Loading...
HomeMy WebLinkAboutCT 03-02; MARBRISA VILLA 67; AMENDMENT FOR DRAINAGE REPORT – VILLA 67; 2022-11-02CARLSBAD RANCH, PLANNING AREA NO.5 MARBRISA – PHASE II CT 03-02 HYDROLOGY AND HYDRAULIC STUDY (DRAINAGE REPORT) PREPARED FOR GRAND PACIFIC CARLSBAD, L.P. 5900 PASTEUR COURT, SUITE 200 CARLSBAD, CA 92008 (760) 431-8500 Prepared by: ROBERT D. DENTINO LAND PLANNING● ENGINEERING● GIS●SURVEYING 440 State Place Escondido, CA 92029 Ph:760-745-8118 Fax: 745-8118-1890 Preparation Date: 11-02-2022 EXCEL CARLSBAD RANCH, PLANNING AREA NO.5 MARBRISA – PHASE II CT 03-02 HYDROLOGY AND HYDRAULIC STUDY (DRAINAGE REPORT) PREPARED FOR GRAND PACIFIC CARLSBAD, L.P. 5900 PASTEUR COURT, SUITE 200 CARLSBAD, CA 92008 (760) 431-8500 Prepared by: ROBERT D. DENTINO LAND PLANNING● ENGINEERING● GIS●SURVEYING 440 State Place Escondido, CA 92029 Ph:760-745-8118 Fax: 745-8118-1890 Preparation Date: 9-23-2011 EXCEL CARLSBAD RANCH PA 5 – MARBRISA PHASE II HYDROLOGY AND HYDRAULIC STUDY – September 2011 2 TABLE OF CONTENT I. Project Description 1.1 Project Existing, Proposed Condition and Vicinity Map 1.2 Nearby water bodies, existing storm drain systems II. Methodology 2.1 Hydrology a. Pre-Development Condition b. Post-Development Condition 2.2 Hydraulics III. Storm Water Inlet and Swale Calculations 3.1 Grated Inlet Catch Basin on Sag Analysis • Analyze the box capacity in a sump with weir formula • Analyze the box capacity in a sump with orifice formula 3.2 Grated Inlet Catch Basin On-Grade Analysis (@ Sales bldg driveway – OUTFALL 3) • On-Grade Curb Inlet Analysis 3.3 Curb Inlet Analysis Calculations 3.4 Bio-Swale (Bio-retention Swale) Hydraulic Calculation 3.5 Rock Riprap Sizing Calculation IV. Summary and Conclusion ATTACHMENTS A. Vicinity Map B. Charts and Figures from The San Diego County Hydrology Manual 2003 C. Pre-Development Calculation (Marbrisa portion taken from Hydrology and Hydraulic Study for Carlsbad Ranch PA 5 – Resort Site Phase I, Dated August 23, 2005) Hydrology Calculation 100year storm event D. Post-Development Hydrology Calculation 100 year storm event E. WSPGW Hydraulic Calculation Printouts F. Storm drain system Calculation LINE A - OUTFALL 1 G. Storm drain system Calculation LINE B - OUTFALL 2 H. Storm drain system Calculation LINE C - OUTFALL 3 I. Bio-retention swale ponding calculation J. Drawings: • Pre-development Map • Post-development Map • WSPGW drawing file CARLSBAD RANCH PA 5 – MARBRISA PHASE II HYDROLOGY AND HYDRAULIC STUDY – September 2011 3 I. Project Description 1.1 Project Description and Vicinity Map The proposed development is located at the west of Grand Pacific Drive, 600 feet from Cannon Road and Grand Pacific Drive intersection. It is approximately 12.8 acres as a part of 56.4 acres Carlsbad Ranch, Planning Area 5 project, County of San Diego, California. At this phase II, the existing condition is a graded pad (graded from phase I). The storm water at the existing condition is collected into a depression area acting as a detention pond with 36” stand pipe and 24” storm drain outlet to a bio-filtration area at the downstream before draining to a 42” public storm drain on the south. The Proposed development will contain a combination of parking lots/areas, swimming pools, landscaping and dwelling or building areas as well as the proposed private street that will provide access throughout the entire site. Infrastructures will include new storm drain as well as water and sewer main extensions and new dry utilities runs/extensions to service the lots. Fig. 1. Vicinity Map SITE CITY OF PACIFI C OCEAN VICINITY MAP ··~ p . . I . CITY OF ENCINITAS NOT TO SCALE VISTA Y OF N MARCOS CARLSBAD RANCH PA 5 – MARBRISA PHASE II HYDROLOGY AND HYDRAULIC STUDY – September 2011 4 1.2 Nearby waterbodies and Impaired waterbodies This major part of the project is located in the Carlsbad Hydrologic Unit (904.00), Encinas Hydrologic watershed (904.40). Receiving water downstream is Agua Hedionda Creek (904.31) and eventually to Pacific Ocean. The Carlsbad Hydrologic Unit is approximately 210 square miles in area extending from the headwaters above Lake Wohlford in the east to Pacific Ocean in the west and from Vista and Oceanside in the north to Solana Beach, Escondido, and the community of Rancho Santa Fe to the south. The impaired waterbodies as listed in 303(d) 2006 list is Agua Hedionda Creek (904.31) with Manganese, Selenium, sulfates and Total Dissolved Solids pollutants. The proposed project is designed so that it will not significantly alter the drainage pattern on the site. The surface water runoff discharge will not divert from existing conditions. This project will not present any potential threat to erosion or water quality deterioration. • Methodology 2.1. Hydrology The rational method as outlined in the San Diego County Hydrology Manual 2003 edition was followed in this study. The CIVILCADD/ CIVIL DESIGN software version 7.4 was used to calculate the storms. Specifically, we used the software’s San Diego 2003 Rational Method Module. This computer program has taken into account the changes that the 2003 manual implemented. Such changes include, but are not limited to, the time of concentration and urban area runoff coefficients. Please see the calculation printouts and the hydrology basin maps in the Appendices. Pre-Development condition This calculation is based on the previous calculation for Phase I post-Development dated August 23, 2005. The pre-development condition for this phase is a graded pad approximately 10.3 acres and generating 52.53 cfs during 100 year storm event with total area of 12.81 acres (Marbrisa site only) Please notice that at the time this calculation made, we used a very conservative runoff coefficient C=0.77 assuming a neighborhood commercial. There is a detention pond provided at the downstream for the total site also included in Hydrology and Hydraulic Study Phase I dated August 23, 2005 prepared by Excel Engineering. Post-Development condition Approximately 12.80 acres of tributary areas at this phase II (Marbrisa) are divided by three major outfalls. These three Outfalls are labeled as OUTFALL 1, OUTFALL 2 and OUTFALL 3. Outfall 1 conveys 45.05 cfs storm water from the existing 30” RCP and combined with the on-site storm water and drained to a bio-retention swale and then confluence with Outfall 2 from the other half of Marbrisa’s site area and ultimately drain to an existing storm drain at the south of the site. With these 3 outfalls, there are three stormdrain networks, labeled as Stormdrain Line-A which drains to OUTFALL 1, Stormdrain Line-B drains to OUTFALL 2, and Stormdrain Line-C drains to OUTFALL 3. CARLSBAD RANCH PA 5 – MARBRISA PHASE II HYDROLOGY AND HYDRAULIC STUDY – September 2011 5 All impervious areas are mostly treated by bio-retention swale along the toe of slope. This bio- retention ends at the existing 48” Riser. At this stage, we have a complete site design with total impervious area of 7.87 acres or 59% impervious area and 41% pervious area. Based on County of San Diego Hydrology Manual, coefficient of runoff for urban area can be calculated as follows: C=0.90 (%Impervious) + Cp (1-%Impervious) C=0.90 (0.59) + 0.25 (1-0.59) C=0.63 Based on the soil group map in the Hydrology Manual, soil group for this site is type B This runoff value can be categorized as Medium Density Residential 14.0 DU/A or less. Since the initial subarea (upstream) input in civilD program is limited only based on Land use input there fore soil type D was selected in the calculation so that the program will calculate the C = 0.63. 2.2. Hydraulics The Hydraflow storm sewers version 8.0 software was used in the hydraulic calculations for storm drain pipe network. Said software uses the energy-based standard step method when computing the hydraulic profile. This methodology is an iterative procedure that applies Bernoulli’s energy equation between the downstream and upstream ends of each line in the system. It uses Manning’s equation to determine head losses due to pipe friction. Please see Attachment H for more detail calculation method used by this program. WSPGW Version 14.05 was used to evaluate the bio-retention swale that convey the storm water from Marbrisa site and also the existing flow coming from Phase I development. The computational procedure is based on solving Bernoulli’s equation for the total energy at each section and manning’s formula for the friction loss between the sections in a reach. Confluences are analyzed using pressure and momentum theory. The program uses basic mathematical and hydraulic principal to calculate all such data as cross sectional area, wetted perimeter, normal depth, critical depth, pressure and momentum. Since the 10 year storm event is less than the 100 year storm, we only analyzed the proposed storm drain systems using the 100 year runoff. Runoff as calculated in the hydrology section of this study was used to design the proposed storm drain systems. CARLSBAD RANCH PA 5 – MARBRISA PHASE II HYDROLOGY AND HYDRAULIC STUDY – September 2011 6 III. Storm Water Inlet Calculations 3.1 Grated Inlet Catch Basin On Sag Analysis 3.1.1 Analyze the box capacity in a sump with Weir formula Determine the flow capacity in cubic feet per second for a 24”X24”Brooks Box grated type inlet using the following broad-crested weir equation. The equation for evaluating flow over a broad- crested weir is: Q(cap) = CW Pe d3/2 (Equation 2-16 from the S. D. County Drainage Design Manual, July 2005) Where Q(cap) = inlet capacity of the grated inlet (ft3) CW = Broad-crested weir discharge coefficient: 3.0 Pe = Effective grate perimeter length (ft) d = head above of weir crest (ft) Table 1. Q capacity vs. Maximum Q actual (100 year storm) SIZE Pe (ft.) d (ft.) C QCAP (cfs.) MAXQACTUAL (cfs.) COMPLIANCE MET 2x2 3 0.3 3 1.48 0.89 Yes 3x3 4.5 0.3 3 2.22 1.90 Yes Note: the surface area is assumed half clogged, thus the effective weir crest length (Pe) is: P=2W+L=2(3)+3=9 ft (for grated inlet next to a curb). Pe=(1-Clogging factor)P=(1-0.5)9=4.5 ft Æ Equation 2-17 Drainage Design Manual July 2005 The maximum allowable water level above the grate is 0.3 ft or 3.6” 3.1.2 Analyze the box capacity in a sump with Orifice formula: Determine the flow capacity in cubic feet per second for a 24”X24”Brooks Box grated type inlet using the following orifice equation of grated inlets in a sump. There are two proposed 24”X24” Brooks Boxes proposed for the site. This equation is derived from the standard grated inlet formula from Seelye’s Data Book for Civil Engineers book page 18-27. c=0.6. Also, consider a C=0.50 factor to account for clogging of the grates. There is one 24”X24” Brooks Box proposed for the site. Where A = Area of opening in square feet y = Depth of flow at inlet or head of sump in feet Curb L W W Given: 2'x2' boxWe have: A = 4.000 sfQ(cap) = 3.73 cfs y = 0.15 ft )2()(ygcAcapQ= )2()(ygcA capQ= _J _t I I I I I CARLSBAD RANCH PA 5 – MARBRISA PHASE II HYDROLOGY AND HYDRAULIC STUDY – September 2011 7 Recall from the hydrology study that the maximum runoff that goes to a Brooks Box is only 0.95 cfs. Therefore the proposed box is adequate to handle the Q100 runoff. From calculation above, the smallest capacity is generated from Weir formula. We can conclude that the 2’X2’ brooks box is adequate to handle the 100 year storm event. 3.2 Grated Inlet Catch Basin On-Grade Analysis (@ Sales bldg driveway – OUTFALL 3) Determine the flow capacity in cubic feet per second for a 24”X24”Brooks Box grated type inlet. With 50% clogging factor the width and length effective are as follows: W e =0.5 ×2 ft=1ft L e =0.5×2 ft=1ft From civilD calculation for nodes 80-81-86: Depth: y=0.127 ft = 1.5” Velocity: υ =3 fps Q required =85% Q total =0.85 (2.12 cfs)= 1.80 cfsÆ Q required Flow Spread width: ftS yT o 5.1"1804.0 5.15.118"5.1"18 ==−+=−+= Amount of flow at the front of the grate: QW =Q cfsT We approach 01.2)5.1 111(12.2)11( 67.2 =⎟⎠ ⎞⎜⎝ ⎛−−=⎟⎠ ⎞⎜⎝ ⎛−− Amount of flow at the side of the grate: Qside =Q approach - QW =2.12 - 2.0 =0.12 cfs Flow Captured at the front grate: Q frontercept,int =(1-0.09(V-V o )) QW Q frontercept,int = (1-0.09(3-2))0.12 = 1.93 cfs Flow Captured by the side of the grate: QSideercept,int = 3.2 8.115.01 ex side LS Q υ+ = 3.2 8.1)3(15.01 12.0 exLS+ =0.004 cfs Total Captured Flow: Q totalercpet,int = Q frontercept,int + Q Sideercept,int =1.93 + 0.004 =1.934 cfs > 1.80 cfs of Q required ….OK! Therefore, 2’x2’ brooks box is adequate to handle Q100 without by passing to the nearest inlet at the downstream. T 18" ---.:..__.__.·· -~:. :" : i 1.5" CARLSBAD RANCH PA 5 – MARBRISA PHASE II HYDROLOGY AND HYDRAULIC STUDY – September 2011 8 3.3 Curb Inlet Analysis Calculations On-Grade Analysis From node 20 to 22 this basin captured area is 0.236 acres to a curb inlet and drains to a proposed 4’ wide curb inlet. Q =2.27 cfs s=0.5% (longitudinal slope) From civilD calculation for nodes 20 through 22: Depth: y=0.184 ft =2.2” Velocity: υ =2.1 fps Curb length to capture 100% of 100 year storm event: 5.15.1 )15.033.0(7.0 27.2 )(7.0 +=+=ya QLT =9.75 ft Curb Inlet provided 10 ft long. The storm water captured 100% by the inlet. 3.4 Bio-Swale (Bio-Retention Swale) Calculations Approximately 900 ft Bio-retention swale is proposed along the toe of slope on the west side of the site and flows to an existing 48” Riser. This bio-retention swale can convey high flows while percolating and treating the lower flows. In general, this swale is 5 foot wide with banks of slopes are varies from 10:1 to 2:1 maximum slope. It is located adjacent to the toe of slope that the slope also can be function as the swale bank during the high storm event especially at the upstream where the bottom area is rather flat. The height of swale banks are designed to have at least 6” free board from the Q100 water surface elevation. Some hydraulic jump and super-elevation might occur at the junction of the OUTFALL 2. The calculation for the water surface elevation can be found in Attachment E. WSPGW Hydraulic Calculation Printouts. Since the downstream of the swale is acting as a pond during a big storm event, a calculation regarding how high water level in the swale is provided if the underdrain pipe is fail and causing water backing up to the up stream. An existing 48” riser pipe regulates the inflow of the water during this situation. This calculation is similar to a detention pond calculation; however, this swale is not intended to be a detention system. Therefore, as long as the swale drains within 72 hours, no minimum draw down time required. A program called Hydraflow Hydrograph was utilized to perform the calculation, see attachment I for detail. CARLSBAD RANCH PA 5 – MARBRISA PHASE II HYDROLOGY AND HYDRAULIC STUDY – September 2011 9 3.5 Rock Riprap Sizing Calculations Riprap sizing is depending on the velocity of the flow that draining onto the Bio-Retention Swale. From Hydraulic Grade Calculation performed using Hydraflow Storm Sewer (Attachment F, G and H) and WSPGW calculations (Attachment E), the highest velocity at the down stream of the storm drain system OUTFALL 1 is 7.85 fps and OUTFALL 2 is 3.31 fps. WSPGW calculated the velocity from the OUTFALL 1 head wall through the downstream at the existing 48” riser. At the end of the headwall the velocity increased from 7.85 down to 7.39 fps and then going up to 9.57 fps, therefore 12” to 18” dia. rock class riprap (Light) is needed for velocity between 9.5 to 11 fps (Green Book 2000 Regional Supplement Amendments; Table 200-1.7 Selection of Riprap and Filter Blanket Material, page 8.) OUTFALL 2 has velocity ranging 2.2 – 3.31 fps, although less than 6 fps; a number 3 backing rock class riprap is proposed to be installed at this outfall to strengthen the conveyance. CARLSBAD RANCH PA 5 – MARBRISA PHASE II HYDROLOGY AND HYDRAULIC STUDY – September 2011 10 • Summary and Conclusion This report is prepared for Grand Pacific Carlsbad, Inc. as the second phase of the Carlsbad Ranch Planning Area 5. The Pre-development calculation is taken from the post-development of the first phase of the Carlsbad Ranch Project. The Post-development in this project has three final outfalls that ultimately confluence with an existing storm drain conveying the storm water from the phase I. As a part of the first phase, a detention system has been accounted for in the overall drainage studies for the Carlsbad Ranch using the ultimate development conditions. These detention basins are located off-site along the frontage of the Legoland Family Park adjacent to Palomar Airport Road. The Storm water coming from this phase II project will be detained into this detention pond. Approximately 12.56 acres of tributary areas at this phase II (Marbrisa) are divided by three major outfalls. These three Outfalls are labeled as OUTFALL 1, OUTFALL 2 and OUTFALL 3. Outfall 1 conveys 45.05 cfs storm water from the existing 30” RCP and combined with the on-site storm water and drained to a bio-retention swale and then confluence with Outfall 2 from the other half of Marbrisa’s site area and ultimately drain to an existing storm drain at the south of the site. Table 2. Pre-Development Summary Q100 Area (cfs) (Acres)Q100 Area Q100 Area 238 46.67 10.99 241 52.53 10.3 219 5.00 0.85 5.00 0.85 TOTAL AREA 22.14 99.20 21.29 - - NODE OUTFALL 1 AND 2 OUTFALL 3 The total area for Marbrisa (Phase II) Project only = 10.3+0.85= 11.15 Acres Table 3. Post-Development Summary Q100 Area (cfs) (Acres)Q100 Area Q100 Area 100 45.05 10.16 105 11.17 7.44 107 6.63 4.13 87 4.46 0.99 4.46 0.99 TOTAL AREA 22.72 - - OUTFALL 3NODEOUTFALL 1 AND 2 62.85 21.73 Note: the total area included the 10.16 acres from Phase I project. The total area for Marbrisa (Phase II) Project only = 22.72 – 10.16 = 12.56 Acres The decrease runoff from pre- to post-development is due to the longer time concentration (Tc) and lower coefficient run-off. Please refer to chapter II for run-off coefficient calculation. As shown on the calculations that are provided in the attachments and the methodology used, we have proven that the 100 year flows can be handled by downstream drainage facilities and does not cause negative or adverse impact such as erosion or flooding either to the surrounding project site or to the downstream area. I I I I ATTACHMENTS ATTACHMENT A VICINITY MAP VICINIT Y CITY OF OCEANS IDE PACIFI C OCEAN /8 ··~ P : I . . MAP NOT TO SCALE OF VISTA ATTACHMENT B CHARTS AND FIGURES FROM THE SAN DIEGO COUNTY HYDROLOGY MANUAL 2003 10.0 9.0 8.0 7.0 60 5.0 40 3.0 2.0 s::-5 'ffi " .c g1.o ~0.9 ~0.8 " ;so.1 0.6 0.5 04 0.3 0.2 0.1 ' ' ' ' ' .... ' ' ' ' ' ' . .... , .... .... r,.. ' "' ,, r,.. r,.. ' • ' ... 'r-. ..... r,.. r-., ' 5 6 7 8 9 10 ' ' ' ., ' ' • ' 'i-, ' • I•' • ' • ,. ~ '~ ~ 15 Fll!I 20 30 40 50 1 Minutes Duration EQUATION I = 7.44 Pe D-0.645 I = Intensity (in/hr) Pe= e-Hour Precipitation Qn) D = Duration (min) ~ ... ''i-,~~ ',, ,.~~ '' ,.~~ ' i-,, ~~ 1: ", '~ ' ' ' ' .... ', ' ' ,, ' • ', I', llttltt 2 3 4 Hours . • - . 5 6 ~ g ~ [ 6.0 12. 5.5 ~ 5.0 g 4.5~ n 4.0 $ 3.se 3.0 2.5 2.0 1.5 1.0 Intensity-Duration Design Chart• Template Directions for Appflcatlon: (1) From precipitation maps determine e hr and 24 hr amounts for the selected frequency. These maps are Included In the County Hydrology Manual (10, 50, and 100 yr maps included In the Design and Procedure Manual). (2) Adjust e hr precipitation Qf necessary) so that it is within the range of 45% to e5% of the 24 hr precipitation (not applicaple to Desert). (3) Plot e hr precipitation on the right side of the chart • (4) Draw a line through the point parallel to the plotted lines. (5) This line is the intensity-duration curve for the location being analyzed . Appllcatlon Form: (a) Selected frequency __ year (b) Pe= in. P24 = Ps = %(21 --' --'P24 -- (c) Adjusted Pe(2l = __ in. (d) t,. = __ min. (e) I = __ in.lhr. Note: This chart replaces the Intensity-Duration-Frequency curves used since 1965. ' ' ' ' PS 1 1.5 I 2 12.51 3 3.5 4 t 4.5 5 5.5 I 6 Duration I I I I I I I I I I I I I I I I 5 2.63 3.9515.271 6.59 7.90 9.22 10 54 11.86 13.17 14.49! 15.81 7 2.12 3.18 4.241 5.30 6.36 7.42 a48 9.54 10.60 11.66112.72 10 1.68 2.53 3.3714.21 5.05 590! 674 7.58 842 9.27 10.11 15 1.30 1.95 25913.24 389 4.54 5.19 5.84 6.49 7.13 ! 7.78 20 108 1.62 2.1512.69 3.2313.77 4.31 4.BS 539 5.93 6.46 25 0.93 1.40 187 233 2.80 3.27 3.73 4.20 4.87 5.13 5.60 30 093 1.24 1.661207 2.49 2.90 3.32 3.73 4.15 4.56 4.98 40 069 1.03 1.3811.72 2.07 2.41 2.76 310 3.45 3.79 4.13 so 060 0.9011.1911 4911.79 2.09 2.39 2.69 2.98 3.28 358 60 0.53 0.80 1.06 13311.59 1.861 2.12 2.39 2.65 2.92 3.18 90 0.41 0.61 0B2 1.02 1.23 1.43 1.63 1.84 2.04 2.25 ~l 120 034 0.51 0.68 085 1.02 1.19 1.36 1.53 1.70 1.87 150 0.29 0.44 0.59 0.73 0.88 1.03 1.181 1.32 1.47 1.62 tf6- 180 0.26 0.3910.52 0.65 0.78 0.91 1.04 1.18 1.31 1.44 1.57 240 0.22 0.3310.43 0.54 0.65 0.76 0871 098 1.08 1.19 1.30 300 0.19 0.28 0.38 047 0.56 0.66 0,75 I 0.85 094 1.03 1.13 360 0.17 0.25103310.42 0.5010.58 0.67 i 0.75 0.84 0.92 1.00 FIGURE ~ 10.0 9. 8, 7. 0 0 0 r-. o" 0 6. 5 4 0 r-. 3. 0 2. 0 -c-" i " -"' g10 1;:o.s ~0.8 ~0.7 0.6 05 0.4 0.3 0.2 0.1 ' ' ~ ' ' ... ' ~ • ... ... • ' ....... ~" ._I• " . ·~ ....... " "~ . ....... ;-. " '• • I'-, ... I= 3.2 in/hr ... ~ 'r-. " . "" ~ " •• 5 6 7 8 9 10 15 r • ~ mm i.,=2Dmin I I l I I 111 111 I 1111 .· 20 30 Minutes i1ffl!I 40 50 Duration ' I EQUATION I = 7 .44 P s D·0.645 I = lntensily (in/hr) 1111111 P5 = 6-Hour Precipitation On) D = Duration (min) I'" i"'I' I'~ ~~ ,. I'' , .. I" I' ,.•~ I' I''••~. I r r-. •• I I"~ I I ,. I I' I' ... ' I I 2 3 4 Hours : I I, 1· r " ' • • • "'""" ' I 5 6 "' ::c ~ l 6.0~ 5.5 ~ 5.0 :, 4.5 5" n 4.0 1;' 3.5~ 3.0 2.5 2.0 1.5 1.0 Intensity-Duration Design Chart • Example Directions for Application: (1) From precipitation maps determine 6 hr and 24 hr amounts for the selected frequency. These maps are included in the Counly Hydrology Manual (10, 50, and 100 yr maps Included in the Design and Procedure Manual). (2) Adjust 6 hr precipitation (if necessary) so that it is within the range of 45% to 65% of the 24 hr precipitation (not applicaple to Desert). (3) Plot 6 hr precipitation on the right side of the chart • (4) Draw a line through the point parallel to the plotted lines. (5) This line is the intensily-duration curve for the location being analyzed. Application Fonn: (a) Selected frequency __§Q_ year p (b) Pe= _3_ in., P24 = ~ 'P 6 = 54.5 %(2) 24 (c) Adjusted P6(2J = _3_ in. (d) 'x = ~ min. (e) I = ...1d_ in./hr . Note: This chart replaces the lntensily-DuraUon-Frequency curves used since 1965. ' ' ' ' ' ' PB 1 1.5 I 2 I 2.5 t 3 I 3.51 4 I 4.5 I 5 I 5,5 1 6 Duration I I I I I I I I I I I I I I I I I I I I 5 2.63 3 95 l 5.271 6.59 7.9019.22 1054111.86 13.17 14.49115.81 7 2.12 3.1814.241530 6.3617.42 848 J9.54 1060 1166112.72 10 168 2.5313.37\ 4.21 5.051590 67417.58 8.42 927 j10.11 15 1.30 1.95 2.5913.24 38914.54 5.19 l 5.84 6.49 7.13 ! 7.78 20 1.08 1.62 2.15 2.691323 3.771 4.31 ! 4.85 539 5.93 I 6.46 2S 0.93 1.40 1.87 233 2.60 3.271 3.73 I 4 20 I 4.67 5.13 ! 5.60 30 0.83 124 1.66 207 2.49 2.9013.32 ! 3.73 I 4.15 4.561498 40 0.69 1.03 1.36 1.72 2.07 2.411 2.76 I 310 3.45 3.79 I 4.13 so 0.60 090 1.19 149 1.7912.09) 2.39 I 2.69 l 2.98 328 I 358 6D 053 0.80 1.06 1.33 1.59 1.86 2.121 2.39 2.65 2.921 318 90 041 0.61 082110211.23 1.43! 1.63 I 1.84 2.04 2.25 I 2.45 120 034 0.51 068 0.8511.02 1.19! 1.361 1.53 1.70 1.87 I 2.04 150 029 0.44 0.591 0.7310.88 1.03 1.18 l 1.32 1.47 1.62 1 1.76 160 026 039 052 065 078 0.911 1.04 t 1.18 1.31 1.44 l 1.57 240 022 033 0.43 054 0.6510.76 0.87 ! 0.9811.08 1.191130 300 0.19 028 0.36 0.47 0.5610.661 0.75 J 0851 0.94 1.03 ! 1.13 360 0.17 !0.25 0.33 042 0.5010.58 0.67 ! 075 I 0.8410.9211,00 FIGURE ~ San Diego County Hydrology Manual Date: June 2003 Table 3-1 Section: Page: RUNOFF COEFFICIENTS FOR URBAN AREAS Land Use Runoff Coefficient "C" Soil T e NRCS Elements Coun Elements %IMPER. A B Undisturbed Natural Terrain (Natural) Permanent Open Space O* 0.20 0.25 Low Density Residential (LDR) Residential, 1.0 DU/A or less IO 0.27 0.32 Low Density Residential (LDR) Residential, 2.0 DU/A or less 20 0.34 0.38 Low Density Residential (LDR) Residential, 2.9 DU/A or less 25 0.38 0.41 Medium Density Residential (MDR) Residential, 4.3 DU/A or less 30 0.41 0.45 Medium Density Residential (MDR) Residential, 7.3 DU/A or less 40 0.48 0.51 Medium Density Residential (MDR) Residential, 10.9 DU/A or less 45 0.52 0.54 Medium Density Residential (MDR) Residential, 14.5 DU/A or less 50 0 55 0.58 High Density Residential (HDR) Residential, 24.0 DU/A or less 65 0.66 0.67 High Density Residential (HDR) Residential, 43.0 DU/A or less 80 0.76 0.77 Commercial/Industrial (N. Com) Neighborhood Commercial 80 0.76 0.77 Commercial/Industrial (G. Com) General Commercial 85 0.80 0.80 Commercial/Industrial (O.P. Com) Office Professional/Commercial 90 0.83 0.84 Commercial/Industrial (Limited I.) Limited Industrial 90 0.83 0.84 Commercial/Industrial (General I.) General Industrial 95 0.87 0.87 C 0.30 0.36 0.42 0.45 0.48 0.54 0.57 0.60 0.69 0.78 0.78 0.81 0.84 0.84 0.87 3 6 of26 D 0.35 0.41 0.46 0.49 0.52 0.57 0.60 0.63 0.71 0.79 0.79 0.82 0.85 0.85 0.87 *The values associated with 0% impervious may be used for d1rect calculation of the runoff coefficient as descnbed in Section 3.1.2 (representing the pervious runoff coefficient, Cp, for the soil type), or for areas that will remain undisturbed in perpetuity. Justification must be given that the area will remain natural forever (e.g, the area is located in Cleveland National Forest). DU/A= dwelling units per acre NRCS = National Resources Conservation Service 3-6 San Diego County Hydrology Manual Date: June 2003 Section: Page: 3 12 of26 Note that the Initial Time of Concentration should be reflective of the general land-use at the upstream end of a drainage basin. A single lot with an area of two or less acres does not have a significant effect where the drainage basin area is 20 to 600 acres. Table 3-2 provides limits of the length (Maximum Length (LM)) of sheet flow to be used in hydrology studies. Initial T, values based on average C values for the Land Use Element are also included. These values can be used in planning and design applications as described below. Exceptions may be approved by the "Regulating Agency" when submitted with a detailed study. Table 3-2 MAXIMUM OVERLAND FLOW LENGTH (LM) & INITIAL TIME OF CONCENTRATION (Ti) Element* DU/ .5% 1% 2% 3% 5% 10% Acre LM T, LM T; LM T; LM T, LM T; LM T; Natural 50 13.2 70 12.5 85 10.9 100 10.3 100 8.7 100 6.9 LDR 1 50 12.2 70 11.5 85 10.0 100 9.5 100 8.0 100 6.4 LDR 2 50 11.3 70 10.5 85 9.2 100 8.8 100 7.4 100 5.8 LDR 2.9 50 10.7 70 10.0 85 8.8 95 8.1 100 7.0 100 5.6 MDR 4.3 50 10.2 70 9.6 80 8.1 95 7.8 100 6.7 100 5.3 MDR 7.3 50 9.2 65 8.4 80 7.4 95 7.0 100 6.0 100 4.8 MDR 10.9 50 8.7 65 7.9 80 6.9 90 6.4 100 5.7 100 4.5 MDR 14.5 50 8.2 65 7.4 80 6.5 90 6.0 100 5.4 100 4.3 HDR 24 50 6.7 65 6.1 75 5.1 90 4.9 95 4.3 100 3.5 HDR 43 50 5.3 65 4.7 75 4.0 85 3.8 95 3.4 100 2.7 N.Com 50 5.3 60 4.5 75 4.0 85 3.8 95 3.4 100 2.7 G.Com 50 4.7 60 4.1 75 3.6 85 3.4 90 2.9 100 2.4 O.P./Com 50 4.2 60 3.7 70 3.1 80 2.9 90 2.6 100 2.2 Limited I. 50 4.2 60 3.7 70 3.1 80 2.9 90 2.6 100 2.2 General I. 50 3.7 60 3.2 70 2.7 80 2.6 90 2.3 100 1.9 *See Table 3-1 for more detailed description 3-12 Iii w IL ~ w 0 z ~ CJ) i5 w f(i ::, ~ w ~ ;: EXAMPLE: Given: Watercourse Distance (D) = 70 Feet Slope (s) = 1.3% Runoff Coefficient (C) = 0.41 Overland Flow Time (T) = 9.5 Minutes SOURCE: Airport Drainage. Federal Aviation Administrabon, 1965 T= 1.8(1.1-C)l/o 'Ifs FIGURE Rational Formula -Overland Time of Flow Nomograph 3-3 .6.E Feet 5000 4000 Tc Tc L .6.E = = = = EQUATION (11t)°·385 Time of concentration (hours) Watercourse Distance (miles) Change In elevation along effective slope line (See Figure 3-SJ(feetJ .6.E 3000 2000 1000 0 0 0 1t, 500' ' 400 ',~ , .. ,,,, 300 ~~ ' 200 100 30 20 10 5 ' ' ' ' L ', MIies Feel ' '1 4000 ' • 3000 0.5 ' 2000 1B00 1600 1400 1200 1000 900 BOO 700 600 500 400 300 200 L SOURCE: California Division ofHighways (1941) and Klrplch (1940) ' Nomograph for Determination of ' ' Tc Hours Minutes ' 4 240 31--+--180 2 120 100 90 BO 70 1-+--60 40 30 20 18 16 14 12 ' 10 ' 9 a 7 6 5 4 3 Tc Time of Concentration (Tc) or Travel Time (Tl) for Natural Watersheds FIGURE ~ ----Watershed D~lvlde ----"" ~ '••, \ Design ·--?-~---n.....--Polnt ~.. \ ,, ~\. ·--~----------_,.,,,,,,----.:._ ---/ '----1-------------L=====----====--====------l Watershed Divide Effective Slope Line Design Point (Watershed Outlet) 1---------------L---------------+1 Area "A"= Area 11B" SOURCE: California Division of Highways (1941) and Kirp1ch (1940) FIGURE Computation of Effective Slope for Natural Watersheds ~ 1-1.s'----+I 20 ' 18 16 14 12 10 9 8 7 6 5 4 Q) C. 0 3 cii w ~ -0 ~ 1! 1 6 1.4 1 2 1.0 0.9 08 0.7 0,6 05 04 I I 1-... ~.-:::-1'. .,...._ v., I I ' I '-.!<r ILL • o, ·11,,, I --..., ...:.!::_8, I -...:::.,, 7 ......... t---. I r----.. I ' I I ' r--~8 I 1---.....__ I/ f.11 I ' ~ J ' -... I ~ ,_ I ' 7----I 3/J I --....... I I "--I "-"' "v1 I -...... V.-:::-6 I 1-... ' -_c::,·, I f/ ~-"' I .!:,11 I "I'--... ,fl. "-"' J r---..... ~ ' -"-1 kl -...._l "s 7'--------I I ~1/ J s ~7-r {!!:"~rt I I -"-"' I"---I"----c:::,'? -... I s ----.... t-t.-:::-I ~ I I .fl.J ;,, ~ i"-Q ........ ,g, / I I . r---. "-,, qi/ ~ ,,. -c:::,· I r--.. I ;SJ ....... "-"' I ,...._ I ~ <::i"' ......,_c:::,'11 ~' .... J ~, r---_ I ' -,:::_ a '11 J s I"--,,_J'!/ I ,fl. I --....... ,._ I -~ o/ ""c:::,~./ qi (b I I----... v.,,2 I/ I'-... I Q1/ ' r--..t.} ~ ·Sr t---. ... I J ·11.,,, ..._ I J s, .... I r--..-..._ I ,, I"-. I <::i'? ' I ~ I ' I "--J I I v., 'I-. I I" j -......::.. < f.11 ~,I -Z..;:1 I ~ I /'-" -I I '-... t----... I'--'"I --...,._,,_,,_ ·"· ' 2 3 4 5 6 7 8 9 10 20 30 40 50 Discharge (C.F.S.) EXAMPLE: Given: Q= 10 S = 2.5% Chart gives: Depth = 0.4, Velocity = 4.4 f.p.s. SOURCE. San Diego County Department of Special District Services Design Manual FIGURE Gutter and Roadway Discharge • Velocity Chart ~ EQUATION: V = 1.4!)_ R"3 s"2 n 0.3 02 fo 02 l40 03 0.1S 30 04 0 01 0.10 0.09 0.08 05 20 0 07 0.06 0.6 0 05 ~ 0 04 0.8 "' 0.02 c»7-/ 0.03 0.9 ~ y" 1.0 0 ~ ·6' "' > 9 002 a:: /' C: ' / § 8 ' 0,03 "' ;; "' 1= ' 15 .S! / ~ 7 Q) ·c:; J2 .!: if= ~ en ~ 6 Q) 0.04 Q) Q) 0 C. ::J C. () ;; 0 01 0 2 / "'-"❖ ;; 5 en .S! 0 009 ~ '!J'.'<Y .S! en 0.05 w .!: 0.008 () )fl' ~ .!: z w 0.007 ::J ~ 4 :c a. ::J "-8 C!) 0,06 0 0.006 ~ 3/ ::J ..J 0 (/J 0.005 □ ..J a:: 0.o7 >-w 3 0.004 ~ :C > 0 08 ~c • 4 0003 009 010 0 002 5 2 6 7 8 0.001 9 00009 10 1.0 0.2 0.0008 0 0007 09 0 0006 0.8 0.0005 0.7 0.0004 0.3 06 00003 20 0.5 04 GENERAL SOLUTION SOURCE: USDOT, FHWA, HDS-3 (1961) FIGURE Manning's Equation Nomograph ~ County of San Diego Hydrology Manual e 100 Year Rainfall Event-6 Hours ,l_-_--_-_--_--__ ,~_,,_-__ ,,_~_~_,_I ---· OCEAN _.. : . --.· _ .. 70---. 0 ENClr. County of San Diego Hydrology Manual e Raznfa/1 Isopluvta!s 100 Year Rainfall Event-24 Hours 3 0 ~ lsopluv1al (inches) 3 Miles . -r r 1-1 ,, -,--'' LJ_iol__w_J_I I l ·--t-t-H-~-TH:~-1--+H--' :J 1--,-;-nl,_!_ ! .. L n I _1 __ _Jj ~-t-County of San Diego Hydrology Manual e Soil Hydrologic Groups Legend S011 Groups C:J GroupA ill GroupB C::J Groupe [:J Groupe C=:] Undetermined ~ Data Unavadable DPW ~GIS _,, __ ---- 0 (' · , 85th Percentile Precipitati" · · on · 7sopluvial Mai Rainfall in inches. DRAFT 6127/01 > 0 0 = ATTACHMENT C PRE-DEVELOPMENT CALCULATION (MARBRISA PROTION TAKEN FROM HYDROLOGY AND HYDRAULIC STUDY FOR CARLSBAD RANCH PA 5 – RESORT SITE PHASE I, DATED AUGUST 23, 2005) 100 YEAR STORM EVENT 100 YR PRE-DEVELOPMENT CALC TAKEN FROM HYDROLOGY STUDY PHASE I – DATED 8-23-05 Page 1 of 13 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7.4 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 05/02/05 ------------------------------------------------------------------------ ********* Hydrology Study Control Information ********** ------------------------------------------------------------------------ Program License Serial Number 4012 ------------------------------------------------------------------------ Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.500 P6/P24 = 57.8% San Diego hydrology manual 'C' values used ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 227.000 to Point/Station 228.000 **** INITIAL AREA EVALUATION **** ______________________________________________________________________ Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [COMMERCIAL area type ] (Neighborhod Commercial ) Impervious value, Ai = 0.800 Sub-Area C Value = 0.770 Initial subarea total flow distance = 204.000(Ft.) Highest elevation = 242.500(Ft.) Lowest elevation = 226.000(Ft.) Elevation difference = 16.500(Ft.) Slope = 8.088 % Top of Initial Area Slope adjusted by User to 30.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 30.00 %, in a development type of Neighborhod Commercial In Accordance With Figure 3-3 Initial Area Time of Concentration = 1.91 minutes TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] TC = [1.8*(1.1-0.7700)*( 100.000^.5)/( 30.000^(1/3)]= 1.91 The initial area total distance of 204.00 (Ft.) entered leaves a remaining distance of 104.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.73 minutes for a distance of 104.00 (Ft.) and a slope of 8.09 % with an elevation difference of 8.41(Ft.) from the end of the top area Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr) = 0.735 Minutes Tt=[(11.9*0.0197^3)/( 8.41)]^.385= 0.73 Total initial area Ti = 1.91 minutes from Figure 3-3 formula plus 0.73 minutes from the Figure 3-4 formula = 2.65 minutes Rainfall intensity (I) = 10.326(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.770 Subarea runoff = 1.590(CFS) Total initial stream area = 0.200(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 228.000 to Point/Station 229.000 **** IMPROVED CHANNEL TRAVEL TIME **** ______________________________________________________________________ 100 YR PRE-DEVELOPMENT CALC TAKEN FROM HYDROLOGY STUDY PHASE I – DATED 8-23-05 Page 2 of 13 Upstream point elevation = 226.000(Ft.) Downstream point elevation = 193.100(Ft.) Channel length thru subarea = 623.000(Ft.) Channel base width = 2.000(Ft.) Slope or 'Z' of left channel bank = 3.000 Slope or 'Z' of right channel bank = 3.000 Estimated mean flow rate at midpoint of channel = 15.857(CFS) Manning's 'N' = 0.035 Maximum depth of channel = 3.000(Ft.) Flow(q) thru subarea = 15.857(CFS) Depth of flow = 0.689(Ft.), Average velocity = 5.653(Ft/s) Channel flow top width = 6.137(Ft.) Flow Velocity = 5.65(Ft/s) Travel time = 1.84 min. Time of concentration = 4.48 min. Critical depth = 0.844(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [COMMERCIAL area type ] (Neighborhod Commercial ) Impervious value, Ai = 0.800 Sub-Area C Value = 0.770 Rainfall intensity = 7.350(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.770 CA = 4.089 Subarea runoff = 28.460(CFS) for 5.110(Ac.) Total runoff = 30.050(CFS) Total area = 5.310(Ac.) Depth of flow = 0.935(Ft.), Average velocity = 6.689(Ft/s) Critical depth = 1.156(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 229.000 to Point/Station 229.