Loading...
HomeMy WebLinkAboutSDP 2021-0029; IONIS LOTS 21 AND 22; HYDROLOGY & HYDRAULIC STUDY; 2023-04-01HYDROLOGY & HYDRAULIC STUDY For: Ionis Lots 21 & 22 SDP2021-0029, GR2022-0049 DWG 540-7A Intersection of Whiptail Loop & Gazelle Court APN: 209-120-23, 209-120-24, 209-120-27 Prepared By: 04/05/2023 Gregory W. Lang, P.E. RCE 68075 EXP: 06-30-23 Pasco Laret Suiter & Associates, Inc. 119 Aberdeen Drive Cardiff By The Sea, CA 92007 Prepared for: Ionis Pharmaceuticals 2855 Gazelle Court Carlsbad, CA 92010 November 2022 Revised January 2023 Revised April 2023 PLSA Job No. 3925 PASCO LARET SUITER & ASSOCIATES CIVIL ENGINEERING+ LAND PLANNING+ LAND SURVEYING TABLE OF CONTENTS SECTION Executive Summary 1.0 Introduction 1.1 Existing Conditions 1.2 Proposed Project 1.3 Conclusions 1.4 References 1.5 Methodology 2.0 Rational Method 2.1 County of San Diego Criteria 2.2 AES Rational Method Computer Model 2.3 Hydrologic Analysis 3.0 Excerpts from the report titled “Hydrology Study for Carlsbad Oaks 3.1 North Phase 3” prepared by O’Day Consultants, dated May 2016 Proposed Condition Hydrologic Model Output 3.2 (100-Year Event Undetained) Detention Analysis 3.3 Proposed Condition Hydrologic Model Output 3.4 (100-Year Event Detained) Hydromodification Management 3.5 Storm Water Pollutant Control 3.6 Hydraulic Methodology 4.0 AES Pipeflow 4.1 Curb Inlets and Grated Inlets on Grade 4.2 Grated Inlets in Sag 4.3 Appendices Appendix A: Hydrology Support Material Appendix B: Detention Support Material Appendix C: Proposed Condition Hydrology Map Appendix D: AES Pipeflow Output Appendix E: Inlet Calculations Appendix F: Rancho Carlsbad Channel & Basin Project Report, dated June 1998, prepared by Rick Engineering Company 1.0 EXECUTIVE SUMMARY 1.1 Introduction This Hydrology & Hydraulics Study for the proposed Ionis Lots 21 and 22 development has been prepared to analyze the hydrologic characteristics of the proposed project site. This report presents both the methodology and the calculations used for determining the storm water runoff from the project site in the post-project (proposed) condition produced by the 100-year, 6-hour storm event. 1.2 Existing Conditions The subject property is located north of the intersection of Whiptail Loop and Gazelle Court in the City of Carlsbad. The site is surrounded by open space to the north and commercial and industrial properties to the east, south and west. Vicinity Map The project site is approximately 8.37 acres. The site currently exists as two mass graded pads with 2:1 slopes around the perimeter. The lots are separated by a 2:1 graded slope and each lot has a temporary desilting basin. The site consists mainly of pervious dirt with some vegetation on the slopes. The mass graded pads are sloped southerly at approximately 2%. The site was previously graded per project number CT 97-13. Per the United States Department of Agriculture Web Soil Survey, the project site is underlain with Hydrologic Soil Group D. Refer to Appendix A for soil information. In the existing condition, storm water runoff from the majority of each lot flows overland to each desilting basin prior to being conveyed to the existing storm drain located in Whiptail Loop. Runoff from the eastern and southern portion of Lot 21 flows directly offsite to the existing curb inlets and storm drain in Whiptail Loop. Runoff from the southeastern corner of Lot 22 flows directly offsite to the existing curb inlets and storm drain in Whiptail Loop. The existing onsite storm drain laterals which drain the temporary desilting basins and the public storm drains located in Whiptail Loop were installed per project number CT 97-13. One of the existing onsite storm drain laterals will be used for the new private storm drain systems proposed for this project. The existing storm drain infrastructure in Whiptail Loop was designed and sized per the report title “Hydrology Study for Carlsbad Oaks North Phase 3” prepared by O’Day Consultants, dated May 2016 on file with the City of Carlsbad under project CT 97-13. Applicable excerpts from the above drainage study are included in Section 3.1 of this report. Below is a summary of the flow rates from the project site for which the existing storm drain infrastructure in Whiptail Loop was sized based on the above referenced report. Summary of Approved 100-yr Peak Discharge Rates Discharge Node Area (ac) Q100 (cfs) 112 3.48 18.46 114 3.90 21.32 The existing public storm drain in Whiptail Loop flows southerly and discharges south of Faraday Avenue, in between Whiptail Loop and El Fuerte Street, through a concrete headwall and rip rap apron into an existing detention basin. The existing detention basin was designed by Rick Engineering Company for the “Rancho Carlsbad Channel & Basin Project” dated June 1998. Outflow from the existing detention basin crosses under Faraday Avenue and flows northwest to Agua Hedionda Creek which flows westerly and discharges into Agua Hedionda Lagoon and ultimately the Pacific Ocean. Refer to Appendix F for the report. 1.3 Proposed Project The proposed project consists of a new 165,000 square foot, 2- and 3-story building with on- grade parking, a 3-story, 44,000 square foot parking structure, and a private pedestrian bridge across Whiptail Loop which will connect to the existing Ionis campus along Gazelle Court. The project also includes new associated utilities, hardscape and landscape, and storm water BMPs including two (2) proprietary Modular Wetland Systems as well as four (4) biofiltration basins. In the proposed condition, the site consists of eight (8) drainage basins that flow to three (3) discharge points. Onsite storm water runoff will be conveyed overland and in proposed storm drain to two (2) Modular Wetlands Systems and four (4) biofiltration basins to meet the requirements for pollutant control, hydromodification management flow control and to mitigate for the 100-year 6-hour storm event. Drainage Basin 100 is located in the eastern portion of the site. Runoff flows overland and in proposed storm drain to a biofiltration basin (BMP-1) located near the southeastern corner of the site. BMP-1 will discharge via proposed storm drain south to the existing storm drain in Whiptail Loop near the southeastern corner of the site. Drainage Basin 200 is located in the eastern portion of the site. Runoff flows overland and in proposed storm drain to a biofiltration basin (BMP-2) located in the central portion of the site. BMP-2 will discharge via proposed storm drain west and then south to the existing storm drain in Whiptail Loop near the southwestern corner of the site. Drainage Basin 300 is located in the central portion of the site. Runoff flows overland and in proposed storm drain to a biofiltration basin (BMP-3) located in the central portion of the site. BMP-3 will discharge via proposed storm drain south to the existing storm drain in Whiptail Loop near the southwestern corner of the site. Drainage Basin 400 is located in the western portion of the site. Runoff flows overland and in proposed storm drain to a biofiltration basin (BMP-4) located in the southwestern corner of the site. BMP-4 will discharge via proposed storm drain south to the existing storm drain in Whiptail Loop near the southwestern corner of the site. Drainage Basin 500 consists of a small area located at the southeastern corner of the site. Runoff from impervious areas is conveyed to a proposed Modular Wetland System (MWS-1) located along the southeastern boundary of the site. Drainage Basin 500 will discharge via proposed storm drain south to the existing storm drain in Whiptail Loop near the southeastern corner of the site. Drainage Basin 600 is located in the southern portion of the site. Runoff from impervious areas is conveyed to a proposed Modular Wetland System (MWS-2) located along the southern central boundary of the site. Drainage Basin 600 will discharge via proposed storm drain south to the existing storm drain in Whiptail Loop near the southern central portion of the site. Drainage Basin 700 consists of perimeter landscape slopes located along the northern boundary of the site. Runoff is conveyed via proposed brow ditch and proposed storm drain south to the existing storm drain in Whiptail Loop near the southwestern corner of the site. Drainage Basin 800 consists of perimeter landscape slopes located along the northern and western boundaries of the site. Runoff is conveyed via proposed brow ditch and proposed storm drain south to the existing storm drain in Whiptail Loop near the southwestern corner of the site. Using the Rational Method Procedure outlined in the San Diego County Hydrology Manual, a peak flow rate was calculated for the proposed condition 100-year, 6-hour storm event. A detention analysis was performed to evaluate the effects of the biofiltration basins on the 100- year, 6-hour storm event peak discharge rates. The biofiltration basins provide mitigation for the 100-year 6-hour storm event such that peak flows are less than or equal to the approved flows for which the existing storm drain infrastructure in Whiptail Loop was designed per the above referenced O’Day Consultants hydrology study. Applicable excerpts from the hydrology study are included in Section 3.1 of this report. The table below summarizes the proposed condition hydrologic data. Summary of Proposed Condition 100-yr Peak Discharge Rates Discharge Node Area (ac) Q100 (cfs) Undetained Q100 (cfs) Detained 503 2.2 7.64 6.49 412 4.9 21.57 18.26 604 0.8 3.00 3.00 Refer to the proposed undetained and detained hydrologic calculations and detention analysis included in Sections 3.2, 3.3, 3.4 and Appendix B for detailed analysis. Refer to Appendix C for the Proposed Condition Hydrology Node Map. Pursuant to the O’Day Consultants hydrology study and the existing onsite storm drain laterals that drain the temporary desilting basins, it was assumed the future developed site would connect to the existing storm drain in Whiptail Loop at two locations, one immediately east of the Gazelle Court intersection and the other near the southwestern corner of the project site. The proposed project will utilize the existing lateral connection located near the southwestern corner of the site but will not utilize the other. Instead, the project proposes to construct two new lateral connections which will connect to the existing storm drain in Whiptail Loop near the southeastern corner of the site and in the middle of the Gazelle Court intersection. Hydraulic calculations were performed to analyze the proposed condition connections and flows in the existing storm drain in Whiptail Loop. Based on the results of the analysis, the proposed condition hydraulic grade line within the existing storm drain is the same or less when compared to the as-built plans, demonstrating that the existing storm drain has capacity for the proposed connections and flows and there are no negative impacts to the system. Refer to the hydraulic calculations located in Appendix D. The biofiltration basin BMPs will also provide hydromodification management flow control and storm water pollutant control to meet the requirements the California Regional Water Quality Control Board San Diego Region municipal storm water permit (Order No. R9-2013-0001, referred to as MS4 Permit). For detailed pollutant control and HMP calculations refer to the report titled “Storm Water Quality Management Plan for Ionis Lots 21 and 22” dated January 2023, prepared by Pasco Laret Suiter & Associates. 1.4 Conclusions Based upon the analyses included in this report, the proposed biofiltration basins adequately mitigate the increase in peak runoff in the proposed condition below the approved flows for which the existing storm drain infrastructure in Whiptail Loop was designed and are also designed to meet the requirements of the MS4 Permit for both pollutant control and hydromodification management. 1.5 References “San Diego County Hydrology Manual”, revised June 2003, County of San Diego, Department of Public Works, Flood Control Section. Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Available online at http://websoilsurvey.nrcs.usda.gov. 2.0 METHODOLOGY Pursuant to the San Diego County Hydrology Manual (SDCHM) dated June 2003, the Rational Method is recommended for analyzing the runoff response from drainage areas up to approximately 1 square mile in size. The proposed project and associated watershed basins are less than 1 square mile, therefore the Rational Method was used to analyze the project’s hydrologic characteristics in the proposed conditions. 2.1 Rational Method The Rational Method (RM) formula estimates the peak rate of runoff based on the variables of area, runoff coefficient, and rainfall intensity. The rainfall intensity (I) is equal to: I = 7.44 x P6 x D-0.645 Where: I = Intensity (in/hr) P6 = 6-hour precipitation (in) D = duration (min – use Tc) Using the Time of Concentration (Tc) which is the time required for a given element of water that originates at the most remote point of the basin being analyzed to reach the point at which the runoff from the basin is being analyzed, the RM equation determines the storm water runoff rate (Q) for a given basin in terms of flow, typically in cubic feet per second (cfs). The RM equation is as follows: Q = CIA Where: Q= flow (cfs) C = runoff coefficient, ratio of rainfall that produces storm water runoff (runoff vs. infiltration/evaporation/absorption/etc) I = average rainfall intensity for a duration equal to the Tc for the area (in/hr) A = drainage area contributing to the basin (ac) The RM equation assumes that the storm event being analyzed delivers precipitation to the entire basin uniformly, and therefore the peak discharge rate will occur when a raindrop that falls at the most remote portion of the basin arrives at the point of analysis. The RM also assumes that the fraction of rainfall that becomes runoff or the runoff coefficient, C, is not affected by the storm intensity, I, or the precipitation zone number. 2.2 County of San Diego Criteria The County of San Diego has developed its own tables, nomographs, and methodologies for analyzing storm water runoff for areas within the County. The County has also developed precipitation isopluvial contour maps that show even lines of rainfall anticipated from a given storm event (i.e. 100-year, 6-hour storm). The 100-year 6-hour storm event rainfall isopluvial map is included in Appendix A. One of the variables of the RM equation is the runoff coefficient, C, which is dependent upon land use and soil type. Table 3-1 Runoff Coefficients for Urban Areas in the SDCHM categorizes the land use, the associated development density (dwelling units per acre) and the percentage of impervious area. Each of the categories listed has an associated runoff coefficient for each soil type class. The existing storm drain infrastructure design in Whiptail Loop was sized based on the above referenced O’Day Consultants hydrology study which utilized a runoff coefficient of 0.85 for Industrial land use. For the proposed project, a runoff coefficient of 0.85 was selected to analyze the hydrologic characteristics of the proposed condition of the site. For undisturbed or landscape areas a runoff coefficient of 0.35 was utilized. For Table 3-1, refer to Appendix A. The County has also illustrated in detail the methodology for determining the time of concentration, in particular the initial time of concentration. The County has adopted the Federal Aviation Agency’s (FAA) overland time of flow equation. This equation essentially limits the flow path length for the initial time of concentration to lengths of 100 feet or less and is dependent on land use and slope. 2.3 AES Rational Method Computer Model The Rational Method computer program developed by Advanced Engineering Software (AES) satisfies the County of San Diego design criteria, therefore it is the computer model used for this study. The AES hydrologic model is capable of creating independent node-link models of each interior drainage basin and linking these sub-models together at confluence points to determine peak flow rates. The program utilizes base information input by the user to perform calculations for up to 15 hydrologic processes. The required base information includes drainage basin area, storm water facility locations and sizes, land uses, flow patterns, and topographic elevations. The hydrologic conditions were analyzed in accordance with the 2003 County of San Diego Hydrology Manual criteria as follows: Design Storm 100-year, 6-hour 100-year, 6-hour Precipitation 2.8 inches Rainfall Intensity Based on the 2003 County of San Diego Hydrology Manual criteria Runoff Coefficient Pervious D soil C = 0.35 Industrial land use C = 0.85 Soil Type D 3.0 HYDROLOGIC ANALYSIS Table 1 below summarizes the hydrologic calculations provided in Sections 3.1, 3.2 and 3.4. Table 1: Summary of 100-yr Peak Discharge Rates Approved Flows 1 Post-project Undetained Post-project Detained Discharge Node Area (ac) Q100 (cfs) Discharge Node Area (ac) Q100 (cfs) Discharge Node Area (ac) Q100 (cfs) 112 3.48 18.46 N/A N/A N/A N/A N/A N/A N/A N/A N/A 503 2.2 7.64 503 2.2 6.49 114 3.9 21.32 412 4.9 21.57 412 4.9 18.26 113 N/A N/A 604 0.8 3.00 604 0.8 3.00 1. Approved flows for which the existing storm drain infrastructure in Whiptail Loop was designed per the report titled “Hydrology Study for Carlsbad Oaks North Phase 3” prepared by O’Day Consultants, dated May 2016 on file with the City of Carlsbad under project CT 97-13. 3.1 Excerpts from the report titled “Hydrology Study for Carlsbad Oaks North Phase 3” prepared by O’Day Consultants, dated May 2016 c605Pl.OUT San Diego county Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering software, (c) 1993 version 3.2 Rational method hydrology program based on San Diego county Flood control Division 1985 hydrology manual Rational Hydrology study Date: 01/31/08 CARLSBAD OAKS NORTH PROPOSED -BASIN 1 G:\ACCTS\961005\C605Pl.OUT PHASE 3 Hydrology Study control Information********** O'Day consultants, San Deigo, California -s/N 10125 Rational hydrology study storm event year is Map data precipitation entered: 6 hour, precipitation(inches) = 2.800 24 hour precipitation(inches) = 4.900 Adjusted 6 hour precipitation (inches)= 2.800 P6/P24 = 57.1% San Diego hydrology manual 'c' values used Runoff coefficients by rational method 100.0 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 105.000 to Point/Station 105.500 **** INITIAL AREA EVALUATION**** Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type group A group B group c group D Initial subarea flow distance Highest elevation= 490.00(Ft.) Lowest elevation= 488.00(Ft.) 0.000 1.000 0.000 0.000 J 100.00(Ft.) Elevation difference= 2.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.57 min. TC= [1.8*(1.l-C)*distanceA.5)/(% slopeA(l/3)] TC= [l.8*(1.1-0.8500)*(100.QOA.5)/( 2.00A(l/3)]= Setting time of concentration to 5 minutes Rainfall intensity (I)= 7.377 for a 100.0 year Effective runoff coefficient used for area (Q=KCIA) subarea runoff= 0.627(CFS) Total initial stream area= 0. lOO(Ac.) 3.57 storm is C = 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 105.500 to Point/station -1,;,*-1, IMPROVED CHANNEL TRAVEL TIME ,':-1:-::,': Upstream point elevation= Downstream point elevation= channel length thru subarea channel base width slope or 'z' of left channel 488.00(Ft.) 480.00(Ft.) = 400. OO(Ft.) O.OOO(Ft.) bank= 20.000 Page 1 106. 000 c605Pl.OUT slope or 'z' of right channel bank= 20.000 Estimated mean flow rate at midpoint of channel = Manning's 'N' = 0.015 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 6.898(CFS) Depth of flow= 0.297(Ft.), Average velocity= channel flow top width= ll.862(Ft.) Flow velocity= 3.92(Ft/s) Travel time 1.70 min. Time of concentration= 6.70 min. critical depth= 0.375(Ft.) Adding area flow to channel Decimal fraction soil group A= Decimal fraction soil group B = Decimal fraction soil group c Decimal fraction soil group D 0.000 1.000 0.000 0.000 J 6.898(CFS) 3.922(Ft/s) [INDUSTRIAL area type Rainfall intensity Runoff coefficient subarea runoff 6.108(In/Hr) for a 100.0 year storm used for sub-area, Rational method,Q=KCIA, c = 10.384(CFS) for 2.000(Ac.) Total runoff= 11.0ll(CFS) Total area= 2.lO(Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.000 to Point/Station 106.000 **** SUBAREA FLOW ADDITION**** group group group group A 0.000 B 1. 000 C 0.000 D = 0.000 6.70 min. J Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type Time of concentration Rainfall intensity Runoff coefficient subarea runoff= Total runoff= 6.108(In/Hr) for a 100.0 year storm used for sub-area, Rational method,Q=KCIA, c 9.346(CFS) for l.800(Ac.) 20.357(CFS) Total area= 3.90(Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 106.000 to Point/Station 107.000 ,H,-:,-:, PIPEFLOW TRAVEL TIME (User specified size) -:d-:d, Upstream point/station elevation= 470.00(Ft.) Downstream point/station elevation= 442.20(Ft.) Pipe length = 80.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 20.357(CFS) Given pipe size= 18.00(In.) calculated individual pipe flow = 20.357(CFS) Normal flow depth in pipe= 7.lO(In.) Flow top width inside pipe= 17.59(In.) critical depth could not be calculated. Pipe flow velocity= 31.40(Ft/s) Travel time through pipe= 0.04 min. Time of concentration (TC)= 6.74 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 106.000 to Point/station 107.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main stream number: 1 in normal stream number 1 Stream flow area= 3.900(Ac.) Page 2 i __ j•• .J L _I Runoff from this stream= Time of concentration= Rainfall intensity= c605Pl.OUT 20.357(CFS) 6.74 min. 6.083(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 108.000 to Point/Station 109.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type group group group group A 0.000 B = 1. 000 C = 0.000 D = 0.000 Initial subarea flow distance = Highest elevation= 487.00(Ft.) Lowest elevation= 486.SO(Ft.) Elevation difference= 0.50(Ft.) J 25.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.79 min. TC= [l.8*(1.1-C)*distanceA.S)/(% slopeA(l/3)] TC= [1.8*(1.1-0.8500)*( 25.00A.5)/( 2.00A(l/3)]= setting time of concentration to 5 minutes Rainfall intensity (I)= 7.377 for a 100.0 year Effective runoff coefficient used for area (Q=KCIA) subarea runoff= 0.063(CFS) Total initial stream area= O.OlO(Ac.) 1. 79 storm is C = 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 109.000 to Point/Station 107.000 **** STREET FLOW TRAVEL TIME+ SUBAREA FLOW ADDITION**** Top of street segment elevation= 486.SOO(Ft.) End of street segment elevation= 454.SOO(Ft.) Length of street segment 700.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 26.000(Ft.) Distance from crown to crossfall grade break 24.SOO(Ft.) slope from gutter to grade break (v/hz) = 0.020 slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) slope from curb to property line (v/hz) = 0.020 Gutter width= 1.500(Ft.) Gutter hike from flowline = l.500(In.) Manning's Nin gutter= 0.0150 Manning's N from gutter to grade break= 0.0150 Manning's N from grade break to crown= 0.0150 Estimated mean flow rate at midpoint of street= 0.092(CFS) Depth of flow= 0.081(Ft.), Average velocity= 2.360(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 1.500(Ft.) Flow velocity= 2.36(Ft/s) Travel time= 4.94 min. TC= 9.94 min. Adding area flow to street user specified 'c' value of 0.730 given for subarea Rainfall intensity= 4.735(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c = 0.730 subarea runoff= 3.284(CFS) for 0.950(Ac.) Total runoff= 3.346(CFS) Total area= 0.96(Ac.) Street flow at end of street= 3.346(CFS) Half street flow at end of street= 3.346(CFS) Page 3 c605Pl. OUT Depth of flow= 0.264(Ft.), Average velocity= 4.257(Ft/s) Flow width (from curb towards crown)= 8.455(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 109.000 to Point/Station 107.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main stream number: 1 in normal stream number 2 Stream flow area= 0.960(Ac.) Runoff from this stream= 3.346(CFS) Time of concentration= 9.94 min. Rainfall intensity= 4.735(In/Hr) summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 20.357 6.74 6.083 2 3.346 9.94 4.735 Qmax(l) 1.000 ·'· 1.000 .,. 20.357) + 1.000 ·'· 0.678 J. 3.346) + 22.625 Qmax(2) = 0. 778 " 1. 000 ·'· 20.357) + 1.000 ·'· 1.000 ·'· 3. 346) + 19.190 Total of 2 streams to confluence: Flow rates before confluence point: 20.357 3.346 Maximum flow rates at confluence using above data: 22.625 19.190 Area of streams before confluence: 3.900 0.960 Results of confluence: Total flow rate= 22.625(CFS) Time of concentration 6.742 min. Effective stream area after confluence= 4.860(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 107.000 to Point/Station 110.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 441.SO(Ft.) Downstream point/station elevation= 441.30(Ft.) Pipe length = 5.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 22.625(CFS) Given pipe size= 24.00(In.) calculated individual pipe flow 22.625(CFS) Normal flow depth in pipe= 12.00(In.) Flow top width inside pipe= 24.00(In.) critical Depth= 20.34(In.) Pipe flow velocity= 14.40(Ft/s) Travel time through pipe= 0.01 min. Time of concentration (TC)= 6.75 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 107.000 to Point/station 110.000 -1,**-1, CONFLUENCE OF MAIN STREAMS -:,*ic-1, Page 4 .... J ' .. .J c605Pl. OUT The following data inside Main Stream is listed: In Main Stream number: 1 stream flow area= 4.860(Ac.) Runoff from this stream= 22.625(CFS) Time of concentration= 6.75 min. Rainfall intensity= 6.0SO(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 108.000 to Point/station 108.100 **** INITIAL AREA EVALUATION**** Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type group group group group A= 0.000 B = 1. 000 C = 0.000 D 0.000 Initial subarea flow distance Highest elevation= 487.00(Ft.) Lowest elevation= 486.50(Ft.) Elevation difference= 0.50(Ft.) J 26.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App x-c) = 1.85 min. TC= [l.8*(1.l-C)*distanceA.5)/(% slopeA(l/3)] TC= [l.8*(1.1-0.8500)*( 26.00A.5)/( l.92A(l/3)]= Setting time of concentration to 5 minutes Rainfall intensity (I)= 7.377 for a 100.0 year Effective runoff coefficient used for area (Q=KCIA) subarea runoff= 0.063(CFS) Total initial stream area= O.OlO(Ac.) 1.85 storm is C = 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 108.100 to Point/Station 110.500 ;,,•,;,;, STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ,'d,H Top of street segment elevation= 486.500(Ft.) End of street segment elevation= 454.500(Ft.) Length of street segment = 700.000(Ft.) Height of curb above gutter flowline = 6.0(In.) Width of half street (curb to crown) = 26.000(Ft.) Distance from crown to crossfall grade break 24.500(Ft.) slope from gutter to grade break (v/hz) = 0.020 slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) slope from curb to property line (v/hz) 0.020 Gutter width= l.SOO(Ft.) Gutter hike from flowline = l.SOO(In.) Manning's Nin gutter= 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown= 0.0150 Estimated mean flow rate at midpoint of street= 0.090(CFS) Depth of flow= 0.080(Ft.), Average velocity= 2.344(Ft/s) streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 1.SOO(Ft.) Flow velocity= 2.34(Ft/s) Travel time= 4.98 min. TC= 9.98 min. Adding area flow to street user specified 'c' value of 0.800 given for subarea Rainfall intensity= 4.724(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c = 0.800 Page 5 c605Pl. OUT subarea runoff= 3.288(CFS) for 0.870(Ac.) Total runoff= 3.351(CFS) Total area= 0.88(Ac.) Street flow at end of street= 3.351(CFS) Half street flow at end of street= 3.35l(CFS) Depth of flow= 0.264(Ft.), Average velocity= 4.258(Ft/s) Flow width (from curb towards crown)= 8.460(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 108.100 to Point/Station 110.500 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 2 in normal stream number 1 Stream flow area= 0.880(Ac.) Runoff from this stream 3.351(CFS) Time of concentration 9.98 min. Rainfall intensity= 4.724(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.510 to Point/Station 110.520 **** INITIAL AREA EVALUATION**** Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type group group group group A 0.000 B = 1. 000 C 0.000 D = 0.000 Initial subarea flow distance Highest elevation= 484.00(Ft.) Lowest elevation= 482.00(Ft.) J 100.00(Ft.) Elevation difference= 2.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App x-c) = 3.57 min. TC= [l.8*(1.l-C)*distanceA.5)/(% slopeA(l/3)] TC= [l.8*(1.1-0.8500)*(100.00A.5)/( 2.00A(l/3)]= setting time of concentration to 5 minutes Rainfall intensity (I)= 7.377 for a 100.0 year Effective runoff coefficient used for area (Q=KCIA) subarea runoff= 0.314(CFS) Total initial stream area= O.OSO(Ac.) 3.57 storm is C = 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.520 to Point/station 110.530 ,·;-;,*-:, IMPROVED CHANNEL TRAVEL TIME ,·:-1,-:,-:, Upstream point elevation= 482.00(Ft.) Downstream point elevation= 474.00(Ft.) channel length thru subarea 450.00(Ft.) channel base width O.OOO(Ft.) slope or 'z' of left channel bank= 20.000 slope or 'z' of right channel bank= 20.000 Estimated mean flow rate at midpoint of channel = 12.573(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 12.573(CFS) Depth of flow= 0.380(Ft.), Average velocity= 4.360(Ft/s) channel flow top width= 15.189(Ft.) Flow velocity= 4.36(Ft/s) Travel time = 1.72 min. Time of concentration= 6.72 min. critical depth= 0.477(Ft.) Page 6 .... J c605Pl.OUT Adding area flow to channel Decimal fraction soil group A= 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 0.000 [INDUSTRIAL area type J Rainfall intensity= 6.096(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c = 0.850 subarea runoff= 20.26l(CFS) for 3.910(Ac.) Total runoff= 20.575(CFS) Total area= 3.96(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.530 to Point/Station 110.500 -/'**1' PIPEFLOW TRAVEL TIME (User specified size) ;'di;,, Upstream point/station elevation= 465.00(Ft.) Downstream point/station elevation= 444.00(Ft.) Pipe length 60.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 20.575(CFS) Given pipe size= 24.00(In.) calculated individual pipe flow 20.575(CFS) Normal flow depth in pipe= 6.36(In.) Flow top width inside pipe= 21.19(In.) critical Depth= 19.52(In.) Pipe flow velocity= 30.86(Ft/s) Travel time through pipe= 0.03 min. Time of concentration (TC)= 6.75 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.530 to Point/Station 110.500 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 2 in normal stream number 2 stream flow area= 3.960(Ac.) Runoff from this stream 20.575(CFS) Time of concentration= 6.75 min. Rainfall intensity= 6.077(In/Hr) summary of stream data: stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 3.351 9.98 4. 724 2 20.575 6.75 6.077 Qmax(l) 1.000 o. 1.000 o. 3.351) + 0. 777 o. 1.000 .,. 20.575) + 19.345 Qmax(2) = 1.000 ·'• 0. 677 ·'· 3. 3 51) + 1.000 o. 1.000 o. 20. 575) + = 22.842 Total of 2 streams to confluence: Flow rates before confluence point: 3.351 20.575 Maximum flow rates at confluence using above data: 19.345 22.842 Area of streams before confluence: 0.880 3.960 Results of confluence: Total flow rate= 22.842(CFS) Page 7 , __ J c605Pl. OUT Time of concentration= 6.753 min. Effective stream area after confluence= 4.840(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 110.500 to Point/Station 110.000 ''*** PIPEFLOW TRAVEL TIME (User specified size) '"'*'' Upstream point/station elevation= 443.67(Ft.) Downstream point/station elevation= 441.33(Ft.) Pipe length = 44.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 22.842(CFS) Given pipe size= 24.00(In.) calculated individual pipe flow = 22.842(CFS) Normal flow depth in pipe= 11.ll(In.) Flow top width inside pipe= 23.93(In.) critical Depth= 20.42(In.) Pipe flow velocity= 16.05(Ft/s) Travel time through pipe= 0.05 min. Time of concentration (TC)= 6.80 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.500 to Point/Station 110.000 **** CONFLUENCE OF MAIN STREAMS**** The following data inside Main Stream is listed: In Main Stream number: 2 stream flow area= 4.840(Ac.) Runoff from this stream 22.842(CFS) Time of concentration= 6.80 min. Rainfall intensity= 6.05l(In/Hr) summary of stream data: stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 22. 62 5 6.75 6.080 2 22. 842 6.80 6.051 Qmax(l) = 1.000 .,. 1.000 .,. 22.625) + 1.000 .,. 0.993 ·'· 22. 842) + 45.299 Qmax(2) 0.995 .,. 1.000 -·-22.625) + 1.000 o. 1.000 ·'· 22. 842) + = 45.360 Total of 2 main streams to confluence: Flow rates before confluence point: 22.625 22.842 Maximum flow rates at confluence using above data: 45.299 45.360 Area of streams before confluence: 4.860 4.840 Results of confluence: Total flow rate= 45.360(CFS) Time of concentration= 6.798 min. Effective stream area after confluence = 9.700(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Page 8 c605Pl.OUT Process from Point/Station 110.000 to Point/Station -/;,':-/:1, PIPEFLOI\I TRAVEL TIME (User specified size) "1'"" Upstream point/station elevation= 441.00(Ft.) Downstream point/station elevation= 432.60(Ft.) Pipe length = 120.66(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 45.360(CFS) Given pipe size= 24.00(In.) Calculated individual pipe flow = 45.360(CFS) Normal flow depth in pipe= 15.66(In.) Flow top width inside pipe= 22.86(In.) critical depth could not be calculated. Pipe flow velocity= 20.91(Ft/s) Travel time through pipe= 0.10 min. Time of concentration (TC)= 6.89 min. 104.000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/station 104.000 **** CONFLUENCE OF MAIN STREAMS**** The following data inside Main Stream is listed: In Main Stream number: 1 stream flow area= 9.700(Ac.) Runoff from this stream 45.360(CFS) Time of concentration= 6.89 min. Rainfall intensity= 5.996(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 101.000 to Point/station 102.000 -::-:,-:,* INITIAL AREA EVALUATION -::1,-:,,, Decimal fraction soil group A 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group c = 0.000 Decimal fraction soil group o = 0.000 [RURAL (greater than 1/2 acre) area type J Time of concentration computed by the natural watersheds nomograph (App X-A) TC= [ll.9*length(Mi)A3)/(elevation change)JA.385 *60(min/hr) + 10 min. Initial subarea flow distance 850.00(Ft.) Highest elevation= 540.00(Ft.) Lowest elevation= 448.00(Ft.) Elevation difference= 92.00(Ft.) TC=[(11.9*0.1610h3)/( 92.00)JA.385= 3.31 + 10 min. 13.31 min. Rainfall intensity (I)= 3.923 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0.350 subarea runoff= 18.536(CFS) Total initial stream area= 13.SOO(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/station 103.000 1'*1"'' PIPE FLOW TRAVEL TIME (User specified size) ·HH Upstream point/station elevation= 448.00(Ft.) Downstream point/station elevation= 446.00(Ft.) Pipe length = 160.