll { D(p { ,.B
Carlsbad Business License# (Required): ______ _
APPLICANT CERT/FICA T/ON: I certify that/ have read the application and state that the above information is correct and that the
information on the plans is accurate. I agree to comply with all City ordinances and State laws relating to building
constrnction. I ~,s ~ '{\cu,/ n~
NAME (PRINT): _L...:_r_ -"--\.,_____ SIGN:-~...;.,,.,,.,;..__ __ ___., __ DATE: l -l \--dQ;} ;)-
1635 Faraday Ave Carlsbad, CA 92008 Ph: 760-602-2719 Fax: 760-602-8558 Email: Building@carlsbadca.gov
REV. 10/21
THIS PAGE REQUIRED AT PERMIT ISSUANCE PLAN CHECK NUMBER: ______ _
A BUILDING PERMIT CAN BE ISSUED TO EITHER A STATE LICENSED CONTRACTOR OR A PROPERTY OWNER. IF THE PERSON
SIGNING THIS FORM IS AN AGENT FOR EITHER ENTITY AN AUTHORIZATION FORM OR LETTER IS REQUIRED PRIOR TO
PERMIT ISSUANCE.
(OPTION A): LICENSED CONTRACTOR DECLARATION:
lherebyaffirmunderpenaltyofperjurythatlamlicensedunderprovisionsofChapter9(commencingwithSection7000)ofDivision3
of the Business and Professions Code, and my license is in fut I force and effect. I also affirm under penalty of perjury one of the
following declarations {CHOOSE ONE):
01 have and will maintain a certificate of consent to self-insure for workers' compensation provided by Section 3700 ofthe Labor Code, for the performance of the
work which this permit is issued. PolicyNo. ____________________________________________ _
-OR-
I have and will maintain worker's compensation, as required by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued.
My workers' compensation insurance carrier and policy number are: Insurance Company Name: l'C\S LA I[ C\ Y\ (e_, C.o[f)~~ 0 ~ ~4 _
Policy No. \rJ";;,Q S:(75 9 1 ( o:-D CC) Expiration Date: --=~.._---'-1---=8--c...::O'-~""-""--""'::_ _____ _
-OR-
D Certificate of Exemption: I certify that in the performance of the work for which this permit is Issued, I shall not employ any person in any manner so as to become
subject to the workers' compensation Laws of California. WARNING: Failure to secure workers compensation coverage is unlawful and shall subject an employer to
criminal penalties and civil fines up to $100,000.00, in addition the to the cost of compensation, damages as provided for in Section 3706 of the Labor Code,
interest and attorney's fees.
CONSTRUCTION LENDING AGENCY, IF ANY:
I hereby affirm that ther is a construction lending agency for the performance of the work this permit is issued (Sec. 3097 (i) Civil Code).
Lender's Name: r-.J Lender's Address: _______________________ _
CONTRACTOR CERT/FICA T/ON: The applicant certifies that all documents and plans clearly and accurately show all e,isting and proposed buildings, structures, access roods, and
utllltles/ut//ity tostmtnts. All proposed modifications ond/or additions ore clearly labeled on the site plan. Any potentially e,istlng detail within these plans Inconsistent with the site pion art not
opprovtd for construction and may be required to be altered or removed. The city's approval of the application Is based on the premise that the submlrttd documtnts and plans show tht correct
dimtnsions ot the property, buildings, structures and their setboc/cs from property lines and from one another; access roods/eostments, and utilities. The existing and proposed ust of each building
as stated Is true and correct; oil easemtnts and other encumbrances to development have been accurately shown ond labeled os well as all on-site grading/site preparation. All improvements
txlsting on the property were completed in accordance with all regulations in existence at the time of their construct/a
NAME (PRINT): U~ ~ <;r\R V:: SIGNATURE:--».~!..::::fi::~.....----DATE: \ -11 ✓7)()'d--'7r
Note: If the person signing above Is an authorized agent for the contractor provide a letter of authorization on contractor letterhead.
(OPTION B): OWNER-BUILDER DECLARATION:
I hereby affirm that I am exempt from Contractor's License Law for the following reason:
D I, as owner of the property or my employees with wages as their sole compensation, will do the work and the structure is not intended or offered for sale (Sec.
7044, Business and Professions Code: The Contractor's License Law does not apply to an owner of property who builds or improves thereon, and who does such
work himself or through his own employees, provided that such improvements are not intended or offered for sale. If, however, the building or improvement is sold
within one year of completion, the owner-builder will have the burden of proving that he did not build or improve for the purpose of sale).
-OR-
DI, as owner of the property, am exclusively contracting with licensed contractors to construct the project (Sec. 7044, Business and Professions Code: The
Contractor's License Law does not apply to an owner of property who builds or improves thereon, and contracts for such projects with contractor(s) licensed
pursuant to the Contractor's License Law).
-OR-
DI am exempt under Business and Professions Code Division 3, Chapter 9, Article 3 for this reason:
AND,
D FORM B-61 "Owner Builder Acknowledgement and Verification Form" is required for any permit issued to a property owner.
By my signature below I acknowledge that, except for my personal residence in which I must have resided for at least one year prior to completion of the
improvements covered by this permit, I cannot legally sell a structure that I have built as an owner-builder if it has not been constructed in its entirety by licensed
contractors./ understand that a copy of theapplicoble law, Section 7044 of the Business and Professions Code, is avai table upon request when this application is
submitted or at the followins Website: http:/ lwww.lesinfo.ca.sovlcalaw.html.
OWNER CERT/FICA T/ON: The applicant certifies that all documents and plans clearly and accurately show all existing and propostd buildings, structures, access roods, and utllltles/ut/1/ty
easemtnts. All proposed modifications and/or additions are clearly labeled on the site plan. Any potentially existing detail within these plans Inconsistent with the site plan are not approved for
construct/on and may bt requirtd to be altered or removed. Tht city's approval of the opp/icotion is based on the premise that the submitted documents and plans show the correct dimensions of;
the property, buildings, structures and their setbacks from property lines and from one another; access roads/easements, and utilities. The existing and proposed use of each building as stated is true
and corrtct; all easements and other encvmbrances to development havt been accurately shown and labeled as well as all on-site grading/site preparation. All improvements existing on tht property
were completed in accordance with all regulations in existence at the time of their construction, unless otherwise noted.
NAME (PRINT): SIGN: _________ DATE: _____ _
Note: If the person signing above is an authorized agent for the property owner include form 8-62 signed by_property owner.
1635 Faraday Ave Carlsbad, CA 92008 Ph: 760-602-2719 Fax: 760-602-8558 Email: Building@carlsbadca.gov
2 REV. 10/21
Building Permit Inspection History Finaled
{city of
Carlsbad
PERMIT INSPECTION HISTORY for (CBC2022-0025)
Permit Type: BLDG-Commercial
Work Class: Tenant Improvement
Application Date: 01/20/2022 Owner: HAMANN OAK PROPERTIES LP
Issue Date: 06/29/2022 Subdivision:
Status: Closed -Finaled Expiration Date: 03/20/2023 Address: 2856 WHIPTAIL LOOP
CARLSBAD, CA 92010-6708
IVR Number:
Scheduled Actual Inspection Type Inspection No.
Date Start Date
09/21/2022 09/21/2022 BLDG-14 192150-2022
Frame/Steel/Bolting/We
lding (Decks)
Checklist Item
BLDG-Building Deficiency
COMMENTS
BLDG-Final Inspection 192151-2022
Tuesday, September 27, 2022
Checklist Item COMMENTS
BLDG-Building Deficiency
BLDG-Plumbing Final
BLDG-Mechanical Final
BLDG-Structural Final
BLDG-Electrical Final
38199
Inspection Primary Inspector Reinspection
Status
Passed Tim Kersch
Passed
Yes
Passed Tim Kersch
Passed
Yes
Yes
Yes
Yes
Yes
Inspection
Complete
Complete
Page 1 of 1
{ City of
Carlsbad
SPECIAL INSPECTION
AGREEMENT
B-45
Development Services
Building Division
1635 Faraday Avenue
760-602-2719
www .carlsbadca.gov
In accordance with Chapter 17 of the California Building Code the following must be completed when work being performed
requires special inspection, structural observation and construction material testing.
Project/Permit: ________ Project Address: '2$55 lo \ ,1.)V'\.l p-\u \ l loVf ~a.:rt
A. THIS SECTION MUST BE COMPLETED BY THE PROPERTY OWNER/AUTHORIZED AGENT. Please check if you are Owner-Builder
□. (If you checked as owner-builder you must also complete Section B of this agreement.)
Name: (Pleaseprint,__ _________________________________ _
(First) (M.I.) (Last)
Mailing Addres~----------------------------------
Email_· ________________________ Phone: __________ _
I am: □Property Owner □Property Owner's Agent of Record □Architect of Record □Engineer of Record
State of California Registration Numbe · Expiration Date: _______ _
AGREEMENT: I, the undersigned, declare under penalty of perjury under the laws of the State of California, that I have read,
understand, acknowledge and promise to comply with the City of Carlsbad requirements for special inspections, structural
observations, construction materials testing and off-site fabrication of building components, as prescribed in the statement of
special inspections noted on the approved plans and, as required by the California Building Code.
Signatur_,__· _______________________ Date: ___________ _
B. CONTRACTOR'S STATEMENT OF RESPONSIBILITY (07 CBC, Ch 17, Section 1706). This section must be completed by the
contractor / builder/ owner-builder.
Contractor's Company Name: Qua l 1:Rq fAa-t&n C{ I ~ rid I I A :J
Name: (Please print) ___ ..,_t+_r'_C_~-'-------------------f'_1_11_n) _______ _
Please ?heck if you are Owner-Builder D
(First) (M.I.) (Last)
Mailing Address: \Ot "Slo S h O.(O'r\ u r c\,,e ¥a.Y\0V\0 wcarom<,fo vfi ?)17 ~D
Email: P-€{fY)l ±s@ Q I\'\ \t\f)G · l_Q)"('y', Phone: lffi.,lo ~\2...-97~ ~)
State of California Contractor's License Number:. __ ]~:O~\~\~(_~')~O~--Expiration Date: \ / 3 1 \ 'LO 23
•
•
•
•
•
I acknowledge and, am aware, of special requirements contained in the statement of special inspections noted on
the approved plans;
I acknowledge that control will be exercised to obtain conformance with the construction documents approved by the
building official;
I will have in-place procedures for exercising control within our (the contractor's) organization, for the method and
frequency of reporting and the distribution of the reports; and
I certify that I will have a qualified person within our (the contractor's) organization to exercise such control.
I will provide a final report / letter in compliance with CBC Section 1704.1.2 prior to requesting final
inspection. / ~ ·
Signature:~ ____ V\Jy __ __,,__,_S.,.,..l ..... 2'--"=---------Date: ~\ _ _..,,~I _l-_d-_O_;;)_o-----__ _
B-45 Page 1 of 1 Rev. 03/20
• 1W
I NTERWEST
DATE: 6/24/2022 □ APPLICANT
□ JURIS.
JURISDICTION: City of Carlsbad
PLAN CHECK#.: CB-CBC2022-0025.RC2-approved ____ SET: III
PROJECT ADDRESS: 2856 Whiptail Loop
PROJECT NAME: Storage Racks for Camston Wrather Warehouse
□
□
□
□
The plans transmitted herewith have been corrected where necessary and substantially comply
with the jurisdiction's codes.
The plans transmitted herewith will substantially comply with the jurisdiction's building codes
when minor deficiencies identified below are resolved and checked by building department staff.
The check list transmitted herewith is for the applicant's information. The plans are being held at
lnterwest until corrected plans are submitted for recheck.
The applicant's copy of the check list is enclosed for the jurisdiction to forward to the applicant
contact person.
The applicant's copy of the check list has been sent to the jurisdiction at:
lnterwest staff did not advise the applicant that the plan check has been completed.
lnterwest staff did advise the applicant that the plan check has been completed.
Person contacted : Telephone#:
Date contacted: (by: ) Email:
Mail Telephone Fax In Person
/{)~
REMARKS: 1.Fire Department approval is required . 2. City to field verify that the path of travel
from the handicapped parking space to the rack area and the bathroom serving the rack area
comply with all the current disabled access requirements.
By: David Yao
lnterwest
6/16/2022
Enclosures:
9320 Chesapeake Drive, Suite 208 ♦ San Diego, Californ ia 92123 ♦ (858) 560-1468 ♦ Fax (858) 560-1576
DATE: 5/24/2022
JURISDICTION: City of Carlsbad
• lW
INTERWEST
A SAl'Ebulll COMPANY
PLAN CHECK#.: CB-CBC2022-0025.RC1
PROJECT ADDRESS: 2856 Whiptail Loop
SET: II
□ APPLICANT
□ JURIS.
PROJECT NAME: Storage Racks for Camston Wrather Warehouse
D The plans transmitted herewith have been corrected where necessary and substantially comply
with the jurisdiction's codes.
D The plans transmitted herewith will substantially comply with the jurisdiction's codes
when minor deficiencies identified below are resolved and checked by building department staff.
~ The check list transmitted herewith is for the applicant's information. The plans are being held at
lnterwest until corrected plans are submitted for recheck.
D The applicant's copy of the check list is enclosed for the jurisdiction to forward to the applicant
contact person.
~ The applicant's copy of the check list has been sent to the jurisdiction at:
Lisa Risner
D lnterwest staff did not advise the applicant that the plan check has been completed.
~ lnterwest staff did advise the applicant that the plan check has been completed.
Person contacted: Lisa Risner Telephone#: 626-812-9722 ext 220
Date contacted:
Mail Telephone
0 REMARKS:
By: David Yao
lnterwest
(by: ) Email: permits@mttinc.com
Fax In Person
Enclosures:
5/16/2022
9320 Chesapeake Drive, Suite 208 ♦ San Diego, California 92123 ♦ (858) 560-1468 ♦ Fax (858) 560-1576
City of Carlsbad CB-CBC2022-0025.RC1
5/24/2022
..
Please make all corrections, as requested in the correction list. Submit FOUR new
complete sets of plans for commercial/industrial projects (THREE sets of plans for
residential projects). For expeditious processing, corrected sets can be submitted
in one of two ways:
1. Deliver all corrected sets of plans and calculations/reports directly to the City of
Carlsbad Building Department, 1635 Faraday Ave., Carlsbad, CA 92008, (760)
602-2700. The City will route the plans to lnterwest and the Carlsbad Planning,
Engineering and Fire Departments.
2. Bring TWO corrected set of plans and calculations/reports to lnterwest, 9320
Chesapeake Drive, Suite 208, San Diego, CA 92123, (858) 560-1468. Deliver all
remaining sets of plans and calculations/reports directly to the City of Carlsbad
Building Department for routing to their Planning, Engineering and Fire
Departments.
NOTE: Plans that are submitted directly to lnterwest only will not be reviewed by
the City Planning, Engineering and Fire Departments until review by lnterwest is
complete.
NO B-50 PROVIDED. B-55 Located in the end of B-50. B-55 must imprinted
on the plan.
CARLSBAD CLIMATE ACTION PLAN: (APPLICABLE ONLY WHEN THE
PLANS COME WITH THE B-50 APPLICATION FILLED OUT AND MUST HAVE
B-55 FORM ON PLANS.)
City of Carlsbad requires that all projects that qualify for CAP compliance will
require a completed Climate Action Plan (CAP) Consistency Checklist (city form B-
50) to be completed by the APPLICANT.
For plans submitted to the City the following Climate Action Plan requirements
apply, per Carlsbad ordinance:
The applicant is to fill out the B-50 CAP Consistency Checklist. The scope of
work and project valuation will determine which sections of the CAP are required.
Plan examiners review the B-50 CAP Consistency Checklist for completion. For
example: If new residential construction is the scope of work, CAP sections 2A,
3A, and 4A are required to be filled on the B-50 checklist.
Only for projects that require CAP compliance: DO NOT APPROVE THE PLANS
UNTIL THE B-55 CAP PLAN TEMPLATE IS COMPLETED (MATCHING THE
B-50 APPLICATION) AND IMPRINTED ONTO THE PLANS. THE B-55 FORM
IS LOCATED AT THE END OF THE B-50 FORM.
•
City of Carlsbad CB-CBC2022-0025.RC1
5/24/2022
1. Provide item-by-item responses on an 8-1/2-inch by 11-inch sheet(s) clearly and
specifically indicating where and how each correction item has been addressed
(vague responses, such as "Done" or "See plans," are unacceptable).
5. Dimension all diagonal horizontal location on the plans.
The response shows sheet 28. Sheet 28 does not show the location of
diagonal and horizontal brace. Please clarify.
Please provide a response list indicating where each correction item has been
addressed on the plans. I.e., specify the plan sheet, note, or detail number,
calculation page, etc., where the item is corrected on the plans.
Please indicate here if any changes have been made to the plans that are not a
result of corrections from this list. If there are other changes, please briefly
describe them and where they are located in the plans. Have changes been
made to the plans not resulting from this correction list? Please indicate: □
Yes □ No
The jurisdiction has contracted with lnterwest, located at 9320 Chesapeake
Drive, Suite 208, San Diego, California 92123; telephone number of
858/560-1468, to perform the plan review for your project. If you have any
questions regarding these plan review items, please contact David Yao at
lnterwest. Thank you .
DA TE: June 1, 2022
JURISDICTION: Carlsbad
PLAN CHECK#.: CB-PREV2022-0059
• lW
IN TE RWEST
SET: I
PROJECT ADDRESS: 2856 Whiptail Loop East
□ APPLICANT
D JURIS.
PROJECT NAME: Revision #1 of Comston Wrather -Com -TI (CB-CBC2021-0453)
D The plans transmitted herewith have been corrected where necessary and substantially comply
with the jurisdiction's codes.
D The plans transmitted herewith will substantially comply with the jurisdiction's codes
when minor deficiencies identified below are resolved and checked by building department staff.
~ The check list transmitted herewith is for the applicant's information. The plans are being held at
lnterwest until corrected plans are submitted for recheck.
D The applicant's copy of the check list is enclosed for the jurisdiction to forward to the applicant
contact person.
~ The applicant's copy of the check list has been sent to the jurisdiction at:
D lnterwest staff did not advise the applicant that the plan check has been completed.
~ lnterwest staff did advise the applicant that the plan check has been completed.
Person contacted: Rebeca Mullen Telephone#: 619-440-7424
Date contacted: (by: ) Email: Rebeca@hamannaco.com
Mail Telephone Fax In Person
0 REMARKS:
By: Greg Favereaux, P.E.
lnterwest
Received on: -
Enclosures:
9320 Chesapeake Drive, Suite 208 ♦ San Diego, California 92123 ♦ (858) 560-1468 ♦ Fax (858) 560-1576
Carlsbad CB-PREV2022-0059
June 1, 2022
PLAN REVIEW CORRECTION LIST
SINGLE FAMILY DWELLINGS AND DUPLEXES
PLAN CHECK#.: CB-PREV2022-0059 JURISDICTION: Carlsbad
PROJECT ADDRESS: 2856 Whiptail Loop East
FLOOR AREA: 7955 sq ft
Revision Area
REMARKS:
DATE PLANS RECEIVED BY
JURISDICTION:
DATE INITIAL PLAN REVIEW
COMPLETED: June 1, 2022
FOREWORD (PLEASE READ):
STORIES: 2
HEIGHT: 40 ft
DATE PLANS RECEIVED BY
ESGIL CORPORATION: -
PLAN REVIEWER: Greg Favereaux, P.E.
This plan review is limited to the technical requirements contained in the California Residential
Code, California Building Code, California Plumbing Code, California Mechanical Code,
California I Electrical Code and state laws regulating energy conservation, noise attenuation and
access for the disabled . This plan review is based on regulations enforced by the Building
Department. You may have other corrections based on laws and ordinance by the Planning
Department, Engineering Department, Fire Department or other departments. Clearance from
those departments may be required prior to the issuance of a building permit.
Present California law mandates that construction comply with the 2019 edition of the California
Code of Regulations (Title 24), which adopts the following model codes: 2019 CRC, 2019 CBC,
2019 CPC, 2019 CMC and 2019 CEC.
The above regulations apply, regardless of the code editions adopted by ordinance.
The following items listed need clarification, modification or change. All items must be satisfied
before the plans will be in conformance with the cited codes and regulations. Per Sec. 105.4 of
the 2019 California Building Code, the approval of the plans does not permit the violation of any
state, county or city law.
To speed up the recheck process, please note on this list (or a copy) where each
correction item has been addressed, i.e., plan sheet number, specification section, etc.
Be sure to enclose the marked up list when you submit the revised glans.
Carlsbad CB-PREV2022-0059
June 1, 2022
GENERAL
1. Please make all corrections, as requested in the correction list. Submit FOUR new complete
sets of plans for commercial/industrial projects (THREE sets of plans for residential projects).
For expeditious processing, corrected sets can be submitted in one of two ways:
2.
3.
a. Deliver all corrected sets of plans and calculations/reports directly to the City of Carlsbad
Building Department, 1635 Faraday Ave., Carlsbad, CA 92008, (760) 602-2700. The
City will route the plans to lnterwest and the Carlsbad Planning, Engineering and Fire
Departments.
OR;
b. Bring TWO corrected set of plans and calculations/reports to lnterwest, 9320
Chesapeake Drive, Suite 208, San Diego, CA 92123, (858) 560-1468. Deliver all
remaining sets of plans and calculations/reports directly to the City of Carlsbad Building
Department for routing to their Planning, Engineering and Fire Departments.
NOTE: Plans that are submitted directly to lnterwest only will not be reviewed by the City
Planning, Engineering and Fire Departments until review by lnterwest is complete.
For the new guard rail, also include a detail where the guard is supported by beam/header
below. Provide calculations showing adequacy of connection as needed, per Section 1607.8.1.
Foundation details show new footing to be placed into existing slab -Provide a method to
ensure the foundations do not experience significant differential settlement. If epoxy anchors
are to be used, call out epoxy type, including ESR-ICC #, and note that special inspection will . .
The intent is to isolate the new footing from the non-structural slab. There is no structural reason
to tie the new footing into the non-structural slab on grade. In fact, tying the new footing to the
existing slab may cause unwanted slab cracks which could cause problems with the epoxy floor coatings._
ADDITIONAL
4 . There are no Mechanical, Plumbing, or Electrical comments at this time.
5. Please provide a response list indicating where each correction item has been addressed on
the plans. I.e., specify the plan sheet, note, or detail number, calculation page, etc., where the
item is corrected on the plans.
6 . Please indicate here if any changes have been made to the plans that are not a result of
corrections from this list. If there are other changes, please briefly describe them and where
they are located in the plans. Have changes been made to the plans not resulting from
this correction list? Please indicate:□ Yes □ No
7. The jurisdiction has contracted with lnterwest, located at 9320 Chesapeake Drive, Suite 208,
San Diego, California 92123; telephone number of 858/560-1468, to perform the plan review
for your project. If you have any questions regarding these plan review items, please contact
Error! Reference source not found. at lnterwest. Thank you.
Structural
Engineering & Design Inc.
1815 Wright Ave., La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.593.8561
Project: CAMSTON WRATHER RESOURCE RECOVERY
Project#: 21-1221-14
Date: 01/06/22
2856 WHIPTAIL LOOP EAST
CARLSBAD, CA 92010
Plan Review Responses
CORRECTIONS:
COMMENTS ON CALCULATION
PAGE 3
SEE ACI 318-14 CHAPTER 18 NOW ADDED IN CODE REFERENCE
PAGE4
RECEIVED
JUN 14 2022
CITY OF CARLSBAD
BUILDING DIVISION
SEE CALCULATION PAGE 8 FOR BEAM DESIGNED FOR IMPACT LOADS PER RMI. ~
PER RMI SECTION 2.6.6, IN LIEU OF AN ANALYSIS, RACK STRUCTURES SHALL BE SEPARATED FROM BUILDING STRUCTUR ND ANY
ATTACHED PERMANENT COMPONENTS BY A MINIMUM DISTANCE OF 2% OF TOP BEAM HEIGHT IN BRACED DIRECTION AND OP
BEAM HEIGHT IN UNBRACED DIRECTION. SEE PLAN FLOOR DRAWING FOR RACK CLEARANCE FULFILLED. -PAGES
R=6 IN LONGITUDINAL IS ALLOWED PER RMI 2012 SECTION 2.6.3
SEE CALCULATION PAGE 5.2 FOR CALCULATION OF NATURAL PERIOD.
