Loading...
HomeMy WebLinkAbout2856 WHIPTAIL LOOP; ; CBC2022-0025; PermitBuilding Permit Finaled (city of Carlsbad Commercial Permit Print Date: 09/27/2022 Job Address: 2856 WHIPTAIL LOOP, CARLSBAD, CA 92010-6708 Permit Type: BLDG-Commercial Work Class: Parcel#: 2091201400 Track It: Valuation: $0.00 Lot It: Occupancy Group: #of Dwelling Units: Bedrooms: Bathrooms: Occupant Load: Code Edition: Sprinkled: Project Title: Project It: Plan It: Construction Type: Orig. Plan Check#: Plan Check#: Description: CAMSTON WRATHER RESOURCE: HIGH PILE RACKING Applicant: QUALITY MATERIAL HANDLING LISA RISNER 10156 SHARON CIR RANCHO CUCAMONGA, CA 91730-5300-SAN BERNARDINO (626) 812-9722 FEE BUILDING PLAN CHECK CERTIFICATE OF OCCUPANCY FIRE High Piled Storage Property Owner: HAMANN OAK PROPERTIES LP 1000 PIONEER WAY EL CAJON, CA 92020 (619) 440-7424 SB1473 -GREEN BUILDING STATE STANDARDS FEE STORAGE RACKS > 8 FT HIGH Tenant Improvement Permit No: CBC2022-0025 Status: Closed -Finaled Applied: 01/20/2022 Issued: 06/29/2022 Finaled Close Out: 09/21/2022 Final Inspection: 09/21/2022 INSPECTOR: Kersch, Tim Contractor: QUALITY MATERIAL HANDLING INC 10156 SHARON CIR RANCHO CUCAMONGA, CA 91730-5300-SAN BERNARDINO (626) 812-9722 AMOUNT $1,242.15 $15.00 $831.00 $1.00 $1,911.00 Total Fees: $4,000.15 Total Payments To Date: $4,000.15 Balance Due: $0.00 Please take NOTICE that approval of your project includes the "Imposition" of fees, dedications, reservations, or other exactions hereafter collectively referred to as "fees/exaction." You have 90 days from the date this permit was issued to protest imposition of these fees/exactions. If you protest them, you must follow the protest procedures set forth in Government Code Section 66020(a), and file the protest and any other required information with the City Manager for processing in accordance with Carlsbad Municipal Code Section 3.32.030. Failure to timely follow that procedure will bar any subsequent legal action to attack, review, set aside, void, or annul their imposition. You are hereby FURTHER NOTIFIED that your right to protest the specified fees/exactions DOES NOT APPLY to water and sewer connection fees and capacity changes, nor planning, zoning, grading or other similar application processing or service fees in connection with this project. NOR DOES IT APPLY to any fees/exactions of which you have previously been given a NOTICE similar to this, or as to which the statute of limitation has previously otherwise expired. Building Division Page 1 of 1 1635 Faraday Avenue, Carlsbad CA 92008-7314 I 442-339-2719 I 760-602-8560 f I www.carlsbadca.gov { City of Carlsbad COMMERCIAL BUILDING PERMIT APPLICATION 8-2 Plan Check CfJt, 2-0U--@S Est. Value PC Deposit Date r , Job Address d, Cl 5 VJ WV\ I om I Loop ~0~u1te: ___ .APN: Q eq Vs10 \ y I • l I re l-{'.)Vt"' '{(/\ Tenant Name#( 0 [Y'f:il 9 D VVV'~, resOvl Y-c.-e.., Lot#: __ J __ Year Built:_?-() __ /~------ Year Built: Jolg Occupancy:'o/s I Construction Type:11 1-lj . Fire sprinklers,YES0NO A/C:-YES0No BRIEF DESCRIPTION OF WORK: \/Vel '{ e YX,v\ &c. ti} <3 V\ p\ \-e, COl.l-/L l D<:_J 0 Addition/New:. __________ New SF and Use,. ________ New SF and Use ______ SF Deck, SF Patio Cover, SF Other (Specify) ___ _ □Tenant Improvement: ____ SF, Existing Use: ______ Proposed Use: _____ _ ____ SF, Existing Use: Proposed Use: _____ _ PRIMARY APPLICANT . Name: L\4:)G\ ~SO-e :C Address:\O \S l o a vm CJ ((le, City: ~0 J,ioC..Ucam ffl5\tste: vA Zip:9 IJSO Phone: \.ol,lo ~ I'd.. 9 • e::;a. :Vf:± ;)o--0 Email: )?ey:: fY\ I ;::,@ Q f)'\jj· I~ 6 , <..D'fY"\ DESIGN PROFESSIONAL Name: <t-Jo.Xe"?'h Pu\ \C.. \-\'1 wcd 0 Address: \ ~ ~7 vJ I'\ ~v\-\-~ city: GA v~~tate= vB zip: g o so Phone: °\ Dot -sq ( O -\ ;iS I Email: ~ 0o6@sedll\(;. (Q{Y; , Architect State License: Ul---lR\eQ 55'. -e. {\ 0 I f).e ~ \l;I MCO 6q FT PROPERTY OWN ER Name· ~ .. pP.-1. L ~11,,( { e. L--P Addre~00h 9 wn;;; W ct ; City: f=.\., Lq) OV""'. State: ffi Zip:q q; D ~O Phone: \ o(C] -!..fY D -1 ½ ol L---1 (;xe3 \-\ G\t'(\C\ I'\ \I"\ Email: ________________ _ CONTRACTOR OF RECORD , Business Na me: WA a. l l::hg fY\O.Jv(\ ell fu v-JI ti'.'£1 · 1 hv . Address: \£_l5 lo 9/\.av[,h u v uLG City: Oo B,,u g <Y'9Q €90 State: lv,--Zip: q 17 c O Phone: lfLLP -'6 \":J..-9 7 0-0-.. Email: f'ev m r½,@ OM t\-I 0 G , C a/Y; CSLB License#: ] ~ ( I O O Class: Coll { D(p { ,.B Carlsbad Business License# (Required): ______ _ APPLICANT CERT/FICA T/ON: I certify that/ have read the application and state that the above information is correct and that the information on the plans is accurate. I agree to comply with all City ordinances and State laws relating to building constrnction. I ~,s ~ '{\cu,/ n~ NAME (PRINT): _L...:_r_ -"--\.,_____ SIGN:-~...;.,,.,,.,;..__ __ ___., __ DATE: l -l \--dQ;} ;)- 1635 Faraday Ave Carlsbad, CA 92008 Ph: 760-602-2719 Fax: 760-602-8558 Email: Building@carlsbadca.gov REV. 10/21 THIS PAGE REQUIRED AT PERMIT ISSUANCE PLAN CHECK NUMBER: ______ _ A BUILDING PERMIT CAN BE ISSUED TO EITHER A STATE LICENSED CONTRACTOR OR A PROPERTY OWNER. IF THE PERSON SIGNING THIS FORM IS AN AGENT FOR EITHER ENTITY AN AUTHORIZATION FORM OR LETTER IS REQUIRED PRIOR TO PERMIT ISSUANCE. (OPTION A): LICENSED CONTRACTOR DECLARATION: lherebyaffirmunderpenaltyofperjurythatlamlicensedunderprovisionsofChapter9(commencingwithSection7000)ofDivision3 of the Business and Professions Code, and my license is in fut I force and effect. I also affirm under penalty of perjury one of the following declarations {CHOOSE ONE): 01 have and will maintain a certificate of consent to self-insure for workers' compensation provided by Section 3700 ofthe Labor Code, for the performance of the work which this permit is issued. PolicyNo. ____________________________________________ _ -OR- I have and will maintain worker's compensation, as required by Section 3700 of the Labor Code, for the performance of the work for which this permit is issued. My workers' compensation insurance carrier and policy number are: Insurance Company Name: l'C\S LA I[ C\ Y\ (e_, C.o[f)~~ 0 ~ ~4 _ Policy No. \rJ";;,Q S:(75 9 1 ( o:-D CC) Expiration Date: --=~.._---'-1---=8--c...::O'-~""-""--""'::_ _____ _ -OR- D Certificate of Exemption: I certify that in the performance of the work for which this permit is Issued, I shall not employ any person in any manner so as to become subject to the workers' compensation Laws of California. WARNING: Failure to secure workers compensation coverage is unlawful and shall subject an employer to criminal penalties and civil fines up to $100,000.00, in addition the to the cost of compensation, damages as provided for in Section 3706 of the Labor Code, interest and attorney's fees. CONSTRUCTION LENDING AGENCY, IF ANY: I hereby affirm that ther is a construction lending agency for the performance of the work this permit is issued (Sec. 3097 (i) Civil Code). Lender's Name: r-.J Lender's Address: _______________________ _ CONTRACTOR CERT/FICA T/ON: The applicant certifies that all documents and plans clearly and accurately show all e,isting and proposed buildings, structures, access roods, and utllltles/ut//ity tostmtnts. All proposed modifications ond/or additions ore clearly labeled on the site plan. Any potentially e,istlng detail within these plans Inconsistent with the site pion art not opprovtd for construction and may be required to be altered or removed. The city's approval of the application Is based on the premise that the submlrttd documtnts and plans show tht correct dimtnsions ot the property, buildings, structures and their setboc/cs from property lines and from one another; access roods/eostments, and utilities. The existing and proposed ust of each building as stated Is true and correct; oil easemtnts and other encumbrances to development have been accurately shown ond labeled os well as all on-site grading/site preparation. All improvements txlsting on the property were completed in accordance with all regulations in existence at the time of their construct/a NAME (PRINT): U~ ~ <;r\R V:: SIGNATURE:--».~!..::::fi::~.....----DATE: \ -11 ✓7)()'d--'7r Note: If the person signing above Is an authorized agent for the contractor provide a letter of authorization on contractor letterhead. (OPTION B): OWNER-BUILDER DECLARATION: I hereby affirm that I am exempt from Contractor's License Law for the following reason: D I, as owner of the property or my employees with wages as their sole compensation, will do the work and the structure is not intended or offered for sale (Sec. 7044, Business and Professions Code: The Contractor's License Law does not apply to an owner of property who builds or improves thereon, and who does such work himself or through his own employees, provided that such improvements are not intended or offered for sale. If, however, the building or improvement is sold within one year of completion, the owner-builder will have the burden of proving that he did not build or improve for the purpose of sale). -OR- DI, as owner of the property, am exclusively contracting with licensed contractors to construct the project (Sec. 7044, Business and Professions Code: The Contractor's License Law does not apply to an owner of property who builds or improves thereon, and contracts for such projects with contractor(s) licensed pursuant to the Contractor's License Law). -OR- DI am exempt under Business and Professions Code Division 3, Chapter 9, Article 3 for this reason: AND, D FORM B-61 "Owner Builder Acknowledgement and Verification Form" is required for any permit issued to a property owner. By my signature below I acknowledge that, except for my personal residence in which I must have resided for at least one year prior to completion of the improvements covered by this permit, I cannot legally sell a structure that I have built as an owner-builder if it has not been constructed in its entirety by licensed contractors./ understand that a copy of theapplicoble law, Section 7044 of the Business and Professions Code, is avai table upon request when this application is submitted or at the followins Website: http:/ lwww.lesinfo.ca.sovlcalaw.html. OWNER CERT/FICA T/ON: The applicant certifies that all documents and plans clearly and accurately show all existing and propostd buildings, structures, access roods, and utllltles/ut/1/ty easemtnts. All proposed modifications and/or additions are clearly labeled on the site plan. Any potentially existing detail within these plans Inconsistent with the site plan are not approved for construct/on and may bt requirtd to be altered or removed. Tht city's approval of the opp/icotion is based on the premise that the submitted documents and plans show the correct dimensions of; the property, buildings, structures and their setbacks from property lines and from one another; access roads/easements, and utilities. The existing and proposed use of each building as stated is true and corrtct; all easements and other encvmbrances to development havt been accurately shown and labeled as well as all on-site grading/site preparation. All improvements existing on tht property were completed in accordance with all regulations in existence at the time of their construction, unless otherwise noted. NAME (PRINT): SIGN: _________ DATE: _____ _ Note: If the person signing above is an authorized agent for the property owner include form 8-62 signed by_property owner. 1635 Faraday Ave Carlsbad, CA 92008 Ph: 760-602-2719 Fax: 760-602-8558 Email: Building@carlsbadca.gov 2 REV. 10/21 Building Permit Inspection History Finaled {city of Carlsbad PERMIT INSPECTION HISTORY for (CBC2022-0025) Permit Type: BLDG-Commercial Work Class: Tenant Improvement Application Date: 01/20/2022 Owner: HAMANN OAK PROPERTIES LP Issue Date: 06/29/2022 Subdivision: Status: Closed -Finaled Expiration Date: 03/20/2023 Address: 2856 WHIPTAIL LOOP CARLSBAD, CA 92010-6708 IVR Number: Scheduled Actual Inspection Type Inspection No. Date Start Date 09/21/2022 09/21/2022 BLDG-14 192150-2022 Frame/Steel/Bolting/We lding (Decks) Checklist Item BLDG-Building Deficiency COMMENTS BLDG-Final Inspection 192151-2022 Tuesday, September 27, 2022 Checklist Item COMMENTS BLDG-Building Deficiency BLDG-Plumbing Final BLDG-Mechanical Final BLDG-Structural Final BLDG-Electrical Final 38199 Inspection Primary Inspector Reinspection Status Passed Tim Kersch Passed Yes Passed Tim Kersch Passed Yes Yes Yes Yes Yes Inspection Complete Complete Page 1 of 1 { City of Carlsbad SPECIAL INSPECTION AGREEMENT B-45 Development Services Building Division 1635 Faraday Avenue 760-602-2719 www .carlsbadca.gov In accordance with Chapter 17 of the California Building Code the following must be completed when work being performed requires special inspection, structural observation and construction material testing. Project/Permit: ________ Project Address: '2$55 lo \ ,1.)V'\.l p-\u \ l loVf ~a.:rt A. THIS SECTION MUST BE COMPLETED BY THE PROPERTY OWNER/AUTHORIZED AGENT. Please check if you are Owner-Builder □. (If you checked as owner-builder you must also complete Section B of this agreement.) Name: (Pleaseprint,__ _________________________________ _ (First) (M.I.) (Last) Mailing Addres~---------------------------------- Email_· ________________________ Phone: __________ _ I am: □Property Owner □Property Owner's Agent of Record □Architect of Record □Engineer of Record State of California Registration Numbe · Expiration Date: _______ _ AGREEMENT: I, the undersigned, declare under penalty of perjury under the laws of the State of California, that I have read, understand, acknowledge and promise to comply with the City of Carlsbad requirements for special inspections, structural observations, construction materials testing and off-site fabrication of building components, as prescribed in the statement of special inspections noted on the approved plans and, as required by the California Building Code. Signatur_,__· _______________________ Date: ___________ _ B. CONTRACTOR'S STATEMENT OF RESPONSIBILITY (07 CBC, Ch 17, Section 1706). This section must be completed by the contractor / builder/ owner-builder. Contractor's Company Name: Qua l 1:Rq fAa-t&n C{ I ~ rid I I A :J Name: (Please print) ___ ..,_t+_r'_C_~-'-------------------f'_1_11_n) _______ _ Please ?heck if you are Owner-Builder D (First) (M.I.) (Last) Mailing Address: \Ot "Slo S h O.(O'r\ u r c\,,e ¥a.Y\0V\0 wcarom<,fo vfi ?)17 ~D Email: P-€{fY)l ±s@ Q I\'\ \t\f)G · l_Q)"('y', Phone: lffi.,lo ~\2...-97~ ~) State of California Contractor's License Number:. __ ]~:O~\~\~(_~')~O~--Expiration Date: \ / 3 1 \ 'LO 23 • • • • • I acknowledge and, am aware, of special requirements contained in the statement of special inspections noted on the approved plans; I acknowledge that control will be exercised to obtain conformance with the construction documents approved by the building official; I will have in-place procedures for exercising control within our (the contractor's) organization, for the method and frequency of reporting and the distribution of the reports; and I certify that I will have a qualified person within our (the contractor's) organization to exercise such control. I will provide a final report / letter in compliance with CBC Section 1704.1.2 prior to requesting final inspection. / ~ · Signature:~ ____ V\Jy __ __,,__,_S.,.,..l ..... 2'--"=---------Date: ~\ _ _..,,~I _l-_d-_O_;;)_o-----__ _ B-45 Page 1 of 1 Rev. 03/20 • 1W I NTERWEST DATE: 6/24/2022 □ APPLICANT □ JURIS. JURISDICTION: City of Carlsbad PLAN CHECK#.: CB-CBC2022-0025.RC2-approved ____ SET: III PROJECT ADDRESS: 2856 Whiptail Loop PROJECT NAME: Storage Racks for Camston Wrather Warehouse □ □ □ □ The plans transmitted herewith have been corrected where necessary and substantially comply with the jurisdiction's codes. The plans transmitted herewith will substantially comply with the jurisdiction's building codes when minor deficiencies identified below are resolved and checked by building department staff. The check list transmitted herewith is for the applicant's information. The plans are being held at lnterwest until corrected plans are submitted for recheck. The applicant's copy of the check list is enclosed for the jurisdiction to forward to the applicant contact person. The applicant's copy of the check list has been sent to the jurisdiction at: lnterwest staff did not advise the applicant that the plan check has been completed. lnterwest staff did advise the applicant that the plan check has been completed. Person contacted : Telephone#: Date contacted: (by: ) Email: Mail Telephone Fax In Person /{)~ REMARKS: 1.Fire Department approval is required . 