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 18.536(CFS) Given pipe size= 24.00(In.) calculated individual pipe flow 18.536(CFS) Page 9 1, ___ I . _.J _j '--, Normal flow depth in pipe= Flow top width inside pipe= critical Depth= 18.60(In.) c605Pl.OUT 15.26(In.) 23.lO(In.) Pipe flow velocity= 8.79(Ft/s) Travel time through pipe= 0.30 min. Time of concentration (TC)= 13.61 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.000 to Point/station 104.000 i,*-1,-1, PIPE FLOW TRAVEL TIME (User specified size) *-Id:,', Upstream point/station elevation= 446.00(Ft.) Downstream point/station elevation= 432.60(Ft.) Pipe length 335.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 18.536(CFS) Given pipe size= 24.00(In.) calculated individual pipe flow 18.536(CFS) Normal flow depth in pipe= 10.70(In.) Flow top width inside pipe= 23.86(In.) critical Depth= 18.60(In.) Pipe flow velocity= 13.69(Ft/s) Travel time through pipe= 0.41 min. Time of concentration (TC)= 14.02 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 103.000 to Point/Station 104.000 **** CONFLUENCE OF MAIN STREAMS**** The following data inside Main Stream is listed: In Main stream number: 2 Stream flow area= 13.500(Ac.) Runoff from this stream 18.536(CFS) Time of concentration= 14.02 min. Rainfall intensity= 3.793(In/Hr) summary of stream data: stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 45. 360 6.89 5. 996 2 18.536 14.02 3.793 Qmax (1) = 1.000 " 1.000 ·'· 45.360) + 1.000 ,. 0.492 ,. 18.536) + 54.473 Qmax(2) = 0.633 .,. 1.000 ·'· 45.360) + 1.000 ·'· 1.000 ·'· 18.536) + 47.230 Total of 2 main streams to confluence: Flow rates before confluence point: 45.360 18.536 Maximum flow rates at confluence using above data: 54.473 47.230 Area of streams before confluence: 9.700 13.500 Results of confluence: Total flow rate= 54.473(CFS) Time of concentration= 6.895 min . Page 10 l... _J l _ _J c605Pl.OUT Effective stream area after confluence 23.200(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 104.000 to Point/Station 111.000 **''* PIPE FLOW TRAVEL TIME (User specified size) n ° * n Upstream point/station elevation= 432.lO(Ft.) Downstream point/station elevation= 426.83(Ft.) Pipe length = 75.34(Ft.) Manning's N = 0.013 N9. of ripes= 1 Required pipe flow = 54.473(CFS) Given pipe size= 36.00(In.) calculated individual pipe flow = 54.473(CFS) Normal flow depth in pipe= 13.73(In.) Flow top width inside pipe= 34.97(In.) critical Depth= 28.77(In.) Pipe flow velocity= 21.99(Ft/s) Travel time through pipe= 0.06 min. Time of concentration (TC)= 6.95 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 104.000 to Point/station 111.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 1 Stream flow area= 23.200(Ac.) Runoff from this stream 54.473(CFS) Time of concentration= 6.95 min. Rainfall intensity= 5.965(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 111.100 to Point/station 111.200 **** INITIAL AREA EVALUATION**** Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type group group group group A= 0.000 B 1.000 C 0.000 D 0.000 Initial subarea flow distance Highest elevation= 461.00(Ft.) Lowest elevation= 459.00(Ft.) J 100.00(Ft.) Elevation difference= 2.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App x-c) = 3.57 min. TC= [1.8*(1.l-C)*distanceA.5)/(% slopeA(l/3)] TC= [l.8*(1.1-0.8500)*(100.00A.5)/( 2.00A(l/3)]= setting time of concentration to 5 minutes Rainfall intensity (I)= 7.377 for a 100.0 year Effective runoff coefficient used for area (Q=KCIA) subarea runoff= 0.314(CFS) Total initial stream area= 0.050(Ac.) 3.57 storm is C = 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 111.200 to Point/station 111.300 id** IMPROVED CHANNEL TRAVEL TIME '"*'"* Upstream point elevation= Downstream point elevation= Channel length thru subarea 459.00(Ft.) 455.00(Ft.) = 200.00(Ft.) Page 11 L_J --! ,'7 l __ j , __ ) c605Pl. OUT channel base width = O.OOO(Ft.) slope or 'z' of left channel bank= 20.000 slope or 'z' of right channel bank= 20.000 Estimated mean flow rate at midpoint of channel= Manning's 'N' = 0.015 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 3.543(CFS) Depth of flow= 0.231(Ft.), Average velocity= channel flow top width= 9.240(Ft.) Flow velocity= 3.32(Ft/s) Travel time 1.00 min. Time of concentration= 6.00 min. critical depth= 0.287(Ft.) Adding area flow to channel Decimal fraction soil group A= Decimal fraction soil group B Decimal fraction soil group c Decimal fraction soil group D = 0.000 1.000 0.000 0.000 J 3.543(CFS) 3. 320(Ft/s) [INDUSTRIAL area type Rainfall intensity Runoff coefficient subarea runoff 6.556(In/Hr) for a 100.0 year storm used for sub-area, Rational method,Q=KCIA, c = 5.740(CFS) for l.030(Ac.) Total runoff= 6.053(CFS) Total area= 1. 08 (Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 111.300 to Point/Station 111.300 **** SUBAREA FLOW ADDITION**** group A = 0.000 group B = 1.000 group C 0.000 group D = 0.000 7 ~ 6.00 min. Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type Time of concentration Rainfall intensity Runoff coefficient subarea runoff 6.556(In/Hr) for a 100.0 year storm used for sub-area, Rational method,Q=KCIA, c 5.573(CFS) for 1.000(Ac.) Total runoff= ll.626(CFS) Total area= 2.08(Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 111.300 to Point/Station 111.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 454.00(Ft.) Downstream point/station elevation= 427.00(Ft.) Pipe length = 50.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow ll.626(CFS) Given pipe size= 18.00(In.) calculated individual pipe flow ll.626(CFS) Normal flow depth in pipe= 4.72(In.) Flow top width inside pipe= 15.84(In.) critical Depth= 15.58(In.) Pipe flow velocity= 31.46(Ft/s) Travel time through pipe= 0.03 min. Time of concentration (TC)= 6.03 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 111.300 to Point/Station 111.000 **** CONFLUENCE OF MINOR STREAMS**** Page 12 c605Pl.OUT Along Main stream number: 1 in normal stream number 2 stream flow area= 2.080(Ac.) Runoff from this stream= ll.626(CFS) Time of concentration= 6.03 min. Rainfall intensity= 6.537(In/Hr) summary of stream data: stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 54.473 6.95 5. 965 2 11. 626 6.03 6. 537 Qmax(l) = 1.000 .,. 1.000 ·'· 54.473) + 0.912 ·'· 1.000 ·'· 11. 626) + = 65.081 Qmax(2) 1.000 .,. 0.867 ·'· 54.473) + 1.000 --1.000 .,. 11.626) + = 58.881 Total of 2 streams to confluence: Flow rates before confluence point: 54.473 11.626 Maximum flow rates at confluence using above data: 65.081 58.881 Area of streams before confluence: 23.200 2.080 Results of confluence: Total flow rate= 65.081(CFS) Time of concentration 6.952 min. Effective stream area after confluence 25.280(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 111.000 to Point/station 112.500 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 426.SO(Ft.) Downstream point/station elevation= 409.00(Ft.) Pipe length 250.02(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 65.081(CFS) Given pipe size= 36.00(In.) calculated individual pipe flow = 65.081(CFS) Normal flow depth in pipe= 15.14(In.) Flow top width inside pipe= 35.54(In.) critical Depth= 31.02(In.) Pipe flow velocity= 23.08(Ft/s) Travel time through pipe= 0.18 min. Time of concentration (TC)= 7.13 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.500 to Point/Station -:,-1,*-:, PIPEFLOW TRAVEL TIME (User specified size) ;,;,-;,-:, Upstream point/station elevation= 409.67(Ft.) Downstream point/station elevation= 393.00(Ft.) Pipe length = 204.33(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 65.08l(CFS) Given pipe size= 36.00(In.) calculated individual pipe flow = 65.081(CFS) Normal flow depth in pipe= 14.51(In.) Flow top width inside pipe= 35.32(In.) Page 13 112.000 c605Pl.OUT critical Depth= 31.02(In.) Pipe flow velocity 24.40(Ft/s) Travel time through pipe= 0.14 min. Time of concentration (TC)= 7.27 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.500 to Point/Station 112.000 **** CONFLUENCE OF MAIN STREAMS**** The following data inside Main Stream is listed: In Main stream number: 1 Stream flow area= 25.280(Ac.) Runoff from this stream 65.08l(CFS) Time of concentration= 7.27 min. Rainfall intensity= 5.794(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 107.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type group group group group A= 0.000 B 1.000 C 0.000 D = 0.000 Initial subarea flow distance Highest elevation= 454.65(Ft.) Lowest elevation= 454.15(Ft.) Elevation difference= 0.50(Ft.) J 26.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App x-c) = 1.85 min. TC= [l.8*(1.l-C)*distanceA.5)/(% slopeA(l/3)] TC= [l.8*(1.1-0.8500)*( 26.00A.5)/( 1.92A(l/3)]= Setting time of concentration to 5 minutes 1. 85 storm Rainfall intensity (I)= 7.377 for a 100.0 year Effective runoff coefficient used for area (Q=KCIA) is C = 0.850 subarea runoff= 0.063(CFS) Total initial stream area= O.OlO(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 107.000 to Point/Station 1'*** STREET FLOVJ TRAVEL TIME + SUBAREA FLOW ADDITION ";, :, " Top of street segment elevation= 454.150(Ft.) End of street segment elevation= 405.750(Ft.) Length of street segment 660.000(Ft.) Height of curb above gutter flowline 6.0(In.) width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break 24.500(Ft.) slope from gutter to grade break (v/hz) = 0.020 slope from grade break to crown (v/hz) = 0.020 street flow is on [l] side(s) of the street Distance from curb to property line 10.000(Ft.) slope from curb to property line (v/hz) 0.020 Gutter width= l.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's Nin gutter= 0.0150 Manning's N from gutter to grade break= 0.0150 Manning's N from grade break to crown 0.0150 Page 14 112.100 , •.. J 1 ..... .J c605Pl. OUT Estimated mean flow rate at midpoint of street= 0.112(CFS) Depth of flow= 0.080(Ft.), Average velocity= 2.957(Ft/s) streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 1.SOO(Ft.) Flow velocity= 2.96(Ft/s) Travel time= 3.72 min. TC= 8.72 min. Adding area flow to street Decimal fraction soil group A= 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group c = 0.000 Decimal fraction soil group D = 0.000 [INDUSTRIAL area type J Rainfall intensity 5.153(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c 0.850 subarea runoff= 6.921(CFS) for l.580(Ac.) Total runoff= 6.984(CFS) Total area= 1.59(Ac.) Street flow at end of street= 6.984(CFS) Half street flow at end of street= 6.984(CFS) Depth of flow= 0.303(Ft.), Average velocity= 6.067(Ft/s) Flow width (from curb towards crown)= 10.391(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 107.000 to Point/Station 112.100 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 2 in normal stream number 1 stream flow area= l.590(Ac.) Runoff from this stream= 6.984(CFS) Time of concentration 8.72 min. Rainfall intensity= 5.153(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 112.400 to Point/Station 112.300 **** INITIAL AREA EVALUATION**** Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type group group group group A 0.000 B 1.000 C = 0.000 D 0.000 Initial subarea flow distance Highest elevation= 443.SO(Ft.) Lowest elevation= 441.SO(Ft.) J 100. OO(Ft.) Elevation difference= 2.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App x-c) = 3.57 min. TC= [l.8*(1.l-C)*distanceA.5)/(% slopeA(l/3)] TC= [1.8*(1.1-0.8500)*(100.00A.5)/( 2.00A(l/3)]= setting time of concentration to 5 minutes Rainfall intensity (I)= 7.377 for a 100.0 year Effective runoff coefficient used for area (Q=KCIA) subarea runoff= 0.627(CFS) Total initial stream area= O.lOO(Ac.) 3.57 storm is C = 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.300 to Point/station 112.200 H** IMPROVED CHANNEL TRAVEL TIME -Id,** Upstream point elevation= Downstream point elevation= 441. SO(Ft.) 437.00(Ft.) Page 15 ,_) c605Pl.OUT channel length thru subarea = 300.00(Ft.) channel base width = O.OOO(Ft.) slope or 'z' of left channel bank= 20.000 slope or 'z' of right channel bank= 20.000 Estimated mean flow rate at midpoint of channel 5.017(CFS) Manning's 'N' = 0.015 Maximum depth of channel = l.OOO(Ft.) Flow(q) thru subarea = 5.017(CFS) Depth of flow= 0.278(Ft.), Average velocity 3.251(Ft/s) channel flow top width= 11.llO(Ft.) Flow velocity= 3.25(Ft/s) Travel time 1.54 min. Time of concentration= 6.54 min. Critical depth= 0.330(Ft.) Adding area flow to channel Decimal fraction soil group A= 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group c = 0.000 Decimal fraction soil group D 0.000 [INDUSTRIAL area type J Rainfall intensity= 6.205(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c 0.850 subarea runoff= 7.384(CFS) for l.400(Ac.) Total runoff= 8.012(CFS) Total area= l.50(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.200 to Point/Station 112.200 **** SUBAREA FLOW ADDITION**** group A = 0.000 group B = 1.000 group C 0.000 group r, 0.000 u J 6.54 min. Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type Time of concentration= Rainfall intensity Runoff coefficient subarea runoff 6.205(In/Hr) for a 100.0 year storm used for sub-area, Rational method,Q=KCIA, c 10.444(CFS) for l.980(Ac.) Total runoff= 18.455(CFS) Total area= 3.48(Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.200 to Point/Station 112.100 *i,·H PIPE FLOW TRAVEL TIME (User specified size) ;,;d"'' upstream point/station elevation= 425.00(Ft.) Downstream point/station elevation= 394.BO(Ft.) Pipe length 80.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 18.455(CFS) Given pipe size= 24.00(In.) calculated individual pipe flow = 18.455(CFS) Normal flow depth in pipe= 5.91(In.) Flow top width inside pipe= 20.68(In.) Critical Depth= 18.56(In.) Pipe flow velocity= 30.72(Ft/s) Travel time through pipe= 0.04 min. Time of concentration (TC)= 6.58 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 112.200 to Point/Station 112.100 **** CONFLUENCE OF MINOR STREAMS**** Page 16 l_ , ___ ,' I ___ J c _ _J \ ____ J c605Pl. OUT Along Main Stream number: 2 in normal stream number 2 stream flow area= 3.480(Ac.) Runoff from this stream= 18.455(CFS) Time of concentration= 6.58 min. Rainfall intensity= 6.179(In/Hr) summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 6.984 8.72 5.153 2 18.455 6.58 6.179 Qmax(l) = 1. 000 _,_ 1.000 _,_ 6.984) + 0.834 ·'· l. 000 o. 18. 455) = 22.376 T Qmax(2) 1.000 "· 0.755 ·'· 6.984) + 1. 000 .,. 1.000 --18.455) + 23. 726 Total of 2 streams to confluence: Flow rates before confluence point: 6.984 18.455 Maximum flow rates at confluence using above data: 22.376 23.726 Area of streams before confluence: 1.590 3.480 Results of confluence: Total flow rate= 23.726(CFS) Time of concentration= 6.581 min. Effective stream area after confluence= 5.070(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.100 to Point/Station 112.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 394.50(Ft.) Downstream point/station elevation= 394.00(Ft.) Pipe length 5.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 23.726(CFS) Given pipe size= 24.00(In.) calculated individual pipe flow = 23.726(CFS) Normal flow depth in pipe= 9.52(In.) Flow top width inside pipe= 23.48(In.) critical Depth= 20.72(In.) Pipe flow velocity= 20.45(Ft/s) Travel time through pipe= 0.00 min. Time of concentration (TC)= 6.59 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 112.100 to Point/Station 112.000 **** CONFLUENCE OF MAIN STREAMS**** The following data inside Main stream is listed: In Main Stream number: 2 Stream flow area= 5.070(Ac.) Runoff from this stream= 23.726(CFS) Time of concentration= 6.59 min. Rainfall intensity= 6.177(In/Hr) Program is now starting with Main Stream No. 3 Page 17 , __ j l ___ j l __ J l. __ J c605Pl. OUT ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 110.500 *"'*"' INITIAL AREA EVALUATION -;"''** Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type group group group group A= 0.000 B = 1. 000 C = 0.000 D 0.000 Initial subarea flow distance = Highest elevation= 455.15(Ft.) Lowest elevation= 454.65(Ft.) Elevation difference= 0.50(Ft.) J 26. OO(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.85 min. TC= [l.8*(1.l-C)*distanceA.5)/(% slopeA(l/3)] TC= [l.8*(1.1-0.8500)*( 26.00A.5)/( l.92A(l/3)]= setting time of concentration to 5 minutes Rainfall intensity (I)= 7.377 for a 100.0 year Effective runoff coefficient used for area (Q=KCIA) subarea runoff= 0.063(CFS) Total initial stream area= O.OlO(Ac.) l. 85 storm is C = 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.500 to Point/station 112.600 **** STREET FLOW TRAVEL TIME+ SUBAREA FLOW ADDITION**** Top of street segment elevation= 454.650(Ft.) End of street segment elevation= 405.550(Ft.) Length of street segment 660.000(Ft.) Height of curb above gutter flowline 6.0(In.) width of half street (curb to crown) = 26.000(Ft.) Distance from crown to crossfall grade break 24.500(Ft.) slope from gutter to grade break (v/hz) = 0.020 slope from grade break to crown (v/hz) 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line 10.000(Ft.) slope from curb to property line (v/hz) 0.020 Gutter width= l.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's Nin gutter= 0.0150 Manning's N from gutter to grade break= 0.0150 Manning's N from grade break to crown= 0.0150 Estimated mean flow rate at midpoint of street= 0.078(CFS) Depth of flow= 0.069(Ft.), Average velocity= 2.712(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 1.500(Ft.) Flow velocity= 2.71(Ft/s) Travel time= 4.06 min. TC= 9.06 min. Adding area flow to street Decimal fraction soil group A= 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group c = 0.000 Decimal fraction soil group D = 0.000 [INDUSTRIAL area type J Rainfall intensity= 5.029(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c = 0.850 subarea runoff= 2.052(CFS) for 0.480(Ac.) Total runoff= 2.115(CFS) Total area= 0.49(Ac.) Street flow at end of street= 2.115(CFS) Page 18 ··-1 c605Pl.OUT Half street flow at end of street= 2.115(CFS) Depth of flow= 0.219(Ft.), Average velocity= 4.632(Ft/s) Flow width (from curb towards crown)= 6.207(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.500 to Point/station 112.600 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 3 in normal stream number 1 Stream flow area= 0.490(Ac.) Runoff from this stream= 2.115(CFS) Time of concentration= 9.06 min. Rainfall intensity= 5.029(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.700 to Point/station 112.800 **** INITIAL AREA EVALUATION**** Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil group group group group A= 0.000 B 1.000 C 0.000 D 0.000 [INDUSTRIAL area type ] Initial subarea flow distance = 100.00(Ft.) Highest elevation= 436.00(Ft.) Lowest elevation= 434.00(Ft.) Elevation difference= 2.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 3.57 min. TC= [l.8*(1.1-C)*distanceA.S)/(% slopeA(l/3)] TC= [l.8*(1.1-0.8500)*(100.00A.S)/( 2.00A(l/3)]= Setting time of concentration to 5 minutes Rainfall intensity (I)= 7.377 for a 100.0 year Effective runoff coefficient used for area (Q=KCIA) subarea runoff= 0.627(CFS) Total initial stream area= 0. lOO(Ac.) 3.57 storm is C = 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 112.800 to Point/station 112.900 **** IMPROVED CHANNEL TRAVEL TIME**** Upstream point elevation= 434.00(Ft.) Downstream point elevation= 428.00(Ft.) channel length thru subarea = 400.00(Ft.) channel base width = O.OOO(Ft.) slope or 'Z' of left channel bank= 20.000 slope or •z• of right channel bank= 20.000 Estimated mean flow rate at midpoint of channel= 13.074(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 13.074(CFS) Depth of flow= 0.398(Ft.), Average velocity= 4.13l(Ft/s) channel flow top width= 15.912(Ft.) Flow Velocity= 4.13(Ft/s) Travel time = 1.61 min. Time of concentration= 6.61 min. critical depth= 0.484(Ft.) Adding area flow to channel Decimal fraction soil group A= 0.000 Decimal fraction soil group B = 1.000 Page 19 c605Pl.OUT group c = 0.000 group D = 0.000 J Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type Rainfall intensity Runoff coefficient subarea runoff= Total runoff= 6.159(In/Hr) for a 100.0 year storm used for sub-area, Rational method,Q=KCIA, C = 20.785(CFS) for 3.970(Ac.) 21.412(CFS) Total area= 4.07(Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.900 to Point/Station *-!'** PIPEFLOVJ TRAVEL TIME (User specified size) ,,.,,;,.,, Upstream point/station elevation= 415.00(Ft.) Downstream point/station elevation= 396.50(Ft.) Pipe length = 80.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 21.412(CFS) Given pipe size= 24.00(In.) calculated individual pipe flow 21.412(CFS) Normal flow depth in pipe= 7.22(In.) Flow top width inside pipe= 22.0l(In.) critical Depth= 19.86(In.) Pipe flow velocity= 26.91(Ft/s) Travel time through pipe= 0.05 min. Time of concentration (TC)= 6.66 min. 112.600 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.900 to Point/station 112.600 **** CONFLUENCE OF MINOR STREAMS**** Along Main stream number: 3 in normal stream number 2 Stream flow area= 4.070(Ac.) Runoff from this stream= 21.412(CFS) Time of concentration= 6.66 min. Rainfall intensity= 6.130(In/Hr) summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 2.115 9.06 5.029 2 21.412 6.66 6.130 Qmax(l) 1.000 ·'· 1. 000 _,_ 2 .115) + 0.820 ,. 1.000 ,. 21. 412) + 19.683 Qmax(2) = 1.000 .,. 0.736 ·'· 2 .115) + 1.000 ·'· 1.000 .,. 21. 412) + 22. 968 Total of 2 streams to confluence: Flow rates before confluence point: 2.115 21.412 Maximum flow rates at confluence using above data: 19.683 22.968 Area of streams before confluence: 0.490 4.070 Results of confluence: Total flow rate= 22.968(CFS) Time of concentration= 6.663 min. Effective stream area after confluence= 4.560(Ac.) Page 20 c605Pl.OUT ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.600 to Point/Station 112.000 *-1,*-I' PIPEFLOW TRAVEL TIME (User specified size) ***-I' Upstream point/station elevation= 396.20(Ft.) Downstream point/station elevation= 394.00(Ft.) Pipe length 45.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 22.968(CFS) Given pipe size= 24.00(In.) calculated individual pipe flow 22.968(CFS) Normal flow depth in pipe= 11.41(In.) Flow top width inside pipe= 23.97(In.) critical Depth= 20.46(In.) Pipe flow velocity= 15.58(Ft/s) Travel time through pipe= 0.05 min. Time of concentration (TC)= 6.71 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.600 to Point/station 112.000 **** CONFLUENCE OF MAIN STREAMS**** The following data inside Main stream is listed; In Main Stream number; 3 stream flow area= 4.560(Ac.) Runoff from this stream= 22.968(CFS) Time of concentration= 6.71 min. Rainfall intensity= 6.lOl(In/Hr) summary of stream data: Stream Flow rate TC Rainfall Intensity NO. (CFS) (min) (In/Hr) 1 65.081 7 .27 5.794 2 23. 726 6. 59 6.177 3 22. 968 6. 71 6.101 Qmax(l) 1.000 J. 1.000 ·'· 65. 081) + 0.938 ·'· 1.000 J. 23. 726) + 0.950 " 1.000 " 22. 968) + 109.148 Qmax(2) 1.000 ·'· 0.906 ·'· 65. 081) + 1.000 .,. 1.000 .,. 23. 726) + 1.000 J. 0.981 ·'· 22. 968) + = 105. 200 Qmax(3) 1.000 .,. 0.923 ·'· 65. 081) + 0.988 J. 1.000 o. 23. 726) + 1.000 " 1.000 .,. 22. 968) + 106. 472 Total of 3 main streams to confluence: Flow rates before confluence point: 65.081 23.726 22.968 Maximum flow rates at confluence using above data: 109.148 105.200 106.472 Area of streams before confluence: 25.280 5.070 4.560 Results of confluence: Total flow rate= 109.148(CFS) Time of concentration= 7.272 min. Page 21 l _____ J ' l ..... 1 c605Pl.OUT Effective stream area after confluence 34. 910(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.000 to Point/Station 113.000 **** PIPEFLOW TRAVEL TIME (User specified size) 'iddd, upstream point/station elevation= 392.SO(Ft.) Downstream point/station elevation= 386.SO(Ft.) Pipe length 42.49(Ft.) Manning's N = 0.013 N9. of ~ipes = 1 Required pipe flow 109.148(CFS) Given pipe size= 42.00(In.) calculated individual pipe flow 109.148(CFS) Normal flow depth in pipe= 15.45(In.) Flow top width inside pipe= 40.SO(In.) critical Depth= 37.96(In.) Pipe flow velocity= 33.98(Ft/s) Travel time through pipe= 0.02 min. Time of concentration (TC)= 7.29 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.000 to Point/Station 113.000 **** CONFLUENCE OF MAIN STREAMS**** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area= 34.910(Ac.) Runoff from this stream 109.148(CFS) Time of concentration= 7.29 min. Rainfall intensity= 5.783(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.100 to Point/Station 113.200 **** INITIAL AREA EVALUATION**** Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type group group group group A= 0.000 B 1. 000 C = 0.000 D 0.000 Initial subarea flow distance Highest elevation= 456.00(Ft.) Lowest elevation= 454.00(Ft.) J 100.00(Ft.) Elevation difference= 2.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App x-c) = 3.57 min. TC= [l.8*(1.l-C)*distanceA.5)/(% slopeA(l/3)] TC= [1.8*(1.1-0.8500)*(100.00A.5)/( 2.00A(l/3)]= setting time of concentration to 5 minutes Rainfall intensity (I)= 7.377 for a 100.0 year Effective runoff coefficient used for area (Q=KCIA) subarea runoff= 0.627(CFS) Total initial stream area= 0. lOO(Ac.) 3.57 storm is C = 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.200 to Point/Station 113.300 -1,**-1, IMPROVED CHANNEL TRAVEL TIME -1,-1,** Upstream point elevation= 545.00(Ft.) Page 22 c605Pl.OUT Downstream point elevation= 450.00(Ft.) channel length thru subarea 400.00(Ft.) channel base width = O.OOO(Ft.) slope or 'z' of left channel bank= 20.000 slope or 'z' of right channel bank= 20.000 Estimated mean flow rate at midpoint of channel = 5.017(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 5.017(CFS) Depth of flow= 0.165(Ft.), Average velocity= 9.160(Ft/s) channel flow top width= 6.619(Ft.) Flow velocity= 9.16(Ft/s) Travel time = 0.73 min. Time of concentration= 5.73 min. critical depth= 0.330(Ft.) Adding area flow to channel Decimal fraction soil group A= 0.000 Decimal fraction soil group B = 1.000 Decimal fraction soil group c = 0.000 Decimal fraction soil group D = 0.000 [INDUSTRIAL area type J Rainfall intensity= 6.758(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c 0.850 subarea runoff 8.042(CFS) for 1.400(Ac.) Total runoff= 8.669(CFS) Total area= l.50(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.300 to Point/station 113.300 **** SUBAREA FLOW ADDITION**** group A 0.000 group B 1.000 group C 0.000 group D = 0.000 J 5.73 min. Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil [INDUSTRIAL area type Time of concentration Rainfall intensity Runoff coefficient subarea runoff 6.758(In/Hr) for a 100.0 year storm used for sub-area, Rational method,Q=KCIA, c 19.186(CFS) for 3.340(Ac.) Total runoff= 27.856(CFS) Total area= 4.84(Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.300 to Point/Station 113.400 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 440.00(Ft.) Downstream point/station elevation= 433.30(Ft.) Pipe length = 70.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 27.856(CFS) Given pipe size= 30.00(In.) calculated individual pipe flow = 27.856(CFS) Normal flow depth in pipe= 9.SS(In.) Flow top width inside pipe= 27.95(In.) critical Depth= 21.59(In.) Pipe flow velocity= 20.72(Ft/s) Travel time through pipe= 0.06 min. Time of concentration (TC)= 5.78 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.400 to Point/Station 113.500 Page 23 ' __ J c605Pl.OUT **id, PIPEFLOltJ TRAVEL TIME (User specified size) -!,*-id, Upstream point/station elevation= 433.00(Ft.) Downstream point/station elevation= 391.00(Ft.) Pipe length 590.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 27.856(CFS) Given pipe size= 30.00(In.) calculated individual pipe flow = 27.856(CFS) Normal flow depth in pipe= 10.32(In.) Flow top width inside pipe= 28.51(In.) critical Depth= 21.59(In.) Pipe flow velocity= 18.63(Ft/s) Travel time through pipe= 0.53 min. Time of concentration (TC)= 6.31 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.400 to Point/Station 113.500 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 2 in normal stream number 1 Stream flow area= 4.840(Ac.) Runoff from this stream 27.856(CFS) Time of concentration= 6.31 min. Rainfall intensity= 6.348(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.400 to Point/station 113.450 -1c-1,-:c-:c INITIAL AREA EVALUATION ,·c-:c-1,.,, user specified 'c' value of 0.850 given for subarea Initial subarea flow distance 46.00(Ft.) Highest elevation= 442.40(Ft.) Lowest elevation= 440.70(Ft.) Elevation difference= l.70(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.97 min. TC= [1.8*(1.l-C)*distanceA.5)/(% slopeA(l/3)] TC= [l.8*(1.1-0.8500)*( 46.00A.5)/( 3.70A(l/3)]= 1.97 setting time of concentration to 5 minutes Rainfall intensity (I)= 7.377 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0.850 subarea runoff= 0.063(CFS) Total initial stream area= O.OlO(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 113.450 to Point/Station 113.460 **** STREET FLOW TRAVEL TIME+ SUBAREA FLOW ADDITION**** Top of street segment elevation= 440.700(Ft.) End of street segment elevation= 400.BOO(Ft.) Length of street segment 660.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) = 26.000(Ft.) Distance from crown to crossfall grade break = 24.500(Ft.) slope from gutter to grade break (v/hz) = 0.020 slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) slope from curb to property line (v/hz) = 0.020 Gutter width= l.SOO(Ft.) Page 24 l __ _i c605Pl.OUT Gutter hike from flowline = l.500(In.) Manning's Nin gutter= 0.0150 Manning's N from gutter to grade break= 0.0150 Manning's N from grade break to crown= 0.0150 Estimated mean flow rate at midpoint of street= 0.082(CFS) Depth of flow= 0.073(Ft.), Average velocity= 2.541(Ft/s) streetflow hydraulics at midpoint of street travel: Halfstreet flow width= l.500(Ft.) Flow velocity= 2.54(Ft/s) Travel time= 4.33 min. TC= 9.33 min. Adding area flow to street user specified 'C' value of 0.850 given for subarea Rainfall intensity= 4.934(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c = 0.850 subarea runoff= 2.558(CFS) for 0.610(Ac.) Total runoff= 2.62l(CFS) Total area= 0.62(Ac.) Street flow at end of street= 2.621(CFS) Half street flow at end of street= 2.621(CFS) Depth of flow= 0.238(Ft.), Average velocity= 4.481(Ft/s) Flow width (from curb towards crown)= 7.167(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 113.460 to Point/Station 113.500 **** PIPEFLOW TRAVEL TIME (User specified size) **** upstream point/station elevation= 392.85(Ft.) Downstream point/station elevation= 390.70(Ft.) Pipe length = 43.25(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 2.62l(CFS) Given pipe size= 18.00(In.) calculated individual pipe flow 2.62l(CFS) Normal flow depth in pipe= 4.07(In.) Flow top width inside pipe= 15.05(In.) critical Depth= 7.35(In.) Pipe flow velocity= 8.76(Ft/s) Travel time through pipe= 0.08 min. Time of concentration (TC)= 9.41 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.460 to Point/station 113.500 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 2 in normal stream number 2 Stream flow area= 0.620(Ac.) Runoff from this stream 2.62l(CFS) Time of concentration= 9.41 min. Rainfall intensity= 4.906(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 113.400 to Point/Station 113.470 **** INITIAL AREA EVALUATION**** user specified 'c' value of 0.850 given for subarea Initial subarea flow distance = 46.00(Ft.) Highest elevation= 442.40(Ft.) Lowest elevation= 441.30(Ft.) Elevation difference= l.lO(Ft.) Time of concentration calculated by the urban areas overland flow method (App x-c) = 2.28 min. TC= [1.8*(1.l-C)*distanceA.5)/(% slopeA(l/3)] Page 25 _J c605Pl.OUT TC= [l.8*(1.1-0.8500)*( 46.00A.5)/( 2.39A(l/3)]= 2.28 Setting time of concentration to 5 minutes Rainfall intensity (I)= 7.377 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0.850 subarea runoff= 0.063(CFS) Total initial stream area= O.OlO(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.470 to Point/station 113.480 *-:'** STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION ,d,'<* Top of street segment elevation= 441.300(Ft.) End of street segment elevation= 400.800(Ft.) Length of street segment = 600.000(Ft.) Height of curb above gutter flowline = 6.0(In.) width of half street (curb to crown) 26.000(Ft.) Distance from crown to crossfall grade break = 24.500(Ft.) slope from gutter to grade break (v/hz) = 0.020 slope from grade break to crown (v/hz) 0.020 street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) slope from curb to property line (v/hz) 0.020 Gutter width= l.500(Ft.) Gutter hike from flowline = 1.500(In.) Manning's Nin gutter= 0.0150 Manning's N from gutter to grade break 0.0150 Manning's N from grade break to crown= 0.0150 Estimated mean flow rate at midpoint of street= 0.090(CFS) Depth of flow= 0.074(Ft.), Average velocity= 2.715(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= l.500(Ft.) Flow velocity= 2.71(Ft/s) Travel time= 3.68 min. TC= 8.68 min. Adding area flow to street user specified 'c' value of 0.850 given for subarea Rainfall intensity= 5.167(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c 0.850 subarea runoff= 3.865(CFS) for 0.880(Ac.) Total runoff= 3.928(CFS) Total area= 0.89(Ac.) Street flow at end of street= 3.928(CFS) Half street flow at end of street= 3.928(CFS) Depth of flow= 0.262(Ft.), Average velocity= 5.13l(Ft/s) Flow width (from curb towards crown)= 8.332(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.480 to Point/station 113.500 -!dd,-!, PIPE FLOW TRAVEL TIME (User specified size) ,·,-:,*,'' Upstream point/station elevation= 391.25(Ft.) Downstream point/station elevation= 390.?0(Ft.) Pipe length 5.25(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 3.928(CFS) Given pipe size= 18.00(In.) calculated individual pipe flow = 3.928(CFS) Normal flow depth in pipe= 4.13(In.) Flow top width inside pipe= 15.14(In.) Critical Depth= 9.lO(In.) Pipe flow velocity= 12.83(Ft/s) Travel time through pipe= 0.01 min. Time of concentration (TC)= 8.69 min. Page 26 : _ _.1 : __ ; ;_ j \..J i __ J c605Pl.OUT ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.480 to Point/Station 113.500 **** CONFLUENCE OF MINOR STREAMS**** Along Main stream number: 2 in normal stream number 3 Stream flow area= 0.890(Ac.) Runoff from this stream= 3.928(CFS) Time of concentration= 8.69 min. Rainfall intensity= 5.165(In/Hr) Summary of stream data: Stream Flow rate No. (CFS) TC (min) Rainfall Intensity (In/Hr) 1 27.856 2 2.621 3 3.928 Qmax(l) = 6.31 9.41 8.69 6. 348 4.906 5.165 1.000 * 1.000 --1: 1.000 0.671 ·'· ·'· 27.856) + 2.621) + 1.000 ;': 0. 726 ·'· 3.928) + 32.467 Qmax(2) = 0. 773 * 1.000 J. 27.856) + 1.000 * 1.000 J. 2.621) + 0.950 * 1.000 J. 3.928) + = 27.882 Qmax(3) = 0.814 -!: 1.000 ·'· 27.856) + 1.000 -!: 0.923 J • 2. 621) + 1.000 .., .. 