PAGE 13
0
SEE SLAB BENDING CALCULATION FOR L=Asoll"0.5. Asoll STANDS FOR THE MINIMUM UNIFORM REACTION AREA FROM SOIL TO SLAB.
THE LARGER THIS AREA IS, THE LARGER THE REACTION IS FROM SOIL ONTO THE SLAB, AND THE MORE THE SLAB IS BENDING
(UPWARD).
IN THIS CASE, L=53.77 IN. THIS REPRESENTS THAT UNDER CURRENT LOADING OF RACK, THE MINIMUM UNIFORM LENGTH L NEEDS TO
BE 53.77 IN IN ORDER TO KEEP Fsoil <= 750 psf. AND THROUGH USING L=53.77 IN, THE ACTUAL BENDING ARM LENGTH x IS
CALCULATED x=L-y AND BENDING MOMENT MIS CALCULATED AS M=fsoil•x"2/2. THIS MOMENT IS THEN CHECKED AGAINST THE
ALLOWABLE MOMENT IN SLAB Mallowed=Sy*fb TO ENSURE THAT ALLOWABLE BEARING PRESSURE 750 PSF IS NOT EXCEEDED.
PAGE 14-16
SEE REVISED CALCULATION PAGE 14-43 FOR COMPLETE CALCULATION OF TYPE R,Q,I.
PLEASE FEEL FREE TO CALL WITH ANY QUESTIONS YOU MAY HAVE REGARDING THE ABOVE MATTERS.
SINCERELY,
~
ENHAOZHANG CBC2022-0025
2856 WHIPTAIL LOOP
CAMSTON WRATHER RESOURCE: HIGH PILE RACKING
2091201400
6/14/2022
CBC2022-0025
Structural
Engineering
$ Design, Inc
1815 Wright Ave
La Verne, Ca. 91750
Tel: 90.9-596-1351 Fax: 909-596-7186
Prqject Name: CAMSTON WRATHER RESOURCE RECOVERY
Project Number : 21-1221-14
Date : 01111/22
Street Address: 2856 WHIPT AIL LOOP EAST
City/State : CARLSBAD, CA 92010
Scope of Work: STORAGE RACK
1/11/22
Structural
Engineering & Design Inc.
1815 Wright Ave La Verne. CA 91750 Tel; 909.596.1351 Fax; 909 596.7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY
TABLE OF CONTENTS
Title Page ............................................................................................................. .
Table of Contents ................................................................................................. ..
Design Data and Definition of Components ........................................................ ..
Critical Configuration ........................................................................................... ..
Seismic Loads ..................................................................................................... ..
Column ................................................................................................................. .
Beam and Connector .......................................................................................... ..
Bracing ................................................................................................................. .
Anchors ................................................................................................................ .
Base Plate ............................................................................................................ .
Slab on Grade ...................................................................................................... .
Other Configurations ........................................................................................... ..
1
2
3
4
5 to 6
7
B to 9
10
11
12
13
CAMSTON WRATt'IER RESOURCES RECOVERY TYPE 551 Page 2.. of 'f)
Project #: 21-1221-14
I/G/2022
Structural
Engineering & Design Inc.
1a1s Wright Aye La Verne CA 91750 Jet: 909.596 1351 Fax: 909.596.7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project #: 21-1221-14
Design Data
1) Toe analyses herein conforms to the requirements of the:
2018 /BC Section 2209
2019 CBC Section 2209
ANSI MH 16.1-2012 Specifications for the Design of Industrial Steel Storage Racks "2012 RMI Rack Design Manual"
ASCE 7-16, section 15.5.J
AG 318-14 Chapter 17
2) Transverse braced frame steel conforms to ASTM A570, Gr.55, with minimum strength, Fy=55 ksl
Longitudinal frame beam and connector steel conforms to ASTM A570, Gr.55, with minimum yield, Fy=55 ksi
All other steel conforms to ASTM A36, Gr. 36 with minimum yield, Fy= 36 ksl
3) Anchor bolts shall be provided by Installer per ICC reference on plans and calculations herein.
4) All welds shall conform to AWS procedures, utilizing E70xx electrodes or similar. All such welds shall be performed
in shop, with no field welding allowed other than those supervised by a licensed deputy inspector.
S) The existing slab on grade Is 5.5" thick with minimum 4000 psi compressive strength. Allowable Soil bearing capacity Is 750 psf.
The design of the existing slab is by others.
6) Load combinations for rack components correspond to 2012 RMI Section 2.1 for ASD level load criteria
Definition of Components
Ffa:m!!
Height
A
~ Eleam
t::tl::=:/=====U:::t=::::=====i);
Beam
Ler,gth
Front View, Down Ai;\<
{Longitu<linaD Fr'.an\l!
CAM5TON WRATH ER RESOURCES RECOVERY TYPE 551
(bunn
Base Plata and
Anchors
Section A.: 0oss Aisle
(T rans\>e !'SQ ) Frama
Page 3 of ff)
H:»-irontal
&ace
Clilgonal
9'a,ce
I/G/2022
Structural
Engineering & Design Inc.
1a15 Weight Ave La Verne, CA 91750 Tel: 909,596,1351 fax· 909,596 7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14
Configuration & summary: TYPE SS
T
60"
+
2 64" 60"
~ 264"
60"
+
60°
J
--r --108" ---•r
Seismic Criteria
T"
58" +-48" +--48" + IE-----l
24" + t-------:71
24" + IE---i
24" +-1---311
24"
...:J.;-l<"---l
_}-48" --7( .,f-48" -,f'
"'*RACK COLUMN REACTIONS
ASDLOADS
AXIAL DL= 150 lb
AXIAL LL= 8,600 lb
SEISMIC AXIAL Ps=+/-6,279 lb
BASE MOMENT= 8. 000 in-lb
Beam Length rameType
Ss=0.921, Fa=l.2 4 48 In 264.0 in 1081n Single Row
Component Description STRESS
Column Fy=55 ksl Mecalux 312 3.06"x2.69"x0.105" P=8750 lb, M=16472 In-lb 0.99-0K
Column & Backer None None None N/A
Beam Fv=55 ksl Intlk 45E 4.5Hx2.75Wx0.059'1"hk LU=l OB in I Capacity: 5521 1~/pr 0.78-0K
Beam Connector FV=55 ksl Lvl 1: 4 Tab OK I Mconn=12313 In-lb I Mcap=15764 lrl-lb 0.78-0K
Brace-Horizontal Fy=55 ksl Mclx C456 Sgl 1.7953xl.378x16ga(U31x) 0.44-0K
Brace-Diagonal FV=55 ksl Mclx C456 Sgl 1.7953xl.378x16ga(U31x) 0.91-0K
Base Plate Fy=36 ksl 7 .874x7 .874x0.394 I Fixity= 8000' In-lb 0.79-0K
Anchor 4 per Base 0.5'' x 3.25" Embed Hilti TZ #1917 Inspection Reqd (Net Seismic Upllft=2760 lb) 0.658-0K
Slab & Soll 5.5" thk x 4000 psi slab on grade. 750 psf Soll Bearing Pressure ' 0.95-0K
Level I Load** I Story Force I Story Force Column I Column r Conn. Beam
Per Level Beam Soca Brace Transv Long It. Axial Moment Moment Connector
1 4,300 lb 60.0 In 24.0 In 2181b 87 1b 8,750 lb 16,472 "II 12,313 "# · 4 Tab OK
2 4,300 lb 60.0 In 24.0 In 4361b 175 lb 6,563 lb 11,799 "# 9,759 "# 4 Tab OK
3 4,300 lb 60.0 In 24.0 In 653 lb 262 1b 4,375 lb 9,lT/ '# 7,465 "# 4 Tab OK
4 4,300 lb 60.0 In 24.0 in 871 lb 3501b 2,188 lb 5,244 "# 4,253 "# 4 Tab OK
48.0 In
48.0 In
58.0 in
** Load defined as product weight per pair of beams Total: 2,178 lb 874 lb
CAMSTON WRATHER. RESOURCES RECOVERY TYPE 551 l/b/2022
Structural
Engineering & Design Inc.
1815 Wrjght Aye La Verne. CA 91750 Tel· 909 596.1351 Fax: 909.596,7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY
Seismic Forces Configuration: TYPE SS
Lateral analysis Is performed with regard to the requirements of the 2012 RMI ANSI MH 16.1-2012 Sec 2.6 & ASCE 7-16 sec 15.5.3
Transverse (Cross Aisle) Seismic Load . .,.
V= Cs*Ip*Ws=Cs*Ip*(0.67*P*Prf+D) Vt
Csl= Sds/R
= 0.1842 Cs-max * Ip= 0.1842
Cs2= 0.044*Sds Vm1n= 0.015
= 0.0324 Eff Base Shear=Cs= 0.1842 rraosvcrn: Elevation
Cs3= 0.S*S1/R Ws= (0.67*PLRFI * PL)+DL (RMI 2.6.2)
= 0.0424 .-----=_1_1._8_24_1b _______ ~
vtransv=Vt= 0.1842 * {300 lb+ 11524 lb)
Etransverse= 2,178 lb
Cs-max= 0.1842
Base Shear Coeff•Cs• 0.1842
Limit Sfilteg Level Transverse seismic shear per upright
Level PRODUCT LOAD P P*0.67*PRFI DL hi Wi*hl
1 4,300 lb 2,881 lb 75 lb 60 In 177,360
2 4,300 lb 2,881 lb 75 lb 120 in 354,720
3 4,300 lb 2,881 lb 75 lb 180 in 532,080
4 4,300 lb 2,881 lb 75 lb 240 in 709,440
sum: P=17200 lb 11,524 lb 3001b W=11824 lb 1,773,600
Lonaltudinal (Downaislel Seismic Load
Project#: 21-1221-14
Ss= 0.921
51= 0.339
Fa= 1.200
Fv= 1.961
Sds=2/3*Ss*Fa= 0.737
Sdl =2/3*51 *Fv= 0.443
Ca=0.4*2/3*Ss*Fa= 0.2947
(Transverse, Braced Frame Dir.) R~ 4. 0
Ip= 1.0
PRF1= ·pg_,
Pallet Helght=hp= 48.0 In
DL per Beam Lvl= 75 lb
Fi Fi* hl+h /2
217.8 lb 18,295-#
435.6 lb 62,726-#
653.4 lb 133,294-#
871.2 lb 229,997-#
2,178 lb ~=444,312
Similarly for longitudinal seismic loads, using R=6.0 Ws= (0.67 * P4lf2 * P) + DL PRF2= 1.0 ~ f,, .... ,1 Fl □
Csl=Sdl/(T*R)= 0.0739 = 11,824 lb (Longltudlnal, Unbraced Dir.) R= 6.0 OFw-.:J r7t:J Cs2= 0.0324 Cs=Cs-max*Ip= 0.0739 T= 1.00 sec
Cs3= 0.0283 I Vlong= 0.0739 * {300 lb+ 11524 lb) l ~ P7 ~□
Cs-max= 0.0739 Elongltudlnal= 874 lb Lim1tS,,,tu1.,,vo1 '-""""· MJJsmJcllh1N1r,,.rupr/11ht
Level PRODUC LOAD P P*0.67*PRF2 DL hi wl*hl Fl f ront Ylew
1 4,300 lb 2,881 lb 75 lb 601n 177,360 87.4 lb
2 4,300 lb 2,881 lb 75 lb 1201n 354,720 174.8 lb
3 4,300 lb 2,881 lb 75 lb 180 1n 532,080 262.2 lb
4 4,300 lb 2,881 lb 75 lb 240 In 709,440 349.6 lb
sum: ======~11==5f=2::::4::l::lb====3~00~1b==W=-~11~8~24=1b===1=7=7==3~6::::00=======8=74=1='=b========
CAM5TON WRATHER RE50URCE5 RECOVERY 1Yf'E 551 Page r,{of lf 3 I/G/2022
Foundamental Period of Vibration (Longitudinal)
Per FEMA 460 Appendix A -Development of An Analvtical Model for the Displacement Based Seismic Desiim of Storage
Racks in Their Down Aisle Direction
Section 6.5. l
Where:
Wpi
hpi =
g =
NL =
kc =
kbe =
kb =
kce =
Ne =
Nb=
weight of the ith pallet suppor ted by the storage rack
the elevation of the center of gravity of the ith pallet
with respect to the base of the storage rack
gravitaLional acceleration
Lhe number of loaded levels
the rotational stiffness of the connector
the flexral rotational stiffness of Lhe beam-end
the rotational sLiffness of the base plate
the flexural rotational stiffness of the base upright-end
the number of beam-to-upright connections
Lhe number of base plate connections
kbe = 6Elb / L
kce = 4Eic / H
kb = Blc / H
kc = Mmax/ 8 max
L = the clear span of Lhe beams
H = the clear height of t he upright
lb= the moment of i nertia about the bending axis of each be6111
le= the moment of inertia of each base upright
E = Young's Modulus of the beams
~
Since 0.6SDS=0.8lg)0.6g, B=l. 7
Sinco S1=0. 769g)0.5g,
us ing g=386 in.2/s
e demand= 12(l+a) (Tl/1. 0) (S1/htot)
= 0. 04419
f'> = Mc* (kc+kbe) / (kc*kbe) *htot
= 10. 4914
0 d= Cd(l+as)H,/htot
0. 36641
# of level s
min# of bays
Ne
Nb
kc
kbe
kb
kce
lb
L
le
H
E
Level hpi
1
2
3
4
5
4
5
80
12
428.571
3664.56
139. 142
656.567
Wpi
2.236 in· 4
10a in
1.132 in·4
240 in
29500 ksi
84 2. 881
144 2. 881
204 2. 881
2fi4 2.881
0 0
Structural
Engineering & Design Inc.
1 a15 Wright Ave La Verne. CA 91750 Tel· 909 596.1351 fax: 909.596.7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14
Downaisle Seismic Loads Configuration: TYPE SS
Determine the story moments by applying portal analysis. The base plate Is assumed to provide partial fixity.
Seismic Story Forces
Vlong= 874 lb
Vcol=Vlong/2= 437 lb
Fl= 87Ib
F2= 175 lb
F3= 262 lb
Seismic Story Moments
Typical (rame made
Tributary area of lwo columns
of rack fuimc '-,.,._ , __ _
I -~B~:G
I I -.EJGtt:J:~1£3:G
-.fD G ~:G ~:G
I-96'-,
~
Conooplyal System
lyplc:al frame ma4c
of two columns ,-✓----,
Mbase-max= 8,000 in-lb <=== Defaultcapadty hl-eff= hl -beam clip helght/2
Mbase-v= (Vcol*hleff)/2 = 56in
= 12,236 In-lb <=== Moment going tv base
Mbase-eff= Minimum of Mbase-max and Mbase-v
= 8,000 in-lb
M 1-1= [Vcol * hleff]-Mbase-eff
= (437 lb * 56 ln)-8000 In-lb
= 16,472 In-lb
Mseis= (Mupper+Mlower)/2
Mseis(l-1)= (16472 In-lb+ 11799 ln-lb)/2
= 14,136 In-lb
LEVEL hi Axial Load
1 60In 8,750 lb
2 60in 6,563 lb
3 60In 4,375 lb
4 60In 2,188 lb
M 2-2= [Vcol-(Fl)/2] * h2
= (437 lb· 87.4 lb]*60 in/2
= 11,799 in-lb
Msels(2-2)= (11799 In-lb + 9177 ln-lb)/2
= 10,488 in-lb
Summary of Forces
Column Moment** Mseismlc** Mend-fixity
16,472 in-lb 14,136 In-lb 3,454 In-lb
11,799 in-lb 10,488 In-lb 3,454 In-lb
9,177 in-lb 7,211 In-lb 3,454 In-lb
5,244 in-lb 2,622 In-lb 3,454 in-lb
Mconn= (Mseismlc + Mend-fixity)*0.70*rho
Mconn-allow(4 Pin)= 15,764 In-lb
**all moments based on limit states level loading
h2
h1
Beam to Column
Elevation
rho= 1.0000
Mconn** Beam Connector
12,313 In-lb 4 Tab OK
9,759 In-lb 4 Tab OK
7,465 In-lb 4 Tab OK
4,253 In-lb 4Tab OK
COL
CAM5TON WRATHER RE50URCE5 RECOVERY TYPE 551 Page {;; of 'f-3 I/G/2022
Structural
Engineering & Design Inc.
1815 Wright Ave La Verne CA 91750 Tel: 909 596 1351 Fax: 909.596,7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14
Column (Longitudinal Loads) Configuration: TYPE SS
Section Properties
Section: Mecalux 312 3.06"x2.69"x0.105"
Aeff = O. 782 In" 2
Ix = 1.132 in"4
Sx = 0.740 ln"3
rx = 1.203 In
nf= 1.67
Iy = 0.636 ln"4
Sy = 0.422 ln"3
ry = 0.902 In
Fy= 55 ksl
Kx = 1.7
r 3.0601n -1
Cmx= 0.85
E= 29,500 ksi
Loads Considers loads at level 1
COLUMN DL= 150 lb Critical load cases are: RMI Sec 2.1
Lx = 57.8 In
Ky = 1.0
Ly= 24.0 in
Cb= 1.0
r 0,105 In
2,690 In
J_
COLUMN PL= 8,600 lb Load Case 5:: (1+0.105*Sds)D + 0.75*(1.4+0.14Sds)*8*P + 0.15*(0.7*rho*E)<= 1.0, ASD Method
Mcol= 16,472 in-lb axial load coeff: 0.7891548 * P seismic moment coeff: 0.5625 * Meo/
Sds= 0.7368 Load Case 6:: (1+0.104*Sds)D + (0.85+0.14Sds)*B*P + (0.7*rho*E)<= 1.0, ASD Method
1 +0.105*Sds= 1.0774 ax/a/load coeff: 0.66121 seismic moment coeff: 0.7 * Meo/
1.4+0.14Sds= 1.5032 By analysis, Load case 6 governs utilizing loads as such
Moment=Mx= 0.7*rho*Mcol
1+0.14Sds= 1.1032
0.85+0.14*Sds= 0.9532
B= 0.7000
rhoc 1.0000
Axial Analysis
Axial Load=Pax= 1,103152*150 lb+ 0.953152*0.7*8600 lb
= 5,903 lb = 0.7 * 16472 In-lb
= 11,530 In-lb
KxLx/rx = 1.7*57.7511/1.20311
= 81.6
Fe= n"2E/(KL/r)max"2
= 43.7ksi
Pn= Aeff*Fn
= 29,475 lb
P/Pa= 0.38
Bending Analysis
> 0.15
KyLy/ry = 1*2411/0.902111
= 26.6
Fy/2= 27.5 ksl
Qc= 1.92
Check: Pax/Pa + (Cmx*Mx)/(Max*µx) s 1.0
P/Pao + Mx/Max s 1.0
Pno= Ae*Fy Pao= Pno;nc
= 0.782 in"2 *55000 psi
= 42,999 lb
= 429991b/l.92
= 22,395 lb
Fe > Fy/2
Fn= Fy(1-Fy/4Fe)
= 55 ksl*[l-55 ksi/(4*43.7 ksi)]
= 37.7 ksi
Pa= Pn/Qc
= 29475 lb/1.92
= 15,351 lb
Myield=My= Sx*Fy
= 0.74 in"3 * 55000 psi
= 40,689 In-lb
Max= My/Qf Per= n11. 2EI/(KL)max" 2
= 40689 ln-lb/1.67
= 24,365 in-lb
µx= {l/[l -(Qc*P/Pcr)]}"-1
= {1/[1-(l.92*5903 lb/34192 lb)]}"-1
= 0.67
Combined Stresses
= n11.2*29500 ksi/(l.7*57.75 ln)"2
= 34,192 lb
(5903 lb/15351 lb) + (0.85*11530 ln-lb)/(24365 ln-lb*0.67) =
(5903 lb/22395 lb)+ (11530 ln-lb/24365 In-lb) =
0.99
0.74
< 1.0, OK
< 1.0, OK
(EQ C5-1)
(EQ C5-2)
** For comparison, total column stress computed for load case 5 ls: 95.0% 'nq loads 6948.33588 lb Ax/a/ and M= 8647 in-lb
CAMSTON WRAn-lER RESOURCES RECOVERY TYPE 551 rae:,e 7 of f-3 IIGl2022
, Structural
Engineering & Design Inc.
1815 Wrjaht Aye La Verne CA 91750 Tel· 909 596,1351 fax· 909 596,7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14
BEAM Contiguratlon: TYPE ss
DETERMINE ALLOWABLE MOMENT CAPACITY
A) Check compression flange for local buckling CB2.1)
w= c -2*t -2*r
= 1.75 in -2,*0.059 in -2*0.059 in
= 1.514 In
w/t= 25.66
l=lambdae: [1.052/(k)"0.5] * (w/t) * (Fy/E)"0.5
= [1.052/(4)"0.5] * 25.66 * (55/29500)"0.5
= 0.583 < 0.673, Flange Is fully effective
Bl check web for local buckling per section b2.3
fl(comp)= Fy*(y3/y2)= 50.76 ksl
f2(tension)= Fy*{yl/y2)= 102.52 ksi
~ Y.= f2/fl
= -2.02
k=· 4 + 2*(1-Y)"3 + 2*(1-Y)
. •• ,, :s: 65.13
flat depthx w-= yl +y3 ,
Eq. B2.3-5
Eq. B2.3·4
Eq. B2.1-4
Eq. B2.1-1
• = 4.264 In w/t= 72.27118644 OK
!=lambda= [1.052/(k)"0.5] * (w/t) * (fl/E)"0.5
= [1.052/(65,13)"0.5] * 4.264 * (50.76/29500)"0.5
;, 0.391 < 0.673
be=w= 4.264 In
bl= be(3·Y)
= 0.849 ·
b2= be/2
= 2.13 In
bl+b2= 2.979 In > 1.412 In, Web is fully effective
Determine effect of cold working on steel yield point <Eva) per section AZ,2
Fya= C*Fyc + (1-C)*Fy (EQ A7.2-1)
Lcomer=Lc= (p/2) * (r + t/2)
0.139 In
Lflange-top=Lf= 1.514 In '
m= 0.192*(Fu/Fy) • 0.068
= 0.1590
C= 2*Lc/(Lf+2*Lc)
"'0.155 In
(EQ A7.2-4)
Be= 3.69*(Fu/Fy) • 0.819*(Fu/Fy)"2 -1.79
= 1.427
since fu/Fv= 1.18 < 1.2
and r/t= 1 < 7 OK
then Fye= Be * Fy/(R/t)"m (EQ A7.2-2)
= 78.485 ksl
Thus, Fya-top= 58.64 ksl (tension stress at top)
Fya-bcittom= Fya*Ycg/(depth -Ycg)
= 113.84 ksl (tension stress at bottom)
Check allowable tension stress for bottom flange
Lflange-bot=Lfb= Lbottom -2*r*-2*t
= 2.514 In
Cbottom=Cb= 2*Lc/(Lfb+2*Lc)
= 0.100
Fy-bottom=Fyb= Cb*Fy<: + (1-Cb)*Fyf
= 57.34 ksi
Fya = (Fya-top )*(Fyb/Fya-bottom)
Eq B2.3-2
(EQ A7.2-3)
= 29.54 ksl
If F= 0.95 Then F*Mn=F*Fya*Sx=j 26.44 in-k
dOplh
2.75 in tS ln 4
T 1.625 In
4,500 In
1~ 0.059 ln
Beam= Intlk 45E 4 5Hx2 75Wx0 059"Thk
Ix= 2.236 ln"4
Sx= 0.942 ln"3
Veg= 2.970 in
t= 0.059 In
Bend Radius=r= 0.059 in
Fy=Fyv= 55.00 ksi
Fu=FUV= 65.00 ksi
E=> 29500 ksl
top flange=b= 1.750 In
bottom flange= 2.750 in
Web depth= 4.!"nn ;n ~ Fy -
yl= Ycg-t-r= 2.852 in
y2= depth-Veg= 1.530 in
y3= y2-t-r= 1.412 In
Structural
Engineering & Design Inc.