2. City to field verify that the path of travel from the handicapped parking space to the rack area and the bathroom serving the rack area comply with all the current disabled access requirements. By: David Yao lnterwest 6/16/2022 Enclosures: 9320 Chesapeake Drive, Suite 208 ♦ San Diego, Californ ia 92123 ♦ (858) 560-1468 ♦ Fax (858) 560-1576 DATE: 5/24/2022 JURISDICTION: City of Carlsbad • lW INTERWEST A SAl'Ebulll COMPANY PLAN CHECK#.: CB-CBC2022-0025.RC1 PROJECT ADDRESS: 2856 Whiptail Loop SET: II □ APPLICANT □ JURIS. PROJECT NAME: Storage Racks for Camston Wrather Warehouse D The plans transmitted herewith have been corrected where necessary and substantially comply with the jurisdiction's codes. D The plans transmitted herewith will substantially comply with the jurisdiction's codes when minor deficiencies identified below are resolved and checked by building department staff. ~ The check list transmitted herewith is for the applicant's information. The plans are being held at lnterwest until corrected plans are submitted for recheck. D The applicant's copy of the check list is enclosed for the jurisdiction to forward to the applicant contact person. ~ The applicant's copy of the check list has been sent to the jurisdiction at: Lisa Risner D lnterwest staff did not advise the applicant that the plan check has been completed. ~ lnterwest staff did advise the applicant that the plan check has been completed. Person contacted: Lisa Risner Telephone#: 626-812-9722 ext 220 Date contacted: Mail Telephone 0 REMARKS: By: David Yao lnterwest (by: ) Email: permits@mttinc.com Fax In Person Enclosures: 5/16/2022 9320 Chesapeake Drive, Suite 208 ♦ San Diego, California 92123 ♦ (858) 560-1468 ♦ Fax (858) 560-1576 City of Carlsbad CB-CBC2022-0025.RC1 5/24/2022 .. Please make all corrections, as requested in the correction list. Submit FOUR new complete sets of plans for commercial/industrial projects (THREE sets of plans for residential projects). For expeditious processing, corrected sets can be submitted in one of two ways: 1. Deliver all corrected sets of plans and calculations/reports directly to the City of Carlsbad Building Department, 1635 Faraday Ave., Carlsbad, CA 92008, (760) 602-2700. The City will route the plans to lnterwest and the Carlsbad Planning, Engineering and Fire Departments. 2. Bring TWO corrected set of plans and calculations/reports to lnterwest, 9320 Chesapeake Drive, Suite 208, San Diego, CA 92123, (858) 560-1468. Deliver all remaining sets of plans and calculations/reports directly to the City of Carlsbad Building Department for routing to their Planning, Engineering and Fire Departments. NOTE: Plans that are submitted directly to lnterwest only will not be reviewed by the City Planning, Engineering and Fire Departments until review by lnterwest is complete. NO B-50 PROVIDED. B-55 Located in the end of B-50. B-55 must imprinted on the plan. CARLSBAD CLIMATE ACTION PLAN: (APPLICABLE ONLY WHEN THE PLANS COME WITH THE B-50 APPLICATION FILLED OUT AND MUST HAVE B-55 FORM ON PLANS.) City of Carlsbad requires that all projects that qualify for CAP compliance will require a completed Climate Action Plan (CAP) Consistency Checklist (city form B- 50) to be completed by the APPLICANT. For plans submitted to the City the following Climate Action Plan requirements apply, per Carlsbad ordinance: The applicant is to fill out the B-50 CAP Consistency Checklist. The scope of work and project valuation will determine which sections of the CAP are required. Plan examiners review the B-50 CAP Consistency Checklist for completion. For example: If new residential construction is the scope of work, CAP sections 2A, 3A, and 4A are required to be filled on the B-50 checklist. Only for projects that require CAP compliance: DO NOT APPROVE THE PLANS UNTIL THE B-55 CAP PLAN TEMPLATE IS COMPLETED (MATCHING THE B-50 APPLICATION) AND IMPRINTED ONTO THE PLANS. THE B-55 FORM IS LOCATED AT THE END OF THE B-50 FORM. • City of Carlsbad CB-CBC2022-0025.RC1 5/24/2022 1. Provide item-by-item responses on an 8-1/2-inch by 11-inch sheet(s) clearly and specifically indicating where and how each correction item has been addressed (vague responses, such as "Done" or "See plans," are unacceptable). 5. Dimension all diagonal horizontal location on the plans. The response shows sheet 28. Sheet 28 does not show the location of diagonal and horizontal brace. Please clarify. Please provide a response list indicating where each correction item has been addressed on the plans. I.e., specify the plan sheet, note, or detail number, calculation page, etc., where the item is corrected on the plans. Please indicate here if any changes have been made to the plans that are not a result of corrections from this list. If there are other changes, please briefly describe them and where they are located in the plans. Have changes been made to the plans not resulting from this correction list? Please indicate: □ Yes □ No The jurisdiction has contracted with lnterwest, located at 9320 Chesapeake Drive, Suite 208, San Diego, California 92123; telephone number of 858/560-1468, to perform the plan review for your project. If you have any questions regarding these plan review items, please contact David Yao at lnterwest. Thank you . DA TE: June 1, 2022 JURISDICTION: Carlsbad PLAN CHECK#.: CB-PREV2022-0059 • lW IN TE RWEST SET: I PROJECT ADDRESS: 2856 Whiptail Loop East □ APPLICANT D JURIS. PROJECT NAME: Revision #1 of Comston Wrather -Com -TI (CB-CBC2021-0453) D The plans transmitted herewith have been corrected where necessary and substantially comply with the jurisdiction's codes. D The plans transmitted herewith will substantially comply with the jurisdiction's codes when minor deficiencies identified below are resolved and checked by building department staff. ~ The check list transmitted herewith is for the applicant's information. The plans are being held at lnterwest until corrected plans are submitted for recheck. D The applicant's copy of the check list is enclosed for the jurisdiction to forward to the applicant contact person. ~ The applicant's copy of the check list has been sent to the jurisdiction at: D lnterwest staff did not advise the applicant that the plan check has been completed. ~ lnterwest staff did advise the applicant that the plan check has been completed. Person contacted: Rebeca Mullen Telephone#: 619-440-7424 Date contacted: (by: ) Email: Rebeca@hamannaco.com Mail Telephone Fax In Person 0 REMARKS: By: Greg Favereaux, P.E. lnterwest Received on: - Enclosures: 9320 Chesapeake Drive, Suite 208 ♦ San Diego, California 92123 ♦ (858) 560-1468 ♦ Fax (858) 560-1576 Carlsbad CB-PREV2022-0059 June 1, 2022 PLAN REVIEW CORRECTION LIST SINGLE FAMILY DWELLINGS AND DUPLEXES PLAN CHECK#.: CB-PREV2022-0059 JURISDICTION: Carlsbad PROJECT ADDRESS: 2856 Whiptail Loop East FLOOR AREA: 7955 sq ft Revision Area REMARKS: DATE PLANS RECEIVED BY JURISDICTION: DATE INITIAL PLAN REVIEW COMPLETED: June 1, 2022 FOREWORD (PLEASE READ): STORIES: 2 HEIGHT: 40 ft DATE PLANS RECEIVED BY ESGIL CORPORATION: - PLAN REVIEWER: Greg Favereaux, P.E. This plan review is limited to the technical requirements contained in the California Residential Code, California Building Code, California Plumbing Code, California Mechanical Code, California I Electrical Code and state laws regulating energy conservation, noise attenuation and access for the disabled . This plan review is based on regulations enforced by the Building Department. You may have other corrections based on laws and ordinance by the Planning Department, Engineering Department, Fire Department or other departments. Clearance from those departments may be required prior to the issuance of a building permit. Present California law mandates that construction comply with the 2019 edition of the California Code of Regulations (Title 24), which adopts the following model codes: 2019 CRC, 2019 CBC, 2019 CPC, 2019 CMC and 2019 CEC. The above regulations apply, regardless of the code editions adopted by ordinance. The following items listed need clarification, modification or change. All items must be satisfied before the plans will be in conformance with the cited codes and regulations. Per Sec. 105.4 of the 2019 California Building Code, the approval of the plans does not permit the violation of any state, county or city law. To speed up the recheck process, please note on this list (or a copy) where each correction item has been addressed, i.e., plan sheet number, specification section, etc. Be sure to enclose the marked up list when you submit the revised glans. Carlsbad CB-PREV2022-0059 June 1, 2022 GENERAL 1. Please make all corrections, as requested in the correction list. Submit FOUR new complete sets of plans for commercial/industrial projects (THREE sets of plans for residential projects). For expeditious processing, corrected sets can be submitted in one of two ways: 2. 3. a. Deliver all corrected sets of plans and calculations/reports directly to the City of Carlsbad Building Department, 1635 Faraday Ave., Carlsbad, CA 92008, (760) 602-2700. The City will route the plans to lnterwest and the Carlsbad Planning, Engineering and Fire Departments. OR; b. Bring TWO corrected set of plans and calculations/reports to lnterwest, 9320 Chesapeake Drive, Suite 208, San Diego, CA 92123, (858) 560-1468. Deliver all remaining sets of plans and calculations/reports directly to the City of Carlsbad Building Department for routing to their Planning, Engineering and Fire Departments. NOTE: Plans that are submitted directly to lnterwest only will not be reviewed by the City Planning, Engineering and Fire Departments until review by lnterwest is complete. For the new guard rail, also include a detail where the guard is supported by beam/header below. Provide calculations showing adequacy of connection as needed, per Section 1607.8.1. Foundation details show new footing to be placed into existing slab -Provide a method to ensure the foundations do not experience significant differential settlement. If epoxy anchors are to be used, call out epoxy type, including ESR-ICC #, and note that special inspection will . . The intent is to isolate the new footing from the non-structural slab. There is no structural reason to tie the new footing into the non-structural slab on grade. In fact, tying the new footing to the existing slab may cause unwanted slab cracks which could cause problems with the epoxy floor coatings._ ADDITIONAL 4 . There are no Mechanical, Plumbing, or Electrical comments at this time. 5. Please provide a response list indicating where each correction item has been addressed on the plans. I.e., specify the plan sheet, note, or detail number, calculation page, etc., where the item is corrected on the plans. 6 . Please indicate here if any changes have been made to the plans that are not a result of corrections from this list. If there are other changes, please briefly describe them and where they are located in the plans. Have changes been made to the plans not resulting from this correction list? Please indicate:□ Yes □ No 7. The jurisdiction has contracted with lnterwest, located at 9320 Chesapeake Drive, Suite 208, San Diego, California 92123; telephone number of 858/560-1468, to perform the plan review for your project. If you have any questions regarding these plan review items, please contact Error! Reference source not found. at lnterwest. Thank you. Structural Engineering & Design Inc. 1815 Wright Ave., La Verne, CA 91750 Tel: 909.596.1351 Fax: 909.593.8561 Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14 Date: 01/06/22 2856 WHIPTAIL LOOP EAST CARLSBAD, CA 92010 Plan Review Responses CORRECTIONS: COMMENTS ON CALCULATION PAGE 3 SEE ACI 318-14 CHAPTER 18 NOW ADDED IN CODE REFERENCE PAGE4 RECEIVED JUN 14 2022 CITY OF CARLSBAD BUILDING DIVISION SEE CALCULATION PAGE 8 FOR BEAM DESIGNED FOR IMPACT LOADS PER RMI. ~ PER RMI SECTION 2.6.6, IN LIEU OF AN ANALYSIS, RACK STRUCTURES SHALL BE SEPARATED FROM BUILDING STRUCTUR ND ANY ATTACHED PERMANENT COMPONENTS BY A MINIMUM DISTANCE OF 2% OF TOP BEAM HEIGHT IN BRACED DIRECTION AND OP BEAM HEIGHT IN UNBRACED DIRECTION. SEE PLAN FLOOR DRAWING FOR RACK CLEARANCE FULFILLED. -PAGES R=6 IN LONGITUDINAL IS ALLOWED PER RMI 2012 SECTION 2.6.3 SEE CALCULATION PAGE 5.2 FOR CALCULATION OF NATURAL PERIOD. PAGE 13 0 SEE SLAB BENDING CALCULATION FOR L=Asoll"0.5. Asoll STANDS FOR THE MINIMUM UNIFORM REACTION AREA FROM SOIL TO SLAB. THE LARGER THIS AREA IS, THE LARGER THE REACTION IS FROM SOIL ONTO THE SLAB, AND THE MORE THE SLAB IS BENDING (UPWARD). IN THIS CASE, L=53.77 IN. THIS REPRESENTS THAT UNDER CURRENT LOADING OF RACK, THE MINIMUM UNIFORM LENGTH L NEEDS TO BE 53.77 IN IN ORDER TO KEEP Fsoil <= 750 psf. AND THROUGH USING L=53.77 IN, THE ACTUAL BENDING ARM LENGTH x IS CALCULATED x=L-y AND BENDING MOMENT MIS CALCULATED AS M=fsoil•x"2/2. THIS MOMENT IS THEN CHECKED AGAINST THE ALLOWABLE MOMENT IN SLAB Mallowed=Sy*fb TO ENSURE THAT ALLOWABLE BEARING PRESSURE 750 PSF IS NOT EXCEEDED. PAGE 14-16 SEE REVISED CALCULATION PAGE 14-43 FOR COMPLETE CALCULATION OF TYPE R,Q,I. PLEASE FEEL FREE TO CALL WITH ANY QUESTIONS YOU MAY HAVE REGARDING THE ABOVE MATTERS. SINCERELY, ~ ENHAOZHANG CBC2022-0025 2856 WHIPTAIL LOOP CAMSTON WRATHER RESOURCE: HIGH PILE RACKING 2091201400 6/14/2022 CBC2022-0025 Structural Engineering $ Design, Inc 1815 Wright Ave La Verne, Ca. 91750 Tel: 90.9-596-1351 Fax: 909-596-7186 Prqject Name: CAMSTON WRATHER RESOURCE RECOVERY Project Number : 21-1221-14 Date : 01111/22 Street Address: 2856 WHIPT AIL LOOP EAST City/State : CARLSBAD, CA 92010 Scope of Work: STORAGE RACK 1/11/22 Structural Engineering & Design Inc. 1815 Wright Ave La Verne. CA 91750 Tel; 909.596.1351 Fax; 909 596.7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY TABLE OF CONTENTS Title Page ............................................................................................................. . Table of Contents ................................................................................................. .. Design Data and Definition of Components ........................................................ .. Critical Configuration ........................................................................................... .. Seismic Loads ..................................................................................................... .. Column ................................................................................................................. . Beam and Connector .......................................................................................... .. Bracing ................................................................................................................. . Anchors ................................................................................................................ . Base Plate ............................................................................................................ . Slab on Grade ...................................................................................................... . Other Configurations ........................................................................................... .. 1 2 3 4 5 to 6 7 B to 9 10 11 12 13 CAMSTON WRATt'IER RESOURCES RECOVERY TYPE 551 Page 2.. of 'f) Project #: 21-1221-14 I/G/2022 Structural Engineering & Design Inc. 1a1s Wright Aye La Verne CA 91750 Jet: 909.596 1351 Fax: 909.596.7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project #: 21-1221-14 Design Data 1) Toe analyses herein conforms to the requirements of the: 2018 /BC Section 2209 2019 CBC Section 2209 ANSI MH 16.1-2012 Specifications for the Design of Industrial Steel Storage Racks "2012 RMI Rack Design Manual" ASCE 7-16, section 15.5.J AG 318-14 Chapter 17 2) Transverse braced frame steel conforms to ASTM A570, Gr.55, with minimum strength, Fy=55 ksl Longitudinal frame beam and connector steel conforms to ASTM A570, Gr.55, with minimum yield, Fy=55 ksi All other steel conforms to ASTM A36, Gr. 36 with minimum yield, Fy= 36 ksl 3) Anchor bolts shall be provided by Installer per ICC reference on plans and calculations herein. 4) All welds shall conform to AWS procedures, utilizing E70xx electrodes or similar. All such welds shall be performed in shop, with no field welding allowed other than those supervised by a licensed deputy inspector. S) The existing slab on grade Is 5.5" thick with minimum 4000 psi compressive strength. Allowable Soil bearing capacity Is 750 psf. The design of the existing slab is by others. 6) Load combinations for rack components correspond to 2012 RMI Section 2.1 for ASD level load criteria Definition of Components Ffa:m!! Height A ~ Eleam t::tl::=:/=====U:::t=::::=====i); Beam Ler,gth Front View, Down Ai;\< {Longitu<linaD Fr'.an\l! CAM5TON WRATH ER RESOURCES RECOVERY TYPE 551 (bunn Base Plata and Anchors Section A.: 0oss Aisle (T rans\>e !'SQ ) Frama Page 3 of ff) H:»-irontal &ace Clilgonal 9'a,ce I/G/2022 Structural Engineering & Design Inc. 1a15 Weight Ave La Verne, CA 91750 Tel: 909,596,1351 fax· 909,596 7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14 Configuration & summary: TYPE SS T 60" + 2 64" 60" ~ 264" 60" + 60° J --r --108" ---•r Seismic Criteria T" 58" +-48" +--48" + IE-----l 24" + t-------:71 24" + IE---i 24" +-1---311 24" ...:J.;-l<"---l _}-48" --7( .,f-48" -,f' "'*RACK COLUMN REACTIONS ASDLOADS AXIAL DL= 150 lb AXIAL LL= 8,600 lb SEISMIC AXIAL Ps=+/-6,279 lb BASE MOMENT= 8. 