1.000 ·'· 3.928) + = 29.013 Total of 3 streams to confluence: Flow rates before confluence point: 27.856 2.621 3.928 Maximum flow rates at confluence using above data: 32.467 27.882 29.013 Area of streams before confluence: 4.840 0.620 0.890 Results of confluence: Total flow rate= 32.467(CFS) Time of concentration= 6.312 min. Effective stream area after confluence= 6.350(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.500 to Point/station 113.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 390.67(Ft.) Downstream point/station elevation= 387.17(Ft.) Pipe length = 70.00(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 32.467(CFS) Given pipe size= 30.00(In.) calculated individual pipe flow = 32.467(CFS) Normal flow depth in pipe= 12.33(In.) Flow top width inside pipe= 29.52(In.) critical Depth= 23.27(In.) Pipe flow velocity= 17.08(Ft/s) Travel time through pipe= 0.07 min. Time of concentration (TC)= 6.38 min. Page 27 , _ _j c605Pl.OUT ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.500 to Point/station 113.000 **** CONFLUENCE OF MAIN STREAMS**** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area= 6.350(Ac.) Runoff from this stream= 32.467(CFS) Time of concentration= 6.38 min. Rainfall intensity= 6.304(In/Hr) summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 109.148 7.29 5.783 2 32.467 6. 38 6. 304 Qmax(l) 1.000 _,, 1.000 .,, 109 .148) + 0.917 _,, 1.000 .,, 32. 467) + 138. 933 Qmax(2) 1.000 _,_ 0.875 n 109.148) + 1.000 _,, 1.000 _,, 32. 467) + 127. 960 Total of 2 main streams to confluence: Flow rates before confluence point: 109.148 32.467 Maximum flow rates at confluence using above data: 138.933 127.960 Area of streams before confluence: 34.910 6.350 Results of confluence: Total flow rate= 138.933(CFS) Time of concentration 7.293 min. Effective stream area after confluence 41.260(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.000 to Point/station 114.000 *-1,·H PIPE FLOW TRAVEL TIME (User specified size) -1"'"'"" Upstream point/station elevation= 386.00(Ft.) Downstream point/station elevation 373.25(Ft.) Pipe length 218.46(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 138.933(CFS) Given pipe size= 48.00(In.) calculated individual pipe flow 138.933(CFS) Normal flow depth in pipe= 21.12(In.) Flow top width inside pipe= 47.65(In.) critical Depth= 42.00(rn.) Pipe flow velocity= 26.08(Ft/s) Travel time through pipe= 0.14 min. Time of concentration (TC)= 7.43 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 113.000 to Point/Station 114.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 1 Page 28 ____ ) c605Pl.OUT stream flow area= 41.260(Ac.) Runoff from this stream= 138.933(CFS) Time of concentration= 7.43 min. Rainfall intensity= 5.713(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 114.100 to Point/Station 114.200 *-1,-1:-1, INITIAL AREA EVALUATION '"*** Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil group group group group A= 0.000 B = 1. 000 C = 0.000 D 0.000 [INDUSTRIAL area type J Initial subarea flow distance = 100.00(Ft.) Highest elevation= 409.50(Ft.) Lowest elevation= 407.50(Ft.) Elevation difference= 2.00(Ft.) Time of concentration calculated by the urban areas overland flow method (App x-c) = 3.57 min. TC= [l.8*(1.l-C)*distanceA.5)/(% slopeA(l/3)] TC= [l.8*(1.1-0.8500)*(100.00A.5)/( 2.00A(l/3)]= Setting time of concentration to 5 minutes Rainfall intensity (I)= 7.377 for a 100.0 year Effective runoff coefficient used for area (Q=KCIA) subarea runoff= 0.627(CFS) Total initial stream area= O.lOO(Ac.) 3.57 storm is C = 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 114.200 to Point/Station 114.300 **** IMPROVED CHANNEL TRAVEL TIME**** Upstream point elevation= 407.50(Ft.) Downstream point elevation= 403.00(Ft.) channel length thru subarea = 300.00(Ft.) channel base width O.OOO(Ft.) slope or 'z' of left channel bank= 20.000 slope or 'z' of right channel bank= 20.000 Estimated mean flow rate at midpoint of channel Manning's 'N' = 0.015 Maximum depth of channel l.OOO(Ft.) Flow(q) thru subarea = 12.541(CFS) Depth of flow= 0.392(Ft.), Average velocity= channel flow top width= 15.666(Ft.) Flow Velocity= 4.09(Ft/s) Travel time = 1.22 min. Time of concentration= 6.22 min. Critical depth= 0.477(Ft.) 0.000 1.000 0.000 0.000 J 12. 54l(CFS) 4.088(Ft/s) Adding area flow to channel Decimal fraction soil group A Decimal fraction soil group B = Decimal fraction soil group c = Decimal fraction soil group D = [INDUSTRIAL area type Rainfall intensity= 6.406(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c = subarea runoff= 20.692(CFS) for 3.800(Ac.) Total runoff= 21.319(CFS) Total area= 3.90(Ac.) 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Page 29 _J c605Pl.OUT Process from Point/station 114.300 to Point/Station i,i,*i' PIPEFLOW TRAVEL TIME (User specified size) -/;,'d,i, Upstream point/station elevation= 391.lO(Ft.) Downstream point/station elevation= 374.92(Ft.) Pipe length = 48.00(Ft.) Manning's N = 0.011 No. of pipes= 1 Required pipe flow = 21.319(CFS) Given pipe size= 24.00(In.) calculated individual pipe flow = 21.319(CFS) Normal flow depth in pipe= 6.0l(In.) Flow top width inside pipe= 20.79(In.) critical Depth= 19.82(In.) Pipe flow velocity= 34.64(Ft/s) Travel time through pipe= 0.02 min. Time of concentration (TC)= 6.25 min. 114.000 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 114.300 to Point/Station 114.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 2 Stream flow area= 3.900(Ac.) Runoff from this stream 21.319(CFS) Time of concentration= 6.25 min. Rainfall intensity= 6.391(In/Hr) summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (min) (In/Hr) 1 138. 933 7.43 5. 713 2 21. 319 6.25 6. 391 Qmax(l) = 1.000 ;. 1.000 " 138.933) + 0.894 ·'· 1.000 ·'· 21. 319) + = 157.990 Qmax(2) 1. 000 ;. 0.840 ;. 138.933) + 1.000 .,. 1.000 ·'· 21. 319) + = 138 .081 Total of 2 streams to confluence: Flow rates before confluence point: 138.933 21.319 Maximum flow rates at confluence using above data: 157.990 138.081 Area of streams before confluence: 41.260 3.900 Results of confluence: Total flow rate= 157.990(CFS) Time of concentration 7.432 min. Effective stream area after confluence= 45.160(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 114.000 to Point/station 115.000 ''*** PIPEFLO!tJ TRAVEL TIME (User specified size) i,i,** upstream point/station elevation= 372.92(Ft.) Downstream point/station elevation= 354.27(Ft.) Pipe length = 329.68(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 157.990(CFS) Given pipe size= 48.00(In.) Page 30 c605Pl.OUT calculated individual pipe flow = 157.990(CFS) Normal flow depth in pipe= 22.92(In.) Flow top width inside pipe= 47.95(In.) critical Depth= 43.84(In.) Pipe flow velocity= 26.65(Ft/s) Travel time through pipe= 0.21 min. Time of concentration (TC)= 7.64 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 114.000 to Point/Station 115.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 1 stream flow area= 45.160(Ac.) Runoff from this stream= 157.990(CFS) Time of concentration 7.64 min. Rainfall intensity= 5.613(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 112.600 to Point/Station 115.350 **** INITIAL AREA EVALUATION**** Decimal fraction soil group A= 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group c 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type J Note: user entry of impervious value, Ap = 0.850 Initial subarea flow distance 100.00(Ft.) Highest elevation= 404.50(Ft.) Lowest elevation= 397.72(Ft.) Elevation difference= 6.78(Ft.) Time of concentration calculated by the urban areas overland flow method (App X-C) = 1.93 min. TC= [l.8*(1.l-C)*distanceA.5)/(% slopeA(l/3)] TC= [l.8*(1.1-0.8972)*(100.00A.5)/C 6.78A(l/3)]= 1.93 Setting time of concentration to 5 minutes Rainfall intensity (I)= 7.377 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0.897 subarea runoff= 0.33l(CFS) Total initial stream area= 0.050(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 115.350 to Point/Station 115.300 -H*-1, STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION .. -1.",. Top of street segment elevation= 397.720(Ft.) End of street segment elevation= 369.260(Ft.) Length of street segment = 500.000(Ft.) Height of curb above gutter flowline = 6.0(In.) width of half street (curb to crown) = 26.000(Ft.) Distance from crown to crossfall grade break = 24.500(Ft.) slope from gutter to grade break (v/hz) = 0.094 slope from grade break to crown (v/hz) = 0.020 Street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) slope from curb to property line (v/hz) = 0.020 Gutter width= 1.SOO(Ft.) Gutter hike from flowline = 1.330(In.) Manning's Nin gutter= 0.0150 Page 31 c605Pl.OUT Manning's N from gutter to grade break= 0.0150 Manning's N from grade break to crown= 0.0150 Estimated mean flow rate at midpoint of street= 0.480(CFS) Depth of flow= 0.142(Ft.), Average velocity= 3.125(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= 3.049(Ft.) Flow velocity= 3.12(Ft/s) Travel time= 2.67 min. TC= 7.67 min. Adding area flow to street Decimal fraction soil group A 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group c = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type J Note: user entry of impervious value, Ap = 0.700 Rainfall intensity 5.599(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c = 0.739 subarea runoff= 3.724(CFS) for 0.900(Ac.) Total runoff= 4.055(CFS) Total area= 0.95(Ac.) street flow at end of street= 4.055(CFS) Half street flow at end of street= 4.055(CFS) Depth of flow= 0.257(Ft.), Average velocity= 4.830(Ft/s) Flow width (from curb towards crown)= 8.826(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 115.300 to Point/Station 115.000 **** PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation= 357.61(Ft.) Downstream point/station elevation= 355.43(Ft.) Pipe length = 43.25(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow 4.055(CFS) Given pipe size= 24.00(In.) calculated individual pipe flow 4.055(CFS) Normal flow depth in pipe= 4.59(In.) Flow top width inside pipe= 18.87(In.) Critical Depth= 8.48(In.) Pipe flow velocity= 9.68(Ft/s) Travel time through pipe= 0.07 min. Time of concentration (TC)= 7.74 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 115.300 to Point/Station 115.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main Stream number: 1 in normal stream number 2 Stream flow area= 0.950(Ac.) Runoff from this stream 4.055(CFS) Time of concentration= 7.74 min. Rainfall intensity= 5.565(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 112.100 to Point/Station 115.250 **** INITIAL AREA EVALUATION "d'*"' Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type J Page 32 c605Pl.OUT Note: user entry of impervious value, Ap = 0.700 Initial subarea flow distance = 100.00(Ft.) Highest elevation= 405.90(Ft.) Lowest elevation= 399.35(Ft.) Elevation difference= 6.55(Ft.) Time of concentration calculated by the urban areas overland flow method (App x-c) = 3.47 min. TC= [1.8*(1.1-C)*distanceA.5)/(% slopeA(l/3)] TC= [l.8*(1.1-0.7389)*(100.00A.5)/( 6.55A(1/3)]= 3.47 setting time of concentration to 5 minutes Rainfall intensity (I)= 7.377 for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is c = 0.739 subarea runoff= 0.164(CFS) Total initial stream area= 0.030(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 115.250 to Point/Station 115.200 -1-,•,-1:1, STREET FLOW TRAVEL TIME + SUBAREA FLOW ADDITION _,. -··-·- Top of street segment elevation= 399.350(Ft.) End of street segment elevation= 369.700(Ft.) Length of street segment 540.000(Ft.) Height of curb above gutter flowline 6.0(In.) Width of half street (curb to crown) = 26.000(Ft.) Distance from crown to crossfall grade break = 24.SOO(Ft.) Slope from gutter to grade break (v/hz) = 0.094 slope from grade break to crown (v/hz) 0.020 street flow is on [1] side(s) of the street Distance from curb to property line = 10.000(Ft.) slope from curb to property line (v/hz) 0.020 Gutter width= 1.500(Ft.) Gutter hike from flowline = 1.330(In.) Manning's Nin gutter= 0.0150 Manning's N from gutter to grade break= 0.0150 Manning's N from grade break to crown= 0.0150 Estimated mean flow rate at midpoint of street= 0.223(CFS) Depth of flow= 0.104(Ft.), Average velocity= 3.071(Ft/s) Streetflow hydraulics at midpoint of street travel: Halfstreet flow width= l.SOO(Ft.) Flow velocity= 3.07(Ft/s) Travel time= 2.93 min. TC= 7.93 min. Adding area flow to street Decimal fraction soil group A= 0.000 Decimal fraction soil group B 0.000 Decimal fraction soil group c = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type J Note: user entry of impervious value, Ap = 0.700 Rainfall intensity 5.479(In/Hr) for a 100.0 year storm Runoff coefficient used for sub-area, Rational method,Q=KCIA, c = 0.739 Subarea runoff= 2.955(CFS) for 0.730(Ac.) Total runoff= 3.119(CFS) Total area= 0.76(Ac.) Street flow at end of street= 3.119(CFS) Half street flow at end of street= 3.119(CFS) Depth of flow= 0.240(Ft.), Average velocity= 4.478(Ft/s) Flow width (from curb towards crown)= 7.974(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 115.200 to Point/Station 115.000 **** PIPEFLOW TRAVEL TIME (user specified size) -id-id Page 33 c605Pl.OUT Upstream point/station elevation= 356.77(Ft.) Downstream point/station elevation= 356.24(Ft.) Pipe length = 5.25(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 3.119(CFS) Given pipe size= 18.00(In.) calculated individual pipe flow = 3.119(CFS) Normal flow depth in pipe= 3.72(In.) Flow top width inside pipe= 14.57(In.) Critical Depth= 8.06(In.) Pipe flow velocity= 11.84(Ft/s) Travel time through pipe= 0.01 min. Time of concentration (TC)= 7.94 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 115.200 to Point/Station 115.000 **** CONFLUENCE OF MINOR STREAMS**** Along Main stream number: 1 in normal stream number 3 Stream flow area= 0.760(Ac.) Runoff from this stream 3.119(CFS) Time of concentration= 7.94 min. Rainfall intensity= 5.476(In/Hr) Summary of stream data: Stream No. Flow rate (CFS) TC (min) Rainfall Intensity (In/Hr) 1 157.990 7.64 5. 613 2 4.055 7.74 5.565 3 3 .119 7.94 5.476 Qrnax (1) = 1.000 -,',r 1.000 -·-157. 990) + 1.000 -.•: 0.987 ,_ 4.055) + 1. 000 ;'.r 0. 962 -·-3 .119) + = 164.992 Qmax(2) = 0.991 ~ 1.000 ,_ 157.990) + 1.000 ,_ 1.000 ,. 4.055) + 1.000 ;': 0.975 -·-3.119) + = 163. 726 Qmax(3) 0.976 * 1.000 -·-157.990) + 0.984 J. 1.000 ,_ 4.055) + 1.000 -·· 1.000 -·-3 .119) + = 161. 231 Total of 3 streams to confluence: Flow rates before confluence point: 157.990 4.055 3.119 Maximum flow rates at confluence using above data: 164.992 163.726 161.231 Area of streams before confluence: 45.160 0.950 0.760 Results of confluence: Total flow rate= 164.992(CFS) Time of concentration= 7.638 min. Effective stream area after confluence= 46.870(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 115.000 to Point/Station 116.000 **** PIPEFLOW TRAVEL TIME (User specified size)**** Upstream point/station elevation= 354.27(Ft.) Page 34 ' __ _) : __ ) c605Pl.OUT Downstream point/station elevation= 352.00(Ft.) Pipe length = 40.47(Ft.) Manning's N = 0.013 No. of pipes= 1 Required pipe flow = 164.992(CFS) Given pipe size= 48.00(In.) calculated individual pipe flow 164.992(CFS) Normal flow depth in pipe= 23.58(In.) Flow top width inside pipe= 47.99(In.) Critical Depth= 44.36(In.) Pipe flow velocity= 26.87(Ft/s) Travel time through pipe= 0.03 min. Time of concentration (TC)= 7.66 min. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 115.000 to Point/Station 116.000 **** CONFLUENCE OF MAIN STREAMS**** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area= 46.870(Ac.) Runoff from this stream= 164.992(CFS) Time of concentration= 7.66 min. Rainfall intensity= 5.60l(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/station 2401.000 to Point/Station 2402.000 **** INITIAL AREA EVALUATION**** Decimal fraction soil Decimal fraction soil Decimal fraction soil Decimal fraction soil group A group B group c group D 0.000 1.000 0.000 0.000 [INDUSTRIAL area type J Initial subarea flow distance = 100.00(Ft.) Highest elevation= 398.00(Ft.) Lowest elevation= 397.00(Ft.) Elevation difference= l.OO(Ft.) Time of concentration calculated by the urban areas overland flow method (App x-c) = 4.50 min. TC= [l.8*(1.l-C)*distanceA.5)/(% slopeA(l/3)] TC= [l.8*(1.1-0.8500)*(100.00A.5)/( l.OOA(l/3)]= setting time of concentration to 5 minutes Rainfall intensity (I)= 7.377 for a 100.0 year Effective runoff coefficient used for area (Q=KCIA) subarea runoff= 0.627(CFS) Total initial stream area= 0. lOO(Ac.) 4. 50 storm is C = 0.850 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 2402.000 to Point/Station 2403.000 icidn': IMPROVED CHANNEL TRAVEL TIME .,,*** Upstream point elevation= 397.00(Ft.) Downstream point elevation= 390.00(Ft.) channel length thru subarea = 330.00(Ft.) channel base width = O.OOO(Ft.) slope or 'z' of left channel bank= 20.000 slope or 'z' of right channel bank= 20.000 Estimated mean flow rate at midpoint of channel= Manning's 'N' = 0. 015 Maximum depth of channel = 1.000(Ft.) Page 35 3.449(CFS) NOTE!! ELECTRONIC DA TA flLES AR£ FOR REFERENCE ONLY ANO AR£ NOT TO 8£ USED FOR HORIZONTAL OR 1£/?TICAL SURVEY CONTROL ©2016 O'Day Consultants, Inc. INSPECTOR SEE SHEET No. 4 -BUILT" R. /31/08 DATE DATE BENCHMARK: DESCRIPTION: 2" ALUMINUM DISC STAMPED GPS CONTROL PT. 2002 LOCATION: IN SIDEWALK NORTH SIDE OF PALOMAR AIRPORT ROAD, JOO FEET M"ST OF MELROSE DRIVE RECORD FROM: R.O.S. NO. 17271 (PT. NO. 71} ELEVATION: 444.00 MS.L. DATUM: NGVD 1929 ' ··~ \ I ' I I -J I l I , ' .,I li 11 o' 200' ---100 SCALE: 1 • = 100' NOTE: All O's ARE CFS FOR 1OO-YR STORM 1---1---l--------------+--l----+--+---I I SH2EET I CITY OF CARLSBAD I SHEETS I ENGINEERING DEPARTMENT '.:===-=====::::::::::::::::::::::::::::::::::::::::=:'..==~ GRADING ANO EROSION CONTROL PLANS FOR: CARLSBAD OAKS NORTH ORJ!mrfr 3sruor CT 97-13 APPROVED: DA YID A. HAUSER DEPUTY CITY ENGINEER PE 33081 EXPIRES 6 30 10 DATE DATE INITIAL ENGINEER Of' WORK REVISION DESCRIPTION DATE INITIAL DATE INITIAL OTHER APPROVAL CITY APPROVAL OWN BY: __ _ CHKD BY; __ _ RVWD BY: PROJECT NO. C. T. 97-13 DRAWING NO. 415-9X I: \967005\_Phose3\Stormwater\Hydrology\9605C2hyd2.dwg Aug 26, 2016 12. 22;:,m Xrefs: 9605TP05: 9605TP06; 9605TP04; 9605PLArl; !l6051P01: Q605TP02; 9605CG; %05CH'r1l; S605C2GRD-Lol23; !l605C2UTl • ~ ~ ~ Cij ~ Cij NOT£!! ~-··-----------~ ! ·----.' ! £l£ClRONIC DATA RLES AR£ FOR REFERENCE ONLY ANO AR£ NOT TO 8£ USED FOR HORIZONTAL OR IERTICAL SUR'-f:Y CONTROL ©2008 O'Day Consultants, Inc. SEE SHEET No. 4 ofESS/ '-' "' "' -• -z. ~ 8 ....-NO. 5538f ...., * EXP. 10/31/08 * <lq)l . C/VI\. ~~'< <or CALI~ BENCHMARK: DESCRIPTION: 2" ALUMINUM DISC STAMPED GPS CONTROL PT. 2002 . LOCATION: IN SIDEWAL!( NORTH SIOE OF PALOMAR AIRPORT ROAD, 300 FEET M"ST OF MELROSE DRIVE RECORD FROM: R.O.S. NO. 71217 (PT. NO. 17) ELEVATION: 444.00 M.S.L DATUM: NGVD 1929 O' 200' ----100 .SCAt:£: 1 • = 100' NOT£· ALL O's AR£ CFS FOR 100-YR STORM t-----+--+-------~---+---+------+--+---I I SHJEET I CITY OF CARl.SBAD I SHEETS I ;::::=:::==:=-===·=EN:::G:::IN:::E::E:::R:::IN::G=D=:E::::P::::A:::RT::::M::E::N::T==:..'::::==~ GRADING ANO EROSION CONTHCX. PLANS FOH: CAHLSBAO OAKS NORTH DRA1Nf~Y fruor CT 97-IJ APPROVED BY: DAVID A. HAUSER PE 33081 EXP: 06 30 08 OEPU1Y Cl1Y ENGINEER DATE DATE INITIAL ENGINEER OF . WORK REVISION DESCRIPTION DATE INITIAL DATE INITIAL OTHER APPROVAL CITY APPROVAL OWN BY : CHKD BY: __ _ RVWD BY: PROJECT NO. C. T. 97-13 DRAWING NO. 415-9X l:\961005\9605Ch~.dwg Moy 20, 2008 2:11pm Xrefs:. 9505AG; 96051?05; 96051P04; 9605plon; 9605j::H'ffi; 9605CHR; 9605TP01; 96051?02; 9605TPOJ; 9605TP06; 9605CG 3.2 Proposed Undetained Condition Hydrologic Model Output (100-Year Event) ____________________________________________________________________________ **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: ---------------------------------------------------------------------------- FILE NAME: 3925P100.DAT TIME/DATE OF STUDY: 11:11 03/29/2023 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) === ===== ========= ================= ====== ===== ====== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 2 14.0 9.0 0.020/0.020/0.020 0.50 1.50 0.0100 0.125 0.0180 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.50 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 89.00 UPSTREAM ELEVATION(FEET) = 467.00 DOWNSTREAM ELEVATION(FEET) = 439.30 ELEVATION DIFFERENCE(FEET) = 27.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.912 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.622 SUBAREA RUNOFF(CFS) = 0.14 TOTAL AREA(ACRES) = 0.06 TOTAL RUNOFF(CFS) = 0.14 **************************************************************************** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 439.30 DOWNSTREAM(FEET) = 437.66 FLOW LENGTH(FEET) = 155.00 MANNING'S N = 0.018 DEPTH OF FLOW IN 24.0 INCH PIPE IS 1.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 1.55 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.14 PIPE TRAVEL TIME(MIN.) = 1.67 Tc(MIN.) = 7.58 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 244.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.641 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.3500 SUBAREA AREA(ACRES) = 0.28 SUBAREA RUNOFF(CFS) = 0.55 TOTAL AREA(ACRES) = 0.3 TOTAL RUNOFF(CFS) = 0.67 TC(MIN.) = 7.58 **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 433.66 DOWNSTREAM(FEET) = 432.17 FLOW LENGTH(FEET) = 41.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 6.0 INCH PIPE IS 3.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.52 ESTIMATED PIPE DIAMETER(INCH) = 6.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.67 PIPE TRAVEL TIME(MIN.) = 0.12 Tc(MIN.) = 7.70 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 103.00 = 285.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 432.00 DOWNSTREAM(FEET) = 428.97 FLOW LENGTH(FEET) = 77.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 6.0 INCH PIPE IS 3.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.72 ESTIMATED PIPE DIAMETER(INCH) = 6.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.67 PIPE TRAVEL TIME(MIN.) = 0.22 Tc(MIN.) = 7.93 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 104.00 = 362.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.480 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4547 SUBAREA AREA(ACRES) = 0.09 SUBAREA RUNOFF(CFS) = 0.42 TOTAL AREA(ACRES) = 0.4 TOTAL RUNOFF(CFS) = 1.07 TC(MIN.) = 7.93 **************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.480 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4804 SUBAREA AREA(ACRES) = 0.03 SUBAREA RUNOFF(CFS) = 0.14 TOTAL AREA(ACRES) = 0.5 TOTAL RUNOFF(CFS) = 1.21 TC(MIN.) = 7.93 **************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 428.80 DOWNSTREAM(FEET) = 426.04 FLOW LENGTH(FEET) = 66.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 3.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.78 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.21 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) = 8.09 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 105.00 = 428.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.409 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.5569 SUBAREA AREA(ACRES) = 0.12 SUBAREA RUNOFF(CFS) = 0.55 TOTAL AREA(ACRES) = 0.6 TOTAL RUNOFF(CFS) = 1.75 TC(MIN.) = 8.09 **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 425.87 DOWNSTREAM(FEET) = 425.29 FLOW LENGTH(FEET) = 39.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.94 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.75 PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 8.22 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 106.00 = 467.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.353 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6691 SUBAREA AREA(ACRES) = 0.36 SUBAREA RUNOFF(CFS) = 1.64 TOTAL AREA(ACRES) = 0.9 TOTAL RUNOFF(CFS) = 3.37 TC(MIN.) = 8.22 **************************************************************************** FLOW PROCESS FROM NODE 106.10 TO NODE 106.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.353 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6042 SUBAREA AREA(ACRES) = 0.24 SUBAREA RUNOFF(CFS) = 0.45 TOTAL AREA(ACRES) = 1.2 TOTAL RUNOFF(CFS) = 3.82 TC(MIN.) = 8.22 **************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 107.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 425.12 DOWNSTREAM(FEET) = 424.83 FLOW LENGTH(FEET) = 29.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.28 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.82 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 8.31 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 107.00 = 496.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 107.00 TO NODE 108.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.315 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.5773 SUBAREA AREA(ACRES) = 0.14 SUBAREA RUNOFF(CFS) = 0.26 TOTAL AREA(ACRES) = 1.3 TOTAL RUNOFF(CFS) = 4.05 TC(MIN.) = 8.31 **************************************************************************** FLOW PROCESS FROM NODE 107.10 TO NODE 108.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.315 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6222 SUBAREA AREA(ACRES) = 0.26 SUBAREA RUNOFF(CFS) = 1.17 TOTAL AREA(ACRES) = 1.6 TOTAL RUNOFF(CFS) = 5.22 TC(MIN.) = 8.31 **************************************************************************** FLOW PROCESS FROM NODE 107.20 TO NODE 108.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.315 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6522 SUBAREA AREA(ACRES) = 0.24 SUBAREA RUNOFF(CFS) = 1.08 TOTAL AREA(ACRES) = 1.8 TOTAL RUNOFF(CFS) = 6.31 TC(MIN.) = 8.31 **************************************************************************** FLOW PROCESS FROM NODE 108.00 TO NODE 502.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 421.00 DOWNSTREAM(FEET) = 417.00 FLOW LENGTH(FEET) = 22.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 17.29 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 6.31 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) = 8.33 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 502.00 = 518.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 502.00 TO NODE 502.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.33 RAINFALL INTENSITY(INCH/HR) = 5.31 TOTAL STREAM AREA(ACRES) = 1.82 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.31 **************************************************************************** FLOW PROCESS FROM NODE 500.00 TO NODE 501.00 IS CODE = 22 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 SUBAREA RUNOFF(CFS) = 0.44 TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF(CFS) = 0.44 **************************************************************************** FLOW PROCESS FROM NODE 501.00 TO NODE 502.00 IS CODE = 62 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STREET TABLE SECTION # 2 USED)<<<<< ============================================================================ UPSTREAM ELEVATION(FEET) = 429.33 DOWNSTREAM ELEVATION(FEET) = 421.22 STREET LENGTH(FEET) = 97.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 14.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0180 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.82 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.18 HALFSTREET FLOOD WIDTH(FEET) = 3.82 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.55 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.64 STREET FLOW TRAVEL TIME(MIN.) = 0.46 Tc(MIN.) = 5.46 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.973 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.850 SUBAREA AREA(ACRES) = 0.13 SUBAREA RUNOFF(CFS) = 0.77 TOTAL AREA(ACRES) = 0.2 PEAK FLOW RATE(CFS) = 1.19 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.20 HALFSTREET FLOOD WIDTH(FEET) = 4.75 FLOW VELOCITY(FEET/SEC.) = 3.80 DEPTH*VELOCITY(FT*FT/SEC.) = 0.76 LONGEST FLOWPATH FROM NODE 500.00 TO NODE 502.00 = 1897.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 502.00 TO NODE 502.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.973 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.05 SUBAREA RUNOFF(CFS) = 0.30 TOTAL AREA(ACRES) = 0.2 TOTAL RUNOFF(CFS) = 1.48 TC(MIN.) = 5.46 **************************************************************************** FLOW PROCESS FROM NODE 502.10 TO NODE 502.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.973 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6972 SUBAREA AREA(ACRES) = 0.11 SUBAREA RUNOFF(CFS) = 0.27 TOTAL AREA(ACRES) = 0.4 TOTAL RUNOFF(CFS) = 1.75 TC(MIN.) = 5.46 **************************************************************************** FLOW PROCESS FROM NODE 502.00 TO NODE 502.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.46 RAINFALL INTENSITY(INCH/HR) = 6.97 TOTAL STREAM AREA(ACRES) = 0.36 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.75 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 6.31 8.33 5.306 1.82 2 1.75 5.46 6.973 0.36 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 5.88 5.46 6.973 2 7.64 8.33 5.306 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 7.64 Tc(MIN.) = 8.33 TOTAL AREA(ACRES) = 2.2 LONGEST FLOWPATH FROM NODE 500.00 TO NODE 502.00 = 1897.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 502.00 TO NODE 503.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 414.21 DOWNSTREAM(FEET) = 410.17 FLOW LENGTH(FEET) = 21.90 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 18.31 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 7.64 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) = 8.35 LONGEST FLOWPATH FROM NODE 500.00 TO NODE 503.00 = 1918.90 FEET. **************************************************************************** FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 22 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 SUBAREA RUNOFF(CFS) = 0.50 TOTAL AREA(ACRES) = 0.08 TOTAL RUNOFF(CFS) = 0.50 **************************************************************************** FLOW PROCESS FROM NODE 201.00 TO NODE 201.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.08 SUBAREA RUNOFF(CFS) = 0.50 TOTAL AREA(ACRES) = 0.2 TOTAL RUNOFF(CFS) = 1.00 TC(MIN.) = 5.00 **************************************************************************** FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 431.35 DOWNSTREAM(FEET) = 430.75 FLOW LENGTH(FEET) = 67.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 5.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.62 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.00 PIPE TRAVEL TIME(MIN.) = 0.31 Tc(MIN.) = 5.31 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 202.00 = 156.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.00 TO NODE 202.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.098 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.12 SUBAREA RUNOFF(CFS) = 0.72 TOTAL AREA(ACRES) = 0.3 TOTAL RUNOFF(CFS) = 1.69 TC(MIN.) = 5.31 **************************************************************************** FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 430.75 DOWNSTREAM(FEET) = 430.14 FLOW LENGTH(FEET) = 68.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.14 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.69 PIPE TRAVEL TIME(MIN.) = 0.27 Tc(MIN.) = 5.58 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 203.00 = 224.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 203.00 TO NODE 203.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.871 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.14 SUBAREA RUNOFF(CFS) = 0.82 TOTAL AREA(ACRES) = 0.4 TOTAL RUNOFF(CFS) = 2.45 TC(MIN.) = 5.58 **************************************************************************** FLOW PROCESS FROM NODE 203.00 TO NODE 203.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.871 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.19 SUBAREA RUNOFF(CFS) = 1.11 TOTAL AREA(ACRES) = 0.6 TOTAL RUNOFF(CFS) = 3.56 TC(MIN.) = 5.58 **************************************************************************** FLOW PROCESS FROM NODE 203.00 TO NODE 203.10 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 429.97 DOWNSTREAM(FEET) = 429.35 FLOW LENGTH(FEET) = 69.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.99 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.56 PIPE TRAVEL TIME(MIN.) = 0.23 Tc(MIN.) = 5.81 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 203.10 = 293.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 203.10 TO NODE 203.10 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.694 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.07 SUBAREA RUNOFF(CFS) = 0.40 TOTAL AREA(ACRES) = 0.7 TOTAL RUNOFF(CFS) = 3.87 TC(MIN.) = 5.81 **************************************************************************** FLOW PROCESS FROM NODE 203.10 TO NODE 203.20 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 429.35 DOWNSTREAM(FEET) = 429.31 FLOW LENGTH(FEET) = 4.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.28 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.87 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 5.83 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 203.20 = 297.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 203.30 TO NODE 203.20 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.685 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7646 SUBAREA AREA(ACRES) = 0.14 SUBAREA RUNOFF(CFS) = 0.33 TOTAL AREA(ACRES) = 0.8 TOTAL RUNOFF(CFS) = 4.19 TC(MIN.) = 5.83 **************************************************************************** FLOW PROCESS FROM NODE 203.20 TO NODE 204.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 429.31 DOWNSTREAM(FEET) = 428.91 FLOW LENGTH(FEET) = 44.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.18 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.19 PIPE TRAVEL TIME(MIN.) = 0.14 Tc(MIN.) = 5.97 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 204.00 = 341.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 204.00 TO NODE 205.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 428.58 DOWNSTREAM(FEET) = 428.33 FLOW LENGTH(FEET) = 19.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.00 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.19 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 6.02 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 205.00 = 360.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 205.00 TO NODE 206.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.545 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7364 SUBAREA AREA(ACRES) = 0.06 SUBAREA RUNOFF(CFS) = 0.14 TOTAL AREA(ACRES) = 0.9 TOTAL RUNOFF(CFS) = 4.24 TC(MIN.) = 6.02 **************************************************************************** FLOW PROCESS FROM NODE 205.10 TO NODE 206.