1815 Wcigbt Aye La Verne CA 91750 Jel· 909 596 1351 fax· 909 596 7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14
BEAM contlguratlon: TYPE ss
RMI Section 5.2, PT II
Section
Beam= Intlk 45E 4.5Hx2.75Wx0.059"Thk
Ix=Ib= 2.236 inA4
SX= 0.942 in"3
t= 0.059 In
Fy=Fyv= 55 ksl
Fu=Fuv= 65 ksl
Fya= 58.6 ksi
E= 29500 ksl
F= 265.0
L= 108 in
Beam Level= 1
P=Product Load= 4,300 lb/pair
D=Dead Load= 75 lb/pair
1. Check Bending Stress Allowable Loads
Mcenter=F*Mn= W*L *W*Rm/8
W=LRFD Load Factor= 1.2*0 + 1.4*P+1.4*(0.125}*P
FOR DL= 2% of PL,
W= 1.599
Rm= 1 • [(2*F*L)/(6*E*Ib + 3*F*L)]
RMI 2.2, Item 8
1 · (2*265*108 in)/[(6*29500 ksi*2.2361 inA3)+(3*265*108 in))
= 0.881
if F= 0.95
Then F*Mn=F*Fya*Sx= 52.49 in·k
Thus, allowable load
per beam pair=W= F*Mn*8*(# of beams)/(L *Rm*W)
= 52.49 in-k * 8 * 2/(1081n * 0.881 * 1.599)
= 5,521 lb/pair allowable load based on bending stress
Mend= W*l *(1 ·Rm)/8
= (5521 lb/2) * 108 in * (1 ·0.881)/8
= 4,435 in-lb @ 5521 lb max allowable load
= 3,454 in-lb @ 4300 lb Imposed product load
2. Check Deflection Stress Allowable Loads
Dmax= Dss*Rd
Rd= 1 -(4*F*L)/(S*F*l + 10*E*Ib)
= 1 -(4*265*108 in)/[(5*265*108 in)+(10*29500 ksl*2.2361 in"4)]
= 0.857 In
If Dmax= L/180 Based on L/180 Deflection Criteria
and Dss= S*W*L "3/(384*E*Ib)
L/180= 5*W*L "3*Rd/(384*E*Ib*# of beams)
solving for W yields,
W= 384*E*I*2/(180*5*L A 2*Rd)
= 384*2.23611nA4*2/[180*5*(108 ln)A2*0.857)
"' 5,631 lb/pair allowable load based on deflection limits
t--2,751n
t 1,75ln +
T 1.625 In
4.500 In
1~ 0.059 In
11 IOlll l!llil Hllf 11 !1111111111 I0U t =~~~~~~d= ~--~-------------
El y
: : : : : :
Beam
Length
Allowable Deflection= L/180
= 0.600 In
Deflection at Imposed Load= 0.467 In
...
Thus, based on the least capacity of item 1 and 2 above: Allowable load= 5,521 lb pair
Imposed Product Load= 4,300 lb/pair
Beam Stress: . Beam at Level 1
8.L
Structural
Engineering & Design Inc.
1815 Wright Ave I a Verne CA 91750 Tel· 909 596 1351 fax· 909 596 7186
By: NIHAL Project CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14
4 Tab Beam to Column Connection Configuration: TYPE SS
Mconn max= (Mseismlc + Mend-flxlty)"'0.70"'Rho
= 12,313 In-lb Load at level 1
Connector Type= 4 Tab
Shear Capacity of Tab
Tab Length= 0.50 in
Ashear= 0.5 In "' 0.135 in
= 0.0675 ln"2
Pshear= 0.4 "' Fy "' Ashear
= 0.4 * 55000 psi * 0.0675in"2
= 1,485 lb
Bearing capacity of Tab
Fy= 55,000 psi
4 /8"
1316"
tcol= 0.105 In
Omega= 2.22
Fu= 65,000 psi
a= 2.22
Bearing Length= 0.5,0qO lrt;,
Pbearlng= alpha * Fu * tab length * tool/Omega
= 2.22 * 65000 psi * 0.5 in* 0.105 ln/2.22
= 3,413 lb > 1485 lb
Moment capacity of Braeket
Edge Distance=E= 1.00 in Tab Spacing= 2.0 in
C= Pl+P2+P3+P4 tclip= 0.135 in
= Pl+Pl "'(4.S"/6.S")+Pl *(2.S"/6.S")+Pl *(O.S"/6.S")
= 2.154 * Pl
Mcap= Sclip * Fbending = 0.1832 in"3 * 0.66 * Fy
= 6,650 In-lb
Pclip= Mcap/(2.154 * d)
= 6650.16 in-lb/(2.154 * 0.5 in)
-= 6,175 lb
C*d= Mcap = 2.154
Thus, Pl= 1,485 lb
Mconn-allow= [Pl *6.5"+Pl *(4.5"/6.5")*4.5" +Pl *(2.5"/6.5'')2.5" +Pl *(0.5"/6.5")*0.5"]
= 1485 LB*[6.5"+(4.5"/6.5")*4.5''+(2.5"/6.5")*2.5"+(0.5"/6.5")*0.5"]
= 15,764 In-lb > Mconn max, OK
Stress= 0.78
CAMSTON WRATHER RESOURCES RECOVERY TYPE SSI Page 1 of if)
Fy= 55,000 psi
Sclip= 0.183 in"3
d:o E /2
= 0.50 In
oo
0
I/G/2022
Structural
Engineering & Design Inc.
1s15 Weight Ave La Verne. CA 91750 Tel· 909 596.1 351 fax: 909.596.7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14
Transverse Brace Configuration: TYPE SS
Section Properties
Diagonal Member= Mclx C456 Sgl 1.7953x1.378x16ga(U31x) Horizontal Member= Mclx C456 Sgl 1.7953x1.378x16ga(U31x)
Area= 0.259 ln"2
r min= 0.449 In
. Fy= 55,000 psi
K= 1.0
Qc= 1.92
Frame Dimensions
Diagonal Member
Bottom Panel Helght=H= 58.0 In
Frame Depth=D= 48.0 in
Column Wldth=B= 2.7 in
Area= 0.259 in"2
r min= 0.449 In
Fy= 55,000 psi
K= \.0
dear Depth=D-8*2= 42.6 in
X Brace= NO
rho= 1.00
• 0 I Load Case 6:: (L±+fl0.1t004,µ"'~S.~'tl.,~Jt,t,;+c:-;z17<to[.B.BSf+H07...1~4is:5d;s~~~*B*P + [0.7*rho*EJ<= 1.0, ASD Method
Vtransverse= 2,178 lb
Vb=Vtransv*0.7*rho= 2178 lb * 0.7 * 1
= 1,525 lb
Ldiag= [(D-8*2)"2 + (H-6")"2]"1/2
= 67.2 In
Pmax= V*(Ldiag/D) * 0,75
= 1,601 lb
(kl/r)= (k * Ldiag)/r min
= (1 x 67.2 in /0.449 In )
= 149.7 in
Fe= pl"2*E/(kl/r)"2
= 12,992 psi
axial load on dla onal brace member Since Fe<Fy/2,
Fn= Fe Pn= AREA*Fn
= 0.259 In" 2 * 12992 psi
= 3,361 lb
Pallow= Pn/Q
= 3361 lb /1.92
= 1,751 lb
Pn/Pallow=
Horizontal brace
0.91
Vb=Vtransv*0,7*rho= 1,525 I!>
(kl/r)= (k * Lhoriz)/r min
= (1 x 48 In) /0.449 In
= 106.9 In
Since Fe<Fy/2, Fn=Fe
= 25,478 psi
Pn/Pallow= 0.44
<= 1.0 OK
<= 1.0 OK
CAM5TON WRATHER RE50URCE5 RECOVERY TYPE 551
Fe= pl"2*E/(kl/r)"2
= 25,478 psi
Pn= AREA*Fn
= 0.2591n"2*25478 psi
= 6,591 lb
Page (0 of lf-)
= 12,992 psi
Fy/2= 27,500 psi
Dllll:al.f.u
(;Q(}flauratlllo
Pal/ow= Pn/Qc
= 6591 lb /1.92
= 3,433 lb
T
l
I/G/20 22
Structural
Engineering & Design Inc.
1815 Wright Ave La Verne CA 91750 Tel· 909 596 1351 fax· 909,596,7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project #: 21-1221-14
Single Row Frame overturning Configuration: TYPE SS
Loads
Critical Load case(s):
1) RMI Sec 2.2, Item 7: (0.9·0.2Sds)D + (0.9·0.20Sds)*B*Papp • E*rho
Vtrans=V=E=Qe= 2,178 lb
DEAD LOAD PER UPRIGHT=D= 300 lb
PRODUCT LOAD PER UPRIGHT=P= 17,200 lb
Papp=P*0.67= 11,524 lb
Wst LCl=Wstl=(0.75264*0 + 0.75264*Papp*l)= 8,899 lb
Product Load Top Level, Plop= 4,300 lb
DL/Lvl= 75 lb
Seismic Ovt based on E, I:(Fi*hl)= 301,396 In-lb
heloht/deoth ratio-5.0 In
Al Fullv Loaded Rack
Load case 1:
Movt= E(Fi*hl)*E*rho
= 301,396 ln·lb
Sds= 0.7368
(0.9·0.2Sds)= 0.7526
(0.9·0.2Sds)= 0.7526
B= 1.0000• ,,
rho= 1.0000
Frame Depth=Df= 48.0 in
Htop-lvl=H= 240.0 In
# Levels= 4
# Anchors/Base= 4
ho 48.0 In
h-H+hn/2-264.0 in
Mst= Wstl * Df/2
= 8899 lb * 48 ln/2
= 213,576 ln·lb
SIQE E EVATIQt::1
T= (Movt-Mst)/Df
= (301396 in-lb • 213576 ln·lb)/48 in
= 1830 lb Net Uplift per Column
I Net Seismic Uolift= 1.830 lb Strength Level
Bl Too Level Loaded Onlv
Load case 1:
0 Vl=Vtop= Cs* Ip* Plop>= 350 lb for H/D >6.0 Movt= (Vl *h + V2 * H/2)*rho
= 0.1842 * 4300 lb = 215,735 ln·lb
= 7921b T= (Movt-Mst)/Df
Vleff= 792 lb Critical Level= 4 = (215735 ln·lb · 83091 ln-lb)/48 in
V2=Vrx. = Cs*Ip*D Cs*Ip= 0.1842 = 2,763 lb Net Uplift per Column
= 55 lb
Mst= (0,75264*D + 0.75264*Ptop*1) * 48 ln/2
= 83,091 In-lb
I Net Seismic Uollft= 2 763 lb Strength Level
Anchor
Check (4) 0.5" x 3.25" Embed Hilti TZ anchor(s) per base plate.
Special Inspection is required per #1917.
Fully Loaded:
Top Level Loaded:
Pullout capadty=Tcap= 970 lb L.A. City Jurisdiction? NO
Shear Capaclty=Vcap= 1,250 lb Phi= 1
(457 lb/970 lb)"'l + (272 lb/1250 lb)"l =
(690 lb/970 lb)"l + (99 lb/1250 lb)"l =
CAMSTON WRATHER RESOURCES RECOVERY TYPE 551 Page / / of 'f 3
0.69
0.79
Tcap*Phl= 970 lb
Vcap*Phl= 1,250 lb
<= 1.2 OK
<= 1.2 OK
I/G/2022
Structural
Engineering & Design Inc.
1815 Weight Aye La Verne CA 91750 Tel· 909 596.1351 Fax: 909 596 7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: ·21-1221-14
Base Plate Configuration: TYPE SS
Section
Baseplate= 7.874x7.874x0.394
Eff Width=W = 7.87 In
Eff Depth=D = 7.87 in
Column Wldth=b = 3.06 In
Column Depth=dc = 2.69 in
L = 2.59 in
Plate Thlckness=t = 0.394 in
a= 2.94 In
Anchor c.c. =2*a=d = 5.87 in
N=# Anchor/Base= 4
Fy = 36,000 psi
Downa1s1e Elevat100
Down Alsle Loads load Case 5:: (1+0.105*Sds)D + 0.75*{(1.4+0.14Sds)*B*P + 0.75*[0.7*rho*El<= 1.0, ASD Method
COLUMN DL= 150 lb Axlal=P= 1.077364 * 150 lb+ 0.75 * (1.503152 * 0.7 * 8600 lb)
COLUMN PL= 8,600 lb = 6,948 lb
Base Moment= 8,000 in-lb Mb= Base Moment*0.75*0.7*rho
· 1+0.105*Sds= 1.0774 = 8000 In-lb* 0.75*0.7*rho
, 1.4+0.14Sds= 1.5032 .--------=-4~,2_0_0_l_n-_l_b ______________ --,
B= o.7000 Axial Load P = 6,948 lb Mbase=Mb = 4,200 In-lb
Axial stress=fa = P/A = P/(D*W)
= 112 psi
Moment Stress=tb = M/S = 6*Mb/[(D*B"2]
= 51.6 psi
Moment Stress=fbl = fb-fb2
= 17.6 psi
M3 = (1/2)*fb2*L*(2/3)*L = (1/3)*fb2*L"2
= 76 in-lb
5-plate = (1)(t"2)/6
= 0.026 in"3/ln
fb/Fb = Mtotalj[(S-plate)(Fb)]
0.73 OK
Tanchor = (Mb-(Pl app*0. 75*0.46)(a))/[(d)*N/2]
= -1,867 lb No Tension
Ml= wL "2/2= fa*L "2/2
= 376 In-lb
Moment Stress=fb2 = 2 * fb * L/W
= 34.0 psi
M2= fbl *L "2)/2
= 59 in-lb
Mtotal = Ml+M2+M3
= 512 In-lb/In
Fb = 0.7S*Fy
= 27,000 psi
Pp= 0.7*F"c
= 2,800 psi
Tallow= 970 lb
OK
OK
Cross Aisle Loads Oirl<Wllo«l<M<!RM/5«2.~ ,,.,,,~:(l+O.JJSds)l)i. +(l+0.USDS}Pl.'0.75,Et.'0.75 <u 1.0, ASDMeUKXI Check uplift load on Baseplate
Effl
Effe
Check uplift forces on baseplate with 2 or more anchors per RMI 7.2.2.
Pstatic= 6,948 lb
Movt*0.75*0.7*rho= 158,233 in-lb
Frame Depth= 48.0 In
P=Pstatlc+Pselsmlc= 10,245 lb
b =COiumn Depth= 2.69 In
· L =Base Plate Depth-Col Depth= 2.59 In
fa = P/A = P/(D*W)
= 165 psi
Sbase/ln = (1)(t"2)/6
= 0.026 ln"3/in
fb/Fb = M/[ (5-plate )(Fb)]
= 0.79 OK
Pselsmlc= Movt/Frame Depth
= 3,297 lb
M= WL "2/2= fa*L "2/2
= 555 in-lb/In
Fbase = 0.75*Fy
= 27,000 psi
CAM5TON WRATtlER. R.E50UR.CE5 RECOVER.Y TYF'E 551 Page )2 of ~
When the base plate configuration consists of two anchor bolts located on either side
f the column and a net uplift force exists, the minimum base plate thickness
all be determined based on a design .bending moment In the plate equal
to the uplift force on one anchor times 1/2 the distance from
he centerline of the anchor to the nearest edge of the rack column"
I+-~• T
M rl "rhH= t1
.f!m!illllln
Uplift per Column= 2,760 lb
Qty Anchor per BP= 4
Net Tension per anchor= Ta= 690 lb
C= 2.59 In
Mu=Moment on Baseplate due to uplift= Ta*c/2
fb Fb *0.75= 0.122
= 894 in-lb
Splate= 0.204 in"3
OK
I/G/2022
Structural
Engineering & Design Inc.
1815 Wcigbt Aye La Verne CA 91750 Tei: 909.596.1351 fax· 909 596.7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project #: 21-1221-14
Slab on Grade Configuration: TYPE SS
a
t x -+1-1+-ye -~-=--=•I_
SLAB ELEVATION
Baseplate Piao View
Concrete
re= 4,000 psi
tslab=t= 5.5 in
teff= 5.5 In
;'<\]fi>'j:)}j]3.0;.)-'@ :: r;,• , ,
SQil
fsoll= 750 psf
Movt= 301,396 in-lb
Frame depth= 48.0 in
Sds= 0.737
Base Plate
Effec. Baseplate wklthmBm 7 .87 In
Effec. Baseplate DepthgD= 7 .87 in
width=a= 3.06 in
depth=b= 2.69 In
0.2*Sds= 0.147
··9~'~'"'is::P,.4"l·-.oJon.
l3=B/D= 1.000
Column Loads
DEAD LOAD=D= 150 lb per column
unfactored ASD load
PRODUCT LOAD=P= 8,600 lb per column
unfactored ASD load
Papp= 5,762 lb per column
P-seismic=E= (Movt/Frame depth)
= 6,279 lb per column
unfactored Limit State load
B= 0-17000 c' •
rho= 1i0066 .,, ,
Sds= 0.7368
1.2 + 0.2*Sds= 1.3474
0. 9 -0.20Sds= 0.7526
Puncture
Apunct= [(c+t)+(e+t)]*2*t
= 239.24 ln"2
Fpunctl= [(4/3 + 8/(3*13)] *).. *(F'c"0.5)
= 151.7 psi
Fpunct2= 2.66 * ).. * (F'c"0.5)
= 100.9 psi
Fpunct eff= 100.9 psi
Slab Bending
Pse=DL+PL+E= 15,059 lb
Asoil= (Pse*l 44)/(fsoil)
= 2,891 In" 2
X= (L-y)/2
= 18.7 In
Fb= 5*(phi)*(fc)"0.5
= 189.74 psi
midway dist face of column to edge of plate=c= 5.47 in
midway dist face of column to edge of plate=e= 5.28 In
F'c"0.5= 63.20 psi
Load case 1) (1.2+0.2Sds)D + (1.2+0.2Sds)*B*P+ rho*E RMI sEc 2.2 EQTN s
= 1.34736 * 150 lb+ 1.34736 * 0.7 * 8600 lb+ 1 * 6279 lb
= 14,592 lb
Load case 2) (0.9-0.2Sds)D + (0.9-0.2Sds)*B*Papp + rho*E RMI SEC 2,2 EQTN 7
= 0.75264 * 150 lb + 0.75264 * 0.7 * S762 lb+ 1 * 6279 lb
= 9,428 lb
Load Case 3) l.2*D + 1.4*P
= 1.2*150 lb + 1.4*8600 lb
= 12,220 lb
Load Case 4) 1.2*D + 1.0*P + LOE
= 15,059 lb
RMI SEC 2.2 EQTN 1,2
AC! 318-14 sec 5.3.1
Eqtn 5.3.le
Effective Column Load=Pu= 15,059 lb per column
L= (Asoil)"0.5
= 53.77 in
M= w*x"2/2
= (fsoll*x" 2)/(144*2)
= 910.4 In-lb
fv/Fv= Pu/(Apunct*Fpunct)
= 0.624 < 1 OK
y= (c*e)"0.5 + 2*t
= 16.4 in
s-slab= 1 *teff" 2/6
= 5.04 ln"3
fb/Fb= M/(S-slab*Fb)
0.952 < 1, OK
CAM5TON WRATHER RESOURCES RECOVERY TYf'E 551 Page /3 of 'f-3 I/G/2022
Structural
Engineering & Design Inc.
By: 'NIHAL
1 s15 Wright Ave La Verne. CA 91750 Tel: 909 596.1351 Fax: 909.596 7186
Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14
Configuration & Summary: TYPE R
T
60"
1~
2 64" 60"
t-
60"
+
60"
.I
' -t---108" ----,/,r
-"y-:--t--:;,t
58" +-IE-------i
48" -'f.----1--
48" -'t-_ ___,
264" 24" + ,____
24" + 24" +-24" ~
,r-48" --7'-,r-48" -+
**RACK COLUMN REACTIONS
ASDLOADS
AXIAL DL= 150 lb
AXIAL LL= 3,800 lb
SEISMIC AXIAL Ps=+/· 2,905 lb
BASE MOMENT= 0 In-lb
Seismic Criteria # Bm Lvls Frame Depth Frame Height # Diagonals Beam Length Frame Type
Ss=0.921, Fa=l.2 4 48 in 264.0 In 7 108 In Single Row
Component Description STRESS
Column Fy=SS ksl Mecalux 314 3.0"x2.69"x0.070" P=3950 lb, M=11343 In-lb 0.78-OK
Column & Backer None None None N/A
Beam Fv=55 ksi lntlk 27E 2.75Hx2.75Wx0.059"Thk Lu=108 in I capacity: 2087 lb/pr 0.91-OK
Beam Connector Fv=55 ksi Lvl 1: 3 Tab OK I Mconn,,,8122 in-lb I Mcap=8828 in-lb 0.92-OK
Brace-Horizontal Fv=55 ksl Mclx C456 Sgl 1.7953xl.378x16ga(U3lx} 0.2-OK
Brace-Diagonal Fy=55 ksl Mclx C456 Sgl 1.7953xl.378x16ga(U31x) 0.42-OK
Base Plate Fy=36 ksi 7.283x5.118x0.394 I Fixity= 0 in-lb 0.41-OK
Anchor 2 oer Base 0.5'' x 3.25" Embed Hlltl TZ #1917 Inspection Reqd (Net Seismic Uplift-=1234 lb) 0.592-OK
Slab & Soll 5.5" thk x 4000 psi slab on grade. 750 psf Soil Bearing Pressure 0.31-OK
Level I Load** I Story Force I story Force Column I Column I Conn. Beam
Per Level Beam Soca Brace Transv Long It. Axial Moment Moment Connector
1 1,900 lb 60.0 In 24.0 In 99 lb 401b 3,950 lb 11,343 "# 8,122 "# 3 Tab OK
2 1,900 lb 60.0 In 24.0 in 199 lb 801b 2,963 lb 5,373 "# 5,615 "# 3Tab OK
3 1,900 lb 60.0 In 24.0 In 298 1b 119 lb 1,975 lb 4,179 "# 4,570 "# 3 Tab OK
4 1,900 lb 60.0 In 24.0 in 3971b 159 1b 988 1b 2,388 "# 3,107 "# 3 Tab OK
48.0 in
48.0 in
58.0 in
** Load defined as product weight per pair of beams Total: 993 lb 3981b
CAM5TON WRATHER RE50URCE5 RECOVERYTYF'E R Page /Cf-of 'f3> I/G/2022
Structural
Engineering & Design Inc.
1815 Wright Ave La Verne CA 91750 Tel: 909.596.1351 Fax: 909 596 7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY
Seismic Forces Configuration: TYPER
Lateral analysls ts perl'ormed with regard to the requirements of the 2012 RMI ANS! MH 16.1-2012 Sec 2.6 & /JSCT. 7-16 sec 15.5.3
Transverse (Cross Aisle) Seismic Load ,,,
V= Cs*Ip*Ws=Cs*Ip*(0.67*P*Prf+D) Vt
Csl= Sds/R .