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 1 in normal stream number 1 Stream flow area = 5.310(Ac.) Runoff from this stream = 30.050(CFS) Time of concentration = 4.48 min. Rainfall intensity = 7.350(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 231.000 to Point/Station 229.000 **** INITIAL AREA EVALUATION **** ______________________________________________________________________ Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [COMMERCIAL area type ] (General Commercial ) Impervious value, Ai = 0.850 Sub-Area C Value = 0.800 Initial subarea total flow distance = 829.000(Ft.) Highest elevation = 230.600(Ft.) Lowest elevation = 193.300(Ft.) Elevation difference = 37.300(Ft.) Slope = 4.499 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 90.00 (Ft) for the top area slope value of 4.50 %, in a development type of General Commercial In Accordance With Figure 3-3 Initial Area Time of Concentration = 3.10 minutes TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] TC = [1.8*(1.1-0.8000)*( 90.000^.5)/( 4.499^(1/3)]= 3.10 The initial area total distance of 829.00 (Ft.) entered leaves a remaining distance of 739.00 (Ft.) 100 YR PRE-DEVELOPMENT CALC TAKEN FROM HYDROLOGY STUDY PHASE I – DATED 8-23-05 Page 3 of 13 Using Figure 3-4, the travel time for this distance is 4.17 minutes for a distance of 739.00 (Ft.) and a slope of 4.50 % with an elevation difference of 33.25(Ft.) from the end of the top area Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr) = 4.169 Minutes Tt=[(11.9*0.1400^3)/( 33.25)]^.385= 4.17 Total initial area Ti = 3.10 minutes from Figure 3-3 formula plus 4.17 minutes from the Figure 3-4 formula = 7.27 minutes Rainfall intensity (I) = 5.380(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.800 Subarea runoff = 3.486(CFS) Total initial stream area = 0.810(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 229.000 to Point/Station 229.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.810(Ac.) Runoff from this stream = 3.486(CFS) Time of concentration = 7.27 min. Rainfall intensity = 5.380(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 30.050 4.48 7.350 2 3.486 7.27 5.380 Qmax(1) = 1.000 * 1.000 * 30.050) + 1.000 * 0.617 * 3.486) + = 32.200 Qmax(2) = 0.732 * 1.000 * 30.050) + 1.000 * 1.000 * 3.486) + = 25.484 Total of 2 streams to confluence: Flow rates before confluence point: 30.050 3.486 Maximum flow rates at confluence using above data: 32.200 25.484 Area of streams before confluence: 5.310 0.810 Results of confluence: Total flow rate = 32.200(CFS) Time of concentration = 4.483 min. Effective stream area after confluence = 6.120(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 229.000 to Point/Station 230.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 185.320(Ft.) Downstream point/station elevation = 185.010(Ft.) Pipe length = 15.85(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 32.200(CFS) Given pipe size = 24.00(In.) NOTE: Normal flow is pressure flow in user selected pipe size. The approximate hydraulic grade line above the pipe invert is 2.458(Ft.) at the headworks or inlet of the pipe(s) Pipe friction loss = 0.321(Ft.) Minor friction loss = 2.447(Ft.) K-factor = 1.50 Pipe flow velocity = 10.25(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 4.51 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 230.000 to Point/Station 230.000 100 YR PRE-DEVELOPMENT CALC TAKEN FROM HYDROLOGY STUDY PHASE I – DATED 8-23-05 Page 4 of 13 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 1 in normal stream number 1 Stream flow area = 6.120(Ac.) Runoff from this stream = 32.200(CFS) Time of concentration = 4.51 min. Rainfall intensity = 7.322(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 231.000 to Point/Station 232.000 **** INITIAL AREA EVALUATION **** ______________________________________________________________________ Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [COMMERCIAL area type ] (General Commercial ) Impervious value, Ai = 0.850 Sub-Area C Value = 0.800 Initial subarea total flow distance = 840.000(Ft.) Highest elevation = 230.600(Ft.) Lowest elevation = 193.300(Ft.) Elevation difference = 37.300(Ft.) Slope = 4.440 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 90.00 (Ft) for the top area slope value of 4.44 %, in a development type of General Commercial In Accordance With Figure 3-3 Initial Area Time of Concentration = 3.12 minutes TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] TC = [1.8*(1.1-0.8000)*( 90.000^.5)/( 4.440^(1/3)]= 3.12 The initial area total distance of 840.00 (Ft.) entered leaves a remaining distance of 750.00 (Ft.) Using Figure 3-4, the travel time for this distance is 4.24 minutes for a distance of 750.00 (Ft.) and a slope of 4.44 % with an elevation difference of 33.30(Ft.) from the end of the top area Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr) = 4.238 Minutes Tt=[(11.9*0.1420^3)/( 33.30)]^.385= 4.24 Total initial area Ti = 3.12 minutes from Figure 3-3 formula plus 4.24 minutes from the Figure 3-4 formula = 7.35 minutes Rainfall intensity (I) = 5.341(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.800 Subarea runoff = 3.504(CFS) Total initial stream area = 0.820(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 232.000 to Point/Station 230.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 185.520(Ft.) Downstream point/station elevation = 185.010(Ft.) Pipe length = 51.15(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.504(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.504(CFS) Normal flow depth in pipe = 7.17(In.) Flow top width inside pipe = 17.62(In.) Critical Depth = 8.56(In.) Pipe flow velocity = 5.34(Ft/s) Travel time through pipe = 0.16 min. Time of concentration (TC) = 7.51 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 230.000 to Point/Station 230.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 1 in normal stream number 2 100 YR PRE-DEVELOPMENT CALC TAKEN FROM HYDROLOGY STUDY PHASE I – DATED 8-23-05 Page 5 of 13 Stream flow area = 0.820(Ac.) Runoff from this stream = 3.504(CFS) Time of concentration = 7.51 min. Rainfall intensity = 5.267(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 32.200 4.51 7.322 2 3.504 7.51 5.267 Qmax(1) = 1.000 * 1.000 * 32.200) + 1.000 * 0.600 * 3.504) + = 34.302 Qmax(2) = 0.719 * 1.000 * 32.200) + 1.000 * 1.000 * 3.504) + = 26.666 Total of 2 streams to confluence: Flow rates before confluence point: 32.200 3.504 Maximum flow rates at confluence using above data: 34.302 26.666 Area of streams before confluence: 6.120 0.820 Results of confluence: Total flow rate = 34.302(CFS) Time of concentration = 4.509 min. Effective stream area after confluence = 6.940(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 230.000 to Point/Station 233.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 184.670(Ft.) Downstream point/station elevation = 182.990(Ft.) Pipe length = 115.65(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 34.302(CFS) Given pipe size = 24.00(In.) NOTE: Normal flow is pressure flow in user selected pipe size. The approximate hydraulic grade line above the pipe invert is 3.755(Ft.) at the headworks or inlet of the pipe(s) Pipe friction loss = 2.658(Ft.) Minor friction loss = 2.777(Ft.) K-factor = 1.50 Pipe flow velocity = 10.92(Ft/s) Travel time through pipe = 0.18 min. Time of concentration (TC) = 4.69 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 233.000 to Point/Station 233.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 1 in normal stream number 1 Stream flow area = 6.940(Ac.) Runoff from this stream = 34.302(CFS) Time of concentration = 4.69 min. Rainfall intensity = 7.143(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 234.000 to Point/Station 235.000 **** INITIAL AREA EVALUATION **** ______________________________________________________________________ Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [COMMERCIAL area type ] (Neighborhod Commercial ) 100 YR PRE-DEVELOPMENT CALC TAKEN FROM HYDROLOGY STUDY PHASE I – DATED 8-23-05 Page 6 of 13 Impervious value, Ai = 0.800 Sub-Area C Value = 0.770 Initial subarea total flow distance = 146.000(Ft.) Highest elevation = 242.000(Ft.) Lowest elevation = 230.500(Ft.) Elevation difference = 11.500(Ft.) Slope = 7.877 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 7.88 %, in a development type of Neighborhod Commercial In Accordance With Figure 3-3 Initial Area Time of Concentration = 2.99 minutes TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] TC = [1.8*(1.1-0.7700)*( 100.000^.5)/( 7.877^(1/3)]= 2.99 The initial area total distance of 146.00 (Ft.) entered leaves a remaining distance of 46.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.40 minutes for a distance of 46.00 (Ft.) and a slope of 7.88 % with an elevation difference of 3.62(Ft.) from the end of the top area Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr) = 0.396 Minutes Tt=[(11.9*0.0087^3)/( 3.62)]^.385= 0.40 Total initial area Ti = 2.99 minutes from Figure 3-3 formula plus 0.40 minutes from the Figure 3-4 formula = 3.38 minutes Rainfall intensity (I) = 8.816(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.770 Subarea runoff = 0.475(CFS) Total initial stream area = 0.070(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 235.000 to Point/Station 236.000 **** IMPROVED CHANNEL TRAVEL TIME **** ______________________________________________________________________ Upstream point elevation = 230.500(Ft.) Downstream point elevation = 197.700(Ft.) Channel length thru subarea = 727.000(Ft.) Channel base width = 2.000(Ft.) Slope or 'Z' of left channel bank = 4.000 Slope or 'Z' of right channel bank = 4.000 Estimated mean flow rate at midpoint of channel = 7.591(CFS) Manning's 'N' = 0.035 Maximum depth of channel = 3.000(Ft.) Flow(q) thru subarea = 7.591(CFS) Depth of flow = 0.472(Ft.), Average velocity = 4.142(Ft/s) Channel flow top width = 5.773(Ft.) Flow Velocity = 4.14(Ft/s) Travel time = 2.93 min. Time of concentration = 6.31 min. Critical depth = 0.539(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [COMMERCIAL area type ] (Neighborhod Commercial ) Impervious value, Ai = 0.800 Sub-Area C Value = 0.770 Rainfall intensity = 5.897(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.770 CA = 2.479 Subarea runoff = 14.147(CFS) for 3.150(Ac.) Total runoff = 14.622(CFS) Total area = 3.220(Ac.) Depth of flow = 0.646(Ft.), Average velocity = 4.932(Ft/s) Critical depth = 0.750(Ft.) 100 YR PRE-DEVELOPMENT CALC TAKEN FROM HYDROLOGY STUDY PHASE I – DATED 8-23-05 Page 7 of 13 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 236.000 to Point/Station 233.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 190.000(Ft.) Downstream point/station elevation = 182.990(Ft.) Pipe length = 72.54(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 14.622(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 14.622(CFS) Normal flow depth in pipe = 8.44(In.) Flow top width inside pipe = 17.96(In.) Critical Depth = 16.76(In.) Pipe flow velocity = 17.97(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 6.37 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 233.000 to Point/Station 233.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 1 in normal stream number 2 Stream flow area = 3.220(Ac.) Runoff from this stream = 14.622(CFS) Time of concentration = 6.37 min. Rainfall intensity = 5.857(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 34.302 4.69 7.143 2 14.622 6.37 5.857 Qmax(1) = 1.000 * 1.000 * 34.302) + 1.000 * 0.735 * 14.622) + = 45.050 Qmax(2) = 0.820 * 1.000 * 34.302) + 1.000 * 1.000 * 14.622) + = 42.748 Total of 2 streams to confluence: Flow rates before confluence point: 34.302 14.622 Maximum flow rates at confluence using above data: 45.050 42.748 Area of streams before confluence: 6.940 3.220 Results of confluence: Total flow rate = 45.050(CFS) Time of concentration = 4.686 min. Effective stream area after confluence = 10.160(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 233.000 to Point/Station 237.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 182.660(Ft.) Downstream point/station elevation = 179.000(Ft.) Pipe length = 440.77(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 45.050(CFS) Given pipe size = 30.00(In.) NOTE: Normal flow is pressure flow in user selected pipe size. The approximate hydraulic grade line above the pipe invert is 3.617(Ft.) at the headworks or inlet of the pipe(s) Pipe friction loss = 5.315(Ft.) Minor friction loss = 1.962(Ft.) K-factor = 1.50 Pipe flow velocity = 9.18(Ft/s) Travel time through pipe = 0.80 min. 100 YR PRE-DEVELOPMENT CALC TAKEN FROM HYDROLOGY STUDY PHASE I – DATED 8-23-05 Page 8 of 13 Time of concentration (TC) = 5.49 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 237.000 to Point/Station 238.000 **** IMPROVED CHANNEL TRAVEL TIME **** ______________________________________________________________________ Upstream point elevation = 179.000(Ft.) Downstream point elevation = 175.100(Ft.) Channel length thru subarea = 639.000(Ft.) Channel base width = 2.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 45.896(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 3.000(Ft.) Flow(q) thru subarea = 45.896(CFS) Depth of flow = 1.408(Ft.), Average velocity = 6.766(Ft/s) Channel flow top width = 7.633(Ft.) Flow Velocity = 6.77(Ft/s) Travel time = 1.57 min. Time of concentration = 7.06 min. Critical depth = 1.578(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [COMMERCIAL area type ] (Neighborhod Commercial ) Impervious value, Ai = 0.800 Sub-Area C Value = 0.770 Rainfall intensity = 5.484(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.774 CA = 8.511 Subarea runoff = 1.621(CFS) for 0.830(Ac.) Total runoff = 46.672(CFS) Total area = 10.990(Ac.) Depth of flow = 1.419(Ft.), Average velocity = 6.796(Ft/s) Critical depth = 1.594(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 238.000 to Point/Station 238.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 1 in normal stream number 1 Stream flow area = 10.990(Ac.) Runoff from this stream = 46.672(CFS) Time of concentration = 7.06 min. Rainfall intensity = 5.484(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 239.000 to Point/Station 240.000 **** INITIAL AREA EVALUATION **** ______________________________________________________________________ Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [COMMERCIAL area type ] (Neighborhod Commercial ) Impervious value, Ai = 0.800 Sub-Area C Value = 0.770 Initial subarea total flow distance = 175.000(Ft.) Highest elevation = 230.000(Ft.) Lowest elevation = 194.500(Ft.) Elevation difference = 35.500(Ft.) Slope = 20.286 % Top of Initial Area Slope adjusted by User to 30.000 % Bottom of Initial Area Slope adjusted by User to 2.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: 100 YR PRE-DEVELOPMENT CALC TAKEN FROM HYDROLOGY STUDY PHASE I – DATED 8-23-05 Page 9 of 13 The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 30.00 %, in a development type of Neighborhod Commercial In Accordance With Figure 3-3 Initial Area Time of Concentration = 1.91 minutes TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] TC = [1.8*(1.1-0.7700)*( 100.000^.5)/( 30.000^(1/3)]= 1.91 The initial area total distance of 175.00 (Ft.) entered leaves a remaining distance of 75.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.98 minutes for a distance of 75.00 (Ft.) and a slope of 2.00 % with an elevation difference of 1.50(Ft.) from the end of the top area Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr) = 0.978 Minutes Tt=[(11.9*0.0142^3)/( 1.50)]^.385= 0.98 Total initial area Ti = 1.91 minutes from Figure 3-3 formula plus 0.98 minutes from the Figure 3-4 formula = 2.89 minutes Rainfall intensity (I) = 9.756(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.770 Subarea runoff = 2.254(CFS) Total initial stream area = 0.300(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 240.000 to Point/Station 241.000 **** IMPROVED CHANNEL TRAVEL TIME **** ______________________________________________________________________ Upstream point elevation = 194.500(Ft.) Downstream point elevation = 181.700(Ft.) Channel length thru subarea = 620.000(Ft.) Channel base width = 2.000(Ft.) Slope or 'Z' of left channel bank = 4.000 Slope or 'Z' of right channel bank = 4.000 Estimated mean flow rate at midpoint of channel = 27.433(CFS) Manning's 'N' = 0.035 Maximum depth of channel = 3.000(Ft.) Flow(q) thru subarea = 27.433(CFS) Depth of flow = 1.031(Ft.), Average velocity = 4.345(Ft/s) Channel flow top width = 10.247(Ft.) Flow Velocity = 4.35(Ft/s) Travel time = 2.38 min. Time of concentration = 5.27 min. Critical depth = 1.016(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [COMMERCIAL area type ] (Neighborhod Commercial ) Impervious value, Ai = 0.800 Sub-Area C Value = 0.770 Rainfall intensity = 6.623(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.770 CA = 7.931 Subarea runoff = 50.277(CFS) for 10.000(Ac.) Total runoff = 52.530(CFS) Total area = 10.300(Ac.) Depth of flow = 1.370(Ft.), Average velocity = 5.127(Ft/s) Critical depth = 1.375(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 241.000 to Point/Station 238.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 177.000(Ft.) Downstream point/station elevation = 175.100(Ft.) Pipe length = 76.35(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 52.530(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 52.530(CFS) Normal flow depth in pipe = 20.53(In.) 100 YR PRE-DEVELOPMENT CALC TAKEN FROM HYDROLOGY STUDY PHASE I – DATED 8-23-05 Page 10 of 13 Flow top width inside pipe = 27.89(In.) Critical Depth = 27.96(In.) Pipe flow velocity = 14.69(Ft/s) Travel time through pipe = 0.09 min. Time of concentration (TC) = 5.35 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 238.000 to Point/Station 238.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 1 in normal stream number 2 Stream flow area = 10.300(Ac.) Runoff from this stream = 52.530(CFS) Time of concentration = 5.35 min. Rainfall intensity = 6.554(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 46.672 7.06 5.484 2 52.530 5.35 6.554 Qmax(1) = 1.000 * 1.000 * 46.672) + 0.837 * 1.000 * 52.530) + = 90.622 Qmax(2) = 1.000 * 0.758 * 46.672) + 1.000 * 1.000 * 52.530) + = 87.928 Total of 2 streams to confluence: Flow rates before confluence point: 46.672 52.530 Maximum flow rates at confluence using above data: 90.622 87.928 Area of streams before confluence: 10.990 10.300 Results of confluence: Total flow rate = 90.622(CFS) Time of concentration = 7.060 min. Effective stream area after confluence = 21.290(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 238.000 to Point/Station 242.000 **** IMPROVED CHANNEL TRAVEL TIME **** ______________________________________________________________________ Upstream point elevation = 175.100(Ft.) Downstream point elevation = 175.000(Ft.) Channel length thru subarea = 316.000(Ft.) Channel base width = 6.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 90.651(CFS) Manning's 'N' = 0.025 Maximum depth of channel = 4.000(Ft.) Flow(q) thru subarea = 90.651(CFS) Depth of flow = 3.740(Ft.), Average velocity = 1.798(Ft/s) Channel flow top width = 20.958(Ft.) Flow Velocity = 1.80(Ft/s) Travel time = 2.93 min. Time of concentration = 9.99 min. Critical depth = 1.594(Ft.) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [COMMERCIAL area type ] (Neighborhod Commercial ) 100 YR PRE-DEVELOPMENT CALC TAKEN FROM HYDROLOGY STUDY PHASE I – DATED 8-23-05 Page 11 of 13 Impervious value, Ai = 0.800 Sub-Area C Value = 0.770 The area added to the existing stream causes a a lower flow rate of Q = 73.567(CFS) therefore the upstream flow rate of Q = 90.622(CFS) is being used Rainfall intensity = 4.384(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.772 CA = 16.781 Subarea runoff = 0.000(CFS) for 0.440(Ac.) Total runoff = 90.622(CFS) Total area = 21.730(Ac.) Depth of flow = 3.739(Ft.), Average velocity = 1.798(Ft/s) Critical depth = 1.594(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 242.000 to Point/Station 222.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 168.610(Ft.) Downstream point/station elevation = 167.920(Ft.) Pipe length = 33.95(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 90.622(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 90.622(CFS) Normal flow depth in pipe = 28.08(In.) Flow top width inside pipe = 29.83(In.) Critical Depth = 34.20(In.) Pipe flow velocity = 15.31(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 10.03 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 222.000 to Point/Station 222.000 **** CONFLUENCE OF MAIN STREAMS **** ______________________________________________________________________ The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 21.730(Ac.) Runoff from this stream = 90.622(CFS) Time of concentration = 10.03 min. Rainfall intensity = 4.374(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 243.000 to Point/Station 222.000 **** INITIAL AREA EVALUATION **** ______________________________________________________________________ Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [COMMERCIAL area type ] (Neighborhod Commercial ) Impervious value, Ai = 0.800 Sub-Area C Value = 0.770 Initial subarea total flow distance = 1045.000(Ft.) Highest elevation = 227.000(Ft.) Lowest elevation = 176.500(Ft.) Elevation difference = 50.500(Ft.) Slope = 4.833 % Top of Initial Area Slope adjusted by User to 30.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 30.00 %, in a development type of Neighborhod Commercial In Accordance With Figure 3-3 Initial Area Time of Concentration = 1.91 minutes TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] TC = [1.8*(1.1-0.7700)*( 100.000^.5)/( 30.000^(1/3)]= 1.91 The initial area total distance of 1045.00 (Ft.) entered leaves a remaining distance of 945.00 (Ft.) 100 YR PRE-DEVELOPMENT CALC TAKEN FROM HYDROLOGY STUDY PHASE I – DATED 8-23-05 Page 12 of 13 Using Figure 3-4, the travel time for this distance is 4.90 minutes for a distance of 945.00 (Ft.) and a slope of 4.83 % with an elevation difference of 45.67(Ft.) from the end of the top area Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr) = 4.901 Minutes Tt=[(11.9*0.1790^3)/( 45.67)]^.385= 4.90 Total initial area Ti = 1.91 minutes from Figure 3-3 formula plus 4.90 minutes from the Figure 3-4 formula = 6.81 minutes Rainfall intensity (I) = 5.611(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.770 Subarea runoff = 10.283(CFS) Total initial stream area = 2.380(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 222.000 to Point/Station 222.000 **** CONFLUENCE OF MAIN STREAMS **** ______________________________________________________________________ The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 2.380(Ac.) Runoff from this stream = 10.283(CFS) Time of concentration = 6.81 min. Rainfall intensity = 5.611(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 222.000 to Point/Station 222.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** ______________________________________________________________________ User specified 'C' value of 0.760 given for subarea Rainfall intensity (I) = 6.472(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 5.46 min. Rain intensity = 6.47(In/Hr) Total area = 12.780(Ac.) Total runoff = 65.167(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 222.000 to Point/Station 222.000 **** CONFLUENCE OF MAIN STREAMS **** ______________________________________________________________________ The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 12.780(Ac.) Runoff from this stream = 65.167(CFS) Time of concentration = 5.46 min. Rainfall intensity = 6.472(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 90.622 10.03 4.374 2 10.283 6.81 5.611 3 65.167 5.46 6.472 Qmax(1) = 1.000 * 1.000 * 90.622) + 0.779 * 1.000 * 10.283) + 0.676 * 1.000 * 65.167) + = 142.673 Qmax(2) = 1.000 * 0.680 * 90.622) + 1.000 * 1.000 * 10.283) + 0.867 * 1.000 * 65.167) + = 128.360 Qmax(3) = 1.000 * 0.545 * 90.622) + 1.000 * 0.801 * 10.283) + 1.000 * 1.000 * 65.167) + = 122.763 Total of 3 main streams to confluence: Flow rates before confluence point: 100 YR PRE-DEVELOPMENT CALC TAKEN FROM HYDROLOGY STUDY PHASE I – DATED 8-23-05 Page 13 of 13 90.622 10.283 65.167 Maximum flow rates at confluence using above data: 142.673 128.360 122.763 Area of streams before confluence: 21.730 2.380 12.780 Results of confluence: Total flow rate = 142.673(CFS) Time of concentration = 10.025 min. Effective stream area after confluence = 36.890(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 222.000 to Point/Station 244.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 167.590(Ft.) Downstream point/station elevation = 167.270(Ft.) Pipe length = 15.73(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 142.673(CFS) Given pipe size = 36.00(In.) NOTE: Normal flow is pressure flow in user selected pipe size. The approximate hydraulic grade line above the pipe invert is 9.889(Ft.) at the headworks or inlet of the pipe(s) Pipe friction loss = 0.720(Ft.) Minor friction loss = 9.489(Ft.) K-factor = 1.50 Pipe flow velocity = 20.18(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 10.04 min. End of computations, total study area = 36.890 (Ac.) 100 YR PRE-DEVELOPMENT CALC TAKEN FROM HYDROLOGY STUDY PHASE I – DATED 8-23-05 Page 1 of 2 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7.4 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 05/02/05 ------------------------------------------------------------------------ ********* Hydrology Study Control Information ********** ------------------------------------------------------------------------ Program License Serial Number 4012 ------------------------------------------------------------------------ Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.500 P6/P24 = 57.8% San Diego hydrology manual 'C' values used ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 218.000 to Point/Station 219.000 **** INITIAL AREA EVALUATION **** ______________________________________________________________________ Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [COMMERCIAL area type ] (Neighborhod Commercial ) Impervious value, Ai = 0.800 Sub-Area C Value = 0.770 Initial subarea total flow distance = 259.000(Ft.) Highest elevation = 230.000(Ft.) Lowest elevation = 213.000(Ft.) Elevation difference = 17.000(Ft.) Slope = 6.564 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 95.00 (Ft) for the top area slope value of 6.56 %, in a development type of Neighborhod Commercial In Accordance With Figure 3-3 Initial Area Time of Concentration = 3.09 minutes TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] TC = [1.8*(1.1-0.7700)*( 95.000^.5)/( 6.564^(1/3)]= 3.09 The initial area total distance of 259.00 (Ft.) entered leaves a remaining distance of 164.00 (Ft.) Using Figure 3-4, the travel time for this distance is 1.13 minutes for a distance of 164.00 (Ft.) and a slope of 6.56 % with an elevation difference of 10.76(Ft.) from the end of the top area Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr) = 1.131 Minutes Tt=[(11.9*0.0311^3)/( 10.76)]^.385= 1.13 Total initial area Ti = 3.09 minutes from Figure 3-3 formula plus 1.13 minutes from the Figure 3-4 formula = 4.22 minutes Rainfall intensity (I) = 7.639(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.770 Subarea runoff = 5.000(CFS) Total initial stream area = 0.850(Ac.) 100 YR PRE-DEVELOPMENT CALC TAKEN FROM HYDROLOGY STUDY PHASE I – DATED 8-23-05 Page 2 of 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 219.000 to Point/Station 214.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 205.000(Ft.) Downstream point/station elevation = 197.030(Ft.) Pipe length = 55.50(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.000(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 5.000(CFS) Normal flow depth in pipe = 5.06(In.) Flow top width inside pipe = 11.85(In.) Critical Depth = 11.00(In.) Pipe flow velocity = 15.91(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 4.28 min. ATTACHMENT D POST-DEVELOPMENT HYDROLOGY CALCULATION 100 YEAR STORM EVENT STORMDRAIN LINE A – OUTFALL 1 100 YEAR POST-DEVELOPMENT Page 1 of 21 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7.4 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 10/03/11 ------------------------------------------------------------------------ CT 03-02 CARLSBAD RANCH PLANNING AREA 5 - MARBRISA SITE PHASE 2 100 YEAR STORM, POST-DEVELOPMENT OUTFALL 1 - NODES 1 TO 40, NODES 100 TO 106 FILENAME: 11008OUTFALL1.RD3 ------------------------------------------------------------------------ ********* Hydrology Study Control Information ********** ------------------------------------------------------------------------ Program License Serial Number 4012 ------------------------------------------------------------------------ Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.500 P6/P24 = 57.8% San Diego hydrology manual 'C' values used ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 1.000 to Point/Station 2.000 **** INITIAL AREA EVALUATION **** ______________________________________________________________________ Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (14.5 DU/A or Less ) Impervious value, Ai = 0.500 Sub-Area C Value = 0.630 Initial subarea total flow distance = 139.000(Ft.) Highest elevation = 199.000(Ft.) Lowest elevation = 194.500(Ft.) Elevation difference = 4.500(Ft.) Slope = 3.237 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 90.00 (Ft) for the top area slope value of 3.24 %, in a development type of 14.5 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 5.43 minutes TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] TC = [1.8*(1.1-0.6300)*( 90.000^.5)/( 3.237^(1/3)]= 5.43 The initial area total distance of 139.00 (Ft.) entered leaves a remaining distance of 49.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.59 minutes for a distance of 49.00 (Ft.) and a slope of 3.24 % with an elevation difference of 1.59(Ft.) from the end of the top area Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr) = 0.586 Minutes Tt=[(11.9*0.0093^3)/( 1.59)]^.385= 0.59 Total initial area Ti = 5.43 minutes from Figure 3-3 formula plus 0.59 minutes from the Figure 3-4 formula = 6.01 minutes Rainfall intensity (I) = 6.083(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.630 Subarea runoff = 0.383(CFS) Total initial stream area = 0.100(Ac.) STORMDRAIN LINE A – OUTFALL 1 100 YEAR POST-DEVELOPMENT Page 2 of 21 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2.000 to Point/Station 101.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 190.500(Ft.) Downstream point/station elevation = 181.130(Ft.) Pipe length = 10.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.383(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 0.383(CFS) Normal flow depth in pipe = 0.89(In.) Flow top width inside pipe = 6.29(In.) Critical Depth = 3.07(In.) Pipe flow velocity = 14.55(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 6.02 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 101.000 to Point/Station 101.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 1 in normal stream number 1 Stream flow area = 0.100(Ac.) Runoff from this stream = 0.383(CFS) Time of concentration = 6.02 min. Rainfall intensity = 6.076(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 100.000 to Point/Station 100.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** ______________________________________________________________________ User specified 'C' value of 0.770 given for subarea Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 5.00 min. Rain intensity = 6.85(In/Hr) Total area = 10.160(Ac.) Total runoff = 45.050(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 100.000 to Point/Station 101.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 182.660(Ft.) Downstream point/station elevation = 181.130(Ft.) Pipe length = 35.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 45.050(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 45.050(CFS) Normal flow depth in pipe = 14.07(In.) Flow top width inside pipe = 35.13(In.) Critical Depth = 26.24(In.) Pipe flow velocity = 17.60(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 5.03 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 101.000 to Point/Station 101.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 1 in normal stream number 2 Stream flow area = 10.160(Ac.) Runoff from this stream = 45.050(CFS) Time of concentration = 5.03 min. STORMDRAIN LINE A – OUTFALL 1 100 YEAR POST-DEVELOPMENT Page 3 of 21 Rainfall intensity = 6.821(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 0.383 6.02 6.076 2 45.050 5.03 6.821 Qmax(1) = 1.000 * 1.000 * 0.383) + 0.891 * 1.000 * 45.050) + = 40.508 Qmax(2) = 1.000 * 0.836 * 0.383) + 1.000 * 1.000 * 45.050) + = 45.370 Total of 2 streams to confluence: Flow rates before confluence point: 0.383 45.050 Maximum flow rates at confluence using above data: 40.508 45.370 Area of streams before confluence: 0.100 10.160 Results of confluence: Total flow rate = 45.370(CFS) Time of concentration = 5.033 min. Effective stream area after confluence = 10.260(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 101.000 to Point/Station 102.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 181.130(Ft.) Downstream point/station elevation = 180.300(Ft.) Pipe length = 165.34(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 45.370(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 45.370(CFS) Normal flow depth in pipe = 28.31(In.) Flow top width inside pipe = 29.51(In.) Critical Depth = 26.32(In.) Pipe flow velocity = 7.61(Ft/s) Travel time through pipe = 0.36 min. Time of concentration (TC) = 5.40 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 102.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 1 in normal stream number 1 Stream flow area = 10.260(Ac.) Runoff from this stream = 45.370(CFS) Time of concentration = 5.40 min. Rainfall intensity = 6.522(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 3.000 to Point/Station 4.000 **** INITIAL AREA EVALUATION **** ______________________________________________________________________ Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (14.5 DU/A or Less ) Impervious value, Ai = 0.500 Sub-Area C Value = 0.630 Initial subarea total flow distance = 204.000(Ft.) STORMDRAIN LINE A – OUTFALL 1 100 YEAR POST-DEVELOPMENT Page 4 of 21 Highest elevation = 196.000(Ft.) Lowest elevation = 190.100(Ft.) Elevation difference = 5.900(Ft.) Slope = 2.892 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 90.00 (Ft) for the top area slope value of 2.89 %, in a development type of 14.5 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 5.63 minutes TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] TC = [1.8*(1.1-0.6300)*( 90.000^.5)/( 2.892^(1/3)]= 5.63 The initial area total distance of 204.00 (Ft.) entered leaves a remaining distance of 114.00 (Ft.) Using Figure 3-4, the travel time for this distance is 1.17 minutes for a distance of 114.00 (Ft.) and a slope of 2.89 % with an elevation difference of 3.30(Ft.) from the end of the top area Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr) = 1.172 Minutes Tt=[(11.9*0.0216^3)/( 3.30)]^.385= 1.17 Total initial area Ti = 5.63 minutes from Figure 3-3 formula plus 1.17 minutes from the Figure 3-4 formula = 6.81 minutes Rainfall intensity (I) = 5.615(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.630 Subarea runoff = 0.520(CFS) Total initial stream area = 0.147(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 4.000 to Point/Station 102.