000 in-lb Beam Length rameType Ss=0.921, Fa=l.2 4 48 In 264.0 in 1081n Single Row Component Description STRESS Column Fy=55 ksl Mecalux 312 3.06"x2.69"x0.105" P=8750 lb, M=16472 In-lb 0.99-0K Column & Backer None None None N/A Beam Fv=55 ksl Intlk 45E 4.5Hx2.75Wx0.059'1"hk LU=l OB in I Capacity: 5521 1~/pr 0.78-0K Beam Connector FV=55 ksl Lvl 1: 4 Tab OK I Mconn=12313 In-lb I Mcap=15764 lrl-lb 0.78-0K Brace-Horizontal Fy=55 ksl Mclx C456 Sgl 1.7953xl.378x16ga(U31x) 0.44-0K Brace-Diagonal FV=55 ksl Mclx C456 Sgl 1.7953xl.378x16ga(U31x) 0.91-0K Base Plate Fy=36 ksl 7 .874x7 .874x0.394 I Fixity= 8000' In-lb 0.79-0K Anchor 4 per Base 0.5'' x 3.25" Embed Hilti TZ #1917 Inspection Reqd (Net Seismic Upllft=2760 lb) 0.658-0K Slab & Soll 5.5" thk x 4000 psi slab on grade. 750 psf Soll Bearing Pressure ' 0.95-0K Level I Load** I Story Force I Story Force Column I Column r Conn. Beam Per Level Beam Soca Brace Transv Long It. Axial Moment Moment Connector 1 4,300 lb 60.0 In 24.0 In 2181b 87 1b 8,750 lb 16,472 "II 12,313 "# · 4 Tab OK 2 4,300 lb 60.0 In 24.0 In 4361b 175 lb 6,563 lb 11,799 "# 9,759 "# 4 Tab OK 3 4,300 lb 60.0 In 24.0 In 653 lb 262 1b 4,375 lb 9,lT/ '# 7,465 "# 4 Tab OK 4 4,300 lb 60.0 In 24.0 in 871 lb 3501b 2,188 lb 5,244 "# 4,253 "# 4 Tab OK 48.0 In 48.0 In 58.0 in ** Load defined as product weight per pair of beams Total: 2,178 lb 874 lb CAMSTON WRATHER. RESOURCES RECOVERY TYPE 551 l/b/2022 Structural Engineering & Design Inc. 1815 Wrjght Aye La Verne. CA 91750 Tel· 909 596.1351 Fax: 909.596,7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Seismic Forces Configuration: TYPE SS Lateral analysis Is performed with regard to the requirements of the 2012 RMI ANSI MH 16.1-2012 Sec 2.6 & ASCE 7-16 sec 15.5.3 Transverse (Cross Aisle) Seismic Load . .,. V= Cs*Ip*Ws=Cs*Ip*(0.67*P*Prf+D) Vt Csl= Sds/R = 0.1842 Cs-max * Ip= 0.1842 Cs2= 0.044*Sds Vm1n= 0.015 = 0.0324 Eff Base Shear=Cs= 0.1842 rraosvcrn: Elevation Cs3= 0.S*S1/R Ws= (0.67*PLRFI * PL)+DL (RMI 2.6.2) = 0.0424 .-----=_1_1._8_24_1b _______ ~ vtransv=Vt= 0.1842 * {300 lb+ 11524 lb) Etransverse= 2,178 lb Cs-max= 0.1842 Base Shear Coeff•Cs• 0.1842 Limit Sfilteg Level Transverse seismic shear per upright Level PRODUCT LOAD P P*0.67*PRFI DL hi Wi*hl 1 4,300 lb 2,881 lb 75 lb 60 In 177,360 2 4,300 lb 2,881 lb 75 lb 120 in 354,720 3 4,300 lb 2,881 lb 75 lb 180 in 532,080 4 4,300 lb 2,881 lb 75 lb 240 in 709,440 sum: P=17200 lb 11,524 lb 3001b W=11824 lb 1,773,600 Lonaltudinal (Downaislel Seismic Load Project#: 21-1221-14 Ss= 0.921 51= 0.339 Fa= 1.200 Fv= 1.961 Sds=2/3*Ss*Fa= 0.737 Sdl =2/3*51 *Fv= 0.443 Ca=0.4*2/3*Ss*Fa= 0.2947 (Transverse, Braced Frame Dir.) R~ 4. 0 Ip= 1.0 PRF1= ·pg_, Pallet Helght=hp= 48.0 In DL per Beam Lvl= 75 lb Fi Fi* hl+h /2 217.8 lb 18,295-# 435.6 lb 62,726-# 653.4 lb 133,294-# 871.2 lb 229,997-# 2,178 lb ~=444,312 Similarly for longitudinal seismic loads, using R=6.0 Ws= (0.67 * P4lf2 * P) + DL PRF2= 1.0 ~ f,, .... ,1 Fl □ Csl=Sdl/(T*R)= 0.0739 = 11,824 lb (Longltudlnal, Unbraced Dir.) R= 6.0 OFw-.:J r7t:J Cs2= 0.0324 Cs=Cs-max*Ip= 0.0739 T= 1.00 sec Cs3= 0.0283 I Vlong= 0.0739 * {300 lb+ 11524 lb) l ~ P7 ~□ Cs-max= 0.0739 Elongltudlnal= 874 lb Lim1tS,,,tu1.,,vo1 '-""""· MJJsmJcllh1N1r,,.rupr/11ht Level PRODUC LOAD P P*0.67*PRF2 DL hi wl*hl Fl f ront Ylew 1 4,300 lb 2,881 lb 75 lb 601n 177,360 87.4 lb 2 4,300 lb 2,881 lb 75 lb 1201n 354,720 174.8 lb 3 4,300 lb 2,881 lb 75 lb 180 1n 532,080 262.2 lb 4 4,300 lb 2,881 lb 75 lb 240 In 709,440 349.6 lb sum: ======~11==5f=2::::4::l::lb====3~00~1b==W=-~11~8~24=1b===1=7=7==3~6::::00=======8=74=1='=b======== CAM5TON WRATHER RE50URCE5 RECOVERY 1Yf'E 551 Page r,{of lf 3 I/G/2022 Foundamental Period of Vibration (Longitudinal) Per FEMA 460 Appendix A -Development of An Analvtical Model for the Displacement Based Seismic Desiim of Storage Racks in Their Down Aisle Direction Section 6.5. l Where: Wpi hpi = g = NL = kc = kbe = kb = kce = Ne = Nb= weight of the ith pallet suppor ted by the storage rack the elevation of the center of gravity of the ith pallet with respect to the base of the storage rack gravitaLional acceleration Lhe number of loaded levels the rotational stiffness of the connector the flexral rotational stiffness of Lhe beam-end the rotational sLiffness of the base plate the flexural rotational stiffness of the base upright-end the number of beam-to-upright connections Lhe number of base plate connections kbe = 6Elb / L kce = 4Eic / H kb = Blc / H kc = Mmax/ 8 max L = the clear span of Lhe beams H = the clear height of t he upright lb= the moment of i nertia about the bending axis of each be6111 le= the moment of inertia of each base upright E = Young's Modulus of the beams ~ Since 0.6SDS=0.8lg)0.6g, B=l. 7 Sinco S1=0. 769g)0.5g, us ing g=386 in.2/s e demand= 12(l+a) (Tl/1. 0) (S1/htot) = 0. 04419 f'> = Mc* (kc+kbe) / (kc*kbe) *htot = 10. 4914 0 d= Cd(l+as)H,/htot 0. 36641 # of level s min# of bays Ne Nb kc kbe kb kce lb L le H E Level hpi 1 2 3 4 5 4 5 80 12 428.571 3664.56 139. 142 656.567 Wpi 2.236 in· 4 10a in 1.132 in·4 240 in 29500 ksi 84 2. 881 144 2. 881 204 2. 881 2fi4 2.881 0 0 Structural Engineering & Design Inc. 1 a15 Wright Ave La Verne. CA 91750 Tel· 909 596.1351 fax: 909.596.7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14 Downaisle Seismic Loads Configuration: TYPE SS Determine the story moments by applying portal analysis. The base plate Is assumed to provide partial fixity. Seismic Story Forces Vlong= 874 lb Vcol=Vlong/2= 437 lb Fl= 87Ib F2= 175 lb F3= 262 lb Seismic Story Moments Typical (rame made Tributary area of lwo columns of rack fuimc '-,.,._ , __ _ I -~B~:G I I -.EJGtt:J:~1£3:G -.fD G ~:G ~:G I-96'-, ~ Conooplyal System lyplc:al frame ma4c of two columns ,-✓----, Mbase-max= 8,000 in-lb <=== Defaultcapadty hl-eff= hl -beam clip helght/2 Mbase-v= (Vcol*hleff)/2 = 56in = 12,236 In-lb <=== Moment going tv base Mbase-eff= Minimum of Mbase-max and Mbase-v = 8,000 in-lb M 1-1= [Vcol * hleff]-Mbase-eff = (437 lb * 56 ln)-8000 In-lb = 16,472 In-lb Mseis= (Mupper+Mlower)/2 Mseis(l-1)= (16472 In-lb+ 11799 ln-lb)/2 = 14,136 In-lb LEVEL hi Axial Load 1 60In 8,750 lb 2 60in 6,563 lb 3 60In 4,375 lb 4 60In 2,188 lb M 2-2= [Vcol-(Fl)/2] * h2 = (437 lb· 87.4 lb]*60 in/2 = 11,799 in-lb Msels(2-2)= (11799 In-lb + 9177 ln-lb)/2 = 10,488 in-lb Summary of Forces Column Moment** Mseismlc** Mend-fixity 16,472 in-lb 14,136 In-lb 3,454 In-lb 11,799 in-lb 10,488 In-lb 3,454 In-lb 9,177 in-lb 7,211 In-lb 3,454 In-lb 5,244 in-lb 2,622 In-lb 3,454 in-lb Mconn= (Mseismlc + Mend-fixity)*0.70*rho Mconn-allow(4 Pin)= 15,764 In-lb **all moments based on limit states level loading h2 h1 Beam to Column Elevation rho= 1.0000 Mconn** Beam Connector 12,313 In-lb 4 Tab OK 9,759 In-lb 4 Tab OK 7,465 In-lb 4 Tab OK 4,253 In-lb 4Tab OK COL CAM5TON WRATHER RE50URCE5 RECOVERY TYPE 551 Page {;; of 'f-3 I/G/2022 Structural Engineering & Design Inc. 1815 Wright Ave La Verne CA 91750 Tel: 909 596 1351 Fax: 909.596,7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14 Column (Longitudinal Loads) Configuration: TYPE SS Section Properties Section: Mecalux 312 3.06"x2.69"x0.105" Aeff = O. 782 In" 2 Ix = 1.132 in"4 Sx = 0.740 ln"3 rx = 1.203 In nf= 1.67 Iy = 0.636 ln"4 Sy = 0.422 ln"3 ry = 0.902 In Fy= 55 ksl Kx = 1.7 r 3.0601n -1 Cmx= 0.85 E= 29,500 ksi Loads Considers loads at level 1 COLUMN DL= 150 lb Critical load cases are: RMI Sec 2.1 Lx = 57.8 In Ky = 1.0 Ly= 24.0 in Cb= 1.0 r 0,105 In 2,690 In J_ COLUMN PL= 8,600 lb Load Case 5:: (1+0.105*Sds)D + 0.75*(1.4+0.14Sds)*8*P + 0.15*(0.7*rho*E)<= 1.0, ASD Method Mcol= 16,472 in-lb axial load coeff: 0.7891548 * P seismic moment coeff: 0.5625 * Meo/ Sds= 0.7368 Load Case 6:: (1+0.104*Sds)D + (0.85+0.14Sds)*B*P + (0.7*rho*E)<= 1.0, ASD Method 1 +0.105*Sds= 1.0774 ax/a/load coeff: 0.66121 seismic moment coeff: 0.7 * Meo/ 1.4+0.14Sds= 1.5032 By analysis, Load case 6 governs utilizing loads as such Moment=Mx= 0.7*rho*Mcol 1+0.14Sds= 1.1032 0.85+0.14*Sds= 0.9532 B= 0.7000 rhoc 1.0000 Axial Analysis Axial Load=Pax= 1,103152*150 lb+ 0.953152*0.7*8600 lb = 5,903 lb = 0.7 * 16472 In-lb = 11,530 In-lb KxLx/rx = 1.7*57.7511/1.20311 = 81.6 Fe= n"2E/(KL/r)max"2 = 43.7ksi Pn= Aeff*Fn = 29,475 lb P/Pa= 0.38 Bending Analysis > 0.15 KyLy/ry = 1*2411/0.902111 = 26.6 Fy/2= 27.5 ksl Qc= 1.92 Check: Pax/Pa + (Cmx*Mx)/(Max*µx) s 1.0 P/Pao + Mx/Max s 1.0 Pno= Ae*Fy Pao= Pno;nc = 0.782 in"2 *55000 psi = 42,999 lb = 429991b/l.92 = 22,395 lb Fe > Fy/2 Fn= Fy(1-Fy/4Fe) = 55 ksl*[l-55 ksi/(4*43.7 ksi)] = 37.7 ksi Pa= Pn/Qc = 29475 lb/1.92 = 15,351 lb Myield=My= Sx*Fy = 0.74 in"3 * 55000 psi = 40,689 In-lb Max= My/Qf Per= n11. 2EI/(KL)max" 2 = 40689 ln-lb/1.67 = 24,365 in-lb µx= {l/[l -(Qc*P/Pcr)]}"-1 = {1/[1-(l.92*5903 lb/34192 lb)]}"-1 = 0.67 Combined Stresses = n11.2*29500 ksi/(l.7*57.75 ln)"2 = 34,192 lb (5903 lb/15351 lb) + (0.85*11530 ln-lb)/(24365 ln-lb*0.67) = (5903 lb/22395 lb)+ (11530 ln-lb/24365 In-lb) = 0.99 0.74 < 1.0, OK < 1.0, OK (EQ C5-1) (EQ C5-2) ** For comparison, total column stress computed for load case 5 ls: 95.0% 'nq loads 6948.33588 lb Ax/a/ and M= 8647 in-lb CAMSTON WRAn-lER RESOURCES RECOVERY TYPE 551 rae:,e 7 of f-3 IIGl2022 , Structural Engineering & Design Inc. 1815 Wrjaht Aye La Verne CA 91750 Tel· 909 596,1351 fax· 909 596,7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14 BEAM Contiguratlon: TYPE ss DETERMINE ALLOWABLE MOMENT CAPACITY A) Check compression flange for local buckling CB2.1) w= c -2*t -2*r = 1.75 in -2,*0.059 in -2*0.059 in = 1.514 In w/t= 25.66 l=lambdae: [1.052/(k)"0.5] * (w/t) * (Fy/E)"0.5 = [1.052/(4)"0.5] * 25.66 * (55/29500)"0.5 = 0.583 < 0.673, Flange Is fully effective Bl check web for local buckling per section b2.3 fl(comp)= Fy*(y3/y2)= 50.76 ksl f2(tension)= Fy*{yl/y2)= 102.52 ksi ~ Y.= f2/fl = -2.02 k=· 4 + 2*(1-Y)"3 + 2*(1-Y) . •• ,, :s: 65.13 flat depthx w-= yl +y3 , Eq. B2.3-5 Eq. B2.3·4 Eq. B2.1-4 Eq. B2.1-1 • = 4.264 In w/t= 72.27118644 OK !=lambda= [1.052/(k)"0.5] * (w/t) * (fl/E)"0.5 = [1.052/(65,13)"0.5] * 4.264 * (50.76/29500)"0.5 ;, 0.391 < 0.673 be=w= 4.264 In bl= be(3·Y) = 0.849 · b2= be/2 = 2.13 In bl+b2= 2.979 In > 1.412 In, Web is fully effective Determine effect of cold working on steel yield point <Eva) per section AZ,2 Fya= C*Fyc + (1-C)*Fy (EQ A7.2-1) Lcomer=Lc= (p/2) * (r + t/2) 0.139 In Lflange-top=Lf= 1.514 In ' m= 0.192*(Fu/Fy) • 0.068 = 0.1590 C= 2*Lc/(Lf+2*Lc) "'0.155 In (EQ A7.2-4) Be= 3.69*(Fu/Fy) • 0.819*(Fu/Fy)"2 -1.79 = 1.427 since fu/Fv= 1.18 < 1.2 and r/t= 1 < 7 OK then Fye= Be * Fy/(R/t)"m (EQ A7.2-2) = 78.485 ksl Thus, Fya-top= 58.64 ksl (tension stress at top) Fya-bcittom= Fya*Ycg/(depth -Ycg) = 113.84 ksl (tension stress at bottom) Check allowable tension stress for bottom flange Lflange-bot=Lfb= Lbottom -2*r*-2*t = 2.514 In Cbottom=Cb= 2*Lc/(Lfb+2*Lc) = 0.100 Fy-bottom=Fyb= Cb*Fy<: + (1-Cb)*Fyf = 57.34 ksi Fya = (Fya-top )*(Fyb/Fya-bottom) Eq B2.3-2 (EQ A7.2-3) = 29.54 ksl If F= 0.95 Then F*Mn=F*Fya*Sx=j 26.44 in-k dOplh 2.75 in tS ln 4 T 1.625 In 4,500 In 1~ 0.059 ln Beam= Intlk 45E 4 5Hx2 75Wx0 059"Thk Ix= 2.236 ln"4 Sx= 0.942 ln"3 Veg= 2.970 in t= 0.059 In Bend Radius=r= 0.059 in Fy=Fyv= 55.00 ksi Fu=FUV= 65.00 ksi E=> 29500 ksl top flange=b= 1.750 In bottom flange= 2.750 in Web depth= 4.!"nn ;n ~ Fy - yl= Ycg-t-r= 2.852 in y2= depth-Veg= 1.530 in y3= y2-t-r= 1.412 In Structural Engineering & Design Inc. 1815 Wcigbt Aye La Verne CA 91750 Jel· 909 596 1351 fax· 909 596 7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14 BEAM contlguratlon: TYPE ss RMI Section 5.2, PT II Section Beam= Intlk 45E 4.5Hx2.75Wx0.059"Thk Ix=Ib= 2.236 inA4 SX= 0.942 in"3 t= 0.059 In Fy=Fyv= 55 ksl Fu=Fuv= 65 ksl Fya= 58.6 ksi E= 29500 ksl F= 265.0 L= 108 in Beam Level= 1 P=Product Load= 4,300 lb/pair D=Dead Load= 75 lb/pair 1. Check Bending Stress Allowable Loads Mcenter=F*Mn= W*L *W*Rm/8 W=LRFD Load Factor= 1.2*0 + 1.4*P+1.4*(0.125}*P FOR DL= 2% of PL, W= 1.599 Rm= 1 • [(2*F*L)/(6*E*Ib + 3*F*L)] RMI 2.2, Item 8 1 · (2*265*108 in)/[(6*29500 ksi*2.2361 inA3)+(3*265*108 in)) = 0.881 if F= 0.95 Then F*Mn=F*Fya*Sx= 52.49 in·k Thus, allowable load per beam pair=W= F*Mn*8*(# of beams)/(L *Rm*W) = 52.49 in-k * 8 * 2/(1081n * 0.881 * 1.599) = 5,521 lb/pair allowable load based on bending stress Mend= W*l *(1 ·Rm)/8 = (5521 lb/2) * 108 in * (1 ·0.881)/8 = 4,435 in-lb @ 5521 lb max allowable load = 3,454 in-lb @ 4300 lb Imposed product load 2. Check Deflection Stress Allowable Loads Dmax= Dss*Rd Rd= 1 -(4*F*L)/(S*F*l + 10*E*Ib) = 1 -(4*265*108 in)/[(5*265*108 in)+(10*29500 ksl*2.2361 in"4)] = 0.857 In If Dmax= L/180 Based on L/180 Deflection Criteria and Dss= S*W*L "3/(384*E*Ib) L/180= 5*W*L "3*Rd/(384*E*Ib*# of beams) solving for W yields, W= 384*E*I*2/(180*5*L A 2*Rd) = 384*2.23611nA4*2/[180*5*(108 ln)A2*0.857) "' 5,631 lb/pair allowable load based on deflection limits t--2,751n t 1,75ln + T 1.625 In 4.500 In 1~ 0.059 In 11 IOlll l!llil Hllf 11 !1111111111 I0U t =~~~~~~d= ~--~------------- El y : : : : : : Beam Length Allowable Deflection= L/180 = 0.600 In Deflection at Imposed Load= 0.467 In ... Thus, based on the least capacity of item 1 and 2 above: Allowable load= 5,521 lb pair Imposed Product Load= 4,300 lb/pair Beam Stress: . Beam at Level 1 8.L Structural Engineering & Design Inc. 1815 Wright Ave I a Verne CA 91750 Tel· 909 596 1351 fax· 909 596 7186 By: NIHAL Project CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14 4 Tab Beam to Column Connection Configuration: TYPE SS Mconn max= (Mseismlc + Mend-flxlty)"'0.70"'Rho = 12,313 In-lb Load at level 1 Connector Type= 4 Tab Shear Capacity of Tab Tab Length= 0.50 in Ashear= 0.5 In "' 0.135 in = 0.0675 ln"2 Pshear= 0.4 "' Fy "' Ashear = 0.4 * 55000 psi * 0.0675in"2 = 1,485 lb Bearing capacity of Tab Fy= 55,000 psi 4 /8" 1316" tcol= 0.105 In Omega= 2.22 Fu= 65,000 psi a= 2.22 Bearing Length= 0.5,0qO lrt;, Pbearlng= alpha * Fu * tab length * tool/Omega = 2.22 * 65000 psi * 0.5 in* 0.105 ln/2.22 = 3,413 lb > 1485 lb Moment capacity of Braeket Edge Distance=E= 1.00 in Tab Spacing= 2.0 in C= Pl+P2+P3+P4 tclip= 0.135 in = Pl+Pl "'(4.S"/6.S")+Pl *(2.S"/6.S")+Pl *(O.S"/6.S") = 2.154 * Pl Mcap= Sclip * Fbending = 0.1832 in"3 * 0.66 * Fy = 6,650 In-lb Pclip= Mcap/(2.154 * d) = 6650.16 in-lb/(2.154 * 0.5 in) -= 6,175 lb C*d= Mcap = 2.154 Thus, Pl= 1,485 lb Mconn-allow= [Pl *6.5"+Pl *(4.5"/6.5")*4.5" +Pl *(2.5"/6.5'')2.5" +Pl *(0.5"/6.5")*0.5"] = 1485 LB*[6.5"+(4.5"/6.5")*4.5''+(2.5"/6.5")*2.5"+(0.5"/6.5")*0.5"] = 15,764 In-lb > Mconn max, OK Stress= 0.78 CAMSTON WRATHER RESOURCES RECOVERY TYPE SSI Page 1 of if) Fy= 55,000 psi Sclip= 0.183 in"3 d:o E /2 = 0.50 In oo 0 I/G/2022 Structural Engineering & Design Inc. 1s15 Weight Ave La Verne. CA 91750 Tel· 909 596.1 351 fax: 909.596.7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14 Transverse Brace Configuration: TYPE SS Section Properties Diagonal Member= Mclx C456 Sgl 1.7953x1.378x16ga(U31x) Horizontal Member= Mclx C456 Sgl 1.7953x1.378x16ga(U31x) Area= 0.259 ln"2 r min= 0.449 In . Fy= 55,000 psi K= 1.0 Qc= 1.92 Frame Dimensions Diagonal Member Bottom Panel Helght=H= 58.0 In Frame Depth=D= 48.0 in Column Wldth=B= 2.7 in Area= 0.259 in"2 r min= 0.449 In Fy= 55,000 psi K= \.0 dear Depth=D-8*2= 42.6 in X Brace= NO rho= 1.00 • 0 I Load Case 6:: (L±+fl0.1t004,µ"'~S.~'tl.,~Jt,t,;+c:-;z17<to[.B.BSf+H07...1~4is:5d;s~~~*B*P + [0.7*rho*EJ<= 1.0, ASD Method Vtransverse= 2,178 lb Vb=Vtransv*0.7*rho= 2178 lb * 0.7 * 1 = 1,525 lb Ldiag= [(D-8*2)"2 + (H-6")"2]"1/2 = 67.2 In Pmax= V*(Ldiag/D) * 0,75 = 1,601 lb (kl/r)= (k * Ldiag)/r min = (1 x 67.2 in /0.449 In ) = 149.7 in Fe= pl"2*E/(kl/r)"2 = 12,992 psi axial load on dla onal brace member Since Fe<Fy/2, Fn= Fe Pn= AREA*Fn = 0.259 In" 2 * 12992 psi = 3,361 lb Pallow= Pn/Q = 3361 lb /1.92 = 1,751 lb Pn/Pallow= Horizontal brace 0.91 Vb=Vtransv*0,7*rho= 1,525 I!