= 0.1842 Cs-max* Ip= 0.1842
Cs2= 0.044*Sds Vm1n= 0.015
= 0.0324 Eff Base Shear=Cs= 0.1842 ])jl"'vem· Elmt1011
Cs3= O.S*S1/R Ws= (0.67*PLRF1 * PL)+DL (RMI 2.6.2)
= 0.0424 .-----=-=5-'-',3c;.9_2-=lb ________ -,
Cs-max= 0.1842 Vtransv=Vt= 0.1842 * (300 lb+ 5092 lb)
Base Shear Coeff=Cs= 0.1842 Etransverse= 993 lb
Limit States Level Transverse seismic shear per upright
Level PRODUCT LOAD P P*0.67*PRFI DL hi wi*hi
1 1,900 lb 1,273 lb 75 1b 601n 80,880
2 1,900 lb 1,273 lb 75 lb 120 In 161,760
3 1,900 lb 1,273 lb 75 lb 180 In 242,640
4 1,900 lb 1,273 lb 75 lb 240 In 323,520
sum: P=7600 lb 5,092 lb 300 lb W=5392 lb 808,800
Lonaltudlnal CDownaislel Seismic Load
Project#: 21-1221-14
Ss= 0.921
S1= 0.339
Fa= 1.200
FV= 1.961
Sds=2/3*5s*Fa= 0.737
Sd1=2/3*51 *Fv= 0.443
ca=0.4*2/3*Ss*Fa= o.2947
(Transverse, BraCl!d Frame Dir.) R= 4.0
Ip= 1.0
PRF1 = J}~ j;!;f:.
Pallet Helght=hp= 48.0 in
DL per Beam Lvl= 75 lb
Fi Fi* hi+hp/2)
99.3 lb 8,341·#
198.6 lb 28,598-#
297.9 lb 60,772-#
397.2 lb 104,861-#
993 lb I =202,572
Similarly for longitudinal seismic loads, using R=6.0 Ws= (0.67 * P4\F2 * P) + DL PRF2= 1.0 , .. , .... · I f,,,51 EJ E]
Csl=Sdl/(T*R)= 0.0739
Cs2= 0.0324
Cs3= 0.0283
Cs-max= 0.0739
Level PRODUC LOAD P
1 1,900 lb
2 1,900 lb
3 1,900 lb
4 1,900 lb
= 5,392 lb (Longitudinal, Unbraced Dir.) R= 6.0
Cs=Cs-max*Ip= 0.0739 Tu 1.00 sec I Vlong= 0.0739 * (300 lb+ 5092 lb) I
Elongltudlnal= 398 lb Llm/tS,,,to, ,.,,,., Longlt. Sf)/$m/csbtJDrpt1ruprlr,ht
P"'0.67*PRF2
1,273 lb
1,273 lb
1,273 lb
1,273 lb
DL
75 lb
75 lb
75 lb
75 lb
hi wi*hi
60 1n 80,880
1201n 161,760
1801n 242,640
2401n 323,520
□~ M't:J
Dr:7 i"''·'I D
Fi Etoot YJew
39.8 lb
79.6 lb
119.4 lb
159.2 lb
sum: =======5=09=2=1=b===3=00=1=b===W===53=9=2=1b====8=0==8=8=00========39=8=1=b========
CAMSTON WRATHER RESOURCES RECOVERY TYPER I /G/2022
foundrunental Period of Vibration (Lon,d tudinal)
Per FEMA 460 Appendix A -Development of An Analytical Model for the Displacement Based Seismic Design of Storage
Racks in Their Down Aisle Direction
Section 6. 5. 1
Where:
g =
NL =
kc=
kbe"
kb=
kce =
Ne =
Nb =
kbe =
kcc =
kb =
kc =
L =
H =
lb=
Ic =
E =
w.eight of the i th pallet supported by the storage rack
the elevation of the center of gravity of the ith pallet
with rospoct to the base of the storage rack
gravitational acceleration
the number of loaded levels
the rotational stiffness of the connoctor
the flexral rotational sti ffness of the beam-end
the roLaLional stiffness of the base plate
t he flexural rotational stiffness of the base upright-end
the number of beam-to-upright connections
the number of base plate connections
6Elb / L
4Eic / H
Eic / H
~!max/ e max
the clear span of the beams
the clear height of the upright
the moment of inertia about the bending axis of each beam
the moment of inertia of each base upright
Young's Modulus of the beams
Tl= 1. 08365
Since 0.6SDS=0.8lg)0.6g, B=l. 7
Since Sl=0. 769g>0.5g,
using g=386 in'2/s
0 demand= 12 (1 +a) (T 1/1. 0) (S 1/h tot )
= 0. 04233
ti= Mc* (kc+kbe) / (kc*kbe) *h tot
= 13. 0372
0d= Cd (1 +as)* t. /ht ot
0.45532
Ii of leveb
min# of bays
Ne
Nb
kc
kbe
kb
kce
lb
L
le
H
E
Level hpi
1
2
3
4
5
4
3
48
8
128. 571
lt01.61
94.0313
376. 125
Wpi
0.874 in·4
108 i n
0.785 in· 4
240 in
wsoo ksi
84 1. 273
144 1. 273
204 1. 273
264 1. 273
0 0
Structural
Engineering & Design Inc.
1815 Wright Ave La Verne CA 91750 Jel; 909.596.1351 fax· 909.596.7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY
Downalsle Seismic Loads Configuration: TYPE R
Determine the story moments by applying portal analysis. The base plate Is assumed to provide no fixity.
Seismic story Forces
Vlong= 398 lb
Vcol=Vlong/2= 199 lb
Fl= 401b
F2= 80 lb
F3= 119 lb
Seismic Story Moments
ryp1c.il frame rna<lc
Tributary at<a of two columns
ofrackfi.,1mc "' _______ ,
-~ ~ EJ:'G ':~
• I -~□EJ:~~:G
-~G~:GEJ:G
I-96"-, ... _______ .. ,
~ Cooceotual Svstem
Project #: 21-1221-14
Typlc.il Ftamc made L of two columns
~
Mbase-max= 0 In-lb
Mbase-v= (Vcol*hleff)/2
<=== Default capacity h1-eff= h1 -beam dip height/2
= 57 in
= 5,672 in-lb <=== Moment going to base
Mbase-eff= Minimum of Mbase-max and Mbase-v
= 0 in-lb PINNED BASE ASSUMED
M 1-1= [Vcol * h1eff]-Mbase-eff M 2-2= [Vcol-(Fl )/2] * h2
= (199 lb * 57 ln)-0 In-lb = (199 lb -39.8 lb]*60 in/2
= 11,343 In-lb = 5,373 In-lb
Mseis= (Mupper+Mlower)/2
Msels(l-1)= (11343 in-lb+ 5373 in-lb)/2
= 8,358 in-lb
Msels(2-2)= (5373 In-lb+ 4179 ln-lb)/2
= 4,776 In-lb
LEVEL
1
2
3
4
Summary of Forces
hi Axial Load Column Moment** Mselsmlc**
60 In 3,950 lb 11,343 in-lb 8,358 in-lb
601n 2,963 lb 5,373 In-lb 4,776 in-lb
601n 1,975 lb 4,179 In-lb 3,284 in-lb
60in 9881b 2,388 In-lb 1,194 In-lb
• Mconn= (Mselsmlc + Mend-fixlty)*0.70*rho
Mconn-allow(3 Pin)= 8,828 In-lb
**all moments based on limit states level loading
Mend-fixl
3,245 in-lb
3,245 in-lb
3,245 in-lb
3,245 In-lb
h1 h1eff
Beam to Column
Elevation
rho= 1.0000
Mconn**
8,122 In-lb
5,615 in-lb
4,570 in-lb
3,107 in-lb
Beam Connector
3 Tab OK
3 Tab OK
3 Tab OK
3 Tab OK
COL
CAM5TON WRATH ER RESOURCES RECOVERY lYFE R Page ( { of 1f') 1/G/2022
Structural
Engineering & Design Inc.
1815 Weight Aye La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project #: 21-1221-14
Column (Longltudlnal Loads) Configuration: TYPE R
Section Properties
Section: Mecalux 314 3.0"x2.69"x0.070"
Aeff = 0.538 In" 2
Ix = 0.765 ln"4
Sx = 0.510 in" 3
rx = 1.190 in
Qf= 1.67
Iy = 0.464 ln"4
Sy = 0.307 ln"3
ry = 0.928 In
Fy= 55 ksi
Kx = 1.7
r 3.000 In -1
Cmx= 0.85
E= 29.500 ksl
Loads Considers loads at level 1
COLUMN DL= 150 lb Critical load cases are: RMI Sec 2.1
Lx = 58.6 In
Ky= 1.0
Ly= 24.0 in
Cb= 1.0
---,--l
2.690 In
J_
0.070in
COLUMN PL= 3,800 lb
Mcol= 11,343 in-lb
Sds= 0.7368
1+0.105*Sds= 1.0774
1.4+0.14Sds= 1.5032
1+0.14Sds= 1.1032
0.85+0.14*Sds= 0.9532
Load Case 5:: (1+0.105*Sds)D + 0.75*(1.4+0.14Sds)*B*P + 0.75*(0.7*rho*E)<= 1.0, A5D Method
axial load coeff: 0.7891548 * P seismic moment coeff: 0.5625 * Meo/
Load case 6:: (1+0.104*Sds)D + (0.85+0.14Sds)*B*P + (0.7*rho*E}<= 1.0, ASD Method
ax/a/load coeff: 0. 66721 seismic moment coeff: 0.7 * Meo/
By analysis, Load case 6 governs utilizing loads as such
Moment=Mx= 0.7*rho*Mcol
B= 0.7000
rho= 1.0000
Axial Analysis
luc:lal Load=Pax= 1.103152*150 lb+ 0,953152*0.7*3800 lb
= 2,701 lb = 0.7 * 11343 in-lb
= 7,940 in-lb
Kxlx/rx = 1.7*58.625"/l.19"
= 83.8
Fe= n" 2E/(KL/r)max" 2
= 41.5ksl
Pn= Aeff*Fn
= 19,785 lb
P/Pa= 0.26 > 0,15
Bending Analysis
KyLy/ry = 1 *24"/0.9284"
= 25.9
Fy/2= 27.5 ksl
Qc= 1.92
Check: Pax/Pa + (Cmx*Mx)/(Max*µx) ~ 1.0
P/Pao + Mx/Max ~ 1.0
Pno= Ae*Fy Pao= Pno/Qc
= 0.538 in"2 *55000 psi
= 29,505 lb
"' 29585lb/l.92
"' 15,409 lb
Fe> Fy/2
Fn= Fy(l-Fy/4Fe)
= 55 ksl*[l -55 ksi/(4*41.5 ksl)]
= 36.8 ksi
Pa= Pn/Qc
= 19785 lb/1.92
= 10,305 lb
Myield=My= Sx*Fy
= 0.51 ln"3 * 55000 psi
= 28,050 in-lb
Max= My/Of Per= n" 2EI/(KL)max" 2
= 28050 ln-lb/l.67
= 16,796 In-lb
µx= {l/[l-(Qc*P/Pcr)]}"-1
= {1/[1-(1.92*2701 lb/22424 lb)]}"-1
= 0.77
Combined Stresses
= n"2*29500 ksi/(1.7*58.625 in)"2
= 22,424 lb
(2701 lb/10305 lb) + (0.85*7940 ln-lb)/(16796 ln-lb*0.77) =
(2701 lb/15409 lb) + (7940 ln-lb/16796 In-lb) =
0.78
0.65
< 1.0, OK
< 1.0, OK
(EQ CS-1)
(EQ CS-2)
** For comparison, total column stress computed for load case 5 is: 72. 0% 'ng loads 3160.39284 lb Axial and M= 5955 in-lb
CAMSTON WRATHER RESOURCES RECOVERY TYPE R Page ( 7 of lf 3 I/G/2022
Structural
Engineering & Design Inc.
1815 Wright Ave La Verne CA 91750 Tel· 909 596 1351 fax· 909 596 7186
· By: NIHAL Project CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14
BEAM Contiguratlon: TYPE R
DETERMINE ALLOWABLE MOMENT CAPACITY
A} Check compression flange for local buckling {B2.1}
W= C • 2*t -2*r
= 1.75 In -2*0.059 in -2*0.059 In
" 1.514 In
w/t= 25.66
!=lambda= [1.052/(k)"0.5] * (W/t) * (Fy/E)"0.5
= [1.052/(4)"0.5] * 25.66 * (55/29500)"0.5
= 0.583 < 0.673, Flange Is fully effective
B} check web for local buckling per section b2.3
fl(comp)= Fy*(y3/y2)= 48.06 ksi
f2(tension)= Fy*(y1/y2)= 99.82 ksi
Y= f2/fl
= -2.077
k= 4 + 2*(1-Y)"3 + 2*(1-Y)
= 68.42
flat depth=w= y1+y3
Eq. B2.3-5
Eq. B2.3-4
Eq. B2.1-4
Eq. B2.1-1
= 2.514 in w/t= 42.61016949 OK
!=lambda= [1.052/(k)"0.5] * (w/t) * (fl/E)"0.5
= [1.052/(68.42)"0.5] * 2.514 * (48.06/29500)"0.5
= 0.219 < 0.673
be=W= 2.514 in
bl= be(3-Y)
= 0.495
b2= be/2
= 1.26 In
b1+b2= 1.755 in > 0.817 in, Web is fully effective
Determine effect of cold working on steel yield point {Fya} per section A7 .2
Fya= C*Fyc + (1-C)*Fy (EQ A7.2-1)
Lcorner=Lc= (p/2) * (r + t/2)
0.139 in
Lflange-top=Lf= 1.514 in
m= 0.192*(FU/Fy) • 0.068
= 0.1590
C= 2*Lc/(Lf+2*Lc)
= 0.155 in
(EQ A7.2-4)
Be= 3.69*(Fu/Fy) • 0.819*(Fu/Fy)"2 • 1.79
= 1.427
since fu/Fv= 1.18 < 1.2
and r/t= 1 < 7 OK
then Fye= Be * Fy/(R/t)"m (EQ A7.2-2)
=· 78.485 ksl
Thus, Fya-top= 58.64 ksi (tension stress at top)
Fya-bottom= Fya*Ycg/(depth -Ycg)
= 113.84 ksi (tension stress at bottom)
Check allowable tension stress for bottom flange
Lflange-bot=Lfb= Lbottom -2*r*-2*t
= 2.514 in
Cbottom=Cb= 2*Lc/(Lfb+2*Lc)
= 0.100
Fy-bottom=Fyb= Cb*Fyc + (1-Cb)*Fyf
= 57.34 ksi
Fya= (Fya-top)*(Fyb/Fya-bottom)
= 29.54 ksi
Eq B2.3-2
(EQ A7.2-3)
ifF= 0.95 Then F*Mn=F*Fya*Sx=I 12.37 in-k
doplh
2.75 In t sln {
T 1.625 in
2.750 In
l~ 0,059 In
Beam= Intlk 27E 2 75Hx2 75Wx0 059"Thk
Yqi
y1
j_
Ix= 0.674 in"4
Sx= 0.441 ln"3
Ycg= 1.815 in
t= 0.059 in
Bend Radius=r= 0.059 In
Fy=Fyv= 55.00 ksl
Fu=Fuv= 65.00 ksl
E= 29500 ksi
top flange=b= 1.750 in
bottom flange= 2.750 in
Web depth= 2.7'"' In -Fy -
yl= Ycg-t-r= 1.697 In
y2= depth-Ycg= 0.935 In
y3= y2-t-r= 0.817 In
Structural
Engineering & Design Inc.
181 5 Wrjght Aye La Yeme CA 91750 Tel· 909 596.1351 Fax· 909 596 7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14
BEAM cont1guratton: TYPER
RMI Section 5.2, PT II
Section
Beam= Intlk 27E 2.75Hx2.75Wx0.059"Thk
Ix=Ib= 0.674 in"4
Sx= 0.441 ln"3
t= 0.059 in
Fy=Fyv= 55 ksl
Fu=Fuv= 65 ksi
Fya= 58.6 ksi
E= 29500 ksl
F= 225.0
L= 108 In
Beam Level= 1
P=Product Load= 1,900 lb/pair
D=Dead Load= 75 lb/pair
1. Check Bending Stress Allowable Loads
Mcenter=F*Mn= W*L *W*Rm/8
W=LRFD Load Factor= 1.2*0 + 1.4*P+1.4*(0.12S)*P
FOR DL=2% of PL,
W= 1.599
Rm= 1 · [(2*F*L)/(6*E*Ib + 3*F*L)]
RMI 2,2, Item 8
1 -(2*225*108 ln)/[(6*29500 ksi*0.674 ln"3)+(3*225*108 In)]
= 0.747
If F= 0.95
Then F*Mn=F*Fya*Sx= 24.56 in-k
Thus, allowable load
per beam pair=W= F*Mn*8*( # of beams)/(L *Rm*W)
= 24.56 ln-k * 8 * 2/(l0Bln * 0.747 * 1.599)
= 3,047 lb/pair allowable load based on bending stress
Mend= W*L*(l-Rm)/8
= (3047 lb/2) * 108 in* (1-0.747)/8
= 5,204 in-lb @ 3047 lb max allowable load
= 3,245 in-lb @ 1900 lb imposed product load
2. Check Deflection Stress Allowable Loads
Dmax= Dss*Rd
Rd= 1 · (4*F*L)/(5*F*L + 10*E*Ib)
= 1 • (4*225*108 ln)/[(5*225*108 in)+(10*29500 ksl*0.674 in"4)]
= 0.697 in
if Dmax= L/180 Based on L/180 Deflection Oiterla
and Dss= S*W*L "3/(384*E*Ib)
L/180= 5*W*L "3*Rd/(384*E*Ib*# of beams)
solving for W yields,
W= 384*E*I*2/(180*5*L"2*Rd)
= 384*0.674 ln"4*2/[180*5*(108 ln)"2*0.697)
= 2,087 lb/pair allowable load based on deflection limits
t--2.75 1n
t1.7Sln 4
T 1,625 In
2,750 In
l ~ 0,059 In
11,m,111m1ro11,mu,,m1,mn ~=~,,~===========~ -... _____________ _
: ; : l
r.l ..
Allowable Deflection= LJ180
= 0.600 in
Deflection at Imposed Load= 0.546 In
.. "
Thus, based on the least capacity of item 1 and 2 above: Allowable load= 2,087 lb/pair
Imposed Product Load= 1,900 lb/pair
Beam at Level 1 _________ _. Beam Stress= ,
Structural
Engineering & Design Inc.
1815 Weight Ave I a Yecoe CA 91750 Iel· 909 596 1351 fax· 909 596 7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Proiect#: 21-1221-14
3 Tab Beam to Column Connection Configuration: TYPE R
Mconn max= (Mselsmic + Mend-fixity)"'0,70"'Rho
= 8,122 In-lb Load at level 1
Connector Type= 3 Tab
Shear Capacity or Tab
Tab Length= 0.50 in
Ashear:a 0.5 in* 0.135 In
= 0.0675 in"2
Pshear= 0.4 * Fy * Ashear
= 0.4 * 55000 psi* 0.0675in"2
= 1,485 lb
Bearing capacity of Tab
tcol= 0.070 In
Omega= 2.22
Fy= 55,000 psi
Fu= 65,000 psi
a= 2.22
Pbearing= alpha * Fu * tab length * teal/Omega
= 2.22 * 65000 psi * 0.5 In * 0.07 in/2.22
= 2,275 lb > 1485 lb
Moment Capaolty of Bracket
Edge Distance=E= 1.00 in Tab Spacing= 2.0 In
C= P1+P2+P3 = Pl +Pl "'(2.S"/4.S")+Pl "'(0.5"/4.5")
= 1.667"' Pl
Mcap= Sdip * Fbending
= 0.1832 ln"3 * 0.66 * Fy
= 6,650 in-lb
Pcllp= Mcap/(1.667 * d)
tcllp= 0.135 in
C*d= Mcap = 1.667
= 6650.16 in-lb/(1.667 * 0.5 In)
= 7,979 lb
Thus, Pl= 1,485 lb
Mconn-allow= [Pl *4.S"+P1 *(2.5"/4.5")*2.S"+Pl *(0.5"/4.5")*0.5")
= 1485 LB*[ 4.5"+(2.5"/4.5")*2.5"+ (0.5"/4.5")*0.5"]
= 8,828 in-lb > Mconn max, OK
Stress= 0.92
CAM5TON WRATHER RE50URCE5 RECOVERY TYPE R
1 3 16"
Bearing Length= p,[j)O() lrt'JH1l
Fy= 55,000 psi
Sclip= 0.183 in"3
d= E /2 = 0.50 In
0
I/G/2022
Structural
Engineering & Design Inc.
1815 Wright Aye La Verne. CA 91750 Tel: 909 .596.1351 Fax· 909.596.7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14
Transverse Brace Configuration: TYPER
Section Properties
Diagonal Member= Mdx C456 Sgl 1.7953x1.378x16ga(U31x) Horizontal Member= Mclx C456 Sgl 1.7953x1.378x16ga(U31x)
Area= 0'.259 ln"2
r min= 0.449 In
Fy= 55,000 psi
K= 1.0
Qc= 1.92
Frame Dimensions
Bottom Panel Helght=H= 58.0 in
Frame Depth=D= 48.0 in
Column Wldth=B= 2.7 In
Diagonal Member
... o
Area= 0.259 in"2
r min= 0.449 In
Fy= 55,000 psi
K= 1.0
Clear Depth=D-8*2= 42.6 In
X Brace= NO
rho= 1.00
I Load Case 6: : (1,,.±Jl...104~ + l(0.85+0.14Sds)*B*P + [0.7*rho*EJ<= 1.0, ASD Method
Vtransverse= 993 lb
Vb=Vtransv*0.7*rho= 993 lb * 0,7 * 1
= 695 lb
Ldlag= [(D-B*2)A2 + (H-6")"2]"1/2
= 67.2 In
Pmax= V*(Ldlag/D) * 0.75
= 730Ib
(kl/r)= (k * Ldlag)/r min
= (1 x 67.2 in /0.449 In)
= 149.7 in
Fe= pl"2*E/(kl/r)"2
= 12,992 psi
axial load on dia anal brace member Since Fe<Fy/2,
Fn= Fe Pn= AREA*Fn
= 0.259 in"2 * 12992 psi
= 3,361 lb
Pallow= Pn/Q
= 3361 lb /1.92
= 1,751 lb
Pn/Pallow= 0.42
Horizontal brace
Vb=Vtransv*0.7*rho= 695 lb
(kl/r)= (k * Lhorlz)/r min
= (1 x 48 in) /0.449 in
= 106.9 in
Since Fe<Fy/2, Fn=Fe
= 25,478 psi
Pn/Pallow= 0.20
<= 1.0 OK
<= 1.0 OK
CAMSTON WRATHER. RESOURCES RECOVERY 1YPE R.
Fe= pl"2*E/(kl/r)"2
= 25,478 psi
Pn= AREA*Fn
= 0.2591n"2*25478 psi
= 6,591 lb
Page 7,;0 of 4-}
= 12,992 psi B +f'
Fy/2= 27,500 psi
Pallow= Pn/Qc
JYQlcal PaoeJ
Cooflaurallon
= 6591 lb /1.92
= 3,433 lb
T
l
I /G/2022
Structural
Engineering & Design Inc.