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.545 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7713 SUBAREA AREA(ACRES) = 0.39 SUBAREA RUNOFF(CFS) = 2.17 TOTAL AREA(ACRES) = 1.3 TOTAL RUNOFF(CFS) = 6.41 TC(MIN.) = 6.02 **************************************************************************** FLOW PROCESS FROM NODE 205.20 TO NODE 206.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.545 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7796 SUBAREA AREA(ACRES) = 0.15 SUBAREA RUNOFF(CFS) = 0.83 TOTAL AREA(ACRES) = 1.4 TOTAL RUNOFF(CFS) = 7.25 TC(MIN.) = 6.02 **************************************************************************** FLOW PROCESS FROM NODE 205.30 TO NODE 206.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.545 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7846 SUBAREA AREA(ACRES) = 0.11 SUBAREA RUNOFF(CFS) = 0.61 TOTAL AREA(ACRES) = 1.5 TOTAL RUNOFF(CFS) = 7.86 TC(MIN.) = 6.02 **************************************************************************** FLOW PROCESS FROM NODE 205.30 TO NODE 206.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.545 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7879 SUBAREA AREA(ACRES) = 0.08 SUBAREA RUNOFF(CFS) = 0.45 TOTAL AREA(ACRES) = 1.6 TOTAL RUNOFF(CFS) = 8.30 TC(MIN.) = 6.02 **************************************************************************** FLOW PROCESS FROM NODE 205.40 TO NODE 206.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.545 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7890 SUBAREA AREA(ACRES) = 0.03 SUBAREA RUNOFF(CFS) = 0.17 TOTAL AREA(ACRES) = 1.6 TOTAL RUNOFF(CFS) = 8.47 TC(MIN.) = 6.02 **************************************************************************** FLOW PROCESS FROM NODE 206.00 TO NODE 207.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 424.50 DOWNSTREAM(FEET) = 422.66 FLOW LENGTH(FEET) = 184.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.35 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 8.47 PIPE TRAVEL TIME(MIN.) = 0.48 Tc(MIN.) = 6.50 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 207.00 = 544.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 207.00 TO NODE 207.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 6.50 RAINFALL INTENSITY(INCH/HR) = 6.23 TOTAL STREAM AREA(ACRES) = 1.64 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.47 **************************************************************************** FLOW PROCESS FROM NODE 700.00 TO NODE 701.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 92.00 UPSTREAM ELEVATION(FEET) = 469.00 DOWNSTREAM ELEVATION(FEET) = 439.40 ELEVATION DIFFERENCE(FEET) = 29.60 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.011 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.551 SUBAREA RUNOFF(CFS) = 0.11 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.11 **************************************************************************** FLOW PROCESS FROM NODE 701.00 TO NODE 702.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 439.40 DOWNSTREAM(FEET) = 430.50 FLOW LENGTH(FEET) = 176.00 MANNING'S N = 0.018 DEPTH OF FLOW IN 24.0 INCH PIPE IS 1.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 2.48 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.11 PIPE TRAVEL TIME(MIN.) = 1.18 Tc(MIN.) = 7.19 LONGEST FLOWPATH FROM NODE 700.00 TO NODE 702.00 = 268.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 702.00 TO NODE 702.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.834 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.3500 SUBAREA AREA(ACRES) = 0.16 SUBAREA RUNOFF(CFS) = 0.33 TOTAL AREA(ACRES) = 0.2 TOTAL RUNOFF(CFS) = 0.43 TC(MIN.) = 7.19 **************************************************************************** FLOW PROCESS FROM NODE 702.00 TO NODE 207.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 426.50 DOWNSTREAM(FEET) = 422.66 FLOW LENGTH(FEET) = 23.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 6.0 INCH PIPE IS 1.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.67 ESTIMATED PIPE DIAMETER(INCH) = 6.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.43 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 7.24 LONGEST FLOWPATH FROM NODE 700.00 TO NODE 207.00 = 291.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 702.00 TO NODE 207.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 7.24 RAINFALL INTENSITY(INCH/HR) = 5.81 TOTAL STREAM AREA(ACRES) = 0.21 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.43 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 8.47 6.50 6.227 1.64 2 0.43 7.24 5.811 0.21 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 8.85 6.50 6.227 2 8.33 7.24 5.811 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 8.85 Tc(MIN.) = 6.50 TOTAL AREA(ACRES) = 1.9 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 207.00 = 544.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 207.00 TO NODE 208.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 422.33 DOWNSTREAM(FEET) = 409.01 FLOW LENGTH(FEET) = 243.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.30 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 8.85 PIPE TRAVEL TIME(MIN.) = 0.33 Tc(MIN.) = 6.83 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 208.00 = 787.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 208.00 TO NODE 208.10 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 408.68 DOWNSTREAM(FEET) = 408.05 FLOW LENGTH(FEET) = 63.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.37 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 8.85 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) = 7.00 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 208.10 = 850.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 208.10 TO NODE 208.10 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.940 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7404 SUBAREA AREA(ACRES) = 0.02 SUBAREA RUNOFF(CFS) = 0.10 TOTAL AREA(ACRES) = 1.9 TOTAL RUNOFF(CFS) = 8.85 TC(MIN.) = 7.00 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE **************************************************************************** FLOW PROCESS FROM NODE 208.10 TO NODE 209.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 408.05 DOWNSTREAM(FEET) = 407.44 FLOW LENGTH(FEET) = 61.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.39 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 8.85 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) = 7.16 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 209.00 = 911.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 209.00 TO NODE 209.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.16 RAINFALL INTENSITY(INCH/HR) = 5.85 TOTAL STREAM AREA(ACRES) = 1.87 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.85 **************************************************************************** FLOW PROCESS FROM NODE 300.00 TO NODE 301.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 80.00 UPSTREAM ELEVATION(FEET) = 435.00 DOWNSTREAM ELEVATION(FEET) = 434.20 ELEVATION DIFFERENCE(FEET) = 0.80 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.628 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 65.00 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.63 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.63 **************************************************************************** FLOW PROCESS FROM NODE 300.00 TO NODE 301.00 IS CODE = 22 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 SUBAREA RUNOFF(CFS) = 0.63 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.63 **************************************************************************** FLOW PROCESS FROM NODE 301.00 TO NODE 302.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 416.50 DOWNSTREAM(FEET) = 416.17 FLOW LENGTH(FEET) = 8.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 6.0 INCH PIPE IS 3.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.72 ESTIMATED PIPE DIAMETER(INCH) = 6.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.63 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) = 5.02 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 302.00 = 88.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 302.00 TO NODE 302.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.355 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.05 SUBAREA RUNOFF(CFS) = 0.31 TOTAL AREA(ACRES) = 0.2 TOTAL RUNOFF(CFS) = 0.94 TC(MIN.) = 5.02 **************************************************************************** FLOW PROCESS FROM NODE 302.00 TO NODE 302.10 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 416.00 DOWNSTREAM(FEET) = 415.88 FLOW LENGTH(FEET) = 16.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 5.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.31 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.94 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 5.10 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 302.10 = 104.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 302.10 TO NODE 302.10 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.280 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.07 SUBAREA RUNOFF(CFS) = 0.43 TOTAL AREA(ACRES) = 0.2 TOTAL RUNOFF(CFS) = 1.36 TC(MIN.) = 5.10 **************************************************************************** FLOW PROCESS FROM NODE 302.10 TO NODE 303.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 415.88 DOWNSTREAM(FEET) = 415.67 FLOW LENGTH(FEET) = 31.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 5.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.53 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.36 PIPE TRAVEL TIME(MIN.) = 0.15 Tc(MIN.) = 5.25 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 303.00 = 135.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 303.00 TO NODE 304.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.149 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6556 SUBAREA AREA(ACRES) = 0.14 SUBAREA RUNOFF(CFS) = 0.35 TOTAL AREA(ACRES) = 0.4 TOTAL RUNOFF(CFS) = 1.69 TC(MIN.) = 5.25 **************************************************************************** FLOW PROCESS FROM NODE 303.10 TO NODE 304.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.149 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7071 SUBAREA AREA(ACRES) = 0.13 SUBAREA RUNOFF(CFS) = 0.79 TOTAL AREA(ACRES) = 0.5 TOTAL RUNOFF(CFS) = 2.48 TC(MIN.) = 5.25 **************************************************************************** FLOW PROCESS FROM NODE 303.20 TO NODE 304.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.149 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7314 SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) = 0.61 TOTAL AREA(ACRES) = 0.6 TOTAL RUNOFF(CFS) = 3.08 TC(MIN.) = 5.25 **************************************************************************** FLOW PROCESS FROM NODE 303.30 TO NODE 304.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.149 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7528 SUBAREA AREA(ACRES) = 0.13 SUBAREA RUNOFF(CFS) = 0.79 TOTAL AREA(ACRES) = 0.7 TOTAL RUNOFF(CFS) = 3.87 TC(MIN.) = 5.25 **************************************************************************** FLOW PROCESS FROM NODE 303.40 TO NODE 304.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.149 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7636 SUBAREA AREA(ACRES) = 0.09 SUBAREA RUNOFF(CFS) = 0.55 TOTAL AREA(ACRES) = 0.8 TOTAL RUNOFF(CFS) = 4.42 TC(MIN.) = 5.25 **************************************************************************** FLOW PROCESS FROM NODE 304.00 TO NODE 209.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 411.83 DOWNSTREAM(FEET) = 407.44 FLOW LENGTH(FEET) = 54.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 7.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.59 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.42 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 5.33 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 209.00 = 189.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 209.00 TO NODE 209.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.33 RAINFALL INTENSITY(INCH/HR) = 7.08 TOTAL STREAM AREA(ACRES) = 0.81 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.42 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 8.85 7.16 5.854 1.87 2 4.42 5.33 7.081 0.81 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 11.74 5.33 7.081 2 12.51 7.16 5.854 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 12.51 Tc(MIN.) = 7.16 TOTAL AREA(ACRES) = 2.7 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 209.00 = 911.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 209.00 TO NODE 210.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 407.11 DOWNSTREAM(FEET) = 403.42 FLOW LENGTH(FEET) = 184.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 13.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.04 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 12.51 PIPE TRAVEL TIME(MIN.) = 0.34 Tc(MIN.) = 7.49 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 210.00 = 1095.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 210.00 TO NODE 411.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 403.09 DOWNSTREAM(FEET) = 395.35 FLOW LENGTH(FEET) = 77.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 16.86 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 12.51 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 7.57 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 411.00 = 1172.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 411.00 TO NODE 411.00 IS CODE = 10 ---------------------------------------------------------------------------- >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 400.00 TO NODE 401.00 IS CODE = 22 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 SUBAREA RUNOFF(CFS) = 0.25 TOTAL AREA(ACRES) = 0.04 TOTAL RUNOFF(CFS) = 0.25 **************************************************************************** FLOW PROCESS FROM NODE 401.00 TO NODE 402.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 426.44 DOWNSTREAM(FEET) = 423.00 FLOW LENGTH(FEET) = 65.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 6.0 INCH PIPE IS 1.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.98 ESTIMATED PIPE DIAMETER(INCH) = 6.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.25 PIPE TRAVEL TIME(MIN.) = 0.22 Tc(MIN.) = 5.22 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 402.00 = 137.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 402.10 TO NODE 402.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.177 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.08 SUBAREA RUNOFF(CFS) = 0.49 TOTAL AREA(ACRES) = 0.1 TOTAL RUNOFF(CFS) = 0.73 TC(MIN.) = 5.22 **************************************************************************** FLOW PROCESS FROM NODE 402.00 TO NODE 403.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 422.83 DOWNSTREAM(FEET) = 422.08 FLOW LENGTH(FEET) = 16.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 6.0 INCH PIPE IS 3.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.24 ESTIMATED PIPE DIAMETER(INCH) = 6.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.73 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 5.26 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 403.00 = 153.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 403.10 TO NODE 403.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.140 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.02 SUBAREA RUNOFF(CFS) = 0.12 TOTAL AREA(ACRES) = 0.1 TOTAL RUNOFF(CFS) = 0.85 TC(MIN.) = 5.26 **************************************************************************** FLOW PROCESS FROM NODE 403.00 TO NODE 403.20 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 422.08 DOWNSTREAM(FEET) = 419.65 FLOW LENGTH(FEET) = 53.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 6.0 INCH PIPE IS 3.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.39 ESTIMATED PIPE DIAMETER(INCH) = 6.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.85 PIPE TRAVEL TIME(MIN.) = 0.14 Tc(MIN.) = 5.40 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 403.20 = 206.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 403.30 TO NODE 403.20 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.021 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) = 0.60 TOTAL AREA(ACRES) = 0.2 TOTAL RUNOFF(CFS) = 1.43 TC(MIN.) = 5.40 **************************************************************************** FLOW PROCESS FROM NODE 403.20 TO NODE 404.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 419.65 DOWNSTREAM(FEET) = 416.51 FLOW LENGTH(FEET) = 69.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 4.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.27 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.43 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) = 5.56 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 404.00 = 275.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 404.10 TO NODE 404.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.891 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.08 SUBAREA RUNOFF(CFS) = 0.47 TOTAL AREA(ACRES) = 0.3 TOTAL RUNOFF(CFS) = 1.87 TC(MIN.) = 5.56 **************************************************************************** FLOW PROCESS FROM NODE 404.00 TO NODE 405.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 416.51 DOWNSTREAM(FEET) = 412.17 FLOW LENGTH(FEET) = 95.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 4.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.83 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.87 PIPE TRAVEL TIME(MIN.) = 0.20 Tc(MIN.) = 5.76 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 405.00 = 370.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 405.00 TO NODE 406.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 412.00 DOWNSTREAM(FEET) = 411.00 FLOW LENGTH(FEET) = 79.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 5.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.83 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.87 PIPE TRAVEL TIME(MIN.) = 0.27 Tc(MIN.) = 6.03 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 406.00 = 449.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 406.10 TO NODE 406.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.537 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.35 SUBAREA RUNOFF(CFS) = 1.94 TOTAL AREA(ACRES) = 0.7 TOTAL RUNOFF(CFS) = 3.72 TC(MIN.) = 6.03 **************************************************************************** FLOW PROCESS FROM NODE 406.20 TO NODE 406.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.537 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.01 SUBAREA RUNOFF(CFS) = 0.06 TOTAL AREA(ACRES) = 0.7 TOTAL RUNOFF(CFS) = 3.78 TC(MIN.) = 6.03 **************************************************************************** FLOW PROCESS FROM NODE 406.00 TO NODE 407.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 410.75 DOWNSTREAM(FEET) = 410.07 FLOW LENGTH(FEET) = 68.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.26 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.78 PIPE TRAVEL TIME(MIN.) = 0.22 Tc(MIN.) = 6.25 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 407.00 = 517.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 407.10 TO NODE 407.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.390 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.31 SUBAREA RUNOFF(CFS) = 1.68 TOTAL AREA(ACRES) = 1.0 TOTAL RUNOFF(CFS) = 5.38 TC(MIN.) = 6.25 **************************************************************************** FLOW PROCESS FROM NODE 407.00 TO NODE 408.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 410.07 DOWNSTREAM(FEET) = 409.48 FLOW LENGTH(FEET) = 59.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 10.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.65 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.38 PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN.) = 6.42 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 408.00 = 576.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 408.10 TO NODE 408.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.278 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.15 SUBAREA RUNOFF(CFS) = 0.80 TOTAL AREA(ACRES) = 1.1 TOTAL RUNOFF(CFS) = 6.08 TC(MIN.) = 6.42 **************************************************************************** FLOW PROCESS FROM NODE 408.00 TO NODE 409.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 409.23 DOWNSTREAM(FEET) = 408.83 FLOW LENGTH(FEET) = 25.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 10.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.01 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 6.08 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 6.48 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 409.00 = 601.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 409.00 TO NODE 410.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.241 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8060 SUBAREA AREA(ACRES) = 0.11 SUBAREA RUNOFF(CFS) = 0.24 TOTAL AREA(ACRES) = 1.2 TOTAL RUNOFF(CFS) = 6.29 TC(MIN.) = 6.48 **************************************************************************** FLOW PROCESS FROM NODE 409.10 TO NODE 410.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.241 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8101 SUBAREA AREA(ACRES) = 0.13 SUBAREA RUNOFF(CFS) = 0.69 TOTAL AREA(ACRES) = 1.4 TOTAL RUNOFF(CFS) = 6.98 TC(MIN.) = 6.48 **************************************************************************** FLOW PROCESS FROM NODE 410.00 TO NODE 410.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 6.48 RAINFALL INTENSITY(INCH/HR) = 6.24 TOTAL STREAM AREA(ACRES) = 1.38 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.98 **************************************************************************** FLOW PROCESS FROM NODE 410.10 TO NODE 410.20 IS CODE = 22 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 SUBAREA RUNOFF(CFS) = 0.56 TOTAL AREA(ACRES) = 0.09 TOTAL RUNOFF(CFS) = 0.56 **************************************************************************** FLOW PROCESS FROM NODE 410.20 TO NODE 410.30 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 432.00 DOWNSTREAM(FEET) = 414.92 FLOW LENGTH(FEET) = 62.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 6.0 INCH PIPE IS 1.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.19 ESTIMATED PIPE DIAMETER(INCH) = 6.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.56 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 5.09 LONGEST FLOWPATH FROM NODE 410.10 TO NODE 410.30 = 80.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 410.30 TO NODE 410.30 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.291 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.08 SUBAREA RUNOFF(CFS) = 0.50 TOTAL AREA(ACRES) = 0.2 TOTAL RUNOFF(CFS) = 1.05 TC(MIN.) = 5.09 **************************************************************************** FLOW PROCESS FROM NODE 410.30 TO NODE 410.30 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.291 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.02 SUBAREA RUNOFF(CFS) = 0.12 TOTAL AREA(ACRES) = 0.2 TOTAL RUNOFF(CFS) = 1.18 TC(MIN.) = 5.09 **************************************************************************** FLOW PROCESS FROM NODE 410.30 TO NODE 410.40 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 414.75 DOWNSTREAM(FEET) = 413.75 FLOW LENGTH(FEET) = 49.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 4.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.13 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.18 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) = 5.25 LONGEST FLOWPATH FROM NODE 410.10 TO NODE 410.40 = 129.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 410.40 TO NODE 410.40 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.147 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.08 SUBAREA RUNOFF(CFS) = 0.49 TOTAL AREA(ACRES) = 0.3 TOTAL RUNOFF(CFS) = 1.64 TC(MIN.) = 5.25 **************************************************************************** FLOW PROCESS FROM NODE 410.40 TO NODE 410.50 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 413.75 DOWNSTREAM(FEET) = 412.75 FLOW LENGTH(FEET) = 49.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 5.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.54 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.64 PIPE TRAVEL TIME(MIN.) = 0.15 Tc(MIN.) = 5.40 LONGEST FLOWPATH FROM NODE 410.10 TO NODE 410.50 = 178.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 410.50 TO NODE 410.50 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.021 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.09 SUBAREA RUNOFF(CFS) = 0.54 TOTAL AREA(ACRES) = 0.4 TOTAL RUNOFF(CFS) = 2.15 TC(MIN.) = 5.40 **************************************************************************** FLOW PROCESS FROM NODE 410.50 TO NODE 410.60 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 412.75 DOWNSTREAM(FEET) = 411.70 FLOW LENGTH(FEET) = 52.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 7.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.75 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.15 PIPE TRAVEL TIME(MIN.) = 0.15 Tc(MIN.) = 5.55 LONGEST FLOWPATH FROM NODE 410.10 TO NODE 410.60 = 230.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 410.60 TO NODE 410.60 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.898 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.09 SUBAREA RUNOFF(CFS) = 0.53 TOTAL AREA(ACRES) = 0.4 TOTAL RUNOFF(CFS) = 2.64 TC(MIN.) = 5.55 **************************************************************************** FLOW PROCESS FROM NODE 410.60 TO NODE 410.70 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 411.70 DOWNSTREAM(FEET) = 409.70 FLOW LENGTH(FEET) = 98.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.28 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.64 PIPE TRAVEL TIME(MIN.) = 0.26 Tc(MIN.) = 5.81 LONGEST FLOWPATH FROM NODE 410.10 TO NODE 410.70 = 328.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 410.70 TO NODE 410.70 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.697 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.04 SUBAREA RUNOFF(CFS) = 0.23 TOTAL AREA(ACRES) = 0.5 TOTAL RUNOFF(CFS) = 2.79 TC(MIN.) = 5.81 **************************************************************************** FLOW PROCESS FROM NODE 410.70 TO NODE 410.80 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 409.37 DOWNSTREAM(FEET) = 408.83 FLOW LENGTH(FEET) = 47.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 7.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.09 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.79 PIPE TRAVEL TIME(MIN.) = 0.15 Tc(MIN.) = 5.96 LONGEST FLOWPATH FROM NODE 410.10 TO NODE 410.80 = 375.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 410.80 TO NODE 410.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.96 RAINFALL INTENSITY(INCH/HR) = 6.58 TOTAL STREAM AREA(ACRES) = 0.49 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.79 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 6.98 6.48 6.241 1.38 2 2.79 5.96 6.585 0.49 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 9.21 5.96 6.585 2 9.62 6.48 6.241 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 9.62 Tc(MIN.) = 6.48 TOTAL AREA(ACRES) = 1.9 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 410.00 = 601.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 410.00 TO NODE 411.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 403.50 DOWNSTREAM(FEET) = 395.85 FLOW LENGTH(FEET) = 20.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 7.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 25.14 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 9.62 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 6.49 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 411.00 = 621.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 411.00 TO NODE 411.00 IS CODE = 11 ---------------------------------------------------------------------------- >>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<<<<< ============================================================================ ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 9.62 6.49 6.233 1.87 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 411.00 = 621.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 12.51 7.57 5.645 2.68 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 411.00 = 1172.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 20.35 6.49 6.233 2 21.22 7.57 5.645 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 21.22 Tc(MIN.) = 7.57 TOTAL AREA(ACRES) = 4.6 **************************************************************************** FLOW PROCESS FROM NODE 411.00 TO NODE 411.00 IS CODE = 10 ---------------------------------------------------------------------------- >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 800.00 TO NODE 801.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 85.00 UPSTREAM ELEVATION(FEET) = 430.50 DOWNSTREAM ELEVATION(FEET) = 426.00 ELEVATION DIFFERENCE(FEET) = 4.50 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.142 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.862 SUBAREA RUNOFF(CFS) = 0.10 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.10 **************************************************************************** FLOW PROCESS FROM NODE 801.00 TO NODE 802.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 426.00 DOWNSTREAM(FEET) = 408.00 FLOW LENGTH(FEET) = 290.00 MANNING'S N = 0.018 DEPTH OF FLOW IN 24.0 INCH PIPE IS 0.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 2.69 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.10 PIPE TRAVEL TIME(MIN.) = 1.80 Tc(MIN.) = 8.94 LONGEST FLOWPATH FROM NODE 800.00 TO NODE 802.00 = 375.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 802.00 TO NODE 802.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.072 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.3500 SUBAREA AREA(ACRES) = 0.15 SUBAREA RUNOFF(CFS) = 0.27 TOTAL AREA(ACRES) = 0.2 TOTAL RUNOFF(CFS) = 0.36 TC(MIN.) = 8.94 **************************************************************************** FLOW PROCESS FROM NODE 802.00 TO NODE 803.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 408.00 DOWNSTREAM(FEET) = 402.90 FLOW LENGTH(FEET) = 357.00 MANNING'S N = 0.018 DEPTH OF FLOW IN 24.0 INCH PIPE IS 2.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 2.33 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.36 PIPE TRAVEL TIME(MIN.) = 2.56 Tc(MIN.) = 11.50 LONGEST FLOWPATH FROM NODE 800.00 TO NODE 803.00 = 732.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 803.00 TO NODE 803.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.312 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.3500 SUBAREA AREA(ACRES) = 0.15 SUBAREA RUNOFF(CFS) = 0.23 TOTAL AREA(ACRES) = 0.4 TOTAL RUNOFF(CFS) = 0.53 TC(MIN.) = 11.50 **************************************************************************** FLOW PROCESS FROM NODE 803.00 TO NODE 411.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 398.90 DOWNSTREAM(FEET) = 395.85 FLOW LENGTH(FEET) = 41.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 6.0 INCH PIPE IS 2.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.79 ESTIMATED PIPE DIAMETER(INCH) = 6.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.53 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 11.60 LONGEST FLOWPATH FROM NODE 800.00 TO NODE 411.00 = 773.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 411.00 TO NODE 411.00 IS CODE = 11 ---------------------------------------------------------------------------- >>>>>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<<<<< ============================================================================ ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 0.53 11.60 4.288 0.35 LONGEST FLOWPATH FROM NODE 800.00 TO NODE 411.00 = 773.00 FEET. ** MEMORY BANK # 2 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 21.22 7.57 5.645 4.55 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 411.00 = 1172.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 21.57 7.57 5.645 2 16.65 11.60 4.288 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 21.57 Tc(MIN.) = 7.57 TOTAL AREA(ACRES) = 4.9 **************************************************************************** FLOW PROCESS FROM NODE 411.00 TO NODE 412.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 391.10 DOWNSTREAM(FEET) = 374.92 FLOW LENGTH(FEET) = 57.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 7.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 27.95 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 21.57 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 7.60 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 412.00 = 1229.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 600.00 TO NODE 601.00 IS CODE = 22 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 SUBAREA RUNOFF(CFS) = 0.19 TOTAL AREA(ACRES) = 0.03 TOTAL RUNOFF(CFS) = 0.19 **************************************************************************** FLOW PROCESS FROM NODE 601.00 TO NODE 602.00 IS CODE = 62 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STREET TABLE SECTION # 2 USED)<<<<< ============================================================================ UPSTREAM ELEVATION(FEET) = 415.00 DOWNSTREAM ELEVATION(FEET) = 400.50 STREET LENGTH(FEET) = 244.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 14.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0180 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.14 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.21 HALFSTREET FLOOD WIDTH(FEET) = 5.11 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.29 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.68 STREET FLOW TRAVEL TIME(MIN.) = 1.24 Tc(MIN.) = 6.24 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.398 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.850 SUBAREA AREA(ACRES) = 0.35 SUBAREA RUNOFF(CFS) = 1.90 TOTAL AREA(ACRES) = 0.4 PEAK FLOW RATE(CFS) = 2.07 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.24 HALFSTREET FLOOD WIDTH(FEET) = 6.86 FLOW VELOCITY(FEET/SEC.) = 3.71 DEPTH*VELOCITY(FT*FT/SEC.) = 0.90 LONGEST FLOWPATH FROM NODE 600.00 TO NODE 602.00 = 308.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 602.00 TO NODE 602.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.398 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.02 SUBAREA RUNOFF(CFS) = 0.11 TOTAL AREA(ACRES) = 0.4 TOTAL RUNOFF(CFS) = 2.18 TC(MIN.) = 6.24 **************************************************************************** FLOW PROCESS FROM NODE 602.00 TO NODE 603.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 397.11 DOWNSTREAM(FEET) = 395.00 FLOW LENGTH(FEET) = 17.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 3.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.81 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.18 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) = 6.26 LONGEST FLOWPATH FROM NODE 600.00 TO NODE 603.00 = 325.