> (kl/r)= (k * Lhoriz)/r min = (1 x 48 In) /0.449 In = 106.9 In Since Fe<Fy/2, Fn=Fe = 25,478 psi Pn/Pallow= 0.44 <= 1.0 OK <= 1.0 OK CAM5TON WRATHER RE50URCE5 RECOVERY TYPE 551 Fe= pl"2*E/(kl/r)"2 = 25,478 psi Pn= AREA*Fn = 0.2591n"2*25478 psi = 6,591 lb Page (0 of lf-) = 12,992 psi Fy/2= 27,500 psi Dllll:al.f.u (;Q(}flauratlllo Pal/ow= Pn/Qc = 6591 lb /1.92 = 3,433 lb T l I/G/20 22 Structural Engineering & Design Inc. 1815 Wright Ave La Verne CA 91750 Tel· 909 596 1351 fax· 909,596,7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project #: 21-1221-14 Single Row Frame overturning Configuration: TYPE SS Loads Critical Load case(s): 1) RMI Sec 2.2, Item 7: (0.9·0.2Sds)D + (0.9·0.20Sds)*B*Papp • E*rho Vtrans=V=E=Qe= 2,178 lb DEAD LOAD PER UPRIGHT=D= 300 lb PRODUCT LOAD PER UPRIGHT=P= 17,200 lb Papp=P*0.67= 11,524 lb Wst LCl=Wstl=(0.75264*0 + 0.75264*Papp*l)= 8,899 lb Product Load Top Level, Plop= 4,300 lb DL/Lvl= 75 lb Seismic Ovt based on E, I:(Fi*hl)= 301,396 In-lb heloht/deoth ratio-5.0 In Al Fullv Loaded Rack Load case 1: Movt= E(Fi*hl)*E*rho = 301,396 ln·lb Sds= 0.7368 (0.9·0.2Sds)= 0.7526 (0.9·0.2Sds)= 0.7526 B= 1.0000• ,, rho= 1.0000 Frame Depth=Df= 48.0 in Htop-lvl=H= 240.0 In # Levels= 4 # Anchors/Base= 4 ho 48.0 In h-H+hn/2-264.0 in Mst= Wstl * Df/2 = 8899 lb * 48 ln/2 = 213,576 ln·lb SIQE E EVATIQt::1 T= (Movt-Mst)/Df = (301396 in-lb • 213576 ln·lb)/48 in = 1830 lb Net Uplift per Column I Net Seismic Uolift= 1.830 lb Strength Level Bl Too Level Loaded Onlv Load case 1: 0 Vl=Vtop= Cs* Ip* Plop>= 350 lb for H/D >6.0 Movt= (Vl *h + V2 * H/2)*rho = 0.1842 * 4300 lb = 215,735 ln·lb = 7921b T= (Movt-Mst)/Df Vleff= 792 lb Critical Level= 4 = (215735 ln·lb · 83091 ln-lb)/48 in V2=Vrx. = Cs*Ip*D Cs*Ip= 0.1842 = 2,763 lb Net Uplift per Column = 55 lb Mst= (0,75264*D + 0.75264*Ptop*1) * 48 ln/2 = 83,091 In-lb I Net Seismic Uollft= 2 763 lb Strength Level Anchor Check (4) 0.5" x 3.25" Embed Hilti TZ anchor(s) per base plate. Special Inspection is required per #1917. Fully Loaded: Top Level Loaded: Pullout capadty=Tcap= 970 lb L.A. City Jurisdiction? NO Shear Capaclty=Vcap= 1,250 lb Phi= 1 (457 lb/970 lb)"'l + (272 lb/1250 lb)"l = (690 lb/970 lb)"l + (99 lb/1250 lb)"l = CAMSTON WRATHER RESOURCES RECOVERY TYPE 551 Page / / of 'f 3 0.69 0.79 Tcap*Phl= 970 lb Vcap*Phl= 1,250 lb <= 1.2 OK <= 1.2 OK I/G/2022 Structural Engineering & Design Inc. 1815 Weight Aye La Verne CA 91750 Tel· 909 596.1351 Fax: 909 596 7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: ·21-1221-14 Base Plate Configuration: TYPE SS Section Baseplate= 7.874x7.874x0.394 Eff Width=W = 7.87 In Eff Depth=D = 7.87 in Column Wldth=b = 3.06 In Column Depth=dc = 2.69 in L = 2.59 in Plate Thlckness=t = 0.394 in a= 2.94 In Anchor c.c. =2*a=d = 5.87 in N=# Anchor/Base= 4 Fy = 36,000 psi Downa1s1e Elevat100 Down Alsle Loads load Case 5:: (1+0.105*Sds)D + 0.75*{(1.4+0.14Sds)*B*P + 0.75*[0.7*rho*El<= 1.0, ASD Method COLUMN DL= 150 lb Axlal=P= 1.077364 * 150 lb+ 0.75 * (1.503152 * 0.7 * 8600 lb) COLUMN PL= 8,600 lb = 6,948 lb Base Moment= 8,000 in-lb Mb= Base Moment*0.75*0.7*rho · 1+0.105*Sds= 1.0774 = 8000 In-lb* 0.75*0.7*rho , 1.4+0.14Sds= 1.5032 .--------=-4~,2_0_0_l_n-_l_b ______________ --, B= o.7000 Axial Load P = 6,948 lb Mbase=Mb = 4,200 In-lb Axial stress=fa = P/A = P/(D*W) = 112 psi Moment Stress=tb = M/S = 6*Mb/[(D*B"2] = 51.6 psi Moment Stress=fbl = fb-fb2 = 17.6 psi M3 = (1/2)*fb2*L*(2/3)*L = (1/3)*fb2*L"2 = 76 in-lb 5-plate = (1)(t"2)/6 = 0.026 in"3/ln fb/Fb = Mtotalj[(S-plate)(Fb)] 0.73 OK Tanchor = (Mb-(Pl app*0. 75*0.46)(a))/[(d)*N/2] = -1,867 lb No Tension Ml= wL "2/2= fa*L "2/2 = 376 In-lb Moment Stress=fb2 = 2 * fb * L/W = 34.0 psi M2= fbl *L "2)/2 = 59 in-lb Mtotal = Ml+M2+M3 = 512 In-lb/In Fb = 0.7S*Fy = 27,000 psi Pp= 0.7*F"c = 2,800 psi Tallow= 970 lb OK OK Cross Aisle Loads Oirl<Wllo«l<M<!RM/5«2.~ ,,.,,,~:(l+O.JJSds)l)i. +(l+0.USDS}Pl.'0.75,Et.'0.75 <u 1.0, ASDMeUKXI Check uplift load on Baseplate Effl Effe Check uplift forces on baseplate with 2 or more anchors per RMI 7.2.2. Pstatic= 6,948 lb Movt*0.75*0.7*rho= 158,233 in-lb Frame Depth= 48.0 In P=Pstatlc+Pselsmlc= 10,245 lb b =COiumn Depth= 2.69 In · L =Base Plate Depth-Col Depth= 2.59 In fa = P/A = P/(D*W) = 165 psi Sbase/ln = (1)(t"2)/6 = 0.026 ln"3/in fb/Fb = M/[ (5-plate )(Fb)] = 0.79 OK Pselsmlc= Movt/Frame Depth = 3,297 lb M= WL "2/2= fa*L "2/2 = 555 in-lb/In Fbase = 0.75*Fy = 27,000 psi CAM5TON WRATtlER. R.E50UR.CE5 RECOVER.Y TYF'E 551 Page )2 of ~ When the base plate configuration consists of two anchor bolts located on either side f the column and a net uplift force exists, the minimum base plate thickness all be determined based on a design .bending moment In the plate equal to the uplift force on one anchor times 1/2 the distance from he centerline of the anchor to the nearest edge of the rack column" I+-~• T M rl "rhH= t1 .f!m!illllln Uplift per Column= 2,760 lb Qty Anchor per BP= 4 Net Tension per anchor= Ta= 690 lb C= 2.59 In Mu=Moment on Baseplate due to uplift= Ta*c/2 fb Fb *0.75= 0.122 = 894 in-lb Splate= 0.204 in"3 OK I/G/2022 Structural Engineering & Design Inc. 1815 Wcigbt Aye La Verne CA 91750 Tei: 909.596.1351 fax· 909 596.7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project #: 21-1221-14 Slab on Grade Configuration: TYPE SS a t x -+1-1+-ye -~-=--=•I_ SLAB ELEVATION Baseplate Piao View Concrete re= 4,000 psi tslab=t= 5.5 in teff= 5.5 In ;'<\]fi>'j:)}j]3.0;.)-'@ :: r;,• , , SQil fsoll= 750 psf Movt= 301,396 in-lb Frame depth= 48.0 in Sds= 0.737 Base Plate Effec. Baseplate wklthmBm 7 .87 In Effec. Baseplate DepthgD= 7 .87 in width=a= 3.06 in depth=b= 2.69 In 0.2*Sds= 0.147 ··9~'~'"'is::P,.4"l·-.oJon. l3=B/D= 1.000 Column Loads DEAD LOAD=D= 150 lb per column unfactored ASD load PRODUCT LOAD=P= 8,600 lb per column unfactored ASD load Papp= 5,762 lb per column P-seismic=E= (Movt/Frame depth) = 6,279 lb per column unfactored Limit State load B= 0-17000 c' • rho= 1i0066 .,, , Sds= 0.7368 1.2 + 0.2*Sds= 1.3474 0. 9 -0.20Sds= 0.7526 Puncture Apunct= [(c+t)+(e+t)]*2*t = 239.24 ln"2 Fpunctl= [(4/3 + 8/(3*13)] *).. *(F'c"0.5) = 151.7 psi Fpunct2= 2.66 * ).. * (F'c"0.5) = 100.9 psi Fpunct eff= 100.9 psi Slab Bending Pse=DL+PL+E= 15,059 lb Asoil= (Pse*l 44)/(fsoil) = 2,891 In" 2 X= (L-y)/2 = 18.7 In Fb= 5*(phi)*(fc)"0.5 = 189.74 psi midway dist face of column to edge of plate=c= 5.47 in midway dist face of column to edge of plate=e= 5.28 In F'c"0.5= 63.20 psi Load case 1) (1.2+0.2Sds)D + (1.2+0.2Sds)*B*P+ rho*E RMI sEc 2.2 EQTN s = 1.34736 * 150 lb+ 1.34736 * 0.7 * 8600 lb+ 1 * 6279 lb = 14,592 lb Load case 2) (0.9-0.2Sds)D + (0.9-0.2Sds)*B*Papp + rho*E RMI SEC 2,2 EQTN 7 = 0.75264 * 150 lb + 0.75264 * 0.7 * S762 lb+ 1 * 6279 lb = 9,428 lb Load Case 3) l.2*D + 1.4*P = 1.2*150 lb + 1.4*8600 lb = 12,220 lb Load Case 4) 1.2*D + 1.0*P + LOE = 15,059 lb RMI SEC 2.2 EQTN 1,2 AC! 318-14 sec 5.3.1 Eqtn 5.3.le Effective Column Load=Pu= 15,059 lb per column L= (Asoil)"0.5 = 53.77 in M= w*x"2/2 = (fsoll*x" 2)/(144*2) = 910.4 In-lb fv/Fv= Pu/(Apunct*Fpunct) = 0.624 < 1 OK y= (c*e)"0.5 + 2*t = 16.4 in s-slab= 1 *teff" 2/6 = 5.04 ln"3 fb/Fb= M/(S-slab*Fb) 0.952 < 1, OK CAM5TON WRATHER RESOURCES RECOVERY TYf'E 551 Page /3 of 'f-3 I/G/2022 Structural Engineering & Design Inc. By: 'NIHAL 1 s15 Wright Ave La Verne. CA 91750 Tel: 909 596.1351 Fax: 909.596 7186 Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14 Configuration & Summary: TYPE R T 60" 1~ 2 64" 60" t- 60" + 60" .I ' -t---108" ----,/,r -"y-:--t--:;,t 58" +-IE-------i 48" -'f.----1-- 48" -'t-_ ___, 264" 24" + ,____ 24" + 24" +-24" ~ ,r-48" --7'-,r-48" -+ **RACK COLUMN REACTIONS ASDLOADS AXIAL DL= 150 lb AXIAL LL= 3,800 lb SEISMIC AXIAL Ps=+/· 2,905 lb BASE MOMENT= 0 In-lb Seismic Criteria # Bm Lvls Frame Depth Frame Height # Diagonals Beam Length Frame Type Ss=0.921, Fa=l.2 4 48 in 264.0 In 7 108 In Single Row Component Description STRESS Column Fy=SS ksl Mecalux 314 3.0"x2.69"x0.070" P=3950 lb, M=11343 In-lb 0.78-OK Column & Backer None None None N/A Beam Fv=55 ksi lntlk 27E 2.75Hx2.75Wx0.059"Thk Lu=108 in I capacity: 2087 lb/pr 0.91-OK Beam Connector Fv=55 ksi Lvl 1: 3 Tab OK I Mconn,,,8122 in-lb I Mcap=8828 in-lb 0.92-OK Brace-Horizontal Fv=55 ksl Mclx C456 Sgl 1.7953xl.378x16ga(U3lx} 0.2-OK Brace-Diagonal Fy=55 ksl Mclx C456 Sgl 1.7953xl.378x16ga(U31x) 0.42-OK Base Plate Fy=36 ksi 7.283x5.118x0.394 I Fixity= 0 in-lb 0.41-OK Anchor 2 oer Base 0.5'' x 3.25" Embed Hlltl TZ #1917 Inspection Reqd (Net Seismic Uplift-=1234 lb) 0.592-OK Slab & Soll 5.5" thk x 4000 psi slab on grade. 750 psf Soil Bearing Pressure 0.31-OK Level I Load** I Story Force I story Force Column I Column I Conn. Beam Per Level Beam Soca Brace Transv Long It. Axial Moment Moment Connector 1 1,900 lb 60.0 In 24.0 In 99 lb 401b 3,950 lb 11,343 "# 8,122 "# 3 Tab OK 2 1,900 lb 60.0 In 24.0 in 199 lb 801b 2,963 lb 5,373 "# 5,615 "# 3Tab OK 3 1,900 lb 60.0 In 24.0 In 298 1b 119 lb 1,975 lb 4,179 "# 4,570 "# 3 Tab OK 4 1,900 lb 60.0 In 24.0 in 3971b 159 1b 988 1b 2,388 "# 3,107 "# 3 Tab OK 48.0 in 48.0 in 58.0 in ** Load defined as product weight per pair of beams Total: 993 lb 3981b CAM5TON WRATHER RE50URCE5 RECOVERYTYF'E R Page /Cf-of 'f3> I/G/2022 Structural Engineering & Design Inc. 1815 Wright Ave La Verne CA 91750 Tel: 909.596.1351 Fax: 909 596 7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Seismic Forces Configuration: TYPER Lateral analysls ts perl'ormed with regard to the requirements of the 2012 RMI ANS! MH 16.1-2012 Sec 2.6 & /JSCT. 7-16 sec 15.5.3 Transverse (Cross Aisle) Seismic Load ,,, V= Cs*Ip*Ws=Cs*Ip*(0.67*P*Prf+D) Vt Csl= Sds/R . = 0.1842 Cs-max* Ip= 0.1842 Cs2= 0.044*Sds Vm1n= 0.015 = 0.0324 Eff Base Shear=Cs= 0.1842 ])jl"'vem· Elmt1011 Cs3= O.S*S1/R Ws= (0.67*PLRF1 * PL)+DL (RMI 2.6.2) = 0.0424 .-----=-=5-'-',3c;.9_2-=lb ________ -, Cs-max= 0.1842 Vtransv=Vt= 0.1842 * (300 lb+ 5092 lb) Base Shear Coeff=Cs= 0.1842 Etransverse= 993 lb Limit States Level Transverse seismic shear per upright Level PRODUCT LOAD P P*0.67*PRFI DL hi wi*hi 1 1,900 lb 1,273 lb 75 1b 601n 80,880 2 1,900 lb 1,273 lb 75 lb 120 In 161,760 3 1,900 lb 1,273 lb 75 lb 180 In 242,640 4 1,900 lb 1,273 lb 75 lb 240 In 323,520 sum: P=7600 lb 5,092 lb 300 lb W=5392 lb 808,800 Lonaltudlnal CDownaislel Seismic Load Project#: 21-1221-14 Ss= 0.921 S1= 0.339 Fa= 1.200 FV= 1.961 Sds=2/3*5s*Fa= 0.737 Sd1=2/3*51 *Fv= 0.443 ca=0.4*2/3*Ss*Fa= o.2947 (Transverse, BraCl!d Frame Dir.) R= 4.0 Ip= 1.0 PRF1 = J}~ j;!;f:. Pallet Helght=hp= 48.0 in DL per Beam Lvl= 75 lb Fi Fi* hi+hp/2) 99.3 lb 8,341·# 198.6 lb 28,598-# 297.9 lb 60,772-# 397.2 lb 104,861-# 993 lb I =202,572 Similarly for longitudinal seismic loads, using R=6.0 Ws= (0.67 * P4\F2 * P) + DL PRF2= 1.0 , .. , .... · I f,,,51 EJ E] Csl=Sdl/(T*R)= 0.0739 Cs2= 0.0324 Cs3= 0.0283 Cs-max= 0.0739 Level PRODUC LOAD P 1 1,900 lb 2 1,900 lb 3 1,900 lb 4 1,900 lb = 5,392 lb (Longitudinal, Unbraced Dir.) R= 6.0 Cs=Cs-max*Ip= 0.0739 Tu 1.00 sec I Vlong= 0.0739 * (300 lb+ 5092 lb) I Elongltudlnal= 398 lb Llm/tS,,,to, ,.,,,., Longlt. Sf)/$m/csbtJDrpt1ruprlr,ht P"'0.67*PRF2 1,273 lb 1,273 lb 1,273 lb 1,273 lb DL 75 lb 75 lb 75 lb 75 lb hi wi*hi 60 1n 80,880 1201n 161,760 1801n 242,640 2401n 323,520 □~ M't:J Dr:7 i"''·'I D Fi Etoot YJew 39.8 lb 79.6 lb 119.4 lb 159.2 lb sum: =======5=09=2=1=b===3=00=1=b===W===53=9=2=1b====8=0==8=8=00========39=8=1=b======== CAMSTON WRATHER RESOURCES RECOVERY TYPER I /G/2022 foundrunental Period of Vibration (Lon,d tudinal) Per FEMA 460 Appendix A -Development of An Analytical Model for the Displacement Based Seismic Design of Storage Racks in Their Down Aisle Direction Section 6. 5. 1 Where: g = NL = kc= kbe" kb= kce = Ne = Nb = kbe = kcc = kb = kc = L = H = lb= Ic = E = w.eight of the i th pallet supported by the storage rack the elevation of the center of gravity of the ith pallet with rospoct to the base of the storage rack gravitational acceleration the number of loaded levels the rotational stiffness of the connoctor the flexral rotational sti ffness of the beam-end the roLaLional stiffness of the base plate t he flexural rotational stiffness of the base upright-end the number of beam-to-upright connections the number of base plate connections 6Elb / L 4Eic / H Eic / H ~!max/ e max the clear span of the beams the clear height of the upright the moment of inertia about the bending axis of each beam the moment of inertia of each base upright Young's Modulus of the beams Tl= 1. 08365 Since 0.6SDS=0.8lg)0.6g, B=l. 7 Since Sl=0. 769g>0.5g, using g=386 in'2/s 0 demand= 12 (1 +a) (T 1/1. 0) (S 1/h tot ) = 0. 04233 ti= Mc* (kc+kbe) / (kc*kbe) *h tot = 13. 0372 0d= Cd (1 +as)* t. /ht ot 0.45532 Ii of leveb min# of bays Ne Nb kc kbe kb kce lb L le H E Level hpi 1 2 3 4 5 4 3 48 8 128. 571 lt01.61 94.0313 376. 125 Wpi 0.874 in·4 108 i n 0.785 in· 4 240 in wsoo ksi 84 1. 273 144 1. 273 204 1. 273 264 1. 273 0 0 Structural Engineering & Design Inc. 1815 Wright Ave La Verne CA 91750 Jel; 909.596.1351 fax· 909.596.7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Downalsle Seismic Loads Configuration: TYPE R Determine the story moments by applying portal analysis. The base plate Is assumed to provide no fixity. Seismic story Forces Vlong= 398 lb Vcol=Vlong/2= 199 lb Fl= 401b F2= 80 lb F3= 119 lb Seismic Story Moments ryp1c.il frame rna<lc Tributary at<a of two columns ofrackfi.,1mc "' _______ , -~ ~ EJ:'G ':~ • I -~□EJ:~~:G -~G~:GEJ:G I-96"-, ... _______ .. , ~ Cooceotual Svstem Project #: 21-1221-14 Typlc.il Ftamc made L of two columns ~ Mbase-max= 0 In-lb Mbase-v= (Vcol*hleff)/2 <=== Default capacity h1-eff= h1 -beam dip height/2 = 57 in = 5,672 in-lb <=== Moment going to base Mbase-eff= Minimum of Mbase-max and Mbase-v = 0 in-lb PINNED BASE ASSUMED M 1-1= [Vcol * h1eff]-Mbase-eff M 2-2= [Vcol-(Fl )/2] * h2 = (199 lb * 57 ln)-0 In-lb = (199 lb -39.8 lb]*60 in/2 = 11,343 In-lb = 5,373 In-lb Mseis= (Mupper+Mlower)/2 Msels(l-1)= (11343 in-lb+ 5373 in-lb)/2 = 8,358 in-lb Msels(2-2)= (5373 In-lb+ 4179 ln-lb)/2 = 4,776 In-lb LEVEL 1 2 3 4 Summary of Forces hi Axial Load Column Moment** Mselsmlc** 60 In 3,950 lb 11,343 in-lb 8,358 in-lb 601n 2,963 lb 5,373 In-lb 4,776 in-lb 601n 1,975 lb 4,179 In-lb 3,284 in-lb 60in 9881b 2,388 In-lb 1,194 In-lb • Mconn= (Mselsmlc + Mend-fixlty)*0.70*rho Mconn-allow(3 Pin)= 8,828 In-lb **all moments based on limit states level loading Mend-fixl 3,245 in-lb 3,245 in-lb 3,245 in-lb 3,245 In-lb h1 h1eff Beam to Column Elevation rho= 1.0000 Mconn** 8,122 In-lb 5,615 in-lb 4,570 in-lb 3,107 in-lb Beam Connector 3 Tab OK 3 Tab OK 3 Tab OK 3 Tab OK COL CAM5TON WRATH ER RESOURCES RECOVERY lYFE R Page ( { of 1f') 1/G/2022 Structural Engineering & Design Inc. 1815 Weight Aye La Verne. CA 91750 Tel: 909.596.1351 Fax: 909.596.7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project #: 21-1221-14 Column (Longltudlnal Loads) Configuration: TYPE R Section Properties Section: Mecalux 314 3.0"x2.69"x0.070" Aeff = 0.538 In" 2 Ix = 0.765 ln"4 Sx = 0.510 in" 3 rx = 1.190 in Qf= 1.67 Iy = 0.464 ln"4 Sy = 0.307 ln"3 ry = 0.928 In Fy= 55 ksi Kx = 1.7 r 3.000 In -1 Cmx= 0.85 E= 29.500 ksl Loads Considers loads at level 1 COLUMN DL= 150 lb Critical load cases are: RMI Sec 2.1 Lx = 58.6 In Ky= 1.0 Ly= 24.0 in Cb= 1.0 ---,--l 2.690 In J_ 0.070in COLUMN PL= 3,800 lb Mcol= 11,343 in-lb Sds= 0.7368 1+0.105*Sds= 1.0774 1.4+0.14Sds= 1.5032 1+0.14Sds= 1.1032 0.85+0.14*Sds= 0.9532 Load Case 5:: (1+0.105*Sds)D + 0.75*(1.4+0.14Sds)*B*P + 0.75*(0.7*rho*E)<= 1.0, A5D Method axial load coeff: 0.7891548 * P seismic moment coeff: 0.5625 * Meo/ Load case 6:: (1+0.104*Sds)D + (0.85+0.14Sds)*B*P + (0.7*rho*E}<= 1.0, ASD Method ax/a/load coeff: 0. 66721 seismic moment coeff: 0.7 * Meo/ By analysis, Load case 6 governs utilizing loads as such Moment=Mx= 0.7*rho*Mcol B= 0.7000 rho= 1.0000 Axial Analysis luc:lal Load=Pax= 1.103152*150 lb+ 0,953152*0.7*3800 lb = 2,701 lb = 0.7 * 11343 in-lb = 7,940 in-lb Kxlx/rx = 1.7*58.625"/l.19" = 83.8 Fe= n" 2E/(KL/r)max" 2 = 41.5ksl Pn= Aeff*Fn = 19,785 lb P/Pa= 0.26 > 0,15 Bending Analysis KyLy/ry = 1 *24"/0.9284" = 25.9 Fy/2= 27.5 ksl Qc= 1.92 Check: Pax/Pa + (Cmx*Mx)/(Max*µx) ~ 1.0 P/Pao + Mx/Max ~ 1.0 Pno= Ae*Fy Pao= Pno/Qc = 0.538 in"2 *55000 psi = 29,505 lb "' 29585lb/l.92 "' 15,409 lb Fe> Fy/2 Fn= Fy(l-Fy/4Fe) = 55 ksl*[l -55 ksi/(4*41.5 ksl)] = 36.8 ksi Pa= Pn/Qc = 19785 lb/1.92 = 10,305 lb Myield=My= Sx*Fy = 0.51 ln"3 * 55000 psi = 28,050 in-lb Max= My/Of Per= n" 2EI/(KL)max" 2 = 28050 ln-lb/l.67 = 16,796 In-lb µx= {l/[l-(Qc*P/Pcr)]}"-1 = {1/[1-(1.92*2701 lb/22424 lb)]}"-1 = 0.77 Combined Stresses = n"2*29500 ksi/(1.7*58.625 in)"2 = 22,424 lb (2701 lb/10305 lb) + (0.85*7940 ln-lb)/(16796 ln-lb*0.77) = (2701 lb/15409 lb) + (7940 ln-lb/16796 In-lb) = 0.78 0.65 < 1.0, OK < 1.0, OK (EQ CS-1) (EQ CS-2) ** For comparison, total column stress computed for load case 5 is: 72. 0% 'ng loads 3160.39284 lb Axial and M= 5955 in-lb CAMSTON WRATHER RESOURCES RECOVERY TYPE R Page ( 7 of lf 3 I/G/2022 Structural Engineering & Design Inc. 1815 Wright Ave La Verne CA 91750 Tel· 909 596 1351 fax· 909 596 7186 · By: NIHAL Project CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14 BEAM Contiguratlon: TYPE R DETERMINE ALLOWABLE MOMENT CAPACITY A} Check compression flange for local buckling {B2.1} W= C • 2*t -2*r = 1.75 In -2*0.059 in -2*0.059 In " 1.514 In w/t= 25.66 !=lambda= [1.052/(k)"0.5] * (W/t) * (Fy/E)"0.5 = [1.052/(4)"0.5] * 25.66 * (55/29500)"0.5 = 0.583 < 0.673, Flange Is fully effective B} check web for local buckling per section b2.3 fl(comp)= Fy*(y3/y2)= 48.06 ksi f2(tension)= Fy*(y1/y2)= 99.82 ksi Y= f2/fl = -2.077 k= 4 + 2*(1-Y)"3 + 2*(1-Y) = 68.42 flat depth=w= y1+y3 Eq. B2.3-5 Eq. B2.3-4 Eq. B2.1-4 Eq. B2.1-1 = 2.514 in w/t= 42.61016949 OK !