1815 Wright Aye La Verne CA 91750 Jel: 909 596 1351 Fax· 909 596 7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14
Single Row Frame Overturning Configuration: TYPE R
Loads
Critical Load case(s):
1) RMI Sec 2.2, Item 7: (0.9-0.2Sds)D + (0.9-0.20Sds)*B*Papp -E*rho
Vtrans=V=E=Qe= 993 lb
DEAD LOAD PER UPRIGHT=D= 300 lb
PRODUCT LOAD PER UPRIGHT=P= 7,600 lb
Papp=P"'0.67= 5,092 lb
Wst LCl=Wstl=(0.75264*0 + 0.75264*Papp*l)= 4,058 lb
Product Load Top Level, ptop= 1,900 lb
DL/Lvl= 75 lb
Seismic Ovt based on E, E(Fi*hl)= 139,448 In-lb
helaht/deoth ratio-5.0 In
A) Fullv Loaded Rack
Load case 1:
Movt= E(A*hi)*E*rho
= 139,448 In-lb
Sds= 0.7368
(0.9-0.2Sds)= 0.7526
(0.9-0.2Sds)= 0.7526
B= ;.bQ00 ,
rho= 1.0000
Frame Depth=Df= 48.0 In
Htop-lvl=H= 240.0 in
# Levels= 4
# Anchors/Base= 2
ho 48.0 In
h-H+ho/2= 264.0 in
Mst= Wstl * Df/2
= 4058 lb * 48 in/2
= 97,392 in-lb
SIDE ELEVATION
T= (Movt-Mst)/Df
= (139448 In-lb -97392 in-lb)/48 In
= 876 lb Net Uplift per Column
I Net Seismic Uollft= 876 lb strenath Level
Bl Too Level Loaded Onlv
Load case 1:
0 Vl=Vtop= Cs* Ip* ptop >= 350 lb for H/D >6.0 Movt= [Vl *h + V2 * H/2]*rho
= 0.1842 * 1900 lb = 99,026 In-lb
= 350 lb T= (Movt-Mst)/Df
V1eff= 350 lb Critical Level= 4 = (99026 In-lb -39739 ln-lb)/48 in
V2=V01.= Cs*Ip*D Cs*Ip= 0.1842 = 1,235 lb Net Upllft per Column
= 55 lb
Mst= (0.75264*0 + 0.75264*ptop*1) * 48 ln/2
= 39 739 in-lb
I Net Seismic Unlift= 1 235 lb Strenath Level
Anchor
Check (2) 0.5" x 3.25" Embed Hiltl TZ anchor(s) per base plate.
Special Inspection Is required per #1917.
Fully Loaded:
Top Level Loaded:
Pullout Capaclty=Tcap= 970 lb L.A. City Jurisdiction? NO
Shear capadty=Vcap= 1,250 lb Phi= 1
(438 lb/970 lb)"1 + (248 lb/1250 lb)"1 =
(617 lb/970 lb)"l + (87 lb/1250 lb)"1 "'
CAM5TON WRATHER RESOURCES RECOVERY TYPER rage 2-( of 'f}
0.65
0.71
Tcap*Phl= 970 lb
Vcap*Phi= 1,250 lb
<= 1.2 OK
<= 1.2 OK
I/G/2022
Structural
Engineering & Design Inc.
1815 Wrigbt Ave La Verne, CA 91750 Tel: 909,596 1351 fax· 909,596,7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project #: 21-1221-14
Base Plate Configuration: lYPE R
Section
Baseplate= 7.283x5.118x0.394
Eff Wldth=W = 7.28 In
Eff Depth=D = 5.12 In
Column Wldth=b = 3.00 in
Column Depth=dc = 2.69 In
a = 2.64 In
Anchor c.c. =2*a=d = 5.28 in
N=# Anchor/Base= 2
Fy = 36,000 psi
L = 2.14 In
Plate Tolckness=t = 0.394 in DownaJsle Elevatlon
Down Aisle Loads Load Case 5:: (1+0.105*Sds)D + 0.75*[(1.4+0.14Sds)*B*P + 0.75*[0.7*rho*El<-1.0, ASD Method
COLUMN DL= 150 lb Axial=P= 1,077364 * 150 lb+ 0.75 * (1,503152 * 0.7 * 3800 lb)
COLUMN PL= 3,800 lb = 3,160 lb
Base Moment= 0 In-lb Mb= Base Moment*0.7S*0.7*rho
1+0.105*Sds= 1.0774 = 0 in-lb* 0.7S*0.7*rho
1.4+0.14Sds=-1.5032 .....-------=--=-0..::in:.:..-..::lb~-----------------.
B= Q;fOOt) . ~ ,,, '.,. I Axial Load P = 3,160 lb Mbase=Mb = 0 in-lb
Axial stress=fa = P/A = P/(D*W)
= 85 psl
Moment Stress=fb = M/S = 6*Mb/[(D*B"2]
= 0.0 psi
Moment Stress=fbl = fb-fb2
= 0.0 psi
M3 = (1/2)*fb2*L*(2/3)*L = (1/3)*fb2*L"2
= 0 In-lb
5-plate = (l}(t"Z)/6
= 0.026 in"3/ln
fb/Fb = Mtotal/[(S-plate)(Fb)]
= 0.28 OK
Tanchor = (Mb-(PLapp*0.75*0.46)(a))/[(d)*N/2]
= -2,029 lb No Tension
Ml= wL"2/2= fa*L"2/2
= 194 In-lb
Moment Stress=fb2 = 2 * fb * L/W
= o.o psi
MZ= fbl *L"2)/2
= 0 in-lb
Mtotal = Ml+M2+M3
= 194 in-lb/in
Fb = 0.75*Fy
= 27,000 psi
F'p= 0.7*F'c
= 2,800 psi OK
Tallow= 970 lb OK
Cross Aisle Loads 011/c4//o.,dc,s,ll}IIS«1.1, 11em•:r1+0.11Sds)DL +r1+0J,sos)Pt.•o.1S+e.•a75 <•J.~ ASDHIJthod Check uplift load on Baseplate
EffE
Effe
Oieck uplift forces on baseplate with 2 or more anchors per RMI 7.2.2.
Pstatlc= 3,160 lb
Movt*0.75*0. 7*rho= 73,210 in-lb
Frame Depth= 48.0 ln
P=Pstatic+Pseismic= 4,686 lb
b =Column Depth= 2.69 In
L =Base Plate Depth-Col Depth= 2.14 In
fa = P/A = P/(D*W)
= 126 psi
Sbase/in = (l )(t"2)/6
= 0.026 ln"3/in
fb/Fb = M/[(S-plate)(Fb)]
0.41 OK
CAM5TON WRATH ER. RE50UR.CE5 RECOVERY 1YPE R.
Pseismlc= Movt/Frame Depth
= 1,525 lb
M= wl"2/2= fa*L"2/2
= 288 In-lb/in
Fbase = 0.75*Fy
= 27,000 psi
Page 2. 2,. of lf}
hen the base plate ronflguratlon consists of two anchor bolts located on either side
f the column and a net uplift force exists, the minimum base plate thickness
hall be determined based on a design bendln<J moment In the plate equal
o the uplift force on one anchor times 1/2 the distance from
he centerline of the anchor to the nearest edge of the rack column"
~
Uplift per Column= 1,234 lb
Qty Anchor per BP= 2
Net Tension per anchor=Ta= 617 lb
c= 2.14 in
Mu=Moment on Baseplate due to uplift= Ta*c/2
fb Fb *0.75= 0.139
= 661 in-lb
Splate= 0.132 ln"3
OK
I/G/2022
Structural
Engineering & Design Inc.
1815 Wright Aye La Verne. CA 91750 Tel; 909 596 1351 fax· 909.596,7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14
Slab on Grade Configuration: TYPE R
a
t X ➔,_I+-ye _L ~-J --
SL.AB ELE\/ATION Baseplate Piao View
Concrete
re= 4,000 psi
tslab=t= 5.5 in
teff= 5.5 In
,.i.o;.:. • .. -~Ffli;l/11,,.,.1'1,ft·• ·'·--, ~~:; ~ , .• _;, J;fJ,l . \Cl. ~-· .Y..t~ · ... · ~ ·1 • >1.
SQ!!
fsoil= 750 psf
Movt= 139,448 in-lb
Frame depth= 48.0 in
Sds= 0.737
0.2*Sds= 0.147 Base Plate
Effec. Baseplate wldth=B= 7.28 in
Effec. Baseplate Dejlth•D• 5.12 in
width=a= 3.00 in
depth=b= 2.69 in
Column Loads
DEAD LOAD=D=-150 lb per column
unfactored ASD load
PRODUCT LOAD=P= 3,800 lb per column
unfactored ASD load
Papp= 2,546 lb per column
P-seismic=E= (Movt/Frame depth)
= 2,905 lb per column
unfactored Limit State load
B= ,0:1000 ,,
rho= :l,0000'·
Sds= 0.7368
1.2 + 0.2*Sds= 1.3474
0. 9 -0.20Sds= 0.7526
Puncture
Apunct= [(c+t)+(e+t)]*2*t
: 220.50 1nA2
Fpunctl= [(4/3 + 8/(3*P)] *).. *(PcA0.5)
= 121.6 psi
Fpunct2= 2.66 * "'* (F'cA0.5)
= 100.9 psi
Fpunct eff= 100.9 psi
Slab Bending
Pse=DL+PL+E= 6,885 lb
Asoll= (Pse*144)/(fsoil)
= 1,322 In" 2
X= (L-y)/2
= 10.4 in
Fb= 5*{phl)*(f'c)A0.5
= 189.74 psi
midway dist face of column to edge of plate=c= 5.14 In
midway dist face of column to edge of plate=e= 3.90 in
Load Case 1) (1.2+0.2Sds)D + (1.2+0.2Sds)*B*P+ rho*E 'RMI SEC 2.2 EQTN 5
= 1.34736 * 150 lb + 1.34736 * 0.7 * 3800 lb + 1 * 2905 lb
= 6,691 lb
Load Case 2) (0.9°0.2Sds)D + (0.9-0.2Sds)*B*Papp + rho*E RMI SEC 2.2 EQTN 1
= 0.75264 * 150 lb+ 0.75264 * 0.7 * 2546 lb+ 1 * 2905 lb
= 4,359 lb
Load Case 3) 1.2*D + 1.4*P
= 1.2*150 lb + 1.4*3800 lb
= 5,500 lb
Load Case 4) 1.2*D + 1.0*P + 1.0E
= 6,885 lb
Effective Column Load=Pu= 6,885 lb per column
L=i (Asoil)A0.5
= 36.36 in
M= w*x"2/2
= (fsoil*x"2)/(144*2)
= 283.8 In-lb
fv/Fv= Pu/(Apunct*Fpunct)
= 0.310 < 1 OK
y= ( c*e)"0.5 + 2*t
= 15.5 in
s-slab= 1 *teff" 2/6
= 5.04 ln"3
fb/Fb= M/(5-slab*Fb)
0.297 < 1, OK
RMI SEC 2.2 EQrN 1,2
ACI 318-14 Sec 5.3.1
Eqtn 5.3.le
CAM5TON WRATHER RE5OURCE5 RECOVERY TYPE R I IG/2022
Structural·
Engineering & Design Inc.
1815 Wright Aye La Verne CA 91750 Tel· 909.596.1351 fax· 909.596.7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14
Configuration &. Summary: TYPE Q
T
60" + ..
192" 60"
-t-
60"
J
'
-·-
T
78"
192' ± +1---ll
32"
1-
**RACK COLUMN REACTIONS
ASDLOADS
AXIAL DL= 113 lb
AXIAL LL= 6,450 lb
SEISMIC AXIAL Ps=+/-3,785 lb
BASE MOMENT= 5,000 In-lb
,-f"--f --108"---f
Seismic Criteria
Ss=0.921, Fa=l.2
Component
Column
Column & Backer
Beam
Beam Connector
Brace-Horizontal
Brace-Diagonal
Base Plate
Anchor
Slab & Soll
Level I Load**
1
2
3
Per Level
4,300 lb
4,300 lb
4,300 lb
# Bm Lvls Frame Depth Frame Height # Diagonals Beam Length Frame Type
3 48 In 192.0 In 3 108In Single Row
Fy=55 ksl
None
Fy=55 ksl
Fv=55 ksl
Fy=55 ksl
Fy=55 ksl
Fy=36 ksi
2 per Base
Beam Spcg
60.0 In
60.0 In
60.0 In
Description STRESS
Mecalux 312 3.06"x2.69"x0.105" P=6563 lb, M=19444 in-lb 0.92-OK
None None N/A
Intlk 45E 4.5Hx2.75Wx0.059"Tok Lu=108 In I Capacity: 5521 lb/pr 0.78-OK
Lvl 1: 4 Tab OK I Mconn=13043 In-lb I Mcap=15764 in-lb 0.83-OK
Mclx C456 5gl 1.7953x1.378x16ga(U31x) 0.33-OK
Mclx C456 Sgl 1.7953x1.378x16ga(U31x) 0.84-OK
7 .283x5.118x0.394 I Fixity= 5000 in-lb 0.62-OK
0.5" x 3.25" Embed Hlltl TZ #1917 Inspection Reqd (Net Seismic Upllft=1740 lb) 0.883-OK
5.5" thk x 4000 psi slab on grade. 750 psf Soll Bearing Pressure 0.58-OK I Story Force I Story Force Column I Column I Conn. Beam
Brace Transv Long it. Axial Moment Moment Connector
32.0 In 272 Ib 146 lb 6,563 lb 19,444 "# 13,043 "# 4 Tab OK
64.0 In
78.0 In
544Ib
817 lb
291 lb
437 lb
4,375 lb
2,188 lb
10,913 "# 8,529 "# 4 Tab OK
6,548 "# 4,709 "# 4 Tab OK
** Load defined as product weight per pair of beams Total: 1,633 lb 873 lb
CAM5TON WRATHER RESOURCES RECOVERY TYPE Q Page '2 f of Cf) IIG/2022
Structural.
Engineeri~g & Design Inc.
1815 Wright Ave La Verne, CA 91750 Tel: 909 596,1351 fax: 909 596,7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14
Seismic Forces Configuration: TYPE Q
Lateral analysis Is performed with regard to the requirements of the 2012 RMI ANSI MH 16.1-2012 Sec 2.6 & ASCE 7-16 sec 15.5.3
Transverse (Cross Aisle) Seismic Load 1...
V= Cs*Ip*Ws=Cs*Ip*(0.67*P*Plf+D) Vt
~=~~ ·~
= 0.1842 Cs-max* Ip= 0.1842
Cs2= 0.044*Sds Vm1n= 0.015
= 0.0324 Eff Base Shear=Cs= 0.1842 rmsvmc Elevation
Cs3= 0.5*51/R Ws= (0.67*PLRF1 * PL)+DL (RMI 2.6.2)
= 0.0424 ,-----=....:8;.c;,8:..:68..::....;;:lb'----------,
Cs-max= 0.1842 vtransv=Vt= 0.1842 * (225 lb+ 8643 lb)
BaseShearCoeff=Cs= 0 .1842
Level
1
2
3
PRODUCT LOAD P
4,300 lb
4,300 lb
4,300 lb
P*0.67*PRFI
2,881 lb
2,881 lb
2,881 lb
sum: P=12900 lb 8,643 lb
Lon ltudinal Downaisle Seismic Load
Etransverse= 1,633 lb
Limit states Level Transverse seismic shear per upright
DL hi wl*hi
75 lb 60 In 177,360
75 lb 120 In 354,720
75 lb 180 In 532,080
225 lb W=8868 lb 1,064,160
Slmllarty for longitudinal seismic loads, ustng R=6.0 Ws= (0.67 * PLRF2 * P) + DL
SS= 0.921
S1= 0.339
Fa= 1.200
Fv= 1.961
Sds=2/3*SS*Fa= 0.737
Sd1=2/3*S1 *Fv= 0.443
Ca=0.4*2/3*SS*Fa= 0.2947
(Transverse, Braced Frame Dir.) R= 4.0
Ip= 1.0
PRF1= l;Q,
Pallet Helght=hp= 48.0 In
DL per Beam Lvl= 75 lb
Fl Fl* hl+h 2
272:2 lb 22,865-#
544.3 lb 78,379-#
816.5 lb 166,566-#
1,633 lb l =267,810
D Csl=Sdl/(T*R)= 0.0985 = 8,868 lb (Longitudinal, Unbraced Dir,) R~ 6.0 El Cs2= 0.0324 CS=CS-max*Ip= 0.0985 Tm 0.75 sec
Cs3= 0.0283 Vlong= 0.0985 * (225 lb+ 8643 lb) D
Cs-max= 0.0985 Elongltudlnal= 873 lb Llm/tS,,,,.Leve/Longlt.1mmk:1hoarp,,rupr/(lht
Level PRODUC LOAD p P*0.67*P 2 DL hi wl*hl
1 4,300 lb 2,881 lb 75 lb 60 in 177,360
2 4,300 lb 2,881 lb 75 lb 120 in 354,720
3 4,300 lb 2,881 lb 75 lb 180 In 532,080
Fl
145.5 lb
291.0 lb
436.5 lb
frlmt..'lleri!
sum: =======8=,6=43===1b===2=2===51b===W====8=86=8=1===b====l=,0=6=4,=1=60========8=73===1b========
CAMSTON WRATHER RESOURCES RECOVERY 1YPE Q I/G/2022
Foundamental Period of Vibration (Lonl'(itudinal)
Per FEMA 460 Appendix A -Development of An Analyt ical Mode l for the Displacement Based Seismic Desil(n of Storal(e
Racks i n Their Down Aislo Direction
Section 6.5. 1
Where:
Wpi
hoi
g =
NL=
kc =
kbe =
kb=
kco =
Ne=
Nb=
kbe =
kce =
kb=
kc =
L =
H,.,
Ib -
le~
E =
weiRht of the i th pallet supported by the storage rack
the elevation of t he center of gravity of the ith pallet
wiLh respect to thA base of the storage rack
gravitational acceleralion
the number of loaded levels
Lhe rotational stiffness of the connector
the flexral rotational stiffness of the beam-end
the rotational stiffness of the base olate
the flexural rotational stiffness of the base upril(ht-end
the number of beam-to-upright connections
the number of base pl at e connecti ons
6Eib / L
1Eic / H
Eic / H
Mmax/ 8 max
the clear span of the beams
the clear height of the upri1<ht
the moment of ihertia about the bending axis of each beam
the moment of inertia of each base uprighl
Young's Modulus of the beams
Tl= 1. 17937
Since 0.6SDS=0.8lg)0.61<, B=l. 7
Since S1=0. 769g)0.5g,
usinR g=386 in.2/s
e demand= 12 (1 +o) (Tl/1. 0) (S1/htot)
-0. 04607
t. = Mc* (kc+kbe) / (kc*kbe) *htot
= 10.1911
0d= Cd (l+os)* 6 /htot
0.36641
# of levels
min # of bays
Ne
Nb
kc
kbe
kb
kce
Ib
L
le
H
E
Level hoi
1
2
3
1
6
3
3
36
8
428.571
3664.56
139. 142
556.567
Woi
2.236 in· 4
10a in
1.132 in ·4
240 in
29600 ksi
84 2. 881
144 2. 881
204 2. 881
0 0
0 0
Structural
Engineering & Design Inc.
1815 Wright Aye La Verne QA 91750 Tel· 909 596.1 351 Fax: 909 596.7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14
Downaisle Seismic Loads Configuration: TYPE Q
Determine the story moments by applying portal analysis. The base plate is assumed to provide partial fixity.
Seismic Story Forces
Vlong= 873 lb
Vcol=Vlong/2= 437 lb
Fl= 1461b
F2= 291 lb
F3= 437 lb
Seismic Story Moments
Typical fi.ame made
Tributary atca of \wo columns
of r.ick fr4me '--..., _ •••
I -~G~:
I I
-~ G ~:G EJ:~
-~ G lf:J:B EJ:G
r-96'-, , _______ .,,I
~
Conceptual System
Typical fr.ime ll'J,lde
/of two columns
Tol2..\&:rt
Mbase-max= 5,000 In-lb
Mbase-v= (Vcol*hleff)/2
<=== Default capadty hl-eff= hl -beam clip height/2
= 56 In
= 12,222 in-lb <=== Moment going to base
Mbase-eff= Minimum of Mbase-max and Mbase-v
= 5,000 In-lb
M 1-1= [Vcol * hleff]-Mbase-eff
= ( 437 lb * 56 ln)-5000 In-lb
= 19,444 in-lb
Msels= (Mupper+Mlower)/2
Mseis(l-1)= (19444 In-lb+ 10913 ln-lb)/2
= 15,178 In-lb
LEVEL
1
2
3
hi
60in
60in
601n
Axlai Load
6,563 lb
4,375 lb
2,188 lb
M 2-2= [Vcol-(Fl)/2] * h2
= [437 lb -145.5 lb]*60 in/2
= 10,913 in-lb
Mseis(2-2)= (10913 In-lb + 6548 in-lb)/2
= 8,730 In-lb
Summary of Forces
Column Moment** Mselsmic**
19,444 In-lb 15,178 in-lb
10,913 in-lb 8,730 In-lb
6,548 In-lb 3,274 in-lb
Mend-fixity
3,454 In-lb
3,454 In-lb
3,454 in-lb
Mconn= (Mselsmlc + Mend-fixity)*0.70*rho
Mconn-allow(4 Pin)= 15,764 In-lb
**all moments based on limit states level loading
CAM5TON WRATHER RESOURCES RECOVERY TYPE Q
Vcol 7~trl=====:::::tlL.
h2
h1 h1eff
Beam to Column
Elevation
·rho= 1.0000
Mconn**
13,043 In-lb
8,529 in-lb
4,709 In-lb
Beam Connector
4 Tab OK
4 Tab OK
4 Tab OK
1/6/2022
COL
Structural
Engineering & Design Inc.
1815 Wright Aye La Verne, CA 91750 Tel: 909,596,1351 Fax: 909,596,7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Prolect #: 21-1221-14
Column (Longitudinal Loads} Configuration: TYPE Q
Section Properties
Section: Mecalux 312 3.06"x2.69"x0.105"
Aeff = 0.782 ln"2
Ix = 1.132 ln"4
Sx = 0.740 in"3
rx = 1.203 in
Qf= 1.67
Iy = 0.636 ln"4
Sy = 0.422 in" 3
ry = 0.902 In
Fy= 55 ksl
Kx = 1.7
r-3,060 In -1
Cmx= 0.85
E= 29,500 ksl
Loads Considers loads at level 1
COLUMN DL= 112 lb Critical load cases are: RMI Sec 2.1
Lx = 57.8 In
Ky= 1.0
Ly= 32.0 In
Cb= 1.0
i 0.105 In
2.690 in
J_
COLUMN PL= 6,450 lb
Mcol= 19,444 in-lb
Sds= 0.7368
1+0.105*Sds= 1.0774
1.4+0.14Sds= 1.5032
1+0.14Sds= 1.1032
0.85+0.14*Sds= 0.9532
Load Case 5: : (1+0.105*Sds)D + 0.75*{1. 4+0.14Sds)*B*P + 0.75*{0.7*rho*E)<= 1.0, ASD Method
axial load coeff: 0.7891548 * P seismic moment coeff: 0.5625 * Meo/
Load Case 6:: {l+0.104*Sds)D + (0.85+0.14Sds)*B*P + (0.7*rho*E)<= 1.0, ASD Method
axial load coeff: 0.66721 seismic moment coeff: 0.7 * Meo!
By analysis, Load case 6 governs utilizing loads as such
Moment=Mx= 0.7*rho*Mcol
B= 0.7000
rho= 1.0000
Axial Analysis
Axial Load=Pax:= 1,103152*112 lb+ 0.953152*0.7*6450 lb
= 4,427 lb = 0.7 * 19444 in-lb
= 13,611 In-lb
Kxl.x/rx = 1.7*57.75"/1.20311 KyLy/ry = 1 *3211/0.902111
= 81.6 = 35.5
Fe= n"2E/(KL/r)max"2 Fy/2= 27.5 ksl
= 43.7ksl
Pn= Aefrl'Fn Qc= 1.92
= 29,475 lb
P/Pa= 0.29 > 0.15
Bending Analysis
Check: Pax/Pa + (Cmx*Mx)/(Max*µx) 5 1.0
P/Pao + Mx/Max :S 1.0
Pno= Ae*Fy
= 0.782 in"2 *55000 psi
= 42,999 lb
Pao= Pno/Qc
= 429991b/1.92
= 22,395 lb
Fe > Fy/2
Fn= Fy(1-Fy/4Fe)
= 55 ksl*[l -55 ksl/(4*43.7 ksl)]
= 37.7 ksl
Pa= Pn/Qc
= 29475 lb/1.92
= 15,351 lb
Myield=My= Sx*Fy
= 0.74 in"3 * 55000 psi
= 40,689 in-lb
Max= My/Qf Per= n" 2EI/(KL)max" 2
= 40689 ln-lb/1.67
= 24,365 in-lb
µx= {1/[1-(Qc*P/Pcr)]}"· l
= {1/[1-(l.92*4427 lb/34192 lb)]}"-1
= 0.75
Combined Stresses
= n"2*29500 ksi/(1.7*57.75 in)"2
= 34,192 lb
(4427 lb/15351 lb)+ (0.85*13611 ln-lb)/(24365 ln-lb*0.75) =
(4427 lb/22395 lb)+ (13611 in-lb/24365 in-lb) =
0.92
0.76
< 1.0, OK
< 1.0, OK
(EQ CS-1)
(EQ CS-2)
** For comparison, total column stress computed for load cases Is: 84.0% q loads 5210.713228 lb Axial and M= 10208 in-lb
CAM5TON WRATHER RE50URCE5 RECOVERY 1YPE Q IIG/2022
Structural
Engineering & Design Inc.