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 603.00 TO NODE 603.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.382 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6097 SUBAREA AREA(ACRES) = 0.37 SUBAREA RUNOFF(CFS) = 0.83 TOTAL AREA(ACRES) = 0.8 TOTAL RUNOFF(CFS) = 3.00 TC(MIN.) = 6.26 **************************************************************************** FLOW PROCESS FROM NODE 603.00 TO NODE 604.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 391.00 DOWNSTREAM(FEET) = 388.50 FLOW LENGTH(FEET) = 18.20 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.56 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.00 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) = 6.28 LONGEST FLOWPATH FROM NODE 600.00 TO NODE 604.00 = 343.20 FEET. ============================================================================ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 0.8 TC(MIN.) = 6.28 PEAK FLOW RATE(CFS) = 3.00 ============================================================================ ============================================================================ END OF RATIONAL METHOD ANALYSIS 3.3 Detention Analysis (100-Year Event) The proposed biofiltration basins (BMPs) provide pollutant control, hydromodification management flow control and mitigation of the 100-year storm event peak flow rate. The 100- year storm event detention analysis was performed using HydroCAD Storm Water Modeling software. The inflow runoff hydrographs to the BMPs were modeled using RatHydro which is a Rational Method Design Storm Hydrograph software that creates a hydrograph using the results of the Rational Method calculations. HydroCAD has the ability to route the 100-year 6-hour storm event inflow hydrograph through the BMPs and based on the BMP cross sectional geometry, stage storage and outlet structure data, HydroCAD calculates the detained peak flow rate and detained time to peak. Each biofiltration basin BMP consists of a 3 inch mulch layer, 18 inch engineered soil layer, 6 inch filter coarse layer and 15 inch gravel layer. Runoff will be biofiltered through the engineered soil and gravel layers, then collected in perforated subdrain and directed to a catch basin located in the BMP where runoff will be mitigated via an orifice to comply with hydromodification flow control requirements. In larger storm events, runoff not filtered through the engineered soil and gravel layers will be conveyed via an overflow outlet structure. Runoff conveyed via the outlet structure will bypass the orifice and be conveyed directly to the proposed storm drain discharge pipe. Refer to the plans for cross sections of the biofiltration basin BMPs. For the proposed detained hydrologic analysis, the effects of the detention provided by the 4 biofiltration basin BMPs were incorporated into the AES analysis. This was done by inserting the results from the HydroCAD analysis, detained peak flow rate and detained time to peak, into the proposed undetained condition AES model to create the proposed detained condition model. Refer to Section 3.4 for the detained AES output. Based on the results of the HydroCAD analysis, mitigation for the 100-year storm event peak flow rate is provided, detaining the proposed peak flows such that they are less than or equal to the approved flows for which the existing storm drain infrastructure in Whiptail Loop was designed per the O’Day Consultants hydrology study. Refer to Appendix B for the HydroCAD detention detailed output. 3.4 Proposed Detained Condition Hydrologic Model Output (100-Year Event) ____________________________________________________________________________ **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: ---------------------------------------------------------------------------- FILE NAME: 3925D100.DAT TIME/DATE OF STUDY: 09:35 04/03/2023 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.800 SPECIFIED MINIMUM PIPE SIZE(INCH) = 3.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) === ===== ========= ================= ====== ===== ====== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 2 14.0 9.0 0.020/0.020/0.020 0.50 1.50 0.0100 0.125 0.0180 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.50 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 101.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 89.00 UPSTREAM ELEVATION(FEET) = 467.00 DOWNSTREAM ELEVATION(FEET) = 439.30 ELEVATION DIFFERENCE(FEET) = 27.70 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.912 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.622 SUBAREA RUNOFF(CFS) = 0.14 TOTAL AREA(ACRES) = 0.06 TOTAL RUNOFF(CFS) = 0.14 **************************************************************************** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 439.30 DOWNSTREAM(FEET) = 437.66 FLOW LENGTH(FEET) = 155.00 MANNING'S N = 0.018 DEPTH OF FLOW IN 24.0 INCH PIPE IS 1.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 1.55 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.14 PIPE TRAVEL TIME(MIN.) = 1.67 Tc(MIN.) = 7.58 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 102.00 = 244.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.641 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.3500 SUBAREA AREA(ACRES) = 0.28 SUBAREA RUNOFF(CFS) = 0.55 TOTAL AREA(ACRES) = 0.3 TOTAL RUNOFF(CFS) = 0.67 TC(MIN.) = 7.58 **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 433.66 DOWNSTREAM(FEET) = 432.17 FLOW LENGTH(FEET) = 41.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 6.0 INCH PIPE IS 3.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.52 ESTIMATED PIPE DIAMETER(INCH) = 6.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.67 PIPE TRAVEL TIME(MIN.) = 0.12 Tc(MIN.) = 7.70 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 103.00 = 285.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 432.00 DOWNSTREAM(FEET) = 428.97 FLOW LENGTH(FEET) = 77.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 6.0 INCH PIPE IS 3.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.72 ESTIMATED PIPE DIAMETER(INCH) = 6.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.67 PIPE TRAVEL TIME(MIN.) = 0.22 Tc(MIN.) = 7.93 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 104.00 = 362.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.480 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4547 SUBAREA AREA(ACRES) = 0.09 SUBAREA RUNOFF(CFS) = 0.42 TOTAL AREA(ACRES) = 0.4 TOTAL RUNOFF(CFS) = 1.07 TC(MIN.) = 7.93 **************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.480 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.4804 SUBAREA AREA(ACRES) = 0.03 SUBAREA RUNOFF(CFS) = 0.14 TOTAL AREA(ACRES) = 0.5 TOTAL RUNOFF(CFS) = 1.21 TC(MIN.) = 7.93 **************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 428.80 DOWNSTREAM(FEET) = 426.04 FLOW LENGTH(FEET) = 66.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 3.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.78 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.21 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) = 8.09 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 105.00 = 428.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.409 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.5569 SUBAREA AREA(ACRES) = 0.12 SUBAREA RUNOFF(CFS) = 0.55 TOTAL AREA(ACRES) = 0.6 TOTAL RUNOFF(CFS) = 1.75 TC(MIN.) = 8.09 **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 425.87 DOWNSTREAM(FEET) = 425.29 FLOW LENGTH(FEET) = 39.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.94 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.75 PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 8.22 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 106.00 = 467.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.353 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6691 SUBAREA AREA(ACRES) = 0.36 SUBAREA RUNOFF(CFS) = 1.64 TOTAL AREA(ACRES) = 0.9 TOTAL RUNOFF(CFS) = 3.37 TC(MIN.) = 8.22 **************************************************************************** FLOW PROCESS FROM NODE 106.10 TO NODE 106.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.353 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6042 SUBAREA AREA(ACRES) = 0.24 SUBAREA RUNOFF(CFS) = 0.45 TOTAL AREA(ACRES) = 1.2 TOTAL RUNOFF(CFS) = 3.82 TC(MIN.) = 8.22 **************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 107.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 425.12 DOWNSTREAM(FEET) = 424.83 FLOW LENGTH(FEET) = 29.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.28 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.82 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 8.31 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 107.00 = 496.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 107.00 TO NODE 108.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.315 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.5773 SUBAREA AREA(ACRES) = 0.14 SUBAREA RUNOFF(CFS) = 0.26 TOTAL AREA(ACRES) = 1.3 TOTAL RUNOFF(CFS) = 4.05 TC(MIN.) = 8.31 **************************************************************************** FLOW PROCESS FROM NODE 107.10 TO NODE 108.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.315 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6222 SUBAREA AREA(ACRES) = 0.26 SUBAREA RUNOFF(CFS) = 1.17 TOTAL AREA(ACRES) = 1.6 TOTAL RUNOFF(CFS) = 5.22 TC(MIN.) = 8.31 **************************************************************************** FLOW PROCESS FROM NODE 107.20 TO NODE 108.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.315 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6522 SUBAREA AREA(ACRES) = 0.24 SUBAREA RUNOFF(CFS) = 1.08 TOTAL AREA(ACRES) = 1.8 TOTAL RUNOFF(CFS) = 6.31 TC(MIN.) = 8.31 **************************************************************************** FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 7 ---------------------------------------------------------------------------- >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< ============================================================================ USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 10.13 RAIN INTENSITY(INCH/HOUR) = 4.68 TOTAL AREA(ACRES) = 1.82 TOTAL RUNOFF(CFS) = 5.32 **************************************************************************** FLOW PROCESS FROM NODE 108.00 TO NODE 502.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 421.00 DOWNSTREAM(FEET) = 417.00 FLOW LENGTH(FEET) = 22.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 16.86 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.32 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) = 10.15 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 502.00 = 518.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 502.00 TO NODE 502.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.15 RAINFALL INTENSITY(INCH/HR) = 4.67 TOTAL STREAM AREA(ACRES) = 1.82 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.32 **************************************************************************** FLOW PROCESS FROM NODE 500.00 TO NODE 501.00 IS CODE = 22 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 SUBAREA RUNOFF(CFS) = 0.44 TOTAL AREA(ACRES) = 0.07 TOTAL RUNOFF(CFS) = 0.44 **************************************************************************** FLOW PROCESS FROM NODE 501.00 TO NODE 502.00 IS CODE = 62 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STREET TABLE SECTION # 2 USED)<<<<< ============================================================================ UPSTREAM ELEVATION(FEET) = 429.33 DOWNSTREAM ELEVATION(FEET) = 421.22 STREET LENGTH(FEET) = 97.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 14.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0180 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.82 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.18 HALFSTREET FLOOD WIDTH(FEET) = 3.82 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.55 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.64 STREET FLOW TRAVEL TIME(MIN.) = 0.46 Tc(MIN.) = 5.46 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.973 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.850 SUBAREA AREA(ACRES) = 0.13 SUBAREA RUNOFF(CFS) = 0.77 TOTAL AREA(ACRES) = 0.2 PEAK FLOW RATE(CFS) = 1.19 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.20 HALFSTREET FLOOD WIDTH(FEET) = 4.75 FLOW VELOCITY(FEET/SEC.) = 3.80 DEPTH*VELOCITY(FT*FT/SEC.) = 0.76 LONGEST FLOWPATH FROM NODE 500.00 TO NODE 502.00 = 1897.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 502.00 TO NODE 502.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.973 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.05 SUBAREA RUNOFF(CFS) = 0.30 TOTAL AREA(ACRES) = 0.2 TOTAL RUNOFF(CFS) = 1.48 TC(MIN.) = 5.46 **************************************************************************** FLOW PROCESS FROM NODE 502.10 TO NODE 502.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.973 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6972 SUBAREA AREA(ACRES) = 0.11 SUBAREA RUNOFF(CFS) = 0.27 TOTAL AREA(ACRES) = 0.4 TOTAL RUNOFF(CFS) = 1.75 TC(MIN.) = 5.46 **************************************************************************** FLOW PROCESS FROM NODE 502.00 TO NODE 502.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.46 RAINFALL INTENSITY(INCH/HR) = 6.97 TOTAL STREAM AREA(ACRES) = 0.36 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.75 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 5.32 10.15 4.672 1.82 2 1.75 5.46 6.973 0.36 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 4.61 5.46 6.973 2 6.49 10.15 4.672 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 6.49 Tc(MIN.) = 10.15 TOTAL AREA(ACRES) = 2.2 LONGEST FLOWPATH FROM NODE 500.00 TO NODE 502.00 = 1897.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 502.00 TO NODE 503.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 414.21 DOWNSTREAM(FEET) = 410.17 FLOW LENGTH(FEET) = 21.90 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 17.48 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 6.49 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) = 10.17 LONGEST FLOWPATH FROM NODE 500.00 TO NODE 503.00 = 1918.90 FEET. **************************************************************************** FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 22 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 SUBAREA RUNOFF(CFS) = 0.50 TOTAL AREA(ACRES) = 0.08 TOTAL RUNOFF(CFS) = 0.50 **************************************************************************** FLOW PROCESS FROM NODE 201.00 TO NODE 201.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.08 SUBAREA RUNOFF(CFS) = 0.50 TOTAL AREA(ACRES) = 0.2 TOTAL RUNOFF(CFS) = 1.00 TC(MIN.) = 5.00 **************************************************************************** FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 431.35 DOWNSTREAM(FEET) = 430.75 FLOW LENGTH(FEET) = 67.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 5.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.62 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.00 PIPE TRAVEL TIME(MIN.) = 0.31 Tc(MIN.) = 5.31 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 202.00 = 156.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.00 TO NODE 202.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.098 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.12 SUBAREA RUNOFF(CFS) = 0.72 TOTAL AREA(ACRES) = 0.3 TOTAL RUNOFF(CFS) = 1.69 TC(MIN.) = 5.31 **************************************************************************** FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 430.75 DOWNSTREAM(FEET) = 430.14 FLOW LENGTH(FEET) = 68.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.14 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.69 PIPE TRAVEL TIME(MIN.) = 0.27 Tc(MIN.) = 5.58 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 203.00 = 224.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 203.00 TO NODE 203.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.871 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.14 SUBAREA RUNOFF(CFS) = 0.82 TOTAL AREA(ACRES) = 0.4 TOTAL RUNOFF(CFS) = 2.45 TC(MIN.) = 5.58 **************************************************************************** FLOW PROCESS FROM NODE 203.00 TO NODE 203.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.871 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.19 SUBAREA RUNOFF(CFS) = 1.11 TOTAL AREA(ACRES) = 0.6 TOTAL RUNOFF(CFS) = 3.56 TC(MIN.) = 5.58 **************************************************************************** FLOW PROCESS FROM NODE 203.00 TO NODE 203.10 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 429.97 DOWNSTREAM(FEET) = 429.35 FLOW LENGTH(FEET) = 69.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.99 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.56 PIPE TRAVEL TIME(MIN.) = 0.23 Tc(MIN.) = 5.81 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 203.10 = 293.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 203.10 TO NODE 203.10 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.694 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.07 SUBAREA RUNOFF(CFS) = 0.40 TOTAL AREA(ACRES) = 0.7 TOTAL RUNOFF(CFS) = 3.87 TC(MIN.) = 5.81 **************************************************************************** FLOW PROCESS FROM NODE 203.10 TO NODE 203.20 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 429.35 DOWNSTREAM(FEET) = 429.31 FLOW LENGTH(FEET) = 4.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.28 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.87 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 5.83 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 203.20 = 297.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 203.30 TO NODE 203.20 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.685 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7646 SUBAREA AREA(ACRES) = 0.14 SUBAREA RUNOFF(CFS) = 0.33 TOTAL AREA(ACRES) = 0.8 TOTAL RUNOFF(CFS) = 4.19 TC(MIN.) = 5.83 **************************************************************************** FLOW PROCESS FROM NODE 203.20 TO NODE 204.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 429.31 DOWNSTREAM(FEET) = 428.91 FLOW LENGTH(FEET) = 44.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.18 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.19 PIPE TRAVEL TIME(MIN.) = 0.14 Tc(MIN.) = 5.97 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 204.00 = 341.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 204.00 TO NODE 205.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 428.58 DOWNSTREAM(FEET) = 428.33 FLOW LENGTH(FEET) = 19.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.00 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.19 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 6.02 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 205.00 = 360.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 205.00 TO NODE 206.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.545 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7364 SUBAREA AREA(ACRES) = 0.06 SUBAREA RUNOFF(CFS) = 0.14 TOTAL AREA(ACRES) = 0.9 TOTAL RUNOFF(CFS) = 4.24 TC(MIN.) = 6.02 **************************************************************************** FLOW PROCESS FROM NODE 205.10 TO NODE 206.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.545 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7713 SUBAREA AREA(ACRES) = 0.39 SUBAREA RUNOFF(CFS) = 2.17 TOTAL AREA(ACRES) = 1.3 TOTAL RUNOFF(CFS) = 6.41 TC(MIN.) = 6.02 **************************************************************************** FLOW PROCESS FROM NODE 205.20 TO NODE 206.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.545 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7796 SUBAREA AREA(ACRES) = 0.15 SUBAREA RUNOFF(CFS) = 0.83 TOTAL AREA(ACRES) = 1.4 TOTAL RUNOFF(CFS) = 7.25 TC(MIN.) = 6.02 **************************************************************************** FLOW PROCESS FROM NODE 205.30 TO NODE 206.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.545 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7846 SUBAREA AREA(ACRES) = 0.11 SUBAREA RUNOFF(CFS) = 0.61 TOTAL AREA(ACRES) = 1.5 TOTAL RUNOFF(CFS) = 7.86 TC(MIN.) = 6.02 **************************************************************************** FLOW PROCESS FROM NODE 205.30 TO NODE 206.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.545 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7879 SUBAREA AREA(ACRES) = 0.08 SUBAREA RUNOFF(CFS) = 0.45 TOTAL AREA(ACRES) = 1.6 TOTAL RUNOFF(CFS) = 8.30 TC(MIN.) = 6.02 **************************************************************************** FLOW PROCESS FROM NODE 205.40 TO NODE 206.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.545 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7890 SUBAREA AREA(ACRES) = 0.03 SUBAREA RUNOFF(CFS) = 0.17 TOTAL AREA(ACRES) = 1.6 TOTAL RUNOFF(CFS) = 8.47 TC(MIN.) = 6.02 **************************************************************************** FLOW PROCESS FROM NODE 206.00 TO NODE 206.00 IS CODE = 7 ---------------------------------------------------------------------------- >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< ============================================================================ USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 7.02 RAIN INTENSITY(INCH/HOUR) = 5.93 TOTAL AREA(ACRES) = 1.65 TOTAL RUNOFF(CFS) = 7.35 **************************************************************************** FLOW PROCESS FROM NODE 206.00 TO NODE 207.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 424.50 DOWNSTREAM(FEET) = 422.66 FLOW LENGTH(FEET) = 184.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.19 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 7.35 PIPE TRAVEL TIME(MIN.) = 0.50 Tc(MIN.) = 7.52 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 207.00 = 544.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 207.00 TO NODE 207.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.52 RAINFALL INTENSITY(INCH/HR) = 5.67 TOTAL STREAM AREA(ACRES) = 1.65 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.35 **************************************************************************** FLOW PROCESS FROM NODE 700.00 TO NODE 701.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 92.00 UPSTREAM ELEVATION(FEET) = 469.00 DOWNSTREAM ELEVATION(FEET) = 439.40 ELEVATION DIFFERENCE(FEET) = 29.60 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 6.011 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.551 SUBAREA RUNOFF(CFS) = 0.11 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.11 **************************************************************************** FLOW PROCESS FROM NODE 701.00 TO NODE 702.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 439.40 DOWNSTREAM(FEET) = 430.50 FLOW LENGTH(FEET) = 176.00 MANNING'S N = 0.018 DEPTH OF FLOW IN 24.0 INCH PIPE IS 1.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 2.48 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.11 PIPE TRAVEL TIME(MIN.) = 1.18 Tc(MIN.) = 7.19 LONGEST FLOWPATH FROM NODE 700.00 TO NODE 702.00 = 268.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 702.00 TO NODE 702.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.834 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.3500 SUBAREA AREA(ACRES) = 0.16 SUBAREA RUNOFF(CFS) = 0.33 TOTAL AREA(ACRES) = 0.2 TOTAL RUNOFF(CFS) = 0.43 TC(MIN.) = 7.19 **************************************************************************** FLOW PROCESS FROM NODE 702.00 TO NODE 207.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 426.50 DOWNSTREAM(FEET) = 422.66 FLOW LENGTH(FEET) = 23.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 6.0 INCH PIPE IS 1.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.67 ESTIMATED PIPE DIAMETER(INCH) = 6.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.43 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 7.24 LONGEST FLOWPATH FROM NODE 700.00 TO NODE 207.00 = 291.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 702.00 TO NODE 207.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 7.24 RAINFALL INTENSITY(INCH/HR) = 5.81 TOTAL STREAM AREA(ACRES) = 0.21 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.43 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 7.35 7.52 5.672 1.65 2 0.43 7.24 5.811 0.21 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 7.51 7.24 5.811 2 7.77 7.52 5.672 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 7.77 Tc(MIN.) = 7.52 TOTAL AREA(ACRES) = 1.9 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 207.00 = 544.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 207.00 TO NODE 208.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 422.33 DOWNSTREAM(FEET) = 409.01 FLOW LENGTH(FEET) = 243.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 9.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.49 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 7.77 PIPE TRAVEL TIME(MIN.) = 0.35 Tc(MIN.) = 7.87 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 208.00 = 787.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 208.00 TO NODE 208.10 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 408.68 DOWNSTREAM(FEET) = 408.05 FLOW LENGTH(FEET) = 63.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 12.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.24 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 7.77 PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN.) = 8.04 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 208.10 = 850.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 208.10 TO NODE 208.10 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.432 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7077 SUBAREA AREA(ACRES) = 0.02 SUBAREA RUNOFF(CFS) = 0.09 TOTAL AREA(ACRES) = 1.9 TOTAL RUNOFF(CFS) = 7.77 TC(MIN.) = 8.04 NOTE: PEAK FLOW RATE DEFAULTED TO UPSTREAM VALUE **************************************************************************** FLOW PROCESS FROM NODE 208.10 TO NODE 209.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 408.05 DOWNSTREAM(FEET) = 407.44 FLOW LENGTH(FEET) = 61.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.25 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 7.77 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) = 8.20 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 209.00 = 911.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 209.00 TO NODE 209.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.20 RAINFALL INTENSITY(INCH/HR) = 5.36 TOTAL STREAM AREA(ACRES) = 1.88 PEAK FLOW RATE(CFS) AT CONFLUENCE = 7.77 **************************************************************************** FLOW PROCESS FROM NODE 300.00 TO NODE 301.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 80.00 UPSTREAM ELEVATION(FEET) = 435.00 DOWNSTREAM ELEVATION(FEET) = 434.20 ELEVATION DIFFERENCE(FEET) = 0.80 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.628 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 65.00 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.63 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.63 **************************************************************************** FLOW PROCESS FROM NODE 300.00 TO NODE 301.00 IS CODE = 22 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 SUBAREA RUNOFF(CFS) = 0.63 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.63 **************************************************************************** FLOW PROCESS FROM NODE 301.00 TO NODE 302.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 416.50 DOWNSTREAM(FEET) = 416.17 FLOW LENGTH(FEET) = 8.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 6.0 INCH PIPE IS 3.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.72 ESTIMATED PIPE DIAMETER(INCH) = 6.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.63 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) = 5.02 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 302.00 = 88.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 302.00 TO NODE 302.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.355 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.05 SUBAREA RUNOFF(CFS) = 0.31 TOTAL AREA(ACRES) = 0.2 TOTAL RUNOFF(CFS) = 0.94 TC(MIN.) = 5.02 **************************************************************************** FLOW PROCESS FROM NODE 302.00 TO NODE 302.10 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 416.00 DOWNSTREAM(FEET) = 415.88 FLOW LENGTH(FEET) = 16.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 5.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.31 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.94 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 5.10 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 302.10 = 104.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 302.10 TO NODE 302.10 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.280 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.07 SUBAREA RUNOFF(CFS) = 0.43 TOTAL AREA(ACRES) = 0.2 TOTAL RUNOFF(CFS) = 1.36 TC(MIN.) = 5.10 **************************************************************************** FLOW PROCESS FROM NODE 302.10 TO NODE 303.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 415.88 DOWNSTREAM(FEET) = 415.67 FLOW LENGTH(FEET) = 31.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 5.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.53 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.36 PIPE TRAVEL TIME(MIN.) = 0.15 Tc(MIN.) = 5.25 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 303.00 = 135.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 303.00 TO NODE 304.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.149 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6556 SUBAREA AREA(ACRES) = 0.14 SUBAREA RUNOFF(CFS) = 0.35 TOTAL AREA(ACRES) = 0.4 TOTAL RUNOFF(CFS) = 1.69 TC(MIN.) = 5.25 **************************************************************************** FLOW PROCESS FROM NODE 303.10 TO NODE 304.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.149 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7071 SUBAREA AREA(ACRES) = 0.13 SUBAREA RUNOFF(CFS) = 0.79 TOTAL AREA(ACRES) = 0.5 TOTAL RUNOFF(CFS) = 2.48 TC(MIN.) = 5.25 **************************************************************************** FLOW PROCESS FROM NODE 303.20 TO NODE 304.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.149 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7314 SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) = 0.61 TOTAL AREA(ACRES) = 0.6 TOTAL RUNOFF(CFS) = 3.08 TC(MIN.) = 5.25 **************************************************************************** FLOW PROCESS FROM NODE 303.30 TO NODE 304.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.149 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7528 SUBAREA AREA(ACRES) = 0.13 SUBAREA RUNOFF(CFS) = 0.79 TOTAL AREA(ACRES) = 0.7 TOTAL RUNOFF(CFS) = 3.87 TC(MIN.) = 5.25 **************************************************************************** FLOW PROCESS FROM NODE 303.40 TO NODE 304.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.149 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7636 SUBAREA AREA(ACRES) = 0.09 SUBAREA RUNOFF(CFS) = 0.55 TOTAL AREA(ACRES) = 0.8 TOTAL RUNOFF(CFS) = 4.42 TC(MIN.) = 5.25 **************************************************************************** FLOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = 7 ---------------------------------------------------------------------------- >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< ============================================================================ USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 8.43 RAIN INTENSITY(INCH/HOUR) = 5.27 TOTAL AREA(ACRES) = 0.80 TOTAL RUNOFF(CFS) = 2.31 **************************************************************************** FLOW PROCESS FROM NODE 304.00 TO NODE 209.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 411.83 DOWNSTREAM(FEET) = 407.44 FLOW LENGTH(FEET) = 54.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 4.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.24 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.31 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 8.52 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 209.00 = 189.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 209.00 TO NODE 209.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.52 RAINFALL INTENSITY(INCH/HR) = 5.23 TOTAL STREAM AREA(ACRES) = 0.80 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.31 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 7.77 8.20 5.362 1.88 2 2.31 8.52 5.232 0.80 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 9.99 8.20 5.362 2 9.89 8.52 5.232 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 9.99 Tc(MIN.) = 8.20 TOTAL AREA(ACRES) = 2.7 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 209.00 = 911.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 209.00 TO NODE 210.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 407.11 DOWNSTREAM(FEET) = 403.42 FLOW LENGTH(FEET) = 184.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.2 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.69 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 9.99 PIPE TRAVEL TIME(MIN.) = 0.35 Tc(MIN.) = 8.55 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 210.00 = 1095.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 210.00 TO NODE 411.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 403.09 DOWNSTREAM(FEET) = 395.35 FLOW LENGTH(FEET) = 77.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 9.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 15.56 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 9.99 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 8.63 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 411.00 = 1172.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 411.00 TO NODE 411.00 IS CODE = 10 ---------------------------------------------------------------------------- >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 400.00 TO NODE 401.00 IS CODE = 22 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 SUBAREA RUNOFF(CFS) = 0.25 TOTAL AREA(ACRES) = 0.04 TOTAL RUNOFF(CFS) = 0.25 **************************************************************************** FLOW PROCESS FROM NODE 401.00 TO NODE 402.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 426.44 DOWNSTREAM(FEET) = 423.00 FLOW LENGTH(FEET) = 65.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 6.0 INCH PIPE IS 1.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.98 ESTIMATED PIPE DIAMETER(INCH) = 6.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.25 PIPE TRAVEL TIME(MIN.) = 0.22 Tc(MIN.) = 5.22 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 402.00 = 137.