=lambda= [1.052/(k)"0.5] * (w/t) * (fl/E)"0.5 = [1.052/(68.42)"0.5] * 2.514 * (48.06/29500)"0.5 = 0.219 < 0.673 be=W= 2.514 in bl= be(3-Y) = 0.495 b2= be/2 = 1.26 In b1+b2= 1.755 in > 0.817 in, Web is fully effective Determine effect of cold working on steel yield point {Fya} per section A7 .2 Fya= C*Fyc + (1-C)*Fy (EQ A7.2-1) Lcorner=Lc= (p/2) * (r + t/2) 0.139 in Lflange-top=Lf= 1.514 in m= 0.192*(FU/Fy) • 0.068 = 0.1590 C= 2*Lc/(Lf+2*Lc) = 0.155 in (EQ A7.2-4) Be= 3.69*(Fu/Fy) • 0.819*(Fu/Fy)"2 • 1.79 = 1.427 since fu/Fv= 1.18 < 1.2 and r/t= 1 < 7 OK then Fye= Be * Fy/(R/t)"m (EQ A7.2-2) =· 78.485 ksl Thus, Fya-top= 58.64 ksi (tension stress at top) Fya-bottom= Fya*Ycg/(depth -Ycg) = 113.84 ksi (tension stress at bottom) Check allowable tension stress for bottom flange Lflange-bot=Lfb= Lbottom -2*r*-2*t = 2.514 in Cbottom=Cb= 2*Lc/(Lfb+2*Lc) = 0.100 Fy-bottom=Fyb= Cb*Fyc + (1-Cb)*Fyf = 57.34 ksi Fya= (Fya-top)*(Fyb/Fya-bottom) = 29.54 ksi Eq B2.3-2 (EQ A7.2-3) ifF= 0.95 Then F*Mn=F*Fya*Sx=I 12.37 in-k doplh 2.75 In t sln { T 1.625 in 2.750 In l~ 0,059 In Beam= Intlk 27E 2 75Hx2 75Wx0 059"Thk Yqi y1 j_ Ix= 0.674 in"4 Sx= 0.441 ln"3 Ycg= 1.815 in t= 0.059 in Bend Radius=r= 0.059 In Fy=Fyv= 55.00 ksl Fu=Fuv= 65.00 ksl E= 29500 ksi top flange=b= 1.750 in bottom flange= 2.750 in Web depth= 2.7'"' In -Fy - yl= Ycg-t-r= 1.697 In y2= depth-Ycg= 0.935 In y3= y2-t-r= 0.817 In Structural Engineering & Design Inc. 181 5 Wrjght Aye La Yeme CA 91750 Tel· 909 596.1351 Fax· 909 596 7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14 BEAM cont1guratton: TYPER RMI Section 5.2, PT II Section Beam= Intlk 27E 2.75Hx2.75Wx0.059"Thk Ix=Ib= 0.674 in"4 Sx= 0.441 ln"3 t= 0.059 in Fy=Fyv= 55 ksl Fu=Fuv= 65 ksi Fya= 58.6 ksi E= 29500 ksl F= 225.0 L= 108 In Beam Level= 1 P=Product Load= 1,900 lb/pair D=Dead Load= 75 lb/pair 1. Check Bending Stress Allowable Loads Mcenter=F*Mn= W*L *W*Rm/8 W=LRFD Load Factor= 1.2*0 + 1.4*P+1.4*(0.12S)*P FOR DL=2% of PL, W= 1.599 Rm= 1 · [(2*F*L)/(6*E*Ib + 3*F*L)] RMI 2,2, Item 8 1 -(2*225*108 ln)/[(6*29500 ksi*0.674 ln"3)+(3*225*108 In)] = 0.747 If F= 0.95 Then F*Mn=F*Fya*Sx= 24.56 in-k Thus, allowable load per beam pair=W= F*Mn*8*( # of beams)/(L *Rm*W) = 24.56 ln-k * 8 * 2/(l0Bln * 0.747 * 1.599) = 3,047 lb/pair allowable load based on bending stress Mend= W*L*(l-Rm)/8 = (3047 lb/2) * 108 in* (1-0.747)/8 = 5,204 in-lb @ 3047 lb max allowable load = 3,245 in-lb @ 1900 lb imposed product load 2. Check Deflection Stress Allowable Loads Dmax= Dss*Rd Rd= 1 · (4*F*L)/(5*F*L + 10*E*Ib) = 1 • (4*225*108 ln)/[(5*225*108 in)+(10*29500 ksl*0.674 in"4)] = 0.697 in if Dmax= L/180 Based on L/180 Deflection Oiterla and Dss= S*W*L "3/(384*E*Ib) L/180= 5*W*L "3*Rd/(384*E*Ib*# of beams) solving for W yields, W= 384*E*I*2/(180*5*L"2*Rd) = 384*0.674 ln"4*2/[180*5*(108 ln)"2*0.697) = 2,087 lb/pair allowable load based on deflection limits t--2.75 1n t1.7Sln 4 T 1,625 In 2,750 In l ~ 0,059 In 11,m,111m1ro11,mu,,m1,mn ~=~,,~===========~ -... _____________ _ : ; : l r.l .. Allowable Deflection= LJ180 = 0.600 in Deflection at Imposed Load= 0.546 In .. " Thus, based on the least capacity of item 1 and 2 above: Allowable load= 2,087 lb/pair Imposed Product Load= 1,900 lb/pair Beam at Level 1 _________ _. Beam Stress= , Structural Engineering & Design Inc. 1815 Weight Ave I a Yecoe CA 91750 Iel· 909 596 1351 fax· 909 596 7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Proiect#: 21-1221-14 3 Tab Beam to Column Connection Configuration: TYPE R Mconn max= (Mselsmic + Mend-fixity)"'0,70"'Rho = 8,122 In-lb Load at level 1 Connector Type= 3 Tab Shear Capacity or Tab Tab Length= 0.50 in Ashear:a 0.5 in* 0.135 In = 0.0675 in"2 Pshear= 0.4 * Fy * Ashear = 0.4 * 55000 psi* 0.0675in"2 = 1,485 lb Bearing capacity of Tab tcol= 0.070 In Omega= 2.22 Fy= 55,000 psi Fu= 65,000 psi a= 2.22 Pbearing= alpha * Fu * tab length * teal/Omega = 2.22 * 65000 psi * 0.5 In * 0.07 in/2.22 = 2,275 lb > 1485 lb Moment Capaolty of Bracket Edge Distance=E= 1.00 in Tab Spacing= 2.0 In C= P1+P2+P3 = Pl +Pl "'(2.S"/4.S")+Pl "'(0.5"/4.5") = 1.667"' Pl Mcap= Sdip * Fbending = 0.1832 ln"3 * 0.66 * Fy = 6,650 in-lb Pcllp= Mcap/(1.667 * d) tcllp= 0.135 in C*d= Mcap = 1.667 = 6650.16 in-lb/(1.667 * 0.5 In) = 7,979 lb Thus, Pl= 1,485 lb Mconn-allow= [Pl *4.S"+P1 *(2.5"/4.5")*2.S"+Pl *(0.5"/4.5")*0.5") = 1485 LB*[ 4.5"+(2.5"/4.5")*2.5"+ (0.5"/4.5")*0.5"] = 8,828 in-lb > Mconn max, OK Stress= 0.92 CAM5TON WRATHER RE50URCE5 RECOVERY TYPE R 1 3 16" Bearing Length= p,[j)O() lrt'JH1l Fy= 55,000 psi Sclip= 0.183 in"3 d= E /2 = 0.50 In 0 I/G/2022 Structural Engineering & Design Inc. 1815 Wright Aye La Verne. CA 91750 Tel: 909 .596.1351 Fax· 909.596.7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14 Transverse Brace Configuration: TYPER Section Properties Diagonal Member= Mdx C456 Sgl 1.7953x1.378x16ga(U31x) Horizontal Member= Mclx C456 Sgl 1.7953x1.378x16ga(U31x) Area= 0'.259 ln"2 r min= 0.449 In Fy= 55,000 psi K= 1.0 Qc= 1.92 Frame Dimensions Bottom Panel Helght=H= 58.0 in Frame Depth=D= 48.0 in Column Wldth=B= 2.7 In Diagonal Member ... o Area= 0.259 in"2 r min= 0.449 In Fy= 55,000 psi K= 1.0 Clear Depth=D-8*2= 42.6 In X Brace= NO rho= 1.00 I Load Case 6: : (1,,.±Jl...104~ + l(0.85+0.14Sds)*B*P + [0.7*rho*EJ<= 1.0, ASD Method Vtransverse= 993 lb Vb=Vtransv*0.7*rho= 993 lb * 0,7 * 1 = 695 lb Ldlag= [(D-B*2)A2 + (H-6")"2]"1/2 = 67.2 In Pmax= V*(Ldlag/D) * 0.75 = 730Ib (kl/r)= (k * Ldlag)/r min = (1 x 67.2 in /0.449 In) = 149.7 in Fe= pl"2*E/(kl/r)"2 = 12,992 psi axial load on dia anal brace member Since Fe<Fy/2, Fn= Fe Pn= AREA*Fn = 0.259 in"2 * 12992 psi = 3,361 lb Pallow= Pn/Q = 3361 lb /1.92 = 1,751 lb Pn/Pallow= 0.42 Horizontal brace Vb=Vtransv*0.7*rho= 695 lb (kl/r)= (k * Lhorlz)/r min = (1 x 48 in) /0.449 in = 106.9 in Since Fe<Fy/2, Fn=Fe = 25,478 psi Pn/Pallow= 0.20 <= 1.0 OK <= 1.0 OK CAMSTON WRATHER. RESOURCES RECOVERY 1YPE R. Fe= pl"2*E/(kl/r)"2 = 25,478 psi Pn= AREA*Fn = 0.2591n"2*25478 psi = 6,591 lb Page 7,;0 of 4-} = 12,992 psi B +f' Fy/2= 27,500 psi Pallow= Pn/Qc JYQlcal PaoeJ Cooflaurallon = 6591 lb /1.92 = 3,433 lb T l I /G/2022 Structural Engineering & Design Inc. 1815 Wright Aye La Verne CA 91750 Jel: 909 596 1351 Fax· 909 596 7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14 Single Row Frame Overturning Configuration: TYPE R Loads Critical Load case(s): 1) RMI Sec 2.2, Item 7: (0.9-0.2Sds)D + (0.9-0.20Sds)*B*Papp -E*rho Vtrans=V=E=Qe= 993 lb DEAD LOAD PER UPRIGHT=D= 300 lb PRODUCT LOAD PER UPRIGHT=P= 7,600 lb Papp=P"'0.67= 5,092 lb Wst LCl=Wstl=(0.75264*0 + 0.75264*Papp*l)= 4,058 lb Product Load Top Level, ptop= 1,900 lb DL/Lvl= 75 lb Seismic Ovt based on E, E(Fi*hl)= 139,448 In-lb helaht/deoth ratio-5.0 In A) Fullv Loaded Rack Load case 1: Movt= E(A*hi)*E*rho = 139,448 In-lb Sds= 0.7368 (0.9-0.2Sds)= 0.7526 (0.9-0.2Sds)= 0.7526 B= ;.bQ00 , rho= 1.0000 Frame Depth=Df= 48.0 In Htop-lvl=H= 240.0 in # Levels= 4 # Anchors/Base= 2 ho 48.0 In h-H+ho/2= 264.0 in Mst= Wstl * Df/2 = 4058 lb * 48 in/2 = 97,392 in-lb SIDE ELEVATION T= (Movt-Mst)/Df = (139448 In-lb -97392 in-lb)/48 In = 876 lb Net Uplift per Column I Net Seismic Uollft= 876 lb strenath Level Bl Too Level Loaded Onlv Load case 1: 0 Vl=Vtop= Cs* Ip* ptop >= 350 lb for H/D >6.0 Movt= [Vl *h + V2 * H/2]*rho = 0.1842 * 1900 lb = 99,026 In-lb = 350 lb T= (Movt-Mst)/Df V1eff= 350 lb Critical Level= 4 = (99026 In-lb -39739 ln-lb)/48 in V2=V01.= Cs*Ip*D Cs*Ip= 0.1842 = 1,235 lb Net Upllft per Column = 55 lb Mst= (0.75264*0 + 0.75264*ptop*1) * 48 ln/2 = 39 739 in-lb I Net Seismic Unlift= 1 235 lb Strenath Level Anchor Check (2) 0.5" x 3.25" Embed Hiltl TZ anchor(s) per base plate. Special Inspection Is required per #1917. Fully Loaded: Top Level Loaded: Pullout Capaclty=Tcap= 970 lb L.A. City Jurisdiction? NO Shear capadty=Vcap= 1,250 lb Phi= 1 (438 lb/970 lb)"1 + (248 lb/1250 lb)"1 = (617 lb/970 lb)"l + (87 lb/1250 lb)"1 "' CAM5TON WRATHER RESOURCES RECOVERY TYPER rage 2-( of 'f} 0.65 0.71 Tcap*Phl= 970 lb Vcap*Phi= 1,250 lb <= 1.2 OK <= 1.2 OK I/G/2022 Structural Engineering & Design Inc. 1815 Wrigbt Ave La Verne, CA 91750 Tel: 909,596 1351 fax· 909,596,7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project #: 21-1221-14 Base Plate Configuration: lYPE R Section Baseplate= 7.283x5.118x0.394 Eff Wldth=W = 7.28 In Eff Depth=D = 5.12 In Column Wldth=b = 3.00 in Column Depth=dc = 2.69 In a = 2.64 In Anchor c.c. =2*a=d = 5.28 in N=# Anchor/Base= 2 Fy = 36,000 psi L = 2.14 In Plate Tolckness=t = 0.394 in DownaJsle Elevatlon Down Aisle Loads Load Case 5:: (1+0.105*Sds)D + 0.75*[(1.4+0.14Sds)*B*P + 0.75*[0.7*rho*El<-1.0, ASD Method COLUMN DL= 150 lb Axial=P= 1,077364 * 150 lb+ 0.75 * (1,503152 * 0.7 * 3800 lb) COLUMN PL= 3,800 lb = 3,160 lb Base Moment= 0 In-lb Mb= Base Moment*0.7S*0.7*rho 1+0.105*Sds= 1.0774 = 0 in-lb* 0.7S*0.7*rho 1.4+0.14Sds=-1.5032 .....-------=--=-0..::in:.:..-..::lb~-----------------. B= Q;fOOt) . ~ ,,, '.,. I Axial Load P = 3,160 lb Mbase=Mb = 0 in-lb Axial stress=fa = P/A = P/(D*W) = 85 psl Moment Stress=fb = M/S = 6*Mb/[(D*B"2] = 0.0 psi Moment Stress=fbl = fb-fb2 = 0.0 psi M3 = (1/2)*fb2*L*(2/3)*L = (1/3)*fb2*L"2 = 0 In-lb 5-plate = (l}(t"Z)/6 = 0.026 in"3/ln fb/Fb = Mtotal/[(S-plate)(Fb)] = 0.28 OK Tanchor = (Mb-(PLapp*0.75*0.46)(a))/[(d)*N/2] = -2,029 lb No Tension Ml= wL"2/2= fa*L"2/2 = 194 In-lb Moment Stress=fb2 = 2 * fb * L/W = o.o psi MZ= fbl *L"2)/2 = 0 in-lb Mtotal = Ml+M2+M3 = 194 in-lb/in Fb = 0.75*Fy = 27,000 psi F'p= 0.7*F'c = 2,800 psi OK Tallow= 970 lb OK Cross Aisle Loads 011/c4//o.,dc,s,ll}IIS«1.1, 11em•:r1+0.11Sds)DL +r1+0J,sos)Pt.•o.1S+e.•a75 <•J.~ ASDHIJthod Check uplift load on Baseplate EffE Effe Oieck uplift forces on baseplate with 2 or more anchors per RMI 7.2.2. Pstatlc= 3,160 lb Movt*0.75*0. 7*rho= 73,210 in-lb Frame Depth= 48.0 ln P=Pstatic+Pseismic= 4,686 lb b =Column Depth= 2.69 In L =Base Plate Depth-Col Depth= 2.14 In fa = P/A = P/(D*W) = 126 psi Sbase/in = (l )(t"2)/6 = 0.026 ln"3/in fb/Fb = M/[(S-plate)(Fb)] 0.41 OK CAM5TON WRATH ER. RE50UR.CE5 RECOVERY 1YPE R. Pseismlc= Movt/Frame Depth = 1,525 lb M= wl"2/2= fa*L"2/2 = 288 In-lb/in Fbase = 0.75*Fy = 27,000 psi Page 2. 2,. of lf} hen the base plate ronflguratlon consists of two anchor bolts located on either side f the column and a net uplift force exists, the minimum base plate thickness hall be determined based on a design bendln<J moment In the plate equal o the uplift force on one anchor times 1/2 the distance from he centerline of the anchor to the nearest edge of the rack column" ~ Uplift per Column= 1,234 lb Qty Anchor per BP= 2 Net Tension per anchor=Ta= 617 lb c= 2.14 in Mu=Moment on Baseplate due to uplift= Ta*c/2 fb Fb *0.75= 0.139 = 661 in-lb Splate= 0.132 ln"3 OK I/G/2022 Structural Engineering & Design Inc. 1815 Wright Aye La Verne. CA 91750 Tel; 909 596 1351 fax· 909.596,7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14 Slab on Grade Configuration: TYPE R a t X ➔,_I+-ye _L ~-J -- SL.AB ELE\/ATION Baseplate Piao View Concrete re= 4,000 psi tslab=t= 5.5 in teff= 5.5 In ,.i.o;.:. • .. -~Ffli;l/11,,.,.1'1,ft·• ·'·--, ~~:; ~ , .• _;, J;fJ,l . \Cl. ~-· .Y..t~ · ... · ~ ·1 • >1. SQ!! fsoil= 750 psf Movt= 139,448 in-lb Frame depth= 48.0 in Sds= 0.737 0.2*Sds= 0.147 Base Plate Effec. Baseplate wldth=B= 7.28 in Effec. Baseplate Dejlth•D• 5.12 in width=a= 3.00 in depth=b= 2.69 in Column Loads DEAD LOAD=D=-150 lb per column unfactored ASD load PRODUCT LOAD=P= 3,800 lb per column unfactored ASD load Papp= 2,546 lb per column P-seismic=E= (Movt/Frame depth) = 2,905 lb per column unfactored Limit State load B= ,0:1000 ,, rho= :l,0000'· Sds= 0.7368 1.2 + 0.2*Sds= 1.3474 0. 9 -0.20Sds= 0.7526 Puncture Apunct= [(c+t)+(e+t)]*2*t : 220.50 1nA2 Fpunctl= [(4/3 + 8/(3*P)] *).. *(PcA0.5) = 121.6 psi Fpunct2= 2.66 * "'* (F'cA0.5) = 100.9 psi Fpunct eff= 100.9 psi Slab Bending Pse=DL+PL+E= 6,885 lb Asoll= (Pse*144)/(fsoil) = 1,322 In" 2 X= (L-y)/2 = 10.4 in Fb= 5*{phl)*(f'c)A0.5 = 189.74 psi midway dist face of column to edge of plate=c= 5.14 In midway dist face of column to edge of plate=e= 3.90 in Load Case 1) (1.2+0.2Sds)D + (1.2+0.2Sds)*B*P+ rho*E 'RMI SEC 2.2 EQTN 5 = 1.34736 * 150 lb + 1.34736 * 0.7 * 3800 lb + 1 * 2905 lb = 6,691 lb Load Case 2) (0.9°0.2Sds)D + (0.9-0.2Sds)*B*Papp + rho*E RMI SEC 2.2 EQTN 1 = 0.75264 * 150 lb+ 0.75264 * 0.7 * 2546 lb+ 1 * 2905 lb = 4,359 lb Load Case 3) 1.2*D + 1.4*P = 1.2*150 lb + 1.4*3800 lb = 5,500 lb Load Case 4) 1.2*D + 1.0*P + 1.0E = 6,885 lb Effective Column Load=Pu= 6,885 lb per column L=i (Asoil)A0.5 = 36.36 in M= w*x"2/2 = (fsoil*x"2)/(144*2) = 283.8 In-lb fv/Fv= Pu/(Apunct*Fpunct) = 0.310 < 1 OK y= ( c*e)"0.5 + 2*t = 15.5 in s-slab= 1 *teff" 2/6 = 5.04 ln"3 fb/Fb= M/(5-slab*Fb) 0.297 < 1, OK RMI SEC 2.2 EQrN 1,2 ACI 318-14 Sec 5.3.1 Eqtn 5.3.le CAM5TON WRATHER RE5OURCE5 RECOVERY TYPE R I IG/2022 Structural· Engineering & Design Inc. 1815 Wright Aye La Verne CA 91750 Tel· 909.596.1351 fax· 909.596.7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14 Configuration &. Summary: TYPE Q T 60" + .. 192" 60" -t- 60" J ' -·- T 78" 192' ± +1---ll 32" 1- **RACK COLUMN REACTIONS ASDLOADS AXIAL DL= 113 lb AXIAL LL= 6,450 lb SEISMIC AXIAL Ps=+/-3,785 lb BASE MOMENT= 5,000 In-lb ,-f"--f --108"---f Seismic Criteria Ss=0.921, Fa=l.2 Component Column Column & Backer Beam Beam Connector Brace-Horizontal Brace-Diagonal Base Plate Anchor Slab & Soll Level I Load** 1 2 3 Per Level 4,300 lb 4,300 lb 4,300 lb # Bm Lvls Frame Depth Frame Height # Diagonals Beam Length Frame Type 3 48 In 192.0 In 3 108In Single Row Fy=55 ksl None Fy=55 ksl Fv=55 ksl Fy=55 ksl Fy=55 ksl Fy=36 ksi 2 per Base Beam Spcg 60.0 In 60.0 In 60.0 In Description STRESS Mecalux 312 3.06"x2.69"x0.105" P=6563 lb, M=19444 in-lb 0.92-OK None None N/A Intlk 45E 4.5Hx2.75Wx0.059"Tok Lu=108 In I Capacity: 5521 lb/pr 0.78-OK Lvl 1: 4 Tab OK I Mconn=13043 In-lb I Mcap=15764 in-lb 0.83-OK Mclx C456 5gl 1.7953x1.378x16ga(U31x) 0.33-OK Mclx C456 Sgl 1.7953x1.378x16ga(U31x) 0.84-OK 7 .283x5.118x0.394 I Fixity= 5000 in-lb 0.62-OK 0.5" x 3.25" Embed Hlltl TZ #1917 Inspection Reqd (Net Seismic Upllft=1740 lb) 0.883-OK 5.5" thk x 4000 psi slab on grade. 750 psf Soll Bearing Pressure 0.58-OK I Story Force I Story Force Column I Column I Conn. Beam Brace Transv Long it. Axial Moment Moment Connector 32.0 In 272 Ib 146 lb 6,563 lb 19,444 "# 13,043 "# 4 Tab OK 64.0 In 78.0 In 544Ib 817 lb 291 lb 437 lb 4,375 lb 2,188 lb 10,913 "# 8,529 "# 4 Tab OK 6,548 "# 4,709 "# 4 Tab OK ** Load defined as product weight per pair of beams Total: 1,633 lb 873 lb CAM5TON WRATHER RESOURCES RECOVERY TYPE Q Page '2 f of Cf) IIG/2022 Structural. Engineeri~g & Design Inc. 1815 Wright Ave La Verne, CA 91750 Tel: 909 596,1351 fax: 909 596,7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14 Seismic Forces Configuration: TYPE Q Lateral analysis Is performed with regard to the requirements of the 2012 RMI ANSI MH 16.1-2012 Sec 2.6 & ASCE 7-16 sec 15.5.3 Transverse (Cross Aisle) Seismic Load 1... V= Cs*Ip*Ws=Cs*Ip*(0.67*P*Plf+D) Vt ~=~~ ·~ = 0.1842 Cs-max* Ip= 0.1842 Cs2= 0.044*Sds Vm1n= 0.015 = 0.0324 Eff Base Shear=Cs= 0.1842 rmsvmc Elevation Cs3= 0.5*51/R Ws= (0.67*PLRF1 * PL)+DL (RMI 2.6.2) = 0.0424 ,-----=....:8;.c;,8:..:68..::....;;:lb'----------, Cs-max= 0.1842 vtransv=Vt= 0.1842 * (225 lb+ 8643 lb) BaseShearCoeff=Cs= 0 .1842 Level 1 2 3 PRODUCT LOAD P 4,300 lb 4,300 lb 4,300 lb P*0.67*PRFI 2,881 lb 2,881 lb 2,881 lb sum: P=12900 lb 8,643 lb Lon ltudinal Downaisle Seismic Load Etransverse= 1,633 lb Limit states Level Transverse seismic shear per upright DL hi wl*hi 75 lb 60 In 177,360 75 lb 120 In 354,720 75 lb 180 In 532,080 225 lb W=8868 lb 1,064,160 Slmllarty for longitudinal seismic loads, ustng R=6.0 Ws= (0.67 * PLRF2 * P) + DL SS= 0.921 S1= 0.339 Fa= 1.200 Fv= 1.961 Sds=2/3*SS*Fa= 0.737 Sd1=2/3*S1 *Fv= 0.443 Ca=0.4*2/3*SS*Fa= 0.2947 (Transverse, Braced Frame Dir.) R= 4.0 Ip= 1.0 PRF1= l;Q, Pallet Helght=hp= 48.0 In DL per Beam Lvl= 75 lb Fl Fl* hl+h 2 272:2 lb 22,865-# 544.3 lb 78,379-# 816.5 lb 166,566-# 1,633 lb l =267,810 D Csl=Sdl/(T*R)= 0.0985 = 8,868 lb (Longitudinal, Unbraced Dir,) R~ 6.0 El Cs2= 0.0324 CS=CS-max*Ip= 0.0985 Tm 0.75 sec Cs3= 0.0283 Vlong= 0.0985 * (225 lb+ 8643 lb) D Cs-max= 0.0985 Elongltudlnal= 873 lb Llm/tS,,,,.Leve/Longlt.1mmk:1hoarp,,rupr/(lht Level PRODUC LOAD p P*0.67*P 2 DL hi wl*hl 1 4,300 lb 2,881 lb 75 lb 60 in 177,360 2 4,300 lb 2,881 lb 75 lb 120 in 354,720 3 4,300 lb 2,881 lb 75 lb 180 In 532,080 Fl 145.5 lb 291.0 lb 436.5 lb frlmt..'lleri! sum: =======8=,6=43===1b===2=2===51b===W====8=86=8=1===b====l=,0=6=4,=1=60========8=73===1b======== CAMSTON WRATHER RESOURCES RECOVERY 1YPE Q I/G/2022 Foundamental Period of Vibration (Lonl'(itudinal) Per FEMA 460 Appendix A -Development of An Analyt ical Mode l for the Displacement Based Seismic Desil(n of Storal(e Racks i n Their Down Aislo Direction Section 6.5. 