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 190.100(Ft.) Downstream point/station elevation = 180.300(Ft.) Pipe length = 6.70(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.520(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 0.520(CFS) Normal flow depth in pipe = 0.92(In.) Flow top width inside pipe = 6.40(In.) Critical Depth = 3.59(In.) Pipe flow velocity = 18.64(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 6.81 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 102.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.147(Ac.) Runoff from this stream = 0.520(CFS) Time of concentration = 6.81 min. Rainfall intensity = 5.612(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 45.370 5.40 6.522 2 0.520 6.81 5.612 Qmax(1) = 1.000 * 1.000 * 45.370) + 1.000 * 0.792 * 0.520) + = 45.782 Qmax(2) = 0.860 * 1.000 * 45.370) + 1.000 * 1.000 * 0.520) + = 39.558 Total of 2 streams to confluence: STORMDRAIN LINE A – OUTFALL 1 100 YEAR POST-DEVELOPMENT Page 5 of 21 Flow rates before confluence point: 45.370 0.520 Maximum flow rates at confluence using above data: 45.782 39.558 Area of streams before confluence: 10.260 0.147 Results of confluence: Total flow rate = 45.782(CFS) Time of concentration = 5.395 min. Effective stream area after confluence = 10.407(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 103.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 180.300(Ft.) Downstream point/station elevation = 179.860(Ft.) Pipe length = 88.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 45.782(CFS) Given pipe size = 36.00(In.) Calculated individual pipe flow = 45.782(CFS) Normal flow depth in pipe = 28.59(In.) Flow top width inside pipe = 29.10(In.) Critical Depth = 26.47(In.) Pipe flow velocity = 7.60(Ft/s) Travel time through pipe = 0.19 min. Time of concentration (TC) = 5.59 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.000 to Point/Station 103.000 **** CONFLUENCE OF MAIN STREAMS **** ______________________________________________________________________ The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 10.407(Ac.) Runoff from this stream = 45.782(CFS) Time of concentration = 5.59 min. Rainfall intensity = 6.376(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 11.000 to Point/Station 12.000 **** INITIAL AREA EVALUATION **** ______________________________________________________________________ Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (14.5 DU/A or Less ) Impervious value, Ai = 0.500 Sub-Area C Value = 0.630 Initial subarea total flow distance = 327.000(Ft.) Highest elevation = 198.200(Ft.) Lowest elevation = 189.400(Ft.) Elevation difference = 8.800(Ft.) Slope = 2.691 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 90.00 (Ft) for the top area slope value of 2.69 %, in a development type of 14.5 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 5.77 minutes TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] TC = [1.8*(1.1-0.6300)*( 90.000^.5)/( 2.691^(1/3)]= 5.77 The initial area total distance of 327.00 (Ft.) entered leaves a remaining distance of 237.00 (Ft.) Using Figure 3-4, the travel time for this distance is 2.12 minutes for a distance of 237.00 (Ft.) and a slope of 2.69 % STORMDRAIN LINE A – OUTFALL 1 100 YEAR POST-DEVELOPMENT Page 6 of 21 with an elevation difference of 6.38(Ft.) from the end of the top area Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr) = 2.117 Minutes Tt=[(11.9*0.0449^3)/( 6.38)]^.385= 2.12 Total initial area Ti = 5.77 minutes from Figure 3-3 formula plus 2.12 minutes from the Figure 3-4 formula = 7.89 minutes Rainfall intensity (I) = 5.106(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.630 Subarea runoff = 0.708(CFS) Total initial stream area = 0.220(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 12.000 to Point/Station 103.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 185.400(Ft.) Downstream point/station elevation = 184.900(Ft.) Pipe length = 47.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.708(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 0.708(CFS) Normal flow depth in pipe = 3.57(In.) Flow top width inside pipe = 10.97(In.) Critical Depth = 4.21(In.) Pipe flow velocity = 3.61(Ft/s) Travel time through pipe = 0.22 min. Time of concentration (TC) = 8.10 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.000 to Point/Station 103.000 **** CONFLUENCE OF MAIN STREAMS **** ______________________________________________________________________ The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.220(Ac.) Runoff from this stream = 0.708(CFS) Time of concentration = 8.10 min. Rainfall intensity = 5.017(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 20.000 to Point/Station 21.000 **** INITIAL AREA EVALUATION **** ______________________________________________________________________ Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (14.5 DU/A or Less ) Impervious value, Ai = 0.500 Sub-Area C Value = 0.630 Initial subarea total flow distance = 60.000(Ft.) Highest elevation = 200.000(Ft.) Lowest elevation = 196.000(Ft.) Elevation difference = 4.000(Ft.) Slope = 6.667 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 6.67 %, in a development type of 14.5 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 4.49 minutes TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] TC = [1.8*(1.1-0.6300)*( 100.000^.5)/( 6.667^(1/3)]= 4.49 Rainfall intensity (I) = 7.337(In/Hr) for a 100.0 year storm STORMDRAIN LINE A – OUTFALL 1 100 YEAR POST-DEVELOPMENT Page 7 of 21 Effective runoff coefficient used for area (Q=KCIA) is C = 0.630 Subarea runoff = 0.092(CFS) Total initial stream area = 0.020(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 21.000 to Point/Station 22.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** ______________________________________________________________________ Estimated mean flow rate at midpoint of channel = 1.228(CFS) Depth of flow = 0.146(Ft.), Average velocity = 1.771(Ft/s) ******* Irregular Channel Data *********** ----------------------------------------------------------------- Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 0.50 2 0.00 0.00 3 13.00 0.20 Manning's 'N' friction factor = 0.015 ----------------------------------------------------------------- Sub-Channel flow = 1.228(CFS) ' ' flow top width = 9.495(Ft.) ' ' velocity= 1.771(Ft/s) ' ' area = 0.693(Sq.Ft) ' ' Froude number = 1.155 Upstream point elevation = 196.000(Ft.) Downstream point elevation = 190.870(Ft.) Flow length = 480.000(Ft.) Travel time = 4.52 min. Time of concentration = 9.01 min. Depth of flow = 0.146(Ft.) Average velocity = 1.771(Ft/s) Total irregular channel flow = 1.228(CFS) Irregular channel normal depth above invert elev. = 0.146(Ft.) Average velocity of channel(s) = 1.771(Ft/s) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (14.5 DU/A or Less ) Impervious value, Ai = 0.500 Sub-Area C Value = 0.630 Rainfall intensity = 4.685(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.630 CA = 0.484 Subarea runoff = 2.174(CFS) for 0.748(Ac.) Total runoff = 2.267(CFS) Total area = 0.768(Ac.) Depth of flow = 0.184(Ft.), Average velocity = 2.064(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 22.000 to Point/Station 23.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 186.000(Ft.) Downstream point/station elevation = 185.600(Ft.) Pipe length = 39.10(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 2.267(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 2.267(CFS) Normal flow depth in pipe = 6.90(In.) Flow top width inside pipe = 11.86(In.) Critical Depth = 7.73(In.) Pipe flow velocity = 4.85(Ft/s) Travel time through pipe = 0.13 min. Time of concentration (TC) = 9.15 min. STORMDRAIN LINE A – OUTFALL 1 100 YEAR POST-DEVELOPMENT Page 8 of 21 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 23.000 to Point/Station 23.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 3 in normal stream number 1 Stream flow area = 0.768(Ac.) Runoff from this stream = 2.267(CFS) Time of concentration = 9.15 min. Rainfall intensity = 4.640(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 11.000 to Point/Station 30.000 **** INITIAL AREA EVALUATION **** ______________________________________________________________________ Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (14.5 DU/A or Less ) Impervious value, Ai = 0.500 Sub-Area C Value = 0.630 Initial subarea total flow distance = 80.000(Ft.) Highest elevation = 198.200(Ft.) Lowest elevation = 195.000(Ft.) Elevation difference = 3.200(Ft.) Slope = 4.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 4.00 %, in a development type of 14.5 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 5.33 minutes TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] TC = [1.8*(1.1-0.6300)*( 100.000^.5)/( 4.000^(1/3)]= 5.33 Rainfall intensity (I) = 6.574(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.630 Subarea runoff = 0.112(CFS) Total initial stream area = 0.027(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 30.000 to Point/Station 23.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** ______________________________________________________________________ Estimated mean flow rate at midpoint of channel = 0.509(CFS) Depth of flow = 0.092(Ft.), Average velocity = 1.234(Ft/s) ******* Irregular Channel Data *********** ----------------------------------------------------------------- Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 0.50 2 0.00 0.00 3 29.50 0.30 Manning's 'N' friction factor = 0.015 ----------------------------------------------------------------- Sub-Channel flow = 0.509(CFS) ' ' flow top width = 9.007(Ft.) ' ' velocity= 1.234(Ft/s) ' ' area = 0.413(Sq.Ft) ' ' Froude number = 1.016 Upstream point elevation = 195.000(Ft.) Downstream point elevation = 190.530(Ft.) Flow length = 466.000(Ft.) Travel time = 6.30 min. Time of concentration = 11.63 min. Depth of flow = 0.092(Ft.) Average velocity = 1.234(Ft/s) Total irregular channel flow = 0.509(CFS) Irregular channel normal depth above invert elev. = 0.092(Ft.) STORMDRAIN LINE A – OUTFALL 1 100 YEAR POST-DEVELOPMENT Page 9 of 21 Average velocity of channel(s) = 1.234(Ft/s) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (14.5 DU/A or Less ) Impervious value, Ai = 0.500 Sub-Area C Value = 0.630 Rainfall intensity = 3.975(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.630 CA = 0.209 Subarea runoff = 0.717(CFS) for 0.304(Ac.) Total runoff = 0.829(CFS) Total area = 0.331(Ac.) Depth of flow = 0.110(Ft.), Average velocity = 1.394(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 23.000 to Point/Station 23.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 3 in normal stream number 2 Stream flow area = 0.331(Ac.) Runoff from this stream = 0.829(CFS) Time of concentration = 11.63 min. Rainfall intensity = 3.975(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 2.267 9.15 4.640 2 0.829 11.63 3.975 Qmax(1) = 1.000 * 1.000 * 2.267) + 1.000 * 0.787 * 0.829) + = 2.919 Qmax(2) = 0.857 * 1.000 * 2.267) + 1.000 * 1.000 * 0.829) + = 2.771 Total of 2 streams to confluence: Flow rates before confluence point: 2.267 0.829 Maximum flow rates at confluence using above data: 2.919 2.771 Area of streams before confluence: 0.768 0.331 Results of confluence: Total flow rate = 2.919(CFS) Time of concentration = 9.146 min. Effective stream area after confluence = 1.099(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 23.000 to Point/Station 31.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 185.600(Ft.) Downstream point/station elevation = 182.730(Ft.) Pipe length = 110.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 2.919(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 2.919(CFS) Normal flow depth in pipe = 6.05(In.) Flow top width inside pipe = 12.00(In.) STORMDRAIN LINE A – OUTFALL 1 100 YEAR POST-DEVELOPMENT Page 10 of 21 Critical Depth = 8.78(In.) Pipe flow velocity = 7.35(Ft/s) Travel time through pipe = 0.25 min. Time of concentration (TC) = 9.40 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 31.000 to Point/Station 31.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 182.730(Ft.) Downstream point/station elevation = 181.550(Ft.) Pipe length = 236.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 2.919(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 2.919(CFS) Normal flow depth in pipe = 6.94(In.) Flow top width inside pipe = 21.77(In.) Critical Depth = 7.14(In.) Pipe flow velocity = 3.87(Ft/s) Travel time through pipe = 1.02 min. Time of concentration (TC) = 10.41 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 32.000 to Point/Station 32.000 **** SUBAREA FLOW ADDITION **** ______________________________________________________________________ Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (14.5 DU/A or Less ) Impervious value, Ai = 0.500 Sub-Area C Value = 0.630 Time of concentration = 10.41 min. Rainfall intensity = 4.268(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.630 CA = 3.028 Subarea runoff = 10.005(CFS) for 3.707(Ac.) Total runoff = 12.924(CFS) Total area = 4.806(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 32.000 to Point/Station 33.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 181.550(Ft.) Downstream point/station elevation = 181.110(Ft.) Pipe length = 88.50(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 12.924(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 12.924(CFS) Normal flow depth in pipe = 16.38(In.) Flow top width inside pipe = 22.34(In.) Critical Depth = 15.51(In.) Pipe flow velocity = 5.65(Ft/s) Travel time through pipe = 0.26 min. Time of concentration (TC) = 10.67 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 33.000 to Point/Station 33.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 3 in normal stream number 1 Stream flow area = 4.806(Ac.) Runoff from this stream = 12.924(CFS) Time of concentration = 10.67 min. Rainfall intensity = 4.201(In/Hr) STORMDRAIN LINE A – OUTFALL 1 100 YEAR POST-DEVELOPMENT Page 11 of 21 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 7.000 to Point/Station 15.000 **** INITIAL AREA EVALUATION **** ______________________________________________________________________ Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (14.5 DU/A or Less ) Impervious value, Ai = 0.500 Sub-Area C Value = 0.630 Initial subarea total flow distance = 128.000(Ft.) Highest elevation = 190.600(Ft.) Lowest elevation = 189.550(Ft.) Elevation difference = 1.050(Ft.) Slope = 0.820 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 65.00 (Ft) for the top area slope value of 0.82 %, in a development type of 14.5 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.29 minutes TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] TC = [1.8*(1.1-0.6300)*( 65.000^.5)/( 0.820^(1/3)]= 7.29 The initial area total distance of 128.00 (Ft.) entered leaves a remaining distance of 63.00 (Ft.) Using Figure 3-4, the travel time for this distance is 1.21 minutes for a distance of 63.00 (Ft.) and a slope of 0.82 % with an elevation difference of 0.52(Ft.) from the end of the top area Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr) = 1.206 Minutes Tt=[(11.9*0.0119^3)/( 0.52)]^.385= 1.21 Total initial area Ti = 7.29 minutes from Figure 3-3 formula plus 1.21 minutes from the Figure 3-4 formula = 8.49 minutes Rainfall intensity (I) = 4.867(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.630 Subarea runoff = 0.411(CFS) Total initial stream area = 0.134(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 15.000 to Point/Station 33.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 185.550(Ft.) Downstream point/station elevation = 185.020(Ft.) Pipe length = 53.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.411(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 0.411(CFS) Normal flow depth in pipe = 2.75(In.) Flow top width inside pipe = 10.09(In.) Critical Depth = 3.18(In.) Pipe flow velocity = 3.02(Ft/s) Travel time through pipe = 0.29 min. Time of concentration (TC) = 8.78 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 33.000 to Point/Station 33.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 3 in normal stream number 2 Stream flow area = 0.134(Ac.) Runoff from this stream = 0.411(CFS) Time of concentration = 8.78 min. Rainfall intensity = 4.762(In/Hr) Summary of stream data: STORMDRAIN LINE A – OUTFALL 1 100 YEAR POST-DEVELOPMENT Page 12 of 21 Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 12.924 10.67 4.201 2 0.411 8.78 4.762 Qmax(1) = 1.000 * 1.000 * 12.924) + 0.882 * 1.000 * 0.411) + = 13.286 Qmax(2) = 1.000 * 0.823 * 12.924) + 1.000 * 1.000 * 0.411) + = 11.050 Total of 2 streams to confluence: Flow rates before confluence point: 12.924 0.411 Maximum flow rates at confluence using above data: 13.286 11.050 Area of streams before confluence: 4.806 0.134 Results of confluence: Total flow rate = 13.286(CFS) Time of concentration = 10.672 min. Effective stream area after confluence = 4.940(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 33.000 to Point/Station 35.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 181.110(Ft.) Downstream point/station elevation = 180.300(Ft.) Pipe length = 162.20(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 13.286(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 13.286(CFS) Normal flow depth in pipe = 14.26(In.) Flow top width inside pipe = 29.96(In.) Critical Depth = 14.70(In.) Pipe flow velocity = 5.78(Ft/s) Travel time through pipe = 0.47 min. Time of concentration (TC) = 11.14 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 35.000 to Point/Station 35.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 3 in normal stream number 1 Stream flow area = 4.940(Ac.) Runoff from this stream = 13.286(CFS) Time of concentration = 11.14 min. Rainfall intensity = 4.086(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 34.000 to Point/Station 13.000 **** INITIAL AREA EVALUATION **** ______________________________________________________________________ Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (14.5 DU/A or Less ) Impervious value, Ai = 0.500 Sub-Area C Value = 0.630 Initial subarea total flow distance = 119.000(Ft.) STORMDRAIN LINE A – OUTFALL 1 100 YEAR POST-DEVELOPMENT Page 13 of 21 Highest elevation = 190.640(Ft.) Lowest elevation = 189.200(Ft.) Elevation difference = 1.440(Ft.) Slope = 1.210 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 65.00 (Ft) for the top area slope value of 1.21 %, in a development type of 14.5 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.40 minutes TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] TC = [1.8*(1.1-0.6300)*( 65.000^.5)/( 1.210^(1/3)]= 6.40 The initial area total distance of 119.00 (Ft.) entered leaves a remaining distance of 54.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.92 minutes for a distance of 54.00 (Ft.) and a slope of 1.21 % with an elevation difference of 0.65(Ft.) from the end of the top area Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr) = 0.922 Minutes Tt=[(11.9*0.0102^3)/( 0.65)]^.385= 0.92 Total initial area Ti = 6.40 minutes from Figure 3-3 formula plus 0.92 minutes from the Figure 3-4 formula = 7.32 minutes Rainfall intensity (I) = 5.356(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.630 Subarea runoff = 0.337(CFS) Total initial stream area = 0.100(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 13.000 to Point/Station 35.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 185.200(Ft.) Downstream point/station elevation = 180.300(Ft.) Pipe length = 48.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.337(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 0.337(CFS) Normal flow depth in pipe = 1.42(In.) Flow top width inside pipe = 7.74(In.) Critical Depth = 2.87(In.) Pipe flow velocity = 6.46(Ft/s) Travel time through pipe = 0.12 min. Time of concentration (TC) = 7.45 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 35.000 to Point/Station 35.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 3 in normal stream number 2 Stream flow area = 0.100(Ac.) Runoff from this stream = 0.337(CFS) Time of concentration = 7.45 min. Rainfall intensity = 5.298(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 5.000 to Point/Station 6.000 **** INITIAL AREA EVALUATION **** ______________________________________________________________________ Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (14.5 DU/A or Less ) Impervious value, Ai = 0.500 Sub-Area C Value = 0.630 Initial subarea total flow distance = 221.000(Ft.) Highest elevation = 191.000(Ft.) Lowest elevation = 189.200(Ft.) STORMDRAIN LINE A – OUTFALL 1 100 YEAR POST-DEVELOPMENT Page 14 of 21 Elevation difference = 1.800(Ft.) Slope = 0.814 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 65.00 (Ft) for the top area slope value of 0.81 %, in a development type of 14.5 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.30 minutes TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] TC = [1.8*(1.1-0.6300)*( 65.000^.5)/( 0.814^(1/3)]= 7.30 The initial area total distance of 221.00 (Ft.) entered leaves a remaining distance of 156.00 (Ft.) Using Figure 3-4, the travel time for this distance is 2.43 minutes for a distance of 156.00 (Ft.) and a slope of 0.81 % with an elevation difference of 1.27(Ft.) from the end of the top area Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr) = 2.431 Minutes Tt=[(11.9*0.0295^3)/( 1.27)]^.385= 2.43 Total initial area Ti = 7.30 minutes from Figure 3-3 formula plus 2.43 minutes from the Figure 3-4 formula = 9.74 minutes Rainfall intensity (I) = 4.457(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.630 Subarea runoff = 0.702(CFS) Total initial stream area = 0.250(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 6.000 to Point/Station 35.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 185.200(Ft.) Downstream point/station elevation = 180.300(Ft.) Pipe length = 5.60(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.702(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 0.702(CFS) Normal flow depth in pipe = 1.21(In.) Flow top width inside pipe = 7.22(In.) Critical Depth = 4.19(In.) Pipe flow velocity = 17.07(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 9.74 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 35.000 to Point/Station 35.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 3 in normal stream number 3 Stream flow area = 0.250(Ac.) Runoff from this stream = 0.702(CFS) Time of concentration = 9.74 min. Rainfall intensity = 4.455(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 13.286 11.14 4.086 2 0.337 7.45 5.298 3 0.702 9.74 4.455 Qmax(1) = 1.000 * 1.000 * 13.286) + 0.771 * 1.000 * 0.337) + 0.917 * 1.000 * 0.702) + = 14.190 Qmax(2) = 1.000 * 0.668 * 13.286) + 1.000 * 1.000 * 0.337) + 1.000 * 0.764 * 0.702) + = 9.756 Qmax(3) = 1.000 * 0.874 * 13.286) + STORMDRAIN LINE A – OUTFALL 1 100 YEAR POST-DEVELOPMENT Page 15 of 21 0.841 * 1.000 * 0.337) + 1.000 * 1.000 * 0.702) + = 12.604 Total of 3 streams to confluence: Flow rates before confluence point: 13.286 0.337 0.702 Maximum flow rates at confluence using above data: 14.190 9.756 12.604 Area of streams before confluence: 4.940 0.100 0.250 Results of confluence: Total flow rate = 14.190(CFS) Time of concentration = 11.140 min. Effective stream area after confluence = 5.290(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 35.000 to Point/Station 103.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 180.300(Ft.) Downstream point/station elevation = 179.860(Ft.) Pipe length = 88.50(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 14.190(CFS) Given pipe size = 30.00(In.) Calculated individual pipe flow = 14.190(CFS) Normal flow depth in pipe = 14.84(In.) Flow top width inside pipe = 30.00(In.) Critical Depth = 15.21(In.) Pipe flow velocity = 5.86(Ft/s) Travel time through pipe = 0.25 min. Time of concentration (TC) = 11.39 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.000 to Point/Station 103.000 **** CONFLUENCE OF MAIN STREAMS **** ______________________________________________________________________ The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 5.290(Ac.) Runoff from this stream = 14.190(CFS) Time of concentration = 11.39 min. Rainfall intensity = 4.028(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 45.782 5.59 6.376 2 0.708 8.10 5.017 3 14.190 11.39 4.028 Qmax(1) = 1.000 * 1.000 * 45.782) + 1.000 * 0.690 * 0.708) + 1.000 * 0.491 * 14.190) + = 53.231 Qmax(2) = 0.787 * 1.000 * 45.782) + 1.000 * 1.000 * 0.708) + 1.000 * 0.711 * 14.190) + = 46.826 Qmax(3) = 0.632 * 1.000 * 45.782) + 0.803 * 1.000 * 0.708) + 1.000 * 1.000 * 14.190) + = 43.678 Total of 3 main streams to confluence: Flow rates before confluence point: 45.782 0.708 14.190 Maximum flow rates at confluence using above data: 53.231 46.826 43.678 STORMDRAIN LINE A – OUTFALL 1 100 YEAR POST-DEVELOPMENT Page 16 of 21 Area of streams before confluence: 10.407 0.220 5.290 Results of confluence: Total flow rate = 53.231(CFS) Time of concentration = 5.588 min. Effective stream area after confluence = 15.917(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.000 to Point/Station 104.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 179.860(Ft.) Downstream point/station elevation = 179.460(Ft.) Pipe length = 80.20(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 53.231(CFS) Given pipe size = 48.00(In.) Calculated individual pipe flow = 53.231(CFS) Normal flow depth in pipe = 24.70(In.) Flow top width inside pipe = 47.98(In.) Critical Depth = 26.29(In.) Pipe flow velocity = 8.17(Ft/s) Travel time through pipe = 0.16 min. Time of concentration (TC) = 5.75 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 104.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 1 in normal stream number 1 Stream flow area = 15.917(Ac.) Runoff from this stream = 53.231(CFS) Time of concentration = 5.75 min. Rainfall intensity = 6.259(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 36.000 to Point/Station 37.000 **** INITIAL AREA EVALUATION **** ______________________________________________________________________ Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (14.5 DU/A or Less ) Impervious value, Ai = 0.500 Sub-Area C Value = 0.630 Initial subarea total flow distance = 120.000(Ft.) Highest elevation = 194.000(Ft.) Lowest elevation = 192.800(Ft.) Elevation difference = 1.200(Ft.) Slope = 1.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 65.00 (Ft) for the top area slope value of 1.00 %, in a development type of 14.5 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.82 minutes TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] TC = [1.8*(1.1-0.6300)*( 65.000^.5)/( 1.000^(1/3)]= 6.82 The initial area total distance of 120.00 (Ft.) entered leaves a remaining distance of 55.00 (Ft.) Using Figure 3-4, the travel time for this distance is 1.01 minutes for a distance of 55.00 (Ft.) and a slope of 1.00 % with an elevation difference of 0.55(Ft.) from the end of the top area Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr) = 1.006 Minutes Tt=[(11.9*0.0104^3)/( 0.55)]^.385= 1.01 STORMDRAIN LINE A – OUTFALL 1 100 YEAR POST-DEVELOPMENT Page 17 of 21 Total initial area Ti = 6.82 minutes from Figure 3-3 formula plus 1.01 minutes from the Figure 3-4 formula = 7.83 minutes Rainfall intensity (I) = 5.131(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.630 Subarea runoff = 0.420(CFS) Total initial stream area = 0.130(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 37.000 to Point/Station 38.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 192.800(Ft.) Downstream point/station elevation = 187.400(Ft.) Pipe length = 158.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.420(CFS) Given pipe size = 8.00(In.) Calculated individual pipe flow = 0.420(CFS) Normal flow depth in pipe = 2.35(In.) Flow top width inside pipe = 7.29(In.) Critical Depth = 3.63(In.) Pipe flow velocity = 4.91(Ft/s) Travel time through pipe = 0.54 min. Time of concentration (TC) = 8.36 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 37.000 to Point/Station 38.000 **** SUBAREA FLOW ADDITION **** ______________________________________________________________________ User specified 'C' value of 0.630 given for subarea Time of concentration = 8.36 min. Rainfall intensity = 4.916(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.630 CA = 0.208 Subarea runoff = 0.602(CFS) for 0.200(Ac.) Total runoff = 1.022(CFS) Total area = 0.330(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 38.000 to Point/Station 104.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 187.400(Ft.) Downstream point/station elevation = 104.000(Ft.) Pipe length = 192.50(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.022(CFS) Given pipe size = 8.00(In.) Calculated individual pipe flow = 1.022(CFS) Normal flow depth in pipe = 1.94(In.) Flow top width inside pipe = 6.85(In.) Critical Depth = 5.76(In.) Pipe flow velocity = 15.67(Ft/s) Travel time through pipe = 0.20 min. Time of concentration (TC) = 8.57 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 38.000 to Point/Station 104.000 **** SUBAREA FLOW ADDITION **** ______________________________________________________________________ User specified 'C' value of 0.630 given for subarea Time of concentration = 8.57 min. Rainfall intensity = 4.840(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.630 CA = 0.476 Subarea runoff = 1.280(CFS) for 0.425(Ac.) Total runoff = 2.302(CFS) Total area = 0.755(Ac.) STORMDRAIN LINE A – OUTFALL 1 100 YEAR POST-DEVELOPMENT Page 18 of 21 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 104.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.755(Ac.) Runoff from this stream = 2.302(CFS) Time of concentration = 8.57 min. Rainfall intensity = 4.840(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 39.000 to Point/Station 40.000 **** INITIAL AREA EVALUATION **** ______________________________________________________________________ Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (14.5 DU/A or Less ) Impervious value, Ai = 0.500 Sub-Area C Value = 0.630 Initial subarea total flow distance = 95.000(Ft.) Highest elevation = 190.000(Ft.) Lowest elevation = 189.000(Ft.) Elevation difference = 1.000(Ft.) Slope = 1.053 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 65.00 (Ft) for the top area slope value of 1.05 %, in a development type of 14.5 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.70 minutes TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] TC = [1.8*(1.1-0.6300)*( 65.000^.5)/( 1.053^(1/3)]= 6.70 The initial area total distance of 95.00 (Ft.) entered leaves a remaining distance of 30.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.62 minutes for a distance of 30.00 (Ft.) and a slope of 1.05 % with an elevation difference of 0.32(Ft.) from the end of the top area Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr) = 0.619 Minutes Tt=[(11.9*0.0057^3)/( 0.32)]^.385= 0.62 Total initial area Ti = 6.70 minutes from Figure 3-3 formula plus 0.62 minutes from the Figure 3-4 formula = 7.32 minutes Rainfall intensity (I) = 5.356(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.630 Subarea runoff = 0.648(CFS) Total initial stream area = 0.192(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 40.000 to Point/Station 41.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 186.050(Ft.) Downstream point/station elevation = 184.970(Ft.) Pipe length = 108.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.648(CFS) Given pipe size = 8.00(In.) Calculated individual pipe flow = 0.648(CFS) Normal flow depth in pipe = 4.17(In.) Flow top width inside pipe = 7.99(In.) Critical Depth = 4.55(In.) Pipe flow velocity = 3.52(Ft/s) Travel time through pipe = 0.51 min. Time of concentration (TC) = 7.83 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 40.000 to Point/Station 41.000 STORMDRAIN LINE A – OUTFALL 1 100 YEAR POST-DEVELOPMENT Page 19 of 21 **** SUBAREA FLOW ADDITION **** ______________________________________________________________________ User specified 'C' value of 0.630 given for subarea Time of concentration = 7.83 min. Rainfall intensity = 5.128(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.630 CA = 0.231 Subarea runoff = 0.535(CFS) for 0.174(Ac.) Total runoff = 1.182(CFS) Total area = 0.366(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 41.000 to Point/Station 104.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 184.970(Ft.) Downstream point/station elevation = 183.040(Ft.) Pipe length = 195.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.182(CFS) Given pipe size = 8.00(In.) Calculated individual pipe flow = 1.182(CFS) Normal flow depth in pipe = 6.44(In.) Flow top width inside pipe = 6.34(In.) Critical Depth = 6.18(In.) Pipe flow velocity = 3.93(Ft/s) Travel time through pipe = 0.83 min. Time of concentration (TC) = 8.66 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 41.000 to Point/Station 104.000 **** SUBAREA FLOW ADDITION **** ______________________________________________________________________ User specified 'C' value of 0.630 given for subarea Time of concentration = 8.66 min. Rainfall intensity = 4.806(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.630 CA = 0.451 Subarea runoff = 0.986(CFS) for 0.350(Ac.) Total runoff = 2.168(CFS) Total area = 0.716(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 104.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 1 in normal stream number 3 Stream flow area = 0.716(Ac.) Runoff from this stream = 2.168(CFS) Time of concentration = 8.66 min. Rainfall intensity = 4.806(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 53.231 5.75 6.259 2 2.302 8.57 4.840 3 2.168 8.66 4.806 Qmax(1) = 1.000 * 1.000 * 53.231) + 1.000 * 0.671 * 2.302) + 1.000 * 0.664 * 2.168) + = 56.216 Qmax(2) = 0.773 * 1.000 * 53.231) + 1.000 * 1.000 * 2.302) + 1.000 * 0.989 * 2.168) + = 45.611 Qmax(3) = 0.768 * 1.000 * 53.231) + STORMDRAIN LINE A – OUTFALL 1 100 YEAR POST-DEVELOPMENT Page 20 of 21 0.993 * 1.000 * 2.302) + 1.000 * 1.000 * 2.168) + = 45.331 Total of 3 streams to confluence: Flow rates before confluence point: 53.231 2.302 2.168 Maximum flow rates at confluence using above data: 56.216 45.611 45.331 Area of streams before confluence: 15.917 0.755 0.716 Results of confluence: Total flow rate = 56.216(CFS) Time of concentration = 5.752 min. Effective stream area after confluence = 17.388(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 105.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 179.430(Ft.) Downstream point/station elevation = 179.240(Ft.) Pipe length = 37.40(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 56.216(CFS) Given pipe size = 48.00(In.) Calculated individual pipe flow = 56.216(CFS) Normal flow depth in pipe = 25.38(In.) Flow top width inside pipe = 47.92(In.) Critical Depth = 27.04(In.) Pipe flow velocity = 8.34(Ft/s) Travel time through pipe = 0.07 min. Time of concentration (TC) = 5.83 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 105.000 to Point/Station 106.