1815 Weight Ave La Verne CA 91750 Je!· 909 596 1351 fax: ·909 596 7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14
BEAM conttguratlon: TYPE Q
DETERMINE ALLOWABLE MOMENT CAPACITY
A) Check compression flange for local buckling CB2.1)
w= c -2*t -2*r
= 1. 75 In -2*0.059 in -2*0.059 In
= 1.514 In
w/t= 25.66
!=lambda= [1.052/(k)"0.5) * (w/t) * (Fy/E)"0.5
= [1.052/(4)"0.5) * 25.66 * (55/29500)"0.5
= 0.583 < 0.673, Flange is fully effective
B) check web for local buckling per section b2.3
f1(comp)= Fy*(y3/y2)= 50.76 ksl
f2(tenslon)= Fy*(y1/y2)= 102.52 ksl
Y= f2/f1
= -2.02
k= 4 + 2*(1·Y)"3 + 2*(1-Y)
= 65.13
flat depth=w= y1+y3
Eq. B2.3-5
Eq. B2.3·4
Eq. B2.1-4
Eq. B2.1-1
= 4.264 In w/t= 72.27118644 OK
l=lambda= [1.052/(k)"0.5] * (w/t) * (f1/E)"0.5
= [1.052/(65.13)"0.5) * 4.264 * (50.76/29500)"0.5
= 0.391 < 0.673
be=w= 4.264 In
bl= be(3-Y)
= 0.849
b2= be/2
= 2.13 In
b1+b2= 2.979 in > 1.412 in, Web Is fully effective
Determine effect of cold working on steel yield point (Fya} per section AZ.2
Fya= C*Fyc + (1-C)*Fy (EQ A7.2-1)
Lcorner=Lc= (p/2) * (r + t/2)
0.139 in
Lflange-top=Lf= 1.514 In
m= 0.192*(Fu/Fy) -0.068
= 0.1590
C= 2*Lc/(Lf+2*Lc)
= 0.155 in
(EQ A7.2-4)
Be= 3.69*(Fu/Fy) -0.819*(Fu/Fy)"2 -1.79
= 1.427
since fu/Fv= 1.18 < 1.2
and r/t= 1 < 7 OK
then Fye= Be * Fy/(R/t)"m (EQ A7.2-2)
= 78.485 ksi
Thus, Fya-top= 58.64 ksi (tension stress at top)
Fya-bottom= Fya*Ycg/(depth -Ycg)
= 113.84 ksi (tension stress at bottom)
Check allowable tension stress for bottom flange
Lflange-bot=Lfb= Lbottom -2*r*-2*t
= 2.514 In
Cbottom=Cb= 2*Lc/(Lfb+2*Lc)
= 0.100
Fy-bottom=Fyb= Cb*Fyc + (1 ·Cb)*Fyf
= 57.34 ksl
Fya= (Fya-top)*(Fyb/Fya-bottom)
= 29.54 ksl
Eq B2.3-2
(EQ A7.2-3)
if F= 0.95 Then F*Mn=F*Fya*Sx= I 26.44 ln-k
doplh
t-2.751n
t 1.751n 4
T 1,625 In
4.500 In
l ~ 0,059 In
Beam= Intlk 45E 4 5Hx2 75Wx0 059"Thk
Ix= 2.236 in"4
Sx= 0.942 ln"3
Ycg= 2.970 in
t= 0.059 In
Bend Radlus=r= 0.059 in
Fy=Fyv= 55.00 ksi
Fu=Fuv= 65.00 ksl
E= 29500 ksi
top flange=b= 1.750 In
bottom flange= 2.750 In
Web depth= 4.~nn 1~
--fy -
yl= Ycg-t-r= 2.852 in
y2= depth-Ycg= 1.530 In
y3= y2-t-r= 1.412 In
Str,uctural
Engineering & Design Inc.
1815 Wcigbt Aye La Verne CA 91750 Tel· 909 596 1351 fax· 909 596 7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14
BEAM cont1gurat1on: TYPE Q
RMI Section 5.2, PT II
Section
Beam= Intlk 45E 4.5Hx2.75Wx0.059"Thk
Ix=Ib= 2.236 1nA4
Sx= 0.942 lnA3
t= 0.059 In
Fy=Fyv= 55 ksl
Fu=FUV= 65 ksl
· Fya= 58.6 ksi
E= 29500 ksl
F= 265.0
l = 108 In
Beam Level= 1
P=Product Load= 4,300 lb/pair
D=Dead Load= 75 lb/pair
1, Check Bending Stress Allowable Loads
Mcenter=P"Mn= W*L *W*Rm/8
W=LRFD Load Factor= 1.2*0 + 1.4*P+1.4*(0.125)*P
FOR DL=2% of PL,
W= 1.599
Rm= 1 · [(2*F*l )/(6*E*Ib + 3*F*L)]
RMI 2.2, Item 8
1 -(2*265*108 ln)/[(6*29500 ksi*2.2361 inA3)+(3*265*108 in)]
= 0.881
if F= 0.95
Then F*Mn=F*Fya*Sx= 52.49 in-k
Thus, allowable load
per beam palr=W= F*Mn*8*(# of beams)/(L*Rm*W)
= 52.49 ln-k * 8 * 2/(1081n * 0.881 * 1.599)
= 5,521 lb/pair allowable load based on bending stress
Mend= W*L *(1 ·Rm)/8
= (5521 lb/2) * 108 In * (1-0.881)/8
= 4,435 In-lb @ 5521 lb max allowable load
= 3,454 in-lb @ 4300 lb imposed product load
2. Check Deflection Stress Allowable Loads
Dmax= Dss*Rd
t-2.751n
t1.751n {
T
4.500 In
1.625 In
-1
1 0.059 1n ~-
f::
r., Id
I 1 I t f f
Beam
Length -.. ,.
Rd= 1 -(4*F*L)/(5*F*L·+ l 0*E*lb) Allowable Deflection= L/180
= 1 -(4*265*108 ln)/[(5*265*108 ln)+(10*29500 ksi*2.2361 1nA4)] = 0.600 in
= 0.857 In Deflection at Imposed Load= 0.467 in
If Dmax= 1./180 Based on l/180 Dellection Criteria
and Dss= S*W*L A3/(384*E*Ib)
L/180= S*W*LA3*Rd/(384*E*Ib*# of beams)
solving for W yields,
W= 384*E*I*2/(180*S*L A 2*Rd)
= 384*2.2361 lnA4*2/[180*5*(108 ln)A2*0.857)
= 5,631 lb/pair allowable load based on denectlon limits
Thus, based on the least capacity of item 1 and 2 above: Allowable load= 5,521 lb/pair
Imposed Product Load= 4,300 lb/pair
Beam Stress= .7 Beam at Level 1
Structural
Engineering & Design Inc.
1815 Weight Ave I a Verne CA 91750 Iel· 909 596 1351 fax· 909 596 7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21"122M4
4 Tab Beam to Column Connection Configuration: TYPE Q
Mconn max= {Mselsmlc + Mend-flxlty}"'0.70*Rho
= 13,043 in-lb ·Load at level 1
Connector Type= 4 Tab
Shear Capacity of Tab
Tab Length= 0.50 In
Ashear= 0.5 In * 0.135 In
= 0.0675 lnA2
Pshear= 0.4 * Fy * Ashear
"' 0.4 * 55000 psi * 0.06751nA2
= 1,485 lb
Bearing Capacity of Tab
tcol= 0.105 In
Omega= 2.22
Fy= 55,000 psi
Fu= 65,000 psi
a= 2.22
Pbearlng= alpha * Fu * tab length * teal/Omega
= 2.22 * 65000 psi * 0.5 In * 0.105 ln/2.22
= 3,413 lb · > 1485 lb
Moment capacity of Bracket
Edge Distance=E= 1.00 In Tab Spacing= 2.0 in
4 /8'
C= P1+P2+P3+P4 tcllp= 0.135 in
= Pl+Pl *(4.S"/6.S")+Pl *(2.S"/6.5")+Pl "'(0.5"/6.5") = 2.154"' Pl
Mcap= Scllp * Fbending
= 0.1832 lnAJ * 0.66 * Fy
= 6,650 fn-lb
Pclip= Mcap/(2.154 * d)
= 6650.16 in-lb/(2.154 * 0.5 in)
= 6,175 lb
C*d= Mcap = 2.154
Thus, Pl = 1,485 lb
Mconn-allow= (Pl *6.S"+Pl *(4.5"/6.5")"'4.5" +Pl *(2.5"/6.5")2.5" +Pl *(0.5"/6.5")*0.5"]
= 1485 LB*[6.5"+(4.5"/6.5")*4.5"+(2.5"/6.5")*2.5"+(0.5"/6.5")*0.5"]
= 15,764 in-lb > Mconn max, OK
Stress= 0.83
CAMSTON WRATHER RESOURCES RECOVERY TYPE Q Page -:i1of 'f)
Fy= 55,000 psi
Scllp= 0.183 1nA3
d= E /2
= 0.50 In
I/G/2022
Structural
Engineering & Design Inc.
1815 Wcigbt Ave La Verne. GA 91750 Jel· 909 596 1351 fax· 909 596 7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14
Transverse Brace Configuration: TYPE Q
Section Properties
Diagonal Member= Mclx C456 Sgl 1.7953x1.378x16ga(U31x) Horizontal Member= Mclx C456 Sgl 1.7953x1.378x16ga(U31x)
Area= 0.259 in"2
r min= 0.449 in
Fy= 55,000 psi
K= 1.0
Qc= 1.92
Frame Dimensions
Diagonal Member
Bottom Panel Helght=H= 64.0 In
Frame Depth=D= 48.0 in
Column Wldth=B= 2.7 in
Area= 0.259 ln"2
r min= 0.449 in
Fy= 55,000 psi
K= 1.0
Clear Depth=D-B*2= 42.6 in
X Brace= NO
rho= 1.00
0..104~fstt.'r-F'TffJ]Js"io:14S~·~ 0 !Load case 6:: (1..±fJ !O<PScis}f) +J(0.85+0.14Sds}*B*P + [0.7*rho*E]<= 1.0, ASD Method
Vtransverse= 1,633 lb
Vb=Vtransv*0.7*rho= 1633 lb * 0,7 * 1
= 1,143 lb
Ldiag= [(D-B*2)"2 + (H-6")"2)"1/2
= 72.0 In
Pmax= V*(Ldiag/D} * 0.75
= 1,286 lb
(kl/r)= (k * Ldlag)/r min
= (1 x 72 in /0.449 In )
= 160.4 in
Fee pl" 2*E/(kl/r)" 2
= 11,317 psi
axial load on diagonal brace member Since Fe<Fy/2,
Fn= Fe Pn= AREA*Fn
= 0.259 in"2 * 11317 psi
= 2,928 lb
Paliow= Pn/Q
= 2928 lb /1.92
= 1,525 lb
Pn/Pallow=
Horizontal brace
Vb=Vtransv*0,7*rho= 1,143 lb
0.84
(kl/r)= (k * Lhoriz)/r min
= (1 x 48 In) /0.449 in
= 106.9 in
Since Fe<Fy/2, Fn=Fe
= 25,478 psi
Pn/Pallow= 0.33
<= 1.0 OK
<= 1.0 OK
CAMSTON WRATHER. RESOURCES RECOVERY TYPE Q
Fe-= pi" 2*E/(kl/r)" 2
= 25,478 psi
Pn= AREA*Fn
= 0.2591n"2*25478 psi
= 6,591 lb
= 11,317 psi
Fy/2= 27,500 psi
Tvplca! Panel
C!mflgl!llltkm
Pallow= Pn/Qc
= 6591 lb /1.92
= 3,433 lb
I/G/2022
Structural
Engineering & Design Inc.
1815 Wrjaht Aye La Verne CA 91750 Tel· 909 5961351 Fax-909.596.7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14
Single Row Frame overturning Configuration: TYPE Q
Loads
Critical Load case(s):
1) RMI Sec 2.2, Item 7: (0.9-0.2Sds)D + (0.9-0.20Sds)*B*Papp -E*rho
Sds= 0.7368
(0.9-0.2Sds)= 0.7526
(0.9-0.2Sds)= 0.7526
Vtrans=V=E=Qe= 1,633 lb
DEAD LOAD PER UPRIGHT=D= 225 lb
PRODUCT LOAD PER UPRIGHT=P= 12,900 lb
Papp=P*0.67= 8,643 lb
Wst LCl =Wstl=(0.75264*O + 0.75264*Papp*1)= 6,674 lb
B= :u)M(i~\,~r' ;
rho= 1.0000
Product Load Top Level, Ptop= 4,300 lb
DL/Lvl= 75 lb
Seismic Ovt based on E, E(Fi*hl)= 181,681 in-lb
heiaht/deoth ratio= 3.8 in
A) Fullv Loaded Rack
Load case 1:
Movt= ~(Fi*hi)*E*rho
= 181,681 in-lb
Frame Depth=Df= 48.0 in
Htop-lvi=H= 180.0 in
# Levels= 3
# Anchors/Base= 2
ho= 48.0 In
h-H+ho/2-204.0 in
Mst= Wstl * Df/2
= 6674 lb * 48 in/2
= 160,176 in-lb
SIDE ELEVATION
T= (Movt-Mst)/Df
= (181681 in-lb -160176 in-lb)/48 in
= 448 lb Net Uplift per Column
I Net Seismic Uolift= 448 lb strength Level
B) Too Level Loaded Onlv
Load case 1:
0 Vl=Vtop= Cs* Ip* ptop ::,= 350 lb for H/D >6.0 Movt= [Vl *h + V2 * H/2]*rho
= 0.1842 * 4300 lb = 165,310 in-lb
= 7921b T= (Movt-Mst)/Df
Vleff= 792 lb Critical Level= 3 = (165310 in-lb -81737 in-lb)/48 In
V2=VDL = Cs*Ip*D Cs*Ip= 0.1842 = 1,741 lb Net Uplift per Column
= 41 lb
Mst= (0.75264*D + 0.75264*ptop*l) * 48 ln/2
= 81,737 in-lb
I Net Seismic Ualift= 1 741 lb Strenath Level
Anchor
Check (2) 0.5'' x 3.25" Embed Hllti TZ anchor(s) per base plate.
Special inspection Is required per #1917.
Fully Loaded:
Top Level Loaded:
Pullout Capacity=Tcap= 970 lb L.A. City Jurisdiction? NO
Shear Capacity=Vcap= 1,250 lb Phi= 1
(224 lb/970 lb)"l + (408 lb/1250 lb)"l =
(870 lb/970 lb)"l + (198 lb/1250 lb)"l =
CAM5TON WRATH ER RESOURCES RECOVERY TYf'E Q Page 3/ of ~
0.56
1.06
Tcap*Phi= 970 lb
Vcap*Phi= 1,250 lb
<= 1.2 OK
<= 1.2. OK
I/G/2022
Structural
Engineering & Design Inc.
1a1s Weight Aye La Verne. CA 91750 Jet· 909 596 1351 Fax· 909.596.7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14
Base Plate Configuration: TYPE Q
Section
Baseplate= 7.283x5.118x0.394
Eff Width=W = 7.28 In
Eff Depth=D = 5.12 In
Mb
Column Width=b = 3.06 In
Column Depth=dc = 2.69 In
a = 2.64 in
Anchor c.c. =2*a=d = 5.28 In
N=# Anchor/Base= 2
Fy = 36,000 psi I b 1-L
---w
L = 2.11 In
Plate Thlckness=t = 0.394 In oownatsle Elevation
Down Aisle Loads Load Case 5:: (1+0.105*Sds)D + 0.75*{(1.4+0.14Sds)*B*P + 0.75*(0.7*rho*EJ<-1A ASD Method
COLUMN DL= 113 lb Axlal=P= 1.077364 * 112.5 lb+ 0.75 * (1.503152 * 0,7 * 6450 lb)
COLUMN PL= 6,450 lb = 5,211 lb
Base Moment= 5,000 In-lb Mb= Base Moment*0.75*0.7*rho
1 +0.105*Sds= 1.0774 = 5000 in-lb * 0.75*0.7*rho
1.4+0.14Sds= 1.5032 = 2,625 In-lb B= O!ZOO'O, • '~---i --Ax-ia_l_L_o_ad_P_= ___ S,L.,2_1 __ 1_1'-"'b--'------M-ba_se_=_M_b_=_2-,6-2-5-in---lb---,
Axial stress=fa = P/A = P/(D*W)
= 140 psi
Moment Stress=fb = M/S = 6*Mb/[(D*B"2]
= 58.0 psi
Moment Stress=fb1 = fb-fb2
= 24.4 psi
M3 = {l/2)*fb2*L *(2/3)*L = (1/3)*fb2*L" 2
= 50 In-lb
S-plate = {l)(t"2)/6
= 0.026 In" 3/in
fb/Fb = Mtotal/[(S-plate)(Fb)]
0.60 OK
Tanchor = (Mb-(PLapp*0.75*0.46)(a))/[(d)*N/2]
= -2,840 lb No Tension
Ml = wL "2/2= fa*L "2/2
= 312 in-lb
Moment Stress=tb2 = 2 * fb * L/W
= 33.6 psi
M2= fb1*L"2)/2
= 54 in-lb
Mtotal = Ml+M2+M3
= 416 In-lb/in
Fb = 0.75*Fy
= 27,000 psi
Pp= 0.7*F'c
= 2,800 psi
Tallow= 970 lb
OK
OK
Cross Aisle Loads OIIIC4tloadc,seRMI Sec 1.1, x.,,,1:f1+o.11Sds)OI. •f1+o.usos)Pl.•o.1S,eL•o.r.; <• i.o, ASDMctl>od Check uplift load on Baseplate
Eff!
Effe
Pstatic= 5,211 lb
Movt*0.75*0.7*rho= 95,383 in-lb
Frame Depth= 48.0 In
P=Pstatic+Pselsmlc= 7,198 lb
Pselsmlc= Movt/Frame Depth
= 1,987 lb
Check uplift forces on baseplate with 2 or more anchors per RMI 7.2.2.
When the base plate conllguratlon conslsls ~ lwo anchor bolts located on either stde
f the oolumn and a net uplift force exists, lhe minimum base plate thickness
hall be determined based on a design bending moment In the plate equal
to the uplift force on one anchor times 1/2 the distance from
he centerline of the anchor to the nearest edge of the rack column"
b =Column Depth= 2.69 In
L =Base Plate Depth-Col Depth= 2.11 in
fa = P/A = P/(D*W)
= 193 psi
Sbase/ln = (l)(t"2)/6
= 0.026 in"3/in
tb/Fb = M/[(S-plate)(Fb)]
0.62 OK
CAMSTON WRATHER RESOURCES RECOVERY TYPE Q
M= wL"2/2= fa*L"2/2
= 431 i n-lb/ln
Fbase = 0.75*Fy
= 27,000 psi
I+-~• T
Mu
1·1 nrtm ~
~
Uplift per Column= 1,740 lb
Qty Anchor per BP= 2
Net Tension per anchor=Ta= 870 lb
C= 2.11 In
Mu=Moment on Baseplate due to uplift= Ta*c/2
=-919 in-lb
Splate= 0.132 in" 3
fb Fb *0.75= 0.193 OK
I/G/2022
Structural
Engineering & Design Inc.
1815 Wright Ave La Verne CA 91750 Tel· 909 596.1351 Fax; 909.596.7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14
Slab on Grade Configuration: TYPE Q
a
~'ffl'ffii'ffii'i9fi'l'i'inffl'i"fi'i'fin'i'i'i'rffi'n'fi'iiirii"R"i'iii"'-~ t X ➔,_,_/ ~_J_j
SLAB ELEVATION
Base Plate
Effec. Baseplate wldlhcB• 7. 28 In
Effec. Baseplate Depth•D• 5.12 In
wldth=a= 3.06 in
depth=b= 2.69 In
Baseolate Piao view
~
f'c= 4,000 psi
tslab=t= 5.5 In
teff= 5.5 In
., ,phl:;'0=1 0.$
SQ!l
fsoll= 750 psf
Movt= 181,681 in-lb
Frame depth= 48.0 in
Sds= 0.737
0.2*Sds= 0.147
Column Loads
midway dist face of column to edge of plate=c= 5.17 in
midway dist face of column to edge of plate=e= 3.90 In
•• w •• • .._,),:z:'.0'6{)0
P=B/D= 1.423
Pc"0.5= 63.20 psi
DEAD LOAD= D= 113 lb per column
unfactored ASD toad
PRODUCT LOAD=P= 6,450 lb per column
unfactored ASO load
Papp= 4,322 lb per column
P-seismlc=E= (Movt;Frame depth)
= 3,785 lb per column
unfactored Umlt State load
B=:tl.7000 ' ,
rho= 1~0'()00
Sds= 0.7368
1.2 + 0.2*Sds= 1.3474
0. 9 -0.20Sds= 0.7526
Puncture
Apunct= [(c+t)+(e+t)J*2*t
= 220.83 in"i
Fpunctl= [(4/3 + 8/(3*P)J *).. *(F1c"0.S)
= 121.6 psi .
Fpunct2= 2.66 * ).. * (Pi:A0.5)
= 100.9 psi
Fpunct -eff= 100.9 psi
Slab Bending
Pse=DL+PL+E= 10,371 lb
Asoll= (Pse*144)/(fsoil)
= 1,991 ln"2
X= (L-y)/2
= 14.6 in
Fb= S*(phl)*(f'c)"0.5
= 189.74 psi
Load Case 1) (1.2+0.2Sds)D + (1.2+0.2Sds)*B*P+ rho*E RMI sec 2.2 eQTN s
= 1.34736 * 113 lb + 1.34736 * 0.7 * 6450 lb + 1 * 3785 lb
= 10,021 lb
Load case 2) (0.9-0.2Sds)D + (0.9-0.2Sds)*B*Papp + rho*E RMI sec 2.2 EQTN 1
= 0.75264 * 113 lb+ 0.75264 * 0.7 * 4321.5 lb+ 1 * 3785 lb
= 6,147 lb
Load Case 3) 1.2*D + 1.4*P
= 1.2*113 lb + 1.4*6450 lb
= 9,165 lb
Load Case 4) 1.2*D + 1.0*P + LOE
= 10,371 lb
RMI SEC 2.2 EQTN 1,2
AC! 318· 14 Sec 5.3.1
Eqtn 5.3.le
Effective Column Load=Pu= 10,371 lb per column
L= (Asoil)"0.5
= 44.62 in
M= w*x"2/2
= (fsoil*x"2)/(144*2)
= 552.3 In-lb
fv/Fv= Pu/(Apunct*Fpunct)
= 0.466 < 1 OK
y= (c*e)"0.5 + 2*t
= 15.5 In
5-slab= 1 *teff" 2/6
= 5.04 ln"3
fb/Fb= M/(S-slab*Fb)
0,577 < 1, OK
CAMSTON WRATHER RESOURCES RECOVERY 1Yf'E Q I /G/2022
S tructural
Engineering & Design Inc.
1815 Wright Aye La Verne. CA 91750 Tel: 909 596 1351 Fax· 909 596 7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14
Configuration &. Summary: TYPE I
T
60"
192" + 60"
t
60"
.I
'
T
78"
192" ± + ,____,
32" 1 ,_________.