1 Where: Wpi hoi g = NL= kc = kbe = kb= kco = Ne= Nb= kbe = kce = kb= kc = L = H,., Ib - le~ E = weiRht of the i th pallet supported by the storage rack the elevation of t he center of gravity of the ith pallet wiLh respect to thA base of the storage rack gravitational acceleralion the number of loaded levels Lhe rotational stiffness of the connector the flexral rotational stiffness of the beam-end the rotational stiffness of the base olate the flexural rotational stiffness of the base upril(ht-end the number of beam-to-upright connections the number of base pl at e connecti ons 6Eib / L 1Eic / H Eic / H Mmax/ 8 max the clear span of the beams the clear height of the upri1<ht the moment of ihertia about the bending axis of each beam the moment of inertia of each base uprighl Young's Modulus of the beams Tl= 1. 17937 Since 0.6SDS=0.8lg)0.61<, B=l. 7 Since S1=0. 769g)0.5g, usinR g=386 in.2/s e demand= 12 (1 +o) (Tl/1. 0) (S1/htot) -0. 04607 t. = Mc* (kc+kbe) / (kc*kbe) *htot = 10.1911 0d= Cd (l+os)* 6 /htot 0.36641 # of levels min # of bays Ne Nb kc kbe kb kce Ib L le H E Level hoi 1 2 3 1 6 3 3 36 8 428.571 3664.56 139. 142 556.567 Woi 2.236 in· 4 10a in 1.132 in ·4 240 in 29600 ksi 84 2. 881 144 2. 881 204 2. 881 0 0 0 0 Structural Engineering & Design Inc. 1815 Wright Aye La Verne QA 91750 Tel· 909 596.1 351 Fax: 909 596.7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14 Downaisle Seismic Loads Configuration: TYPE Q Determine the story moments by applying portal analysis. The base plate is assumed to provide partial fixity. Seismic Story Forces Vlong= 873 lb Vcol=Vlong/2= 437 lb Fl= 1461b F2= 291 lb F3= 437 lb Seismic Story Moments Typical fi.ame made Tributary atca of \wo columns of r.ick fr4me '--..., _ ••• I -~G~: I I -~ G ~:G EJ:~ -~ G lf:J:B EJ:G r-96'-, , _______ .,,I ~ Conceptual System Typical fr.ime ll'J,lde /of two columns Tol2..\&:rt Mbase-max= 5,000 In-lb Mbase-v= (Vcol*hleff)/2 <=== Default capadty hl-eff= hl -beam clip height/2 = 56 In = 12,222 in-lb <=== Moment going to base Mbase-eff= Minimum of Mbase-max and Mbase-v = 5,000 In-lb M 1-1= [Vcol * hleff]-Mbase-eff = ( 437 lb * 56 ln)-5000 In-lb = 19,444 in-lb Msels= (Mupper+Mlower)/2 Mseis(l-1)= (19444 In-lb+ 10913 ln-lb)/2 = 15,178 In-lb LEVEL 1 2 3 hi 60in 60in 601n Axlai Load 6,563 lb 4,375 lb 2,188 lb M 2-2= [Vcol-(Fl)/2] * h2 = [437 lb -145.5 lb]*60 in/2 = 10,913 in-lb Mseis(2-2)= (10913 In-lb + 6548 in-lb)/2 = 8,730 In-lb Summary of Forces Column Moment** Mselsmic** 19,444 In-lb 15,178 in-lb 10,913 in-lb 8,730 In-lb 6,548 In-lb 3,274 in-lb Mend-fixity 3,454 In-lb 3,454 In-lb 3,454 in-lb Mconn= (Mselsmlc + Mend-fixity)*0.70*rho Mconn-allow(4 Pin)= 15,764 In-lb **all moments based on limit states level loading CAM5TON WRATHER RESOURCES RECOVERY TYPE Q Vcol 7~trl=====:::::tlL. h2 h1 h1eff Beam to Column Elevation ·rho= 1.0000 Mconn** 13,043 In-lb 8,529 in-lb 4,709 In-lb Beam Connector 4 Tab OK 4 Tab OK 4 Tab OK 1/6/2022 COL Structural Engineering & Design Inc. 1815 Wright Aye La Verne, CA 91750 Tel: 909,596,1351 Fax: 909,596,7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Prolect #: 21-1221-14 Column (Longitudinal Loads} Configuration: TYPE Q Section Properties Section: Mecalux 312 3.06"x2.69"x0.105" Aeff = 0.782 ln"2 Ix = 1.132 ln"4 Sx = 0.740 in"3 rx = 1.203 in Qf= 1.67 Iy = 0.636 ln"4 Sy = 0.422 in" 3 ry = 0.902 In Fy= 55 ksl Kx = 1.7 r-3,060 In -1 Cmx= 0.85 E= 29,500 ksl Loads Considers loads at level 1 COLUMN DL= 112 lb Critical load cases are: RMI Sec 2.1 Lx = 57.8 In Ky= 1.0 Ly= 32.0 In Cb= 1.0 i 0.105 In 2.690 in J_ COLUMN PL= 6,450 lb Mcol= 19,444 in-lb Sds= 0.7368 1+0.105*Sds= 1.0774 1.4+0.14Sds= 1.5032 1+0.14Sds= 1.1032 0.85+0.14*Sds= 0.9532 Load Case 5: : (1+0.105*Sds)D + 0.75*{1. 4+0.14Sds)*B*P + 0.75*{0.7*rho*E)<= 1.0, ASD Method axial load coeff: 0.7891548 * P seismic moment coeff: 0.5625 * Meo/ Load Case 6:: {l+0.104*Sds)D + (0.85+0.14Sds)*B*P + (0.7*rho*E)<= 1.0, ASD Method axial load coeff: 0.66721 seismic moment coeff: 0.7 * Meo! By analysis, Load case 6 governs utilizing loads as such Moment=Mx= 0.7*rho*Mcol B= 0.7000 rho= 1.0000 Axial Analysis Axial Load=Pax:= 1,103152*112 lb+ 0.953152*0.7*6450 lb = 4,427 lb = 0.7 * 19444 in-lb = 13,611 In-lb Kxl.x/rx = 1.7*57.75"/1.20311 KyLy/ry = 1 *3211/0.902111 = 81.6 = 35.5 Fe= n"2E/(KL/r)max"2 Fy/2= 27.5 ksl = 43.7ksl Pn= Aefrl'Fn Qc= 1.92 = 29,475 lb P/Pa= 0.29 > 0.15 Bending Analysis Check: Pax/Pa + (Cmx*Mx)/(Max*µx) 5 1.0 P/Pao + Mx/Max :S 1.0 Pno= Ae*Fy = 0.782 in"2 *55000 psi = 42,999 lb Pao= Pno/Qc = 429991b/1.92 = 22,395 lb Fe > Fy/2 Fn= Fy(1-Fy/4Fe) = 55 ksl*[l -55 ksl/(4*43.7 ksl)] = 37.7 ksl Pa= Pn/Qc = 29475 lb/1.92 = 15,351 lb Myield=My= Sx*Fy = 0.74 in"3 * 55000 psi = 40,689 in-lb Max= My/Qf Per= n" 2EI/(KL)max" 2 = 40689 ln-lb/1.67 = 24,365 in-lb µx= {1/[1-(Qc*P/Pcr)]}"· l = {1/[1-(l.92*4427 lb/34192 lb)]}"-1 = 0.75 Combined Stresses = n"2*29500 ksi/(1.7*57.75 in)"2 = 34,192 lb (4427 lb/15351 lb)+ (0.85*13611 ln-lb)/(24365 ln-lb*0.75) = (4427 lb/22395 lb)+ (13611 in-lb/24365 in-lb) = 0.92 0.76 < 1.0, OK < 1.0, OK (EQ CS-1) (EQ CS-2) ** For comparison, total column stress computed for load cases Is: 84.0% q loads 5210.713228 lb Axial and M= 10208 in-lb CAM5TON WRATHER RE50URCE5 RECOVERY 1YPE Q IIG/2022 Structural Engineering & Design Inc. 1815 Weight Ave La Verne CA 91750 Je!· 909 596 1351 fax: ·909 596 7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14 BEAM conttguratlon: TYPE Q DETERMINE ALLOWABLE MOMENT CAPACITY A) Check compression flange for local buckling CB2.1) w= c -2*t -2*r = 1. 75 In -2*0.059 in -2*0.059 In = 1.514 In w/t= 25.66 !=lambda= [1.052/(k)"0.5) * (w/t) * (Fy/E)"0.5 = [1.052/(4)"0.5) * 25.66 * (55/29500)"0.5 = 0.583 < 0.673, Flange is fully effective B) check web for local buckling per section b2.3 f1(comp)= Fy*(y3/y2)= 50.76 ksl f2(tenslon)= Fy*(y1/y2)= 102.52 ksl Y= f2/f1 = -2.02 k= 4 + 2*(1·Y)"3 + 2*(1-Y) = 65.13 flat depth=w= y1+y3 Eq. B2.3-5 Eq. B2.3·4 Eq. B2.1-4 Eq. B2.1-1 = 4.264 In w/t= 72.27118644 OK l=lambda= [1.052/(k)"0.5] * (w/t) * (f1/E)"0.5 = [1.052/(65.13)"0.5) * 4.264 * (50.76/29500)"0.5 = 0.391 < 0.673 be=w= 4.264 In bl= be(3-Y) = 0.849 b2= be/2 = 2.13 In b1+b2= 2.979 in > 1.412 in, Web Is fully effective Determine effect of cold working on steel yield point (Fya} per section AZ.2 Fya= C*Fyc + (1-C)*Fy (EQ A7.2-1) Lcorner=Lc= (p/2) * (r + t/2) 0.139 in Lflange-top=Lf= 1.514 In m= 0.192*(Fu/Fy) -0.068 = 0.1590 C= 2*Lc/(Lf+2*Lc) = 0.155 in (EQ A7.2-4) Be= 3.69*(Fu/Fy) -0.819*(Fu/Fy)"2 -1.79 = 1.427 since fu/Fv= 1.18 < 1.2 and r/t= 1 < 7 OK then Fye= Be * Fy/(R/t)"m (EQ A7.2-2) = 78.485 ksi Thus, Fya-top= 58.64 ksi (tension stress at top) Fya-bottom= Fya*Ycg/(depth -Ycg) = 113.84 ksi (tension stress at bottom) Check allowable tension stress for bottom flange Lflange-bot=Lfb= Lbottom -2*r*-2*t = 2.514 In Cbottom=Cb= 2*Lc/(Lfb+2*Lc) = 0.100 Fy-bottom=Fyb= Cb*Fyc + (1 ·Cb)*Fyf = 57.34 ksl Fya= (Fya-top)*(Fyb/Fya-bottom) = 29.54 ksl Eq B2.3-2 (EQ A7.2-3) if F= 0.95 Then F*Mn=F*Fya*Sx= I 26.44 ln-k doplh t-2.751n t 1.751n 4 T 1,625 In 4.500 In l ~ 0,059 In Beam= Intlk 45E 4 5Hx2 75Wx0 059"Thk Ix= 2.236 in"4 Sx= 0.942 ln"3 Ycg= 2.970 in t= 0.059 In Bend Radlus=r= 0.059 in Fy=Fyv= 55.00 ksi Fu=Fuv= 65.00 ksl E= 29500 ksi top flange=b= 1.750 In bottom flange= 2.750 In Web depth= 4.~nn 1~ --fy - yl= Ycg-t-r= 2.852 in y2= depth-Ycg= 1.530 In y3= y2-t-r= 1.412 In Str,uctural Engineering & Design Inc. 1815 Wcigbt Aye La Verne CA 91750 Tel· 909 596 1351 fax· 909 596 7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14 BEAM cont1gurat1on: TYPE Q RMI Section 5.2, PT II Section Beam= Intlk 45E 4.5Hx2.75Wx0.059"Thk Ix=Ib= 2.236 1nA4 Sx= 0.942 lnA3 t= 0.059 In Fy=Fyv= 55 ksl Fu=FUV= 65 ksl · Fya= 58.6 ksi E= 29500 ksl F= 265.0 l = 108 In Beam Level= 1 P=Product Load= 4,300 lb/pair D=Dead Load= 75 lb/pair 1, Check Bending Stress Allowable Loads Mcenter=P"Mn= W*L *W*Rm/8 W=LRFD Load Factor= 1.2*0 + 1.4*P+1.4*(0.125)*P FOR DL=2% of PL, W= 1.599 Rm= 1 · [(2*F*l )/(6*E*Ib + 3*F*L)] RMI 2.2, Item 8 1 -(2*265*108 ln)/[(6*29500 ksi*2.2361 inA3)+(3*265*108 in)] = 0.881 if F= 0.95 Then F*Mn=F*Fya*Sx= 52.49 in-k Thus, allowable load per beam palr=W= F*Mn*8*(# of beams)/(L*Rm*W) = 52.49 ln-k * 8 * 2/(1081n * 0.881 * 1.599) = 5,521 lb/pair allowable load based on bending stress Mend= W*L *(1 ·Rm)/8 = (5521 lb/2) * 108 In * (1-0.881)/8 = 4,435 In-lb @ 5521 lb max allowable load = 3,454 in-lb @ 4300 lb imposed product load 2. Check Deflection Stress Allowable Loads Dmax= Dss*Rd t-2.751n t1.751n { T 4.500 In 1.625 In -1 1 0.059 1n ~- f:: r., Id I 1 I t f f Beam Length -.. ,. Rd= 1 -(4*F*L)/(5*F*L·+ l 0*E*lb) Allowable Deflection= L/180 = 1 -(4*265*108 ln)/[(5*265*108 ln)+(10*29500 ksi*2.2361 1nA4)] = 0.600 in = 0.857 In Deflection at Imposed Load= 0.467 in If Dmax= 1./180 Based on l/180 Dellection Criteria and Dss= S*W*L A3/(384*E*Ib) L/180= S*W*LA3*Rd/(384*E*Ib*# of beams) solving for W yields, W= 384*E*I*2/(180*S*L A 2*Rd) = 384*2.2361 lnA4*2/[180*5*(108 ln)A2*0.857) = 5,631 lb/pair allowable load based on denectlon limits Thus, based on the least capacity of item 1 and 2 above: Allowable load= 5,521 lb/pair Imposed Product Load= 4,300 lb/pair Beam Stress= .7 Beam at Level 1 Structural Engineering & Design Inc. 1815 Weight Ave I a Verne CA 91750 Iel· 909 596 1351 fax· 909 596 7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21"122M4 4 Tab Beam to Column Connection Configuration: TYPE Q Mconn max= {Mselsmlc + Mend-flxlty}"'0.70*Rho = 13,043 in-lb ·Load at level 1 Connector Type= 4 Tab Shear Capacity of Tab Tab Length= 0.50 In Ashear= 0.5 In * 0.135 In = 0.0675 lnA2 Pshear= 0.4 * Fy * Ashear "' 0.4 * 55000 psi * 0.06751nA2 = 1,485 lb Bearing Capacity of Tab tcol= 0.105 In Omega= 2.22 Fy= 55,000 psi Fu= 65,000 psi a= 2.22 Pbearlng= alpha * Fu * tab length * teal/Omega = 2.22 * 65000 psi * 0.5 In * 0.105 ln/2.22 = 3,413 lb · > 1485 lb Moment capacity of Bracket Edge Distance=E= 1.00 In Tab Spacing= 2.0 in 4 /8' C= P1+P2+P3+P4 tcllp= 0.135 in = Pl+Pl *(4.S"/6.S")+Pl *(2.S"/6.5")+Pl "'(0.5"/6.5") = 2.154"' Pl Mcap= Scllp * Fbending = 0.1832 lnAJ * 0.66 * Fy = 6,650 fn-lb Pclip= Mcap/(2.154 * d) = 6650.16 in-lb/(2.154 * 0.5 in) = 6,175 lb C*d= Mcap = 2.154 Thus, Pl = 1,485 lb Mconn-allow= (Pl *6.S"+Pl *(4.5"/6.5")"'4.5" +Pl *(2.5"/6.5")2.5" +Pl *(0.5"/6.5")*0.5"] = 1485 LB*[6.5"+(4.5"/6.5")*4.5"+(2.5"/6.5")*2.5"+(0.5"/6.5")*0.5"] = 15,764 in-lb > Mconn max, OK Stress= 0.83 CAMSTON WRATHER RESOURCES RECOVERY TYPE Q Page -:i1of 'f) Fy= 55,000 psi Scllp= 0.183 1nA3 d= E /2 = 0.50 In I/G/2022 Structural Engineering & Design Inc. 1815 Wcigbt Ave La Verne. GA 91750 Jel· 909 596 1351 fax· 909 596 7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14 Transverse Brace Configuration: TYPE Q Section Properties Diagonal Member= Mclx C456 Sgl 1.7953x1.378x16ga(U31x) Horizontal Member= Mclx C456 Sgl 1.7953x1.378x16ga(U31x) Area= 0.259 in"2 r min= 0.449 in Fy= 55,000 psi K= 1.0 Qc= 1.92 Frame Dimensions Diagonal Member Bottom Panel Helght=H= 64.0 In Frame Depth=D= 48.0 in Column Wldth=B= 2.7 in Area= 0.259 ln"2 r min= 0.449 in Fy= 55,000 psi K= 1.0 Clear Depth=D-B*2= 42.6 in X Brace= NO rho= 1.00 0..104~fstt.'r-F'TffJ]Js"io:14S~·~ 0 !Load case 6:: (1..±fJ !O<PScis}f) +J(0.85+0.14Sds}*B*P + [0.7*rho*E]<= 1.0, ASD Method Vtransverse= 1,633 lb Vb=Vtransv*0.7*rho= 1633 lb * 0,7 * 1 = 1,143 lb Ldiag= [(D-B*2)"2 + (H-6")"2)"1/2 = 72.0 In Pmax= V*(Ldiag/D} * 0.75 = 1,286 lb (kl/r)= (k * Ldlag)/r min = (1 x 72 in /0.449 In ) = 160.4 in Fee pl" 2*E/(kl/r)" 2 = 11,317 psi axial load on diagonal brace member Since Fe<Fy/2, Fn= Fe Pn= AREA*Fn = 0.259 in"2 * 11317 psi = 2,928 lb Paliow= Pn/Q = 2928 lb /1.92 = 1,525 lb Pn/Pallow= Horizontal brace Vb=Vtransv*0,7*rho= 1,143 lb 0.84 (kl/r)= (k * Lhoriz)/r min = (1 x 48 In) /0.449 in = 106.9 in Since Fe<Fy/2, Fn=Fe = 25,478 psi Pn/Pallow= 0.33 <= 1.0 OK <= 1.0 OK CAMSTON WRATHER. RESOURCES RECOVERY TYPE Q Fe-= pi" 2*E/(kl/r)" 2 = 25,478 psi Pn= AREA*Fn = 0.2591n"2*25478 psi = 6,591 lb = 11,317 psi Fy/2= 27,500 psi Tvplca! Panel C!mflgl!llltkm Pallow= Pn/Qc = 6591 lb /1.92 = 3,433 lb I/G/2022 Structural Engineering & Design Inc. 1815 Wrjaht Aye La Verne CA 91750 Tel· 909 5961351 Fax-909.596.7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14 Single Row Frame overturning Configuration: TYPE Q Loads Critical Load case(s): 1) RMI Sec 2.2, Item 7: (0.9-0.2Sds)D + (0.9-0.20Sds)*B*Papp -E*rho Sds= 0.7368 (0.9-0.2Sds)= 0.7526 (0.9-0.2Sds)= 0.7526 Vtrans=V=E=Qe= 1,633 lb DEAD LOAD PER UPRIGHT=D= 225 lb PRODUCT LOAD PER UPRIGHT=P= 12,900 lb Papp=P*0.67= 8,643 lb Wst LCl =Wstl=(0.75264*O + 0.75264*Papp*1)= 6,674 lb B= :u)M(i~\,~r' ; rho= 1.0000 Product Load Top Level, Ptop= 4,300 lb DL/Lvl= 75 lb Seismic Ovt based on E, E(Fi*hl)= 181,681 in-lb heiaht/deoth ratio= 3.8 in A) Fullv Loaded Rack Load case 1: Movt= ~(Fi*hi)*E*rho = 181,681 in-lb Frame Depth=Df= 48.0 in Htop-lvi=H= 180.0 in # Levels= 3 # Anchors/Base= 2 ho= 48.0 In h-H+ho/2-204.0 in Mst= Wstl * Df/2 = 6674 lb * 48 in/2 = 160,176 in-lb SIDE ELEVATION T= (Movt-Mst)/Df = (181681 in-lb -160176 in-lb)/48 in = 448 lb Net Uplift per Column I Net Seismic Uolift= 448 lb strength Level B) Too Level Loaded Onlv Load case 1: 0 Vl=Vtop= Cs* Ip* ptop ::,= 350 lb for H/D >6.0 Movt= [Vl *h + V2 * H/2]*rho = 0.1842 * 4300 lb = 165,310 in-lb = 7921b T= (Movt-Mst)/Df Vleff= 792 lb Critical Level= 3 = (165310 in-lb -81737 in-lb)/48 In V2=VDL = Cs*Ip*D Cs*Ip= 0.1842 = 1,741 lb Net Uplift per Column = 41 lb Mst= (0.75264*D + 0.75264*ptop*l) * 48 ln/2 = 81,737 in-lb I Net Seismic Ualift= 1 741 lb Strenath Level Anchor Check (2) 0.5'' x 3.25" Embed Hllti TZ anchor(s) per base plate. Special inspection Is required per #1917. Fully Loaded: Top Level Loaded: Pullout Capacity=Tcap= 970 lb L.A. City Jurisdiction? NO Shear Capacity=Vcap= 1,250 lb Phi= 1 (224 lb/970 lb)"l + (408 lb/1250 lb)"l = (870 lb/970 lb)"l + (198 lb/1250 lb)"l = CAM5TON WRATH ER RESOURCES RECOVERY TYf'E Q Page 3/ of ~ 0.56 1.06 Tcap*Phi= 970 lb Vcap*Phi= 1,250 lb <= 1.2 OK <= 1.2. OK I/G/2022 Structural Engineering & Design Inc. 1a1s Weight Aye La Verne. CA 91750 Jet· 909 596 1351 Fax· 909.596.7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14 Base Plate Configuration: TYPE Q Section Baseplate= 7.283x5.118x0.394 Eff Width=W = 7.28 In Eff Depth=D = 5.12 In Mb Column Width=b = 3.06 In Column Depth=dc = 2.69 In a = 2.64 in Anchor c.c. =2*a=d = 5.28 In N=# Anchor/Base= 2 Fy = 36,000 psi I b 1-L ---w L = 2.11 In Plate Thlckness=t = 0.394 In oownatsle Elevation Down Aisle Loads Load Case 5:: (1+0.105*Sds)D + 0.75*{(1.4+0.14Sds)*B*P + 0.75*(0.7*rho*EJ<-1A ASD Method COLUMN DL= 113 lb Axlal=P= 1.077364 * 112.5 lb+ 0.75 * (1.503152 * 0,7 * 6450 lb) COLUMN PL= 6,450 lb = 5,211 lb Base Moment= 5,000 In-lb Mb= Base Moment*0.75*0.7*rho 1 +0.105*Sds= 1.0774 = 5000 in-lb * 0.75*0.7*rho 1.4+0.14Sds= 1.5032 = 2,625 In-lb B= O!ZOO'O, • '~---i --Ax-ia_l_L_o_ad_P_= ___ S,L.,2_1 __ 1_1'-"'b--'------M-ba_se_=_M_b_=_2-,6-2-5-in---lb---, Axial stress=fa = P/A = P/(D*W) = 140 psi Moment Stress=fb = M/S = 6*Mb/[(D*B"2] = 58.0 psi Moment Stress=fb1 = fb-fb2 = 24.4 psi M3 = {l/2)*fb2*L *(2/3)*L = (1/3)*fb2*L" 2 = 50 In-lb S-plate = {l)(t"2)/6 = 0.026 In" 3/in fb/Fb = Mtotal/[(S-plate)(Fb)] 0.60 OK Tanchor = (Mb-(PLapp*0.75*0.46)(a))/[(d)*N/2] = -2,840 lb No Tension Ml = wL "2/2= fa*L "2/2 = 312 in-lb Moment Stress=tb2 = 2 * fb * L/W = 33.6 psi M2= fb1*L"2)/2 = 54 in-lb Mtotal = Ml+M2+M3 = 416 In-lb/in Fb = 0.75*Fy = 27,000 psi Pp= 0.7*F'c = 2,800 psi Tallow= 970 lb OK OK Cross Aisle Loads OIIIC4tloadc,seRMI Sec 1.1, x.,,,1:f1+o.11Sds)OI. •f1+o.usos)Pl.•o.1S,eL•o.r.; <• i.o, ASDMctl>od Check uplift load on Baseplate Eff! Effe Pstatic= 5,211 lb Movt*0.75*0.7*rho= 95,383 in-lb Frame Depth= 48.0 In P=Pstatic+Pselsmlc= 7,198 lb Pselsmlc= Movt/Frame Depth = 1,987 lb Check uplift forces on baseplate with 2 or more anchors per RMI 7.2.2. When the base plate conllguratlon conslsls ~ lwo anchor bolts located on either stde f the oolumn and a net uplift force exists, lhe minimum base plate thickness hall be determined based on a design bending moment In the plate equal to the uplift force on one anchor times 1/2 the distance from he centerline of the anchor to the nearest edge of the rack column" b =Column Depth= 2.69 In L =Base Plate Depth-Col Depth= 2.11 in fa = P/A = P/(D*W) = 193 psi Sbase/ln = (l)(t"2)/6 = 0.026 in"3/in tb/Fb = M/[(S-plate)(Fb)] 0.62 OK CAMSTON WRATHER RESOURCES RECOVERY TYPE Q M= wL"2/2= fa*L"2/2 = 431 i n-lb/ln Fbase = 0.75*Fy = 27,000 psi I+-~• T Mu 1·1 nrtm ~ ~ Uplift per Column= 1,740 lb Qty Anchor per BP= 2 Net Tension per anchor=Ta= 870 lb C= 2.11 In Mu=Moment on Baseplate due to uplift= Ta*c/2 =-919 in-lb Splate= 0.132 in" 3 fb Fb *0.75= 0.193 OK I/G/2022 Structural Engineering & Design Inc. 1815 Wright Ave La Verne CA 91750 Tel· 909 596.1351 Fax; 909.596.7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14 Slab on Grade Configuration: TYPE Q a ~'ffl'ffii'ffii'i9fi'l'i'inffl'i"fi'i'fin'i'i'i'rffi'n'fi'iiirii"R"i'iii"'-~ t X ➔,_,_/ ~_J_j SLAB ELEVATION Base Plate Effec. Baseplate wldlhcB• 7. 28 In Effec. Baseplate Depth•D• 5.12 In wldth=a= 3.06 in depth=b= 2.69 In Baseolate Piao view ~ f'c= 4,000 psi tslab=t= 5.5 In teff= 5.5 In ., ,phl:;'0=1 0.