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** ______________________________________________________________________ Depth of flow = 1.215(Ft.), Average velocity = 3.036(Ft/s) ******* Irregular Channel Data *********** ----------------------------------------------------------------- Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 1.64 2 6.00 0.00 3 11.00 0.00 4 24.98 1.04 5 44.34 10.26 Manning's 'N' friction factor = 0.035 ----------------------------------------------------------------- Sub-Channel flow = 56.217(CFS) ' ' flow top width = 23.790(Ft.) ' ' velocity= 3.036(Ft/s) ' ' area = 18.514(Sq.Ft) ' ' Froude number = 0.607 Upstream point elevation = 179.240(Ft.) Downstream point elevation = 175.700(Ft.) Flow length = 488.800(Ft.) Travel time = 2.68 min. Time of concentration = 8.51 min. Depth of flow = 1.215(Ft.) Average velocity = 3.036(Ft/s) Total irregular channel flow = 56.216(CFS) Irregular channel normal depth above invert elev. = 1.215(Ft.) Average velocity of channel(s) = 3.036(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 105.000 to Point/Station 106.000 **** SUBAREA FLOW ADDITION **** STORMDRAIN LINE A – OUTFALL 1 100 YEAR POST-DEVELOPMENT Page 21 of 21 ______________________________________________________________________ User specified 'C' value of 0.630 given for subarea The area added to the existing stream causes a a lower flow rate of Q = 53.897(CFS) therefore the upstream flow rate of Q = 56.216(CFS) is being used Time of concentration = 8.51 min. Rainfall intensity = 4.861(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.630 CA = 11.087 Subarea runoff = 0.000(CFS) for 0.210(Ac.) Total runoff = 56.216(CFS) Total area = 17.598(Ac.) End of computations, total study area = 17.598 (Ac.) STORMDRAIN LINE B – OUTFALL 2 100 YEAR POST-DEVELOPMENT Page 1 of 18 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7.4 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 10/03/11 ------------------------------------------------------------------------ CT 03-02 CARLSBAD RANCH PLANNING AREA 5 - MARBRISA SITE PHASE 2 100 YEAR STORM, POST-DEVELOPMENT OUTFALL 2 - NODES 50 TO 76, NODES 76-106 AND 107 FILENAME: 11008OUTFALL2.RD3 ------------------------------------------------------------------------ ********* Hydrology Study Control Information ********** ------------------------------------------------------------------------ Program License Serial Number 4012 ------------------------------------------------------------------------ Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.500 P6/P24 = 57.8% San Diego hydrology manual 'C' values used ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 50.000 to Point/Station 51.000 **** INITIAL AREA EVALUATION **** ______________________________________________________________________ Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (14.5 DU/A or Less ) Impervious value, Ai = 0.500 Sub-Area C Value = 0.630 Initial subarea total flow distance = 192.000(Ft.) Highest elevation = 191.200(Ft.) Lowest elevation = 189.500(Ft.) Elevation difference = 1.700(Ft.) Slope = 0.885 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 65.00 (Ft) for the top area slope value of 0.89 %, in a development type of 14.5 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.10 minutes TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] TC = [1.8*(1.1-0.6300)*( 65.000^.5)/( 0.885^(1/3)]= 7.10 The initial area total distance of 192.00 (Ft.) entered leaves a remaining distance of 127.00 (Ft.) Using Figure 3-4, the travel time for this distance is 2.01 minutes for a distance of 127.00 (Ft.) and a slope of 0.89 % with an elevation difference of 1.12(Ft.) from the end of the top area Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr) = 2.009 Minutes Tt=[(11.9*0.0241^3)/( 1.12)]^.385= 2.01 Total initial area Ti = 7.10 minutes from Figure 3-3 formula plus 2.01 minutes from the Figure 3-4 formula = 9.11 minutes Rainfall intensity (I) = 4.651(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.630 Subarea runoff = 0.656(CFS) Total initial stream area = 0.224(Ac.) STORMDRAIN LINE B – OUTFALL 2 100 YEAR POST-DEVELOPMENT Page 2 of 18 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 51.000 to Point/Station 53.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 186.500(Ft.) Downstream point/station elevation = 185.430(Ft.) Pipe length = 37.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.656(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 0.656(CFS) Normal flow depth in pipe = 2.67(In.) Flow top width inside pipe = 9.98(In.) Critical Depth = 4.05(In.) Pipe flow velocity = 5.05(Ft/s) Travel time through pipe = 0.12 min. Time of concentration (TC) = 9.24 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 53.000 to Point/Station 53.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 1 in normal stream number 1 Stream flow area = 0.224(Ac.) Runoff from this stream = 0.656(CFS) Time of concentration = 9.24 min. Rainfall intensity = 4.611(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 52.000 to Point/Station 53.000 **** INITIAL AREA EVALUATION **** ______________________________________________________________________ Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (14.5 DU/A or Less ) Impervious value, Ai = 0.500 Sub-Area C Value = 0.630 Initial subarea total flow distance = 202.000(Ft.) Highest elevation = 190.870(Ft.) Lowest elevation = 189.800(Ft.) Elevation difference = 1.070(Ft.) Slope = 0.530 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 50.00 (Ft) for the top area slope value of 0.53 %, in a development type of 14.5 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.39 minutes TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] TC = [1.8*(1.1-0.6300)*( 50.000^.5)/( 0.530^(1/3)]= 7.39 The initial area total distance of 202.00 (Ft.) entered leaves a remaining distance of 152.00 (Ft.) Using Figure 3-4, the travel time for this distance is 2.81 minutes for a distance of 152.00 (Ft.) and a slope of 0.53 % with an elevation difference of 0.81(Ft.) from the end of the top area Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr) = 2.810 Minutes Tt=[(11.9*0.0288^3)/( 0.81)]^.385= 2.81 Total initial area Ti = 7.39 minutes from Figure 3-3 formula plus 2.81 minutes from the Figure 3-4 formula = 10.20 minutes Rainfall intensity (I) = 4.324(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.630 Subarea runoff = 1.891(CFS) Total initial stream area = 0.694(Ac.) STORMDRAIN LINE B – OUTFALL 2 100 YEAR POST-DEVELOPMENT Page 3 of 18 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 53.000 to Point/Station 53.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.694(Ac.) Runoff from this stream = 1.891(CFS) Time of concentration = 10.20 min. Rainfall intensity = 4.324(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 0.656 9.24 4.611 2 1.891 10.20 4.324 Qmax(1) = 1.000 * 1.000 * 0.656) + 1.000 * 0.905 * 1.891) + = 2.368 Qmax(2) = 0.938 * 1.000 * 0.656) + 1.000 * 1.000 * 1.891) + = 2.506 Total of 2 streams to confluence: Flow rates before confluence point: 0.656 1.891 Maximum flow rates at confluence using above data: 2.368 2.506 Area of streams before confluence: 0.224 0.694 Results of confluence: Total flow rate = 2.506(CFS) Time of concentration = 10.202 min. Effective stream area after confluence = 0.918(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 53.000 to Point/Station 55.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 185.430(Ft.) Downstream point/station elevation = 185.140(Ft.) Pipe length = 32.70(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 2.506(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 2.506(CFS) Normal flow depth in pipe = 6.18(In.) Flow top width inside pipe = 17.09(In.) Critical Depth = 7.19(In.) Pipe flow velocity = 4.67(Ft/s) Travel time through pipe = 0.12 min. Time of concentration (TC) = 10.32 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 55.000 to Point/Station 55.000 **** SUBAREA FLOW ADDITION **** ______________________________________________________________________ User specified 'C' value of 0.630 given for subarea Time of concentration = 10.32 min. Rainfall intensity = 4.293(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.630 CA = 0.747 Subarea runoff = 0.701(CFS) for 0.268(Ac.) Total runoff = 3.208(CFS) Total area = 1.186(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 55.000 to Point/Station 58.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ STORMDRAIN LINE B – OUTFALL 2 100 YEAR POST-DEVELOPMENT Page 4 of 18 Upstream point/station elevation = 185.140(Ft.) Downstream point/station elevation = 183.920(Ft.) Pipe length = 187.60(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.208(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.208(CFS) Normal flow depth in pipe = 7.68(In.) Flow top width inside pipe = 17.80(In.) Critical Depth = 8.18(In.) Pipe flow velocity = 4.46(Ft/s) Travel time through pipe = 0.70 min. Time of concentration (TC) = 11.02 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 58.000 to Point/Station 58.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 1 in normal stream number 1 Stream flow area = 1.186(Ac.) Runoff from this stream = 3.208(CFS) Time of concentration = 11.02 min. Rainfall intensity = 4.115(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 56.000 to Point/Station 57.000 **** INITIAL AREA EVALUATION **** ______________________________________________________________________ Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (14.5 DU/A or Less ) Impervious value, Ai = 0.500 Sub-Area C Value = 0.630 Initial subarea total flow distance = 168.000(Ft.) Highest elevation = 190.200(Ft.) Lowest elevation = 189.330(Ft.) Elevation difference = 0.870(Ft.) Slope = 0.518 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 50.00 (Ft) for the top area slope value of 0.52 %, in a development type of 14.5 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.45 minutes TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] TC = [1.8*(1.1-0.6300)*( 50.000^.5)/( 0.518^(1/3)]= 7.45 The initial area total distance of 168.00 (Ft.) entered leaves a remaining distance of 118.00 (Ft.) Using Figure 3-4, the travel time for this distance is 2.33 minutes for a distance of 118.00 (Ft.) and a slope of 0.52 % with an elevation difference of 0.61(Ft.) from the end of the top area Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr) = 2.333 Minutes Tt=[(11.9*0.0223^3)/( 0.61)]^.385= 2.33 Total initial area Ti = 7.45 minutes from Figure 3-3 formula plus 2.33 minutes from the Figure 3-4 formula = 9.78 minutes Rainfall intensity (I) = 4.444(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.630 Subarea runoff = 0.677(CFS) Total initial stream area = 0.242(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 57.000 to Point/Station 57.000 **** SUBAREA FLOW ADDITION **** ______________________________________________________________________ User specified 'C' value of 0.630 given for subarea Time of concentration = 9.78 min. Rainfall intensity = 4.444(In/Hr) for a 100.0 year storm STORMDRAIN LINE B – OUTFALL 2 100 YEAR POST-DEVELOPMENT Page 5 of 18 Effective runoff coefficient used for total area (Q=KCIA) is C = 0.630 CA = 0.307 Subarea runoff = 0.686(CFS) for 0.245(Ac.) Total runoff = 1.363(CFS) Total area = 0.487(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 57.000 to Point/Station 58.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 185.770(Ft.) Downstream point/station elevation = 183.920(Ft.) Pipe length = 6.30(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.363(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 1.363(CFS) Normal flow depth in pipe = 2.16(In.) Flow top width inside pipe = 9.22(In.) Critical Depth = 5.93(In.) Pipe flow velocity = 14.19(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 9.79 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 58.000 to Point/Station 58.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.487(Ac.) Runoff from this stream = 1.363(CFS) Time of concentration = 9.79 min. Rainfall intensity = 4.441(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 3.208 11.02 4.115 2 1.363 9.79 4.441 Qmax(1) = 1.000 * 1.000 * 3.208) + 0.926 * 1.000 * 1.363) + = 4.471 Qmax(2) = 1.000 * 0.888 * 3.208) + 1.000 * 1.000 * 1.363) + = 4.213 Total of 2 streams to confluence: Flow rates before confluence point: 3.208 1.363 Maximum flow rates at confluence using above data: 4.471 4.213 Area of streams before confluence: 1.186 0.487 Results of confluence: Total flow rate = 4.471(CFS) Time of concentration = 11.020 min. Effective stream area after confluence = 1.673(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 58.000 to Point/Station 61.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 183.920(Ft.) Downstream point/station elevation = 183.610(Ft.) Pipe length = 62.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.471(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 4.471(CFS) Normal flow depth in pipe = 10.07(In.) STORMDRAIN LINE B – OUTFALL 2 100 YEAR POST-DEVELOPMENT Page 6 of 18 Flow top width inside pipe = 17.87(In.) Critical Depth = 9.75(In.) Pipe flow velocity = 4.40(Ft/s) Travel time through pipe = 0.24 min. Time of concentration (TC) = 11.26 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 61.000 to Point/Station 61.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 1 in normal stream number 1 Stream flow area = 1.673(Ac.) Runoff from this stream = 4.471(CFS) Time of concentration = 11.26 min. Rainfall intensity = 4.059(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 59.000 to Point/Station 60.000 **** INITIAL AREA EVALUATION **** ______________________________________________________________________ Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (14.5 DU/A or Less ) Impervious value, Ai = 0.500 Sub-Area C Value = 0.630 Initial subarea total flow distance = 110.000(Ft.) Highest elevation = 190.600(Ft.) Lowest elevation = 189.650(Ft.) Elevation difference = 0.950(Ft.) Slope = 0.864 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 65.00 (Ft) for the top area slope value of 0.86 %, in a development type of 14.5 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.16 minutes TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] TC = [1.8*(1.1-0.6300)*( 65.000^.5)/( 0.864^(1/3)]= 7.16 The initial area total distance of 110.00 (Ft.) entered leaves a remaining distance of 45.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.91 minutes for a distance of 45.00 (Ft.) and a slope of 0.86 % with an elevation difference of 0.39(Ft.) from the end of the top area Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr) = 0.912 Minutes Tt=[(11.9*0.0085^3)/( 0.39)]^.385= 0.91 Total initial area Ti = 7.16 minutes from Figure 3-3 formula plus 0.91 minutes from the Figure 3-4 formula = 8.07 minutes Rainfall intensity (I) = 5.029(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.630 Subarea runoff = 0.783(CFS) Total initial stream area = 0.247(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 60.000 to Point/Station 61.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 186.300(Ft.) Downstream point/station elevation = 183.610(Ft.) Pipe length = 89.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.783(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 0.783(CFS) Normal flow depth in pipe = 2.88(In.) Flow top width inside pipe = 10.25(In.) Critical Depth = 4.43(In.) STORMDRAIN LINE B – OUTFALL 2 100 YEAR POST-DEVELOPMENT Page 7 of 18 Pipe flow velocity = 5.40(Ft/s) Travel time through pipe = 0.27 min. Time of concentration (TC) = 8.35 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 61.000 to Point/Station 61.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.247(Ac.) Runoff from this stream = 0.783(CFS) Time of concentration = 8.35 min. Rainfall intensity = 4.922(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 4.471 11.26 4.059 2 0.783 8.35 4.922 Qmax(1) = 1.000 * 1.000 * 4.471) + 0.825 * 1.000 * 0.783) + = 5.116 Qmax(2) = 1.000 * 0.742 * 4.471) + 1.000 * 1.000 * 0.783) + = 4.098 Total of 2 streams to confluence: Flow rates before confluence point: 4.471 0.783 Maximum flow rates at confluence using above data: 5.116 4.098 Area of streams before confluence: 1.673 0.247 Results of confluence: Total flow rate = 5.116(CFS) Time of concentration = 11.255 min. Effective stream area after confluence = 1.920(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 61.000 to Point/Station 64.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 183.610(Ft.) Downstream point/station elevation = 183.540(Ft.) Pipe length = 13.20(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.116(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 5.116(CFS) Normal flow depth in pipe = 10.77(In.) Flow top width inside pipe = 17.65(In.) Critical Depth = 10.45(In.) Pipe flow velocity = 4.64(Ft/s) Travel time through pipe = 0.05 min. Time of concentration (TC) = 11.30 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 64.000 to Point/Station 64.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 1 in normal stream number 1 Stream flow area = 1.920(Ac.) Runoff from this stream = 5.116(CFS) Time of concentration = 11.30 min. Rainfall intensity = 4.048(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ STORMDRAIN LINE B – OUTFALL 2 100 YEAR POST-DEVELOPMENT Page 8 of 18 Process from Point/Station 62.000 to Point/Station 63.000 **** INITIAL AREA EVALUATION **** ______________________________________________________________________ Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (14.5 DU/A or Less ) Impervious value, Ai = 0.500 Sub-Area C Value = 0.630 Initial subarea total flow distance = 207.000(Ft.) Highest elevation = 198.700(Ft.) Lowest elevation = 190.420(Ft.) Elevation difference = 8.280(Ft.) Slope = 4.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 4.00 %, in a development type of 14.5 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 5.33 minutes TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] TC = [1.8*(1.1-0.6300)*( 100.000^.5)/( 4.000^(1/3)]= 5.33 The initial area total distance of 207.00 (Ft.) entered leaves a remaining distance of 107.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.98 minutes for a distance of 107.00 (Ft.) and a slope of 4.00 % with an elevation difference of 4.28(Ft.) from the end of the top area Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr) = 0.985 Minutes Tt=[(11.9*0.0203^3)/( 4.28)]^.385= 0.98 Total initial area Ti = 5.33 minutes from Figure 3-3 formula plus 0.98 minutes from the Figure 3-4 formula = 6.31 minutes Rainfall intensity (I) = 5.893(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.630 Subarea runoff = 0.791(CFS) Total initial stream area = 0.213(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 63.000 to Point/Station 64.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 185.420(Ft.) Downstream point/station elevation = 183.540(Ft.) Pipe length = 15.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.791(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 0.791(CFS) Normal flow depth in pipe = 2.04(In.) Flow top width inside pipe = 9.01(In.) Critical Depth = 4.45(In.) Pipe flow velocity = 8.95(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 6.34 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 64.000 to Point/Station 64.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.213(Ac.) Runoff from this stream = 0.791(CFS) Time of concentration = 6.34 min. Rainfall intensity = 5.876(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) STORMDRAIN LINE B – OUTFALL 2 100 YEAR POST-DEVELOPMENT Page 9 of 18 1 5.116 11.30 4.048 2 0.791 6.34 5.876 Qmax(1) = 1.000 * 1.000 * 5.116) + 0.689 * 1.000 * 0.791) + = 5.661 Qmax(2) = 1.000 * 0.561 * 5.116) + 1.000 * 1.000 * 0.791) + = 3.662 Total of 2 streams to confluence: Flow rates before confluence point: 5.116 0.791 Maximum flow rates at confluence using above data: 5.661 3.662 Area of streams before confluence: 1.920 0.213 Results of confluence: Total flow rate = 5.661(CFS) Time of concentration = 11.303 min. Effective stream area after confluence = 2.133(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 64.000 to Point/Station 66.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 183.540(Ft.) Downstream point/station elevation = 182.820(Ft.) Pipe length = 161.50(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.661(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 5.661(CFS) Normal flow depth in pipe = 12.26(In.) Flow top width inside pipe = 16.78(In.) Critical Depth = 11.01(In.) Pipe flow velocity = 4.42(Ft/s) Travel time through pipe = 0.61 min. Time of concentration (TC) = 11.91 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 66.000 to Point/Station 66.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 1 in normal stream number 1 Stream flow area = 2.133(Ac.) Runoff from this stream = 5.661(CFS) Time of concentration = 11.91 min. Rainfall intensity = 3.913(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 7.000 to Point/Station 65.000 **** INITIAL AREA EVALUATION **** ______________________________________________________________________ Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (14.5 DU/A or Less ) Impervious value, Ai = 0.500 Sub-Area C Value = 0.630 Initial subarea total flow distance = 101.000(Ft.) Highest elevation = 190.600(Ft.) Lowest elevation = 189.800(Ft.) Elevation difference = 0.800(Ft.) Slope = 0.792 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 65.00 (Ft) for the top area slope value of 0.79 %, in a development type of 14.5 DU/A or Less In Accordance With Figure 3-3 STORMDRAIN LINE B – OUTFALL 2 100 YEAR POST-DEVELOPMENT Page 10 of 18 Initial Area Time of Concentration = 7.37 minutes TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] TC = [1.8*(1.1-0.6300)*( 65.000^.5)/( 0.792^(1/3)]= 7.37 The initial area total distance of 101.00 (Ft.) entered leaves a remaining distance of 36.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.79 minutes for a distance of 36.00 (Ft.) and a slope of 0.79 % with an elevation difference of 0.29(Ft.) from the end of the top area Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr) = 0.794 Minutes Tt=[(11.9*0.0068^3)/( 0.29)]^.385= 0.79 Total initial area Ti = 7.37 minutes from Figure 3-3 formula plus 0.79 minutes from the Figure 3-4 formula = 8.17 minutes Rainfall intensity (I) = 4.992(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.630 Subarea runoff = 0.887(CFS) Total initial stream area = 0.282(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 65.000 to Point/Station 66.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 186.360(Ft.) Downstream point/station elevation = 182.820(Ft.) Pipe length = 32.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.887(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 0.887(CFS) Normal flow depth in pipe = 2.22(In.) Flow top width inside pipe = 9.32(In.) Critical Depth = 4.73(In.) Pipe flow velocity = 8.86(Ft/s) Travel time through pipe = 0.06 min. Time of concentration (TC) = 8.23 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 66.000 to Point/Station 66.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.282(Ac.) Runoff from this stream = 0.887(CFS) Time of concentration = 8.23 min. Rainfall intensity = 4.969(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 5.661 11.91 3.913 2 0.887 8.23 4.969 Qmax(1) = 1.000 * 1.000 * 5.661) + 0.788 * 1.000 * 0.887) + = 6.359 Qmax(2) = 1.000 * 0.691 * 5.661) + 1.000 * 1.000 * 0.887) + = 4.796 Total of 2 streams to confluence: Flow rates before confluence point: 5.661 0.887 Maximum flow rates at confluence using above data: 6.359 4.796 Area of streams before confluence: 2.133 0.282 Results of confluence: Total flow rate = 6.359(CFS) Time of concentration = 11.912 min. Effective stream area after confluence = 2.415(Ac.) STORMDRAIN LINE B – OUTFALL 2 100 YEAR POST-DEVELOPMENT Page 11 of 18 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 66.000 to Point/Station 68.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 182.820(Ft.) Downstream point/station elevation = 182.780(Ft.) Pipe length = 8.50(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.359(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 6.359(CFS) Normal flow depth in pipe = 13.13(In.) Flow top width inside pipe = 16.00(In.) Critical Depth = 11.70(In.) Pipe flow velocity = 4.60(Ft/s) Travel time through pipe = 0.03 min. Time of concentration (TC) = 11.94 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 68.000 to Point/Station 68.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 1 in normal stream number 1 Stream flow area = 2.415(Ac.) Runoff from this stream = 6.359(CFS) Time of concentration = 11.94 min. Rainfall intensity = 3.907(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 7.000 to Point/Station 67.000 **** INITIAL AREA EVALUATION **** ______________________________________________________________________ Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (14.5 DU/A or Less ) Impervious value, Ai = 0.500 Sub-Area C Value = 0.630 Initial subarea total flow distance = 120.000(Ft.) Highest elevation = 190.600(Ft.) Lowest elevation = 189.640(Ft.) Elevation difference = 0.960(Ft.) Slope = 0.800 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 65.00 (Ft) for the top area slope value of 0.80 %, in a development type of 14.5 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.35 minutes TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] TC = [1.8*(1.1-0.6300)*( 65.000^.5)/( 0.800^(1/3)]= 7.35 The initial area total distance of 120.00 (Ft.) entered leaves a remaining distance of 55.00 (Ft.) Using Figure 3-4, the travel time for this distance is 1.10 minutes for a distance of 55.00 (Ft.) and a slope of 0.80 % with an elevation difference of 0.44(Ft.) from the end of the top area Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr) = 1.096 Minutes Tt=[(11.9*0.0104^3)/( 0.44)]^.385= 1.10 Total initial area Ti = 7.35 minutes from Figure 3-3 formula plus 1.10 minutes from the Figure 3-4 formula = 8.44 minutes Rainfall intensity (I) = 4.886(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.630 Subarea runoff = 0.532(CFS) Total initial stream area = 0.173(Ac.) STORMDRAIN LINE B – OUTFALL 2 100 YEAR POST-DEVELOPMENT Page 12 of 18 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 67.000 to Point/Station 68.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 186.640(Ft.) Downstream point/station elevation = 182.780(Ft.) Pipe length = 8.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.532(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 0.532(CFS) Normal flow depth in pipe = 1.22(In.) Flow top width inside pipe = 7.25(In.) Critical Depth = 3.63(In.) Pipe flow velocity = 12.76(Ft/s) Travel time through pipe = 0.01 min. Time of concentration (TC) = 8.45 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 68.000 to Point/Station 68.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.173(Ac.) Runoff from this stream = 0.532(CFS) Time of concentration = 8.45 min. Rainfall intensity = 4.882(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 6.359 11.94 3.907 2 0.532 8.45 4.882 Qmax(1) = 1.000 * 1.000 * 6.359) + 0.800 * 1.000 * 0.532) + = 6.785 Qmax(2) = 1.000 * 0.708 * 6.359) + 1.000 * 1.000 * 0.532) + = 5.034 Total of 2 streams to confluence: Flow rates before confluence point: 6.359 0.532 Maximum flow rates at confluence using above data: 6.785 5.034 Area of streams before confluence: 2.415 0.173 Results of confluence: Total flow rate = 6.785(CFS) Time of concentration = 11.943 min. Effective stream area after confluence = 2.588(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 68.000 to Point/Station 71.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 182.780(Ft.) Downstream point/station elevation = 181.950(Ft.) Pipe length = 165.50(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.785(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 6.785(CFS) Normal flow depth in pipe = 13.50(In.) Flow top width inside pipe = 15.59(In.) Critical Depth = 12.09(In.) Pipe flow velocity = 4.77(Ft/s) Travel time through pipe = 0.58 min. Time of concentration (TC) = 12.52 min. STORMDRAIN LINE B – OUTFALL 2 100 YEAR POST-DEVELOPMENT Page 13 of 18 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 71.000 to Point/Station 71.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 1 in normal stream number 1 Stream flow area = 2.588(Ac.) Runoff from this stream = 6.785(CFS) Time of concentration = 12.52 min. Rainfall intensity = 3.789(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 7.000 to Point/Station 70.000 **** INITIAL AREA EVALUATION **** ______________________________________________________________________ Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (14.5 DU/A or Less ) Impervious value, Ai = 0.500 Sub-Area C Value = 0.630 Initial subarea total flow distance = 133.600(Ft.) Highest elevation = 190.600(Ft.) Lowest elevation = 189.500(Ft.) Elevation difference = 1.100(Ft.) Slope = 0.823 % Top of Initial Area Slope adjusted by User to 0.850 % Bottom of Initial Area Slope adjusted by User to 0.850 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 65.00 (Ft) for the top area slope value of 0.85 %, in a development type of 14.5 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.20 minutes TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] TC = [1.8*(1.1-0.6300)*( 65.000^.5)/( 0.850^(1/3)]= 7.20 The initial area total distance of 133.60 (Ft.) entered leaves a remaining distance of 68.60 (Ft.) Using Figure 3-4, the travel time for this distance is 1.27 minutes for a distance of 68.60 (Ft.) and a slope of 0.85 % with an elevation difference of 0.58(Ft.) from the end of the top area Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))]^.385 *60(min/hr) = 1.270 Minutes Tt=[(11.9*0.0130^3)/( 0.58)]^.385= 1.27 Total initial area Ti = 7.20 minutes from Figure 3-3 formula plus 1.27 minutes from the Figure 3-4 formula = 8.47 minutes Rainfall intensity (I) = 4.876(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.630 Subarea runoff = 0.596(CFS) Total initial stream area = 0.194(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 70.000 to Point/Station 71.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 185.950(Ft.) Downstream point/station elevation = 185.570(Ft.) Pipe length = 38.30(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.596(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 0.596(CFS) Normal flow depth in pipe = 3.33(In.) Flow top width inside pipe = 10.74(In.) Critical Depth = 3.84(In.) Pipe flow velocity = 3.36(Ft/s) Travel time through pipe = 0.19 min. Time of concentration (TC) = 8.66 min. STORMDRAIN LINE B – OUTFALL 2 100 YEAR POST-DEVELOPMENT Page 14 of 18 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 71.000 to Point/Station 71.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 1 in normal stream number 2 Stream flow area = 0.194(Ac.) Runoff from this stream = 0.596(CFS) Time of concentration = 8.66 min. Rainfall intensity = 4.807(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 6.785 12.52 3.789 2 0.596 8.66 4.807 Qmax(1) = 1.000 * 1.000 * 6.785) + 0.788 * 1.000 * 0.596) + = 7.255 Qmax(2) = 1.000 * 0.692 * 6.785) + 1.000 * 1.000 * 0.596) + = 5.289 Total of 2 streams to confluence: Flow rates before confluence point: 6.785 0.596 Maximum flow rates at confluence using above data: 7.255 5.289 Area of streams before confluence: 2.588 0.194 Results of confluence: Total flow rate = 7.255(CFS) Time of concentration = 12.521 min. Effective stream area after confluence = 2.782(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 71.000 to Point/Station 76.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 181.950(Ft.) Downstream point/station elevation = 180.960(Ft.) Pipe length = 99.20(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 7.255(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 7.255(CFS) Normal flow depth in pipe = 9.35(In.) Flow top width inside pipe = 23.41(In.) Critical Depth = 11.48(In.) Pipe flow velocity = 6.41(Ft/s) Travel time through pipe = 0.26 min. Time of concentration (TC) = 12.78 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 76.000 to Point/Station 76.000 **** CONFLUENCE OF MAIN STREAMS **** ______________________________________________________________________ The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 2.782(Ac.) Runoff from this stream = 7.255(CFS) Time of concentration = 12.78 min. Rainfall intensity = 3.740(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 72.000 to Point/Station 73.000 **** INITIAL AREA EVALUATION **** ______________________________________________________________________ STORMDRAIN LINE B – OUTFALL 2 100 YEAR POST-DEVELOPMENT Page 15 of 18 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL ] (14.5 DU/A or Less ) Impervious value, Ai = 0.500 Sub-Area C Value = 0.630 Initial subarea total flow distance = 63.000(Ft.) Highest elevation = 190.500(Ft.) Lowest elevation = 189.800(Ft.) Elevation difference = 0.700(Ft.) Slope = 1.111 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 65.00 (Ft) for the top area slope value of 1.11 %, in a development type of 14.5 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.59 minutes TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] TC = [1.8*(1.1-0.6300)*( 65.000^.5)/( 1.111^(1/3)]= 6.59 Rainfall intensity (I) = 5.735(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.630 Subarea runoff = 1.142(CFS) Total initial stream area = 0.316(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 73.000 to Point/Station 75.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 187.000(Ft.) Downstream point/station elevation = 183.200(Ft.) Pipe length = 306.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.142(CFS) Given pipe size = 8.00(In.) Calculated individual pipe flow = 1.142(CFS) Normal flow depth in pipe = 5.65(In.) Flow top width inside pipe = 7.28(In.) Critical Depth = 6.08(In.) Pipe flow velocity = 4.33(Ft/s) Travel time through pipe = 1.18 min. Time of concentration (TC) = 7.76 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 73.000 to Point/Station 75.000 **** SUBAREA FLOW ADDITION **** ______________________________________________________________________ User specified 'C' value of 0.630 given for subarea Time of concentration = 7.76 min. Rainfall intensity = 5.158(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.630 CA = 0.437 Subarea runoff = 1.113(CFS) for 0.378(Ac.) Total runoff = 2.255(CFS) Total area = 0.694(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 75.000 to Point/Station 75.000 **** SUBAREA FLOW ADDITION **** ______________________________________________________________________ User specified 'C' value of 0.630 given for subarea Time of concentration = 7.76 min. Rainfall intensity = 5.158(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.630 CA = 0.704 Subarea runoff = 1.374(CFS) for 0.423(Ac.) Total runoff = 3.629(CFS) Total area = 1.117(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ STORMDRAIN LINE B – OUTFALL 2 100 YEAR POST-DEVELOPMENT Page 16 of 18 Process from Point/Station 75.000 to Point/Station 76.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 183.200(Ft.) Downstream point/station elevation = 181.380(Ft.) Pipe length = 186.