**RACK COLUMN REACTIONS
ASDLOADS
AXIAL DL= 113 lb
AXIAL LL= 2,850 lb
SEISMIC AXIAL Ps=+/-1,752 lb
BASE MOMENT= 0 in-lb
-"'"'"~ --108" ---,} ,f-48"+
Seismic Criteria
Ss=0.921, Fa=1.2
Component
Column
Column & Backer
Beam
Beam Connector
Brace-Horizontal
Brace-Diagonal
Base Plate
Anchor
Slab & Soll
Level I Load**
1
2
3
Per Level
1,900 lb
1,900 lb
1,900 lb
# Bm Lvls Frame Depth Frame Height # Diagonals Beam Length Frame Type
3 48 In 192.0 in 3 108 in Single Row
Fv=SS ksi
None
Fv=55 ksl
Fv=55 ksi
Fv=SS ksi
Fy=55 ksi
Fy=36 ksi
1 per Base
Beam Speg
60.0 in
60.0 in
60.0 In
Description
Mecaiux 314 3.0"x2.69"x0.070" P=2963 lb, M=11343 in-lb
None None
Intlk 27E 2.75Hx2,75Wx0.059''Thk Lu=108 In I capacity: 2087 lb/pr
Lvl 1: 3 Tab OK I Mconn= 7983 in-lb I Mcap=8828 In-lb
Mclx C456 Sgl 1.7953x1.378x16ga(U31x)
Mclx C456 Sgl 1.7953xl.378x16ga(U31x)
5.094x4.688x0.194 I Fixity= 0 In-lb
OS" x 3.25" Embed Hllti TZ #1917 Inspection Reqd (Net Seismic Uplift=765 lb)
5.5'' thk x 4000 psi slab on grade. 750 psf Soil Bearing Pressure
Brace
32.0 In
64.0 In
78.0 In
I Story Force I Story Force
Transv Longit.
124 lb
248 lb
373 lb
661b
133 lb
199 lb
Column
Axial
2,963 lb
1,975 lb
9881b
I Column I
Moment
11,343 "#
4,976 "#
2,985 "#
Conn.
Moment
7,983 "#
5,058 "#
3,316 "#
STRESS
0.68-OK
N/A
0.91-OK
0.9-OK
0.15-OK
0.6-OK
0.45-OK
0.775-0K
0.23-0K
Beam
Connector
3 Tab OK
3 Tab OK
3 Tab OK
** Load defined as product weight per pair of beams Total: 745 lb 398 lb
CAM5TON WRATHER RESOURCES RECOVERY TYFE I I/G/2022
Structural
Engineering & Design Inc.
1815 Weight Ave La Verne. CA 91750 Jel: 909.596 1351 fax· 909.596 7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1 221-14
Seismic Forces Configuration: TYPE I
Lateral analysis Is performed with regard to the requirements of the 2012 RMI ANSI MH 16.1-2012 Sec 2.6 & ASCE 7-16 sec 15.5.3
Transverse (Cross Aisle) Seismic Load I
V= Cs*Ip*Ws=Cs*Ip*(0.67*P*Prf+D) vt
Csl= Sds/R
= 0.1842 Cs-max * Ipaa 0.1842 .
Cs2= 0.044*Sds Vrnn= 0.015
= 0.0324 Eff Base Shear=Cs= 0.1842 rrj[l•vcac: El<:Yil\ton
Cs3= 0.5*51/R Ws= (0.67*PLRF1 * PL)+DL (RMI 2.6.2)
= 0.0424 _______ =_4,'-0_44_1_b _______ --,
Cs-max= 0.1842 Vtransv=Vt= 0.1842 * (225 lb+ 3819 lb)
Base Shear Coeff=Cs• 0.1842
Level
1
2
3
PRODUCT LOAD P
1,900 lb
1,900 lb
1,900 lb
P*0.67*PRFI
1,273 lb
1,273 lb
1,273 lb
sum: P=5700 lb 3,819 lb
Lon itudlnal Downalsle Seismic Load
Etransverse= 745 lb
Limit SIJJtes Level Transverse seismic shear per upright
DL hi wi*hl
75 lb 60 In 80,880
75 lb 120 In 161,760
75 lb 180 In 242,640
225 lb W=4044 lb 485,280
Ss= 0.921
S1= 0.339
Fa= 1.200
Fv= 1.961
Sds=2/3*Ss*Fa= 0.737
Sd1=2/3*S1 *Fv= 0.443
Ca=0.4*2/3*Ss*Fa= 0.2947
(Transverse, Braced Frame Dir.) R• 4.0
Ip= 1.0
PRfl = lib . l)I
Pallet Helght=hp= 48.0 In
DL per Beam Lvl= 75 lb
Fl Fl* hl+h /2
124.2 lb 10,433-#
248.3 lb 35,755-#
372.5 lb 75,990-#
745 lb L=122,178
SlmUar1y for longltUdlnal seismic loads, using R•6.0
Csl=Sdl/(T*R)= 0.0985
Ws= (0.67 * PLRF2 * P) + DL
= 4,044 lb (Longitudinal, Unbraced Dir.) R• 6.0
Cs2= 0.0324
Cs3= 0.0283
Cs-max= 0.0985
Level PRODUC LOAD P
1
2
3
1,900 lb
1,900 lb
1,900 lb
~es_ .. es_-m_a_x_*l..._p_=--'0_.0_9_8.;..5 ______________ T_,• 0.75 sec
Vlong= 0.0985 * (225 lb+ 3819 lb)
Elongltudlnal= 398 lb
P*0.67*PflF2 DL
1,273 lb 75 lb
1,273 lb 75 lb
1,273 lb 75 lb
hi
60 in
120 In
1801n
wl*hl
80,880
161,760
242,640
Fl
66.3 lb
132.7 lb
199.0 lb
Ewot Ylew
sum: =======3=8=19=1=b===2=25==1b===W===4=04=4=1b=======48=5=2=8=0======39=8=1=b========
CAMSTON WRATHER RESOURCES RECOVERY TYPE I I/G/2022
Foundamental Period of Vibration (Longitudinal)
Per FEMA 460 Appendix A -Development of An Analytical Model for the Displacement Based Seismic Design of Storage
Racks in Their Down Aisle Direction
Section 6.5. 1
Where:
Wpi
hpi
g =
NL =
kc =
kbe =
kb =
kce =
Ne=
Nb=
kbe =
kce =
kb =
kc=
L =
H =
lb =
le =
E =
we ii.th t of the i th pallet supported bv the storage rack
the elevation of the center of gravity of the ith pal let
with respect to the base of the storal(e rack
gravitational acceleration
tho number of loaded levels
the rotational stiffness of the connector
the f lexr al rotational stiffness of t he beam-end
the rotational stlffness of the base plate
the flexur al rotational stiffness of the buse uoright-end
the number of beam-to-upright connections
the number of base plate connections
6Eib / L
4Eic / H
fiic / H
Mmax/ 0 max
the clear span of the beams
Lhe clear height of the upright
the moment of iner tia about the bending axis of each beam
the moment of inertia of each base uprigh.t
Young's Modulus of the beams
Tl= 0. 78396
Since 0.6SDS=0.8lg>O. 6g, B=l. 7
Since St=O. 769g)0.5g,
usinR g=386 in'2/s
0 demand= 12 (1 +a) (Tl/1. 0) (Sl/htot)
= 0. 03063
t,, = Mo* (kc+kbe) / (kc*kbe) *htot
= 10. 4914
0d= Cd (1 +as)* t,, /h tot
= 0.36641
It of levels
min It of bavs
No
Nb
kc
kbe
kb
kce
lb
L
l e
H
E
Level hpi
1
2
3
4
5
3
3
36
8
428.571
3664. 56
139. 142
556.567
Wpi
2.236 in· 4
108 in
1.132 in ·4
240 in
29500 ksi
84 1. 273
144 1. 273
204 1. 273
0 0
0 0
Structural
Engineering & Design Inc.
1815 Wright Aye La Verne CA 91 750 Jel: 909,5961351 fax: 909,596,7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14
Downaisle Seismic Loads Configuration: TYPE I
Determine the story moments by applying portal analysis. The base plate Is assumed to provide no fixity.
Seismic Story Forces
Vlong= 398 lb
Vcol=Vlong/2= 199 lb
Fl= 66 lb
F2= 133 lb
F3= 199 lb
Seismic Story Moments
Typical frame made
nibutary are.1 of two colunms
o( rack (tame "' , __ _
I -8::J [3~:~
I I -EJ ~ EJ:[3 E]:[3
r-96"-,
~
Conceptual System
Typical F,amc ma4c L. of two oolumm
Mbase-max= 0 in-lb
Mbase-v= (Vcol*hleff)/2
<=== Defaultcapadty hl-eff= hl -beam dip helght/2
= 57in
= 5,672 In-lb <=== Moment going to base
Mbase-eff= Minimum of Mbase-max and Mbase-v
"' 0 In-lb PINNED BASE ASSUMED
M 1-1= [Vcol * hleff]-Mbase-eff M 2-2= [Vcol-(Fl)/2] * h2
= (199 lb * 57 ln)-0 in-lb = [199 lb -66.4 lb]*60 ln/2
= 11,343 In-lb = 4,976 in-lb
Msels"' (Mupper+Mlower)/2
Msels(l-1)= (11343 In-lb + 4976 ln-lb)/2
= 8,159 in-lb
Mseis(2-2)= (4976 In-lb + 2985 ln-lb)/2
= 3,980 In-lb
LEVEL
1
2
3
hi
60in
60 In
60in
Axial Load
2,963 lb
1,975 lb
9881b
Summary of Forces
Column Moment** Mselsmlc**
11,343 In-lb 8,159 In-lb
4,976 In-lb 3,980 In-lb
2,985 In-lb 1,493 In-lb
Mconn= (Mselsmlc + Mend-fixity)*0.70*rho
Mconn-allow(3 Pin)= 8,828 In-lb
**all moments based on limit states level loading
CAMSTON WRATHER RESOURCES RECOVERY TYPE I
Mend-fixity
3,245 in-lb
3,245 in-lb
3,245 In-lb
Vcol ~-"'t--_-_-_-_-_-_-_-_-....,..,":.,
h2
h1
Beam to Column
Elevation
rho= 1.0000
Mconn**
7,983 In-lb
5,058 In-lb
3,316 in-lb
Beam Connector
3 Tab OK
3 Tab OK
3 Tab OK
l/G/2022
COL
. Structural
Engineering & Design Inc.
1815 Wright Aye La Verne, CA 91750 Tel: 909,596,1351 Fax: 909,596.7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14
Column (Longitudinal Loads) Configuration: TYPE I
Section Properties
Section: Mecalux 314 3.0"x2.69"x0.070"
Aeff = 0.538 in"2
Ix = 0.765 in"4
Sx = 0.510 in"3
rx = 1.190 In
Qf= 1.67
Iy = 0.464 ln"4
Sy = 0.307 ln"3
ry = 0.928 in
Fy= 55 ksi
Kx = 1.7
r 3.000ln -1
Cmx= 0.85
E= 29,500 ksl
Loads Considers loads at level 1
COLUMN DL= 112 lb 01tical load cases are: RMI Sec 2.1
Lx = 58.6 In
Ky= 1.0
Ly = 32.0 in
Cb= 1.0
---l 0.070 In
2.690 In
J_
COLUMN PL= 2,850 lb Load Case 5: : (1 +0.105*Sds)D + 0.75*(1.4+0.14Sds)*B*P + 0.75*(0.7*rho*E}<= 1.0, ASD Method
Mcol= 11,343 In-lb axial load coeff: 0.7891548 * P seismic moment coeff: 0.5625 * Meo/
Sds= 0.7368 Load Case 6:: (1+0.104*Sds)D + (0.85+0.14Sds)*B*P + (0.7*rho*E)<= 1.0, ASD Method
l+0.105*Sds= 1.0774 axialload coeff: 0.66721 seismic momentcoeff: 0.7 * M<XJI
1.4+0.14Sds= 1.5032 By analysis, Load case 6 governs utilizing loads as such
Moment=Mx= 0.7*rho*Mcol
l +0.14Sds= 1.1032
0.85+0.14*Sds= 0.9532
B= 0.7000
rho= 1.0000
Axial Analysis
lb:lal Load=Pax= 1.103152*112 lb +·0,953152*0.7*2850 lb
= 2,025 lb = 0.7 * 11343 in-lb
= 7,940 in-lb
KxLx/rx = 1.7*58.625"/1.19"
= 83.8
Fe= n"2E/(KL/r)max"2
= 41.5ksl
Pn= Aeff*Fn
= 19,785 lb
P/Pa= 0.20
Bending Analysis
> 0.15
Kyly/ry = 1 *32"/0.9284"
= 34.5
Fy/2= 27.5 ksi
Qc= 1.92
Check: Pax/Pa + (Cmx*Mx)/(Max*µx) :5 1.0
P/Pao + Mx/Max :5 1.0
Pno= Ae*Fy Pao= Pno/Qc
= 0.538 ln"2 *55000 psi
= 29,585 lb
= 295851b/1.92
= 15,409 lb
Fe> Fy/2
Fn= Fy{l-Fy/4Fe)
= 55 ksi*[l-55 ksl/(4*41.5 ksi)]
= 36.8 ksi
Pa= Pn/0.c
= 19785 lb/1.92
= 10,305 lb
Myield=My= Sx*Fy
= 0.51 ln"3 * 55000 psi
c:: 28,050 In-lb
Max= My/Qf Per= n" 2EI/(KL)max" 2
= 28050 in-lb/1.67
= 16,796 in-lb
µx= {1/[1-{Qc*P/Pcr)JY-1
= {l/[1-(1.92*2025 lb/22424 lb)J}"-1
= 0.83
Combined Stresses
= n"2*29500 ksi/(1.7*58.625 ln)"2
= 22,424 lb
(2025 lb/10305 lb) + (0.85*7940 ln-lb)/(16796 ln-lb*0.83) =
(2025 lb/15409 lb) + (7940 in-lb/16796 In-lb) =
0.68
0.60
< 1.0, OK
< 1.0, OK
(EQ C5-1)
(EQ C5-2)
** For compan'son, total column stress computed for load case 5 is: 61.0% q loads 2369.755948 lb Axial and M= 5955 in-lb
CAMS TON WRATHER RESOURCES RECOVERY TYFE I I/G/2022
S .trwctural
Engineering & Design Inc.
1815 Weight Ave La Verne. CA 91750 Tel: 909,5961351 Fax: 909,596.7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14
BEAM contlguratlon: TYPE l
DETERMINE ALLOWABLE MOMENT CAPACITY
A} Check compression flange for local buckling {B2.1}
W= C -2*t ·2*r
= 1.75 In -2*0.059 In -2*0.059 In
= 1.514 in
w/t= 25.66
l=lambda= [1.052/(k)"0.5] * (w/t) * (Fy/E)"0.5
= [1.052/(4)"0.5] * 25.66 * (55/29500)"0.5
= 0.583 < 0.673, Flange is fully effective
B} check web for local buckling per section b2.3
fl(comp)= Fy*(y3/y2)= 48.06 ksi
f2(tension)= Fy*(y1/y2)= 99.82 ksi
Y= f2/fl
= -2.077
k= 4 + 2*(1-Y)"3 + 2*(1-Y)
= 68.42
flat depth=w= yl +y3
Eq. B2.3-5
Eq. B2.3-4
Eq. B2.1-4
Eq. B2.1-1
= 2.514 in w/t= 42.61016949 OK
l=lambda= [1.052/(k)"0.5] * (w/t) * (f1/E)"0.5
= [1.052/(68.42)"0.5] * 2.514 * (48.06/29500)"0.5
= 0.219 < 0.673
be=w= 2.514 In
bl= be(3-Y}
= 0.495
b2= be/2
= 1.26 in
bl+b2= 1.755 in > 0.817 in, Web Is fully effective
Determine effect of cold working on steel yield point {Fya} per section A7.2
Fya= C*Fyc + (1-C)*Fy (EQ A7.2-l}
Leorner=Le= (p/2) * (r + t/2)
0.139 In
Lftange-top=Lf= 1.514 in
m= 0.192*(Fu/Fy} -0.068
= 0.1590
C= 2*Lc/(Lf+2*Le)
= 0.155 in
(EQ A7.2-4}
Be= 3.69*(Fu/Fy) -0.819*(Fu/Fy)"2 -1.79
= 1.427
since fu/Fv=· 1.18 < 1.2
and r/t= 1 < 7 OK
then Fye= Be* Fy/(R/t)"m (EQ A7.2-2)
= 78.485 ksi
Thus, Fya-top= 58.64 ksl (tension stress at top)
Fya-bottom= Fya*Ycg/(depth -Yeg)
= 113.84 ksi (tension stress at bottom)
Check allowable tension stress for bottom flange
Lftange-bot=Lfb= Lbottom -2*r*-2*t
= 2.514 in
Cbottom=OJ= 2*Lc/(Lfb+2*Lc)
= 0.100
Fy-bottom=Fyb= Cb*Fyc + (1-Cb)*Fyf
= 57.34 ksl
Fya= (Fya-top)*(Fyb/Fya-bottom)
= 29.54 ksl
Eq B2.3-2
(EQ A7.2-3)
if F= 0.95 Then F*Mn=F*Fya*Sx=j 12.37 ln-k
depth
T
2,750 In
1.625 in
_j_
l~ 0.059 In
Beam= Intlk 27E 2 75Hx2 75Wx0 059"Thk
Ix= 0.674 ln"4
Sx= o·.441 in"3
Yeg= 1.815 In
t= 0.059 In
Bend Radius=r= 0.059 In
Fy=Fyv= 55.00 ksi
FU=Fuv= 65.00 ksl
E= 29500 ksi
top flange=b= 1.750 In
bottom flange= 2.750 In
Web depth= 2,71:n In
-Fy -
yl= Ycg-t-r= 1.697 in
y2= depth-Veg= 0.935 In
y3= y2-t-r= 0.817 In
Structural , '
Engineering & Design Inc.
1815 Wrjght Aye La Verne, CA 91750 Jel· 909 596,1351 fax· 909,596,7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14
BEAM contiguratlon: TYPE I
RMI section 5.2, PT II
Section
Beam= Intlk 27E 2.75Hx2.75Wx0.059"Thk
Ix=lb= 0.674 in"4
Sx= 0.441 in"3
t= 0.059 In
Fy=Fyv= 55 ksi
Fu=Fuv= 65 ksf
Fya= 58.6 ksi
E= 29500 ksi
F= 225.0
L= 108 in
Beam Level= 1
P=Product Load= 1,900 lb/pair
D=Dead Load= 75 lb/pair
1. Check Bending Stress Allowable Loads
Mcenter=F*Mn= W*L *W*Rm/8
W=LRFD Load Factor= 1.2*D + 1.4*P+1.4*(0.12S)*P
FOR DL=2% of PL,
W= 1.599
Rm= 1 -[(2*F*L)/(6*E*Ib + 3*F*L)]
RMI 2.:Z, item 8
1 -(2*225*108 in)/[(6*29500 ksl*0.674 in"3)+(3*225*108 In)]
= 0.747
if F= 0.95
Then F*Mn=F*Fya*Sx= 24.56 in-k
Thus, allowable load
per beam palr=W= F*Mn*8*(# of beams)/(L*Rm*W)
= 24.56 in-k * 8 * 2/(1081n * 0.747 * 1.599)
= 3,047 lb/pair allowable load based on bending stress
Mend= W*L *(l-Rm)/8
= (3047 lb/2) * 108 in * (1-0.747)/8
= 5,204 in-lb @ 3047 lb max allowable load
= 3,245 In-lb @ 1900 lb Imposed product load
2. Check Deflection Stress Allowable Loads
Dmax= Dss*Rd
Rd= 1 -(4*F*l)/(5*F*l + lO*E*Ib)
= 1 -(4*225*108 in)/[(5*225*108 ln)+(l0*29500 ksi*0.674 ln"4))
= 0.697 in
if Dmax= L/180 Based on L/180 Deflection Oitetia
and Dss= 5*W*L "3/(384*E*Ib)
L/180= 5*W*L "3*Rd/(384*E*Ib*# of beams)
solving for W yields,
W= 384*E*I*2/(180*5*L "2*Rd)
= 384*0.674 ln"4*2/[180*5*(108 ln)"2*0.697)
= 2,087 lb/pair allowable load based on deflection limits
t-2.75in
tl.751n 4
T
2.750 In
1.625 In
.J_
l 0.0591n ~-
11,mnum, lllllllllfllllllll lllll t=~~~~~~ ............
.. ..
-------------
: : : : : :
Beam
Leng'th -....
Allowable Deflection= L/180
= 0.600 In
Deflection at imposed Load= 0.546 In
Thus, based on the least capacity of item 1 and 2 above: Allowable load= 2,087 lb/pair
Imposed Product Load= 1,900 lb/pair
Beam Stress= • Beam at Level 1
, Structural
Engineering & Design Inc.
1815 Wcigbt Aye I a Yecoe GA 91750 Iel· 909 596 1351 fax· 9D9 596 7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14
3 Tab Beam to Column Connection Configuration: TYPE I
Mconn max= (Mselsmlc + Mend-fixity)*0.70*Rho
= 7,983 in-lb Load at level 1
Connector Type= 3 Tab
Shear capacity of Tab
Tab Length= 0.50 in
Ashearc 0.5 In * 0.135 in
= 0.0675 in"2
Pshear= 0.4 * Fy * Ashear
= 0.4 * 55000 psi* 0.0675in"2
= 1,485 lb
Bearing Capacity of Tab
tcol= 0.070 In
Omega= 2.22
Fy= 55,000 psi
Fu= 65,000 psi
a= 2.22
Pbearing= alpha * Fu * tab length * teal/Omega
= 2.22 * 65000 psi * 0.5 In * 0.07 ln/2.22
= 2,275 lb > 1485 lb
Moment capacity of Bracket
Edge Dlstance=E= 1.00 in Tab Spacing= 2.0 In
C= P1+P2+P3 = Pl +Pl *(2.5"/4.S")+Pl *(0.5"'/4.5")
= 1.667 * Pl
Mcap= Sdip * Fbending
= 0.1832 ln"3 * 0.66 * Fy
= 6,650 in-lb
4 3/8"
tcllp= 0.135 in
C*d= Mcap = 1.667
Pclip= Mcap/(1.667 * d)
= 6650.16 in-lb/(1.667 * 0.5 In)
= 7,979 lb
Thus, Pl = 1,485 lb
Mconn-allow= [Pl *4.5"+P1 *(2.5"/4.5")*2.S"+Pl *(0.5"/4.5")*0.5"]
= 1485 LB*[4.5"+(2.5"/4.5")*2.5"+ (0.5"/4.5")*0.5"]
= 8,828 In-lb > Mconn max, OK
stress= 0.9
CAM5TON WRArnER RESOURCES RECOVERY TYPE I
~.
P1 i-
t
C
Fy= 55,000 psi
Sclip= 0.183 ln"3
d= E /2
= 0.50 in
0
0
I/G/2022
, Structural
Engineering & Design Inc.