$ SQ!l fsoll= 750 psf Movt= 181,681 in-lb Frame depth= 48.0 in Sds= 0.737 0.2*Sds= 0.147 Column Loads midway dist face of column to edge of plate=c= 5.17 in midway dist face of column to edge of plate=e= 3.90 In •• w •• • .._,),:z:'.0'6{)0 P=B/D= 1.423 Pc"0.5= 63.20 psi DEAD LOAD= D= 113 lb per column unfactored ASD toad PRODUCT LOAD=P= 6,450 lb per column unfactored ASO load Papp= 4,322 lb per column P-seismlc=E= (Movt;Frame depth) = 3,785 lb per column unfactored Umlt State load B=:tl.7000 ' , rho= 1~0'()00 Sds= 0.7368 1.2 + 0.2*Sds= 1.3474 0. 9 -0.20Sds= 0.7526 Puncture Apunct= [(c+t)+(e+t)J*2*t = 220.83 in"i Fpunctl= [(4/3 + 8/(3*P)J *).. *(F1c"0.S) = 121.6 psi . Fpunct2= 2.66 * ).. * (Pi:A0.5) = 100.9 psi Fpunct -eff= 100.9 psi Slab Bending Pse=DL+PL+E= 10,371 lb Asoll= (Pse*144)/(fsoil) = 1,991 ln"2 X= (L-y)/2 = 14.6 in Fb= S*(phl)*(f'c)"0.5 = 189.74 psi Load Case 1) (1.2+0.2Sds)D + (1.2+0.2Sds)*B*P+ rho*E RMI sec 2.2 eQTN s = 1.34736 * 113 lb + 1.34736 * 0.7 * 6450 lb + 1 * 3785 lb = 10,021 lb Load case 2) (0.9-0.2Sds)D + (0.9-0.2Sds)*B*Papp + rho*E RMI sec 2.2 EQTN 1 = 0.75264 * 113 lb+ 0.75264 * 0.7 * 4321.5 lb+ 1 * 3785 lb = 6,147 lb Load Case 3) 1.2*D + 1.4*P = 1.2*113 lb + 1.4*6450 lb = 9,165 lb Load Case 4) 1.2*D + 1.0*P + LOE = 10,371 lb RMI SEC 2.2 EQTN 1,2 AC! 318· 14 Sec 5.3.1 Eqtn 5.3.le Effective Column Load=Pu= 10,371 lb per column L= (Asoil)"0.5 = 44.62 in M= w*x"2/2 = (fsoil*x"2)/(144*2) = 552.3 In-lb fv/Fv= Pu/(Apunct*Fpunct) = 0.466 < 1 OK y= (c*e)"0.5 + 2*t = 15.5 In 5-slab= 1 *teff" 2/6 = 5.04 ln"3 fb/Fb= M/(S-slab*Fb) 0,577 < 1, OK CAMSTON WRATHER RESOURCES RECOVERY 1Yf'E Q I /G/2022 S tructural Engineering & Design Inc. 1815 Wright Aye La Verne. CA 91750 Tel: 909 596 1351 Fax· 909 596 7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14 Configuration &. Summary: TYPE I T 60" 192" + 60" t 60" .I ' T 78" 192" ± + ,____, 32" 1 ,_________. **RACK COLUMN REACTIONS ASDLOADS AXIAL DL= 113 lb AXIAL LL= 2,850 lb SEISMIC AXIAL Ps=+/-1,752 lb BASE MOMENT= 0 in-lb -"'"'"~ --108" ---,} ,f-48"+ Seismic Criteria Ss=0.921, Fa=1.2 Component Column Column & Backer Beam Beam Connector Brace-Horizontal Brace-Diagonal Base Plate Anchor Slab & Soll Level I Load** 1 2 3 Per Level 1,900 lb 1,900 lb 1,900 lb # Bm Lvls Frame Depth Frame Height # Diagonals Beam Length Frame Type 3 48 In 192.0 in 3 108 in Single Row Fv=SS ksi None Fv=55 ksl Fv=55 ksi Fv=SS ksi Fy=55 ksi Fy=36 ksi 1 per Base Beam Speg 60.0 in 60.0 in 60.0 In Description Mecaiux 314 3.0"x2.69"x0.070" P=2963 lb, M=11343 in-lb None None Intlk 27E 2.75Hx2,75Wx0.059''Thk Lu=108 In I capacity: 2087 lb/pr Lvl 1: 3 Tab OK I Mconn= 7983 in-lb I Mcap=8828 In-lb Mclx C456 Sgl 1.7953x1.378x16ga(U31x) Mclx C456 Sgl 1.7953xl.378x16ga(U31x) 5.094x4.688x0.194 I Fixity= 0 In-lb OS" x 3.25" Embed Hllti TZ #1917 Inspection Reqd (Net Seismic Uplift=765 lb) 5.5'' thk x 4000 psi slab on grade. 750 psf Soil Bearing Pressure Brace 32.0 In 64.0 In 78.0 In I Story Force I Story Force Transv Longit. 124 lb 248 lb 373 lb 661b 133 lb 199 lb Column Axial 2,963 lb 1,975 lb 9881b I Column I Moment 11,343 "# 4,976 "# 2,985 "# Conn. Moment 7,983 "# 5,058 "# 3,316 "# STRESS 0.68-OK N/A 0.91-OK 0.9-OK 0.15-OK 0.6-OK 0.45-OK 0.775-0K 0.23-0K Beam Connector 3 Tab OK 3 Tab OK 3 Tab OK ** Load defined as product weight per pair of beams Total: 745 lb 398 lb CAM5TON WRATHER RESOURCES RECOVERY TYFE I I/G/2022 Structural Engineering & Design Inc. 1815 Weight Ave La Verne. CA 91750 Jel: 909.596 1351 fax· 909.596 7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1 221-14 Seismic Forces Configuration: TYPE I Lateral analysis Is performed with regard to the requirements of the 2012 RMI ANSI MH 16.1-2012 Sec 2.6 & ASCE 7-16 sec 15.5.3 Transverse (Cross Aisle) Seismic Load I V= Cs*Ip*Ws=Cs*Ip*(0.67*P*Prf+D) vt Csl= Sds/R = 0.1842 Cs-max * Ipaa 0.1842 . Cs2= 0.044*Sds Vrnn= 0.015 = 0.0324 Eff Base Shear=Cs= 0.1842 rrj[l•vcac: El<:Yil\ton Cs3= 0.5*51/R Ws= (0.67*PLRF1 * PL)+DL (RMI 2.6.2) = 0.0424 _______ =_4,'-0_44_1_b _______ --, Cs-max= 0.1842 Vtransv=Vt= 0.1842 * (225 lb+ 3819 lb) Base Shear Coeff=Cs• 0.1842 Level 1 2 3 PRODUCT LOAD P 1,900 lb 1,900 lb 1,900 lb P*0.67*PRFI 1,273 lb 1,273 lb 1,273 lb sum: P=5700 lb 3,819 lb Lon itudlnal Downalsle Seismic Load Etransverse= 745 lb Limit SIJJtes Level Transverse seismic shear per upright DL hi wi*hl 75 lb 60 In 80,880 75 lb 120 In 161,760 75 lb 180 In 242,640 225 lb W=4044 lb 485,280 Ss= 0.921 S1= 0.339 Fa= 1.200 Fv= 1.961 Sds=2/3*Ss*Fa= 0.737 Sd1=2/3*S1 *Fv= 0.443 Ca=0.4*2/3*Ss*Fa= 0.2947 (Transverse, Braced Frame Dir.) R• 4.0 Ip= 1.0 PRfl = lib . l)I Pallet Helght=hp= 48.0 In DL per Beam Lvl= 75 lb Fl Fl* hl+h /2 124.2 lb 10,433-# 248.3 lb 35,755-# 372.5 lb 75,990-# 745 lb L=122,178 SlmUar1y for longltUdlnal seismic loads, using R•6.0 Csl=Sdl/(T*R)= 0.0985 Ws= (0.67 * PLRF2 * P) + DL = 4,044 lb (Longitudinal, Unbraced Dir.) R• 6.0 Cs2= 0.0324 Cs3= 0.0283 Cs-max= 0.0985 Level PRODUC LOAD P 1 2 3 1,900 lb 1,900 lb 1,900 lb ~es_ .. es_-m_a_x_*l..._p_=--'0_.0_9_8.;..5 ______________ T_,• 0.75 sec Vlong= 0.0985 * (225 lb+ 3819 lb) Elongltudlnal= 398 lb P*0.67*PflF2 DL 1,273 lb 75 lb 1,273 lb 75 lb 1,273 lb 75 lb hi 60 in 120 In 1801n wl*hl 80,880 161,760 242,640 Fl 66.3 lb 132.7 lb 199.0 lb Ewot Ylew sum: =======3=8=19=1=b===2=25==1b===W===4=04=4=1b=======48=5=2=8=0======39=8=1=b======== CAMSTON WRATHER RESOURCES RECOVERY TYPE I I/G/2022 Foundamental Period of Vibration (Longitudinal) Per FEMA 460 Appendix A -Development of An Analytical Model for the Displacement Based Seismic Design of Storage Racks in Their Down Aisle Direction Section 6.5. 1 Where: Wpi hpi g = NL = kc = kbe = kb = kce = Ne= Nb= kbe = kce = kb = kc= L = H = lb = le = E = we ii.th t of the i th pallet supported bv the storage rack the elevation of the center of gravity of the ith pal let with respect to the base of the storal(e rack gravitational acceleration tho number of loaded levels the rotational stiffness of the connector the f lexr al rotational stiffness of t he beam-end the rotational stlffness of the base plate the flexur al rotational stiffness of the buse uoright-end the number of beam-to-upright connections the number of base plate connections 6Eib / L 4Eic / H fiic / H Mmax/ 0 max the clear span of the beams Lhe clear height of the upright the moment of iner tia about the bending axis of each beam the moment of inertia of each base uprigh.t Young's Modulus of the beams Tl= 0. 78396 Since 0.6SDS=0.8lg>O. 6g, B=l. 7 Since St=O. 769g)0.5g, usinR g=386 in'2/s 0 demand= 12 (1 +a) (Tl/1. 0) (Sl/htot) = 0. 03063 t,, = Mo* (kc+kbe) / (kc*kbe) *htot = 10. 4914 0d= Cd (1 +as)* t,, /h tot = 0.36641 It of levels min It of bavs No Nb kc kbe kb kce lb L l e H E Level hpi 1 2 3 4 5 3 3 36 8 428.571 3664. 56 139. 142 556.567 Wpi 2.236 in· 4 108 in 1.132 in ·4 240 in 29500 ksi 84 1. 273 144 1. 273 204 1. 273 0 0 0 0 Structural Engineering & Design Inc. 1815 Wright Aye La Verne CA 91 750 Jel: 909,5961351 fax: 909,596,7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14 Downaisle Seismic Loads Configuration: TYPE I Determine the story moments by applying portal analysis. The base plate Is assumed to provide no fixity. Seismic Story Forces Vlong= 398 lb Vcol=Vlong/2= 199 lb Fl= 66 lb F2= 133 lb F3= 199 lb Seismic Story Moments Typical frame made nibutary are.1 of two colunms o( rack (tame "' , __ _ I -8::J [3~:~ I I -EJ ~ EJ:[3 E]:[3 r-96"-, ~ Conceptual System Typical F,amc ma4c L. of two oolumm Mbase-max= 0 in-lb Mbase-v= (Vcol*hleff)/2 <=== Defaultcapadty hl-eff= hl -beam dip helght/2 = 57in = 5,672 In-lb <=== Moment going to base Mbase-eff= Minimum of Mbase-max and Mbase-v "' 0 In-lb PINNED BASE ASSUMED M 1-1= [Vcol * hleff]-Mbase-eff M 2-2= [Vcol-(Fl)/2] * h2 = (199 lb * 57 ln)-0 in-lb = [199 lb -66.4 lb]*60 ln/2 = 11,343 In-lb = 4,976 in-lb Msels"' (Mupper+Mlower)/2 Msels(l-1)= (11343 In-lb + 4976 ln-lb)/2 = 8,159 in-lb Mseis(2-2)= (4976 In-lb + 2985 ln-lb)/2 = 3,980 In-lb LEVEL 1 2 3 hi 60in 60 In 60in Axial Load 2,963 lb 1,975 lb 9881b Summary of Forces Column Moment** Mselsmlc** 11,343 In-lb 8,159 In-lb 4,976 In-lb 3,980 In-lb 2,985 In-lb 1,493 In-lb Mconn= (Mselsmlc + Mend-fixity)*0.70*rho Mconn-allow(3 Pin)= 8,828 In-lb **all moments based on limit states level loading CAMSTON WRATHER RESOURCES RECOVERY TYPE I Mend-fixity 3,245 in-lb 3,245 in-lb 3,245 In-lb Vcol ~-"'t--_-_-_-_-_-_-_-_-....,..,":., h2 h1 Beam to Column Elevation rho= 1.0000 Mconn** 7,983 In-lb 5,058 In-lb 3,316 in-lb Beam Connector 3 Tab OK 3 Tab OK 3 Tab OK l/G/2022 COL . Structural Engineering & Design Inc. 1815 Wright Aye La Verne, CA 91750 Tel: 909,596,1351 Fax: 909,596.7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14 Column (Longitudinal Loads) Configuration: TYPE I Section Properties Section: Mecalux 314 3.0"x2.69"x0.070" Aeff = 0.538 in"2 Ix = 0.765 in"4 Sx = 0.510 in"3 rx = 1.190 In Qf= 1.67 Iy = 0.464 ln"4 Sy = 0.307 ln"3 ry = 0.928 in Fy= 55 ksi Kx = 1.7 r 3.000ln -1 Cmx= 0.85 E= 29,500 ksl Loads Considers loads at level 1 COLUMN DL= 112 lb 01tical load cases are: RMI Sec 2.1 Lx = 58.6 In Ky= 1.0 Ly = 32.0 in Cb= 1.0 ---l 0.070 In 2.690 In J_ COLUMN PL= 2,850 lb Load Case 5: : (1 +0.105*Sds)D + 0.75*(1.4+0.14Sds)*B*P + 0.75*(0.7*rho*E}<= 1.0, ASD Method Mcol= 11,343 In-lb axial load coeff: 0.7891548 * P seismic moment coeff: 0.5625 * Meo/ Sds= 0.7368 Load Case 6:: (1+0.104*Sds)D + (0.85+0.14Sds)*B*P + (0.7*rho*E)<= 1.0, ASD Method l+0.105*Sds= 1.0774 axialload coeff: 0.66721 seismic momentcoeff: 0.7 * M<XJI 1.4+0.14Sds= 1.5032 By analysis, Load case 6 governs utilizing loads as such Moment=Mx= 0.7*rho*Mcol l +0.14Sds= 1.1032 0.85+0.14*Sds= 0.9532 B= 0.7000 rho= 1.0000 Axial Analysis lb:lal Load=Pax= 1.103152*112 lb +·0,953152*0.7*2850 lb = 2,025 lb = 0.7 * 11343 in-lb = 7,940 in-lb KxLx/rx = 1.7*58.625"/1.19" = 83.8 Fe= n"2E/(KL/r)max"2 = 41.5ksl Pn= Aeff*Fn = 19,785 lb P/Pa= 0.20 Bending Analysis > 0.15 Kyly/ry = 1 *32"/0.9284" = 34.5 Fy/2= 27.5 ksi Qc= 1.92 Check: Pax/Pa + (Cmx*Mx)/(Max*µx) :5 1.0 P/Pao + Mx/Max :5 1.0 Pno= Ae*Fy Pao= Pno/Qc = 0.538 ln"2 *55000 psi = 29,585 lb = 295851b/1.92 = 15,409 lb Fe> Fy/2 Fn= Fy{l-Fy/4Fe) = 55 ksi*[l-55 ksl/(4*41.5 ksi)] = 36.8 ksi Pa= Pn/0.c = 19785 lb/1.92 = 10,305 lb Myield=My= Sx*Fy = 0.51 ln"3 * 55000 psi c:: 28,050 In-lb Max= My/Qf Per= n" 2EI/(KL)max" 2 = 28050 in-lb/1.67 = 16,796 in-lb µx= {1/[1-{Qc*P/Pcr)JY-1 = {l/[1-(1.92*2025 lb/22424 lb)J}"-1 = 0.83 Combined Stresses = n"2*29500 ksi/(1.7*58.625 ln)"2 = 22,424 lb (2025 lb/10305 lb) + (0.85*7940 ln-lb)/(16796 ln-lb*0.83) = (2025 lb/15409 lb) + (7940 in-lb/16796 In-lb) = 0.68 0.60 < 1.0, OK < 1.0, OK (EQ C5-1) (EQ C5-2) ** For compan'son, total column stress computed for load case 5 is: 61.0% q loads 2369.755948 lb Axial and M= 5955 in-lb CAMS TON WRATHER RESOURCES RECOVERY TYFE I I/G/2022 S .trwctural Engineering & Design Inc. 1815 Weight Ave La Verne. CA 91750 Tel: 909,5961351 Fax: 909,596.7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14 BEAM contlguratlon: TYPE l DETERMINE ALLOWABLE MOMENT CAPACITY A} Check compression flange for local buckling {B2.1} W= C -2*t ·2*r = 1.75 In -2*0.059 In -2*0.059 In = 1.514 in w/t= 25.66 l=lambda= [1.052/(k)"0.5] * (w/t) * (Fy/E)"0.5 = [1.052/(4)"0.5] * 25.66 * (55/29500)"0.5 = 0.583 < 0.673, Flange is fully effective B} check web for local buckling per section b2.3 fl(comp)= Fy*(y3/y2)= 48.06 ksi f2(tension)= Fy*(y1/y2)= 99.82 ksi Y= f2/fl = -2.077 k= 4 + 2*(1-Y)"3 + 2*(1-Y) = 68.42 flat depth=w= yl +y3 Eq. B2.3-5 Eq. B2.3-4 Eq. B2.1-4 Eq. B2.1-1 = 2.514 in w/t= 42.61016949 OK l=lambda= [1.052/(k)"0.5] * (w/t) * (f1/E)"0.5 = [1.052/(68.42)"0.5] * 2.514 * (48.06/29500)"0.5 = 0.219 < 0.673 be=w= 2.514 In bl= be(3-Y} = 0.495 b2= be/2 = 1.26 in bl+b2= 1.755 in > 0.817 in, Web Is fully effective Determine effect of cold working on steel yield point {Fya} per section A7.2 Fya= C*Fyc + (1-C)*Fy (EQ A7.2-l} Leorner=Le= (p/2) * (r + t/2) 0.139 In Lftange-top=Lf= 1.514 in m= 0.192*(Fu/Fy} -0.068 = 0.1590 C= 2*Lc/(Lf+2*Le) = 0.155 in (EQ A7.2-4} Be= 3.69*(Fu/Fy) -0.819*(Fu/Fy)"2 -1.79 = 1.427 since fu/Fv=· 1.18 < 1.2 and r/t= 1 < 7 OK then Fye= Be* Fy/(R/t)"m (EQ A7.2-2) = 78.485 ksi Thus, Fya-top= 58.64 ksl (tension stress at top) Fya-bottom= Fya*Ycg/(depth -Yeg) = 113.84 ksi (tension stress at bottom) Check allowable tension stress for bottom flange Lftange-bot=Lfb= Lbottom -2*r*-2*t = 2.514 in Cbottom=OJ= 2*Lc/(Lfb+2*Lc) = 0.100 Fy-bottom=Fyb= Cb*Fyc + (1-Cb)*Fyf = 57.34 ksl Fya= (Fya-top)*(Fyb/Fya-bottom) = 29.54 ksl Eq B2.3-2 (EQ A7.2-3) if F= 0.95 Then F*Mn=F*Fya*Sx=j 12.37 ln-k depth T 2,750 In 1.625 in _j_ l~ 0.059 In Beam= Intlk 27E 2 75Hx2 75Wx0 059"Thk Ix= 0.674 ln"4 Sx= o·.441 in"3 Yeg= 1.815 In t= 0.059 In Bend Radius=r= 0.059 In Fy=Fyv= 55.00 ksi FU=Fuv= 65.00 ksl E= 29500 ksi top flange=b= 1.750 In bottom flange= 2.750 In Web depth= 2,71:n In -Fy - yl= Ycg-t-r= 1.697 in y2= depth-Veg= 0.935 In y3= y2-t-r= 0.817 In Structural , ' Engineering & Design Inc. 1815 Wrjght Aye La Verne, CA 91750 Jel· 909 596,1351 fax· 909,596,7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14 BEAM contiguratlon: TYPE I RMI section 5.2, PT II Section Beam= Intlk 27E 2.75Hx2.75Wx0.059"Thk Ix=lb= 0.674 in"4 Sx= 0.441 in"3 t= 0.059 In Fy=Fyv= 55 ksi Fu=Fuv= 65 ksf Fya= 58.6 ksi E= 29500 ksi F= 225.0 L= 108 in Beam Level= 1 P=Product Load= 1,900 lb/pair D=Dead Load= 75 lb/pair 1. Check Bending Stress Allowable Loads Mcenter=F*Mn= W*L *W*Rm/8 W=LRFD Load Factor= 1.2*D + 1.4*P+1.4*(0.12S)*P FOR DL=2% of PL, W= 1.599 Rm= 1 -[(2*F*L)/(6*E*Ib + 3*F*L)] RMI 2.:Z, item 8 1 -(2*225*108 in)/[(6*29500 ksl*0.674 in"3)+(3*225*108 In)] = 0.747 if F= 0.95 Then F*Mn=F*Fya*Sx= 24.56 in-k Thus, allowable load per beam palr=W= F*Mn*8*(# of beams)/(L*Rm*W) = 24.56 in-k * 8 * 2/(1081n * 0.747 * 1.599) = 3,047 lb/pair allowable load based on bending stress Mend= W*L *(l-Rm)/8 = (3047 lb/2) * 108 in * (1-0.747)/8 = 5,204 in-lb @ 3047 lb max allowable load = 3,245 In-lb @ 1900 lb Imposed product load 2. Check Deflection Stress Allowable Loads Dmax= Dss*Rd Rd= 1 -(4*F*l)/(5*F*l + lO*E*Ib) = 1 -(4*225*108 in)/[(5*225*108 ln)+(l0*29500 ksi*0.674 ln"4)) = 0.697 in if Dmax= L/180 Based on L/180 Deflection Oitetia and Dss= 5*W*L "3/(384*E*Ib) L/180= 5*W*L "3*Rd/(384*E*Ib*# of beams) solving for W yields, W= 384*E*I*2/(180*5*L "2*Rd) = 384*0.674 ln"4*2/[180*5*(108 ln)"2*0.697) = 2,087 lb/pair allowable load based on deflection limits t-2.75in tl.751n 4 T 2.750 In 1.625 In .J_ l 0.0591n ~- 11,mnum, lllllllllfllllllll lllll t=~~~~~~ ............ .. .. ------------- : : : : : : Beam Leng'th -.... Allowable Deflection= L/180 = 0.600 In Deflection at imposed Load= 0.546 In Thus, based on the least capacity of item 1 and 2 above: Allowable load= 2,087 lb/pair Imposed Product Load= 1,900 lb/pair Beam Stress= • Beam at Level 1 , Structural Engineering & Design Inc. 1815 Wcigbt Aye I a Yecoe GA 91750 Iel· 909 596 1351 fax· 9D9 596 7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14 3 Tab Beam to Column Connection Configuration: TYPE I Mconn max= (Mselsmlc + Mend-fixity)*0.70*Rho = 7,983 in-lb Load at level 1 Connector Type= 3 Tab Shear capacity of Tab Tab Length= 0.50 in Ashearc 0.5 In * 0.135 in = 0.0675 in"2 Pshear= 0.4 * Fy * Ashear = 0.4 * 55000 psi* 0.0675in"2 = 1,485 lb Bearing Capacity of Tab tcol= 0.070 In Omega= 2.22 Fy= 55,000 psi Fu= 65,000 psi a= 2.22 Pbearing= alpha * Fu * tab length * teal/Omega = 2.22 * 65000 psi * 0.5 In * 0.07 ln/2.22 = 2,275 lb > 1485 lb Moment capacity of Bracket Edge Dlstance=E= 1.00 in Tab Spacing= 2.0 In C= P1+P2+P3 = Pl +Pl *(2.5"/4.S")+Pl *(0.5"'/4.5") = 1.667 * Pl Mcap= Sdip * Fbending = 0.1832 ln"3 * 0.66 * Fy = 6,650 in-lb 4 3/8" tcllp= 0.135 in C*d= Mcap = 1.667 Pclip= Mcap/(1.667 * d) = 6650.16 in-lb/(1.667 * 0.5 In) = 7,979 lb Thus, Pl = 1,485 lb Mconn-allow= [Pl *4.5"+P1 *(2.5"/4.5")*2.S"+Pl *(0.5"/4.5")*0.5"] = 1485 LB*[4.5"+(2.5"/4.5")*2.5"+ (0.5"/4.5")*0.5"] = 8,828 In-lb > Mconn max, OK stress= 0.9 CAM5TON WRArnER RESOURCES RECOVERY TYPE I ~. P1 i- t C Fy= 55,000 psi Sclip= 0.183 ln"3 d= E /2 = 0.50 in 0 0 I/G/2022 , Structural Engineering & Design Inc. 1815 Wrjght Ave La Verne, CA 91750 Tel· 909,596 1351 fax· 909 596 7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Pro1ect #: 21-1221-14 Transverse Brace Configuration: TYPE I Section Properties Diagonal Member= Mclx C456 Sgl 1.7953x1.378x16ga(U31x) Area= 0.259 ln"2 r min= 0.449 in Fy= 55,000 psi K= 1.0 Qc= 1.92 Frame Dimensions Diagonal Member Bottom Panel Helght=H= 78.0 In Frame Depth=D= 48.0 in Column Wldth=B= 2.7 in Horizontal Member= Mclx C456 Sgl 1.7953xl.378x16ga(U31x) Area= 0.259 ln"2 r min= 0.449 In Fy= 55,000 psi K= 1.0 Oear Depth=D-B*2= 42.6 in X Brace= NO rho= 1.00 Vtransverse= 745 lb Vb=Vtransv*0,7*rho= 745 lb * 0.7 * 1 = 5221b Ldlag= [(D-B*2)"2 + (H-6")"2]"1/2 = 83.7 In Pmax= V*(Ldiag/D) * 0.75 = 6821b axial load on dla onal brace member (kl/r)= (k * Ldiag)/r min = (1 x 83.7 In /0.449 In ) = 186.4 in Fe= pl" 2*E/(kl/r)" 2 = 8,380 psi Since Fe<Fy/2, Fn= Fe T l=====ll Pn= AREA*Fn = 0.259 in"2 * 8380 psi = 2,168 lb Pallow= Pn/Q = 2168 lb /1.92 = 1,129 lb Pn/Palrow:: 0.60 Horizontal brace Vb=Vtransv*0,7*rho"' 522 lb (kl/r)= (k * Lhoriz)/r min = (1 x 48 in) /0.449 in = 106.9 in Since Fe<Fy/2, Fn=Fe = 25,478 psi Pn/Pallow= 0.15 <= 1.0 OK <= 1.0 OK CAM5TON WRATH ER RESOURCES RECOVERY 1Yf'E I Fe= pl" 2*E/(kl/r)" 2 = 25,478 psi Pn= AREA*Fn = 0.259in"2*25478 psi = 6,591 lb = 8,380 psi 8 +r Fy/2= 27,500 psi Pallow= Pn/Qc ~ CQo/1Qlllll1km = 6591 lb /1.92 = 3,433 lb I/G/2022 Structural Engineering & Design Inc. 1815 Wrigbt Aye La Verne CA 91750 Tel: 909 596.1351 fax: 909.596 7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14 Single Row Frame Overturning Configuration: TYPE I Loads Critical Load case(s): 1) RMI Sec 2.2, item 7: (0.9-0.2Sds)D + (0.9-0.20Sds)*B*Papp -E*rho Vtrans=V=E=Qe= 745 lb DEAD LOAD PER UPRIGHT=D= 225 lb PRODUCT LOAD PER UPRIGHT=P= 5,700 lb Papp=P*0.67= 3,819 lb Wst LC1=Wst1=(0.75264*D + 0.75264*Papp*1)= 3,043 lb Sds= 0.7368 (0.9-0.2Sds)= 0. 