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.629(CFS) Given pipe size = 12.00(In.) NOTE: Normal flow is pressure flow in user selected pipe size. The approximate hydraulic grade line above the pipe invert is 0.607(Ft.) at the headworks or inlet of the pipe(s) Pipe friction loss = 1.930(Ft.) Minor friction loss = 0.497(Ft.) K-factor = 1.50 Pipe flow velocity = 4.62(Ft/s) Travel time through pipe = 0.67 min. Time of concentration (TC) = 8.43 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 76.000 to Point/Station 76.000 **** CONFLUENCE OF MAIN STREAMS **** ______________________________________________________________________ The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.117(Ac.) Runoff from this stream = 3.629(CFS) Time of concentration = 8.43 min. Rainfall intensity = 4.889(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 7.255 12.78 3.740 2 3.629 8.43 4.889 Qmax(1) = 1.000 * 1.000 * 7.255) + 0.765 * 1.000 * 3.629) + = 10.032 Qmax(2) = 1.000 * 0.660 * 7.255) + 1.000 * 1.000 * 3.629) + = 8.418 Total of 2 main streams to confluence: Flow rates before confluence point: 7.255 3.629 Maximum flow rates at confluence using above data: 10.032 8.418 Area of streams before confluence: 2.782 1.117 Results of confluence: Total flow rate = 10.032(CFS) Time of concentration = 12.779 min. Effective stream area after confluence = 3.899(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 76.000 to Point/Station 106.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 181.380(Ft.) Downstream point/station elevation = 180.640(Ft.) Pipe length = 45.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 10.032(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 10.032(CFS) Normal flow depth in pipe = 9.74(In.) Flow top width inside pipe = 23.57(In.) Critical Depth = 13.59(In.) Pipe flow velocity = 8.39(Ft/s) STORMDRAIN LINE B – OUTFALL 2 100 YEAR POST-DEVELOPMENT Page 17 of 18 Travel time through pipe = 0.09 min. Time of concentration (TC) = 12.87 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.000 to Point/Station 106.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 1 in normal stream number 1 Stream flow area = 3.899(Ac.) Runoff from this stream = 10.032(CFS) Time of concentration = 12.87 min. Rainfall intensity = 3.723(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.000 to Point/Station 106.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** ______________________________________________________________________ User specified 'C' value of 0.630 given for subarea Rainfall intensity (I) = 4.865(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 8.50 min. Rain intensity = 4.86(In/Hr) Total area = 17.600(Ac.) Total runoff = 56.220(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.000 to Point/Station 106.000 **** CONFLUENCE OF MINOR STREAMS **** ______________________________________________________________________ Along Main Stream number: 1 in normal stream number 2 Stream flow area = 17.600(Ac.) Runoff from this stream = 56.220(CFS) Time of concentration = 8.50 min. Rainfall intensity = 4.865(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 10.032 12.87 3.723 2 56.220 8.50 4.865 Qmax(1) = 1.000 * 1.000 * 10.032) + 0.765 * 1.000 * 56.220) + = 53.057 Qmax(2) = 1.000 * 0.661 * 10.032) + 1.000 * 1.000 * 56.220) + = 62.846 Total of 2 streams to confluence: Flow rates before confluence point: 10.032 56.220 Maximum flow rates at confluence using above data: 53.057 62.846 Area of streams before confluence: 3.899 17.600 Results of confluence: Total flow rate = 62.846(CFS) Time of concentration = 8.500 min. Effective stream area after confluence = 21.499(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.000 to Point/Station 107.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** ______________________________________________________________________ Estimated mean flow rate at midpoint of channel = 62.887(CFS) Depth of flow = 1.717(Ft.), Average velocity = 4.004(Ft/s) ******* Irregular Channel Data *********** ----------------------------------------------------------------- STORMDRAIN LINE B – OUTFALL 2 100 YEAR POST-DEVELOPMENT Page 18 of 18 Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 3.70 2 10.30 0.00 3 15.30 0.00 4 27.40 5.90 Manning's 'N' friction factor = 0.035 ----------------------------------------------------------------- Sub-Channel flow = 62.887(CFS) ' ' flow top width = 13.299(Ft.) ' ' velocity= 4.004(Ft/s) ' ' area = 15.706(Sq.Ft) ' ' Froude number = 0.649 Upstream point elevation = 175.700(Ft.) Downstream point elevation = 173.260(Ft.) Flow length = 320.000(Ft.) Travel time = 1.33 min. Time of concentration = 9.83 min. Depth of flow = 1.717(Ft.) Average velocity = 4.004(Ft/s) Total irregular channel flow = 62.887(CFS) Irregular channel normal depth above invert elev. = 1.717(Ft.) Average velocity of channel(s) = 4.004(Ft/s) Adding area flow to channel User specified 'C' value of 0.630 given for subarea The area added to the existing stream causes a a lower flow rate of Q = 60.617(CFS) therefore the upstream flow rate of Q = 62.846(CFS) is being used Rainfall intensity = 4.429(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.630 CA = 13.687 Subarea runoff = 0.000(CFS) for 0.226(Ac.) Total runoff = 62.846(CFS) Total area = 21.725(Ac.) Depth of flow = 1.716(Ft.), Average velocity = 4.003(Ft/s) End of computations, total study area = 21.725 (Ac.) STORMDRAIN LINE C – OUTFALL 3 100 YEAR POST-DEVELOPMENT Page 1 of 4 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software,(c)1991-2004 Version 7.4 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 10/03/11 ------------------------------------------------------------------------ CT 03-02 CARLSBAD RANCH PLANNING AREA 5 - MARBRISA SITE PHASE 2 100 YEAR STORM, POST-DEVELOPMENT OUTFALL 3 - NODES 80 TO 87 FILENAME: 11008OUTFALL3.RD3 ------------------------------------------------------------------------ ********* Hydrology Study Control Information ********** ------------------------------------------------------------------------ Program License Serial Number 4012 ------------------------------------------------------------------------ Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.600 24 hour precipitation(inches) = 4.500 P6/P24 = 57.8% San Diego hydrology manual 'C' values used ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 80.000 to Point/Station 81.000 **** INITIAL AREA EVALUATION **** ______________________________________________________________________ Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [HIGH DENSITY RESIDENTIAL ] (43.0 DU/A or Less ) Impervious value, Ai = 0.800 Sub-Area C Value = 0.770 Initial subarea total flow distance = 77.000(Ft.) Highest elevation = 219.000(Ft.) Lowest elevation = 215.600(Ft.) Elevation difference = 3.400(Ft.) Slope = 4.416 % Top of Initial Area Slope adjusted by User to 3.896 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 85.00 (Ft) for the top area slope value of 3.90 %, in a development type of 43.0 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 3.48 minutes TC = [1.8*(1.1-C)*distance(Ft.)^.5)/(% slope^(1/3)] TC = [1.8*(1.1-0.7700)*( 85.000^.5)/( 3.896^(1/3)]= 3.48 Rainfall intensity (I) = 8.654(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.770 Subarea runoff = 0.506(CFS) Total initial stream area = 0.076(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 81.000 to Point/Station 86.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME **** ______________________________________________________________________ Estimated mean flow rate at midpoint of channel = 1.355(CFS) Depth of flow = 0.109(Ft.), Average velocity = 2.730(Ft/s) ******* Irregular Channel Data *********** ----------------------------------------------------------------- Information entered for subchannel number 1 : Point number 'X' coordinate 'Y' coordinate 1 0.00 0.50 2 0.00 0.00 STORMDRAIN LINE C – OUTFALL 3 100 YEAR POST-DEVELOPMENT Page 2 of 4 3 25.00 0.30 Manning's 'N' friction factor = 0.015 ----------------------------------------------------------------- Sub-Channel flow = 1.355(CFS) ' ' flow top width = 9.096(Ft.) ' ' velocity= 2.730(Ft/s) ' ' area = 0.496(Sq.Ft) ' ' Froude number = 2.059 Upstream point elevation = 215.600(Ft.) Downstream point elevation = 209.710(Ft.) Flow length = 158.000(Ft.) Travel time = 0.96 min. Time of concentration = 4.44 min. Depth of flow = 0.109(Ft.) Average velocity = 2.730(Ft/s) Total irregular channel flow = 1.355(CFS) Irregular channel normal depth above invert elev. = 0.109(Ft.) Average velocity of channel(s) = 2.730(Ft/s) Adding area flow to channel Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [HIGH DENSITY RESIDENTIAL ] (43.0 DU/A or Less ) Impervious value, Ai = 0.800 Sub-Area C Value = 0.770 Rainfall intensity = 7.391(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.770 CA = 0.286 Subarea runoff = 1.605(CFS) for 0.295(Ac.) Total runoff = 2.111(CFS) Total area = 0.371(Ac.) Depth of flow = 0.129(Ft.), Average velocity = 3.050(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 86.000 to Point/Station 86.000 **** CONFLUENCE OF MAIN STREAMS **** ______________________________________________________________________ The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 0.371(Ac.) Runoff from this stream = 2.111(CFS) Time of concentration = 4.44 min. Rainfall intensity = 7.391(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 82.000 to Point/Station 82.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** ______________________________________________________________________ User specified 'C' value of 0.630 given for subarea Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 5.00 min. Rain intensity = 6.85(In/Hr) Total area = 0.323(Ac.) Total runoff = 1.400(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 82.000 to Point/Station 83.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 208.910(Ft.) Downstream point/station elevation = 208.670(Ft.) Pipe length = 46.70(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.400(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 1.400(CFS) Normal flow depth in pipe = 6.34(In.) Flow top width inside pipe = 11.98(In.) Critical Depth = 6.01(In.) Pipe flow velocity = 3.33(Ft/s) STORMDRAIN LINE C – OUTFALL 3 100 YEAR POST-DEVELOPMENT Page 3 of 4 Travel time through pipe = 0.23 min. Time of concentration (TC) = 5.23 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 83.000 to Point/Station 84.000 **** SUBAREA FLOW ADDITION **** ______________________________________________________________________ User specified 'C' value of 0.630 given for subarea Time of concentration = 5.23 min. Rainfall intensity = 6.651(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.630 CA = 0.268 Subarea runoff = 0.381(CFS) for 0.102(Ac.) Total runoff = 1.781(CFS) Total area = 0.425(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 84.000 to Point/Station 86.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 208.130(Ft.) Downstream point/station elevation = 207.440(Ft.) Pipe length = 35.50(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.781(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 1.781(CFS) Normal flow depth in pipe = 4.97(In.) Flow top width inside pipe = 11.82(In.) Critical Depth = 6.82(In.) Pipe flow velocity = 5.80(Ft/s) Travel time through pipe = 0.10 min. Time of concentration (TC) = 5.34 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 86.000 to Point/Station 86.000 **** CONFLUENCE OF MAIN STREAMS **** ______________________________________________________________________ The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.425(Ac.) Runoff from this stream = 1.781(CFS) Time of concentration = 5.34 min. Rainfall intensity = 6.569(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 85.000 to Point/Station 85.000 **** USER DEFINED FLOW INFORMATION AT A POINT **** ______________________________________________________________________ User specified 'C' value of 0.630 given for subarea Rainfall intensity (I) = 6.850(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 5.00 min. Rain intensity = 6.85(In/Hr) Total area = 0.193(Ac.) Total runoff = 0.830(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 85.000 to Point/Station 86.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 208.880(Ft.) Downstream point/station elevation = 207.440(Ft.) Pipe length = 25.00(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.830(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 0.830(CFS) Normal flow depth in pipe = 2.52(In.) Flow top width inside pipe = 9.78(In.) Critical Depth = 4.57(In.) Pipe flow velocity = 6.90(Ft/s) Travel time through pipe = 0.06 min. STORMDRAIN LINE C – OUTFALL 3 100 YEAR POST-DEVELOPMENT Page 4 of 4 Time of concentration (TC) = 5.06 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 86.000 to Point/Station 86.000 **** CONFLUENCE OF MAIN STREAMS **** ______________________________________________________________________ The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 0.193(Ac.) Runoff from this stream = 0.830(CFS) Time of concentration = 5.06 min. Rainfall intensity = 6.797(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 2.111 4.44 7.391 2 1.781 5.34 6.569 3 0.830 5.06 6.797 Qmax(1) = 1.000 * 1.000 * 2.111) + 1.000 * 0.833 * 1.781) + 1.000 * 0.878 * 0.830) + = 4.324 Qmax(2) = 0.889 * 1.000 * 2.111) + 1.000 * 1.000 * 1.781) + 0.966 * 1.000 * 0.830) + = 4.460 Qmax(3) = 0.920 * 1.000 * 2.111) + 1.000 * 0.948 * 1.781) + 1.000 * 1.000 * 0.830) + = 4.461 Total of 3 main streams to confluence: Flow rates before confluence point: 2.111 1.781 0.830 Maximum flow rates at confluence using above data: 4.324 4.460 4.461 Area of streams before confluence: 0.371 0.425 0.193 Results of confluence: Total flow rate = 4.461(CFS) Time of concentration = 5.060 min. Effective stream area after confluence = 0.989(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 86.000 to Point/Station 87.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** ______________________________________________________________________ Upstream point/station elevation = 206.060(Ft.) Downstream point/station elevation = 205.420(Ft.) Pipe length = 19.80(Ft.) Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.461(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 4.461(CFS) Normal flow depth in pipe = 7.37(In.) Flow top width inside pipe = 11.68(In.) Critical Depth = 10.60(In.) Pipe flow velocity = 8.81(Ft/s) Travel time through pipe = 0.04 min. Time of concentration (TC) = 5.10 min. End of computations, total study area = 0.989 (Ac.) ATTACHMENT E WSPGW HYDRAULIC CALCULATION PRINTOUTS HYDRAULIC CALC ON THE BIO-RETENTION SWALE 100 YEAR STORM EVENT Page 1 of 5 INPUT FILE T1 0 T2 T3 SO 100.000 173.260 1 173.260 TS 117.480 173.388 2 .035 .000 TS 209.980 174.110 3 .035 -64.039 TS 315.590 174.903 4 .035 .000 TS 347.940 175.600 11 .035 18.944 TS 420.900 175.680 5 .035 21.390 JX 422.540 175.696 5 6 .035 10.000 175.700 33.0 .333 TS 628.180 177.220 7 .035 41.768 TS 649.240 177.375 8 .035 5.496 TS 873.440 179.055 9 .035 .000 TS 891.430 179.160 12 .035 45.811 TS 906.950 179.220 13 .035 .000 TS 911.370 179.240 14 .037 .000 SH 911.370 179.240 14 179.240 CD 1 1 0 .000 4.500 5.000 2.280 2.390 .00 CD 2 1 0 .000 5.200 5.000 1.890 2.600 .00 CD 3 1 0 .000 3.740 5.000 1.210 .875 .00 CD 4 1 0 .000 2.800 5.000 1.610 1.148 .00 CD 5 1 0 .000 2.610 5.000 2.440 3.290 .00 CD 6 4 1 .000 2.000 .000 .000 .000 .00 CD 11 1 0 .000 2.600 5.000 1.950 1.560 .00 CD 14 1 0 .000 5.000 4.500 .000 .000 .00 CD 7 5 0 .000 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 CD 8 5 0 .000 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 CD 9 5 0 .000 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 CD 12 5 0 .000 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 CD 13 5 0 .000 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 PTS 7 5 .000179.200 9.800177.220 14.790177.220 29.580179.340 51.770189.860 PTS 8 5 .000179.480 6.010177.350 11.010177.350 25.960179.550 48.020189.860 PTS 9 5 .000181.220 5.000179.080 10.000179.080 23.980180.120 43.340189.340 PTS 12 5 .000181.290 5.030179.160 10.300179.160 21.370180.160 49.890189.340 PTS 13 5 .000181.360 5.000179.220 13.500179.220 14.160182.170 33.710189.340 Q 56.220 .0 HYDRAULIC CALC ON THE BIO-RETENTION SWALE 100 YEAR STORM EVENT Page 2 of 5 EDIT FILE FILE: 11008SWALE.WSW W S P G W - EDIT LISTING - Version 14.06 Date: 9-29-2011 Time: 2:18:26 WATER SURFACE PROFILE - CHANNEL DEFINITION LISTING PAGE 1 CARD SECT CHN NO OF AVE PIER HEIGHT 1 BASE ZL ZR INV Y(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8) Y(9) Y(10) CODE NO TYPE PIER/PIP WIDTH DIAMETER WIDTH DROP CD 1 1 0 .000 4.500 5.000 2.280 2.390 .00 CD 2 1 0 .000 5.200 5.000 1.890 2.600 .00 CD 3 1 0 .000 3.740 5.000 1.210 .875 .00 CD 4 1 0 .000 2.800 5.000 1.610 1.148 .00 CD 5 1 0 .000 2.610 5.000 2.440 3.290 .00 CD 6 4 1 2.000 CD 11 1 0 .000 2.600 5.000 1.950 1.560 .00 CD 14 1 0 .000 5.000 4.500 .000 .000 .00 CD 7 5 0 .000 CD 8 5 0 .000 CD 9 5 0 .000 CD 12 5 0 .000 CD 13 5 0 .000 FILE: W S P G W - EDIT LISTING - Version 14.06 Date: 9-29-2011 Time: 2:18:26 WATER SURFACE PROFILE - CROSS SECTION POINT LISTING PAGE 2 CARD SECT NO OF X(1) , Y(1) X(2) , Y(2) X(3) , Y(3) X(4) , Y(4) X(5) , Y(5) X(6) , Y(6) X(7) , Y(7) CODE NO POINTS X(8) , Y(8) X(9) , Y(9) X(10) ,Y(10) X(11) ,Y(11) X(N) , Y(N) X(N+1),Y(N+1) X(35) ,Y(35) PTS 7 5 .000 179.200 9.800 177.220 14.790 177.220 29.580 179.340 51.770 189.860 PTS 8 5 .000 179.480 6.010 177.350 11.010 177.350 25.960 179.550 48.020 189.860 PTS 9 5 .000 181.220 5.000 179.080 10.000 179.080 23.980 180.120 43.340 189.340 PTS 12 5 .000 181.290 5.030 179.160 10.300 179.160 21.370 180.160 49.890 189.340 PTS 13 5 .000 181.360 5.000 179.220 13.500 179.220 14.160 182.170 33.710 189.340 W S P G W PAGE NO 1 WATER SURFACE PROFILE - TITLE CARD LISTING HEADING LINE NO 1 IS - HEADING LINE NO 2 IS - HEADING LINE NO 3 IS - W S P G W PAGE NO 2 WATER SURFACE PROFILE - ELEMENT CARD LISTING ELEMENT NO 1 IS A SYSTEM OUTLET * * * U/S DATA STATION INVERT SECT W S ELEV 100.000 173.260 1 173.260 ELEMENT NO 2 IS A TRANSITION * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE 117.480 173.388 2 .035 .000 .000 ELEMENT NO 3 IS A TRANSITION * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE 209.980 174.110 3 .035 82.760 -64.039 ELEMENT NO 4 IS A TRANSITION * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE 315.590 174.903 4 .035 .000 .000 ELEMENT NO 5 IS A TRANSITION * * * HYDRAULIC CALC ON THE BIO-RETENTION SWALE 100 YEAR STORM EVENT Page 3 of 5 U/S DATA STATION INVERT SECT N RADIUS ANGLE 347.940 175.600 11 .035 97.842 18.944 ELEMENT NO 6 IS A TRANSITION * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE 420.900 175.680 5 .035 195.432 21.390 ELEMENT NO 7 IS A JUNCTION * * * * * * * U/S DATA STATION INVERT SECT LAT-1 LAT-2 N Q3 Q4 INVERT-3 INVERT-4 PHI 3 PHI 4 422.540 175.696 5 6 0 .035 10.000 .000 175.700 .000 33.000 .000 RADIUS ANGLE 282.180 .333 ELEMENT NO 8 IS A TRANSITION * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE 628.180 177.220 7 .035 282.089 41.768 ELEMENT NO 9 IS A TRANSITION * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE 649.240 177.375 8 .035 219.550 5.496 ELEMENT NO 10 IS A TRANSITION * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE 873.440 179.055 9 .035 .000 .000 ELEMENT NO 11 IS A TRANSITION * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE 891.430 179.160 12 .035 22.500 45.811 ELEMENT NO 12 IS A TRANSITION * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE 906.950 179.220 13 .035 .000 .000 W S P G W PAGE NO 3 WATER SURFACE PROFILE - ELEMENT CARD LISTING ELEMENT NO 13 IS A TRANSITION * * * U/S DATA STATION INVERT SECT N RADIUS ANGLE 911.370 179.240 14 .037 .000 .000 ELEMENT NO 14 IS A SYSTEM HEADWORKS * * U/S DATA STATION INVERT SECT W S ELEV 911.370 179.240 14 179.240 HYDRAULIC CALC ON THE BIO-RETENTION SWALE 100 YEAR STORM EVENT Page 4 of 5 OUTPUT FILE FILE: 11008SWALE.WSW W S P G W - CIVILDESIGN Version 14.06 PAGE 1 Program Package Serial Number: 1703 WATER SURFACE PROFILE LISTING Date: 9-29-2011 Time: 2:18:32 ************************************************************************************************************************** ******** | Invert | Depth | Water | Q | Vel Vel | Energy | Super |Critical|Flow Top|Height/|Base Wt| |No Wth Station | Elev | (FT) | Elev | (CFS) | (FPS) Head | Grd.El.| Elev | Depth | Width |Dia.-FT|or I.D.| ZL |Prs/Pip -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -| L/Elem |Ch Slope | | | | SF Ave| HF |SE Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch *********|*********|********|*********|*********|*******|*******|*********|*******|********|********|*******|*******|***** |******* | | | | | | | | | | | | | 100.000 173.260 1.405 174.665 66.22 5.69 .50 175.17 .00 1.41 11.56 4.500 5.000 2.28 0 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- TRANS STR .0073 .0135 .24 1.41 1.00 .035 .00 2.39 TRAP | | | | | | | | | | | | | 117.480 173.388 1.769 175.157 66.22 4.17 .27 175.43 .11 1.41 12.94 5.200 5.000 1.89 0 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- TRANS STR .0078 .0098 .91 1.88 .66 .035 .00 2.60 TRAP | | | | | | | | | | | | | 209.980 174.110 1.828 175.938 66.22 5.25 .43 176.37 .00 1.57 8.81 3.740 5.000 1.21 0 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- TRANS STR .0075 .0085 .90 1.83 .77 .035 .00 .88 TRAP | | | | | | | | | | | | | 315.590 174.903 2.148 177.051 66.22 3.87 .23 177.28 .07 1.52 10.92 2.800 5.000 1.61 0 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- TRANS STR .0215 .0096 .31 2.22 .55 .035 .00 1.15 TRAP | | | | | | | | | | | | | 347.940 175.600 1.601 177.201 66.22 5.30 .44 177.64 .06 1.47 10.62 2.600 5.000 1.95 0 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- TRANS STR .0011 .0077 .56 1.66 .86 .035 .00 1.56 TRAP | | | | | | | | | | | | | 420.900 175.680 2.481 178.161 66.22 2.20 .08 178.24 .01 1.35 19.22 2.610 5.000 2.44 0 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- JUNCT STR .0098 .0014 .00 2.49 .31 .035 .00 3.29 TRAP | | | | | | | | | | | | | 422.540 175.696 2.482 178.178 56.22 1.87 .05 178.23 .01 1.24 19.22 2.610 5.000 2.44 0 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- TRANS STR .0074 .0029 .59 2.49 .26 .035 .00 3.29 TRAP | | | | | | | | | | | | | 628.180 177.220 1.501 178.721 56.22 2.69 .11 178.83 .03 1.06 22.89 7 0 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- TRANS STR .0074 .0059 .12 1.53 .50 .035 IR-OPEN | | | | | | | | | | | | | 649.240 177.375 1.422 178.797 56.22 3.34 .17 178.97 .00 1.12 18.68 8 0 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- TRANS STR .0075 .0067 1.50 1.42 .62 .035 IR-OPEN HYDRAULIC CALC ON THE BIO-RETENTION SWALE 100 YEAR STORM EVENT Page 5 of 5 FILE: 11008SWALE.WSW W S P G W - CIVILDESIGN Version 14.06 PAGE 2 Program Package Serial Number: 1703 WATER SURFACE PROFILE LISTING Date: 9-29-2011 Time: 2:18:32 ************************************************************************************************************************** ******** | Invert | Depth | Water | Q | Vel Vel | Energy | Super |Critical|Flow Top|Height/|Base Wt| |No Wth Station | Elev | (FT) | Elev | (CFS) | (FPS) Head | Grd.El.| Elev | Depth | Width |Dia.-FT|or I.D.| ZL |Prs/Pip -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -| L/Elem |Ch Slope | | | | SF Ave| HF |SE Dpth|Froude N|Norm Dp | "N" | X-Fall| ZR |Type Ch *********|*********|********|*********|*********|*******|*******|*********|*******|********|********|*******|*******|***** |******* | | | | | | | | | | | | | 873.440 179.055 1.285 180.340 56.22 2.94 .13 180.47 .35 .99 22.50 9 0 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- TRANS STR .0058 .0067 .12 1.63 .56 .035 IR-OPEN | | | | | | | | | | | | | 891.430 179.160 1.279 180.439 56.22 3.23 .16 180.60 .00 1.01 20.23 12 0 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- TRANS STR .0039 1.279 .613 .035 IR-OPEN | | | | | | | | | | | | | 906.950 179.220 .631 179.851 56.22 9.57 1.42 181.27 .00 1.05 10.12 13 0 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- TRANS STR .0045 .0813 .36 .63 2.21 .037 IR-OPEN | | | | | | | | | | | | | 911.370 179.240 1.693 180.933 56.22 7.38 .85 181.78 .00 1.69 4.50 5.000 4.500 .00 0 .0 -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- -|- |- ATTACHMENT F STORM DRAIN SYSTEM LINE A -OUTFALL 1 Computational Methods Previous Top Next Standard Step Method Hydraflow uses the energy-based Standard Step method when computing the hydraulic profile. This methodology is an iterative procedure that applies Bernoulli's energy equation between the downstream and upstream ends of each line in the system. It uses Manning's equation to determine head losses due to pipe friction. The greatest benefit to using this method is that a solution can always be found regardless of the flow regime. This method makes no assumptions as to the depth of flow and is only accepted when the energy equation has balanced. Hydraflow uses the following equation for all flow conditions. Where:V = velocity in ft/s (m/s, metric) Z = invert elevation if ft (m) Y = HGL minus the invert elevation in ft (m) Friction losses are computed by: Where: Where: Km = 1.486 (1.0) n = Manning's n A = cross-sectional area of flow in sqft (sqm) R = Hydraulic radius v? v2 -+Z1+Y1 =-+Z2+Y2+HL 2.g 2.g HL = hf1+hf2 2 ( Qn )2. hf = ---x LineLength Km.ARM,? ------- Hydraflow computes the hydraulic grade line in a fashion similar to methods used for open channels. With the sewer system consisting of pipes and junctions, Hydraflow begins computing at the most downstream line and works in a standard step procedure upstream. This method assumes the starting hydraulic grade line elevation, HGL, is known. See "Computing the System". Hydraflow first assumes an upstream HGL for a given line and then checks the energy equation. If the energy equation does not balance, another HGL is assumed and the iterative process continues until the assumed HGL equals the computed HGL. The downstream HGL for the next upstream line is the computed HGL plus any junction (minor) loss. Additionally, if the starting HGL at the downstream end of any line (except outfalls) is below the Minimum Starting Depth as set in the Design Codes, Hydraflow will automatically change the HGL to the Minimum Starting Depth. Hydraflow computes the HGL for any given line at three places: HGL Down The downstream end of the line. At the beginning of an outfall, this is a user-defined elevation. Either a known elevation, Crown, Normal Depth or Critical Depth. At all other lines it is equal to the HGL Junct of its downstream line. However, if the energy grade line (EGL Dn) is less than the energy grade line in the downstream junction (EGL Junct), the HGL Down is reset to the EGL Junct minus the velocity head. This prevents any occurrences of increasing energy in the downstream direction. Again, if this starting HGL is below the Minimum Starting Depth as set in the Design Codes, Hydraflow will automatically change the HGL to the Minimum Starting Depth. HGL Up The upstream end of the pipe. Computed using the Standard Step Method described above. If the option of checking for Inlet Control has been set to On in the Design Codes, and the line is flowing under inlet control, the HGL Up is equal to the HGL Junct minus the upstream velocity head. HGL Junct In the junction at the upstream end of each Line. Is equal to the HGL Up plus any minor or junction loss. If the option of checking for Inlet Control has been set to On in the Design Codes, and the line is flowing under inlet control, the HGL Junct is equal to the depth determined by the Inlet Control procedure, described below. The energy grade line (EGL) is computed as the HGL plus velocity head. If the line is flowing under inlet control, velocity at this point is zero and the EGL equals HGL. Critical depth Critical depth is computed using the following equation. If Dc is greater than 85% of D, then a trial and error method is used to find the minimum specific energy, i.e., critical depth. See Open Channel Hydraulics, McGraw - Hill, 1985, by Richard H. French. V2!2g ----+- --•-· Z1 I ~~======ln:ve=rt=====J ~ L ---Datum Pipe and Open Channel Flow Where:Dc = critical depth D = pipe diameter Q = flow rate Grade Junction Loss Rise Junction Invert Length .1 A Typical Stonn Sewer U11e HG Junct Inlet Control Previous Top Next Besides the Slope term in Manning's equation, inlet and outlet control is the most misunderstood concept in storm sewer hydraulics. So just what is inlet control? Inlet control occurs when it is harder for the flow to get through the entrance of the pipe than the remainder of the pipe barrel. The only factors that matter during inlet control are the cross-sectional area of the pipe and the inlet geometry. That's it. The roughness coefficient, pipe length, slope and tailwater are not important. On the other hand, outlet control occurs when it is harder for the flow to get through the length of the pipe than it is to get into the pipe to start with. The problem is to compute the HGL assuming both exist, and then selecting the larger of the two. Hydraflow optionally checks HGL calculations for inlet control on all junctions except for "No Junction" types. One of the calculation procedures is derived from HDS-5 Hydraulic design of Highway Culverts. The other is the standard orifice equation. If the computed HGL for inlet control is greater than the computed HGL (outlet control), then the HGUP is set equal to the inlet control value. When inlet control is used, the minor loss (junction loss) is not computed. The standard orifice equation used is: Where: Co = Orifice coefficient = 0.62 A = Cross-sectional area of flow in sqft (sqm) h = Headwater depth to the center of A in ft (m) Note: This is the default equation used when working in Metric units. When HDS-5 has been selected, the following inlet control equation is used: Crown ♦ S1>an Inl et Co ntrol Invert Length Junction Flow Under Inlet Control Q= CoA)2gh ------ '--+--nG UP Where:Hdi = Headwater depth above invert. D = Line Rise, ft (m) c = 0.0398 (Coeff. for square edged circular section) Q = Flow rate, cfs (cms) A = Full cross-sectional area of pipe, sqft (sqm) Y = Coeff. 0.67 S = Line slope, ft/ft (m/m) Note: This equation applies and is only used when Q/AD0.5 is greater than or equal to 4.0. (Per research conducted by the National Bureau of Standards (NBS). Remember, inlet control is only considered when the "Check for Inlet Control" option is set on in the Design Codes. Otherwise, inlet control is not evaluated. Where: Q = Flow rate A = Cross-sectional area of flow Y = Distance from the water surface to the centroid of A The location of the jump is the point along the line when M1 = M2 and is reported as the distance from the downstream end of the line. The length of the jump however, is difficult to determine, especially in circular sections. There have been many experimental investigations which have yielded results which are contradictory. Many have generalized that the jump length is somewhere between 4 and 6 times the Sequent depth. Hydraflow assumes 5. Supercritical Profiles Previous Top Next Hydraflow has the ability to compute supercritical flow profiles with hydraulic jumps automatically. When the energy equation cannot balance, Hydraflow initially assumes critical depth and proceeds to the next upstream line. When finished with the subcritical profile, it reverses the calculation procedure for any lines with critical depth assumed at their upstream ends, i.e. from upstream to downstream, and computes the supercritical profile. Hydraulic Jump Hydraflow uses the Momentum Principle for determining depths and locations of hydraulic jumps. At each step (one tenth of the line length) during supercritical flow calculations, Hydraflow computes the momentum and compares it to the momentum developed during the subcritical profile calculations. If the two momentums equal, it is established that a hydraulic jump must occur. There may be occasions when a hydraulic jump does not exist or when it is submerged. The condition which must be satisfied if a hydraulic jump is to occur is: Momentum of the subcritical profile equals the momentum of the supercritical profile. Where: (! -M=-+yA gA IS0-,(11) 11SJIO 11000 11)7.00 10UIO 10!.00 88.00 -t'i¥• t11Jf$ r L::~ ---- 0 5 10 Loe..1tf0,J of JrmJ p ' j Hydraulic Jump ~· -~ ~ --- '.;l) 25 so 35 4D l.ei, r/J -!tJiri.11 {)., p!I J ~lrl U)o - -- -- -46 !iO $ E-0 R<o!t!n 11S.OO 11000 107.00 104,00 '101.00 !!3.00 (fl) Hydraflow Plan View Project File: OUTFALL1.stm No. Lines: 52 10-04-2011 Hydraflow Storm Sewers 2005 26 30 32 34 36 38 51 6 31 7 35 33 fll1011 39 37 12 42 . 