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 402.10 TO NODE 402.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.177 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.08 SUBAREA RUNOFF(CFS) = 0.49 TOTAL AREA(ACRES) = 0.1 TOTAL RUNOFF(CFS) = 0.73 TC(MIN.) = 5.22 **************************************************************************** FLOW PROCESS FROM NODE 402.00 TO NODE 403.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 422.83 DOWNSTREAM(FEET) = 422.08 FLOW LENGTH(FEET) = 16.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 6.0 INCH PIPE IS 3.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.24 ESTIMATED PIPE DIAMETER(INCH) = 6.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.73 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 5.26 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 403.00 = 153.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 403.10 TO NODE 403.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.140 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.02 SUBAREA RUNOFF(CFS) = 0.12 TOTAL AREA(ACRES) = 0.1 TOTAL RUNOFF(CFS) = 0.85 TC(MIN.) = 5.26 **************************************************************************** FLOW PROCESS FROM NODE 403.00 TO NODE 403.20 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 422.08 DOWNSTREAM(FEET) = 419.65 FLOW LENGTH(FEET) = 53.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 6.0 INCH PIPE IS 3.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.39 ESTIMATED PIPE DIAMETER(INCH) = 6.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.85 PIPE TRAVEL TIME(MIN.) = 0.14 Tc(MIN.) = 5.40 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 403.20 = 206.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 403.30 TO NODE 403.20 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.021 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.10 SUBAREA RUNOFF(CFS) = 0.60 TOTAL AREA(ACRES) = 0.2 TOTAL RUNOFF(CFS) = 1.43 TC(MIN.) = 5.40 **************************************************************************** FLOW PROCESS FROM NODE 403.20 TO NODE 404.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 419.65 DOWNSTREAM(FEET) = 416.51 FLOW LENGTH(FEET) = 69.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 4.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.27 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.43 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) = 5.56 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 404.00 = 275.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 404.10 TO NODE 404.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.891 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.08 SUBAREA RUNOFF(CFS) = 0.47 TOTAL AREA(ACRES) = 0.3 TOTAL RUNOFF(CFS) = 1.87 TC(MIN.) = 5.56 **************************************************************************** FLOW PROCESS FROM NODE 404.00 TO NODE 405.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 416.51 DOWNSTREAM(FEET) = 412.17 FLOW LENGTH(FEET) = 95.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 4.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.83 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.87 PIPE TRAVEL TIME(MIN.) = 0.20 Tc(MIN.) = 5.76 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 405.00 = 370.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 405.00 TO NODE 406.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 412.00 DOWNSTREAM(FEET) = 411.00 FLOW LENGTH(FEET) = 79.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 5.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.83 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.87 PIPE TRAVEL TIME(MIN.) = 0.27 Tc(MIN.) = 6.03 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 406.00 = 449.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 406.10 TO NODE 406.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.537 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.35 SUBAREA RUNOFF(CFS) = 1.94 TOTAL AREA(ACRES) = 0.7 TOTAL RUNOFF(CFS) = 3.72 TC(MIN.) = 6.03 **************************************************************************** FLOW PROCESS FROM NODE 406.20 TO NODE 406.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.537 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.01 SUBAREA RUNOFF(CFS) = 0.06 TOTAL AREA(ACRES) = 0.7 TOTAL RUNOFF(CFS) = 3.78 TC(MIN.) = 6.03 **************************************************************************** FLOW PROCESS FROM NODE 406.00 TO NODE 407.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 410.75 DOWNSTREAM(FEET) = 410.07 FLOW LENGTH(FEET) = 68.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 8.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.26 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.78 PIPE TRAVEL TIME(MIN.) = 0.22 Tc(MIN.) = 6.25 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 407.00 = 517.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 407.10 TO NODE 407.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.390 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.31 SUBAREA RUNOFF(CFS) = 1.68 TOTAL AREA(ACRES) = 1.0 TOTAL RUNOFF(CFS) = 5.38 TC(MIN.) = 6.25 **************************************************************************** FLOW PROCESS FROM NODE 407.00 TO NODE 408.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 410.07 DOWNSTREAM(FEET) = 409.48 FLOW LENGTH(FEET) = 59.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 10.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.65 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.38 PIPE TRAVEL TIME(MIN.) = 0.17 Tc(MIN.) = 6.42 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 408.00 = 576.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 408.10 TO NODE 408.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.278 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.15 SUBAREA RUNOFF(CFS) = 0.80 TOTAL AREA(ACRES) = 1.1 TOTAL RUNOFF(CFS) = 6.08 TC(MIN.) = 6.42 **************************************************************************** FLOW PROCESS FROM NODE 408.00 TO NODE 409.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 409.23 DOWNSTREAM(FEET) = 408.83 FLOW LENGTH(FEET) = 25.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 10.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.01 ESTIMATED PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 6.08 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 6.48 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 409.00 = 601.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 409.00 TO NODE 410.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.241 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8060 SUBAREA AREA(ACRES) = 0.11 SUBAREA RUNOFF(CFS) = 0.24 TOTAL AREA(ACRES) = 1.2 TOTAL RUNOFF(CFS) = 6.29 TC(MIN.) = 6.48 **************************************************************************** FLOW PROCESS FROM NODE 409.10 TO NODE 410.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.241 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8101 SUBAREA AREA(ACRES) = 0.13 SUBAREA RUNOFF(CFS) = 0.69 TOTAL AREA(ACRES) = 1.4 TOTAL RUNOFF(CFS) = 6.98 TC(MIN.) = 6.48 **************************************************************************** FLOW PROCESS FROM NODE 410.00 TO NODE 410.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 6.48 RAINFALL INTENSITY(INCH/HR) = 6.24 TOTAL STREAM AREA(ACRES) = 1.38 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.98 **************************************************************************** FLOW PROCESS FROM NODE 410.10 TO NODE 410.20 IS CODE = 22 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 SUBAREA RUNOFF(CFS) = 0.56 TOTAL AREA(ACRES) = 0.09 TOTAL RUNOFF(CFS) = 0.56 **************************************************************************** FLOW PROCESS FROM NODE 410.20 TO NODE 410.30 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 432.00 DOWNSTREAM(FEET) = 414.92 FLOW LENGTH(FEET) = 62.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 6.0 INCH PIPE IS 1.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.19 ESTIMATED PIPE DIAMETER(INCH) = 6.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.56 PIPE TRAVEL TIME(MIN.) = 0.09 Tc(MIN.) = 5.09 LONGEST FLOWPATH FROM NODE 410.10 TO NODE 410.30 = 80.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 410.30 TO NODE 410.30 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.291 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.08 SUBAREA RUNOFF(CFS) = 0.50 TOTAL AREA(ACRES) = 0.2 TOTAL RUNOFF(CFS) = 1.05 TC(MIN.) = 5.09 **************************************************************************** FLOW PROCESS FROM NODE 410.30 TO NODE 410.30 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.291 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.02 SUBAREA RUNOFF(CFS) = 0.12 TOTAL AREA(ACRES) = 0.2 TOTAL RUNOFF(CFS) = 1.18 TC(MIN.) = 5.09 **************************************************************************** FLOW PROCESS FROM NODE 410.30 TO NODE 410.40 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 414.75 DOWNSTREAM(FEET) = 413.75 FLOW LENGTH(FEET) = 49.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 4.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.13 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.18 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) = 5.25 LONGEST FLOWPATH FROM NODE 410.10 TO NODE 410.40 = 129.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 410.40 TO NODE 410.40 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.147 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.08 SUBAREA RUNOFF(CFS) = 0.49 TOTAL AREA(ACRES) = 0.3 TOTAL RUNOFF(CFS) = 1.64 TC(MIN.) = 5.25 **************************************************************************** FLOW PROCESS FROM NODE 410.40 TO NODE 410.50 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 413.75 DOWNSTREAM(FEET) = 412.75 FLOW LENGTH(FEET) = 49.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 5.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.54 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.64 PIPE TRAVEL TIME(MIN.) = 0.15 Tc(MIN.) = 5.40 LONGEST FLOWPATH FROM NODE 410.10 TO NODE 410.50 = 178.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 410.50 TO NODE 410.50 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.021 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.09 SUBAREA RUNOFF(CFS) = 0.54 TOTAL AREA(ACRES) = 0.4 TOTAL RUNOFF(CFS) = 2.15 TC(MIN.) = 5.40 **************************************************************************** FLOW PROCESS FROM NODE 410.50 TO NODE 410.60 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 412.75 DOWNSTREAM(FEET) = 411.70 FLOW LENGTH(FEET) = 52.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 7.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.75 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.15 PIPE TRAVEL TIME(MIN.) = 0.15 Tc(MIN.) = 5.55 LONGEST FLOWPATH FROM NODE 410.10 TO NODE 410.60 = 230.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 410.60 TO NODE 410.60 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.898 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.09 SUBAREA RUNOFF(CFS) = 0.53 TOTAL AREA(ACRES) = 0.4 TOTAL RUNOFF(CFS) = 2.64 TC(MIN.) = 5.55 **************************************************************************** FLOW PROCESS FROM NODE 410.60 TO NODE 410.70 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 411.70 DOWNSTREAM(FEET) = 409.70 FLOW LENGTH(FEET) = 98.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 6.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.28 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.64 PIPE TRAVEL TIME(MIN.) = 0.26 Tc(MIN.) = 5.81 LONGEST FLOWPATH FROM NODE 410.10 TO NODE 410.70 = 328.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 410.70 TO NODE 410.70 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.697 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.04 SUBAREA RUNOFF(CFS) = 0.23 TOTAL AREA(ACRES) = 0.5 TOTAL RUNOFF(CFS) = 2.79 TC(MIN.) = 5.81 **************************************************************************** FLOW PROCESS FROM NODE 410.70 TO NODE 410.80 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 409.37 DOWNSTREAM(FEET) = 408.83 FLOW LENGTH(FEET) = 47.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 12.0 INCH PIPE IS 7.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.09 ESTIMATED PIPE DIAMETER(INCH) = 12.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.79 PIPE TRAVEL TIME(MIN.) = 0.15 Tc(MIN.) = 5.96 LONGEST FLOWPATH FROM NODE 410.10 TO NODE 410.80 = 375.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 410.80 TO NODE 410.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.96 RAINFALL INTENSITY(INCH/HR) = 6.58 TOTAL STREAM AREA(ACRES) = 0.49 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.79 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 6.98 6.48 6.241 1.38 2 2.79 5.96 6.585 0.49 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 9.21 5.96 6.585 2 9.62 6.48 6.241 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 9.62 Tc(MIN.) = 6.48 TOTAL AREA(ACRES) = 1.9 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 410.00 = 601.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 410.00 TO NODE 410.00 IS CODE = 7 ---------------------------------------------------------------------------- >>>>>USER SPECIFIED HYDROLOGY INFORMATION AT NODE<<<<< ============================================================================ USER-SPECIFIED VALUES ARE AS FOLLOWS: TC(MIN) = 7.08 RAIN INTENSITY(INCH/HOUR) = 5.89 TOTAL AREA(ACRES) = 1.89 TOTAL RUNOFF(CFS) = 8.94 **************************************************************************** FLOW PROCESS FROM NODE 410.00 TO NODE 411.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 403.50 DOWNSTREAM(FEET) = 395.85 FLOW LENGTH(FEET) = 20.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 6.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 25.01 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 8.94 PIPE TRAVEL TIME(MIN.) = 0.01 Tc(MIN.) = 7.09 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 411.00 = 621.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 411.00 TO NODE 411.00 IS CODE = 11 ---------------------------------------------------------------------------- >>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<<<<< ============================================================================ ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 8.94 7.09 5.888 1.89 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 411.00 = 621.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 9.99 8.63 5.186 2.68 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 411.00 = 1172.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 17.15 7.09 5.888 2 17.87 8.63 5.186 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 17.87 Tc(MIN.) = 8.63 TOTAL AREA(ACRES) = 4.6 **************************************************************************** FLOW PROCESS FROM NODE 411.00 TO NODE 411.00 IS CODE = 10 ---------------------------------------------------------------------------- >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 2 <<<<< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 800.00 TO NODE 801.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 85.00 UPSTREAM ELEVATION(FEET) = 430.50 DOWNSTREAM ELEVATION(FEET) = 426.00 ELEVATION DIFFERENCE(FEET) = 4.50 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 7.142 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.862 SUBAREA RUNOFF(CFS) = 0.10 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.10 **************************************************************************** FLOW PROCESS FROM NODE 801.00 TO NODE 802.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 426.00 DOWNSTREAM(FEET) = 408.00 FLOW LENGTH(FEET) = 290.00 MANNING'S N = 0.018 DEPTH OF FLOW IN 24.0 INCH PIPE IS 0.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 2.69 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.10 PIPE TRAVEL TIME(MIN.) = 1.80 Tc(MIN.) = 8.94 LONGEST FLOWPATH FROM NODE 800.00 TO NODE 802.00 = 375.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 802.00 TO NODE 802.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.072 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.3500 SUBAREA AREA(ACRES) = 0.15 SUBAREA RUNOFF(CFS) = 0.27 TOTAL AREA(ACRES) = 0.2 TOTAL RUNOFF(CFS) = 0.36 TC(MIN.) = 8.94 **************************************************************************** FLOW PROCESS FROM NODE 802.00 TO NODE 803.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 408.00 DOWNSTREAM(FEET) = 402.90 FLOW LENGTH(FEET) = 357.00 MANNING'S N = 0.018 DEPTH OF FLOW IN 24.0 INCH PIPE IS 2.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 2.33 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.36 PIPE TRAVEL TIME(MIN.) = 2.56 Tc(MIN.) = 11.50 LONGEST FLOWPATH FROM NODE 800.00 TO NODE 803.00 = 732.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 803.00 TO NODE 803.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.312 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.3500 SUBAREA AREA(ACRES) = 0.15 SUBAREA RUNOFF(CFS) = 0.23 TOTAL AREA(ACRES) = 0.4 TOTAL RUNOFF(CFS) = 0.53 TC(MIN.) = 11.50 **************************************************************************** FLOW PROCESS FROM NODE 803.00 TO NODE 411.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 398.90 DOWNSTREAM(FEET) = 395.85 FLOW LENGTH(FEET) = 41.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 6.0 INCH PIPE IS 2.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.79 ESTIMATED PIPE DIAMETER(INCH) = 6.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.53 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 11.60 LONGEST FLOWPATH FROM NODE 800.00 TO NODE 411.00 = 773.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 411.00 TO NODE 411.00 IS CODE = 11 ---------------------------------------------------------------------------- >>>>>CONFLUENCE MEMORY BANK # 2 WITH THE MAIN-STREAM MEMORY<<<<< ============================================================================ ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 0.53 11.60 4.288 0.35 LONGEST FLOWPATH FROM NODE 800.00 TO NODE 411.00 = 773.00 FEET. ** MEMORY BANK # 2 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 17.87 8.63 5.186 4.57 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 411.00 = 1172.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 18.26 8.63 5.186 2 15.30 11.60 4.288 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 18.26 Tc(MIN.) = 8.63 TOTAL AREA(ACRES) = 4.9 **************************************************************************** FLOW PROCESS FROM NODE 411.00 TO NODE 412.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 391.10 DOWNSTREAM(FEET) = 374.92 FLOW LENGTH(FEET) = 57.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 6.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 26.66 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 18.26 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 8.67 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 412.00 = 1229.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 600.00 TO NODE 601.00 IS CODE = 22 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 7.377 SUBAREA RUNOFF(CFS) = 0.19 TOTAL AREA(ACRES) = 0.03 TOTAL RUNOFF(CFS) = 0.19 **************************************************************************** FLOW PROCESS FROM NODE 601.00 TO NODE 602.00 IS CODE = 62 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STREET TABLE SECTION # 2 USED)<<<<< ============================================================================ UPSTREAM ELEVATION(FEET) = 415.00 DOWNSTREAM ELEVATION(FEET) = 400.50 STREET LENGTH(FEET) = 244.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 14.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 9.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0180 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.14 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.21 HALFSTREET FLOOD WIDTH(FEET) = 5.11 AVERAGE FLOW VELOCITY(FEET/SEC.) = 3.29 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.68 STREET FLOW TRAVEL TIME(MIN.) = 1.24 Tc(MIN.) = 6.24 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.398 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.850 SUBAREA AREA(ACRES) = 0.35 SUBAREA RUNOFF(CFS) = 1.90 TOTAL AREA(ACRES) = 0.4 PEAK FLOW RATE(CFS) = 2.07 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.24 HALFSTREET FLOOD WIDTH(FEET) = 6.86 FLOW VELOCITY(FEET/SEC.) = 3.71 DEPTH*VELOCITY(FT*FT/SEC.) = 0.90 LONGEST FLOWPATH FROM NODE 600.00 TO NODE 602.00 = 308.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 602.00 TO NODE 602.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.398 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .8500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.8500 SUBAREA AREA(ACRES) = 0.02 SUBAREA RUNOFF(CFS) = 0.11 TOTAL AREA(ACRES) = 0.4 TOTAL RUNOFF(CFS) = 2.18 TC(MIN.) = 6.24 **************************************************************************** FLOW PROCESS FROM NODE 602.00 TO NODE 603.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 397.11 DOWNSTREAM(FEET) = 395.00 FLOW LENGTH(FEET) = 17.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 3.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.81 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.18 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) = 6.26 LONGEST FLOWPATH FROM NODE 600.00 TO NODE 603.00 = 325.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 603.00 TO NODE 603.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.382 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .3500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6097 SUBAREA AREA(ACRES) = 0.37 SUBAREA RUNOFF(CFS) = 0.83 TOTAL AREA(ACRES) = 0.8 TOTAL RUNOFF(CFS) = 3.00 TC(MIN.) = 6.26 **************************************************************************** FLOW PROCESS FROM NODE 603.00 TO NODE 604.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 391.00 DOWNSTREAM(FEET) = 388.50 FLOW LENGTH(FEET) = 18.20 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 12.56 GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.00 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) = 6.28 LONGEST FLOWPATH FROM NODE 600.00 TO NODE 604.00 = 343.20 FEET. ============================================================================ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 0.8 TC(MIN.) = 6.28 PEAK FLOW RATE(CFS) = 3.00 ============================================================================ ============================================================================ END OF RATIONAL METHOD ANALYSIS 3.5 Hydromodification Management To satisfy the requirements of the MS4 Permit, a hydromodification management strategy has been developed for the project based on the Final Hydromodification Management Plan dated March 2011, (Final HMP). A continuous simulation model, the Environmental Protection Agency (EPA) Storm Water Management Model (SWMM) version 5.1, was selected to size mitigation measures. The SWMM model is capable of modeling hydromodification management facilities to mitigate the effects of increased runoff from the post-development conditions and use changes that may cause negative impacts (i.e. erosion) to downstream channels. For HMP calculations refer to the report titled “Storm Water Quality Management Plan for Ionis Lots 21 and 22” dated January 2023, prepared by Pasco Laret Suiter & Associates. 3.6 Storm Water Pollutant Control To meet the requirements of the MS4 Permit, the Modular Wetland Systems and biofiltration basin BMPs are designed to treat onsite storm water pollutants contained in the volume of runoff from a 24-hour, 85th percentile storm event. For detailed pollutant control calculations refer to the report titled “Storm Water Quality Management Plan for Ionis Lots 21 and 22” dated January 2023, prepared by Pasco Laret Suiter & Associates. 4.0 HYDRAULIC METHODOLOGY 4.1 AES Pipeflow The onsite storm drain improvements and offsite existing storm drain located within Whiptail Loop were analyzed using AES Pipeflow. Advanced Engineering Software (AES) Pipeflow computer program was used to model the hydraulic grade line within the storm drains. Pipeflow computes uniform and non-uniform steady flow water surface profiles and pressure gradients in circular pipes. Storm drain diameter, Manning’s roughness coefficient, discharge as well as known boundary conditions are required to complete the hydraulic model. Pipeflow can model supercritical, subcritical and pressure flow, and calculates losses that may occur due to friction, junction structures and other minor losses. Refer to Appendix D for detailed AES Pipeflow output. 4.2 Curb Inlets and Grated Inlets on Grade The proposed curb inlets and grated inlets on grade were sized using the FHWA Hydraulic Toolbox, V5.1 to capture the 100-year peak discharge rate. Curb inlets and grated inlets along the curb face were sized using the Curb and Gutter Analysis Calculator within the Hydraulic Toolbox software. Grated inlets along the ribbon gutter and brow ditch capacities were analyzed using the Median/Ditch Drop-Inlet Calculator within the Hydraulic Toolbox software. The Median/Ditch Drop-Inlet Calculator computes the amount of flow captured and by-passed by a typical drop-inlet placed in the bottom of media, roadside or similar ditch. The bypassed flow was added to the next downstream inlet to calculate the capacity. See the Hydraulic Node Map located in Appendix 4 of this report for summary of peak flows and bypassed flows to each inlet. The equations used in the curb and gutter calculator and median/ditch drop inlet calculator are found in HEC 22 (Brown, S.A., Schall, J.D., Morris, J.L., Doherty, C.L. Stein, S.M., Warner, J.C., September 2009, Urban Drainage Design Manual, Hydraulic Engineering Circular 22, Third Edition, FHWA-NHI-10-009, HEC 22). Refer to HEC 22, Chapter 4.4.7 for more information on median inlets. The equations used in HEC 22 are consistent with the formulas used to calculate curb and gutter flow and grated inlets on grade in the San Diego County Hydraulic Design Manual (September 2014). Refer to Appendix E for detailed inlet calculations. 4.3 Grated Inlets in Sag Grated inlets in a sag location operates as a weir at shallower depths and as an orifice at larger depths. The capacity of typical grated inlets at various sizes and depths has been calculated in a spreadsheet under both weir flow and orifice flow conditions. The design capacity equal to the smaller of the two results was selected and compared against the proposed inflow to each inlet. See summary of grated inlets in the sag condition located in Appendix E. APPENDIX A Hydrology Support Material Hydrologic Soil Group—San Diego County Area, California Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 9/13/2022 Page 1 of 4 36 6 7 1 2 0 36 6 7 1 7 0 36 6 7 2 2 0 36 6 7 2 7 0 36 6 7 3 2 0 36 6 7 3 7 0 36 6 7 4 2 0 36 6 7 1 2 0 36 6 7 1 7 0 36 6 7 2 2 0 36 6 7 2 7 0 36 6 7 3 2 0 36 6 7 3 7 0 36 6 7 4 2 0 475990 476040 476090 476140 476190 476240 476290 476340 476390 476440 476490 475990 476040 476090 476140 476190 476240 476290 476340 476390 476440 476490 33° 8' 43'' N 11 7 ° 1 5 ' 2 7 ' ' W 33° 8' 43'' N 11 7 ° 1 5 ' 6 ' ' W 33° 8' 32'' N 11 7 ° 1 5 ' 2 7 ' ' W 33° 8' 32'' N 11 7 ° 1 5 ' 6 ' ' W N Map projection: Web Mercator Corner coordinates: WGS84 Edge tics: UTM Zone 11N WGS84 0 100 200 400 600Feet 0 35 70 140 210Meters Map Scale: 1:2,440 if printed on A landscape (11" x 8.5") sheet. Soil Map may not be valid at this scale. USDA = MAP LEGEND MAP INFORMATION Area of Interest (AOI) Area of Interest (AOI) Soils Soil Rating Polygons A A/D B B/D C C/D D Not rated or not available Soil Rating Lines A A/D B B/D C C/D D Not rated or not available Soil Rating Points A A/D B B/D C C/D D Not rated or not available Water Features Streams and Canals Transportation Rails Interstate Highways US Routes Major Roads Local Roads Background Aerial Photography The soil surveys that comprise your AOI were mapped at 1:24,000. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: San Diego County Area, California Survey Area Data: Version 16, Sep 13, 2021 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Mar 14, 2022—Mar 17, 2022 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. Hydrologic Soil Group—San Diego County Area, California Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 9/13/2022 Page 2 of 4USDA = □ D D D D D D D D ,,..,,,. ,,..,,,. □ ■ ■ □ □ ,,..._., t-+-t ~ tllWI ,..,,. ~ • Hydrologic Soil Group Map unit symbol Map unit name Rating Acres in AOI Percent of AOI ClE2 Cieneba coarse sandy loam, 15 to 30 percent slopes, eroded D 27.1 98.6% ClG2 Cieneba coarse sandy loam, 30 to 65 percent slopes, eroded D 0.4 1.4% Totals for Area of Interest 27.5 100.0% Description Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms. The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows: Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission. Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission. Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission. Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission. If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes. Hydrologic Soil Group—San Diego County Area, California Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 9/13/2022 Page 3 of 4USDA = Rating Options Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher Hydrologic Soil Group—San Diego County Area, California Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 9/13/2022 Page 4 of 4~ IL__·-----_--_I 0 io b ~ C"'l ..... r,,.. 0 r,,.. . ..... ..... (0 ..... ..... ..... ..... ..... ..-- Riverside County t-+ 32°45' .. , .... -! , ......... ,, ,,' ,,' : ,,' ~· ,, ,, , , # , . , , , ~ , , , , I ,' ,,, t M 32°30' b io g ~ C"'l ..... r,,.. . ..... r,,.. (0 ..... .... ..... ..... .... .... . e X I b C"'l • cc ..... ..... 0 r' cc .... ..-- io .... (0 ..... .... 33°30' -3 "C CD :l. 0) ~ (') 0 C: :l -'< 32°30' County of San Diego Hydrology Manual Rainfall Isopluvials 100 Year Rainfall Event-24 Hours lsopluvial (inches) DPW ~GIS Oepartmenr of ():;t,\'c Wcvks 61..,-0.1'<}~ Mom,;,1/ion S?rvicc:-s s1fGIS We Have San Di~go Cnvcrcd! llllS MAP IS PRCMOEO wm 101/T WAA!WITV Of Al« 1<11-.D, EITHER EXPRESS OR l"'PUEO, INCWOING, BUT NOT U .. TEO TO, THE l"'PUEO WARRANTIES OF MERCHANTABILITY AM> FITNESS FOR A PARTICULAR PURPOSE. Copy,1ghl8onGIS. ~ RJul"■ Rcoor,od. -pn,ducla ...,......, i,lonndon lromtho SAAllAG Raa1oN11 l--whlchcomolbo--11,o wrlUan-olSANDAO. -pn,duct..., corai, Wonn■donwhlch I-a boMn,pn,duced wl1h _,_,g,._by __ _ Miles 10.0 9.0 8.0 7.0 6 .. 0 5,0 I ]', r-- ......... r-.. r-.. 4.0 'r--, " 3.0 I I 2.0 ·~ 0 t .<ll ~1.0 ) l .~.0.9 ~o.s ~0-7 ; ' ,. 0.6 0. ) j 0.4 1 o .. I 0 .. 1 ~ --r- i-.... ' . ' , .... . ' ' r-.. . .... , .... .,, 1'. ]', !.,,r-, , .... ,,_ ... .... ~ .... ' ....... ..., .. ... ... i', "" . ...... ... , .. "' I\. '"" .. ~ ~ " .... , ... " ... 1,"" "'~~ "' ~ .... ~ r-...._ ... "'i.. )',, ~ "" r-I• ~ .,, )',, ror"' .... I• .... ~ ' "' .... ~ ~ ~ .., "' ' .. , "'" ... ~ ... , .. ,, ~, ~ ~ .... r-.. )',, I• I',:-, ~ I',.,. 'I' ..... .. .. ~ 'i.. ~~ ~ - ' ----. . -· -. ---·--·-...,..¥.., '¥"~f''"" , ...... ~ . r ----_,.. . ......__ -I ······--->-I-• t-1•-! 0. ! ,.. .• T ! _.,,.,,...,. ! i 5 6 7 8 9 10 15 20 30 Minutes I I ~ ~ ~ .. , ~~ .. ..~ I ~- ~ I ,I .. ~ i..,. I ~~ I .. -.- ' .. . -· w ?' ,. " . ., ... .. 40 sq Duration I ' I I EQUATION I .I = 7.44 P5 o·0.645 I = Intensity (in/hr) P5 = 6-Hour Precipitation (in) D = Duration (min) i ' i t"r-.. I ' ... r-. '"' i ~ I'-t,.. r-. r-... 1, "' I• r, ' .... ~ .. ... . ~ i 1 ... • ,, "'"' ~ I 1-... ........ "' .. "' "' ~ ,, ~ ' .... "' 11' .,, I', .. ,.. ~ I ' "r-"' I' I'-l', r, r~ ,. "'i-."' ~ I ... I"!~ I •i-, 'i-... ~ i ~ ' I 'r... ~~~ I i . .. ' ' ,· + ' w+ -·--.. ,. -,•·.¥•·•--· ~ -~ --w .• ... ~,,,' .s,. .... +~ . , ....... ' . -'-...... ~·---·· -.L Ii ... t. . ,. --... ...,._, 2 3 4 5 6 Hours 0, ± ~ I 6.0 "2. 5.5 ~ 5.0 g 4.5 '§' . n 4.0 25 3.5~ 3.0 2.5 2.0 1.5 1.0 Intensity-Duration Design Chart -Template Directions for Application: (1) From precipitation maps determine 6 hr' and 24 hr amounts for the selected frequency. These maps are included in the County Hydrology Manual (10, 50, and 100 yr maps Included in the Design and Procedure Manual). (2) Adjust 6 hr precipitation (if necessary) so tha1 itls within the range of 45% to 65% of the 24 hr precipitation (not applicapfe to Desert). . (3) Plot 6 hr precipitation on the right side of the chart. (4) Draw a line through the point parallel to the plotted lines . (5) This line is the intensity-duration curve for the location being analyzed. Application Form: (a) Selected frequency ___ year {b)Pe = in P24 = .£]_ = %{2) -· -· -,, -···-··-· -'P24 -~ (c} Adjusted P6(2) :i:: ____ in. (d) Ix= __ .min • (e) I = __ in./hr. Note: This chart replaces the Intensity-Duration-Frequency curves used since 1965. P6 ...... :L:·,:::::.: u r ::(:1).sl .3-J 3:s:::::::(:::,1:::4.5..: .... !L"[·s.s.l.6 .. ·.· Duration : l : I : I ! I i I i l I I ; l ; I i I 1,86, 13.17!14.49115.81 · ;;n 1 o.ao:1reaH2:'i2 ., ......... ····•·•:.c•· ..... ·r·.f.i .. H :ial 1=-~ffliilt~H~il;~t~~ii~f ti+l.m f t~~t! !~ ?,91 .. ?,?? l.?,'.1:? .• t70, .1:87 i 2,04 f:~r.·r~T r:~~1 _.08 .,1.19., .. 1.30 .. ,0 ,94J 1.03j 1,13 .. ! 