1815 Wrjght Ave La Verne, CA 91750 Tel· 909,596 1351 fax· 909 596 7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Pro1ect #: 21-1221-14
Transverse Brace Configuration: TYPE I
Section Properties
Diagonal Member= Mclx C456 Sgl 1.7953x1.378x16ga(U31x)
Area= 0.259 ln"2
r min= 0.449 in
Fy= 55,000 psi
K= 1.0
Qc= 1.92
Frame Dimensions
Diagonal Member
Bottom Panel Helght=H= 78.0 In
Frame Depth=D= 48.0 in
Column Wldth=B= 2.7 in
Horizontal Member= Mclx C456 Sgl 1.7953xl.378x16ga(U31x)
Area= 0.259 ln"2
r min= 0.449 In
Fy= 55,000 psi
K= 1.0
Oear Depth=D-B*2= 42.6 in
X Brace= NO
rho= 1.00
Vtransverse= 745 lb
Vb=Vtransv*0,7*rho= 745 lb * 0.7 * 1
= 5221b
Ldlag= [(D-B*2)"2 + (H-6")"2]"1/2
= 83.7 In
Pmax= V*(Ldiag/D) * 0.75
= 6821b
axial load on dla onal brace member
(kl/r)= (k * Ldiag)/r min
= (1 x 83.7 In /0.449 In )
= 186.4 in
Fe= pl" 2*E/(kl/r)" 2
= 8,380 psi
Since Fe<Fy/2,
Fn= Fe
T
l=====ll
Pn= AREA*Fn
= 0.259 in"2 * 8380 psi
= 2,168 lb
Pallow= Pn/Q
= 2168 lb /1.92
= 1,129 lb
Pn/Palrow:: 0.60
Horizontal brace
Vb=Vtransv*0,7*rho"' 522 lb
(kl/r)= (k * Lhoriz)/r min
= (1 x 48 in) /0.449 in
= 106.9 in
Since Fe<Fy/2, Fn=Fe
= 25,478 psi
Pn/Pallow= 0.15
<= 1.0 OK
<= 1.0 OK
CAM5TON WRATH ER RESOURCES RECOVERY 1Yf'E I
Fe= pl" 2*E/(kl/r)" 2
= 25,478 psi
Pn= AREA*Fn
= 0.259in"2*25478 psi
= 6,591 lb
= 8,380 psi 8 +r
Fy/2= 27,500 psi
Pallow= Pn/Qc
~
CQo/1Qlllll1km
= 6591 lb /1.92
= 3,433 lb
I/G/2022
Structural
Engineering & Design Inc.
1815 Wrigbt Aye La Verne CA 91750 Tel: 909 596.1351 fax: 909.596 7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14
Single Row Frame Overturning Configuration: TYPE I
Loads
Critical Load case(s):
1) RMI Sec 2.2, item 7: (0.9-0.2Sds)D + (0.9-0.20Sds)*B*Papp -E*rho
Vtrans=V=E=Qe= 745 lb
DEAD LOAD PER UPRIGHT=D= 225 lb
PRODUCT LOAD PER UPRIGHT=P= 5,700 lb
Papp=P*0.67= 3,819 lb
Wst LC1=Wst1=(0.75264*D + 0.75264*Papp*1)= 3,043 lb
Sds= 0.7368
(0.9-0.2Sds)= 0. 7526
(0.9-0.2Sds)= 0.7526 ... )("• il\c:W~•S<' B= ~-bl!IQ'9itm<t'l<r1,;J
Product Load Top Level, ptop= 1,900 lb
DL/Lvl= 75 lb
Seismic OVt based on E, I:(Fi*hi)= 84,097 In-lb
height/depth ratio= 3.8 in
Al Fullv Loaded Rack
Load case 1:
Movt= I:(Fl*hl)*E*rho
= 84,097 In-lb
rho= 1.0000
Frame Depth=Df= 48.0 in
Htop-lvl=H= 180.0 in
# Levels= 3
# Anchors/Base= 1
hp= 48.0 In
h=H+ho/2= 204.0 In
Mst= Wstl * Df/2
= 3043 lb * 48 ln/2
= 73 032 In-lb
SIDE ELEVATION
T = (Movt-Mst)/Df
= (84097 In-lb -73032 ln-lb)/48 In
= 231 lb Net Upllft per Column
I Net Seismic Upllft= 231 lb Strength Level
B) TOD Level Loaded Onlv
Load case 1:
0 Vl=Vtop= CS* Ip* ptop >= 350 lb for H/D >6.0 Movt= [Vl *h + V2 * H/2)*rho
= 0.1842 * 1900 lb = 75,126 In-lb
= 3501b T= (Movt-Mst)/Df
Vleff= 350 lb Critical Level= 3 = (75126 In-lb -38385 in-lb)/48 In
V2=VDl = CS*Ip*D CS*Ip= 0.1842 = 765 lb Net Upllft per Column
= 41 lb
Mst= (0.75264*D + 0.75264*ptop*1) * 48 in/2
= 38,385 In-lb
'
I Net Seismic Uplift= 765 lb Strength level
Anchor
Check (1) 0.5'' x 3.25" Embed Hilti TZ anchor(s) per base plate.
Special inspection Is required per #1917.
Fully Loaded:
Top Level Loaded:
Pullout Capacity=Tcap= 970 lb L.A. City Jurisdiction? NO
Shear Capaclty=Vcap= 1,250 lb Phi= 1
(231 lb/970 lbY'l + (372 lb/1250 lb)"l =
(765 lb/970 lb)"l + (174 lb/1250 lb)"l =
CAMSTON WRATHER RESOURCES RECOVERY TYPE I Page lf( of Y, )
0.54
0.93
Tcap*Phl= 970 lb
Vcap*Phl= 1,250 lb
<= 1.2 OK
<= 1.2 OK
I/G/2022
. . . Structural
Engineering & Design Inc.
1 a15 Weight Ave La Verne, CA 91750 re1: 909,596, 1351 fax: 909,596.7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY
Base Plate Configuration: TYPE I
Section
Baseplate= S.094x4.688x0.194
Eff Width=W = 5.09 In
Eff Depth=D = 4.69 in
Column Width=b = 3.00 in
Column Depth=dc = 2.69 In
L -= 1.05 in
Plate Thlckness=t = 0.194 In
a = 1.55 in
Anchor c.c. =2*a=d = 3.09 In
N=# Anchor/Base= 1
Fy = 36,000 psi
Project#: 21-1221-14
0owna1s1e Eleyatloo
Down Aisle Loads load Case 5:: (1+0.105*5ds)D + 0.75*((1.4+0.14Sds)*B*P + 0.75*(0.7*rho*El<= 1.0, ASD Method
COLUMN DL= 113 lb Axial=P= 1.077364 * 112.5 lb+ 0.75 * (1.503152 * 0.7 * 2850 lb)
COLUMN PL= 2,850 lb = 2,370 lb
Base Moment= 0 In-lb Mb= Base Moment*0.75*0.7*rho
l+0.105*Sds= 1.0774 = 0 in-lb * 0.75*0.7*rho
1.4+0.14Sds= 1.5032 = 0 In-lb B= 0:},®~1~-;~-•-."'Tmi·,..., --Ax-ia_l_L_o_ad_P_=_2_,3_7_0_1_b _____ M_ba_se_=_M_b_=_O_in---,b-----,
Axial stress=fa = P/A = P/(D*W)
= 99 psi
Moment Stress=fb = M/5 = 6*Mb/[(D*B"2]
= o.o psi
Moment Stress=fbl = fb-fb2
= o.o psi
M3 = (1/2)*fb2*L *(2/3)*L = (1/3)*fb2*L "2
= 0 in-lb
5-plate = (l)(t" 2)/6
= 0.006 ln"3/in
fb/Fb = Mtolal/((5-plate)(Fb)]
0.32 OK
Tanchor = (Mb-(PLapp*0.75*0.46)(a))/[(d)*N/2]
= -3,043 lb No Tension
Ml= wL"2/2= fa*L"2/2
= 54 ln·lb
Moment Stress=fb2 = 2 * fb * L/W
= 0.0 psi
M2= fbl *L" 2)/2
= 0 In-lb
Mtotal = Ml +M2+M3
= 54 in-lb/In
Fb = 0.75*Fy
= 27,000 psi
Pp= 0.7*F'c
= 2,800 psi
Tallow= 970 lb
OK
OK
Cross Aisle Loads Ctltlcal/oad,,,.•11H1s«2.1, 1rem4,r1+0.11Sds)OI. +r1+0.u SDSJPL•o.1s+e.•01s <• 1.4 ASDHethod Check uplift load on Baseplate
Effl
Effe
Pstatic= 2,370 lb
Movt*0.75*0.7*rho= 44,151 In-lb
Frame Depth= 48.0 In
Pselsmlc= Movt/Frame Depth
= 920 lb
Check uplift forces on baseplate with 2 or more anchors per RMI 7.2.2.
'When the bose plate configuration consists a two anchor bolts located on either side
f the column and a net uplift force exists, the minimum base plate thickness
all be determined based on a design bending moment In the plate equal
P=Pstatic+Pseismic= 3,290 lb
b =Column Depth= 2.69 in
L =Base Plate Depth-Col Depth= 1.05 in
fa = P/A = P/(D*W)
= 138 psi
Sbase/in = (1)(t"2)/6
= 0.006 In" 3/in
fb/Fb = M/[(S·plate~(Fb)]
0.45 OK
CAM5TON WRATHER RE50URCE5 RECOVERY TYf'E I
M= wL" 2/2= fa*L" 2/2
= 76 in-lb/In
Fbase = 0.75*Fy
= 27,000 psi
to the uplift force on one anchor times 1/2 the distance from
e centerline of the anchor to the nearest edge of the rack column"
I~
T ~ Mu a,~
.EleY.allon
Upll~ per Column= 765 lb
Qty Anchor per BP= 1
Net Tension per anchor=Ta= 765 lb
c= 1.05 In
Mu=Moment on Baseplate due to uplift= Ta*c/2
fb Fb *0.75= 0.378
= 400 in-lb
Splate= 0.029 in"3
OK
I/G/2022
, .. Structural
Engineering & Design Inc.
1815 Wrjqht Aye La \/erne, CA 91750 Tel· 909,596 1351 Fax: 909,596 7186
By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14
Slab on Grade Configuration: TYPE I
y
L
SLAB ELEVATION Baseplate Plan View
Concrete
f'c= 4,000 psi
tslab=t= 5.5 in
teff=> 5 .5 in
i1:i:v1~1i."¢ci',f.\~6:lh~ i :"t,:;.'it.,-~h'~"'~ . :Y I,
,SQil
fsoil= 750 psf
Movt= 84,097 In-lb
Frame depth= 48.0 In
Sds= 0.737
0.2*Sds= 0.147 Base Plate
Effec. Baseplate wtdth=B= 5.09 in
Effec. Baseplate Depth=D= 4.69 in
width=a= 3.00 In ~:t,.)tiii~iiJ.,fqt6P.Q' i .
[3=B/D= 1.087
F'c"0.5= 63.20 psi
depth=b= 2.69 in
Column Loads
DEAD LOAD=D= 113 lb per column
unfadored ASD load
PRODUCT LOAD=P= 2,850 lb per column
unfactored ASD load
Papp= 1,910 lb per column
P-seismic=E= (Movt/Frame depth)
= 1,752 lb per column
unfadored Umlt State load
B= 0.7.00Q·
rho= .:1,0000
Sds= 0.7368
1.2 + 0.2*Sds= 1.3474
0. 9 -0.20Sds= 0.7526
Puncture
Apunct= [(c+t)+(e+t)]*2*t
= 206.10 ln"2
Fpunctl = [( 4/3 + 8/(3*[3)] * A *(F'c"0.5)
= 143.6 psi
Fpunct2= 2.66 * A* (F'c"0.5)
= 100.9 psi
Fpunct eff= 100.9 psi
Slab Bending
Pse=DL+PL+E= 4,738 lb
Asoil= (Pse*l 44)/(fsoll)
= 910 ln"2
x= (L-y)/2
= 7.7 In
Fb= S*(phl)*(fc)"0.5
= 189.74 psi
midway dist face of column to edge of plate=c= 4.05 In
midway dist face of column to edge of plate=e= 3.69 In
Load case 1) (1.2+0.2Sds)D + (1.2+0.2Sds)*B*P+ rho*E RMI sEC 2.2 EQTN s
= 1.34736 * 113 lb+ 1.34736 * 0.7 * 2850 lb + 1 * 1752 lb
= 4,592 lb
Load Case 2) (0.9-0.2Sds)D + (0.9-0.2Sds)*B*Papp + rho*E RMI SEC 2.2 EQTN 1
= 0.75264 * 113 lb+ 0.75264 * 0.7 * 1909.5 lb+ 1 * 1752 lb
= 2,843 lb
Load Case 3) 1.2*D + 1.4*P RMI sec 2.2 EQTN 1,2
= 1.2*113 lb + 1.4*2850 lb
= 4,125 lb
Load Case 4) 1.2*D + 1.0*P + LOE AC! 318-14 Sec s.3.1
= 4,738 lb Eqtn 5.3.le
Effective Column Load=Pu= 4,738 lb per column
L= (Asoil)"0.5
= 30.17 In
M= w*x"2/2
= (fsoil*x"2)/(144*2)
= 152.4 In-lb
fv/Fv= Pu/(Apunct*Fpunct)
0.228 < 1 OK
y= (c*e)"0.5 + 2*t
= 14.9 In
s-slab= 1 *teff"2/6
= 5.04 ln"3
fb/Fb= M/(S-slab*Fb)
0.159 < 1, OK
CAMSTON WRATHER. RESOUR.CES R.ECOVER.Y TYPE I Page f) of lf-} 1/G/2022
SAN DIEGO REGIONAL
HAZARDOUS MATERIALS
QUESTIONNAIRE
OFFICE USE ONLY
RECORD ID# _________________ _
PLAN CHECK# _________________ _
BP DATE
Mailing Address (include suite)
SctJ'(\e ClS ctkx)/ ~
Plan File#
The following questions represent the facility's activities, NOT the specific project description.
PART I: FIRE DEPARTMENT -HAZARDOUS MATERIALS DIVISION: OCCUPANCY CLASSIFICATION: (not required for projects within the City of San
Diego}: Indicate by circling the item, whether your business will use, process, or store any of the following hazardous materials. If any of the items are circled,
applicant must contact the Fire Protection Agency with jurisdiction prior to plan submittal.
Occupancy Rating: Facility's Square Footage (including proposed project):
1. Explosive or Blasting Agents 5. Organic Peroxides 9. Water Reactives
2. Compressed Gases 6. Oxidizers 10. Cryogenics
3. Flammable/Combustible Liquids 7. Pyrophorics 11. Highly Toxic or Toxic Materials
13. Corrosives
14. Other Health Hazards
15. None of These.
4. Flammable Solids 8. Unstable Reactives 12. Radioactives
PART 11: SAN DIEGO COUNTY DEPARTMENT OF ENVIRONMENTAL HEAL TH -HAZARDOUS MATERIALS DIVISION (HMD}: If the answer to any of the
questions is yes, applicant must contact the County of San Diego Hazardous Materials Division, 5500 Overland Avenue, Suite 170, San Diego, CA 92123.
Call (858) 505-6700 prior to the issuance of a building permit.
FEES ARE REQUIRED Project Completion Date: Expected Date of Occupancy: 0 CalARP Exempt
YES j (for new construction or remodeling projects) /
1. 0 Is your business listed on the reverse side of this form? (check all that apply). Date Initials
2. O Will your business dispose of Hazardous Substances or Medical Waste in any amount?
3. O Will your business store or handle Hazardous Substances in quantities greater than or equal to 55 gallons, 500 D CalARP Required
4.
5.
6.
7.
8.
D D
D D
D
pounds and/or 200 cubic feet? / I Will your business store or handle carcinogens/reproductive toxins in any quantity? Date Initials
Will your business use an existing or install an underground storage tank?
Will your business store or handle Regulated Substances (CalARP)? O CalARP Complete
Will your business use or install a Hazardous Waste Tank System (Title 22, Article 10)? ----'~---
~ Will your business store petroleum in tanks or containers at your facility with a total facility storage capacity equal to Date Initials
or greater than 1,320 gallons? (California's Aboveground Petroleum Storage Act).
PART 111: SAN DIEGO COUNTY AIR POLLUTION CONTROL DISTRICT (APCDI: The following questions are intended to identify the majority of air pollution
issues at the planning stage. Your project may require additional measures not identified by these questions. Some residential projects may be exempt from APCD
requirements. If yes is answered for either questions 1, 2 or 5 or for more comprehensive requirements, please contact APCD at apcdcomp@sdcounty.ca.qov;
(858) 586-2650; or 10124 Old Grove Road, San Diego, CA 92131.
1. WIii the project disturb 100 square feet or more of existing building materials? YBES iNO
2. Will any load supporting structural members be removed?
3. O O (ANSWER ONLY IF QUESTION 1 or 2 IS YES) Has an asbestos survey been performed by an individual that has passed an EPA-approved
building inspector course?
4. O O (ANSWER ONLY IF QUESTION 1 or 2 IS YES) Based on the survey results, will the project disturb any asbestos containing material? If yes, a
notification may be required at least 10 working days prior to commencing asbestos removal. Additionally, a notification may be required prior to
the removal of a load supporting structural member(s) regardless of the presence of asbestos.
5. O ~ Will the project or associated construction equipment emit air contaminants? See the reverse side of this form for typical equipment requiring an
APCD permit. If yes, contact APCD prior to the issuance of a building permit.
6. O D (ANSWER ONLY IF QUESTION 5 IS YES) Will the project or associated construction equipment be located within 1,000 feet of a school
bounda ?
Briefly describe proposed proje t:
e h~S,e, \.h
I declare under penalty of pE:rjury that to the be
\ d $ cA Q_,,\ :'-> 0-R r: t 11
Name of Own~r or Authorized Agent Date
FOR OFFICAL USE ONLY: FIRE DEPARTMENT OCCUPANCY CLASSIFICATION: ________________________________ _
BY· DATE· I I
EXEMPT OR NO FURTHER INFORMATION REQUIRED RELEASED FOR BUILDING PERMIT BUT NOT FOR OCCUPANCY RELEASED FOR OCCUPANCY
COUNTY-HMO• APCD COUNTY-HMO APCD COUNTY-HMO APCD
.. • A stamp in this box only exempts businesses from completing or updating a Hazardous Matenals Business Plan. Other permitting requirements may still apply
HM-9171 (9/18) County of San Diego -DEH -Hazardous Materials Division
LIST OF BUSINESSES WHICH REQUIRE REVIEW AND APPROVAL FROM THE COUNTY OF SAN DIEGO
DEPARTMENT OF ENVIRONMENTAL HEAL TH -HAZARDOUS MATERIALS DIVISION
Check all that apply:
AUTOMOTIVE
D Battery Manufacturing/Recycling
D Boat Yard
D Car W ash
D Dealership Maintenance/Painting
0 Machine Shop
D Painting
0 Radiator Shop
D Rental Yard Equipment
D Repair/Preventive Maintenance
D Spray Booth
D Transportation Services
D Wrecking/Recycling
CHEMICAL HANDLING
D Agricultural supplier/distributor
D Chemical Manufacturer
D Chemical Supplier/Distributor
D Coatings/Adhesive
D Compressed Gas Supplier/Distributor
D Dry Cleaning
D Fiberglass/Resin Application
0 Gas Station
D Industrial Laundry
D Laboratory
D Laboratory Supplier/Distributor
0 Oil and Fuel Bulk Supply
D Pesticide Operator/Distributor
CHEMICAL HANDLING
D Photographic Processing
D Pool Supplies/Maintenance
D Printing/Blue Printing
D Road Coatings
D Swimming Pool
D Toxic Gas Handler
D Toxic Gas Manufacturer
METAL WORKING
D Anodizing
0 Chemical Milling/Etching
D Finish-Coating/Painting
D Flame Spraying
D Foundry
D Machine Shop-Drilling/Lathes/Mills
0 Metal Plating
D Metal Prepping/Chemical Coating
D Precious Metal Recovery
D Sand Blasting/Grinding
D Steel Fabricator
D Wrought Iron Manufacturing
AEROSPACE
D Aerospace Industry
D Aircraft Maintenance
D Aircraft Manufacturing
MISCELLANEOUS
D Asphalt Plant
0 Biotechnology/Research
0 Cannabis-related
0 Manufacturing O Dispensary O Other
D Co-Generation Plant
D Dental Clinic/Office
D Dialysis Center
D Emergency Generator
D Frozen Food Processing Facility
D Hazardous Waste Hauler
D Hospital/Convalescent Home
D Laboratory/Biological Lab
0 Medical Clinic/Office
D Nitrous Oxide (NO,) Control System
D Pharmaceuticals
0 Public Utility
D Refrigeration System
D Rock Quarry
D Ship Repair/Construction
D Telecommunications Cell Site
D Veterinary Clinic/Hospital
D Wood/Furniture Manufacturing/Refinishing
D Brewery/Winery/Distillery
ELECTRONICS
D Electronic Assembly/Sub-Assembly
1 ---Q Electronic Components Manufacturing ~~ Printed Circuit Board ~nufacturing
NOTE: THE ABOVE LIST INCLUDES BUSINESSES, WHICH TYPICALLY USE, STORE, HANDLE, AND DISPOSE OF HAZARDOUS SUBSTANCES.
ANY BUSINESS NOT INCLUDED ON THIS LIST, WHICH HANDLES, USES OR DISPOSES OF HAZARDOUS SUBSTANCES MAY STILL REQUIRE
HAZARDOUS MATERIALS DIVISION (HMO) REVIEW OF BUSINESS PLANS. FOR MORE INFORMATION CALL (858) 505-6880.
LIST OF AIR POLLUTION CONTROL DISTRICT PERMIT CATEGORIES
Businesses, which include any of the following operations or equipment, will require clearance from the Air Pollution Control District.
CHEMICAL
47 -Organic Gas Sterilizers
32 -Acid Chemical Milling
33 -Can & Coil Manufacturing
44 -Evaporators, Dryers & Stills Processing
Organic Materials
24 -Dry Chemical Mixing & Detergent Spray
Towers
35 -Bulk Dry Chemicals Storage
55 -Chrome Electroplating Tanks
COATINGS & ORGANIC SOLVENTS
27 -Coating & Painting
37 -Plasma Arc & Ceramic Deposition Spray
Booths
38 -Paint, Stain & Ink Mfg
27-Printing
27 -Polyester Resin/Fiberglass Operations
METALS
18 -Metal Melting Devices
19-Oil Quenching & Salt Baths
32 -Hot Dip Galvanizing
39 -Precious Metals Refining
ORGANIC COMPOUND MARKETING
(GASOLINE, ETC)
25 -Gasoline & Alcohol Bulk Plants & Terminals
25 -Intermediate Refuelers
26 -Gasoline & Alcohol Fuel Dispensing
COMBUSTION
34 -Piston Internal -Combustion Engines
13-Boilers & Heaters (1 million BTU/hr or larger)
14 -Incinerators & Crematories
15 -Burn Out Ovens
16 -Core Ovens
20 -Gas Turbines, and Turbine Test Cells & Stands
48 -Landfill and/or Digester Gas Flares
ELECTRONICS
29 -Automated Soldering
42 -Electronic Component Mfg
FOOD
12 -Fish Canneries
12 -Smoke Houses
50 -Coffee Roasters
35 -Bulk Flour & Powered Sugar Storage
SOLVENT USE
28 -Vapor & Cold Degreasing
30 -Solvent & Extract Driers
31 -Dry Cleaning
ROCK AND MINERAL
04 -Hot Asphalt Batch Plants
05 -Rock Drills
06 -Screening Operations
07 -Sand Rock & Aggregate Plants
08 -Concrete Batch, CTB, Concrete Mixers, Mixers
& Silos
10 -Brick Manufacturing
OTHER
01 -Abrasive Blasting Equipment
03 -Asphalt Roofing Kettles & Tankers
46 -Reverse Osmosis Membrane Mfg
51 -Aqueous Waste Neutralization
11 -Tire Buffers
17 -Brake Debonders
23 -Bulk Grain & Dry Chemical Transfer & Storage
45 -Rubber Mixers
21 -Waste Disposal & Reclamation Units
36 -Grinding Booths & Rooms
40 -Asphalt Pavement Heaters
43 -Ceramic Slip Casting
41 -Perlite Processing
40 -Cooling Towers -Registration Only
91 -Fumigation Operations
56 -WI/VTP (1 million gal/day or larger) & Pump
Station
NOTE: OTHER EQUIPMENT NOT LISTED HERE THAT IS CAPABLE OF EMITTING AIR CONTAMINANTS MAY REQUIRE AN AIR POLLUTION
CONTROL DISTRICT PERMIT. IF THERE ARE ANY QUESTIONS, CONTACT THE AIR POLLUTION CONTROL DISTRICT AT (858) 586-2600.
HM-9171 (9/18) County of San Diego -DEH -Hazardous Materials Division