4il 13 15 14 16 52 Hydraulic Grade Line Computations Page 1 Line Size Q Downstream Len Upstream Check JL Minor coeff loss Invert HGL Depth Area Vel Vel EGL Sf Invert HGL Depth Area Vel Vel EGL Sf Ave Enrgy elev elev head elev elev elev head elev Sf loss (in) (cfs) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (ft) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (%) (ft) (K) (ft) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) 1 48 56.22 179.24 181.46 2.22 7.16 7.85 0.96 182.42 0.434 11.9 179.30 181.54 2.24 7.23 7.77 0.94 182.48 0.423 0.428 0.051 0.31 0.29 2 48 56.22 179.30 182.23 2.93 9.86 5.70 0.51 182.73 0.195 12.4 179.37 182.23 2.86 9.61 5.85 0.53 182.76 0.207 0.201 0.025 0.32 0.17 3 48 56.22 179.37 182.45 3.08 10.38 5.42 0.46 182.90 0.174 13.7 179.43 182.46 3.03 10.20 5.51 0.47 182.93 0.180 0.177 0.024 1.00 0.47 4 48 53.23 179.46 183.00 3.54 11.77 4.52 0.32 183.32 0.123 80.6 179.86 183.04 3.18 10.73 4.96 0.38 183.43 0.145 0.134 0.108 1.00 0.38 5 24 14.19 179.86 183.49 2.00 3.14 4.52 0.32 183.81 0.394 88.5 180.30 183.84 2.00 3.14 4.52 0.32 184.16 0.394 0.394 0.349 1.00 0.32 6 24 13.29 180.30 184.20 2.00 3.14 4.23 0.28 184.48 0.345 103 180.82 184.55 2.00 3.14 4.23 0.28 184.83 0.345 0.345 0.354 0.25 0.07 7 24 13.29 180.82 184.62 2.00 3.14 4.23 0.28 184.90 0.345 9.5 180.86 184.65 2.00 3.14 4.23 0.28 184.93 0.345 0.345 0.033 0.46 0.13 8 24 13.29 180.86 184.78 2.00 3.14 4.23 0.28 185.06 0.345 9.2 180.91 184.81 2.00 3.14 4.23 0.28 185.09 0.345 0.345 0.032 0.43 0.12 9 24 13.29 180.91 184.93 2.00 3.14 4.23 0.28 185.21 0.345 8.1 180.95 184.96 2.00 3.14 4.23 0.28 185.24 0.345 0.345 0.028 0.44 0.12 10 24 13.29 180.95 185.08 2.00 3.14 4.23 0.28 185.36 0.345 9.7 181.00 185.12 2.00 3.14 4.23 0.28 185.40 0.345 0.345 0.033 0.26 0.07 11 24 13.29 181.00 185.19 2.00 3.14 4.23 0.28 185.47 0.345 23.0 181.11 185.27 2.00 3.14 4.23 0.28 185.55 0.345 0.345 0.079 0.99 0.28 12 24 12.92 181.11 185.56 2.00 3.14 4.11 0.26 185.82 0.326 87.3 181.55 185.85 2.00 3.14 4.11 0.26 186.11 0.326 0.326 0.285 0.90 0.24 13 24 10.00 181.55 186.19 2.00 3.14 3.18 0.16 186.34 0.196 236 182.73 186.65 2.00 3.14 3.18 0.16 186.81 0.195 0.196 0.461 0.15 0.02 14 12 2.92 182.73 186.67 1.00 0.79 3.72 0.21 186.89 0.673 91.8 184.61 187.29 1.00 0.79 3.72 0.21 187.50 0.672 0.672 0.617 1.00 0.21 15 12 2.92 184.61 187.50 1.00 0.79 3.72 0.21 187.72 0.673 30.5 184.92 187.71 1.00 0.79 3.72 0.21 187.92 0.672 0.672 0.205 0.15 0.03 16 12 2.92 184.92 187.74 1.00 0.79 3.72 0.21 187.96 0.673 15.0 185.07 187.84 1.00 0.79 3.72 0.21 188.06 0.672 0.672 0.101 0.15 0.03 17 12 2.92 185.07 187.87 1.00 0.79 3.72 0.21 188.09 0.673 30.0 185.37 188.08 1.00 0.79 3.72 0.21 188.29 0.672 0.672 0.202 0.15 0.03 18 12 2.92 185.37 188.11 1.00 0.79 3.72 0.21 188.32 0.673 20.0 185.57 188.24 1.00 0.79 3.72 0.21 188.46 0.672 0.672 0.134 1.00 0.21 19 12 2.27 185.61 188.54 1.00 0.79 2.89 0.13 188.67 0.406 39.1 186.00 188.70 1.00 0.79 2.89 0.13 188.83 0.406 0.406 0.159 1.00 0.13 20 12 2.20 183.04 183.61 0.57* 0.47 4.71 0.35 183.96 0.969 13.3 183.17 183.80 j 0.63** 0.52 4.21 0.28 184.08 0.725 0.847 0.113 0.75 0.21 21 36 45.80 179.86 183.43 3.00 7.07 6.48 0.65 184.08 0.472 77.8 180.25 183.79 3.00 7.07 6.48 0.65 184.45 0.472 0.472 0.367 0.15 0.10 Project File: OUTFALL1.stm Number of lines: 52 Run Date: 10-04-2011 Notes: * Normal depth assumed.; ** Critical depth.; j-Line contains hyd. jump. Hydraflow Storm Sewers 2005 I I Hydraulic Grade Line Computations Page 2 Line Size Q Downstream Len Upstream Check JL Minor coeff loss Invert HGL Depth Area Vel Vel EGL Sf Invert HGL Depth Area Vel Vel EGL Sf Ave Enrgy elev elev head elev elev elev head elev Sf loss (in) (cfs) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (ft) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (%) (ft) (K) (ft) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) 22 6 0.70 185.06 185.56 0.50* 0.20 3.57 0.20 185.76 1.559 5.6 185.12 185.62 0.50 0.20 3.57 0.20 185.82 1.509 1.534 0.086 0.99 0.20 23 6 0.41 185.02 185.76 0.50 0.20 2.09 0.07 185.82 0.535 53.0 185.55 186.02 0.47 0.19 2.15 0.07 186.09 0.462 0.499 0.264 1.00 0.07 24 12 2.20 183.17 184.16 0.99 0.78 2.80 0.12 184.28 0.354 30.8 183.48 184.22 0.74 0.62 3.55 0.20 184.41 0.480 0.417 0.128 0.70 0.14 25 36 45.80 180.25 183.89 3.00 7.07 6.48 0.65 184.55 0.472 10.4 180.30 183.94 3.00 7.07 6.48 0.65 184.59 0.472 0.472 0.049 1.00 0.65 26 12 2.20 183.48 184.43 0.95 0.77 2.86 0.13 184.55 0.330 149 184.98 185.61 j 0.63** 0.52 4.23 0.28 185.89 0.733 0.532 n/a 0.15 n/a 27 36 45.40 180.30 184.61 3.00 7.07 6.42 0.64 185.25 0.464 20.2 180.40 184.70 3.00 7.07 6.42 0.64 185.34 0.463 0.463 0.094 0.15 0.10 28 6 0.70 185.12 185.81 0.50 0.20 3.57 0.20 186.01 1.559 18.0 185.30 186.10 0.50 0.20 3.57 0.20 186.29 1.559 1.559 0.281 1.00 0.20 29 36 45.40 180.40 184.80 3.00 7.07 6.42 0.64 185.44 0.464 16.3 180.48 184.87 3.00 7.07 6.42 0.64 185.51 0.463 0.463 0.075 0.15 0.10 30 12 1.20 184.98 185.72 0.74 0.62 1.93 0.06 185.78 0.142 27.5 185.25 185.72 j 0.47** 0.36 3.33 0.17 185.89 0.574 0.358 0.098 0.15 0.03 31 36 45.40 180.48 184.97 3.00 7.07 6.42 0.64 185.61 0.464 25.8 180.61 185.09 3.00 7.07 6.42 0.64 185.73 0.463 0.463 0.119 0.15 0.10 32 12 1.20 185.25 185.88 0.63 0.52 2.30 0.08 185.96 0.218 20.0 185.45 185.92 j 0.47** 0.36 3.33 0.17 186.09 0.574 0.396 0.079 0.15 0.03 33 36 45.40 180.61 185.18 3.00 7.07 6.42 0.64 185.83 0.464 27.5 180.75 185.31 3.00 7.07 6.42 0.64 185.95 0.463 0.463 0.128 0.15 0.10 34 12 1.20 185.45 186.08 0.63 0.52 2.30 0.08 186.16 0.218 25.0 185.70 186.16 j 0.46** 0.36 3.36 0.18 186.34 0.585 0.401 n/a 0.15 n/a 35 36 45.40 180.75 185.41 3.00 7.07 6.42 0.64 186.05 0.464 25.0 180.88 185.52 3.00 7.07 6.42 0.64 186.16 0.463 0.463 0.116 0.15 0.10 36 12 1.20 185.70 186.30 0.60 0.50 2.42 0.09 186.39 0.247 15.0 185.85 186.32 j 0.47** 0.36 3.33 0.17 186.49 0.574 0.411 0.062 0.15 0.03 37 36 45.40 180.88 185.62 3.00 7.07 6.42 0.64 186.26 0.464 25.1 181.00 185.74 3.00 7.07 6.42 0.64 186.38 0.463 0.463 0.116 0.15 0.10 38 9 1.20 185.85 186.40 0.55 0.35 3.45 0.18 186.59 0.665 20.0 186.05 186.55 0.50** 0.31 3.81 0.23 186.78 0.846 0.755 0.151 1.00 0.23 39 36 45.40 181.00 185.83 3.00 7.07 6.42 0.64 186.47 0.464 21.0 181.11 185.93 3.00 7.07 6.42 0.64 186.57 0.463 0.463 0.097 0.15 0.10 40 36 45.40 181.11 186.03 3.00 7.07 6.42 0.64 186.67 0.464 4.5 181.13 186.05 3.00 7.07 6.42 0.64 186.69 0.463 0.463 0.021 1.00 0.64 41 36 45.05 181.13 186.70 3.00 7.07 6.37 0.63 187.33 0.456 6.0 181.16 186.73 3.00 7.07 6.37 0.63 187.36 0.456 0.456 0.027 0.15 0.09 42 36 45.05 181.16 186.82 3.00 7.07 6.37 0.63 187.45 0.456 28.6 181.30 186.95 3.00 7.07 6.37 0.63 187.58 0.456 0.456 0.130 1.00 0.63 Project File: OUTFALL1.stm Number of lines: 52 Run Date: 10-04-2011 Notes: * Normal depth assumed.; ** Critical depth.; j-Line contains hyd. jump. Hydraflow Storm Sewers 2005 I I Hydraulic Grade Line Computations Page 3 Line Size Q Downstream Len Upstream Check JL Minor coeff loss Invert HGL Depth Area Vel Vel EGL Sf Invert HGL Depth Area Vel Vel EGL Sf Ave Enrgy elev elev head elev elev elev head elev Sf loss (in) (cfs) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (ft) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (%) (ft) (K) (ft) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) 43 6 0.52 180.30 185.14 0.50 0.20 2.65 0.11 185.25 0.860 8.4 186.09 186.46 j 0.37** 0.15 3.37 0.18 186.63 1.094 0.977 n/a 1.00 0.18 44 6 0.40 181.13 187.27 0.50 0.20 2.04 0.06 187.33 0.509 11.2 190.54 190.86 j 0.32** 0.13 3.00 0.14 191.00 0.920 0.714 n/a 1.00 0.14 45 12 2.30 185.51 186.10 0.59* 0.48 4.75 0.35 186.45 0.965 15.4 185.66 186.31 0.65** 0.54 4.29 0.29 186.59 0.743 0.854 0.131 0.47 0.13 46 6 0.34 184.72 185.00 0.28* 0.11 2.99 0.14 185.14 1.000 48.0 185.20 185.50 j 0.30** 0.12 2.79 0.12 185.62 0.837 0.918 0.441 1.00 0.12 47 6 0.71 184.93 185.43 0.50* 0.20 3.62 0.20 185.63 1.604 47.2 185.40 186.19 0.50 0.20 3.62 0.20 186.39 1.603 1.604 0.757 1.00 0.20 48 12 2.30 185.66 186.59 0.93 0.76 3.02 0.14 186.73 0.361 29.7 185.96 186.62 0.66 0.55 4.20 0.27 186.89 0.706 0.533 0.158 0.71 0.19 49 12 0.71 185.40 186.57 1.00 0.79 0.90 0.01 186.58 0.040 22.5 185.63 186.58 0.95 0.77 0.92 0.01 186.59 0.034 0.037 0.008 1.00 0.01 50 12 1.30 185.96 187.04 1.00 0.79 1.66 0.04 187.09 0.133 144 187.40 187.88 j 0.48** 0.38 3.45 0.19 188.07 0.598 0.365 n/a 0.42 0.08 51 12 1.02 187.40 188.04 0.64 0.53 1.91 0.06 188.10 0.148 157 190.00 190.43 j 0.43** 0.32 3.17 0.16 190.59 0.564 0.356 n/a 1.00 0.16 52 6 0.33 185.61 188.63 0.50 0.20 1.68 0.04 188.67 0.346 56.6 186.24 188.82 0.50 0.20 1.68 0.04 188.87 0.346 0.346 0.196 1.00 0.04 Project File: OUTFALL1.stm Number of lines: 52 Run Date: 10-04-2011 Notes: * Normal depth assumed.; ** Critical depth.; j-Line contains hyd. jump. Hydraflow Storm Sewers 2005 I I Storm Sewer Summary Report Page 1 Line Line ID Flow Line Line Invert Invert Line HGL HGL Minor HGL Dns No.rate size length EL Dn EL Up slope down up loss Junct line (cfs) (in) (ft) (ft) (ft) (%) (ft) (ft) (ft) (ft) No. 1 56.22 48 c 11.9 179.24 179.30 0.506 181.46 181.54 0.29 181.83 End 2 56.22 48 c 12.4 179.30 179.37 0.563 182.23 182.23 0.17 182.40 1 3 56.22 48 c 13.7 179.37 179.43 0.440 182.45 182.46 0.47 182.93 2 4 53.23 48 c 80.6 179.46 179.86 0.497 183.00 183.04 0.38 183.43 3 5 14.19 24 c 88.5 179.86 180.30 0.497 183.49* 183.84* 0.32 184.16 4 6 13.29 24 c 102.6 180.30 180.82 0.507 184.20* 184.55* 0.07 184.62 5 7 13.29 24 c 9.5 180.82 180.86 0.422 184.62* 184.65* 0.13 184.78 6 8 13.29 24 c 9.2 180.86 180.91 0.546 184.78* 184.81* 0.12 184.93 7 9 13.29 24 c 8.1 180.91 180.95 0.495 184.93* 184.96* 0.12 185.08 8 10 13.29 24 c 9.7 180.95 181.00 0.516 185.08* 185.12* 0.07 185.19 9 11 13.29 24 c 23.0 181.00 181.11 0.478 185.19* 185.27* 0.28 185.55 10 12 12.92 24 c 87.3 181.11 181.55 0.504 185.56* 185.85* 0.24 186.08 11 13 10.00 24 c 235.7 181.55 182.73 0.501 186.19* 186.65* 0.02 186.67 12 14 2.92 12 c 91.8 182.73 184.61 2.049 186.67* 187.29* 0.21 187.50 13 15 2.92 12 c 30.5 184.61 184.92 1.017 187.50* 187.71* 0.03 187.74 14 16 2.92 12 c 15.0 184.92 185.07 1.000 187.74* 187.84* 0.03 187.87 15 17 2.92 12 c 30.0 185.07 185.37 1.000 187.87* 188.08* 0.03 188.11 16 18 2.92 12 c 20.0 185.37 185.57 1.000 188.11* 188.24* 0.21 188.46 17 19 2.27 12 c 39.1 185.61 186.00 0.997 188.54* 188.70* 0.13 188.83 18 20 2.20 12 c 13.3 183.04 183.17 0.977 183.61 183.80 n/a 184.01 j 3 21 45.80 36 c 77.8 179.86 180.25 0.501 183.43* 183.79* 0.10 183.89 4 22 0.70 6 c 5.6 185.06 185.12 1.069 185.56 185.62 0.20 185.81 5 23 0.41 6 c 53.0 185.02 185.55 1.000 185.76 186.02 0.07 186.09 11 24 2.20 12 c 30.8 183.17 183.48 1.008 184.16 184.22 0.14 184.35 20 25 45.80 36 c 10.4 180.25 180.30 0.482 183.89* 183.94* 0.65 184.59 21 26 2.20 12 c 149.4 183.48 184.98 1.004 184.43 185.61 n/a 185.61 j 24 27 45.40 36 c 20.2 180.30 180.40 0.495 184.61* 184.70* 0.10 184.80 25 28 0.70 6 c 18.0 185.12 185.30 1.000 185.81* 186.10* 0.20 186.29 22 29 45.40 36 c 16.3 180.40 180.48 0.492 184.80* 184.87* 0.10 184.97 27 30 1.20 12 c 27.5 184.98 185.25 0.983 185.72 185.72 n/a 185.74 j 26 31 45.40 36 c 25.8 180.48 180.61 0.504 184.97* 185.09* 0.10 185.18 29 32 1.20 12 c 20.0 185.25 185.45 1.000 185.88 185.92 n/a 185.94 j 30 Project File: OUTFALL1.stm Number of lines: 52 Run Date: 10-04-2011 NOTES: c = cir; e = ellip; b = box; Return period = 100 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump. Hydraflow Storm Sewers 2005 I Storm Sewer Summary Report Page 2 Line Line ID Flow Line Line Invert Invert Line HGL HGL Minor HGL Dns No.rate size length EL Dn EL Up slope down up loss Junct line (cfs) (in) (ft) (ft) (ft) (%) (ft) (ft) (ft) (ft) No. 33 45.40 36 c 27.5 180.61 180.75 0.509 185.18* 185.31* 0.10 185.41 31 34 1.20 12 c 25.0 185.45 185.70 1.000 186.08 186.16 n/a 186.16 j 32 35 45.40 36 c 25.0 180.75 180.88 0.520 185.41* 185.52* 0.10 185.62 33 36 1.20 12 c 15.0 185.70 185.85 1.000 186.30 186.32 n/a 186.34 j 34 37 45.40 36 c 25.1 180.88 181.00 0.479 185.62* 185.74* 0.10 185.83 35 38 1.20 9 c 20.0 185.85 186.05 1.000 186.40 186.55 0.23 186.78 36 39 45.40 36 c 21.0 181.00 181.11 0.525 185.83* 185.93* 0.10 186.03 37 40 45.40 36 c 4.5 181.11 181.13 0.442 186.03* 186.05* 0.64 186.69 39 41 45.05 36 c 6.0 181.13 181.16 0.500 186.70* 186.73* 0.09 186.82 40 42 45.05 36 c 28.6 181.16 181.30 0.490 186.82* 186.95* 0.63 187.58 41 43 0.52 6 c 8.4 180.30 186.09 69.093 185.14 186.46 n/a 186.46 j 25 44 0.40 6 c 11.2 181.13 190.54 83.868 187.27 190.86 n/a 190.86 j 40 45 2.30 12 c 15.4 185.51 185.66 0.975 186.10 186.31 0.13 186.44 3 46 0.34 6 c 48.0 184.72 185.20 1.000 185.00 185.50 n/a 185.62 j 5 47 0.71 6 c 47.2 184.93 185.40 0.996 185.43* 186.19* 0.20 186.39 4 48 2.30 12 c 29.7 185.66 185.96 1.011 186.59 186.62 0.19 186.81 45 49 0.71 12 c 22.5 185.40 185.63 1.022 186.57 186.58 0.01 186.59 47 50 1.30 12 c 143.9 185.96 187.40 1.001 187.04 187.88 n/a 187.88 j 48 51 1.02 12 c 157.2 187.40 190.00 1.654 188.04 190.43 n/a 190.43 j 50 52 0.33 6 c 56.6 185.61 186.24 1.113 188.63* 188.82* 0.04 188.87 18 Project File: OUTFALL1.stm Number of lines: 52 Run Date: 10-04-2011 NOTES: c = cir; e = ellip; b = box; Return period = 100 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump. Hydraflow Storm Sewers 2005 I Storm Sewer Inventory Report Page 1 Line Alignment Flow Data Physical Data Line ID No. Dnstr Line Defl Junc Known Drng Runoff Inlet Invert Line Invert Line Line N J-loss Inlet/ line length angle type Q area coeff time El Dn slope El Up size type value coeff Rim El No. (ft) (deg) (cfs) (ac) (C) (min) (ft) (%) (ft) (in) (n) (K) (ft) 1 End 11.9 -37.6 None 56.22 0.00 0.00 0.0 179.24 0.51 179.30 48 Cir 0.013 0.31 182.00 2 1 12.4 15.3 None 56.22 0.00 0.00 0.0 179.30 0.56 179.37 48 Cir 0.013 0.32 187.00 3 2 13.7 15.7 MH 56.22 0.00 0.00 0.0 179.37 0.44 179.43 48 Cir 0.013 1.00 189.40 4 3 80.6 3.9 MH 53.23 0.00 0.00 0.0 179.46 0.50 179.86 48 Cir 0.013 1.00 189.73 5 4 88.5 100.0 MH 14.19 0.00 0.00 0.0 179.86 0.50 180.30 24 Cir 0.013 1.00 189.40 6 5 102.6 -0.6 None 13.29 0.00 0.00 0.0 180.30 0.51 180.82 24 Cir 0.013 0.25 190.28 7 6 9.5 -12.2 None 13.29 0.00 0.00 0.0 180.82 0.42 180.86 24 Cir 0.013 0.46 190.30 8 7 9.2 -23.9 None 13.29 0.00 0.00 0.0 180.86 0.55 180.91 24 Cir 0.013 0.43 190.30 9 8 8.1 -22.1 None 13.29 0.00 0.00 0.0 180.91 0.49 180.95 24 Cir 0.013 0.44 190.31 10 9 9.7 -22.8 None 13.29 0.00 0.00 0.0 180.95 0.52 181.00 24 Cir 0.013 0.26 190.32 11 10 23.0 -12.4 MH 13.29 0.00 0.00 0.0 181.00 0.48 181.11 24 Cir 0.013 0.99 189.95 12 11 87.3 21.0 MH 12.92 0.00 0.00 0.0 181.11 0.50 181.55 24 Cir 0.013 0.90 190.80 13 12 235.7 -61.5 MH 10.00 0.00 0.00 0.0 181.55 0.50 182.73 24 Cir 0.013 0.15 190.30 14 13 91.8 -5.1 MH 2.92 0.00 0.00 0.0 182.73 2.05 184.61 12 Cir 0.013 1.00 191.20 15 14 30.5 91.8 None 2.92 0.00 0.00 0.0 184.61 1.02 184.92 12 Cir 0.013 0.15 191.19 16 15 15.0 3.3 None 2.92 0.00 0.00 0.0 184.92 1.00 185.07 12 Cir 0.013 0.15 191.18 17 16 30.0 4.2 None 2.92 0.00 0.00 0.0 185.07 1.00 185.37 12 Cir 0.013 0.15 191.15 18 17 20.0 4.7 MH 2.92 0.00 0.00 0.0 185.37 1.00 185.57 12 Cir 0.013 1.00 190.80 19 18 39.1 -92.1 Curb 2.27 0.00 0.00 0.0 185.61 1.00 186.00 12 Cir 0.013 1.00 190.87 20 3 13.3 93.7 MH 2.20 0.00 0.00 0.0 183.04 0.98 183.17 12 Cir 0.013 0.75 189.00 21 4 77.8 -79.7 None 45.80 0.00 0.00 0.0 179.86 0.50 180.25 36 Cir 0.013 0.15 190.18 Project File: OUTFALL1.stm Number of lines: 52 Date: 10-04-2011 Hydraflow Storm Sewers 2005 Storm Sewer Inventory Report Page 2 Line Alignment Flow Data Physical Data Line ID No. Dnstr Line Defl Junc Known Drng Runoff Inlet Invert Line Invert Line Line N J-loss Inlet/ line length angle type Q area coeff time El Dn slope El Up size type value coeff Rim El No. (ft) (deg) (cfs) (ac) (C) (min) (ft) (%) (ft) (in) (n) (K) (ft) 22 5 5.6 79.8 MH 0.70 0.00 0.00 0.0 185.06 1.07 185.12 6 Cir 0.013 0.99 189.50 23 11 53.0 79.0 MH 0.41 0.00 0.00 0.0 185.02 1.00 185.55 6 Cir 0.013 1.00 189.55 24 20 30.8 45.4 MH 2.20 0.00 0.00 0.0 183.17 1.01 183.48 12 Cir 0.013 0.70 189.00 25 21 10.4 1.8 MH 45.80 0.00 0.00 0.0 180.25 0.48 180.30 36 Cir 0.013 1.00 190.20 26 24 149.4 -40.8 MH 2.20 0.00 0.00 0.0 183.48 1.00 184.98 12 Cir 0.013 0.15 189.00 27 25 20.2 1.7 None 45.40 0.00 0.00 0.0 180.30 0.50 180.40 36 Cir 0.013 0.15 190.40 28 22 18.0 -79.7 MH 0.70 0.00 0.00 0.0 185.12 1.00 185.30 6 Cir 0.013 1.00 189.42 29 27 16.3 3.9 None 45.40 0.00 0.00 0.0 180.40 0.49 180.48 36 Cir 0.013 0.15 190.50 30 26 27.5 4.1 None 1.20 0.00 0.00 0.0 184.98 0.98 185.25 12 Cir 0.013 0.15 189.00 31 29 25.8 4.1 None 45.40 0.00 0.00 0.0 180.48 0.50 180.61 36 Cir 0.013 0.15 191.70 32 30 20.0 -2.3 None 1.20 0.00 0.00 0.0 185.25 1.00 185.45 12 Cir 0.013 0.15 189.00 33 31 27.5 5.2 None 45.40 0.00 0.00 0.0 180.61 0.51 180.75 36 Cir 0.013 0.15 191.80 34 32 25.0 -2.2 None 1.20 0.00 0.00 0.0 185.45 1.00 185.70 12 Cir 0.013 0.15 189.00 35 33 25.0 5.1 None 45.40 0.00 0.00 0.0 180.75 0.52 180.88 36 Cir 0.013 0.15 191.80 36 34 15.0 -2.0 None 1.20 0.00 0.00 0.0 185.70 1.00 185.85 12 Cir 0.013 0.15 189.00 37 35 25.1 4.9 None 45.40 0.00 0.00 0.0 180.88 0.48 181.00 36 Cir 0.013 0.15 192.70 38 36 20.0 -1.7 MH 1.20 0.00 0.00 0.0 185.85 1.00 186.05 9 Cir 0.013 1.00 189.00 39 37 21.0 4.5 None 45.40 0.00 0.00 0.0 181.00 0.52 181.11 36 Cir 0.013 0.15 194.30 40 39 4.5 3.1 MH 45.40 0.00 0.00 0.0 181.11 0.44 181.13 36 Cir 0.013 1.00 194.40 41 40 6.0 0.0 None 45.05 0.00 0.00 0.0 181.13 0.50 181.16 36 Cir 0.013 0.15 195.30 42 41 28.6 1.1 MH 45.05 0.00 0.00 0.0 181.16 0.49 181.30 36 Cir 0.013 1.00 196.20 Project File: OUTFALL1.stm Number of lines: 52 Date: 10-04-2011 Hydraflow Storm Sewers 2005 Storm Sewer Inventory Report Page 3 Line Alignment Flow Data Physical Data Line ID No. Dnstr Line Defl Junc Known Drng Runoff Inlet Invert Line Invert Line Line N J-loss Inlet/ line length angle type Q area coeff time El Dn slope El Up size type value coeff Rim El No. (ft) (deg) (cfs) (ac) (C) (min) (ft) (%) (ft) (in) (n) (K) (ft) 43 25 8.4 -89.8 MH 0.52 0.00 0.00 0.0 180.30 69.09 186.09 6 Cir 0.013 1.00 190.10 44 40 11.2 -90.2 MH 0.40 0.00 0.00 0.0 181.13 83.87 190.54 6 Cir 0.013 1.00 195.50 45 3 15.4 -86.2 MH 2.30 0.00 0.00 0.0 185.51 0.97 185.66 12 Cir 0.013 0.47 189.00 46 5 48.0 -88.5 MH 0.34 0.00 0.00 0.0 184.72 1.00 185.20 6 Cir 0.013 1.00 189.20 47 4 47.2 15.1 MH 0.71 0.00 0.00 0.0 184.93 1.00 185.40 6 Cir 0.013 1.00 189.50 48 45 29.7 -24.7 MH 2.30 0.00 0.00 0.0 185.66 1.01 185.96 12 Cir 0.013 0.71 189.00 49 47 22.5 -95.1 MH 0.71 0.00 0.00 0.0 185.40 1.02 185.63 12 Cir 0.013 1.00 189.65 50 48 143.9 41.3 MH 1.30 0.00 0.00 0.0 185.96 1.00 187.40 12 Cir 0.013 0.42 189.00 51 50 157.2 21.6 MH 1.02 0.00 0.00 0.0 187.40 1.65 190.00 12 Cir 0.013 1.00 192.80 52 18 56.6 4.0 MH 0.33 0.00 0.00 0.0 185.61 1.11 186.24 6 Cir 0.013 1.00 190.00 Project File: OUTFALL1.stm Number of lines: 52 Date: 10-04-2011 Hydraflow Storm Sewers 2005 Hydraflow HGL Computation Procedure Page 1 General Procedure: Hydraflow computes the HGL using the Bernoulli energy equation. Manning's equation is used to determine energy losses due to pipe friction. In a standard step, iterative procedure, Hydraflow assumes upstream HGLs until the energy equation balances. If the energy equation cannot balance, supercritical flow exists and critical depth is temporarily assumed at the upstream end. A supercritical flow Profile is then computed using the same procedure in a downstream direction using momentum principles. Col. 1 The line number being computed. Calculations begin at Line 1 and proceed upstream. Col. 2 The line size. In the case of non-circular pipes, the line rise is printed above the span. Col. 3 Total flow rate in the line. Col. 4 The elevation of the downstream invert. Col. 5 Elevation of the hydraulic grade line at the downstream end. This is computed as the upstream HGL + Minor loss of this line's downstream line. Col. 6 The downstream depth of flow inside the pipe (HGL - Invert elevation) but not greater than the line size. Col. 7 Cross-sectional area of the flow at the downstream end. Col. 8 The velocity of the flow at the downstream end, (Col. 3 / Col. 7). Col. 9 Velocity head (Velocity squared / 2g). Col. 10 The elevation of the energy grade line at the downstream end, HGL + Velocity head, (Col. 5 + Col. 9). Col. 11 The friction slope at the downstream end (the S or Slope term in Manning's equation). Col. 12 The line length. Col. 13 The elevation of the upstream invert. Col. 14 Elevation of the hydraulic grade line at the upstream end. Col. 15 The upstream depth of flow inside the pipe (HGL - Invert elevation) but not greater than the line size. Col. 16 Cross-sectional area of the flow at the upstream end. Col. 17 The velocity of the flow at the upstream end, (Col. 3 / Col. 16). Col. 18 Velocity head (Velocity squared / 2g). Col. 19 The elevation of the energy grade line at the upstream end, HGL + Velocity head, (Col. 14 + Col. 18) . Col. 20 The friction slope at the upstream end (the S or Slope term in Manning's equation). Col. 21 The average of the downstream and upstream friction slopes. Col. 22 Energy loss. Average Sf/100 x Line Length (Col. 21/100 x Col. 12). Equals (EGL upstream - EGL downstream) +/- tolerance. Col. 23 The junction loss coefficient (K). Col. 24 Minor loss. (Col. 23 x Col. 18). Is added to upstream HGL and used as the starting HGL for the next upstream line(s). ATTACHMENT G STORM DRAIN SYSTEM LINE B -OUTFALL 2 Hydraflow Plan View Project File: OUTFALL2.stm No. Lines: 54 10-04-2011 Hydraflow Storm Sewers 2005 4 3 2 1 Outfall 5 22 20 6 7 8 9 10 11 19 23 24 13 14 25 26 27 51 s39 363;,3 33 34 35 7 30 41 40 42 31 50 49 43 Hydraulic Grade Line Computations Page 1 Line Size Q Downstream Len Upstream Check JL Minor coeff loss Invert HGL Depth Area Vel Vel EGL Sf Invert HGL Depth Area Vel Vel EGL Sf Ave Enrgy elev elev head elev elev elev head elev Sf loss (in) (cfs) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (ft) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (%) (ft) (K) (ft) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) 1 24 10.00 176.36 178.20 1.84 3.02 3.31 0.17 178.37 0.170 5.6 176.47 178.19 1.72 2.88 3.48 0.19 178.38 0.181 0.175 0.010 0.16 0.03 2 24 10.00 176.47 178.22 1.75 2.92 3.43 0.18 178.40 0.177 5.8 176.59 178.20 1.61 2.72 3.68 0.21 178.41 0.201 0.189 0.011 0.16 0.03 3 24 10.00 176.59 178.24 1.65 2.77 3.61 0.20 178.44 0.194 6.3 176.72 178.20 1.48 2.50 4.00 0.25 178.45 0.241 0.217 0.014 0.21 0.05 4 24 10.00 176.72 178.26 1.54 2.59 3.86 0.23 178.49 0.223 9.6 176.91 178.14 1.23 2.02 4.94 0.38 178.52 0.404 0.313 0.030 1.00 0.38 5 24 7.30 176.95 178.81 1.86 3.05 2.39 0.09 178.90 0.090 99.2 181.95 182.91 j 0.96** 1.48 4.92 0.38 183.28 0.485 0.287 n/a 1.00 n/a 6 18 6.80 181.95 183.05 1.10 1.39 4.88 0.37 183.42 0.529 5.4 181.98 183.08 1.10 1.39 4.90 0.37 183.45 0.534 0.531 0.029 0.15 0.06 7 18 6.80 181.98 183.28 1.30 1.63 4.18 0.27 183.55 0.385 18.5 182.07 183.34 1.27 1.60 4.26 0.28 183.62 0.397 0.391 0.072 0.15 0.04 8 18 6.80 182.07 183.38 1.31 1.64 4.14 0.27 183.65 0.379 16.6 182.16 183.43 1.27 1.60 4.25 0.28 183.71 0.395 0.387 0.064 0.15 0.04 9 18 6.80 182.16 183.48 1.32 1.64 4.14 0.27 183.74 0.379 20.3 182.26 183.54 1.28 1.61 4.23 0.28 183.82 0.392 0.385 0.078 0.18 0.05 10 18 6.80 182.26 183.59 1.33 1.66 4.10 0.26 183.85 0.374 24.7 182.38 183.67 1.29 1.62 4.20 0.27 183.95 0.387 0.381 0.094 0.15 0.04 11 18 6.80 182.38 183.76 1.38 1.70 4.00 0.25 184.01 0.364 80.1 182.78 184.02 1.24 1.57 4.34 0.29 184.32 0.411 0.388 0.310 0.71 0.21 12 18 6.40 182.78 184.31 1.50 1.77 3.62 0.20 184.51 0.372 8.5 182.82 184.32 1.50 1.77 3.62 0.20 184.52 0.371 0.371 0.032 1.00 0.20 13 18 5.66 182.82 184.57 1.50 1.77 3.20 0.16 184.73 0.291 77.5 183.21 184.79 1.50 1.77 3.20 0.16 184.95 0.291 0.291 0.225 0.20 0.03 14 18 5.66 183.21 184.83 1.50 1.77 3.20 0.16 184.99 0.291 15.0 183.29 184.87 1.50 1.77 3.20 0.16 185.03 0.291 0.291 0.044 0.15 0.02 15 18 5.66 183.29 184.89 1.50 1.77 3.20 0.16 185.05 0.291 15.0 183.36 184.94 1.50 1.77 3.20 0.16 185.10 0.291 0.291 0.044 0.15 0.02 16 18 5.66 183.36 184.96 1.50 1.77 3.20 0.16 185.12 0.291 14.7 183.44 185.00 1.50 1.77 3.20 0.16 185.16 0.291 0.291 0.043 1.00 0.16 17 18 5.66 183.44 185.16 1.50 1.77 3.20 0.16 185.32 0.291 10.3 183.49 185.19 1.50 1.77 3.20 0.16 185.35 0.291 0.291 0.030 0.15 0.02 18 18 5.66 183.49 185.22 1.50 1.77 3.20 0.16 185.38 0.291 10.8 183.54 185.25 1.50 1.77 3.20 0.16 185.41 0.291 0.291 0.031 1.00 0.16 19 6 0.89 182.82 184.52 0.50 0.19 4.53 0.32 184.84 2.520 33.3 186.36 186.82 j 0.46** 0.19 4.71 0.34 187.16 2.186 2.353 n/a 1.00 0.34 20 6 0.60 185.57 186.03 0.46* 0.19 3.17 0.16 186.19 0.992 38.3 185.95 186.45 0.50 0.20 3.06 0.15 186.60 1.138 1.065 0.408 0.28 0.04 21 6 0.60 185.95 186.49 0.50 0.20 3.06 0.15 186.64 1.145 34.1 185.61 186.88 0.50 0.20 3.06 0.15 187.03 1.145 1.145 0.391 1.00 0.15 Project File: OUTFALL2.stm Number of lines: 54 Run Date: 10-04-2011 Notes: * Normal depth assumed.; ** Critical depth.; j-Line contains hyd. jump. Hydraflow Storm Sewers 2005 I I Hydraulic Grade Line Computations Page 2 Line Size Q Downstream Len Upstream Check JL Minor coeff loss Invert HGL Depth Area Vel Vel EGL Sf Invert HGL Depth Area Vel Vel EGL Sf Ave Enrgy elev elev head elev elev elev head elev Sf loss (in) (cfs) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (ft) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (%) (ft) (K) (ft) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) 22 12 3.63 180.96 181.80 0.84* 0.70 5.16 0.41 182.21 0.999 92.8 181.89 182.73 0.84 0.70 5.17 0.42 183.14 1.003 1.001 0.929 0.32 0.13 23 12 3.63 181.89 182.94 1.00 0.79 4.62 0.33 183.28 1.039 92.8 182.82 183.91 1.00 0.79 4.62 0.33 184.24 1.039 1.039 0.965 0.15 0.05 24 12 2.25 182.82 184.16 1.00 0.79 2.87 0.13 184.29 0.399 83.6 183.65 184.46 0.81 0.68 3.31 0.17 184.63 0.409 0.404 0.338 0.15 0.03 25 12 2.25 183.65 184.53 0.88 0.73 3.08 0.15 184.67 0.361 12.7 183.78 184.53 0.75 0.63 3.56 0.20 184.73 0.479 0.420 0.053 0.15 0.03 26 12 2.25 183.78 184.63 0.85 0.71 3.16 0.16 184.79 0.376 12.7 183.91 184.63 0.72 0.60 3.74 0.22 184.84 0.538 0.457 0.058 0.15 0.03 27 12 2.25 183.91 184.75 0.84 0.70 3.20 0.16 184.91 0.384 68.0 184.59 185.23 j 0.64** 0.53 4.27 0.28 185.51 0.742 0.563 n/a 0.75 n/a 28 12 2.25 184.59 185.38 0.79 0.67 3.37 0.18 185.56 0.426 18.3 184.77 185.41 j 0.64** 0.53 4.25 0.28 185.69 0.734 0.580 0.106 0.75 0.21 29 12 2.25 184.77 185.63 0.86 0.72 3.14 0.15 185.78 0.370 22.1 184.99 185.63 0.64** 0.53 4.25 0.28 185.91 0.734 0.552 0.122 0.70 0.20 30 12 2.25 184.99 185.98 0.99 0.78 2.87 0.13 186.11 0.365 88.8 185.88 186.52 j 0.64** 0.53 4.27 0.28 186.80 0.742 0.554 n/a 0.25 n/a 31 12 1.14 185.88 186.77 0.89 0.74 1.55 0.04 186.80 0.091 69.6 186.58 187.03 j 0.45** 0.35 3.30 0.17 187.20 0.578 0.335 n/a 1.00 n/a 32 18 5.12 183.54 185.44 1.50 1.77 2.90 0.13 185.57 0.238 13.2 183.61 185.47 1.50 1.77 2.90 0.13 185.60 0.238 0.238 0.031 1.00 0.13 33 18 4.47 183.61 185.63 1.50 1.77 2.53 0.10 185.73 0.181 16.0 183.69 185.66 1.50 1.77 2.53 0.10 185.76 0.181 0.181 0.029 0.15 0.01 34 18 4.47 183.69 185.67 1.50 1.77 2.53 0.10 185.77 0.181 15.0 183.76 185.70 1.50 1.77 2.53 0.10 185.80 0.181 0.181 0.027 0.15 0.01 35 18 4.47 183.76 185.72 1.50 1.77 2.53 0.10 185.82 0.181 15.0 183.84 185.74 1.50 1.77 2.53 0.10 185.84 0.181 0.181 0.027 0.15 0.01 36 18 4.47 183.84 185.76 1.50 1.77 2.53 0.10 185.86 0.181 16.1 183.92 185.79 1.50 1.77 2.53 0.10 185.89 0.181 0.181 0.029 1.00 0.10 37 18 3.21 183.92 185.93 1.50 1.77 1.82 0.05 185.99 0.093 8.9 183.96 185.94 1.50 1.77 1.82 0.05 185.99 0.093 0.093 0.008 0.15 0.01 38 18 3.21 183.96 185.95 1.50 1.77 1.82 0.05 186.00 0.093 10.0 184.01 185.96 1.50 1.77 1.82 0.05 186.01 0.093 0.093 0.009 0.15 0.01 39 18 3.21 184.01 185.97 1.50 1.77 1.82 0.05 186.02 0.093 10.0 184.06 185.98 1.50 1.77 1.82 0.05 186.03 0.093 0.093 0.009 0.15 0.01 40 18 3.21 184.06 185.98 1.50 1.77 1.82 0.05 186.04 0.093 15.0 184.14 186.00 1.50 1.77 1.82 0.05 186.05 0.093 0.093 0.014 0.15 0.01 41 18 3.21 184.14 186.01 1.50 1.77 1.82 0.05 186.06 0.093 10.0 184.19 186.02 1.50 1.77 1.82 0.05 186.07 0.093 0.093 0.009 0.15 0.01 42 18 3.21 184.19 186.02 1.50 1.77 1.82 0.05 186.07 0.093 43.2 184.40 186.06 1.50 1.77 1.82 0.05 186.12 0.093 0.093 0.040 0.35 0.02 Project File: OUTFALL2.stm Number of lines: 54 Run Date: 10-04-2011 Notes: * Normal depth assumed.; ** Critical depth.; j-Line contains hyd. jump. Hydraflow Storm Sewers 2005 I I Hydraulic Grade Line Computations Page 3 Line Size Q Downstream Len Upstream Check JL Minor coeff loss Invert HGL Depth Area Vel Vel EGL Sf Invert HGL Depth Area Vel Vel EGL Sf Ave Enrgy elev elev head elev elev elev head elev Sf loss (in) (cfs) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (ft) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (%) (ft) (K) (ft) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) 43 18 3.21 184.40 186.08 1.50 1.77 1.82 0.05 186.13 0.093 77.0 185.06 186.13 1.07 1.35 2.38 0.09 186.22 0.127 0.110 0.085 1.00 0.09 44 18 3.21 185.06 186.22 1.16 1.46 2.19 0.07 186.29 0.105 9.1 185.14 186.22 1.08 1.36 2.36 0.09 186.30 0.125 0.115 0.010 1.00 0.09 45 18 2.51 185.14 186.30 1.16 1.47 1.71 0.05 186.35 0.064 33.3 185.43 186.30 0.87 1.06 2.38 0.09 186.38 0.143 0.103 0.034 1.00 0.09 46 6 0.78 183.61 185.60 0.50 0.20 3.97 0.25 185.84 1.936 50.5 185.90 186.58 0.50 0.20 3.97 0.25 186.82 1.935 1.935 0.976 0.98 0.24 47 12 1.36 183.92 185.94 1.00 0.79 1.73 0.05 185.99 0.146 7.6 185.78 186.27 0.49** 0.39 3.51 0.19 186.47 0.605 0.376 n/a 1.00 0.19 48 6 0.33 185.06 186.26 0.50 0.20 1.68 0.04 186.31 0.346 43.1 186.30 186.59 j 0.29** 0.12 2.77 0.12 186.71 0.836 0.591 n/a 1.00 n/a 49 6 0.70 185.14 186.30 0.50 0.20 3.57 0.20 186.50 1.559 37.6 192.90 193.32 j 0.42** 0.18 3.94 0.24 193.57 1.468 1.514 n/a 1.00 0.24 50 6 0.66 185.43 186.38 0.50 0.20 3.36 0.18 186.56 1.386 37.0 186.51 186.92 j 0.41** 0.17 3.81 0.23 187.15 1.369 1.377 n/a 1.00 n/a 51 6 0.78 185.90 186.82 0.50 0.20 3.97 0.25 187.06 1.936 38.7 186.29 187.56 0.50 0.20 3.97 0.25 187.81 1.935 1.935 0.749 1.00 0.25 52 6 0.53 182.78 184.41 0.50 0.20 2.70 0.11 184.52 0.894 10.2 186.40 186.77 j 0.37** 0.16 3.40 0.18 186.95 1.111 1.002 n/a 1.00 n/a 53 18 0.80 183.54 185.56 1.50 1.77 0.45 0.00 185.57 0.006 16.4 183.87 185.56 1.50 1.77 0.45 0.00 185.57 0.006 0.006 0.001 1.00 0.00 54 6 0.34 183.44 185.28 0.50 0.20 1.73 0.05 185.32 0.368 6.5 183.46 185.30 0.50 0.20 1.73 0.05 185.35 0.368 0.368 0.024 1.00 0.05 Project File: OUTFALL2.stm Number of lines: 54 Run Date: 10-04-2011 Notes: * Normal depth assumed.; ** Critical depth.; j-Line contains hyd. jump. Hydraflow Storm Sewers 2005 I I Storm Sewer Summary Report Page 1 Line Line ID Flow Line Line Invert Invert Line HGL HGL Minor HGL Dns No.rate size length EL Dn EL Up slope down up loss Junct line (cfs) (in) (ft) (ft) (ft) (%) (ft) (ft) (ft) (ft) No. 1 10.00 24 c 5.6 176.36 176.47 1.971 178.20 178.19 0.03 178.22 End 2 10.00 24 c 5.8 176.47 176.59 2.055 178.22 178.20 0.03 178.24 1 3 10.00 24 c 6.3 176.59 176.72 2.070 178.24 178.20 0.05 178.26 2 4 10.00 24 c 9.6 176.72 176.91 1.975 178.26 178.14 0.38 178.52 3 5 7.30 24 c 99.2 176.95 181.95 5.040 178.81 182.91 n/a 182.91 j 4 6 6.80 18 c 5.4 181.95 181.98 0.553 183.05 183.08 0.06 183.13 5 7 6.80 18 c 18.5 181.98 182.07 0.487 183.28 183.34 0.04 183.38 6 8 6.80 18 c 16.6 182.07 182.16 0.543 183.38 183.43 0.04 183.48 7 9 6.80 18 c 20.3 182.16 182.26 0.493 183.48 183.54 0.05 183.59 8 10 6.80 18 c 24.7 182.26 182.38 0.486 183.59 183.67 0.04 183.71 9 11 6.80 18 c 80.1 182.38 182.78 0.500 183.76 184.02 0.21 184.23 10 12 6.40 18 c 8.5 182.78 182.82 0.469 184.31 184.32 0.20 184.52 11 13 5.66 18 c 77.5 182.82 183.21 0.503 184.57* 184.79* 0.03 184.83 12 14 5.66 18 c 15.0 183.21 183.29 0.534 184.83* 184.87* 0.02 184.89 13 15 5.66 18 c 15.0 183.29 183.36 0.467 184.89* 184.94* 0.02 184.96 14 16 5.66 18 c 14.7 183.36 183.44 0.544 184.96* 185.00* 0.16 185.16 15 17 5.66 18 c 10.3 183.44 183.49 0.486 185.16* 185.19* 0.02 185.22 16 18 5.66 18 c 10.8 183.49 183.54 0.465 185.22* 185.25* 0.16 185.41 17 19 0.89 6 c 33.3 182.82 186.36 10.624 184.52 186.82 n/a 186.82 j 12 20 0.60 6 c 38.3 185.57 185.95 0.993 186.03 186.45 0.04 186.49 5 21 0.60 6 c 34.1 185.95 185.61 -0.997 186.49* 186.88* 0.15 187.03 20 22 3.63 12 c 92.8 180.96 181.89 1.002 181.80 182.73 0.13 182.86 4 23 3.63 12 c 92.8 181.89 182.82 1.002 182.94* 183.91* 0.05 183.96 22 24 2.25 12 c 83.6 182.82 183.65 0.993 184.16 184.46 0.03 184.48 23 25 2.25 12 c 12.7 183.65 183.78 1.022 184.53 184.53 0.03 184.56 24 26 2.25 12 c 12.7 183.78 183.91 1.022 184.63 184.63 0.03 184.66 25 27 2.25 12 c 68.0 183.91 184.59 1.000 184.75 185.23 n/a 185.23 j 26 28 2.25 12 c 18.3 184.59 184.77 0.982 185.38 185.41 n/a 185.62 j 27 29 2.25 12 c 22.1 184.77 184.99 0.997 185.63 185.63 0.20 185.83 28 30 2.25 12 c 88.8 184.99 185.88 1.002 185.98 186.52 n/a 186.52 j 29 31 1.14 12 c 69.6 185.88 186.58 1.005 186.77 187.03 n/a 187.03 j 30 32 5.12 18 c 13.2 183.54 183.61 0.530 185.44* 185.47* 0.13 185.60 18 Project File: OUTFALL2.stm Number of lines: 54 Run Date: 10-04-2011 NOTES: c = cir; e = ellip; b = box; Return period = 100 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump. Hydraflow Storm Sewers 2005 I Storm Sewer Summary Report Page 2 Line Line ID Flow Line Line Invert Invert Line HGL HGL Minor HGL Dns No.rate size length EL Dn EL Up slope down up loss Junct line (cfs) (in) (ft) (ft) (ft) (%) (ft) (ft) (ft) (ft) No. 33 4.47 18 c 16.0 183.61 183.69 0.499 185.63* 185.66* 0.01 185.67 32 34 4.47 18 c 15.0 183.69 183.76 0.467 185.67* 185.70* 0.01 185.72 33 35 4.47 18 c 15.0 183.76 183.84 0.534 185.72* 185.74* 0.01 185.76 34 36 4.47 18 c 16.1 183.84 183.92 0.496 185.76* 185.79* 0.10 185.89 35 37 3.21 18 c 8.9 183.92 183.96 0.452 185.93* 185.94* 0.01 185.95 36 38 3.21 18 c 10.0 183.96 184.01 0.500 185.95* 185.96* 0.01 185.97 37 39 3.21 18 c 10.0 184.01 184.06 0.500 185.97* 185.98* 0.01 185.98 38 40 3.21 18 c 15.0 184.06 184.14 0.534 185.98* 186.00* 0.01 186.01 39 41 3.21 18 c 10.0 184.14 184.19 0.500 186.01* 186.02* 0.01 186.02 40 42 3.21 18 c 43.2 184.19 184.40 0.487 186.02* 186.06* 0.02 186.08 41 43 3.21 18 c 77.0 184.40 185.06 0.857 186.08 186.13 0.09 186.22 42 44 3.21 18 c 9.1 185.06 185.14 0.882 186.22 186.22 0.09 186.30 43 45 2.51 18 c 33.3 185.14 185.43 0.871 186.30 186.30 0.09 186.38 44 46 0.78 6 c 50.5 183.61 185.90 4.539 185.60* 186.58* 0.24 186.82 32 47 1.36 12 c 7.6 183.92 185.78 24.538 185.94 186.27 0.19 186.27 36 48 0.33 6 c 43.1 185.06 186.30 2.876 186.26 186.59 n/a 186.59 j 43 49 0.70 6 c 37.6 185.14 192.90 20.666 186.30 193.32 n/a 193.32 j 44 50 0.66 6 c 37.0 185.43 186.51 2.919 186.38 186.92 n/a 186.92 j 45 51 0.78 6 c 38.7 185.90 186.29 1.008 186.82* 187.56* 0.25 187.81 46 52 0.53 6 c 10.2 182.78 186.40 35.630 184.41 186.77 n/a 186.77 j 11 53 0.80 18 c 16.4 183.54 183.87 2.015 185.56* 185.56* 0.00 185.57 18 54 0.34 6 c 6.5 183.44 183.46 0.310 185.28* 185.30* 0.05 185.35 16 Project File: OUTFALL2.stm Number of lines: 54 Run Date: 10-04-2011 NOTES: c = cir; e = ellip; b = box; Return period = 100 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump. Hydraflow Storm Sewers 2005 I Storm Sewer Inventory Report Page 1 Line Alignment Flow Data Physical Data Line ID No. Dnstr Line Defl Junc Known Drng Runoff Inlet Invert Line Invert Line Line N J-loss Inlet/ line length angle type Q area coeff time El Dn slope El Up size type value coeff Rim El No. (ft) (deg) (cfs) (ac) (C) (min) (ft) (%) (ft) (in) (n) (K) (ft) 1 End 5.6 -77.2 None 10.00 0.00 0.00 0.0 176.36 1.97 176.47 24 Cir 0.013 0.16 182.00 2 1 5.8 7.3 None 10.00 0.00 0.00 0.0 176.47 2.05 176.59 24 Cir 0.013 0.16 184.00 3 2 6.3 7.7 None 10.00 0.00 0.00 0.0 176.59 2.07 176.72 24 Cir 0.013 0.21 186.00 4 3 9.6 10.1 MH 10.00 0.00 0.00 0.0 176.72 1.98 176.91 24 Cir 0.013 1.00 189.00 5 4 99.2 6.1 MH 7.30 0.00 0.00 0.0 176.95 5.04 181.95 24 Cir 0.013 1.00 189.90 6 5 5.4 108.4 None 6.80 0.00 0.00 0.0 181.95 0.55 181.98 18 Cir 0.013 0.15 189.80 7 6 18.5 -3.6 None 6.80 0.00 0.00 0.0 181.98 0.49 182.07 18 Cir 0.013 0.15 189.80 8 7 16.6 -6.8 None 6.80 0.00 0.00 0.0 182.07 0.54 182.16 18 Cir 0.013 0.15 189.90 9 8 20.3 -7.1 None 6.80 0.00 0.00 0.0 182.16 0.49 182.26 18 Cir 0.013 0.18 189.90 10 9 24.7 -8.7 None 6.80 0.00 0.00 0.0 182.26 0.49 182.38 18 Cir 0.013 0.15 190.10 11 10 80.1 -4.8 None 6.80 0.00 0.00 0.0 182.38 0.50 182.78 18 Cir 0.013 0.71 189.60 12 11 8.5 0.0 MH 6.40 0.00 0.00 0.0 182.78 0.47 182.82 18 Cir 0.013 1.00 189.50 13 12 77.5 0.0 MH 5.66 0.00 0.00 0.0 182.82 0.50 183.21 18 Cir 0.013 0.20 190.00 14 13 15.0 -9.4 None 5.66 0.00 0.00 0.0 183.21 0.53 183.29 18 Cir 0.013 0.15 190.20 15 14 15.0 -5.7 None 5.66 0.00 0.00 0.0 183.29 0.47 183.36 18 Cir 0.013 0.15 190.20 16 15 14.7 -5.7 None 5.66 0.00 0.00 0.0 183.36 0.54 183.44 18 Cir 0.013 1.00 190.20 17 16 10.3 -4.7 None 5.66 0.00 0.00 0.0 183.44 0.49 183.49 18 Cir 0.013 0.15 190.74 18 17 10.8 -4.1 None 5.66 0.00 0.00 0.0 183.49 0.46 183.54 18 Cir 0.013 1.00 190.50 19 12 33.3 -88.1 MH 0.89 0.00 0.00 0.0 182.82 10.62 186.36 6 Cir 0.013 1.00 189.80 20 5 38.3 -72.8 MH 0.60 0.00 0.00 0.0 185.57 0.99 185.95 6 Cir 0.013 0.28 189.80 21 20 34.1 13.8 MH 0.60 0.00 0.00 0.0 185.95 -1.00 185.61 6 Cir 0.013 1.00 189.60 Project File: OUTFALL2.stm Number of lines: 54 Date: 10-04-2011 Hydraflow Storm Sewers 2005 Storm Sewer Inventory Report Page 2 Line Alignment Flow Data Physical Data Line ID No. Dnstr Line Defl Junc Known Drng Runoff Inlet Invert Line Invert Line Line N J-loss Inlet/ line length angle type Q area coeff time El Dn slope El Up size type value coeff Rim El No. (ft) (deg) (cfs) (ac) (C) (min) (ft) (%) (ft) (in) (n) (K) (ft) 22 4 92.8 96.1 MH 3.63 0.00 0.00 0.0 180.96 1.00 181.89 12 Cir 0.013 0.32 190.00 23 22 92.8 -15.9 MH 3.63 0.00 0.00 0.0 181.89 1.00 182.82 12 Cir 0.013 0.15 190.00 24 23 83.6 -0.6 MH 2.25 0.00 0.00 0.0 182.82 0.99 183.65 12 Cir 0.013 0.15 191.00 25 24 12.7 2.6 MH 2.25 0.00 0.00 0.0 183.65 1.02 183.78 12 Cir 0.013 0.15 191.00 26 25 12.7 5.2 MH 2.25 0.00 0.00 0.0 183.78 1.02 183.91 12 Cir 0.013 0.15 191.00 27 26 68.0 2.6 MH 2.25 0.00 0.00 0.0 183.91 1.00 184.59 12 Cir 0.013 0.75 191.00 28 27 18.3 -45.0 MH 2.25 0.00 0.00 0.0 184.59 0.98 184.77 12 Cir 0.013 0.75 191.00 29 28 22.1 -45.0 MH 2.25 0.00 0.00 0.0 184.77 1.00 184.99 12 Cir 0.013 0.70 190.00 30 29 88.8 40.8 MH 2.25 0.00 0.00 0.0 184.99 1.00 185.88 12 Cir 0.013 0.25 189.80 31 30 69.6 -12.0 MH 1.14 0.00 0.00 0.0 185.88 1.01 186.58 12 Cir 0.013 1.00 189.80 32 18 13.2 -4.5 MH 5.12 0.00 0.00 0.0 183.54 0.53 183.61 18 Cir 0.013 1.00 190.05 33 32 16.0 -5.5 None 4.47 0.00 0.00 0.0 183.61 0.50 183.69 18 Cir 0.013 0.15 190.10 34 33 15.0 -6.0 None 4.47 0.00 0.00 0.0 183.69 0.47 183.76 18 Cir 0.013 0.15 190.00 35 34 15.0 -5.7 None 4.47 0.00 0.00 0.0 183.76 0.53 183.84 18 Cir 0.013 0.15 190.00 36 35 16.1 -6.0 None 4.47 0.00 0.00 0.0 183.84 0.50 183.92 18 Cir 0.013 1.00 189.90 37 36 8.9 -4.6 None 3.21 0.00 0.00 0.0 183.92 0.45 183.96 18 Cir 0.013 0.15 189.90 38 37 10.0 -3.7 None 3.21 0.00 0.00 0.0 183.96 0.50 184.01 18 Cir 0.013 0.15 190.00 39 38 10.0 -3.8 None 3.21 0.00 0.00 0.0 184.01 0.50 184.06 18 Cir 