7526 (0.9-0.2Sds)= 0.7526 ... )("• il\c:W~•S<' B= ~-bl!IQ'9itm<t'l<r1,;J Product Load Top Level, ptop= 1,900 lb DL/Lvl= 75 lb Seismic OVt based on E, I:(Fi*hi)= 84,097 In-lb height/depth ratio= 3.8 in Al Fullv Loaded Rack Load case 1: Movt= I:(Fl*hl)*E*rho = 84,097 In-lb rho= 1.0000 Frame Depth=Df= 48.0 in Htop-lvl=H= 180.0 in # Levels= 3 # Anchors/Base= 1 hp= 48.0 In h=H+ho/2= 204.0 In Mst= Wstl * Df/2 = 3043 lb * 48 ln/2 = 73 032 In-lb SIDE ELEVATION T = (Movt-Mst)/Df = (84097 In-lb -73032 ln-lb)/48 In = 231 lb Net Upllft per Column I Net Seismic Upllft= 231 lb Strength Level B) TOD Level Loaded Onlv Load case 1: 0 Vl=Vtop= CS* Ip* ptop >= 350 lb for H/D >6.0 Movt= [Vl *h + V2 * H/2)*rho = 0.1842 * 1900 lb = 75,126 In-lb = 3501b T= (Movt-Mst)/Df Vleff= 350 lb Critical Level= 3 = (75126 In-lb -38385 in-lb)/48 In V2=VDl = CS*Ip*D CS*Ip= 0.1842 = 765 lb Net Upllft per Column = 41 lb Mst= (0.75264*D + 0.75264*ptop*1) * 48 in/2 = 38,385 In-lb ' I Net Seismic Uplift= 765 lb Strength level Anchor Check (1) 0.5'' x 3.25" Embed Hilti TZ anchor(s) per base plate. Special inspection Is required per #1917. Fully Loaded: Top Level Loaded: Pullout Capacity=Tcap= 970 lb L.A. City Jurisdiction? NO Shear Capaclty=Vcap= 1,250 lb Phi= 1 (231 lb/970 lbY'l + (372 lb/1250 lb)"l = (765 lb/970 lb)"l + (174 lb/1250 lb)"l = CAMSTON WRATHER RESOURCES RECOVERY TYPE I Page lf( of Y, ) 0.54 0.93 Tcap*Phl= 970 lb Vcap*Phl= 1,250 lb <= 1.2 OK <= 1.2 OK I/G/2022 . . . Structural Engineering & Design Inc. 1 a15 Weight Ave La Verne, CA 91750 re1: 909,596, 1351 fax: 909,596.7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Base Plate Configuration: TYPE I Section Baseplate= S.094x4.688x0.194 Eff Width=W = 5.09 In Eff Depth=D = 4.69 in Column Width=b = 3.00 in Column Depth=dc = 2.69 In L -= 1.05 in Plate Thlckness=t = 0.194 In a = 1.55 in Anchor c.c. =2*a=d = 3.09 In N=# Anchor/Base= 1 Fy = 36,000 psi Project#: 21-1221-14 0owna1s1e Eleyatloo Down Aisle Loads load Case 5:: (1+0.105*5ds)D + 0.75*((1.4+0.14Sds)*B*P + 0.75*(0.7*rho*El<= 1.0, ASD Method COLUMN DL= 113 lb Axial=P= 1.077364 * 112.5 lb+ 0.75 * (1.503152 * 0.7 * 2850 lb) COLUMN PL= 2,850 lb = 2,370 lb Base Moment= 0 In-lb Mb= Base Moment*0.75*0.7*rho l+0.105*Sds= 1.0774 = 0 in-lb * 0.75*0.7*rho 1.4+0.14Sds= 1.5032 = 0 In-lb B= 0:},®~1~-;~-•-."'Tmi·,..., --Ax-ia_l_L_o_ad_P_=_2_,3_7_0_1_b _____ M_ba_se_=_M_b_=_O_in---,b-----, Axial stress=fa = P/A = P/(D*W) = 99 psi Moment Stress=fb = M/5 = 6*Mb/[(D*B"2] = o.o psi Moment Stress=fbl = fb-fb2 = o.o psi M3 = (1/2)*fb2*L *(2/3)*L = (1/3)*fb2*L "2 = 0 in-lb 5-plate = (l)(t" 2)/6 = 0.006 ln"3/in fb/Fb = Mtolal/((5-plate)(Fb)] 0.32 OK Tanchor = (Mb-(PLapp*0.75*0.46)(a))/[(d)*N/2] = -3,043 lb No Tension Ml= wL"2/2= fa*L"2/2 = 54 ln·lb Moment Stress=fb2 = 2 * fb * L/W = 0.0 psi M2= fbl *L" 2)/2 = 0 In-lb Mtotal = Ml +M2+M3 = 54 in-lb/In Fb = 0.75*Fy = 27,000 psi Pp= 0.7*F'c = 2,800 psi Tallow= 970 lb OK OK Cross Aisle Loads Ctltlcal/oad,,,.•11H1s«2.1, 1rem4,r1+0.11Sds)OI. +r1+0.u SDSJPL•o.1s+e.•01s <• 1.4 ASDHethod Check uplift load on Baseplate Effl Effe Pstatic= 2,370 lb Movt*0.75*0.7*rho= 44,151 In-lb Frame Depth= 48.0 In Pselsmlc= Movt/Frame Depth = 920 lb Check uplift forces on baseplate with 2 or more anchors per RMI 7.2.2. 'When the bose plate configuration consists a two anchor bolts located on either side f the column and a net uplift force exists, the minimum base plate thickness all be determined based on a design bending moment In the plate equal P=Pstatic+Pseismic= 3,290 lb b =Column Depth= 2.69 in L =Base Plate Depth-Col Depth= 1.05 in fa = P/A = P/(D*W) = 138 psi Sbase/in = (1)(t"2)/6 = 0.006 In" 3/in fb/Fb = M/[(S·plate~(Fb)] 0.45 OK CAM5TON WRATHER RE50URCE5 RECOVERY TYf'E I M= wL" 2/2= fa*L" 2/2 = 76 in-lb/In Fbase = 0.75*Fy = 27,000 psi to the uplift force on one anchor times 1/2 the distance from e centerline of the anchor to the nearest edge of the rack column" I~ T ~ Mu a,~ .EleY.allon Upll~ per Column= 765 lb Qty Anchor per BP= 1 Net Tension per anchor=Ta= 765 lb c= 1.05 In Mu=Moment on Baseplate due to uplift= Ta*c/2 fb Fb *0.75= 0.378 = 400 in-lb Splate= 0.029 in"3 OK I/G/2022 , .. Structural Engineering & Design Inc. 1815 Wrjqht Aye La \/erne, CA 91750 Tel· 909,596 1351 Fax: 909,596 7186 By: NIHAL Project: CAMSTON WRATHER RESOURCE RECOVERY Project#: 21-1221-14 Slab on Grade Configuration: TYPE I y L SLAB ELEVATION Baseplate Plan View Concrete f'c= 4,000 psi tslab=t= 5.5 in teff=> 5 .5 in i1:i:v1~1i."¢ci',f.\~6:lh~ i :"t,:;.'it.,-~h'~"'~ . :Y I, ,SQil fsoil= 750 psf Movt= 84,097 In-lb Frame depth= 48.0 In Sds= 0.737 0.2*Sds= 0.147 Base Plate Effec. Baseplate wtdth=B= 5.09 in Effec. Baseplate Depth=D= 4.69 in width=a= 3.00 In ~:t,.)tiii~iiJ.,fqt6P.Q' i . [3=B/D= 1.087 F'c"0.5= 63.20 psi depth=b= 2.69 in Column Loads DEAD LOAD=D= 113 lb per column unfadored ASD load PRODUCT LOAD=P= 2,850 lb per column unfactored ASD load Papp= 1,910 lb per column P-seismic=E= (Movt/Frame depth) = 1,752 lb per column unfadored Umlt State load B= 0.7.00Q· rho= .:1,0000 Sds= 0.7368 1.2 + 0.2*Sds= 1.3474 0. 9 -0.20Sds= 0.7526 Puncture Apunct= [(c+t)+(e+t)]*2*t = 206.10 ln"2 Fpunctl = [( 4/3 + 8/(3*[3)] * A *(F'c"0.5) = 143.6 psi Fpunct2= 2.66 * A* (F'c"0.5) = 100.9 psi Fpunct eff= 100.9 psi Slab Bending Pse=DL+PL+E= 4,738 lb Asoil= (Pse*l 44)/(fsoll) = 910 ln"2 x= (L-y)/2 = 7.7 In Fb= S*(phl)*(fc)"0.5 = 189.74 psi midway dist face of column to edge of plate=c= 4.05 In midway dist face of column to edge of plate=e= 3.69 In Load case 1) (1.2+0.2Sds)D + (1.2+0.2Sds)*B*P+ rho*E RMI sEC 2.2 EQTN s = 1.34736 * 113 lb+ 1.34736 * 0.7 * 2850 lb + 1 * 1752 lb = 4,592 lb Load Case 2) (0.9-0.2Sds)D + (0.9-0.2Sds)*B*Papp + rho*E RMI SEC 2.2 EQTN 1 = 0.75264 * 113 lb+ 0.75264 * 0.7 * 1909.5 lb+ 1 * 1752 lb = 2,843 lb Load Case 3) 1.2*D + 1.4*P RMI sec 2.2 EQTN 1,2 = 1.2*113 lb + 1.4*2850 lb = 4,125 lb Load Case 4) 1.2*D + 1.0*P + LOE AC! 318-14 Sec s.3.1 = 4,738 lb Eqtn 5.3.le Effective Column Load=Pu= 4,738 lb per column L= (Asoil)"0.5 = 30.17 In M= w*x"2/2 = (fsoil*x"2)/(144*2) = 152.4 In-lb fv/Fv= Pu/(Apunct*Fpunct) 0.228 < 1 OK y= (c*e)"0.5 + 2*t = 14.9 In s-slab= 1 *teff"2/6 = 5.04 ln"3 fb/Fb= M/(S-slab*Fb) 0.159 < 1, OK CAMSTON WRATHER. RESOUR.CES R.ECOVER.Y TYPE I Page f) of lf-} 1/G/2022 SAN DIEGO REGIONAL HAZARDOUS MATERIALS QUESTIONNAIRE OFFICE USE ONLY RECORD ID# _________________ _ PLAN CHECK# _________________ _ BP DATE Mailing Address (include suite) SctJ'(\e ClS ctkx)/ ~ Plan File# The following questions represent the facility's activities, NOT the specific project description. PART I: FIRE DEPARTMENT -HAZARDOUS MATERIALS DIVISION: OCCUPANCY CLASSIFICATION: (not required for projects within the City of San Diego}: Indicate by circling the item, whether your business will use, process, or store any of the following hazardous materials. If any of the items are circled, applicant must contact the Fire Protection Agency with jurisdiction prior to plan submittal. Occupancy Rating: Facility's Square Footage (including proposed project): 1. Explosive or Blasting Agents 5. Organic Peroxides 9. Water Reactives 2. Compressed Gases 6. Oxidizers 10. Cryogenics 3. Flammable/Combustible Liquids 7. Pyrophorics 11. Highly Toxic or Toxic Materials 13. Corrosives 14. Other Health Hazards 15. None of These. 4. Flammable Solids 8. Unstable Reactives 12. Radioactives PART 11: SAN DIEGO COUNTY DEPARTMENT OF ENVIRONMENTAL HEAL TH -HAZARDOUS MATERIALS DIVISION (HMD}: If the answer to any of the questions is yes, applicant must contact the County of San Diego Hazardous Materials Division, 5500 Overland Avenue, Suite 170, San Diego, CA 92123. Call (858) 505-6700 prior to the issuance of a building permit. FEES ARE REQUIRED Project Completion Date: Expected Date of Occupancy: 0 CalARP Exempt YES j (for new construction or remodeling projects) / 1. 0 Is your business listed on the reverse side of this form? (check all that apply). Date Initials 2. O Will your business dispose of Hazardous Substances or Medical Waste in any amount? 3. O Will your business store or handle Hazardous Substances in quantities greater than or equal to 55 gallons, 500 D CalARP Required 4. 5. 6. 7. 8. D D D D D pounds and/or 200 cubic feet? / I Will your business store or handle carcinogens/reproductive toxins in any quantity? Date Initials Will your business use an existing or install an underground storage tank? Will your business store or handle Regulated Substances (CalARP)? O CalARP Complete Will your business use or install a Hazardous Waste Tank System (Title 22, Article 10)? ----'~--- ~ Will your business store petroleum in tanks or containers at your facility with a total facility storage capacity equal to Date Initials or greater than 1,320 gallons? (California's Aboveground Petroleum Storage Act). PART 111: SAN DIEGO COUNTY AIR POLLUTION CONTROL DISTRICT (APCDI: The following questions are intended to identify the majority of air pollution issues at the planning stage. Your project may require additional measures not identified by these questions. Some residential projects may be exempt from APCD requirements. If yes is answered for either questions 1, 2 or 5 or for more comprehensive requirements, please contact APCD at apcdcomp@sdcounty.ca.qov; (858) 586-2650; or 10124 Old Grove Road, San Diego, CA 92131. 1. WIii the project disturb 100 square feet or more of existing building materials? YBES iNO 2. Will any load supporting structural members be removed? 3. O O (ANSWER ONLY IF QUESTION 1 or 2 IS YES) Has an asbestos survey been performed by an individual that has passed an EPA-approved building inspector course? 4. O O (ANSWER ONLY IF QUESTION 1 or 2 IS YES) Based on the survey results, will the project disturb any asbestos containing material? If yes, a notification may be required at least 10 working days prior to commencing asbestos removal. Additionally, a notification may be required prior to the removal of a load supporting structural member(s) regardless of the presence of asbestos. 5. O ~ Will the project or associated construction equipment emit air contaminants? See the reverse side of this form for typical equipment requiring an APCD permit. If yes, contact APCD prior to the issuance of a building permit. 6. O D (ANSWER ONLY IF QUESTION 5 IS YES) Will the project or associated construction equipment be located within 1,000 feet of a school bounda ? Briefly describe proposed proje t: e h~S,e, \.h I declare under penalty of pE:rjury that to the be \ d $ cA Q_,,\ :'-> 0-R r: t 11 Name of Own~r or Authorized Agent Date FOR OFFICAL USE ONLY: FIRE DEPARTMENT OCCUPANCY CLASSIFICATION: ________________________________ _ BY· DATE· I I EXEMPT OR NO FURTHER INFORMATION REQUIRED RELEASED FOR BUILDING PERMIT BUT NOT FOR OCCUPANCY RELEASED FOR OCCUPANCY COUNTY-HMO• APCD COUNTY-HMO APCD COUNTY-HMO APCD .. • A stamp in this box only exempts businesses from completing or updating a Hazardous Matenals Business Plan. Other permitting requirements may still apply HM-9171 (9/18) County of San Diego -DEH -Hazardous Materials Division LIST OF BUSINESSES WHICH REQUIRE REVIEW AND APPROVAL FROM THE COUNTY OF SAN DIEGO DEPARTMENT OF ENVIRONMENTAL HEAL TH -HAZARDOUS MATERIALS DIVISION Check all that apply: AUTOMOTIVE D Battery Manufacturing/Recycling D Boat Yard D Car W ash D Dealership Maintenance/Painting 0 Machine Shop D Painting 0 Radiator Shop D Rental Yard Equipment D Repair/Preventive Maintenance D Spray Booth D Transportation Services D Wrecking/Recycling CHEMICAL HANDLING D Agricultural supplier/distributor D Chemical Manufacturer D Chemical Supplier/Distributor D Coatings/Adhesive D Compressed Gas Supplier/Distributor D Dry Cleaning D Fiberglass/Resin Application 0 Gas Station D Industrial Laundry D Laboratory D Laboratory Supplier/Distributor 0 Oil and Fuel Bulk Supply D Pesticide Operator/Distributor CHEMICAL HANDLING D Photographic Processing D Pool Supplies/Maintenance D Printing/Blue Printing D Road Coatings D Swimming Pool D Toxic Gas Handler D Toxic Gas Manufacturer METAL WORKING D Anodizing 0 Chemical Milling/Etching D Finish-Coating/Painting D Flame Spraying D Foundry D Machine Shop-Drilling/Lathes/Mills 0 Metal Plating D Metal Prepping/Chemical Coating D Precious Metal Recovery D Sand Blasting/Grinding D Steel Fabricator D Wrought Iron Manufacturing AEROSPACE D Aerospace Industry D Aircraft Maintenance D Aircraft Manufacturing MISCELLANEOUS D Asphalt Plant 0 Biotechnology/Research 0 Cannabis-related 0 Manufacturing O Dispensary O Other D Co-Generation Plant D Dental Clinic/Office D Dialysis Center D Emergency Generator D Frozen Food Processing Facility D Hazardous Waste Hauler D Hospital/Convalescent Home D Laboratory/Biological Lab 0 Medical Clinic/Office D Nitrous Oxide (NO,) Control System D Pharmaceuticals 0 Public Utility D Refrigeration System D Rock Quarry D Ship Repair/Construction D Telecommunications Cell Site D Veterinary Clinic/Hospital D Wood/Furniture Manufacturing/Refinishing D Brewery/Winery/Distillery ELECTRONICS D Electronic Assembly/Sub-Assembly 1 ---Q Electronic Components Manufacturing ~~ Printed Circuit Board ~nufacturing NOTE: THE ABOVE LIST INCLUDES BUSINESSES, WHICH TYPICALLY USE, STORE, HANDLE, AND DISPOSE OF HAZARDOUS SUBSTANCES. ANY BUSINESS NOT INCLUDED ON THIS LIST, WHICH HANDLES, USES OR DISPOSES OF HAZARDOUS SUBSTANCES MAY STILL REQUIRE HAZARDOUS MATERIALS DIVISION (HMO) REVIEW OF BUSINESS PLANS. FOR MORE INFORMATION CALL (858) 505-6880. LIST OF AIR POLLUTION CONTROL DISTRICT PERMIT CATEGORIES Businesses, which include any of the following operations or equipment, will require clearance from the Air Pollution Control District. CHEMICAL 47 -Organic Gas Sterilizers 32 -Acid Chemical Milling 33 -Can & Coil Manufacturing 44 -Evaporators, Dryers & Stills Processing Organic Materials 24 -Dry Chemical Mixing & Detergent Spray Towers 35 -Bulk Dry Chemicals Storage 55 -Chrome Electroplating Tanks COATINGS & ORGANIC SOLVENTS 27 -Coating & Painting 37 -Plasma Arc & Ceramic Deposition Spray Booths 38 -Paint, Stain & Ink Mfg 27-Printing 27 -Polyester Resin/Fiberglass Operations METALS 18 -Metal Melting Devices 19-Oil Quenching & Salt Baths 32 -Hot Dip Galvanizing 39 -Precious Metals Refining ORGANIC COMPOUND MARKETING (GASOLINE, ETC) 25 -Gasoline & Alcohol Bulk Plants & Terminals 25 -Intermediate Refuelers 26 -Gasoline & Alcohol Fuel Dispensing COMBUSTION 34 -Piston Internal -Combustion Engines 13-Boilers & Heaters (1 million BTU/hr or larger) 14 -Incinerators & Crematories 15 -Burn Out Ovens 16 -Core Ovens 20 -Gas Turbines, and Turbine Test Cells & Stands 48 -Landfill and/or Digester Gas Flares ELECTRONICS 29 -Automated Soldering 42 -Electronic Component Mfg FOOD 12 -Fish Canneries 12 -Smoke Houses 50 -Coffee Roasters 35 -Bulk Flour & Powered Sugar Storage SOLVENT USE 28 -Vapor & Cold Degreasing 30 -Solvent & Extract Driers 31 -Dry Cleaning ROCK AND MINERAL 04 -Hot Asphalt Batch Plants 05 -Rock Drills 06 -Screening Operations 07 -Sand Rock & Aggregate Plants 08 -Concrete Batch, CTB, Concrete Mixers, Mixers & Silos 10 -Brick Manufacturing OTHER 01 -Abrasive Blasting Equipment 03 -Asphalt Roofing Kettles & Tankers 46 -Reverse Osmosis Membrane Mfg 51 -Aqueous Waste Neutralization 11 -Tire Buffers 17 -Brake Debonders 23 -Bulk Grain & Dry Chemical Transfer & Storage 45 -Rubber Mixers 21 -Waste Disposal & Reclamation Units 36 -Grinding Booths & Rooms 40 -Asphalt Pavement Heaters 43 -Ceramic Slip Casting 41 -Perlite Processing 40 -Cooling Towers -Registration Only 91 -Fumigation Operations 56 -WI/VTP (1 million gal/day or larger) & Pump Station NOTE: OTHER EQUIPMENT NOT LISTED HERE THAT IS CAPABLE OF EMITTING AIR CONTAMINANTS MAY REQUIRE AN AIR POLLUTION CONTROL DISTRICT PERMIT. IF THERE ARE ANY QUESTIONS, CONTACT THE AIR POLLUTION CONTROL DISTRICT AT (858) 586-2600. HM-9171 (9/18) County of San Diego -DEH -Hazardous Materials Division