0.013 0.15 190.20 40 39 15.0 -4.8 None 3.21 0.00 0.00 0.0 184.06 0.53 184.14 18 Cir 0.013 0.15 190.25 41 40 10.0 -4.8 None 3.21 0.00 0.00 0.0 184.14 0.50 184.19 18 Cir 0.013 0.15 190.30 42 41 43.2 -4.7 MH 3.21 0.00 0.00 0.0 184.19 0.49 184.40 18 Cir 0.013 0.35 190.44 Project File: OUTFALL2.stm Number of lines: 54 Date: 10-04-2011 Hydraflow Storm Sewers 2005 Storm Sewer Inventory Report Page 3 Line Alignment Flow Data Physical Data Line ID No. Dnstr Line Defl Junc Known Drng Runoff Inlet Invert Line Invert Line Line N J-loss Inlet/ line length angle type Q area coeff time El Dn slope El Up size type value coeff Rim El No. (ft) (deg) (cfs) (ac) (C) (min) (ft) (%) (ft) (in) (n) (K) (ft) 43 42 77.0 -17.5 MH 3.21 0.00 0.00 0.0 184.40 0.86 185.06 18 Cir 0.013 1.00 190.20 44 43 9.1 0.0 MH 3.21 0.00 0.00 0.0 185.06 0.88 185.14 18 Cir 0.013 1.00 189.90 45 44 33.3 0.0 MH 2.51 0.00 0.00 0.0 185.14 0.87 185.43 18 Cir 0.013 1.00 189.80 46 32 50.5 -90.6 MH 0.78 0.00 0.00 0.0 183.61 4.54 185.90 6 Cir 0.013 0.98 189.65 47 36 7.6 87.0 MH 1.36 0.00 0.00 0.0 183.92 24.54 185.78 12 Cir 0.013 1.00 189.33 48 43 43.1 -90.0 MH 0.33 0.00 0.00 0.0 185.06 2.88 186.30 6 Cir 0.013 1.00 189.80 49 44 37.6 90.0 MH 0.70 0.00 0.00 0.0 185.14 20.67 192.90 6 Cir 0.013 1.00 196.00 50 45 37.0 -84.7 MH 0.66 0.00 0.00 0.0 185.43 2.92 186.51 6 Cir 0.013 1.00 189.50 51 46 38.7 76.7 MH 0.78 0.00 0.00 0.0 185.90 1.01 186.29 6 Cir 0.013 1.00 189.65 52 11 10.2 41.9 MH 0.53 0.00 0.00 0.0 182.78 35.63 186.40 6 Cir 0.013 1.00 189.64 53 18 16.4 87.7 MH 0.80 0.00 0.00 0.0 183.54 2.01 183.87 18 Cir 0.013 1.00 190.42 54 16 6.5 86.3 MH 0.34 0.00 0.00 0.0 183.44 0.31 183.46 6 Cir 0.013 1.00 190.06 Project File: OUTFALL2.stm Number of lines: 54 Date: 10-04-2011 Hydraflow Storm Sewers 2005 Hydraflow HGL Computation Procedure Page 1 General Procedure: Hydraflow computes the HGL using the Bernoulli energy equation. Manning's equation is used to determine energy losses due to pipe friction. In a standard step, iterative procedure, Hydraflow assumes upstream HGLs until the energy equation balances. If the energy equation cannot balance, supercritical flow exists and critical depth is temporarily assumed at the upstream end. A supercritical flow Profile is then computed using the same procedure in a downstream direction using momentum principles. Col. 1 The line number being computed. Calculations begin at Line 1 and proceed upstream. Col. 2 The line size. In the case of non-circular pipes, the line rise is printed above the span. Col. 3 Total flow rate in the line. Col. 4 The elevation of the downstream invert. Col. 5 Elevation of the hydraulic grade line at the downstream end. This is computed as the upstream HGL + Minor loss of this line's downstream line. Col. 6 The downstream depth of flow inside the pipe (HGL - Invert elevation) but not greater than the line size. Col. 7 Cross-sectional area of the flow at the downstream end. Col. 8 The velocity of the flow at the downstream end, (Col. 3 / Col. 7). Col. 9 Velocity head (Velocity squared / 2g). Col. 10 The elevation of the energy grade line at the downstream end, HGL + Velocity head, (Col. 5 + Col. 9). Col. 11 The friction slope at the downstream end (the S or Slope term in Manning's equation). Col. 12 The line length. Col. 13 The elevation of the upstream invert. Col. 14 Elevation of the hydraulic grade line at the upstream end. Col. 15 The upstream depth of flow inside the pipe (HGL - Invert elevation) but not greater than the line size. Col. 16 Cross-sectional area of the flow at the upstream end. Col. 17 The velocity of the flow at the upstream end, (Col. 3 / Col. 16). Col. 18 Velocity head (Velocity squared / 2g). Col. 19 The elevation of the energy grade line at the upstream end, HGL + Velocity head, (Col. 14 + Col. 18) . Col. 20 The friction slope at the upstream end (the S or Slope term in Manning's equation). Col. 21 The average of the downstream and upstream friction slopes. Col. 22 Energy loss. Average Sf/100 x Line Length (Col. 21/100 x Col. 12). Equals (EGL upstream - EGL downstream) +/- tolerance. Col. 23 The junction loss coefficient (K). Col. 24 Minor loss. (Col. 23 x Col. 18). Is added to upstream HGL and used as the starting HGL for the next upstream line(s). ATTACHMENT H STORM DRAIN SYSTEM LINE C -OUTFALL 3 Hydraflow Plan View Project File: OUTFALL3.stm No. Lines: 3 10-04-2011 Hydraflow Storm Sewers 2005 Outfall Hydraulic Grade Line Computations Page 1 Line Size Q Downstream Len Upstream Check JL Minor coeff loss Invert HGL Depth Area Vel Vel EGL Sf Invert HGL Depth Area Vel Vel EGL Sf Ave Enrgy elev elev head elev elev elev head elev Sf loss (in) (cfs) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (ft) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (%) (ft) (K) (ft) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) 1 12 4.50 205.42 206.31 0.89 0.74 6.09 0.58 206.89 1.420 36.7 206.06 206.95 j 0.89** 0.74 6.10 0.58 207.53 1.422 1.421 n/a 0.91 0.53 2 12 1.80 206.14 207.45 1.00 0.79 2.29 0.08 207.53 0.256 35.6 208.13 208.70 j 0.57** 0.46 3.90 0.24 208.94 0.668 0.462 n/a 1.00 n/a 3 6 0.83 206.14 207.25 0.50 0.19 4.23 0.28 207.53 2.192 26.3 208.88 209.33 j 0.45** 0.19 4.46 0.31 209.64 1.928 2.060 n/a 1.00 0.31 Project File: OUTFALL3.stm Number of lines: 3 Run Date: 10-04-2011 Notes: ; ** Critical depth.; j-Line contains hyd. jump. Hydraflow Storm Sewers 2005 I I Storm Sewer Summary Report Page 1 Line Line ID Flow Line Line Invert Invert Line HGL HGL Minor HGL Dns No.rate size length EL Dn EL Up slope down up loss Junct line (cfs) (in) (ft) (ft) (ft) (%) (ft) (ft) (ft) (ft) No. 1 4.50 12 c 36.7 205.42 206.06 1.743 206.31 206.95 n/a 206.95 j End 2 1.80 12 c 35.6 206.14 208.13 5.598 207.45 208.70 n/a 208.70 j 1 3 0.83 6 c 26.3 206.14 208.88 10.426 207.25 209.33 n/a 209.33 j 1 Project File: OUTFALL3.stm Number of lines: 3 Run Date: 10-04-2011 NOTES: c = cir; e = ellip; b = box; Return period = 100 Yrs. ; j - Line contains hyd. jump. Hydraflow Storm Sewers 2005 I Storm Sewer Inventory Report Page 1 Line Alignment Flow Data Physical Data Line ID No. Dnstr Line Defl Junc Known Drng Runoff Inlet Invert Line Invert Line Line N J-loss Inlet/ line length angle type Q area coeff time El Dn slope El Up size type value coeff Rim El No. (ft) (deg) (cfs) (ac) (C) (min) (ft) (%) (ft) (in) (n) (K) (ft) 1 End 36.7 -122.1 MH 4.50 0.00 0.00 0.0 205.42 1.74 206.06 12 Cir 0.013 0.91 209.72 2 1 35.6 63.3 MH 1.80 0.00 0.00 0.0 206.14 5.60 208.13 12 Cir 0.013 1.00 211.00 3 1 26.3 -37.5 MH 0.83 0.00 0.00 0.0 206.14 10.43 208.88 6 Cir 0.013 1.00 212.10 Project File: OUTFALL3.stm Number of lines: 3 Date: 10-04-2011 Hydraflow Storm Sewers 2005 Hydraflow HGL Computation Procedure Page 1 General Procedure: Hydraflow computes the HGL using the Bernoulli energy equation. Manning's equation is used to determine energy losses due to pipe friction. In a standard step, iterative procedure, Hydraflow assumes upstream HGLs until the energy equation balances. If the energy equation cannot balance, supercritical flow exists and critical depth is temporarily assumed at the upstream end. A supercritical flow Profile is then computed using the same procedure in a downstream direction using momentum principles. Col. 1 The line number being computed. Calculations begin at Line 1 and proceed upstream. Col. 2 The line size. In the case of non-circular pipes, the line rise is printed above the span. Col. 3 Total flow rate in the line. Col. 4 The elevation of the downstream invert. Col. 5 Elevation of the hydraulic grade line at the downstream end. This is computed as the upstream HGL + Minor loss of this line's downstream line. Col. 6 The downstream depth of flow inside the pipe (HGL - Invert elevation) but not greater than the line size. Col. 7 Cross-sectional area of the flow at the downstream end. Col. 8 The velocity of the flow at the downstream end, (Col. 3 / Col. 7). Col. 9 Velocity head (Velocity squared / 2g). Col. 10 The elevation of the energy grade line at the downstream end, HGL + Velocity head, (Col. 5 + Col. 9). Col. 11 The friction slope at the downstream end (the S or Slope term in Manning's equation). Col. 12 The line length. Col. 13 The elevation of the upstream invert. Col. 14 Elevation of the hydraulic grade line at the upstream end. Col. 15 The upstream depth of flow inside the pipe (HGL - Invert elevation) but not greater than the line size. Col. 16 Cross-sectional area of the flow at the upstream end. Col. 17 The velocity of the flow at the upstream end, (Col. 3 / Col. 16). Col. 18 Velocity head (Velocity squared / 2g). Col. 19 The elevation of the energy grade line at the upstream end, HGL + Velocity head, (Col. 14 + Col. 18) . Col. 20 The friction slope at the upstream end (the S or Slope term in Manning's equation). Col. 21 The average of the downstream and upstream friction slopes. Col. 22 Energy loss. Average Sf/100 x Line Length (Col. 21/100 x Col. 12). Equals (EGL upstream - EGL downstream) +/- tolerance. Col. 23 The junction loss coefficient (K). Col. 24 Minor loss. (Col. 23 x Col. 18). Is added to upstream HGL and used as the starting HGL for the next upstream line(s). ATTACHMENT I BIO-RETENTION PONDING CALCULATION Hydraflow Hydrographs Model Project: Swale as detention.gpw Monday, Oct 10 2011, 1:28 PM Hyd.Origin Description Legend 1 Manual 100 yr storm event 2 Reservoir Hydrograph to Swale 2 I I Hydrograph Return Period Recap Hyd. Hydrograph Inflow Peak Outflow (cfs) Hydrograph No. type Hyd(s)description (origin) 1-Yr 2-Yr 3-Yr 5-Yr 10-Yr 25-Yr 50-Yr 100-Yr 1 Manual ------- ------- ------- ------- ------- ------- ------- ------- 62.85 100 yr storm event 2 Reservoir 1 ------- ------- ------- ------- ------- ------- ------- 48.81 Hydrograph to Swale Proj. file: Swale as detention.gpw Monday, Oct 10 2011, 1:17 PM Hydraflow Hydrographs by Intelisolve RATIONAL METHOD HYDROGRAPH PROGRAM COPYRIGHT 1992, 2001 RICK ENGINEERING COMPANY RUN DATE 1017/2011 HYDROGRAPH FILE NAME Text1 TIME OF CONCENTRATION 10 MIN. 6 HOUR RAINFALL 2.6 INCHES BASIN AREA 21.725 ACRES RUNOFF COEFFICIENT 0.63 PEAK DISCHARGE 62.85 CFS TIME (MIN)= 0 TIME (MIN)= 10 TIME (MIN)= 20 TIME (MIN)= 30 TIME (MIN)= 40 TIME (MIN)= SO TIME (MIN)= 60 TIME (MIN)= 70 TIME (MIN)= 80 TIME (MIN)= 90 TIME (MIN)= 100 TIME (MIN)= 11 0 TIME (MIN)= 120 TIME (MIN)= 130 TIME (MIN)= 140 TIME (MIN)= 150 TIMC (MIN) -100 TIME (MIN)= 170 TIME (MIN)= 180 TIME (MIN)= 190 TIME (MIN)= 200 TIME (MIN)= 210 TIME (MIN)= 220 TIME (MIN)= 230 TIME (MIN)= 240 TIME (MIN)= 250 TIME (MIN)= 260 TIME (MIN)= 270 TIME (MIN)= 280 TIME (MIN)= 290 TIME (MIN)= 300 TIME (MIN)= 310 TIME (MIN)= 320 TIME (MIN)= 330 TIME (MIN)= 340 TIME (MIN)= 350 TIME (MIN)= 360 TIME (MIN)= 370 DISCHARGE (CFS)= 0 DISCHARGE (CFS)= 2.1 DISCHARGE (CFS)= 2.2 DISCHARGE (CFS)= 2.3 DISCHARGE (CFS)= 2.3 DISCHARGE (CFS)= 2.4 DISCHARGE (CFS)= 2.5 DISCHARGE (CFS)= 2.6 DISCHARGE (CFS)= 2.6 DISCHARGE (CFS)= 2.8 DISCHARGE (CFS)= 2.9 DISCHARGE (CFS)= 3 DISCHARGE (CFS)= 3.1 DISCHARGE (CFS)= 3.4 DISCHARGE (CFS)= 3.5 DISCHARGE (CFS)= 3.8 OISCI IARGC {Cr5) -4 DISCHARGE (CFS)= 4.4 DISCHARGE (CFS)= 4.7 DISCHARGE (CFS)= 5.4 DISCHARGE (CFS)= 5.8 DISCHARGE (CFS)= 7.1 DISCHARGE (CFS)= 8.1 DISCHARGE (CFS)= 11.9 DISCHARGE (CFS)= 13.8 DISCHARGE (CFS)= 62.85 DISCHARGE (CFS)= 9.5 DISCHARGE (CFS)= 6.4 DISCHARGE (CFS)= S DISCHARGE (CFS)= 4.2 DISCHARGE (CFS)= 3.6 DISCHARGE (CFS)= 3.2 DISCHARGE (CFS)= 2.9 DISCHARGE (CFS)= 2.7 DISCHARGE (CFS)= 2.5 DISCHARGE (CFS)= 2.3 DISCHARGE (CFS)= 2.2 DISCHARGE (CFS)= 0 Hydrograph Plot Hydraflow Hydrographs by Intelisolve Wednesday, Oct 12 2011, 4:7 PM Hyd. No. 1 100 yr storm event Hydrograph type = Manual Peak discharge = 62.85 cfs Storm frequency = 100 yrs Time interval = 10 min Hydrograph Volume = 128,430 cuft 0.0 0.8 1.7 2.5 3.3 4.2 5.0 5.8 6.7 Q (cfs) 0.00 0.00 10.00 10.00 20.00 20.00 30.00 30.00 40.00 40.00 50.00 50.00 60.00 60.00 70.00 70.00 Q (cfs) Time (hrs) 100 yr storm event Hyd. No. 1 -- 100 Yr Hyd No. 1 / -----/ ~ ,...___ / ."' Hydrograph Plot Hydraflow Hydrographs by Intelisolve Monday, Oct 10 2011, 1:18 PM Hyd. No. 2 Hydrograph to Swale Hydrograph type = Reservoir Peak discharge = 48.81 cfs Storm frequency = 100 yrs Time interval = 10 min Inflow hyd. No. = 1 Max. Elevation = 177.04 ft Reservoir name = Swale as a pond Max. Storage = 11,789 cuft Storage Indication method used.Hydrograph Volume = 128,443 cuft 0.0 0.8 1.7 2.5 3.3 4.2 5.0 5.8 6.7 7.5 Q (cfs) 0.00 0.00 10.00 10.00 20.00 20.00 30.00 30.00 40.00 40.00 50.00 50.00 60.00 60.00 70.00 70.00 Q (cfs) Time (hrs) Hydrograph to Swale Hyd. No. 2 -- 100 Yr Hyd No. 2 Hyd No. 1 ;/ V \ ~ ~ t---- L--"' ------ Pond Report Hydraflow Hydrographs by Intelisolve Monday, Oct 10 2011, 1:18 PM Pond No. 1 - Swale as a pond Pond Data Pond storage is based on known contour areas. Average end area method used. Stage / Storage Table Stage (ft)Elevation (ft) Contour area (sqft) Incr. Storage (cuft) Total storage (cuft) 0.00 173.25 50 0 0 0.75 174.00 676 272 272 1.75 175.00 2,178 1,427 1,699 2.75 176.00 4,568 3,373 5,072 3.75 177.00 8,055 6,312 11,384 4.75 178.00 10,255 9,155 20,539 Culvert / Orifice Structures Weir Structures [A] [B] [C] [D] [A] [B] [C] [D] Rise (in)= 48.00 2.00 2.00 2.00 Span (in)= 48.00 2.00 2.00 2.00 No. Barrels = 1 8 8 8 Invert El. (ft)= 166.35 173.25 174.25 175.25 Length (ft)= 19.40 0.00 0.00 0.00 Slope (%)= 3.30 0.00 0.00 0.00 N-Value = .013 .013 .013 .013 Orif. Coeff.= 0.60 0.60 0.60 0.60 Multi-Stage = n/a Yes Yes Yes Crest Len (ft)= 12.57 0.00 0.00 0.00 Crest El. (ft)= 176.00 0.00 0.00 0.00 Weir Coeff.= 3.33 0.00 0.00 0.00 Weir Type = Riser --- --- --- Multi-Stage = Yes No No No Exfiltration = 0.000 in/hr (Contour) Tailwater Elev. = 0.00 ft Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control. 0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00 110.00 120.00 130.00 Stage (ft) 0.00 0.00 1.00 1.00 2.00 2.00 3.00 3.00 4.00 4.00 5.00 5.00 Stage (ft) Discharge (cfs) Stage / Discharge Total Q -------------------------( rP 11008j R£AIO/IE EXIST. JO" HOPE STORA/ DRAIN PIPE 690 0 1a1001 LEGEND OA>t.lGHT LINE/ CHAO/NG LIA/ITS INDICATES TRIBUTARY AREA BOUNDARY. INDICATES EXISTING CONTOUR INDICATES PROPOSED CONTOUR PROPOSED STORM DRAIN PIPE PROPOSED BIO-RETENTION FACILITY PER~OUS AREA/LANDSCAPE AREA A/C PAVEMENT CONCRETE PAVEMENT OR SIDEWALK BUILDING ENVELOPE DRAINING TO OUTFALL 1 (NODES 1 TO 40 & 100 TO 106) DRAINING TO OUTFALL 2 (NODES 50 TO 76, 76-106 & 107) DRAINING TO OUTFALL 3 (NODES 80 TO 87) FLOW DIRECTION HYDROLOGY NODE HYDROLOGY TRIBUTARY AREA CARLS BA D, CALIFORNIA Grand Pacific Resorts Date: SEPTEMBER 30, 2011 o ect Number: B/0-RElENllON SWALE WlH CLEAN Ol/T EVERY 50 FT SEE GRADING PLAN FOR DETAIL SCALE 1"=40' ------ -0 40 80 120 160 ~' ·-J --- // 0 !i'III ,\ I [1 111 , 11 11 /~-\ ii / (' ' I \'/I ,, J " I I }i ; 11 '1 ft 0 I I 1/ fl I 1~; 0 Ii~'( ,J I ~ l I I ! ,; Ir; I I I \, J' I I I I /_,I "I I //! I '\'-_,) v/ I I I I \ __,, ~ ~ - '---" '-- '- " I I BAD, CALIFORNIA Pacific Resorts -Date: 23 SEPTEMBER 2011 Project Number: 0 11008 PROJFC r BOUND AR r (TYP) I EXCELi ENGINEERING LEGEND WA !FRCOURSE O!REC710N OF fZOW WA !FRSHEO BOUNOAR Y SUBAREA BOUNDARY NOOE NUMBER £LEVA710N AREA (ACRES) lAND PlANNING CIVIL ENGINEERING SURVEYING 440 STATE PlACE ESCONDIDO, CA 92029 TEL (760) 745-8118 FAX (760) 745-1890 ( <D (KKX} I x.KK I .r ) I I I I J ' ( / _) ,J ) I I\ I I I I I I I CARLSBAD RANCH, PLANNING AREA NO.5 MARBRISA – PHASE II CT 03-02 ADDENDUM HYDROLOGY AND HYDRAULIC STUDY (DRAINAGE REPORT) PREPARED FOR GRAND PACIFIC CARLSBAD, L.P. 5900 PASTEUR COURT, SUITE 200 CARLSBAD, CA 92008 (760) 431-8500 Prepared by: ROBERT D. DENTINO LAND PLANNING● ENGINEERING● GIS●SURVEYING 440 State Place Escondido, CA 92029 Ph:760-745-8118 Fax: 745-8118-1890 Preparation Date: 11-30-2011 Revised: 1-5-2012 EXCEL CARLSBAD RANCH PA 5 – MARBRISA PHASE II HYDROLOGY AND HYDRAULIC STUDY – September 2011 2 TABLE OF CONTENT I. Bio-swale (Bio-retention facility) Calculations 1. Pond Storage and Outlet Discharge 2. Pond Routing 3. Q Outflow 4. Storage Indication 5. Emergency Spillway Calculation II. Storm Drain Line A and Line B Revision Summary and Conclusion APPENDICES Appendix A: Storm Drain Line A Hydraulic Report Appendix B: Storm Drain Line B Hydraulic Report CARLSBAD RANCH PA 5 – MARBRISA PHASE II HYDROLOGY AND HYDRAULIC STUDY – September 2011 3 I. Bio-Swale (Bio-Retention Swale) Calculations Approximately 900 ft Bio-retention swale is proposed along the toe of slope on the west side of the site and flows to an existing 48” Riser. This bio-retention swale can convey high flows while percolating and treating the lower flows. In general, this swale is 5 foot wide with banks of slopes are varies from 10:1 to 2:1 maximum slope. It is located adjacent to the toe of slope that the slope also can be function as the swale bank during the high storm event especially at the upstream where the bottom area is rather flat. The total flowrate through this swale is approximately 62.85 cfs, see table below: Q100 Area (cfs) (Acres)Q100 Area 100 45.05 10.16 105 11.17 7.44 107 6.63 4.13 NODE OUTFALL 1 AND 2 62.85 21.73 An inflow hydrograph was created using Rick Engineering Hydrograph software with Q100=62.85 cfs and then plotted with hydraflow hydrograph program shown below: FOR COMPLETE CACULATION REPORT, PLEASE SEE DRAINAGE REPORT ATTACHMENT I – BIO-RETENTION PONDING CALCULATION, DATED 9-23-2011. 0 (cfs) Q (cfs) Hyd. o. 1 --100 Yr 70.00 ~---~---~---~---~---~---~---~---~ 70.00 60.00 -+-----+-----+-----+-----+-----+------+-----+-----+-60 .00 50.00 -+-----+----+----+----+--------,f++----+-----+-----+-50 .00 40.00 -+-----+-----+-----+------+------+++-----+-----+-----+-40.00 30.00 -+-----+----+----+----+-----+++----+-----+-----+-30.00 20.00 -+-----+-----+-----+------+-----+-+-+----+-----+-----+-20 .00 10.00 -+-----+-----+-----+------+---_,_/ _ __._......._ __ __._ ___ __._ ___ __._ 10.00 --~;--+-----r= __ / ~-------~ 0.00 ~/~--~---~---~---~---~---~---~-"--~--~ 0.00 0.0 0.8 1.7 2.5 3.3 4.2 5.0 5.8 6.7 --Hyd No.1 Tim e (h rs) CARLSBAD RANCH PA 5 – MARBRISA PHASE II HYDROLOGY AND HYDRAULIC STUDY – September 2011 4 1. Pond Storage and Outlet Discharge Based on the proposed swale topographic feature, Storage is based on known contour areas and calculated based on average end area method. Stage-storage curves define the relationship between the depth of water (stage) and the storage (volume) available in the reservoir. Stage-storage curves are typically developed using topographic mapping and/or grading plans for detention facility. The equation for stage-storage curve is determined by average-end area calculation as follows: )(2 )( 12 21 2,1hhAAV−+= Stage (ft) Elevation (ft) Contour Area (sq.ft) Incr. Storage (cuft) Total Storage (cuft) 0.00 173.25 50 0 0 0.75 174.00 676 272 272 1.75 175.00 2,178 1,427 1,699 2.75 176.00 4,568 3,373 5,072 3.75 177.00 8,055 6,312 11,384 4.75 178.00 10,255 9,155 20,539 No soil infiltration rate is included in the storage calculation; this is considered as worst case scenario assuming the native soil is saturated. This swale creates ponding at the downstream where the existing 48” riser is located. This riser needs to be modified to be able to accommodate the 62.85 cfs flowrate. The new rim elevation is 176.00 or 9.24 inches lower than before. New perforation holes are created with 8-2” holes at each row of 3 rows at 1 foot distance between rows. There are 3 phases of pond discharge through the riser and the the pond outlet as follows: The phase 1 (stage 0 ft – 2.75 ft) Discharge is calculated as: Q=CAgh2x Nh, this is a condition where water level in the swale is less than the level of riser’s crest and Nh (number of holes in the riser). A is the total area of the orifices of the stand pipe riser and varies on each stage depending on the depth of water level in the pond. Second Phase (stage 2.75 ft – 4.75 ft) is the phase where the water surface in the swale starts increasing higher than the riser’s crest. As the depth of water increases, the flow will transition to sharp-crested weir and an orifice-type flow. The transition in this horizontal orifice and weir flow depend upon the area of the top of the riser structure. Though the transition from weir flow to orifice flow is somewhat gradual, it is commonly assumed to occur at a discrete water surface elevation to simplify the analysis. The transition water surface elevation is found by calculating the point at which the weir equation and orifice equation yield the same discharge. The sharp-crested weir has relatively thin crest such that the water will tend to develop a nappe as it flows over the crest and is calculated as follows: Q=scwCL5.1 H Where: scwC= sharp-crested weir coefficient _J CARLSBAD RANCH PA 5 – MARBRISA PHASE II HYDROLOGY AND HYDRAULIC STUDY – September 2011 5 L = Length of weir crest (ft) H = head above of weir crest, excluding velocity head (ft) The orifice flow can be calculated using this following equation: Q=CA )(2 Rhhg− Where C= 0.6 for sharp edge coefficient A= area of the horizontal orifice (ft2) g = gravitational acceleration (ft/s2) h= elevation of water above the orifice (ft) hR = elevation of the crest of the riser orifice (ft) C is the coefficient of orifice equal to 0.6 taken from Smith’s Coefficient of Discharge Table 21-9 Standard Handbook for Civil Engineers by Frederick S. Merritt, third edition. Third phase is when the riser totally submerged; the water surface in the swale exceeds the riser crest and the flow can enter the culvert at a faster rate than it can exit (outlet control condition). the Culvert will take control of the flow not the orifices or the riser’s crest anymore, the outlet hydraulics for pipe flow can be determined from the following equation that is derived through the use of the Bernoulli and continuity principles (NRCS, 1984): Q=A k gh2 , with: k= 1+km+ kp L and kp = 5087 34 2 D n Where: h= elevation head differential (h=head water – tail water) km = Coefficient of minor losses (use 1.0) kp = Pipe friction coefficient n = Manning’s n-value D = Pipe diameter (ft) L = Culvert Length (ft) Before performing the actual pond routing, the pond data was set up in a spreadsheet depth vs. storage vs. discharge relationship, please see outlet rating curve table below: Note: Clv A = Culvert A represents the discharge from the ultimate outlet pipe (48” HDPE pipe) Clv B = Culvert B represents the discharge from 8 orifices on the bottom of the pond (0 ft length) Clv C = Culvert C represents the discharge from 8 orifices 1 ft high from the bottom of the pond (0 ft length) Clv D = Culvert D represents the discharge from 8 orifices 2 ft high from the bottom of the pond (0 ft length) Wr A = Weir A represents the discharge from the top of circular riser (4 ft diameter) F I Stage Storage Elevation ClivA Clv B ClvC Cllv D WrA Total ft cu ff ft cfs cfs cfs cfs cfs cfs. 0.00 0 '173.25 0.00 0.00 0.00 0.00 0.00 0.00 0.75 272 174.00 133.92 0.69 0.00 0.00 0.00 0.69 1.75 1,699 175.00 133.92 L08 0.69 0.00 0.00 1.77 2.75 5,072 176.00 133.92 L 37 1.08 0.69 0.00 3.14 3.75 11,384 177 00 133.92 L 61 1.37 LOS 4'1 86 45.92 4.75 20,539 178.00 133.92 1.82 1.61 1.37 118.39 123.19 CARLSBAD RANCH PA 5 – MARBRISA PHASE II HYDROLOGY AND HYDRAULIC STUDY – September 2011 6 Based on the elevation of water and location of the orifices at the modified existing riser the discharge at each stage is as follows: Stage (ft) Elevation (ft) Discharge (cfs) 0.00 173.25 0 0.75 174.00 0.69 1.75 175.00 1.77 2.75 176.00 3.14 3.75 177.00 45.92 4.75 178.00 123.19 2. Pond Routing Routing is the process of analyzing flows entering and leaving the pond in order to determine the change of the water surface elevation within the facility over time. The storage routing in this report is performed by Hydraflow program; the fundamental of the calculation is based on conservation of mass (inflow-outflow = ∆Storage), approximated as a finite-difference as: 22 111++++−+=∆ −nnnnnnOOII t SS Where nnSS−+1 = Storage within a detention facility at a time step n and n+1, respectively (ft3) t∆ = time interval (sec); 1++nnII = inflow rate at a time step n and n+1, respectively (cuft/s); and 1++nnOO = Outflow rate at a time step n and n+1, respectively (cuft/s). CARLSBAD RANCH PA 5 – MARBRISA PHASE II HYDROLOGY AND HYDRAULIC STUDY – September 2011 7 3. Q outflow The outflow Q after detain through the detention system resulting peak discharge of 48.81 cfs coming out from the outlet structure from the Q inflow of 62.85 cfs. Hyd. No. 2 Hydrograph to Swale = Reservoir = 100 yrs = 1 Hydrograph type Storm frequency Inflow hyd. No. Reservoir name = Swale as a pond Storage Indication method used. Q (cfs) 70.00 60.00 50.00 40.00 30.00 20.00 10.00 0.00 /_J..--J- 0.0 0.8 1.7 Hydrograph to Swale Hyd. No. 2 --100 Yr f- -- - - - - ~ _,_ -- -,_ ff---- L I~ -----~ V 3.3 4.2 Peak discharge Time interval Max. Elevation Max. Storage = 48.81 cfs = 10 min = 177.04 ft = 11 ,789 cuft Hydrograph Volume = 128,443 cuft "' ----~ 5.0 5.8 6.7 Q (cfs) 70 .00 60.00 50.00 40.00 30 .00 20.00 10.00 0.00 7.5 --Hyd No. 2 2.5 --Hyd No.1 111111111111111111111 Req. Stor = 11 ,789 cuft Time (hrs) CARLSBAD RANCH PA 5 – MARBRISA PHASE II HYDROLOGY AND HYDRAULIC STUDY – September 2011 8 4. Storage Indication From inflow hydrograph and out-let rating curve, the storage indication is used to determine routing characteristics of the pond. This equation below is used by the computer program to demonstrate that the pond will empty within less than 72 hours and is presented in graphic shown on the next page. Where nS = Storage within a detention facility at a time step n (ft3) 1+nS = Storage within a detention facility at a time step n+1 (ft3) t∆ = time interval (sec); 1++nnII = inflow rate at a time step n and n+1, respectively (cuft/s); and 1++nnOO = Outflow rate at a time step n and n+1, respectively (cuft/s). From the graph above generated by the pond routing and storage indication formula, we can see that the water reach the maximum elevation at 4.67 hrs and then gradually decrease and emptied after 7.5 hrs. Therefore, we can conclude that the drawdown time for this swale when it acts as a detention pond is less then 8 hrs and there is no vector breeding habitat risk due to ponding time. Please notice that as this is a bio-retention area not a pure water quality detention pond the 50% volume with 24 hrs minimum drawdown time is not required. Elev (ft) 179.00 178.00 177.00 176.00 175.00 174.00 173.00 , ( J ---- ~ ~v ~ ~ ~ 0.0 0.8 1.7 2.5 --1. Swale as a pond --Hyd Volume Hydrograph to Swale Hyd. No. 2 --'IO0 Yr v---- Vol (%) 100 / / / .-~1 ,---- I V V ~ 3.3 4.2 5.0 ........._ I\ 5.8 83 67 50 \ 33 I \_ 17 6.7 0 7.5 Time (hrs) CARLSBAD RANCH PA 5 – MARBRISA PHASE II HYDROLOGY AND HYDRAULIC STUDY – September 2011 9 5. Emergency Spillway Calculations For this swale when acting as a detention pond there is only one overflow spillway that can be modeled as weir. Therefore, the outlet-rating curve is straightforward. The emergency spillway must be able to convey the un-attenuated peak flow of 62.85 cfs, ignoring the storage inside of the basin. The invert of the emergency spillway is placed just above the maximum water surface elevation (177.10). The maximum spillway depth is found by taking the difference between the top of slope and the maximum water surface elevation (3.79 ft). Allowing for 0.5 foot minimum of required freeboard, the spillway flow cannot be more than 1.0 ft deep. Based on Manning’s formula, the emergency spillway size is determined as follows: 5 ft 1.5 ft 0.63 ft 11 ft DESCRI PTION TRAPEZO I DAL CHANNEL ANALYSIS NORMAL DEPTH COMPUTATION ovember 30, 2011 PROGRAM I NP T DATA Flow Rat e (cf s) ............................................ . C annel Bott om Slope (f t /f t) ............................... . Manning 's Roughness Coeffi cient (n-value) .................. . Channel Left Si de Slope (hor i zontal/vertic al) .............. . c annel Right Side Slope ( orizont al/vert ical ) ............. . C an e l Bott om Widt h {f t ) .................................. . COMP A ION RES LTS VALUE 2 .85 0 .1 0 .033 2 .0 2 .0 5 .0 DESCRI PTION VALUE Normal Depth (f t )··········································· O. 87 Flow Vel ocity (fps)········································· 10 .78 Froude Number · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2 . _ 9 Velocity Head (f t)•········································· 1.81 Energy Head (ft ) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2 . 67 Cross-Sec~ i onal Area o f Flow (sq f t ) · · · · · · · · · · · · · · · · · · · · · · · · 5. 83 Top Widt h o f Flow ( f t ) • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 8. 4 6 HYDROCALC Hydrauli cs f or Windows , Version 1 .1 Copyright (c) 1996 Dodson & Associ a es , I nc ., 5 629 FM 1960 We st, Sui e 314, Housto ., TX 77069 P one : (2 1)440-37 87, Fax :(_ 1)4 40-474_, Email:s f ware @dodson-hyd r .cm Al Rights Reserved . l\T 7/ ___________ __, 1~ ~1 Maximum water level was calculated based on Hydrograph pond routing see Attachment I – Bio-retention Ponding Calculation of Hydrology and Hydraulic Study for Carlsbad Ranch PA5 – Marbrisa Phase II dated 11-30-2011. The ponding calculation was based on assumption the under drain is clogged and the only outlet is the 48” existing riser. In case the riser fails an emergency spillway was provided to convey the overflow to an adjacent existing 48” riser. WATER DEPTH VARIES 1.28' -1.50' MAX PONO/NC ELEV.· / 77. 04 EXIST PERFORA770N 48" EXIS71NC RISER RIM:/ 76. 77 Cl.IT OFF TO ADJUST TO THE NEW RIM: /76.00 ANO RE-ATTACH THE CRATE ASSEMBLY -~~~=~~=,,..,,...,..,,-,----~!::----------------......._....""""""'--,';-;'":'7':"':'7v-----~o~<,,, C,\; /2" SOLID PVC CLEANOUT EvERY 50 FT HfTH ATRIUM CRATE, TC /2" HICHER THAN FC (TYP) /2" PERFORATED PVC t!J0.75% CONNECT TO A 48" RISER AT TH£ DOWNSTREAM FIL !ER FABRIC HfTH PERMEABILITY CREA/ER THAN /0 INCHES PER HOI./R OR PER SOIL ENC/NEER RECOMMENOA 110N TYPICAL LONGITUDINAL SECTION OF THE BIO-RETENTION SWALE NOTE A: CREA TE NEW PERFORA llON HOLES AT TH£ EXISTlNC RISER PIP£ ALL PERFORA TEO HOLES SHALL BE 2" PERFORA TlONS. HOLES SHALL B£ A MIN/MUI.I OF 8-2" HOLES AT ELEV 17325, ELEV ! 74.25 ANO ELEV ! 75.25. PROl//0£ MESH SCREEN Ot-ER OPEN/NC. NOT TO SCALE r' ~~t PROv?OE J" """'""'"""""''--CRAvEL TO ABOvE ~;~;::;;. 1/CHEST "' LEVEL OF ) ,< 3% ( J) \ W'O!"=..-...-.-,---=-~ PERFORA TlONS II. Storm Drain Line A and Line B Revision There is some minor adjustment to storm drain Line A and Line B from the first plan check as follows: Line A This storm drain conveys the storm water on the northern portion of Marbrisa Site and combined with some portion of flow from phase I site. Some adjustments were made at the upstream network and resulting minor velocity changes that do not affecting size of other storm drain facility. Line B This storm drain conveys the storm water on the southern portion of Marbrisa Site and combined with flow from Line and drain to the 48” existing riser. Some adjustments were also made at the storm drain slope and resulting minor velocity changes that do not affecting size of other storm drain facility. Please see Appendix A for the hydraulic calculation report CARLSBAD RANCH PA 5 – MARBRISA PHASE II HYDROLOGY AND HYDRAULIC STUDY – September 2011 12 • Summary and Conclusion This Addendum report is prepared for Grand Pacific Carlsbad, Inc. addressing the City of Carlsbad comment on the Drainage Report Dated 9-23-2011 (plancheck no.1) Post-Development Summary Q100 Area (cfs) (Acres)Q100 Area Q100 Area 100 45.05 10.16 105 11.17 7.44 107 6.63 4.13 87 4.46 0.99 4.46 0.99 TOTAL AREA 22.72 - - OUTFALL 3NODEOUTFALL 1 AND 2 62.85 21.73 Note: the total area included the 10.16 acres from Phase I project. The total area for Marbrisa (Phase II) Project only = 22.72 – 10.16 = 12.56 Acres The outflow Q after detain through the detention system resulting peak discharge of 48.81 cfs coming out from the outlet structure from the Q inflow of 62.85 cfs. The drawdown time when the swale acts as a detention pond is less then 8 hrs and there is no vector breeding habitat risk due to ponding time. Please notice that as this is a bio-retention area not a pure water quality detention pond the 50% volume with 24 hrs minimum drawdown time is not required. Overflow spillway is modeled as a rectangular weir. Therefore, the outlet-rating curve is straightforward. The emergency spillway must be able to convey the un-attenuated peak flow of 62.85 cfs, ignoring the storage inside of the basin. The invert of the emergency spillway is placed just above the maximum water surface elevation (177.10). The maximum spillway depth is found by taking the difference between the top of slope and the maximum water surface elevation (3.79 ft). Allowing for 0.5 foot minimum of required freeboard, the spillway flow cannot be more than 1.0 ft deep. The spillway has 5 feet width and 1.5 feet in height to convey 62.85 cfs peak flow rate. As shown on the calculations that are provided in the attachments and the methodology used, we have proven that the 100 year flows can be handled by downstream drainage facilities and does not cause negative or adverse impact such as erosion or flooding either to the surrounding project site or to the downstream area. I I APPENDICES APPENDIX A STORM DRAIN LINE A HYDRAULIC REPORT Hydraflow Plan View Project File: OUTFALL1.stm No. Lines: 49 11-30-2011 Hydraflow Storm Sewers 2005 47 48 30 28 1 /2 ---~-..:..__-.I. Outfall • 21 43 25 23 6 7 27 1:131011 29 31 33 35 34 32 14 15 16 49 13 12 20 Hydraulic Grade Line Computations Page 1 Line Size Q Downstream Len Upstream Check JL Minor coeff loss Invert HGL Depth Area Vel Vel EGL Sf Invert HGL Depth Area Vel Vel EGL Sf Ave Enrgy elev elev head elev elev elev head elev Sf loss (in) (cfs) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (ft) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (%) (ft) (K) (ft) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) 1 48 56.22 179.24 181.46 2.22 7.16 7.85 0.96 182.42 0.434 11.9 179.30 181.54 2.24 7.23 7.77 0.94 182.48 0.423 0.428 0.051 0.31 0.29 2 48 56.22 179.30 182.23 2.93 9.86 5.70 0.51 182.73 0.195 12.4 179.37 182.23 2.86 9.61 5.85 0.53 182.76 0.207 0.201 0.025 0.32 0.17 3 48 56.22 179.37 182.45 3.08 10.38 5.42 0.46 182.90 0.174 13.7 179.43 182.46 3.03 10.20 5.51 0.47 182.93 0.180 0.177 0.024 1.00 0.47 4 48 53.23 179.46 183.00 3.54 11.77 4.52 0.32 183.32 0.123 80.6 179.86 183.04 3.18 10.73 4.96 0.38 183.43 0.145 0.134 0.108 1.00 0.38 5 24 14.19 179.86 183.49 2.00 3.14 4.52 0.32 183.81 0.394 88.5 180.30 183.84 2.00 3.14 4.52 0.32 184.16 0.394 0.394 0.349 1.00 0.32 6 24 13.29 180.30 184.20 2.00 3.14 4.23 0.28 184.48 0.345 103 180.82 184.55 2.00 3.14 4.23 0.28 184.83 0.345 0.345 0.354 0.25 0.07 7 24 13.29 180.82 184.62 2.00 3.14 4.23 0.28 184.90 0.345 9.5 180.86 184.65 2.00 3.14 4.23 0.28 184.93 0.345 0.345 0.033 0.46 0.13 8 24 13.29 180.86 184.78 2.00 3.14 4.23 0.28 185.06 0.345 9.2 180.91 184.81 2.00 3.14 4.23 0.28 185.09 0.345 0.345 0.032 0.43 0.12 9 24 13.29 180.91 184.93 2.00 3.14 4.23 0.28 185.21 0.345 8.1 180.95 184.96 2.00 3.14 4.23 0.28 185.24 0.345 0.345 0.028 0.44 0.12 10 24 13.29 180.95 185.08 2.00 3.14 4.23 0.28 185.36 0.345 9.7 181.00 185.12 2.00 3.14 4.23 0.28 185.40 0.345 0.345 0.033 0.26 0.07 11 24 13.29 181.00 185.19 2.00 3.14 4.23 0.28 185.47 0.345 23.0 181.11 185.27 2.00 3.14 4.23 0.28 185.55 0.345 0.345 0.079 0.99 0.28 12 24 12.92 181.11 185.56 2.00 3.14 4.11 0.26 185.82 0.326 87.3 181.55 185.85 2.00 3.14 4.11 0.26 186.11 0.326 0.326 0.285 0.90 0.24 13 24 10.00 181.55 186.19 2.00 3.14 3.18 0.16 186.34 0.196 236 182.73 186.65 2.00 3.14 3.18 0.16 186.81 0.195 0.196 0.461 0.15 0.02 14 12 2.92 182.73 186.67 1.00 0.79 3.72 0.21 186.89 0.673 91.8 184.61 187.29 1.00 0.79 3.72 0.21 187.50 0.672 0.672 0.617 1.00 0.21 15 12 2.92 183.62 187.50 1.00 0.79 3.72 0.21 187.72 0.673 99.2 184.12 188.17 1.00 0.79 3.72 0.21 188.39 0.672 0.672 0.667 0.99 0.21 16 12 2.27 184.12 188.47 1.00 0.79 2.89 0.13 188.60 0.406 39.1 184.32 188.63 1.00 0.79 2.89 0.13 188.76 0.406 0.406 0.159 1.00 0.13 17 12 2.20 183.04 183.61 0.57* 0.47 4.71 0.35 183.96 0.969 13.3 183.17 183.80 j 0.63** 0.52 4.21 0.28 184.08 0.725 0.847 0.113 0.75 0.21 18 36 45.80 179.86 183.43 3.00 7.07 6.48 0.65 184.08 0.472 77.8 180.25 183.79 3.00 7.07 6.48 0.65 184.45 0.472 0.472 0.367 0.15 0.10 19 6 0.70 185.06 185.56 0.50* 0.20 3.57 0.20 185.76 1.559 5.6 185.12 185.62 0.50 0.20 3.57 0.20 185.82 1.509 1.534 0.086 0.99 0.20 20 6 0.41 185.02 185.76 0.50 0.20 2.09 0.07 185.82 0.535 53.0 185.55 186.02 0.47 0.19 2.15 0.07 186.09 0.462 0.499 0.264 1.00 0.07 21 12 2.20 183.17 184.16 0.99 0.78 2.80 0.12 184.28 0.354 30.8 183.48 184.22 0.74 0.62 3.55 0.20 184.41 0.480 0.417 0.128 0.70 0.14 Project File: OUTFALL1.stm Number of lines: 49 Run Date: 11-30-2011 Notes: * Normal depth assumed.; ** Critical depth.; j-Line contains hyd. jump. Hydraflow Storm Sewers 2005 I I Hydraulic Grade Line Computations Page 2 Line Size Q Downstream Len Upstream Check JL Minor coeff loss Invert HGL Depth Area Vel Vel EGL Sf Invert HGL Depth Area Vel Vel EGL Sf Ave Enrgy elev elev head elev elev elev head elev Sf loss (in) (cfs) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (ft) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (%) (ft) (K) (ft) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) 22 36 45.80 180.25 183.89 3.00 7.07 6.48 0.65 184.55 0.472 10.4 180.30 183.94 3.00 7.07 6.48 0.65 184.59 0.472 0.472 0.049 1.00 0.65 23 12 2.20 183.48 184.43 0.95 0.77 2.86 0.13 184.55 0.330 149 184.98 185.61 j 0.63** 0.52 4.23 0.28 185.89 0.733 0.532 n/a 0.15 n/a 24 36 45.40 180.30 184.61 3.00 7.07 6.42 0.64 185.25 0.464 20.2 180.40 184.70 3.00 7.07 6.42 0.64 185.34 0.463 0.463 0.094 0.15 0.10 25 6 0.70 185.12 185.81 0.50 0.20 3.57 0.20 186.01 1.559 18.0 185.30 186.10 0.50 0.20 3.57 0.20 186.29 1.559 1.559 0.281 1.00 0.20 26 36 45.40 180.40 184.80 3.00 7.07 6.42 0.64 185.44 0.464 16.3 180.48 184.87 3.00 7.07 6.42 0.64 185.51 0.463 0.463 0.075 0.15 0.10 27 12 1.20 184.98 185.72 0.74 0.62 1.93 0.06 185.78 0.142 27.5 185.25 185.72 j 0.47** 0.36 3.33 0.17 185.89 0.574 0.358 0.098 0.15 0.03 28 36 45.40 180.48 184.97 3.00 7.07 6.42 0.64 185.61 0.464 25.8 180.61 185.09 3.00 7.07 6.42 0.64 185.73 0.463 0.463 0.119 0.15 0.10 29 12 1.20 185.25 185.88 0.63 0.52 2.30 0.08 185.96 0.218 20.0 185.45 185.92 j 0.47** 0.36 3.33 0.17 186.09 0.574 0.396 0.079 0.15 0.03 30 36 45.40 180.61 185.18 3.00 7.07 6.42 0.64 185.83 0.464 27.5 180.75 185.31 3.00 7.07 6.42 0.64 185.95 0.463 0.463 0.128 0.15 0.10 31 12 1.20 185.45 186.08 0.63 0.52 2.30 0.08 186.16 0.218 25.0 185.70 186.16 j 0.46** 0.36 3.36 0.18 186.34 0.585 0.401 n/a 0.15 n/a 32 36 45.40 180.75 185.41 3.00 7.07 6.42 0.64 186.05 0.464 25.0 180.88 185.52 3.00 7.07 6.42 0.64 186.16 0.463 0.463 0.116 0.15 0.10 33 12 1.20 185.70 186.30 0.60 0.50 2.42 0.09 186.39 0.247 15.0 185.85 186.32 j 0.47** 0.36 3.33 0.17 186.49 0.574 0.411 0.062 0.15 0.03 34 36 45.40 180.88 185.62 3.00 7.07 6.42 0.64 186.26 0.464 25.1 181.00 185.74 3.00 7.07 6.42 0.64 186.38 0.463 0.463 0.116 0.15 0.10 35 9 1.20 185.85 186.40 0.55 0.35 3.45 0.18 186.59 0.665 20.0 186.05 186.55 0.50** 0.31 3.81 0.23 186.78 0.846 0.755 0.151 1.00 0.23 36 36 45.40 181.00 185.83 3.00 7.07 6.42 0.64 186.47 0.464 21.0 181.11 185.93 3.00 7.07 6.42 0.64 186.57 0.463 0.463 0.097 0.15 0.10 37 36 45.40 181.11 186.03 3.00 7.07 6.42 0.64 186.67 0.464 4.5 181.13 186.05 3.00 7.07 6.42 0.64 186.69 0.463 0.463 0.021 1.00 0.64 38 36 45.05 181.13 186.70 3.00 7.07 6.37 0.63 187.33 0.456 6.0 181.16 186.73 3.00 7.07 6.37 0.63 187.36 0.456 0.456 0.027 0.15 0.09 39 36 45.05 181.16 186.82 3.00 7.07 6.37 0.63 187.45 0.456 28.6 181.30 186.95 3.00 7.07 6.37 0.63 187.58 0.456 0.456 0.130 1.00 0.63 40 6 0.52 180.30 185.14 0.50 0.20 2.65 0.11 185.25 0.860 8.4 186.09 186.46 j 0.37** 0.15 3.37 0.18 186.63 1.094 0.977 n/a 1.00 0.18 41 6 0.40 181.13 187.27 0.50 0.20 2.04 0.06 187.33 0.509 11.2 190.54 190.86 j 0.32** 0.13 3.00 0.14 191.00 0.920 0.714 n/a 1.00 0.14 42 12 2.30 185.51 186.10 0.59* 0.48 4.75 0.35 186.45 0.965 15.4 185.66 186.31 0.65** 0.54 4.29 0.29 186.59 0.743 0.854 0.131 0.47 0.13 Project File: OUTFALL1.stm Number of lines: 49 Run Date: 11-30-2011 Notes: * Normal depth assumed.; ** Critical depth.; j-Line contains hyd. jump. Hydraflow Storm Sewers 2005 I I Hydraflow HGL Computation Procedure Page 1 General Procedure: Hydraflow computes the HGL using the Bernoulli energy equation. Manning's equation is used to determine energy losses due to pipe friction. In a standard step, iterative procedure, Hydraflow assumes upstream HGLs until the energy equation balances. If the energy equation cannot balance, supercritical flow exists and critical depth is temporarily assumed at the upstream end. A supercritical flow Profile is then computed using the same procedure in a downstream direction using momentum principles. Col. 1 The line number being computed. Calculations begin at Line 1 and proceed upstream. Col. 2 The line size. In the case of non-circular pipes, the line rise is printed above the span. Col. 3 Total flow rate in the line. Col. 4 The elevation of the downstream invert. Col. 5 Elevation of the hydraulic grade line at the downstream end. This is computed as the upstream HGL + Minor loss of this line's downstream line. Col. 6 The downstream depth of flow inside the pipe (HGL - Invert elevation) but not greater than the line size. Col. 7 Cross-sectional area of the flow at the downstream end. Col. 8 The velocity of the flow at the downstream end, (Col. 3 / Col. 7). Col. 9 Velocity head (Velocity squared / 2g). Col. 10 The elevation of the energy grade line at the downstream end, HGL + Velocity head, (Col. 5 + Col. 9). Col. 11 The friction slope at the downstream end (the S or Slope term in Manning's equation). Col. 12 The line length. Col. 13 The elevation of the upstream invert. Col. 14 Elevation of the hydraulic grade line at the upstream end. Col. 15 The upstream depth of flow inside the pipe (HGL - Invert elevation) but not greater than the line size. Col. 16 Cross-sectional area of the flow at the upstream end. Col. 17 The velocity of the flow at the upstream end, (Col. 3 / Col. 16). Col. 18 Velocity head (Velocity squared / 2g). Col. 19 The elevation of the energy grade line at the upstream end, HGL + Velocity head, (Col. 14 + Col. 18) . Col. 20 The friction slope at the upstream end (the S or Slope term in Manning's equation). Col. 21 The average of the downstream and upstream friction slopes. Col. 22 Energy loss. Average Sf/100 x Line Length (Col. 21/100 x Col. 12). Equals (EGL upstream - EGL downstream) +/- tolerance. Col. 23 The junction loss coefficient (K). Col. 24 Minor loss. (Col. 23 x Col. 18). Is added to upstream HGL and used as the starting HGL for the next upstream line(s). Hydraulic Grade Line Computations Page 3 Line Size Q Downstream Len Upstream Check JL Minor coeff loss Invert HGL Depth Area Vel Vel EGL Sf Invert HGL Depth Area Vel Vel EGL Sf Ave Enrgy elev elev head elev elev elev head elev Sf loss (in) (cfs) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (ft) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (%) (ft) (K) (ft) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) 43 6 0.34 184.72 185.00 0.28* 0.11 2.99 0.14 185.14 1.000 48.0 185.20 185.50 j 0.30** 0.12 2.79 0.12 185.62 0.837 0.918 0.441 1.00 0.12 44 6 0.71 184.93 185.43 0.50* 0.20 3.62 0.20 185.63 1.604 47.2 185.40 186.19 0.50 0.20 3.62 0.20 186.39 1.603 1.604 0.757 1.00 0.20 45 12 2.30 185.66 186.59 0.93 0.76 3.02 0.14 186.73 0.361 29.7 185.96 186.62 0.66 0.55 4.20 0.27 186.89 0.706 0.533 0.158 0.71 0.19 46 12 0.71 185.40 186.57 1.00 0.79 0.90 0.01 186.58 0.040 22.5 185.63 186.58 0.95 0.77 0.92 0.01 186.59 0.034 0.037 0.008 1.00 0.01 47 12 1.30 185.96 187.04 1.00 0.79 1.66 0.04 187.09 0.133 144 187.40 187.88 j 0.48** 0.38 3.45 0.19 188.07 0.598 0.365 n/a 0.42 0.08 48 12 1.02 187.40 188.04 0.64 0.53 1.91 0.06 188.10 0.148 157 190.00 190.43 j 0.43** 0.32 3.17 0.16 190.59 0.564 0.356 n/a 1.00 0.16 49 6 0.33 186.00 188.55 0.50 0.20 1.68 0.04 188.60 0.346 56.6 186.57 188.75 0.50 0.20 1.68 0.04 188.79 0.346 0.346 0.196 1.00 0.04 Project File: OUTFALL1.stm Number of lines: 49 Run Date: 11-30-2011 Notes: * Normal depth assumed.; ** Critical depth.; j-Line contains hyd. jump. Hydraflow Storm Sewers 2005 I I Storm Sewer Tabulation Page 1 Station Len Drng Area Rnoff Area x C Tc Rain Total Cap Vel Pipe Invert Elev HGL Elev Grnd / Rim Elev Line ID coeff (I) flow full Line To Incr Total Incr Total Inlet Syst Size Slope Up Dn Up Dn Up Dn Line (ft) (ac) (ac) (C) (min) (min) (in/hr) (cfs) (cfs) (ft/s) (in) (%) (ft) (ft) (ft) (ft) (ft) (ft) 1 End 11.9 0.00 0.00 0.00 0.00 0.00 0.0 4.4 0.0 56.22 102.2 7.81 48 0.51 179.30 179.24 181.54 181.46 182.00 180.00 2 1 12.4 0.00 0.00 0.00 0.00 0.00 0.0 4.3 0.0 56.22 107.8 5.78 48 0.56 179.37 179.30 182.23 182.23 187.00 182.00 3 2 13.7 0.00 0.00 0.00 0.00 0.00 0.0 4.3 0.0 56.22 95.24 5.46 48 0.44 179.43 179.37 182.46 182.45 189.40 187.00 4 3 80.6 0.00 0.00 0.00 0.00 0.00 0.0 4.0 0.0 53.23 101.2 4.74 48 0.50 179.86 179.46 183.04 183.00 189.73 189.40 5 4 88.5 0.00 0.00 0.00 0.00 0.00 0.0 3.6 0.0 14.19 15.95 4.52 24 0.50 180.30 179.86 183.84 183.49 189.40 189.73 6 5 102.6 0.00 0.00 0.00 0.00 0.00 0.0 3.2 0.0 13.29 16.10 4.23 24 0.51 180.82 180.30 184.55 184.20 190.28 189.40 7 6 9.5 0.00 0.00 0.00 0.00 0.00 0.0 3.2 0.0 13.29 14.70 4.23 24 0.42 180.86 180.82 184.65 184.62 190.30 190.28 8 7 9.2 0.00 0.00 0.00 0.00 0.00 0.0 3.2 0.0 13.29 16.72 4.23 24 0.55 180.91 180.86 184.81 184.78 190.30 190.30 9 8 8.1 0.00 0.00 0.00 0.00 0.00 0.0 3.1 0.0 13.29 15.91 4.23 24 0.49 180.95 180.91 184.96 184.93 190.31 190.30 10 9 9.7 0.00 0.00 0.00 0.00 0.00 0.0 3.1 0.0 13.29 16.25 4.23 24 0.52 181.00 180.95 185.12 185.08 190.32 190.31 11 10 23.0 0.00 0.00 0.00 0.00 0.00 0.0 3.0 0.0 13.29 15.65 4.23 24 0.48 181.11 181.00 185.27 185.19 189.95 190.32 12 11 87.3 0.00 0.00 0.00 0.00 0.00 0.0 2.7 0.0 12.92 16.06 4.11 24 0.50 181.55 181.11 185.85 185.56 190.80 189.95 13 12 235.7 0.00 0.00 0.00 0.00 0.00 0.0 1.4 0.0 10.00 16.00 3.18 24 0.50 182.73 181.55 186.65 186.19 190.30 190.80 14 13 91.8 0.00 0.00 0.00 0.00 0.00 0.0 1.0 0.0 2.92 5.10 3.72 12 2.05 184.61 182.73 187.29 186.67 191.20 190.30 15 14 99.2 0.00 0.00 0.00 0.00 0.00 0.0 0.6 0.0 2.92 2.53 3.72 12 0.50 184.12 183.62 188.17 187.50 191.19 191.20 16 15 39.1 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 2.27 2.55 2.89 12 0.51 184.32 184.12 188.63 188.47 190.87 191.19 17 3 13.3 0.00 0.00 0.00 0.00 0.00 0.0 2.1 0.0 2.20 3.52 4.46 12 0.98 183.17 183.04 183.80 183.61 189.00 189.40 18 4 77.8 0.00 0.00 0.00 0.00 0.00 0.0 0.5 0.0 45.80 47.22 6.48 36 0.50 180.25 179.86 183.79 183.43 190.18 189.73 19 5 5.6 0.00 0.00 0.00 0.00 0.00 0.0 0.1 0.0 0.70 0.58 3.57 6 1.07 185.12 185.06 185.62 185.56 189.50 189.40 20 11 53.0 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.41 0.56 2.12 6 1.00 185.55 185.02 186.02 185.76 189.55 189.95 21 17 30.8 0.00 0.00 0.00 0.00 0.00 0.0 2.0 0.0 2.20 3.58 3.18 12 1.01 183.48 183.17 184.22 184.16 189.00 189.00 Project File: OUTFALL1.stm Number of lines: 49 Run Date: 11-30-2011 NOTES: Intensity = 127.16 / (Inlet time + 17.80) ^ 0.82; Return period = 100 Yrs. Hydraflow Storm Sewers 2005 Storm Sewer Tabulation Page 2 Station Len Drng Area Rnoff Area x C Tc Rain Total Cap Vel Pipe Invert Elev HGL Elev Grnd / Rim Elev Line ID coeff (I) flow full Line To Incr Total Incr Total Inlet Syst Size Slope Up Dn Up Dn Up Dn Line (ft) (ac) (ac) (C) (min) (min) (in/hr) (cfs) (cfs) (ft/s) (in) (%) (ft) (ft) (ft) (ft) (ft) (ft) 22 18 10.4 0.00 0.00 0.00 0.00 0.00 0.0 0.5 0.0 45.80 46.31 6.48 36 0.48 180.30 180.25 183.94 183.89 190.20 190.18 23 21 149.4 0.00 0.00 0.00 0.00 0.00 0.0 1.1 0.0 2.20 3.57 3.54 12 1.00 184.98 183.48 185.61 184.43 189.00 189.00 24 22 20.2 0.00 0.00 0.00 0.00 0.00 0.0 0.5 0.0 45.40 46.94 6.42 36 0.50 180.40 180.30 184.70 184.61 190.40 190.20 25 19 18.0 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.70 0.56 3.57 6 1.00 185.30 185.12 186.10 185.81 189.42 189.50 26 24 16.3 0.00 0.00 0.00 0.00 0.00 0.0 0.4 0.0 45.40 46.80 6.42 36 0.49 180.48 180.40 184.87 184.80 190.50 190.40 27 23 27.5 0.00 0.00 0.00 0.00 0.00 0.0 0.8 0.0 1.20 3.53 2.63 12 0.98 185.25 184.98 185.72 185.72 189.00 189.00 28 26 25.8 0.00 0.00 0.00 0.00 0.00 0.0 0.4 0.0 45.40 47.36 6.42 36 0.50 180.61 180.48 185.09 184.97 191.70 190.50 29 27 20.0 0.00 0.00 0.00 0.00 0.00 0.0 0.6 0.0 1.20 3.56 2.82 12 1.00 185.45 185.25 185.92 185.88 189.00 189.00 30 28 27.5 0.00 0.00 0.00 0.00 0.00 0.0 0.3 0.0 45.40 47.58 6.42 36 0.51 180.75 180.61 185.31 185.18 191.80 191.70 31 29 25.0 0.00 0.00 0.00 0.00 0.00 0.0 0.3 0.0 1.20 3.56 2.83 12 1.00 185.70 185.45 186.16 186.08 189.00 189.00 32 30 25.0 0.00 0.00 0.00 0.00 0.00 0.0 0.2 0.0 45.40 48.08 6.42 36 0.52 180.88 180.75 185.52 185.41 191.80 191.80 33 31 15.0 0.00 0.00 0.00 0.00 0.00 0.0 0.1 0.0 1.20 3.56 2.88 12 1.00 185.85 185.70 186.32 186.30 189.00 189.00 34 32 25.1 0.00 0.00 0.00 0.00 0.00 0.0 0.2 0.0 45.40 46.16 6.42 36 0.48 181.00 180.88 185.74 185.62 192.70 191.80 35 33 20.0 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 1.20 1.65 3.63 9 1.00 186.05 185.85 186.55 186.40 189.00 189.00 36 34 21.0 0.00 0.00 0.00 0.00 0.00 0.0 0.1 0.0 45.40 48.32 6.42 36 0.52 181.11 181.00 185.93 185.83 194.30 192.70 37 36 4.5 0.00 0.00 0.00 0.00 0.00 0.0 0.1 0.0 45.40 44.32 6.42 36 0.44 181.13 181.11 186.05 186.03 194.40 194.30 38 37 6.0 0.00 0.00 0.00 0.00 0.00 0.0 0.1 0.0 45.05 47.16 6.37 36 0.50 181.16 181.13 186.73 186.70 195.30 194.40 39 38 28.6 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 45.05 46.67 6.37 36 0.49 181.30 181.16 186.95 186.82 196.20 195.30 40 22 8.4 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.52 4.66 3.01 6 69.09 186.09 180.30 186.46 185.14 190.10 190.20 41 37 11.2 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.40 5.14 2.52 6 83.87 190.54 181.13 190.86 187.27 195.50 194.40 42 3 15.4 0.00 0.00 0.00 0.00 0.00 0.0 3.6 0.0 2.30 3.52 4.52 12 0.97 185.66 185.51 186.31 186.10 189.00 189.40 Project File: OUTFALL1.stm Number of lines: 49 Run Date: 11-30-2011 NOTES: Intensity = 127.16 / (Inlet time + 17.80) ^ 0.82; Return period = 100 Yrs. Hydraflow Storm Sewers 2005 Storm Sewer Tabulation Page 3 Station Len Drng Area Rnoff Area x C Tc Rain Total Cap Vel Pipe Invert Elev HGL Elev Grnd / Rim Elev Line ID coeff (I) flow full Line To Incr Total Incr Total Inlet Syst Size Slope Up Dn Up Dn Up Dn Line (ft) (ac) (ac) (C) (min) (min) (in/hr) (cfs) (cfs) (ft/s) (in) (%) (ft) (ft) (ft) (ft) (ft) (ft) 43 5 48.0 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.34 0.56 2.89 6 1.00 185.20 184.72 185.50 185.00 189.20 189.40 44 4 47.2 0.00 0.00 0.00 0.00 0.00 0.0 0.4 0.0 0.71 0.56 3.62 6 1.00 185.40 184.93 186.19 185.43 189.50 189.73 45 42 29.7 0.00 0.00 0.00 0.00 0.00 0.0 3.5 0.0 2.30 3.58 3.61 12 1.01 185.96 185.66 186.62 186.59 189.00 189.00 46 44 22.5 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.71 3.60 0.91 12 1.02 185.63 185.40 186.58 186.57 189.65 189.50 47 45 143.9 0.00 0.00 0.00 0.00 0.00 0.0 2.0 0.0 1.30 3.56 2.56 12 1.00 187.40 185.96 187.88 187.04 189.00 189.00 48 47 157.2 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 1.02 4.58 2.54 12 1.65 190.00 187.40 190.43 188.04 192.80 189.00 49 15 56.6 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.33 0.56 1.68 6 1.01 186.57 186.00 188.75 188.55 190.00 190.80 Project File: OUTFALL1.stm Number of lines: 49 Run Date: 11-30-2011 NOTES: Intensity = 127.16 / (Inlet time + 17.80) ^ 0.82; Return period = 100 Yrs. Hydraflow Storm Sewers 2005 APPENDIX B STORM DRAIN LINE B HYDRAULIC REPORT Hydraflow Plan View Project File: OUTFALL2.stm No. Lines: 54 11-30-2011 Hydraflow Storm Sewers 2005 5 9 4 i Outfa111 20 21 10 11 22 17 13 23 24 52 45 53 44 14 15 48 4i3 16 32 □41 31 33 3 35 36 37 38 3g4 54 49 29 28 25 Hydraulic Grade Line Computations Page 1 Line Size Q Downstream Len Upstream Check JL Minor coeff loss Invert HGL Depth Area Vel Vel EGL Sf Invert HGL Depth Area Vel Vel EGL Sf Ave Enrgy elev elev head elev elev elev head elev Sf loss (in) (cfs) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (ft) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (%) (ft) (K) (ft) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) 1 24 10.00 176.36 178.20 1.84 3.02 3.31 0.17 178.37 0.170 5.6 176.39 178.21 1.82 3.00 3.34 0.17 178.38 0.171 0.170 0.010 0.16 0.03 2 24 10.00 176.39 178.23 1.84 3.03 3.30 0.17 178.40 0.170 5.8 176.42 178.24 1.82 3.00 3.33 0.17 178.41 0.171 0.170 0.010 0.16 0.03 3 24 10.00 176.42 178.27 1.85 3.03 3.30 0.17 178.44 0.169 6.3 176.45 178.28 1.83 3.01 3.32 0.17 178.45 0.170 0.170 0.011 0.21 0.04 4 24 10.00 176.45 178.31 1.86 3.05 3.28 0.17 178.48 0.169 9.6 176.50 178.33 1.83 3.01 3.33 0.17 178.50 0.170 0.170 0.016 1.00 0.17 5 24 7.30 176.50 178.54 2.00 3.14 2.32 0.08 178.62 0.104 99.2 177.00 178.61 1.61 2.72 2.69 0.11 178.73 0.107 0.106 0.105 1.00 0.11 6 18 6.80 177.00 178.73 1.50 1.77 3.85 0.23 178.96 0.419 5.4 177.03 178.75 1.50 1.77 3.85 0.23 178.98 0.419 0.419 0.023 0.15 0.03 7 18 6.80 177.03 178.78 1.50 1.77 3.85 0.23 179.01 0.419 18.5 177.12 178.86 1.50 1.77 3.85 0.23 179.09 0.419 0.419 0.078 0.15 0.03 8 18 6.80 177.12 178.90 1.50 1.77 3.85 0.23 179.13 0.419 16.6 177.20 178.97 1.50 1.77 3.85 0.23 179.20 0.419 0.419 0.070 0.15 0.03 9 18 6.80 177.20 179.00 1.50 1.77 3.85 0.23 179.23 0.419 20.3 177.30 179.09 1.50 1.77 3.85 0.23 179.32 0.419 0.419 0.085 0.18 0.04 10 18 6.80 177.30 179.13 1.50 1.77 3.85 0.23 179.36 0.419 24.7 177.42 179.23 1.50 1.77 3.85 0.23 179.46 0.419 0.419 0.104 0.15 0.03 11 18 6.80 177.42 179.27 1.50 1.77 3.85 0.23 179.50 0.419 80.1 177.82 179.60 1.50 1.77 3.85 0.23 179.83 0.419 0.419 0.336 0.71 0.16 12 18 6.40 177.82 179.79 1.50 1.77 3.62 0.20 179.99 0.372 8.5 177.86 179.82 1.50 1.77 3.62 0.20 180.03 0.371 0.372 0.032 1.00 0.20 13 18 5.66 177.86 180.07 1.50 1.77 3.20 0.16 180.23 0.291 77.5 178.25 180.30 1.50 1.77 3.20 0.16 180.46 0.291 0.291 0.225 0.20 0.03 14 18 5.66 178.25 180.33 1.50 1.77 3.20 0.16 180.49 0.291 15.0 178.32 180.37 1.50 1.77 3.20 0.16 180.53 0.291 0.291 0.044 0.15 0.02 15 18 5.66 178.32 180.40 1.50 1.77 3.20 0.16 180.56 0.291 15.0 178.39 180.44 1.50 1.77 3.20 0.16 180.60 0.291 0.291 0.044 0.15 0.02 16 18 5.66 178.39 180.46 1.50 1.77 3.20 0.16 180.62 0.291 14.7 178.46 180.51 1.50 1.77 3.20 0.16 180.67 0.291 0.291 0.043 1.00 0.16 17 8 0.89 178.38 180.13 0.67 0.35 2.55 0.10 180.23 0.543 32.0 178.54 180.30 0.67 0.35 2.55 0.10 180.40 0.543 0.543 0.174 1.00 0.10 18 6 0.60 181.25 181.45 0.20* 0.07 8.24 1.06 182.50 10.287 38.3 185.27 185.66 j 0.39** 0.17 3.62 0.20 185.87 1.239 5.763 n/a 0.28 0.06 19 6 0.60 185.27 185.72 0.46* 0.19 3.20 0.16 185.88 0.999 34.1 185.61 186.06 0.45 0.19 3.20 0.16 186.22 1.000 1.000 0.341 1.00 0.16 20 12 3.63 181.38 182.22 0.84* 0.70 5.16 0.41 182.63 0.999 92.8 182.31 183.15 0.84 0.70 5.17 0.42 183.56 1.003 1.001 0.929 0.32 0.13 21 12 3.63 182.31 183.36 1.00 0.79 4.62 0.33 183.70 1.039 92.8 183.24 184.33 1.00 0.79 4.62 0.33 184.66 1.039 1.039 0.965 0.15 0.05 Project File: OUTFALL2.stm Number of lines: 54 Run Date: 11-30-2011 Notes: * Normal depth assumed.; ** Critical depth.; j-Line contains hyd. jump. Hydraflow Storm Sewers 2005 I I Hydraulic Grade Line Computations Page 2 Line Size Q Downstream Len Upstream Check JL Minor coeff loss Invert HGL Depth Area Vel Vel EGL Sf Invert HGL Depth Area Vel Vel EGL Sf Ave Enrgy elev elev head elev elev elev head elev Sf loss (in) (cfs) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (ft) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (%) (ft) (K) (ft) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) 22 12 2.25 183.24 184.58 1.00 0.79 2.87 0.13 184.71 0.399 83.6 184.08 184.88 0.80 0.67 3.34 0.17 185.05 0.419 0.409 0.342 0.15 0.03 23 12 2.25 184.08 184.95 0.87 0.73 3.10 0.15 185.10 0.363 12.7 184.21 184.95 0.74 0.63 3.59 0.20 185.15 0.488 0.426 0.054 0.15 0.03 24 12 2.25 184.21 185.06 0.85 0.71 3.17 0.16 185.21 0.378 12.7 184.34 185.05 0.71 0.60 3.75 0.22 185.27 0.542 0.460 0.059 0.15 0.03 25 12 2.25 184.34 185.18 0.84 0.70 3.20 0.16 185.34 0.385 68.0 185.02 185.66 j 0.64** 0.53 4.27 0.28 185.94 0.742 0.563 n/a 0.75 n/a 26 12 2.25 185.02 185.81 0.79 0.67 3.37 0.18 185.99 0.426 18.3 185.20 185.84 j 0.64** 0.53 4.25 0.28 186.12 0.734 0.580 0.106 0.75 0.21 27 12 2.25 185.20 186.06 0.86 0.72 3.14 0.15 186.21 0.370 22.1 185.42 186.06 0.64** 0.53 4.25 0.28 186.34 0.734 0.552 0.122 0.70 0.20 28 12 2.25 185.42 186.41 0.99 0.78 2.87 0.13 186.54 0.365 88.8 186.31 186.95 j 0.64** 0.53 4.27 0.28 187.23 0.742 0.554 n/a 0.25 n/a 29 12 1.14 186.31 187.20 0.89 0.74 1.55 0.04 187.23 0.091 69.6 187.01 187.46 j 0.45** 0.35 3.30 0.17 187.63 0.578 0.335 n/a 1.00 n/a 30 6 0.53 178.34 179.88 0.50 0.20 2.70 0.11 179.99 0.894 10.2 186.40 186.77 j 0.37** 0.16 3.40 0.18 186.95 1.111 1.002 n/a 1.00 n/a 31 6 0.34 178.51 180.78 0.50 0.20 1.73 0.05 180.83 0.368 6.5 186.66 186.96 j 0.30** 0.12 2.81 0.12 187.08 0.848 0.608 n/a 1.00 0.12 32 18 5.66 178.46 180.67 1.50 1.77 3.20 0.16 180.83 0.291 10.0 178.51 180.69 1.50 1.77 3.20 0.16 180.85 0.291 0.291 0.029 0.15 0.02 33 18 5.66 178.51 180.72 1.50 1.77 3.20 0.16 180.88 0.291 10.1 178.56 180.75 1.50 1.77 3.20 0.16 180.91 0.291 0.291 0.029 1.00 0.16 34 18 5.12 178.56 180.94 1.50 1.77 2.90 0.13 181.07 0.238 13.2 178.63 180.97 1.50 1.77 2.90 0.13 181.10 0.238 0.238 0.031 1.00 0.13 35 18 4.47 178.63 181.13 1.50 1.77 2.53 0.10 181.23 0.181 16.0 178.71 181.16 1.50 1.77 2.53 0.10 181.26 0.181 0.181 0.029 0.15 0.01 36 18 4.47 178.71 181.17 1.50 1.77 2.53 0.10 181.27 0.181 15.0 178.78 181.20 1.50 1.77 2.53 0.10 181.30 0.181 0.181 0.027 0.15 0.01 37 18 4.47 178.78 181.22 1.50 1.77 2.53 0.10 181.32 0.181 15.0 178.85 181.24 1.50 1.77 2.53 0.10 181.34 0.181 0.181 0.027 0.15 0.01 38 18 4.47 178.85 181.26 1.50 1.77 2.53 0.10 181.36 0.181 16.1 178.93 181.29 1.50 1.77 2.53 0.10 181.39 0.181 0.181 0.029 1.00 0.10 39 18 3.21 178.93 181.43 1.50 1.77 1.82 0.05 181.49 0.093 8.9 178.97 181.44 1.50 1.77 1.82 0.05 181.49 0.093 0.093 0.008 0.15 0.01 40 18 3.21 178.97 181.45 1.50 1.77 1.82 0.05 181.50 0.093 10.0 179.02 181.46 1.50 1.77 1.82 0.05 181.51 0.093 0.093 0.009 0.15 0.01 41 18 3.21 179.02 181.47 1.50 1.77 1.82 0.05 181.52 0.093 10.0 179.07 181.48 1.50 1.77 1.82 0.05 181.53 0.093 0.093 0.009 0.15 0.01 42 18 3.21 179.07 181.48 1.50 1.77 1.82 0.05 181.54 0.093 14.0 179.14 181.50 1.50 1.77 1.82 0.05 181.55 0.093 0.093 0.013 0.15 0.01 Project File: OUTFALL2.stm Number of lines: 54 Run Date: 11-30-2011 Notes: * Normal depth assumed.; ** Critical depth.; j-Line contains hyd. jump. Hydraflow Storm Sewers 2005 I I Hydraulic Grade Line Computations Page 3 Line Size Q Downstream Len Upstream Check JL Minor coeff loss Invert HGL Depth Area Vel Vel EGL Sf Invert HGL Depth Area Vel Vel EGL Sf Ave Enrgy elev elev head elev elev elev head elev Sf loss (in) (cfs) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (ft) (ft) (ft) (ft) (sqft) (ft/s) (ft) (ft) (%) (%) (ft) (K) (ft) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) 43 18 3.21 179.14 181.51 1.50 1.77 1.82 0.05 181.56 0.093 10.0 179.19 181.51 1.50 1.77 1.82 0.05 181.57 0.093 0.093 0.009 0.15 0.01 44 18 3.21 179.19 181.52 1.50 1.77 1.82 0.05 181.57 0.093 43.2 179.41 181.56 1.50 1.77 1.82 0.05 181.61 0.093 0.093 0.040 0.35 0.02 45 18 3.21 179.41 181.58 1.50 1.77 1.82 0.05 181.63 0.093 77.0 179.80 181.65 1.50 1.77 1.82 0.05 181.70 0.093 0.093 0.072 1.00 0.05 46 18 3.21 179.80 181.70 1.50 1.77 1.82 0.05 181.76 0.093 9.1 179.85 181.71 1.50 1.77 1.82 0.05 181.76 0.093 0.093 0.008 1.00 0.05 47 18 2.51 179.85 181.78 1.50 1.77 1.42 0.03 181.82 0.057 33.3 180.02 181.80 1.50 1.77 1.42 0.03 181.83 0.057 0.057 0.019 1.00 0.03 48 6 0.78 179.18 181.10 0.50 0.20 3.97 0.25 181.34 1.936 50.5 179.43 182.07 0.50 0.20 3.97 0.25 182.32 1.935 1.935 0.976 0.98 0.24 49 12 1.36 179.49 181.44 1.00 0.79 1.73 0.05 181.49 0.146 6.8 185.78 186.27 j 0.49** 0.39 3.51 0.19 186.46 0.605 0.376 n/a 1.00 0.19 50 6 0.33 180.31 181.71 0.50 0.20 1.68 0.04 181.76 0.346 42.7 186.30 186.59 j 0.29** 0.12 2.77 0.12 186.71 0.836 0.591 n/a 1.00 n/a 51 6 0.70 180.00 181.76 0.50 0.20 3.57 0.20 181.96 1.559 37.6 190.00 190.42 j 0.42** 0.18 3.94 0.24 190.67 1.468 1.514 n/a 1.00 0.24 52 6 0.66 183.15 183.37 0.22* 0.08 7.94 0.98 184.35 8.666 38.0 186.51 186.92 j 0.41** 0.17 3.81 0.23 187.15 1.369 5.017 n/a 1.00 n/a 53 6 0.78 185.90 186.40 0.50* 0.20 3.97 0.25 186.65 1.936 28.3 186.18 186.95 0.50 0.20 3.97 0.25 187.19 1.935 1.935 0.547 1.00 0.25 54 18 0.80 178.87 181.06 1.50 1.77 0.45 0.00 181.07 0.006 15.8 185.42 185.76 j 0.34** 0.30 2.64 0.11 185.87 0.450 0.228 n/a 1.00 n/a Project File: OUTFALL2.stm Number of lines: 54 Run Date: 11-30-2011 Notes: * Normal depth assumed.; ** Critical depth.; j-Line contains hyd. jump. Hydraflow Storm Sewers 2005 I I Storm Sewer Tabulation Page 1 Station Len Drng Area Rnoff Area x C Tc Rain Total Cap Vel Pipe Invert Elev HGL Elev Grnd / Rim Elev Line ID coeff (I) flow full Line To Incr Total Incr Total Inlet Syst Size Slope Up Dn Up Dn Up Dn Line (ft) (ac) (ac) (C) (min) (min) (in/hr) (cfs) (cfs) (ft/s) (in) (%) (ft) (ft) (ft) (ft) (ft) (ft) 1 End 5.6 0.00 0.00 0.00 0.00 0.00 0.0 5.1 0.0 10.00 16.58 3.32 24 0.54 176.39 176.36 178.21 178.20 182.00 181.00 2 1 5.8 0.00 0.00 0.00 0.00 0.00 0.0 5.0 0.0 10.00 16.21 3.32 24 0.51 176.42 176.39 178.24 178.23 184.00 182.00 3 2 6.3 0.00 0.00 0.00 0.00 0.00 0.0 5.0 0.0 10.00 15.63 3.31 24 0.48 176.45 176.42 178.28 178.27 186.00 184.00 4 3 9.6 0.00 0.00 0.00 0.00 0.00 0.0 4.9 0.0 10.00 16.31 3.30 24 0.52 176.50 176.45 178.33 178.31 189.00 186.00 5 4 99.2 0.00 0.00 0.00 0.00 0.00 0.0 4.2 0.0 7.30 16.06 2.51 24 0.50 177.00 176.50 178.61 178.54 189.90 189.00 6 5 5.4 0.00 0.00 0.00 0.00 0.00 0.0 4.2 0.0 6.80 7.81 3.85 18 0.55 177.03 177.00 178.75 178.73 189.80 189.90 7 6 18.5 0.00 0.00 0.00 0.00 0.00 0.0 4.1 0.0 6.80 7.33 3.85 18 0.49 177.12 177.03 178.86 178.78 189.80 189.80 8 7 16.6 0.00 0.00 0.00 0.00 0.00 0.0 4.1 0.0 6.80 7.29 3.85 18 0.48 177.20 177.12 178.97 178.90 189.90 189.80 9 8 20.3 0.00 0.00 0.00 0.00 0.00 0.0 4.0 0.0 6.80 7.37 3.85 18 0.49 177.30 177.20 179.09 179.00 189.90 189.90 10 9 24.7 0.00 0.00 0.00 0.00 0.00 0.0 3.9 0.0 6.80 7.32 3.85 18 0.49 177.42 177.30 179.23 179.13 190.10 189.90 11 10 80.1 0.00 0.00 0.00 0.00 0.00 0.0 3.5 0.0 6.80 7.42 3.85 18 0.50 177.82 177.42 179.60 179.27 189.60 190.10 12 11 8.5 0.00 0.00 0.00 0.00 0.00 0.0 3.5 0.0 6.40 7.19 3.62 18 0.47 177.86 177.82 179.82 179.79 189.50 189.60 13 12 77.5 0.00 0.00 0.00 0.00 0.00 0.0 3.1 0.0 5.66 7.45 3.20 18 0.50 178.25 177.86 180.30 180.07 190.00 189.50 14 13 15.0 0.00 0.00 0.00 0.00 0.00 0.0 3.0 0.0 5.66 7.18 3.20 18 0.47 178.32 178.25 180.37 180.33 190.20 190.00 15 14 15.0 0.00 0.00 0.00 0.00 0.00 0.0 2.9 0.0 5.66 7.18 3.20 18 0.47 178.39 178.32 180.44 180.40 190.20 190.20 16 15 14.7 0.00 0.00 0.00 0.00 0.00 0.0 2.8 0.0 5.66 7.25 3.20 18 0.48 178.46 178.39 180.51 180.46 190.20 190.20 17 12 32.0 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.89 0.85 2.55 8 0.50 178.54 178.38 180.30 180.13 189.80 189.50 18 5 38.3 0.00 0.00 0.00 0.00 0.00 0.0 0.2 0.0 0.60 1.82 5.93 6 10.50 185.27 181.25 185.66 181.45 189.80 189.90 19 18 34.1 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.60 0.56 3.20 6 1.00 185.61 185.27 186.06 185.72 189.60 189.80 20 4 92.8 0.00 0.00 0.00 0.00 0.00 0.0 2.9 0.0 3.63 3.56 5.17 12 1.00 182.31 181.38 183.15 182.22 190.00 189.00 21 20 92.8 0.00 0.00 0.00 0.00 0.00 0.0 2.6 0.0 3.63 3.56 4.62 12 1.00 183.24 182.31 184.33 183.36 190.00 190.00 Project File: OUTFALL2.stm Number of lines: 54 Run Date: 11-30-2011 NOTES: Intensity = 127.16 / (Inlet time + 17.80) ^ 0.82; Return period = 100 Yrs. Hydraflow Storm Sewers 2005 Storm Sewer Tabulation Page 2 Station Len Drng Area Rnoff Area x C Tc Rain Total Cap Vel Pipe Invert Elev HGL Elev Grnd / Rim Elev Line ID coeff (I) flow full Line To Incr Total Incr Total Inlet Syst Size Slope Up Dn Up Dn Up Dn Line (ft) (ac) (ac) (C) (min) (min) (in/hr) (cfs) (cfs) (ft/s) (in) (%) (ft) (ft) (ft) (ft) (ft) (ft) 22 21 83.6 0.00 0.00 0.00 0.00 0.00 0.0 2.1 0.0 2.25 3.57 3.10 12 1.01 184.08 183.24 184.88 184.58 191.00 190.00 23 22 12.7 0.00 0.00 0.00 0.00 0.00 0.0 2.0 0.0 2.25 3.60 3.34 12 1.02 184.21 184.08 184.95 184.95 191.00 191.00 24 23 12.7 0.00 0.00 0.00 0.00 0.00 0.0 1.9 0.0 2.25 3.60 3.46 12 1.02 184.34 184.21 185.05 185.06 191.00 191.00 25 24 68.0 0.00 0.00 0.00 0.00 0.00 0.0 1.6 0.0 2.25 3.56 3.74 12 1.00 185.02 184.34 185.66 185.18 191.00 191.00 26 25 18.3 0.00 0.00 0.00 0.00 0.00 0.0 1.4 0.0 2.25 3.53 3.81 12 0.98 185.20 185.02 185.84 185.81 191.00 191.00 27 26 22.1 0.00 0.00 0.00 0.00 0.00 0.0 1.3 0.0 2.25 3.56 3.69 12 1.00 185.42 185.20 186.06 186.06 190.00 191.00 28 27 88.8 0.00 0.00 0.00 0.00 0.00 0.0 0.8 0.0 2.25 3.56 3.57 12 1.00 186.31 185.42 186.95 186.41 189.80 190.00 29 28 69.6 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 1.14 3.57 2.42 12 1.01 187.01 186.31 187.46 187.20 189.80 189.80 30 11 10.2 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.53 4.99 3.05 6 79.33 186.40 178.34 186.77 179.88 189.64 189.60 31 16 6.5 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.34 6.30 2.27 6 126.16 186.66 178.51 186.96 180.78 190.06 190.20 32 16 10.0 0.00 0.00 0.00 0.00 0.00 0.0 2.8 0.0 5.66 7.42 3.20 18 0.50 178.51 178.46 180.69 180.67 190.74 190.20 33 32 10.1 0.00 0.00 0.00 0.00 0.00 0.0 2.7 0.0 5.66 7.39 3.20 18 0.50 178.56 178.51 180.75 180.72 190.50 190.74 34 33 13.2 0.00 0.00 0.00 0.00 0.00 0.0 2.7 0.0 5.12 7.65 2.90 18 0.53 178.63 178.56 180.97 180.94 190.05 190.50 35 34 16.0 0.00 0.00 0.00 0.00 0.00 0.0 2.6 0.0 4.47 7.42 2.53 18 0.50 178.71 178.63 181.16 181.13 190.10 190.05 36 35 15.0 0.00 0.00 0.00 0.00 0.00 0.0 2.5 0.0 4.47 7.18 2.53 18 0.47 178.78 178.71 181.20 181.17 190.00 190.10 37 36 15.0 0.00 0.00 0.00 0.00 0.00 0.0 2.4 0.0 4.47 7.18 2.53 18 0.47 178.85 178.78 181.24 181.22 190.00 190.00 38 37 16.1 0.00 0.00 0.00 0.00 0.00 0.0 2.3 0.0 4.47 7.39 2.53 18 0.50 178.93 178.85 181.29 181.26 189.90 190.00 39 38 8.9 0.00 0.00 0.00 0.00 0.00 0.0 2.2 0.0 3.21 7.06 1.82 18 0.45 178.97 178.93 181.44 181.43 189.90 189.90 40 39 10.0 0.00 0.00 0.00 0.00 0.00 0.0 2.1 0.0 3.21 7.43 1.82 18 0.50 179.02 178.97 181.46 181.45 190.00 189.90 41 40 10.0 0.00 0.00 0.00 0.00 0.00 0.0 2.0 0.0 3.21 7.43 1.82 18 0.50 179.07 179.02 181.48 181.47 190.20 190.00 42 41 14.0 0.00 0.00 0.00 0.00 0.00 0.0 1.9 0.0 3.21 7.43 1.82 18 0.50 179.14 179.07 181.50 181.48 190.25 190.20 Project File: OUTFALL2.stm Number of lines: 54 Run Date: 11-30-2011 NOTES: Intensity = 127.16 / (Inlet time + 17.80) ^ 0.82; Return period = 100 Yrs. Hydraflow Storm Sewers 2005 Storm Sewer Tabulation Page 3 Station Len Drng Area Rnoff Area x C Tc Rain Total Cap Vel Pipe Invert Elev HGL Elev Grnd / Rim Elev Line ID coeff (I) flow full Line To Incr Total Incr Total Inlet Syst Size Slope Up Dn Up Dn Up Dn Line (ft) (ac) (ac) (C) (min) (min) (in/hr) (cfs) (cfs) (ft/s) (in) (%) (ft) (ft) (ft) (ft) (ft) (ft) 43 42 10.0 0.00 0.00 0.00 0.00 0.00 0.0 1.8 0.0 3.21 7.43 1.82 18 0.50 179.19 179.14 181.51 181.51 190.30 190.25 44 43 43.2 0.00 0.00 0.00 0.00 0.00 0.0 1.4 0.0 3.21 7.50 1.82 18 0.51 179.41 179.19 181.56 181.52 190.44 190.30 45 44 77.0 0.00 0.00 0.00 0.00 0.00 0.0 0.7 0.0 3.21 7.47 1.82 18 0.51 179.80 179.41 181.65 181.58 190.20 190.44 46 45 9.1 0.00 0.00 0.00 0.00 0.00 0.0 0.6 0.0 3.21 7.80 1.82 18 0.55 179.85 179.80 181.71 181.70 189.90 190.20 47 46 33.3 0.00 0.00 0.00 0.00 0.00 0.0 0.2 0.0 2.51 7.50 1.42 18 0.51 180.02 179.85 181.80 181.78 189.80 189.90 48 34 50.5 0.00 0.00 0.00 0.00 0.00 0.0 0.1 0.0 0.78 0.39 3.97 6 0.50 179.43 179.18 182.07 181.10 189.65 190.05 49 38 6.8 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 1.36 34.27 2.62 12 92.58 185.78 179.49 186.27 181.44 189.33 189.90 50 45 42.7 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.33 2.10 2.23 6 14.02 186.30 180.31 186.59 181.71 189.80 190.20 51 46 37.6 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.70 2.89 3.75 6 26.63 190.00 180.00 190.42 181.76 196.00 189.90 52 47 38.0 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.66 1.67 5.87 6 8.84 186.51 183.15 186.92 183.37 189.50 189.80 53 48 28.3 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.78 0.56 3.97 6 0.99 186.18 185.90 186.95 186.40 189.65 189.65 54 33 15.8 0.00 0.00 0.00 0.00 0.00 0.0 0.0 0.0 0.80 67.57 1.55 18 41.40 185.42 178.87 185.76 181.06 190.42 190.50 Project File: OUTFALL2.stm Number of lines: 54 Run Date: 11-30-2011 NOTES: Intensity = 127.16 / (Inlet time + 17.80) ^ 0.82; Return period = 100 Yrs. Hydraflow Storm Sewers 2005 Hydraflow HGL Computation Procedure Page 1 General Procedure: Hydraflow computes the HGL using the Bernoulli energy equation. Manning's equation is used to determine energy losses due to pipe friction. In a standard step, iterative procedure, Hydraflow assumes upstream HGLs until the energy equation balances. If the energy equation cannot balance, supercritical flow exists and critical depth is temporarily assumed at the upstream end. A supercritical flow Profile is then computed using the same procedure in a downstream direction using momentum principles. Col. 1 The line number being computed. Calculations begin at Line 1 and proceed upstream. Col. 2 The line size. In the case of non-circular pipes, the line rise is printed above the span. Col. 3 Total flow rate in the line. Col. 4 The elevation of the downstream invert. Col. 5 Elevation of the hydraulic grade line at the downstream end. This is computed as the upstream HGL + Minor loss of this line's downstream line. Col. 6 The downstream depth of flow inside the pipe (HGL - Invert elevation) but not greater than the line size. Col. 7 Cross-sectional area of the flow at the downstream end. Col. 8 The velocity of the flow at the downstream end, (Col. 3 / Col. 7). Col. 9 Velocity head (Velocity squared / 2g). Col. 10 The elevation of the energy grade line at the downstream end, HGL + Velocity head, (Col. 5 + Col. 9). Col. 11 The friction slope at the downstream end (the S or Slope term in Manning's equation). Col. 12 The line length. Col. 13 The elevation of the upstream invert. Col. 14 Elevation of the hydraulic grade line at the upstream end. Col. 15 The upstream depth of flow inside the pipe (HGL - Invert elevation) but not greater than the line size. Col. 16 Cross-sectional area of the flow at the upstream end. Col. 17 The velocity of the flow at the upstream end, (Col. 3 / Col. 16). Col. 18 Velocity head (Velocity squared / 2g). Col. 19 The elevation of the energy grade line at the upstream end, HGL + Velocity head, (Col. 14 + Col. 18) . Col. 20 The friction slope at the upstream end (the S or Slope term in Manning's equation). Col. 21 The average of the downstream and upstream friction slopes. Col. 22 Energy loss. Average Sf/100 x Line Length (Col. 21/100 x Col. 12). Equals (EGL upstream - EGL downstream) +/- tolerance. Col. 23 The junction loss coefficient (K). Col. 24 Minor loss. (Col. 23 x Col. 18). Is added to upstream HGL and used as the starting HGL for the next upstream line(s).