0,~ i 0,92 I LOO FIG .R .. R 3-1 San Diego County Hydrology Manual Date: · June 2003 Table 3-1 Section: Page: RUNOFF COEFFICIENTS FOR URBAN AREAS Land Use I Runoff Coefficient "C" Soil Ti'.Ee NRCS Elements Coun Elements %IMPER. A B Undisturbed Natural Terrain (Natural) Permanent Open Space 0* 0.20 0.25 Low Density Residential (LDR) Residential, 1.0 DU/A or less 10 0.27 0.32 Low Density Residential (LDR) Residential, 2.0 DU/A or less 20 0.34 0.38 Low Density Residential (LDR) Residential, 2.9 DU/A or less 25 0.38 0.41 Medium Density Residential (MDR) Residential, 4.3 DU/A or less 30 0.41 0.45 Medium Density Residential (MDR) Residential, 7.3 DU/A or less 40 0.48 0.51 Medium Density Residential (MDR) Residential, 10.9 DU/A or less 45 0.52 0.54 Medium Density Residential (MDR) Residential, 14.5 DU/A or less 50 0.55 0.58 High Density Residential (HOR) Residential, 24.0 DU/A or less 65 0.66 0.67 High Density Residential (HDR) Residential, 43.0 DU/A or less 80 0.76 0.77 Commercial/Industrial (N. Com) Neighborhood Commercial 80 0.76 0.77 Commercial/Industrial (G. Com) General Commercial 85 0.80 0.80 Commercial/lndustrial (0.P. Com) Office Professional/Commercial 90 0.83 0.84 Commercial/Industrial (Limited r.) Limited Industrial 90 0.83 0.84 Commercial/Industrial (General I.) General Industrial 95 0.87 0.87 C 0.30 0.36 0.42 0.45 0.48 0.54 0.57 0.60 0.69 0.78 0.78 0.81 0.84 0.84 0.87 3 6 of 26 D 0.35 0.41 0.46 0.49 0.52 0.57 0.60 0.63 0.71 0.79 0.79 0.82 0.85 0.85 0.87 *The values associated with 0% impervious may be used for direct calculation of the runoff coefficient as described in Section 3.1.2 (representing the pervious runoff coefficient, Cp, for the soil type), or for areas that will remain undisturbed in perpetuity. Justification must be given that the area wi II remain natural forever ( e.g., the area is located in Cleveland National Forest). DU/A = dwelling units per acre NRCS = National Resources Conservation Service 3~6 APPENDIX B Detention Support Material 1L Inflow to BMP-1 1P BMP-1 Total 2L Inflow to BMP-2 2P BMP-2 Total 3L Inflow to BMP-3 3P BMP-3 Total 4L Inflow to BMP-4 4P BMP-4 Total Routing Diagram for 3925 Prepared by Pasco Laret Suiter & Assoc, Printed 3/29/2023 HydroCAD® 10.20-2f s/n 10097 © 2022 HydroCAD Software Solutions LLC Subcat Reach Pond Link ~~ D ----~D ---~D -~D Type II 24-hr Rainfall=2.80"3925 Printed 3/29/2023Prepared by Pasco Laret Suiter & Assoc Page 2HydroCAD® 10.20-2f s/n 10097 © 2022 HydroCAD Software Solutions LLC Summary for Link 1L: Inflow to BMP-1 Inflow = 6.30 cfs @ 4.13 hrs, Volume= 0.272 af Primary = 6.30 cfs @ 4.13 hrs, Volume= 0.272 af, Atten= 0%, Lag= 0.0 min Routed to Pond 1P : BMP-1 Total Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs DISCHARGE Imported from Inflow-Node108_adj.csv Link 1L: Inflow to BMP-1 Inflow Primary Hydrograph Time (hours) 95908580757065605550454035302520151050 Fl o w ( c f s ) 7 6 5 4 3 2 1 0 DISCHARGE Imported from Inflow-Node108_adj.csv 6.30 cfs 6.30 cfs -rb: D l7~ y V -V V _V V V V V Vv v v v -Vv v v v -Vv Vv V v v -Vv -~=Wffffffll V///ZV//7~~~ W,MV///7,V~~ ,7/~7/7///ff/2 W/7//7~~///~~ff~~~~ Type II 24-hr Rainfall=2.80"3925 Printed 3/29/2023Prepared by Pasco Laret Suiter & Assoc Page 3HydroCAD® 10.20-2f s/n 10097 © 2022 HydroCAD Software Solutions LLC Summary for Pond 1P: BMP-1 Total Inflow =6.30 cfs @ 4.13 hrs, Volume=0.272 af Outflow =5.32 cfs @ 4.16 hrs, Volume=0.268 af, Atten= 16%, Lag= 1.8 min Primary =5.32 cfs @ 4.16 hrs, Volume=0.268 af Routing by Dyn-Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Peak Elev= 425.71' @ 4.16 hrs Surf.Area= 3,131 sf Storage= 4,874 cf Plug-Flow detention time= 119.6 min calculated for 0.268 af (98% of inflow) Center-of-Mass det. time= 117.3 min ( 332.2 - 214.9 ) Volume Invert Avail.Storage Storage Description #1 421.00'5,822 cf Custom Stage Data (Conic) Listed below (Recalc) Elevation Surf.Area Voids Inc.Store Cum.Store Wet.Area (feet)(sq-ft)(%)(cubic-feet)(cubic-feet)(sq-ft) 421.00 1,811 0.0 0 0 1,811 422.75 1,811 40.0 1,268 1,268 2,075 424.50 1,811 20.0 634 1,902 2,339 425.50 2,897 100.0 2,333 4,234 3,438 426.00 3,462 100.0 1,588 5,822 4,012 Device Routing Invert Outlet Devices #1 Primary 421.00'12.0" Round Culvert L= 22.0' RCP, groove end projecting, Ke= 0.200 Inlet / Outlet Invert= 421.00' / 417.00' S= 0.1818 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf #2 Device 1 421.25'6.0" Vert. Perf Pipe/Orifice C= 0.600 Limited to weir flow at low heads #3 Primary 425.50'36.0" x 36.0" Horiz. Grate C= 0.600 in 36.0" x 36.0" Grate (100% open area) Limited to weir flow at low heads #4 Primary 425.50'12.0" x 12.0" Horiz. Grate C= 0.600 in 12.0" x 12.0" Grate (100% open area) Limited to weir flow at low heads #5 Device 2 421.00'5.000 in/hr Exfiltration over Surface area below 424.50' Primary OutFlow Max=5.31 cfs @ 4.16 hrs HW=425.71' (Free Discharge) 1=Culvert (Passes 0.21 cfs of 9.70 cfs potential flow) 2=Perf Pipe/Orifice (Passes 0.21 cfs of 1.94 cfs potential flow) 5=Exfiltration (Exfiltration Controls 0.21 cfs) 3=Grate (Weir Controls 3.83 cfs @ 1.51 fps) 4=Grate (Weir Controls 1.28 cfs @ 1.51 fps) Type II 24-hr Rainfall=2.80"3925 Printed 3/29/2023Prepared by Pasco Laret Suiter & Assoc Page 4HydroCAD® 10.20-2f s/n 10097 © 2022 HydroCAD Software Solutions LLC Pond 1P: BMP-1 Total Inflow Primary Hydrograph Time (hours) 95908580757065605550454035302520151050 Fl o w ( c f s ) 7 6 5 4 3 2 1 0 Peak Elev=425.71' Storage=4,874 cf 6.30 cfs 5.32 cfs -~ D _V V V / ~ l, -V V V _V V V V V V V _V V V V V v v / -~/ %/ -rI =,=',='A!,'0ZW,='AX½ Ir-~ff//7///~ff//////~U Type II 24-hr Rainfall=2.80"3925 Printed 3/29/2023Prepared by Pasco Laret Suiter & Assoc Page 5HydroCAD® 10.20-2f s/n 10097 © 2022 HydroCAD Software Solutions LLC Summary for Link 2L: Inflow to BMP-2 Inflow = 8.47 cfs @ 4.10 hrs, Volume= 0.315 af Primary = 8.47 cfs @ 4.10 hrs, Volume= 0.315 af, Atten= 0%, Lag= 0.0 min Routed to Pond 2P : BMP-2 Total Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs DISCHARGE Imported from Inflow-Node206.csv Link 2L: Inflow to BMP-2 Inflow Primary Hydrograph Time (hours) 95908580757065605550454035302520151050 Fl o w ( c f s ) 9 8 7 6 5 4 3 2 1 0 DISCHARGE Imported from Inflow-Node206.csv 8.47 cfs 8.47 cfs ~ v c=--v J 17""v -V D _V V V V _V V V V V _V V V _V V V v v v -V -;b _V '/~~f7~ ~///2 09"/,0'/~-{~~A00. ~,/~-{~~~ w ~ ff//2 "W' /ff/////~ ~~~ Type II 24-hr Rainfall=2.80"3925 Printed 3/29/2023Prepared by Pasco Laret Suiter & Assoc Page 6HydroCAD® 10.20-2f s/n 10097 © 2022 HydroCAD Software Solutions LLC Summary for Pond 2P: BMP-2 Total Inflow =8.47 cfs @ 4.10 hrs, Volume=0.315 af Outflow =7.35 cfs @ 4.12 hrs, Volume=0.310 af, Atten= 13%, Lag= 1.0 min Primary =7.35 cfs @ 4.12 hrs, Volume=0.310 af Routing by Dyn-Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Peak Elev= 429.92' @ 4.12 hrs Surf.Area= 2,043 sf Storage= 5,591 cf Plug-Flow detention time= 127.5 min calculated for 0.310 af (99% of inflow) Center-of-Mass det. time= 125.5 min ( 338.1 - 212.5 ) Volume Invert Avail.Storage Storage Description #1 424.50'10,002 cf Custom Stage Data (Conic) Listed below (Recalc) Elevation Surf.Area Voids Inc.Store Cum.Store Wet.Area (feet)(sq-ft)(%)(cubic-feet)(cubic-feet)(sq-ft) 424.50 1,795 0.0 0 0 1,795 426.25 1,795 40.0 1,257 1,257 2,058 428.00 1,795 20.0 628 1,885 2,321 429.50 2,012 100.0 2,854 4,738 2,638 432.00 2,200 100.0 5,263 10,002 3,086 Device Routing Invert Outlet Devices #1 Primary 424.50'18.0" Round Culvert L= 184.0' RCP, groove end projecting, Ke= 0.200 Inlet / Outlet Invert= 424.50' / 422.66' S= 0.0100 '/' Cc= 0.900 n= 0.013, Flow Area= 1.77 sf #2 Device 1 424.75'6.0" Vert. Perf Pipe/Orifice C= 0.600 Limited to weir flow at low heads #3 Device 1 429.50'24.0" x 24.0" Horiz. Grate C= 0.600 in 24.0" x 24.0" Grate (100% open area) Limited to weir flow at low heads #4 Device 2 424.50'5.000 in/hr Exfiltration over Surface area below 428.00' Primary OutFlow Max=7.32 cfs @ 4.12 hrs HW=429.92' (Free Discharge) 1=Culvert (Passes 7.32 cfs of 15.93 cfs potential flow) 2=Perf Pipe/Orifice (Passes 0.21 cfs of 2.10 cfs potential flow) 4=Exfiltration (Exfiltration Controls 0.21 cfs) 3=Grate (Weir Controls 7.11 cfs @ 2.12 fps) Type II 24-hr Rainfall=2.80"3925 Printed 3/29/2023Prepared by Pasco Laret Suiter & Assoc Page 7HydroCAD® 10.20-2f s/n 10097 © 2022 HydroCAD Software Solutions LLC Pond 2P: BMP-2 Total Inflow Primary Hydrograph Time (hours) 95908580757065605550454035302520151050 Fl o w ( c f s ) 9 8 7 6 5 4 3 2 1 0 Peak Elev=429.92' Storage=5,591 cf 8.47 cfs 7.35 cfs ~ :~ ~v -v v D _V V V V V _V V V _V V V V v v v -V v ~v : ~ ,,,,,_,.,,,,,=« ':'<?W"-" ,r ,,;/ 0{/'////~-{~~~ 0@ I'/~-{~~ V///2~ ,, ~~~ 'WA. ~ ~///7/7 .///#ff/#. ;;-,,,,,,,,,~ Type II 24-hr Rainfall=2.80"3925 Printed 3/29/2023Prepared by Pasco Laret Suiter & Assoc Page 8HydroCAD® 10.20-2f s/n 10097 © 2022 HydroCAD Software Solutions LLC Summary for Link 3L: Inflow to BMP-3 Inflow = 4.41 cfs @ 4.08 hrs, Volume= 0.154 af Primary = 4.41 cfs @ 4.08 hrs, Volume= 0.154 af, Atten= 0%, Lag= 0.0 min Routed to Pond 3P : BMP-3 Total Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs DISCHARGE Imported from Inflow-Node304_adj.csv Link 3L: Inflow to BMP-3 Inflow Primary Hydrograph Time (hours) 95908580757065605550454035302520151050 Fl o w ( c f s ) 4 3 2 1 0 DISCHARGE Imported from Inflow-Node304_adj.csv 4.41 cfs 4.41 cfs ~ D r L, v _V V V _V V V V V V V _V V V V V V -~/"'/////. ,,,,,, ~ /ff////7 //2 'WA'~ 09" /,ff/~-{~~ A00. ~ Wff/ff//7/7/AVff#'~ U//20'7~ v~ ~~ W///#'~~~ Type II 24-hr Rainfall=2.80"3925 Printed 3/29/2023Prepared by Pasco Laret Suiter & Assoc Page 9HydroCAD® 10.20-2f s/n 10097 © 2022 HydroCAD Software Solutions LLC Summary for Pond 3P: BMP-3 Total Inflow =4.41 cfs @ 4.08 hrs, Volume=0.154 af Outflow =2.31 cfs @ 4.13 hrs, Volume=0.152 af, Atten= 48%, Lag= 3.1 min Primary =2.31 cfs @ 4.13 hrs, Volume=0.152 af Routing by Dyn-Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Peak Elev= 416.52' @ 4.13 hrs Surf.Area= 2,226 sf Storage= 3,225 cf Plug-Flow detention time= 135.3 min calculated for 0.152 af (98% of inflow) Center-of-Mass det. time= 132.8 min ( 346.5 - 213.7 ) Volume Invert Avail.Storage Storage Description #1 411.83'5,336 cf Custom Stage Data (Conic) Listed below (Recalc) Elevation Surf.Area Voids Inc.Store Cum.Store Wet.Area (feet)(sq-ft)(%)(cubic-feet)(cubic-feet)(sq-ft) 411.83 1,167 0.0 0 0 1,167 413.58 1,167 40.0 817 817 1,379 415.33 1,167 20.0 408 1,225 1,591 416.33 2,059 100.0 1,592 2,817 2,494 417.33 3,008 100.0 2,519 5,336 3,459 Device Routing Invert Outlet Devices #1 Primary 411.83'12.0" Round Culvert L= 54.0' RCP, groove end projecting, Ke= 0.200 Inlet / Outlet Invert= 411.83' / 407.49' S= 0.0804 '/' Cc= 0.900 n= 0.013, Flow Area= 0.79 sf #2 Device 1 412.08'6.0" Vert. Perf Pipe/Orifice C= 0.600 Limited to weir flow at low heads #3 Device 1 416.33'24.0" x 24.0" Horiz. Grate C= 0.600 in 24.0" x 24.0" Grate (100% open area) Limited to weir flow at low heads #4 Device 2 411.83'5.000 in/hr Exfiltration over Surface area below 415.33' Primary OutFlow Max=2.29 cfs @ 4.13 hrs HW=416.52' (Free Discharge) 1=Culvert (Passes 2.29 cfs of 9.68 cfs potential flow) 2=Perf Pipe/Orifice (Passes 0.14 cfs of 1.94 cfs potential flow) 4=Exfiltration (Exfiltration Controls 0.14 cfs) 3=Grate (Weir Controls 2.16 cfs @ 1.42 fps) Type II 24-hr Rainfall=2.80"3925 Printed 3/29/2023Prepared by Pasco Laret Suiter & Assoc Page 10HydroCAD® 10.20-2f s/n 10097 © 2022 HydroCAD Software Solutions LLC Pond 3P: BMP-3 Total Inflow Primary Hydrograph Time (hours) 95908580757065605550454035302520151050 Fl o w ( c f s ) 4 3 2 1 0 Peak Elev=416.52' Storage=3,225 cf 4.41 cfs 2.31 cfs D Type II 24-hr Rainfall=2.80"3925 Printed 3/29/2023Prepared by Pasco Laret Suiter & Assoc Page 11HydroCAD® 10.20-2f s/n 10097 © 2022 HydroCAD Software Solutions LLC Summary for Link 4L: Inflow to BMP-4 Inflow = 9.62 cfs @ 4.10 hrs, Volume= 0.364 af Primary = 9.62 cfs @ 4.10 hrs, Volume= 0.364 af, Atten= 0%, Lag= 0.0 min Routed to Pond 4P : BMP-4 Total Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs DISCHARGE Imported from Inflow-Node410.csv Link 4L: Inflow to BMP-4 Inflow Primary Hydrograph Time (hours) 95908580757065605550454035302520151050 Fl o w ( c f s ) 10 9 8 7 6 5 4 3 2 1 0 DISCHARGE Imported from Inflow-Node410.csv 9.62 cfs 9.62 cfs ~ D -"Lr _// / _// / / // / :/; / _/ / / _// / / // / -// :~=".a<W.6« w,=,,= &/✓,/,a<W~=W#//7/0 '/~ffj~ ~ ///ff// //7//////7///¼ V/#' //////////ff/ ff/////////ff/ff/7//7//2 ~ Type II 24-hr Rainfall=2.80"3925 Printed 3/29/2023Prepared by Pasco Laret Suiter & Assoc Page 12HydroCAD® 10.20-2f s/n 10097 © 2022 HydroCAD Software Solutions LLC Summary for Pond 4P: BMP-4 Total Inflow =9.62 cfs @ 4.10 hrs, Volume=0.364 af Outflow =8.94 cfs @ 4.11 hrs, Volume=0.359 af, Atten= 7%, Lag= 0.6 min Primary =8.94 cfs @ 4.11 hrs, Volume=0.359 af Routing by Dyn-Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.01 hrs Peak Elev= 409.73' @ 4.11 hrs Surf.Area= 3,035 sf Storage= 5,234 cf Plug-Flow detention time= 100.7 min calculated for 0.359 af (99% of inflow) Center-of-Mass det. time= 99.1 min ( 311.8 - 212.7 ) Volume Invert Avail.Storage Storage Description #1 405.00'6,083 cf Custom Stage Data (Conic) Listed below (Recalc) Elevation Surf.Area Voids Inc.Store Cum.Store Wet.Area (feet)(sq-ft)(%)(cubic-feet)(cubic-feet)(sq-ft) 405.00 2,030 0.0 0 0 2,030 406.75 2,030 40.0 1,421 1,421 2,310 408.50 2,030 20.0 711 2,132 2,589 409.50 2,842 100.0 2,425 4,556 3,420 410.00 3,269 100.0 1,527 6,083 3,858 Device Routing Invert Outlet Devices #1 Primary 403.50'18.0" Round Culvert L= 22.0' RCP, groove end projecting, Ke= 0.200 Inlet / Outlet Invert= 403.50' / 395.14' S= 0.3800 '/' Cc= 0.900 n= 0.013, Flow Area= 1.77 sf #2 Device 1 405.25'6.0" Vert. Perf Pipe/Orifice C= 0.600 Limited to weir flow at low heads #3 Device 1 409.50'36.0" x 36.0" Horiz. Grate C= 0.600 in 36.0" x 36.0" Grate (100% open area) Limited to weir flow at low heads #4 Device 1 409.50'36.0" x 36.0" Horiz. Grate C= 0.600 in 36.0" x 36.0" Grate (100% open area) Limited to weir flow at low heads #5 Device 2 405.00'5.000 in/hr Exfiltration over Surface area below 408.50' Primary OutFlow Max=8.94 cfs @ 4.11 hrs HW=409.73' (Free Discharge) 1=Culvert (Passes 8.94 cfs of 24.90 cfs potential flow) 2=Perf Pipe/Orifice (Passes 0.23 cfs of 1.94 cfs potential flow) 5=Exfiltration (Exfiltration Controls 0.23 cfs) 3=Grate (Weir Controls 4.35 cfs @ 1.57 fps) 4=Grate (Weir Controls 4.35 cfs @ 1.57 fps) Type II 24-hr Rainfall=2.80"3925 Printed 3/29/2023Prepared by Pasco Laret Suiter & Assoc Page 13HydroCAD® 10.20-2f s/n 10097 © 2022 HydroCAD Software Solutions LLC Pond 4P: BMP-4 Total Inflow Primary Hydrograph Time (hours) 95908580757065605550454035302520151050 Fl o w ( c f s ) 10 9 8 7 6 5 4 3 2 1 0 Peak Elev=409.73' Storage=5,234 cf 9.62 cfs 8.94 cfs -~ D I r -1/ _/ / / / / _/ / / _/ / / /// -/// -/ / _/// :~ '//~-{~~,60 ~/////_m;.//~~~~ W,hW/0 .,,~ffj~ W//A0W~./////////AWA0W~A0W////A v,a-7//h W//~ APPENDIX C Proposed Condition Hydrology Map 4 6 0 4 9 0 495 4 9 5 5 0 0 460 465 470 475 480 45 0 46 5 45 5 46 0 47 0 47 0 475 460 445 450 455 460 445 450 440 455 480 485 45 0 465 4 5 5 46 0 47 0 4 7 0 4 7 5 48 0 4 8 5 490 45 0 4 6 5 45 5 460 4 7 0 4 7 5 485 4 3 5 44 0 4 4 5 4 5 0 455 455 43 0 435 440 425 425 425 420 445 430 42 0 415 42 5 440 415 420 410 420 425 415 41 0 410 420 405 405 41 5 40 5 485 49 0 495 475 480 485 49 0 470 45 0 46 5 45 5 46 0 47 5 485 47 0 4 8 0 45 0 46 5 45 5 46 0 46 5 47 5 45 0 470 46 5 46 0 455 435 450 430 440 430 435420 4 0 5 400 400 39 5 400 395 39 0 400 405 390 395 405 405 4 0 0 39 0 38 5 39 5 38 5 385 38 0 385 410 395 400 405 39 5 4 0 0 405 3 9 5 4 0 0 4 0 5 3 9 0 4 0 0 3 9 0 3 9 5 4 0 5 39 0 VAN SD S D SD S D S D SD SD SD SDS D S D S D SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD S D S D S D S D S D S D SDSD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD SD S D S D SD SD SD SD S D SD SD SD S D W W W W SD SD SD SD SD SD S D S D SD SD SD SD SD SD W W W W W W W W SD W W W W W S D SDW W W W W W W W W W W W W SD SD SD SD SD SD W W W W W W W WWW W W SD W A=0.04 102 0.67 100 - - 101 0.14 400 - - 401 0.25 A=0.08 A=0.02 A=0.08 405 1.87 406 3.78 407 5.38 A=0.35 408 6.08 409 6.08 103 0.67 104 1.21 105 1.75 106 3.82 107 3.82 A=0.06 A=0.28 A=0.09 A=0.12 A=0.26 108 6.31 502 7.64 503 7.64 A=0.13 A=0.36 200 - - 201 1.00 202 1.69 203 3.56 204 4.65 205 4.19 A=0.08 A=0.08 A=0.12 A=0.14 A=0.19 A=0.39 A=0.15 A=0.15 410 9.62 411 21.5 A=0.15 A=0.11 A=0.13 301 0.63 302 0.94 303 1.36 300 - - 206 8.47 A=0.24 500 - - A=0.07 A=0.11 501 0.44 601 0.19 603 3.00 A=0.03 A=0.35 A=0.37 404 1.87 207 8.85 208 8.85 412 21.5 304 4.42 209 12.5A=0.31 210 12.5 604 3.00 L=8 7 ' L=72'L=65' L=16' L=95' L= 7 9 ' L = 6 8 ' L = 5 9 ' L=2 5 ' L=155' L= 4 1 ' L=7 7 ' L=6 6 ' L=39' L=2 9 ' L=89' L= 6 7 ' L = 8 0 ' L= 8 'L=31' L=82' L=9 7 ' L=2 2 ' L= 6 4 ' L=24 4 ' L=17' L= 1 8 4 ' L=243' L= 2 0 ' L= 5 7 ' L= 6 1 ' L= 1 8 4 ' L=77' L= 1 8 ' L= 6 8 ' L= 6 9 ' L=19' A=0.01 402 0.73 A=0.10 A=0.13 NEW BUILDING 2ND LEVEL F.F. = 434.00 3RD LEVEL F.F. = 450.00 700 - - 802 0.36 701 0.11 803 0.53 L=41' L=9 2 ' L=85' L= 3 5 7 A=0.05 A=0.15 L= 2 2 ' 702 0.43 L= 2 3 ' L= 1 7 6 ' 800 - - 801 0.10 L=290 ' A=0.16 A=0.05 4 1 5 4 1 4 4 2 0 4 2 5 4 3 0 433 434 4 3 5 4 3 5 4 2 5 43 0 4 3 5 431 415 405 410 414 41 0 410 405 40 5 4 1 0 41 0 41 5 41 0 41 5 415 410 415 420 4 3 3 431 431 430 432 433 432 430 42 5 440 440 440 44 0 44 4 443 442 410 415 41 0 41 5 417 42 0 42 5 43 0 42 0 42 5 43 0 4 2 5 430 440 445 44 5 44 2 44 5 44 2 44 5 44 5 44 2 44 2 44 1 44 4 410 4 1 0 41 0 41 0 427 427 427 429 4 3 0 4 3 4 43 4 42 5 4 2 0 44 4 430 43 3 43 0 L=54' 403 0.85 43 0 A=0.01 600 - - L=53' A=0.03 205.1 2.17 L=8 9 ' A=0.14 203.2 4.19 203.1 3.87 A=0.05 L= 4 4 ' 208.1 8.85 107.1 1.17 107.2 1.08 A=0.24 A=0.02 203.3 6.39 406.1 1.94 407.1 1.68 408.1 0.80 402.1 0.37 404.1 0.47 406.2 0.06 A=0.05 410.1 - - L= 6 9 ' 410.2 0.56 L=62' 410.3 1.18 L=49' L=49'L=52'L=98' L= 4 7 ' 410.4 1.64 410.5 2.15 410.6 2.64 410.7 2.79 A=0.07 A=0.07 205.4 0.17 A=0.08 A=0.06 602 2.18 A=0.14 A=0.09 A=0.10 NEW BUILDING 1ST LEVEL F.F. = 418.00 2ND LEVEL F.F. = 434.00 3RD LEVEL F.F. = 450.00 303.1 0.79 303.2 0.61 302.1 1.36 303.3 0.79 303.4 0.55 A=0.09 A=0.08 A=0.08A=0.09A=0.09 106.1 0.45 A=0.14 502.1 0.27 L = 6 3 ' A=0.04 410.8 2.79 A=0.02 A=0.10 L=69' 403.2 1.43 403.3 0.60 467.00 FG 439.30 FL 434.10 FS 430.44 FL 426.44 IE 423.00 IE IN 422.83 IE OUT 422.08 IE416.51 IE 412.17 IE IN 412.00 IE OUT 411.00 IE 410.75 IE OUT 410.07 IE 409.48 IE IN 409.23 IE OUT 424.83 FL 425.29 IE IN 425.12 IE OUT 437.66 FL 433.66 IE 432.17 IE IN 432.00 IE OUT 428.97 IE IN 428.80 IE OUT 426.04 IE IN 425.87 IE OUT 421.00 IE 410.17 IE IN 18" (409.00 IE IN 36") (408.67 IE OUT 36") 435.35 FL 431.35 IE 435.00 FL 434.20 FL 416.50 IE 416.17 IE IN 416.00 IE OUT 415.67 FL 433.47 FS 429.33 FL 421.22 FL 417.00 IE IN 6" 417.00 IE IN 12" 414.21 IE OUT 18" 417.10 FS 415.00 FL 400.50 FL 397.11 IE OUT 395.00 IE IN 391.00 IE OUT 388.50 IE IN 18" 386.33 IE IN 48" 386.00 IE OUT 48" 387.00 IE IN 36" LAT S 428.33 FL 424.50 IE 422.66 IE IN 422.33 IE OUT 409.01 IE IN 408.68 IE OUT 403.50 IE 395.85 IE IN 6" 395.35 IE IN 18" (391.10 IE OUT 24") 374.92 IE IN 24" 373.25 IE IN 48" 372.92 IE OUT 48" 405.27 IE IN 404.94 IE OUT 407.44 IE IN 407.11 IE OUT 411.83 IE 392.16 IE IN 36" 391.16 IE OUT 48" 393.16 IE IN 24" LAT N 408.83 FL 437.84 FS 430.75 IE 430.14 IE IN 429.97 IE OUT 428.91 IE IN 428.58 IE OUT 469.00 FG 439.40 FL 408.00 FL 402.90 FL 398.90 IE 430.50 FL 430.50 FL 426.50 IE 426.00 FL 429.35 IE 429.31 IE 432.00 IE 414.92 IE IN 414.75 IE OUT 413.75 IE412.75 IE411.70 IE 409.70 IE IN 409.37 IE OUT 415.88 IE 408.05 IE 408.83 FL 419.65 IE NEW 3-LEVEL PARKING STRUCTURE 1ST F.F. = 414.50 2ND F.F. = 424.75 3RD F.F. = 435.00 A=0.13 A=0.01 205.3 0.45 A=0.03 43 2 409.1 0.69 4 3 6 4 1 6 41 7 4 3 7 403.1 0.12 L=16' A=0.11 BIOFILTRATION BASIN 4 408.50 FG 2,030 SF Q100 IN = 9.62 CFS Q100 OUT = 8.94 CFS BIOFILTRATION BASIN 3 415.33 FG 1,167 SF Q100 IN = 4.42 CFS Q100 OUT = 2.31 CFS EXIST. 48" RCP SD PER DWG. NO. 415-9J EXIST. 36" RCP SD PER DWG. NO. 415-9J EXIST. 48" RCP SD PER DWG. NO. 415-9J L=4' EXIST. 24" RCP SD PER DWG. NO. 415-9J BIOFILTRATION BASIN 1 424.50 FG 1,811 SF Q100 IN = 6.31 CFS Q100 OUT = 5.32 CFS 205.3 1.06 205.2 0.83 BIOFILTRATION BASIN 2 428.00 FG 1,795 SF Q100 IN = 8.47 CFS Q100 OUT = 7.35 CFS WHIPTAIL LO O P GA Z E L L E C O U R T LOT 22 MAP 16145 OPEN SPACE LOT 12 MAP 14926 LOT 20 MAP 16145 LOT 21 MAP 16145 PARCEL 2 MAP 21742 OPEN SPACE LOT 12 MAP 14926 R/W C/L R/W P/ L P / L P/L P/L P/L P/L P/L P/ L P/ L P/ L P/L P/L P/L R/ W R/W C/L R/W R/ W C/ L R/ W SHEET 1 OF 1 LOT 21 and 22 CARLSBAD, CALIFORNIA DATE: APRIL 2023 HYDROLOGY NODE MAP IONIS PHARMACEUTICALS PROPOSED CONDITION GRAPHIC SCALE: 1" = 30' 0 30 60 90 DESCRIPTION SYMBOL LEGENDHYDROLOGIC SOIL GROUP DEPTH TO GROUNDWATER PROJECT CHARACTERISTICS SUB-BASIN AREA HYDROLOGY NODE 100 1.00 A=0.10 Q100 (CFS) HYDROLOGIC SOIL TYPE: D DEPTH TO GROUNDWATER > 20 FT PARCEL AREA: 8.37 AC LIMIT OF GRADING:7.17 AC PROPOSED DISTURBED AREA: 7.51 AC PROPOSED IMPERVIOUS AREA: 4.84 AC PROPOSED LANDSCAPE AREA: 2.33 AC PROPOSED PERVIOUS AREA: 1.20 AC NOTE: PROPOSED IMPERVIOUS AREA + PROPOSED PERVIOUS AREA = LIMIT OF GRADING SUMMARY OF 100 -YEAR PEAK DISCHARGE RATES RIGHT-OF-WAY BASIN BOUNDARY FLOWLINE SUB-BASIN BOUNDARY PROPERTY LINE DIRECTION OF FLOW R/W P/L APPROVED FLOWS 1 POST-PROJECT UNDETAINED POST-PROJECT DETAINED DISCHARGE NODE AREA (AC) Q100 (CFS) DISCHARGE NODE AREA (AC) Q100 (CFS) DISCHARGE NODE AREA (AC) Q100 (CFS) 112 3.48 18.5 N/A N/A N/A N/A N/A N/A N/A N/A N/A 503 2.2 7.64 503 2.2 6.49 114 3.9 21.3 412 4.9 21.57 412 4.9 18.26 113 N/A N/A 604 0.8 3.00 604 0.8 3.00 PLSA JOB NO. 3925 DWG NO. 540-7A, GR2022-0049 SDPROPOSED STORM DRAIN LIMIT OF GRADING PROPOSED BROW DITCH BIOFILTRATION BASIN --=-~ - - --------• ------- PREPARED BY: ET SUITER PASCO LAR 1 ~~~otei~r[E~ County 1 Encinitas gineering.com San Diego 12 www.plsaen Phone 858.259.82 , I Orange C) -- I/ v ~=-'I/ -1 ~ I I I I -,-I I --- /: I I I I I I I I 1, I ---, --'.::c:,._ ---=---==r'"-m ■ 1; 1 , I I I J ~ -~ ' ' + I - " + -'~: - -"\', _,-, :\_ -~+} ---~ D ', + " ----- ==> ==> I I APPENDIX D AES Pipeflow Output - 24" BASIN INSA GUTTER Q = 1.94 CFS 1 ~ 24" BASIN INSAG UTTER Q = 1. 68 CFS \ \ --- ' \ 408. 0.80 . 24" X 24" CATCH \ \ BASIN IN SAG GUTTERQ=OBCFS \ (1 ~. \ \ 4oiJ.B;F 1\\\\\1 1: ODE 409.15 - PREPARED BY: PASCO LARET SUITER ~ ffei§§(O)t I ffei llE§ San Diego Encinitas Orange County Phone 858.259.8212 I www.plsaengineering.com \ BROWDITCH Q= 0.43CFS "' rl'~ _ _ 1 L=243' 422.08 IE 423.00 IE IN 422.83 IE OUT I 422.66 IE IN 422.33 IE OUT I I ~ =""-'=~ L=53' L=16' ' 24" X 24" CATCH BASIN IN SAG 24"X24'CAT SINON GRADE RIBBON GUTTER Q = 0.60CFS \ __:'><-/~ GUTTER Q = 0.23 CFS 408.83 FL -395.85 IE IN 6" 'i,= 395.35 IE IN 18" 'c!l= (391.10 IE OUT 24") 0 405.27 IE IN 404.94 IE OUT / / 30 60 GRAPHIC SCALE: 1" = 30' 430.44 FL 426.44IE 24"X24"CATCH •~+~LJ ==~~b 24"X24"CATCH BASIN ON GRADE f~~~~~~~:n:;: BASIN ON GRADE RIBBON GUTTER § RIBBON GUTTER ,o ~o.4r CF~ 11 I ~3~5~00/FL r,, =ol =U0.12~5FC~F;,aS~~~~ ~N~E~W~3~-~L~E~VE~L-=-"-=P~~R~NG \- 1 ~· STRUCTURE 90 I 631 _ 303. 0.79 -+ ~ ...--.,....._ ' -+ + + + + ~ + + + + + ---'---~~·- D • NEW BUILDING L=52 411.70/E 410. 2.15 412.75 IE --41 "'==S t ::;; i I I - ;,:, 'le ;,:, ::;; ~II I I II I II ffl I 11 NODE902 404.95 IE IN / 404. 65 IE OUT / I' SD \ 24"CATCH IN IN SAG .31 CFS 416.17 IE IN 416.00 IE OUT 414.92 IE IN 414.75 IE OUT D 12"X12"CATCH BASIN INSAG Q= 0.45CFS 92.16 IE IN 36" 91.16 IE OUT 48" 93.16 IE IN 24" NODE903 _ 412.17 IE rr= II II II ?-~ 2.16 IE IN 36" 24"X24"CATCH BASIN ON GRADE GUTTER Q = 0.82 CFS BYPASS Q FROM NODE 201 = 0.10 CFS TOTAL Q = 0.92 CFS BYPASS Q FROM NODE 201 = 0.10 CFS NEW BUILDING 24"X24"CATCH BASIN ON GRADE GUTTER Q = 0. 50 CFS 7.00 IE IN 6" 417.00 IE IN 12" "'-414.21 IE OUT 1 r, V 10.17 IE IN 18" (409.00 IE IN 36") (408.67 IE OUT 36? ~ 24" X 24" CATCH BASIN ON GRADE RIBBON GUTTER Q= 0.42CFS \ X24"CATC IN IN SAG .17CFS X24"CATCH ASINONGRAD IBBON GUTTER Q= 0.55 CFS ~~- s , PE F CATCH BAS/ OW DITCH -0.67 C A HYDRAULICS NODE MAP JONIS PHARMACEUTICALS LOT21 and 22 CARLSBAD, CALIFORNIA DWG NO. 540-7A, GR2022-0049 PLSA JOB NO. 3925 DATE: APRIL 2023 SHEET 1 OF 1 ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: Pasco Laret Suiter & Associates 119 Aberdeen Drive Cardiff, California 92007 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * 3925 IONIS WHIPTAIL * * OFFSITE STORM DRAIN IN WHIPTAIL, FLOWS FROM CARLSBAD OAKS HYD STUDY AND * * 100-YR DETAINED FLOWS FROM PROJECT SITE * ************************************************************************** FILE NAME: 116.PIP TIME/DATE OF STUDY: 11:30 04/06/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 116.00- 4.12 Dc 7699.92 3.03* 8763.43 } JUNCTION 116.00- 5.21 6580.34 2.04* 8266.17 } FRICTION 115.30- 3.68 Dc 5546.66 2.08* 8096.88 } JUNCTION 115.30- 4.23 5476.16 1.93* 8114.86 } FRICTION 115.20- 3.64 Dc 5188.91 1.93* 8107.83 } JUNCTION 115.20- 3.64 Dc 5188.91 1.92* 8126.60 } FRICTION 114.00- 3.64 Dc 5188.91 2.27* 6794.62 } JUNCTION 114.00- 4.65 4978.52 1.83* 6763.59 } FRICTION 113.00- 3.48 Dc 4311.52 2.78* 4622.18 } JUNCTION 113.00- 5.14 4054.40 1.60* 4452.47 } FRICTION 112.00- 3.05 Dc 2824.46 1.88* 3741.49 } JUNCTION 112.00- 3.08 2102.96 1.29* 3517.76 } FRICTION 112.50- 2.68 Dc 2014.50 1.50* 2952.32 } JUNCTION 112.50- 3.14 1886.20 1.28* 2950.11 } FRICTION 111.00- 2.59 Dc 1752.67 1.74* 2127.67 } JUNCTION 111.00- 3.36 1634.27 1.28* 2101.24 } FRICTION 104.00- 2.40 Dc 1361.83 1.57* 1691.91 } JUNCTION 104.00- 1.97*Dc 1465.54 1.97*Dc 1465.54 1 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 116.00 FLOWLINE ELEVATION = 351.00 PIPE FLOW = 214.40 CFS PIPE DIAMETER = 54.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 354.000 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 3.00 FT.) IS LESS THAN CRITICAL DEPTH( 4.12 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS ------------------------------------------------------------------------------ NODE 116.00 : HGL = < 354.031>;EGL= < 359.528>;FLOWLINE= < 351.000> ****************************************************************************** FLOW PROCESS FROM NODE 116.00 TO NODE 116.00 IS CODE = 5 UPSTREAM NODE 116.00 ELEVATION = 352.00 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 162.40 48.00 0.00 352.00 3.68 25.154 DOWNSTREAM 214.40 54.00 - 351.00 4.12 18.815 LATERAL #1 52.00 36.00 90.00 352.50 2.34 8.774 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04756 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01880 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03318 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.133 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 4.340)+( 0.000) = 4.340 ------------------------------------------------------------------------------ NODE 116.00 : HGL = < 354.043>;EGL= < 363.868>;FLOWLINE= < 352.000> ****************************************************************************** FLOW PROCESS FROM NODE 116.00 TO NODE 115.30 IS CODE = 1 UPSTREAM NODE 115.30 ELEVATION = 354.37 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 162.40 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 42.32 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 1.95 CRITICAL DEPTH(FT) = 3.68 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.08 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.082 24.558 11.453 8096.88 5.018 2.077 24.638 11.508 8119.90 10.275 2.071 24.719 11.565 8143.10 15.792 2.066 24.800 11.622 8166.48 21.593 2.060 24.882 11.680 8190.04 2 27.707 2.055 24.964 11.738 8213.77 34.165 2.050 25.047 11.797 8237.69 41.004 2.044 25.131 11.857 8261.79 42.320 2.043 25.146 11.868 8266.17 ------------------------------------------------------------------------------ NODE 115.30 : HGL = < 356.452>;EGL= < 365.823>;FLOWLINE= < 354.370> ****************************************************************************** FLOW PROCESS FROM NODE 115.30 TO NODE 115.30 IS CODE = 5 UPSTREAM NODE 115.30 ELEVATION = 354.49 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 155.40 48.00 0.00 354.49 3.64 25.934 DOWNSTREAM 162.40 48.00 - 354.37 3.68 24.566 LATERAL #1 7.00 24.00 90.00 355.43 0.94 4.431 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05315 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04467 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.04891 JUNCTION LENGTH = 2.00 FEET FRICTION LOSSES = 0.098 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.038)+( 0.000) = 1.038 ------------------------------------------------------------------------------ NODE 115.30 : HGL = < 356.417>;EGL= < 366.861>;FLOWLINE= < 354.490> ****************************************************************************** FLOW PROCESS FROM NODE 115.30 TO NODE 115.20 IS CODE = 1 UPSTREAM NODE 115.20 ELEVATION = 354.96 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 155.40 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 8.50 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 1.91 CRITICAL DEPTH(FT) = 3.64 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.93 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.929 25.901 12.352 8107.83 5.396 1.928 25.917 12.364 8112.36 8.500 1.927 25.926 12.371 8114.86 ------------------------------------------------------------------------------ NODE 115.20 : HGL = < 356.889>;EGL= < 367.312>;FLOWLINE= < 354.960> ****************************************************************************** FLOW PROCESS FROM NODE 115.20 TO NODE 115.20 IS CODE = 5 UPSTREAM NODE 115.20 ELEVATION = 355.05 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 155.40 48.00 0.00 355.05 3.64 25.976 DOWNSTREAM 155.40 48.00 - 354.96 3.64 25.909 LATERAL #1 0.00 18.00 90.00 356.24 0.00 0.000 3 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05338 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05301 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.05319 JUNCTION LENGTH = 1.50 FEET FRICTION LOSSES = 0.080 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.140)+( 0.000) = 0.140 ------------------------------------------------------------------------------ NODE 115.20 : HGL = < 356.975>;EGL= < 367.452>;FLOWLINE= < 355.050> ****************************************************************************** FLOW PROCESS FROM NODE 115.20 TO NODE 114.00 IS CODE = 1 UPSTREAM NODE 114.00 ELEVATION = 372.92 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 155.40 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 318.68 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 1.90 CRITICAL DEPTH(FT) = 3.64 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.27 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.274 21.063 9.167 6794.62 3.905 2.259 21.235 9.265 6839.48 8.037 2.244 21.410 9.366 6885.31 12.415 2.229 21.588 9.470 6932.11 17.064 2.214 21.769 9.577 6979.92 22.011 2.199 21.953 9.687 7028.76 27.286 2.184 22.141 9.800 7078.64 32.926 2.169 22.331 9.917 7129.59 38.975 2.154 22.526 10.037 7181.63 45.481 2.138 22.724 10.162 7234.80 52.506 2.123 22.925 10.289 7289.11 60.122 2.108 23.130 10.421 7344.59 68.417 2.093 23.339 10.557 7401.27 77.503 2.078 23.552 10.697 7459.18 87.517 2.063 23.769 10.842 7518.34 98.639 2.048 23.990 10.990 7578.80 111.104 2.033 24.215 11.144 7640.57 125.232 2.018 24.445 11.302 7703.69 141.469 2.003 24.679 11.466 7768.19 160.471 1.988 24.917 11.635 7834.12 183.253 1.973 25.160 11.809 7901.49 211.517 1.958 25.408 11.988 7970.36 248.455 1.943 25.660 12.174 8040.76 301.236 1.928 25.918 12.365 8112.72 318.680 1.925 25.968 12.402 8126.60 ------------------------------------------------------------------------------ NODE 114.00 : HGL = < 375.194>;EGL= < 382.087>;FLOWLINE= < 372.920> ****************************************************************************** FLOW PROCESS FROM NODE 114.00 TO NODE 114.00 IS CODE = 5 UPSTREAM NODE 114.00 ELEVATION = 373.25 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: 4 PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 137.10 48.00 0.00 373.25 3.48 24.440 DOWNSTREAM 155.40 48.00 - 372.92 3.64 21.070 LATERAL #1 18.30 24.00 90.00 374.92 1.54 7.048 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04940 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03068 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.04004 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.160 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.269)+( 0.000) = 2.269 ------------------------------------------------------------------------------ NODE 114.00 : HGL = < 375.081>;EGL= < 384.357>;FLOWLINE= < 373.250> ****************************************************************************** FLOW PROCESS FROM NODE 114.00 TO NODE 113.00 IS CODE = 1 UPSTREAM NODE 113.00 ELEVATION = 386.00 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 137.10 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 217.96 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 1.75 CRITICAL DEPTH(FT) = 3.48 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 2.78 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.779 14.710 6.141 4622.18 1.597 2.737 14.955 6.212 4663.58 3.369 2.696 15.211 6.291 4708.20 5.334 2.655 15.478 6.377 4756.18 7.514 2.613 15.757 6.471 4807.66 9.930 2.572 16.048 6.574 4862.82 12.612 2.531 16.352 6.686 4921.83 15.592 2.490 16.670 6.807 4984.87 18.907 2.448 17.002 6.940 5052.16 22.602 2.407 17.350 7.084 5123.91 26.733 2.366 17.713 7.241 5200.36 31.363 2.324 18.094 7.411 5281.77 36.575 2.283 18.492 7.596 5368.41 42.468 2.242 18.910 7.798 5460.58 49.169 2.200 19.349 8.017 5558.62 56.841 2.159 19.809 8.256 5662.87 65.700 2.118 20.292 8.516 5773.72 76.038 2.077 20.800 8.799 5891.59 88.267 2.035 21.335 9.108 6016.94 102.989 1.994 21.898 9.445 6150.28 121.139 1.953 22.492 9.813 6292.15 144.283 1.911 23.119 10.216 6443.15 175.362 1.870 23.780 10.657 6603.95 217.960 1.831 24.432 11.107 6763.59 ------------------------------------------------------------------------------ NODE 113.00 : HGL = < 388.779>;EGL= < 392.141>;FLOWLINE= < 386.000> ****************************************************************************** 5 FLOW PROCESS FROM NODE 113.00 TO NODE 113.00 IS CODE = 5 UPSTREAM NODE 113.00 ELEVATION = 386.33 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 101.60 48.00 0.00 386.33 3.05 21.617 DOWNSTREAM 137.10 48.00 - 386.00 3.48 14.714 LATERAL #1 3.00 18.00 90.00 387.50 0.66 2.883 LATERAL #2 32.50 36.00 76.00 387.00 1.85 7.105 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04390 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01326 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02858 JUNCTION LENGTH = 5.00 FEET FRICTION LOSSES = 0.143 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 3.047)+( 0.000) = 3.047 ------------------------------------------------------------------------------ NODE 113.00 : HGL = < 387.932>;EGL= < 395.188>;FLOWLINE= < 386.330> ****************************************************************************** FLOW PROCESS FROM NODE 113.00 TO NODE 112.00 IS CODE = 1 UPSTREAM NODE 112.00 ELEVATION = 391.16 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 101.60 CFS PIPE DIAMETER = 48.00 INCHES PIPE LENGTH = 74.50 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 1.44 CRITICAL DEPTH(FT) = 3.05 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.88 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.877 17.544 6.659 3741.49 2.517 1.859 17.757 6.758 3777.20 5.199 1.842 17.975 6.862 3813.98 8.061 1.824 18.198 6.970 3851.87 11.122 1.807 18.427 7.083 3890.91 14.401 1.790 18.661 7.200 3931.13 17.923 1.772 18.901 7.323 3972.57 21.714 1.755 19.148 7.451 4015.28 25.807 1.737 19.400 7.585 4059.28 30.240 1.720 19.659 7.725 4104.63 35.059 1.703 19.925 7.871 4151.37 40.317 1.685 20.197 8.023 4199.54 46.082 1.668 20.477 8.183 4249.19 52.438 1.650 20.764 8.349 4300.39 59.490 1.633 21.059 8.523 4353.17 67.372 1.616 21.361 8.705 4407.60 74.500 1.602 21.610 8.858 4452.47 ------------------------------------------------------------------------------ NODE 112.00 : HGL = < 393.036>;EGL= < 397.819>;FLOWLINE= < 391.160> ****************************************************************************** FLOW PROCESS FROM NODE 112.00 TO NODE 112.00 IS CODE = 5 UPSTREAM NODE 112.00 ELEVATION = 392.16 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ 6 CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 71.60 36.00 0.00 392.16 2.68 24.645 DOWNSTREAM 101.60 48.00 - 391.16 3.05 17.549 LATERAL #1 6.98 24.00 90.00 393.16 0.94 4.829 LATERAL #2 23.02 24.00 90.00 393.16 1.71 8.061 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.07818 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02492 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.05155 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.206 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 5.063)+( 0.000) = 5.063 ------------------------------------------------------------------------------ NODE 112.00 : HGL = < 393.450>;EGL= < 402.881>;FLOWLINE= < 392.160> ****************************************************************************** FLOW PROCESS FROM NODE 112.00 TO NODE 112.50 IS CODE = 1 UPSTREAM NODE 112.50 ELEVATION = 408.67 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 71.60 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 201.82 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 1.27 CRITICAL DEPTH(FT) = 2.68 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.50 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.500 20.260 7.877 2952.32 2.560 1.491 20.417 7.967 2972.10 5.261 1.481 20.576 8.060 2992.24 8.116 1.472 20.738 8.155 3012.73 11.139 1.463 20.902 8.252 3033.60 14.347 1.454 21.069 8.352 3054.84 17.759 1.445 21.239 8.454 3076.46 21.398 1.436 21.411 8.559 3098.48 25.291 1.427 21.586 8.667 3120.89 29.468 1.418 21.764 8.778 3143.72 33.967 1.409 21.945 8.892 3166.96 38.833 1.400 22.128 9.008 3190.63 44.120 1.391 22.315 9.128 3214.73 49.897 1.382 22.505 9.251 3239.28 56.250 1.373 22.698 9.378 3264.28 63.290 1.364 22.894 9.508 3289.75 71.162 1.355 23.094 9.641 3315.69 80.064 1.346 23.297 9.779 3342.12 90.272 1.337 23.503 9.920 3369.04 102.192 1.328 23.713 10.065 3396.47 116.453 1.319 23.927 10.214 3424.43 134.108 1.310 24.144 10.367 3452.91 157.132 1.301 24.365 10.525 3481.94 189.961 1.291 24.590 10.687 3511.52 201.820 1.290 24.638 10.721 3517.76 ------------------------------------------------------------------------------ NODE 112.50 : HGL = < 410.170>;EGL= < 416.547>;FLOWLINE= < 408.670> 7 ****************************************************************************** FLOW PROCESS FROM NODE 112.50 TO NODE 112.50 IS CODE = 5 UPSTREAM NODE 112.50 ELEVATION = 409.00 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 65.10 36.00 0.00 409.00 2.59 22.620 DOWNSTREAM 71.60 36.00 - 408.67 2.68 20.266 LATERAL #1 6.50 18.00 82.00 410.00 0.99 5.278 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.06630 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04614 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.05622 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.225 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.678)+( 0.000) = 1.678 ------------------------------------------------------------------------------ NODE 112.50 : HGL = < 410.280>;EGL= < 418.225>;FLOWLINE= < 409.000> ****************************************************************************** FLOW PROCESS FROM NODE 112.50 TO NODE 111.00 IS CODE = 1 UPSTREAM NODE 111.00 ELEVATION = 426.50 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 65.10 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 250.02 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 1.26 CRITICAL DEPTH(FT) = 2.59 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.74 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.743 15.280 5.370 2127.67 1.728 1.723 15.487 5.450 2148.77 3.585 1.704 15.701 5.535 2170.72 5.581 1.685 15.921 5.623 2193.54 7.732 1.666 16.148 5.717 2217.26 10.054 1.646 16.381 5.816 2241.92 12.565 1.627 16.622 5.920 2267.56 15.287 1.608 16.870 6.030 2294.20 18.247 1.589 17.126 6.146 2321.89 21.473 1.569 17.390 6.268 2350.67 25.004 1.550 17.662 6.397 2380.59 28.882 1.531 17.943 6.533 2411.68 33.161 1.512 18.234 6.677 2444.01 37.908 1.492 18.534 6.830 2477.61 43.207 1.473 18.844 6.990 2512.54 49.167 1.454 19.164 7.160 2548.86 55.931 1.435 19.496 7.340 2586.64 63.691 1.415 19.838 7.530 2625.93 72.719 1.396 20.193 7.732 2666.81 83.414 1.377 20.561 7.945 2709.35 96.391 1.358 20.942 8.172 2753.62 112.685 1.338 21.336 8.412 2799.71 8 134.232 1.319 21.745 8.666 2847.71 165.387 1.300 22.170 8.936 2897.72 220.122 1.281 22.610 9.224 2949.82 250.020 1.280 22.613 9.225 2950.11 ------------------------------------------------------------------------------ NODE 111.00 : HGL = < 428.243>;EGL= < 431.870>;FLOWLINE= < 426.500> ****************************************************************************** FLOW PROCESS FROM NODE 111.00 TO NODE 111.00 IS CODE = 5 UPSTREAM NODE 111.00 ELEVATION = 426.83 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 54.50 36.00 0.00 426.83 2.40 18.986 DOWNSTREAM 65.10 36.00 - 426.50 2.59 15.285 LATERAL #1 10.60 18.00 90.00 428.00 1.25 6.735 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04680 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02333 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03506 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.140 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.835)+( 0.000) = 1.835 ------------------------------------------------------------------------------ NODE 111.00 : HGL = < 428.108>;EGL= < 433.705>;FLOWLINE= < 426.830> ****************************************************************************** FLOW PROCESS FROM NODE 111.00 TO NODE 104.00 IS CODE = 1 UPSTREAM NODE 104.00 ELEVATION = 431.60 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 54.50 CFS PIPE DIAMETER = 36.00 INCHES PIPE LENGTH = 75.34 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 1.18 CRITICAL DEPTH(FT) = 2.40 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.57 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.572 14.532 4.853 1691.91 1.716 1.556 14.718 4.921 1707.91 3.553 1.540 14.909 4.994 1724.47 5.521 1.524 15.105 5.069 1741.61 7.635 1.508 15.307 5.149 1759.36 9.908 1.493 15.514 5.232 1777.73 12.359 1.477 15.726 5.319 1796.75 15.008 1.461 15.945 5.411 1816.43 17.878 1.445 16.169 5.507 1836.81 20.998 1.429 16.400 5.608 1857.90 24.401 1.413 16.638 5.714 1879.73 28.128 1.398 16.882 5.826 1902.33 32.229 1.382 17.133 5.943 1925.72 36.764 1.366 17.392 6.066 1949.94 41.812 1.350 17.658 6.195 1975.02 47.473 1.334 17.933 6.331 2000.99 9 53.879 1.318 18.216 6.474 2027.89 61.209 1.303 18.507 6.624 2055.75 69.712 1.287 18.808 6.783 2084.61 75.340 1.278 18.980 6.875 2101.24 ------------------------------------------------------------------------------ NODE 104.00 : HGL = < 433.172>;EGL= < 436.453>;FLOWLINE= < 431.600> ****************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 5 UPSTREAM NODE 104.00 ELEVATION = 432.60 (FLOW IS AT CRITICAL DEPTH) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 45.40 24.00 0.00 432.60 1.97 14.495 DOWNSTREAM 54.50 36.00 - 431.60 2.40 9.003 LATERAL #1 9.10 24.00 90.00 433.10 1.08 4.700 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03655 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00701 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02178 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.087 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.578)+( 0.000) = 2.578 ------------------------------------------------------------------------------ NODE 104.00 : HGL = < 434.571>;EGL= < 437.833>;FLOWLINE= < 432.600> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 104.00 FLOWLINE ELEVATION = 432.60 ASSUMED UPSTREAM CONTROL HGL = 434.57 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 10 ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: Pasco Laret Suiter & Associates 119 Aberdeen Drive Cardiff, California 92007 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * 3925 IONIS LOTS 21 AND 22 * * 100-YR * * * ************************************************************************** FILE NAME: 503.PIP TIME/DATE OF STUDY: 15:05 04/06/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 503.00- 0.99 Dc 99.42 0.42* 208.26 } FRICTION 502.00- 0.99 Dc 99.42 0.53* 154.96 } JUNCTION 502.00- 1.06 97.39 0.46* 159.68 } FRICTION 108.00- 0.93*Dc 93.17 0.93*Dc 93.17 } JUNCTION 108.00- 2.83* 63.42 0.44 15.96 } FRICTION 108.10- 2.76* 61.97 0.53 Dc 15.13 } CATCH BASIN 108.10- 3.01* 58.33 0.53 Dc 4.55 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 503.00 FLOWLINE ELEVATION = 410.17 PIPE FLOW = 6.49 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 410.280 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.11 FT.) IS LESS THAN CRITICAL DEPTH( 0.99 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS ------------------------------------------------------------------------------ NODE 503.00 : HGL = < 410.586>;EGL= < 414.671>;FLOWLINE= < 410.170> ****************************************************************************** FLOW PROCESS FROM NODE 503.00 TO NODE 502.00 IS CODE = 1 UPSTREAM NODE 502.00 ELEVATION = 414.21 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ 1 CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 6.49 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 22.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.38 CRITICAL DEPTH(FT) = 0.99 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.53 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.527 11.716 2.660 154.96 0.455 0.521 11.891 2.718 156.96 0.941 0.515 12.070 2.779 159.02 1.460 0.510 12.254 2.843 161.15 2.016 0.504 12.444 2.910 163.35 2.612 0.498 12.638 2.980 165.61 3.253 0.493 12.839 3.054 167.95 3.944 0.487 13.045 3.131 170.37 4.691 0.481 13.257 3.212 172.87 5.502 0.476 13.476 3.297 175.44 6.384 0.470 13.701 3.387 178.11 7.348 0.464 13.933 3.481 180.86 8.408 0.459 14.173 3.580 183.71 9.577 0.453 14.419 3.683 186.65 10.878 0.447 14.674 3.793 189.70 12.334 0.442 14.937 3.908 192.85 13.979 0.436 15.208 4.030 196.11 15.860 0.430 15.488 4.158 199.49 18.040 0.425 15.778 4.293 202.98 20.612 0.419 16.077 4.435 206.61 22.000 0.416 16.214 4.501 208.26 ------------------------------------------------------------------------------ NODE 502.00 : HGL = < 414.737>;EGL= < 416.870>;FLOWLINE= < 414.210> ****************************************************************************** FLOW PROCESS FROM NODE 502.00 TO NODE 502.00 IS CODE = 5 UPSTREAM NODE 502.00 ELEVATION = 417.00 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 5.32 12.00 45.00 417.00 0.93 15.074 DOWNSTREAM 6.49 18.00 - 414.21 0.99 11.720 LATERAL #1 0.18 6.00 75.00 417.00 0.21 2.272 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.99===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.11879 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05452 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.08666 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.347 FEET ENTRANCE LOSSES = 0.427 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 3.692)+( 0.427) = 4.119 ------------------------------------------------------------------------------ NODE 502.00 : HGL = < 417.460>;EGL= < 420.989>;FLOWLINE= < 417.000> ****************************************************************************** FLOW PROCESS FROM NODE 502.00 TO NODE 108.00 IS CODE = 1 UPSTREAM NODE 108.00 ELEVATION = 421.00 (FLOW IS SUPERCRITICAL) 2 ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.32 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 22.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.41 CRITICAL DEPTH(FT) = 0.93 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.93 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.932 6.978 1.688 93.17 0.012 0.911 7.082 1.690 93.26 0.047 0.890 7.202 1.696 93.52 0.107 0.869 7.338 1.706 93.96 0.192 0.848 7.488 1.719 94.58 0.306 0.827 7.655 1.738 95.38 0.450 0.806 7.837 1.761 96.36 0.630 0.785 8.037 1.789 97.55 0.848 0.764 8.255 1.823 98.95 1.112 0.743 8.493 1.864 100.57 1.427 0.723 8.752 1.913 102.43 1.804 0.702 9.034 1.970 104.56 2.252 0.681 9.341 2.036 106.96 2.785 0.660 9.675 2.114 109.68 3.422 0.639 10.040 2.205 112.74 4.186 0.618 10.439 2.311 116.17 5.107 0.597 10.875 2.435 120.02 6.230 0.576 11.354 2.579 124.34 7.613 0.555 11.881 2.748 129.17 9.348 0.534 12.461 2.947 134.58 11.574 0.513 13.103 3.181 140.66 14.526 0.492 13.816 3.458 147.49 18.650 0.471 14.610 3.788 155.19 22.000 0.460 15.070 3.989 159.68 ------------------------------------------------------------------------------ NODE 108.00 : HGL = < 421.932>;EGL= < 422.688>;FLOWLINE= < 421.000> ****************************************************************************** FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 5 UPSTREAM NODE 108.00 ELEVATION = 421.25 (FLOW UNSEALS IN REACH) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 1.28 8.00 61.00 421.25 0.53 3.667 DOWNSTREAM 5.32 12.00 - 421.00 0.93 6.980 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 4.04===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01122 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01928 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01525 JUNCTION LENGTH = 3.00 FEET FRICTION LOSSES = 0.046 FEET ENTRANCE LOSSES = 0.151 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.446)+( 0.151) = 1.598 ------------------------------------------------------------------------------ NODE 108.00 : HGL = < 424.077>;EGL= < 424.286>;FLOWLINE= < 421.250> 3 ****************************************************************************** FLOW PROCESS FROM NODE 108.00 TO NODE 108.10 IS CODE = 1 UPSTREAM NODE 108.10 ELEVATION = 421.35 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.28 CFS PIPE DIAMETER = 8.00 INCHES PIPE LENGTH = 3.00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 1.28)/( 12.084))**2 = 0.01122 HF=L*SF = ( 3.00)*(0.01122) = 0.034 ------------------------------------------------------------------------------ NODE 108.10 : HGL = < 424.111>;EGL= < 424.320>;FLOWLINE= < 421.350> ****************************************************************************** FLOW PROCESS FROM NODE 108.10 TO NODE 108.10 IS CODE = 8 UPSTREAM NODE 108.10 ELEVATION = 421.35 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 1.28 CFS PIPE DIAMETER = 8.00 INCHES FLOW VELOCITY = 3.67 FEET/SEC. VELOCITY HEAD = 0.209 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.209) = 0.042 ------------------------------------------------------------------------------ NODE 108.10 : HGL = < 424.361>;EGL= < 424.361>;FLOWLINE= < 421.350> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 108.10 FLOWLINE ELEVATION = 421.35 ASSUMED UPSTREAM CONTROL HGL = 421.88 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 4 ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: PASCO LARET SUITER & ASSOCIATES 535 NORTH HIGHWAY 101, STE A SOLANA BEACH, CA 92075 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * 3925 IONIS LOTS 21 AND 22 * * 100-YR * * * ************************************************************************** FILE NAME: 502LAT.PIP TIME/DATE OF STUDY: 13:41 01/19/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 502.00- 0.46 3.50 0.13* 4.43 } FRICTION 502.10- 0.28*Dc 2.39 0.28*Dc 2.39 } CATCH BASIN 502.10- 0.41* 1.31 0.28 Dc 0.83 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 502.00 FLOWLINE ELEVATION = 417.00 PIPE FLOW = 0.30 CFS PIPE DIAMETER = 6.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 417.460 FEET ------------------------------------------------------------------------------ NODE 502.00 : HGL = < 417.130>;EGL= < 417.977>;FLOWLINE= < 417.000> ****************************************************************************** FLOW PROCESS FROM NODE 502.00 TO NODE 502.10 IS CODE = 1 UPSTREAM NODE 502.10 ELEVATION = 425.00 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.30 CFS PIPE DIAMETER = 6.00 INCHES PIPE LENGTH = 54.10 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.13 CRITICAL DEPTH(FT) = 0.28 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.28 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 1 0.000 0.277 2.688 0.389 2.39 0.002 0.271 2.762 0.389 2.39 0.008 0.265 2.841 0.390 2.40 0.018 0.259 2.924 0.392 2.41 0.034 0.253 3.013 0.394 2.42 0.055 0.247 3.107 0.397 2.44 0.083 0.241 3.208 0.401 2.46 0.119 0.235 3.314 0.405 2.49 0.164 0.229 3.428 0.411 2.52 0.218 0.223 3.550 0.418 2.56 0.285 0.217 3.681 0.427 2.60 0.365 0.210 3.821 0.437 2.65 0.462 0.204 3.972 0.449 2.71 0.579 0.198 4.134 0.464 2.78 0.719 0.192 4.309 0.481 2.85 0.889 0.186 4.498 0.501 2.94 1.095 0.180 4.703 0.524 3.03 1.347 0.174 4.926 0.551 3.14 1.659 0.168 5.169 0.583 3.26 2.052 0.162 5.435 0.621 3.39 2.557 0.156 5.727 0.666 3.54 3.228 0.150 6.049 0.719 3.71 4.165 0.144 6.404 0.781 3.90 5.595 0.138 6.798 0.856 4.11 8.245 0.132 7.238 0.946 4.35 54.100 0.130 7.382 0.977 4.43 ------------------------------------------------------------------------------ NODE 502.10 : HGL = < 425.277>;EGL= < 425.389>;FLOWLINE= < 425.000> ****************************************************************************** FLOW PROCESS FROM NODE 502.10 TO NODE 502.10 IS CODE = 8 UPSTREAM NODE 502.10 ELEVATION = 425.00 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 0.30 CFS PIPE DIAMETER = 6.00 INCHES FLOW VELOCITY = 2.69 FEET/SEC. VELOCITY HEAD = 0.112 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.112) = 0.022 ------------------------------------------------------------------------------ NODE 502.10 : HGL = < 425.412>;EGL= < 425.412>;FLOWLINE= < 425.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 502.10 FLOWLINE ELEVATION = 425.00 ASSUMED UPSTREAM CONTROL HGL = 425.28 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 2 ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: PASCO LARET SUITER & ASSOCIATES 535 NORTH HIGHWAY 101, STE A SOLANA BEACH, CA 92075 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * 3925 IONIS LOTS 21 AND 22 * * 100-YR * * * ************************************************************************** FILE NAME: 107-15.PIP TIME/DATE OF STUDY: 13:36 01/24/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 107.15- 0.88* 22.41 0.40 12.14 } FRICTION 107.10- 0.76* 17.79 0.46 Dc 11.79 } CATCH BASIN 107.10- 0.82* 15.05 0.46 Dc 4.18 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 107.15 FLOWLINE ELEVATION = 424.83 PIPE FLOW = 1.17 CFS PIPE DIAMETER = 12.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 425.710 FEET ------------------------------------------------------------------------------ NODE 107.15 : HGL = < 425.710>;EGL= < 425.750>;FLOWLINE= < 424.830> ****************************************************************************** FLOW PROCESS FROM NODE 107.15 TO NODE 107.10 IS CODE = 1 UPSTREAM NODE 107.10 ELEVATION = 424.95 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.17 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 11.60 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.39 CRITICAL DEPTH(FT) = 0.46 ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.88 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.880 1.598 0.920 22.41 1.677 0.863 1.623 0.904 21.70 3.345 0.846 1.650 0.888 21.00 5.003 0.829 1.680 0.873 20.33 6.651 0.812 1.712 0.858 19.67 8.289 0.795 1.747 0.843 19.03 9.917 0.778 1.784 0.828 18.41 11.533 0.761 1.823 0.813 17.82 1 11.600 0.761 1.825 0.812 17.79 ------------------------------------------------------------------------------ NODE 107.10 : HGL = < 425.711>;EGL= < 425.762>;FLOWLINE= < 424.950> ****************************************************************************** FLOW PROCESS FROM NODE 107.10 TO NODE 107.10 IS CODE = 8 UPSTREAM NODE 107.10 ELEVATION = 424.95 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 1.17 CFS PIPE DIAMETER = 12.00 INCHES FLOW VELOCITY = 1.83 FEET/SEC. VELOCITY HEAD = 0.052 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.052) = 0.010 ------------------------------------------------------------------------------ NODE 107.10 : HGL = < 425.773>;EGL= < 425.773>;FLOWLINE= < 424.950> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 107.10 FLOWLINE ELEVATION = 424.95 ASSUMED UPSTREAM CONTROL HGL = 425.41 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 2 ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: PASCO LARET SUITER & ASSOCIATES 535 NORTH HIGHWAY 101, STE A SOLANA BEACH, CA 92075 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * 3925 IONIS LOTS 21 AND 22 * * 100-YR * * * ************************************************************************** FILE NAME: 107-28.PIP TIME/DATE OF STUDY: 13:44 01/24/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 107.28- 0.88* 21.87 0.39 10.83 } FRICTION } HYDRAULIC JUMP 107.25- 0.44 Dc 10.63 0.40* 10.79 } ANGLE-POINT 107.25- 0.44 Dc 10.63 0.40* 10.79 } FRICTION 107.20- 0.44*Dc 10.63 0.44*Dc 10.63 } CATCH BASIN 107.20- 0.64* 5.71 0.44 Dc 3.78 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 107.28 FLOWLINE ELEVATION = 424.83 PIPE FLOW = 1.08 CFS PIPE DIAMETER = 12.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 425.710 FEET ------------------------------------------------------------------------------ NODE 107.28 : HGL = < 425.710>;EGL= < 425.744>;FLOWLINE= < 424.830> ****************************************************************************** FLOW PROCESS FROM NODE 107.28 TO NODE 107.25 IS CODE = 1 UPSTREAM NODE 107.25 ELEVATION = 425.29 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.08 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 53.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.39 CRITICAL DEPTH(FT) = 0.44 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.40 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.397 3.716 0.612 10.79 0.231 0.397 3.719 0.612 10.79 1 0.473 0.397 3.721 0.612 10.79 0.727 0.397 3.723 0.612 10.79 0.994 0.396 3.726 0.612 10.79 1.275 0.396 3.728 0.612 10.80 1.572 0.396 3.730 0.612 10.80 1.886 0.396 3.733 0.612 10.80 2.220 0.396 3.735 0.612 10.80 2.576 0.395 3.738 0.612 10.80 2.957 0.395 3.740 0.613 10.80 3.365 0.395 3.742 0.613 10.80 3.806 0.395 3.745 0.613 10.81 4.285 0.395 3.747 0.613 10.81 4.807 0.394 3.749 0.613 10.81 5.382 0.394 3.752 0.613 10.81 6.020 0.394 3.754 0.613 10.81 6.736 0.394 3.757 0.613 10.81 7.552 0.394 3.759 0.613 10.82 8.498 0.394 3.761 0.613 10.82 9.622 0.393 3.764 0.613 10.82 11.004 0.393 3.766 0.614 10.82 12.792 0.393 3.768 0.614 10.82 15.325 0.393 3.771 0.614 10.82 19.681 0.393 3.773 0.614 10.83 53.000 0.393 3.774 0.614 10.83 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.88 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.880 1.475 0.914 21.87 2.116 0.862 1.499 0.897 21.12 4.222 0.845 1.526 0.881 20.39 6.318 0.827 1.555 0.864 19.67 8.406 0.809 1.586 0.848 18.98 10.483 0.791 1.620 0.832 18.30 12.551 0.774 1.656 0.816 17.65 14.608 0.756 1.695 0.801 17.02 16.654 0.738 1.737 0.785 16.41 18.688 0.721 1.782 0.770 15.83 20.708 0.703 1.830 0.755 15.27 22.712 0.685 1.883 0.740 14.74 24.699 0.667 1.939 0.726 14.23 26.666 0.650 1.999 0.712 13.75 28.609 0.632 2.064 0.698 13.30 30.525 0.614 2.134 0.685 12.87 32.408 0.597 2.209 0.672 12.48 34.251 0.579 2.291 0.660 12.12 36.045 0.561 2.380 0.649 11.80 37.778 0.543 2.476 0.639 11.51 39.433 0.526 2.580 0.629 11.25 40.986 0.508 2.695 0.621 11.04 42.398 0.490 2.819 0.614 10.87 43.610 0.473 2.956 0.608 10.74 44.517 0.455 3.106 0.605 10.66 44.905 0.437 3.272 0.603 10.63 53.000 0.437 3.272 0.603 10.63 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 42.84 FEET UPSTREAM OF NODE 107.28 | | DOWNSTREAM DEPTH = 0.484 FEET, UPSTREAM CONJUGATE DEPTH = 0.393 FEET | ------------------------------------------------------------------------------ NODE 107.25 : HGL = < 425.687>;EGL= < 425.902>;FLOWLINE= < 425.290> ****************************************************************************** FLOW PROCESS FROM NODE 107.25 TO NODE 107.25 IS CODE = 6 UPSTREAM NODE 107.25 ELEVATION = 425.29 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE ANGLE-POINT LOSSES(LACRD): PIPE FLOW = 1.08 CFS PIPE DIAMETER = 12.00 INCHES PIPE ANGLE-POINT = 45.00 DEGREES ANGLE-POINT COEFFICIENT KA = 0.00000 2 Note: For open flow conditions, computer program WSPG (see LAFCD program) does NOT estimate losses for angle points. Therefore, to be consistent with WSPG results, a zero loss is used. Energy loss estimate, per WSPG results,= 0.0 ------------------------------------------------------------------------------ NODE 107.25 : HGL = < 425.687>;EGL= < 425.902>;FLOWLINE= < 425.290> ****************************************************************************** FLOW PROCESS FROM NODE 107.25 TO NODE 107.20 IS CODE = 1 UPSTREAM NODE 107.20 ELEVATION = 425.40 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.08 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 13.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.40 CRITICAL DEPTH(FT) = 0.44 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.44 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.437 3.272 0.603 10.63 0.005 0.435 3.288 0.603 10.63 0.020 0.434 3.305 0.604 10.63 0.047 0.432 3.322 0.604 10.63 0.086 0.430 3.339 0.604 10.64 0.138 0.429 3.356 0.604 10.64 0.206 0.427 3.374 0.604 10.64 0.290 0.425 3.391 0.604 10.64 0.392 0.424 3.409 0.604 10.65 0.516 0.422 3.427 0.605 10.65 0.663 0.420 3.445 0.605 10.66 0.836 0.419 3.464 0.605 10.66 1.040 0.417 3.482 0.605 10.67 1.280 0.415 3.501 0.606 10.68 1.562 0.414 3.520 0.606 10.68 1.894 0.412 3.539 0.607 10.69 2.286 0.410 3.558 0.607 10.70 2.752 0.409 3.577 0.607 10.71 3.314 0.407 3.597 0.608 10.72 3.999 0.405 3.617 0.608 10.73 4.855 0.404 3.637 0.609 10.74 5.955 0.402 3.657 0.610 10.75 7.445 0.400 3.678 0.610 10.76 9.643 0.399 3.699 0.611 10.78 13.000 0.397 3.716 0.612 10.79 ------------------------------------------------------------------------------ NODE 107.20 : HGL = < 425.837>;EGL= < 426.003>;FLOWLINE= < 425.400> ****************************************************************************** FLOW PROCESS FROM NODE 107.20 TO NODE 107.20 IS CODE = 8 UPSTREAM NODE 107.20 ELEVATION = 425.40 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 1.08 CFS PIPE DIAMETER = 12.00 INCHES FLOW VELOCITY = 3.27 FEET/SEC. VELOCITY HEAD = 0.166 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.166) = 0.033 ------------------------------------------------------------------------------ NODE 107.20 : HGL = < 426.037>;EGL= < 426.037>;FLOWLINE= < 425.400> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 107.20 FLOWLINE ELEVATION = 425.40 ASSUMED UPSTREAM CONTROL HGL = 425.84 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 3 ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: Pasco Laret Suiter & Associates 119 Aberdeen Drive Cardiff, California 92007 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * ON-SITE HYDRAULICS -NODE 107 * * * * * ************************************************************************** FILE NAME: 107.PIP TIME/DATE OF STUDY: 15:23 01/24/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 107.00- 0.88* 51.75 0.63 51.58 } FRICTION } HYDRAULIC JUMP 106.00- 0.75*Dc 49.55 0.75*Dc 49.55 } JUNCTION 106.00- 1.07* 35.37 0.45 21.48 } FRICTION } HYDRAULIC JUMP 105.00- 0.56*Dc 19.90 0.56*Dc 19.90 } JUNCTION 105.00- 0.75* 17.74 0.28 16.90 } FRICTION } HYDRAULIC JUMP 104.00- 0.46*Dc 12.31 0.46*Dc 12.31 } JUNCTION 104.00- 0.61* 9.87 0.21 7.95 } FRICTION } HYDRAULIC JUMP 103.00- 0.34 Dc 5.77 0.23* 7.05 } JUNCTION 103.00- 0.34 Dc 5.77 0.22* 7.62 } FRICTION 102.00- 0.34*Dc 5.77 0.34*Dc 5.77 } CATCH BASIN 102.00- 0.49* 3.07 0.34 Dc 2.09 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 107.00 FLOWLINE ELEVATION = 424.83 PIPE FLOW = 3.82 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 425.710 FEET ------------------------------------------------------------------------------ NODE 107.00 : HGL = < 425.710>;EGL= < 425.905>;FLOWLINE= < 424.830> 1 ****************************************************************************** FLOW PROCESS FROM NODE 107.00 TO NODE 106.00 IS CODE = 1 UPSTREAM NODE 106.00 ELEVATION = 425.12 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.82 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 29.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.63 CRITICAL DEPTH(FT) = 0.75 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.75 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.747 4.343 1.040 49.55 0.013 0.742 4.379 1.040 49.56 0.055 0.737 4.416 1.040 49.57 0.128 0.733 4.454 1.041 49.58 0.234 0.728 4.492 1.041 49.61 0.378 0.723 4.531 1.042 49.64 0.563 0.718 4.570 1.043 49.68 0.793 0.713 4.611 1.043 49.72 1.075 0.708 4.651 1.044 49.77 1.414 0.703 4.693 1.046 49.83 1.818 0.699 4.735 1.047 49.90 2.296 0.694 4.778 1.048 49.98 2.859 0.689 4.822 1.050 50.06 3.520 0.684 4.867 1.052 50.15 4.298 0.679 4.912 1.054 50.25 5.215 0.674 4.959 1.056 50.36 6.299 0.669 5.006 1.059 50.48 7.591 0.665 5.054 1.061 50.60 9.148 0.660 5.103 1.064 50.74 11.050 0.655 5.152 1.067 50.88 13.424 0.650 5.203 1.071 51.03 16.484 0.645 5.255 1.074 51.19 20.629 0.640 5.308 1.078 51.36 26.754 0.635 5.361 1.082 51.54 29.000 0.634 5.372 1.083 51.58 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.88 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.880 3.544 1.075 51.75 0.357 0.875 3.570 1.073 51.59 0.707 0.869 3.596 1.070 51.43 1.050 0.864 3.623 1.068 51.28 1.386 0.859 3.650 1.066 51.13 1.713 0.853 3.678 1.064 50.99 2.033 0.848 3.706 1.062 50.86 2.344 0.843 3.735 1.060 50.73 2.645 0.837 3.764 1.058 50.61 2.937 0.832 3.794 1.056 50.49 3.219 0.827 3.824 1.054 50.38 3.490 0.822 3.855 1.052 50.28 3.749 0.816 3.886 1.051 50.18 2 3.997 0.811 3.917 1.049 50.09 4.231 0.806 3.950 1.048 50.01 4.452 0.800 3.982 1.047 49.93 4.658 0.795 4.016 1.046 49.86 4.849 0.790 4.050 1.044 49.80 5.023 0.784 4.084 1.043 49.74 5.179 0.779 4.119 1.043 49.69 5.316 0.774 4.155 1.042 49.65 5.432 0.768 4.191 1.041 49.62 5.526 0.763 4.228 1.041 49.59 5.596 0.758 4.266 1.041 49.57 5.639 0.752 4.304 1.040 49.56 5.654 0.747 4.343 1.040 49.55 29.000 0.747 4.343 1.040 49.55 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 0.38 FEET UPSTREAM OF NODE 107.00 | | DOWNSTREAM DEPTH = 0.874 FEET, UPSTREAM CONJUGATE DEPTH = 0.635 FEET | ------------------------------------------------------------------------------ NODE 106.00 : HGL = < 425.867>;EGL= < 426.160>;FLOWLINE= < 425.120> ****************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 5 UPSTREAM NODE 106.00 ELEVATION = 425.29 (FLOW UNSEALS IN REACH) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 1.75 12.00 30.00 425.29 0.56 2.229 DOWNSTREAM 3.82 18.00 - 425.12 0.75 4.345 LATERAL #1 1.62 12.00 90.00 425.29 0.54 2.344 LATERAL #2 0.45 6.00 74.00 425.29 0.34 2.292 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00241 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00536 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00389 JUNCTION LENGTH = 2.00 FEET FRICTION LOSSES = 0.008 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.274)+( 0.000) = 0.274 ------------------------------------------------------------------------------ NODE 106.00 : HGL = < 426.358>;EGL= < 426.435>;FLOWLINE= < 425.290> ****************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 105.00 IS CODE = 1 UPSTREAM NODE 105.00 ELEVATION = 425.87 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.75 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 39.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.44 CRITICAL DEPTH(FT) = 0.56 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.56 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.563 3.843 0.792 19.90 3 0.010 0.558 3.884 0.792 19.90 0.041 0.553 3.926 0.792 19.90 0.094 0.548 3.969 0.793 19.92 0.173 0.543 4.013 0.794 19.93 0.279 0.538 4.058 0.794 19.95 0.416 0.534 4.104 0.795 19.98 0.587 0.529 4.151 0.796 20.01 0.795 0.524 4.199 0.798 20.05 1.047 0.519 4.248 0.800 20.09 1.347 0.514 4.299 0.801 20.14 1.703 0.509 4.351 0.804 20.19 2.122 0.505 4.404 0.806 20.25 2.615 0.500 4.458 0.809 20.32 3.196 0.495 4.514 0.811 20.39 3.881 0.490 4.571 0.815 20.47 4.693 0.485 4.630 0.818 20.55 5.662 0.480 4.690 0.822 20.64 6.829 0.475 4.752 0.826 20.74 8.258 0.471 4.815 0.831 20.84 10.045 0.466 4.880 0.836 20.95 12.350 0.461 4.946 0.841 21.07 15.477 0.456 5.015 0.847 21.20 20.104 0.451 5.085 0.853 21.33 28.411 0.446 5.158 0.860 21.47 39.000 0.446 5.159 0.860 21.48 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.07 ============================================================================== PRESSURE FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.068 2.228 1.145 35.37 5.419 1.000 2.228 1.077 32.06 ============================================================================== ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.00 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 5.419 1.000 2.227 1.077 32.06 6.759 0.983 2.236 1.060 31.23 8.045 0.965 2.252 1.044 30.44 9.300 0.948 2.273 1.028 29.66 10.529 0.930 2.298 1.012 28.91 11.736 0.913 2.327 0.997 28.19 12.922 0.895 2.359 0.982 27.48 14.090 0.878 2.395 0.967 26.80 15.237 0.860 2.434 0.952 26.14 16.365 0.843 2.477 0.938 25.51 17.473 0.825 2.524 0.924 24.90 18.558 0.808 2.574 0.911 24.33 19.621 0.790 2.628 0.897 23.77 20.657 0.773 2.687 0.885 23.25 21.666 0.755 2.750 0.873 22.76 22.643 0.738 2.817 0.861 22.31 23.585 0.720 2.889 0.850 21.88 24.486 0.703 2.967 0.839 21.49 25.340 0.685 3.050 0.830 21.14 26.139 0.668 3.140 0.821 20.83 26.874 0.650 3.236 0.813 20.56 27.532 0.633 3.340 0.806 20.33 4 28.096 0.615 3.451 0.800 20.14 28.544 0.598 3.572 0.796 20.01 28.846 0.580 3.702 0.793 19.92 28.959 0.563 3.843 0.792 19.90 39.000 0.563 3.843 0.792 19.90 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 25.39 FEET UPSTREAM OF NODE 106.00 | | DOWNSTREAM DEPTH = 0.684 FEET, UPSTREAM CONJUGATE DEPTH = 0.459 FEET | ------------------------------------------------------------------------------ NODE 105.00 : HGL = < 426.433>;EGL= < 426.662>;FLOWLINE= < 425.870> ****************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 5 UPSTREAM NODE 105.00 ELEVATION = 426.04 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 1.21 12.00 24.00 426.04 0.46 1.915 DOWNSTREAM 1.75 12.00 - 425.87 0.56 3.844 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.54===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00139 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00653 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00396 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.016 FEET ENTRANCE LOSSES = 0.046 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.139)+( 0.046) = 0.185 ------------------------------------------------------------------------------ NODE 105.00 : HGL = < 426.790>;EGL= < 426.847>;FLOWLINE= < 426.040> ****************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 104.00 IS CODE = 1 UPSTREAM NODE 104.00 ELEVATION = 428.80 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.21 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 66.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.28 CRITICAL DEPTH(FT) = 0.46 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.46 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.464 3.392 0.643 12.31 0.007 0.456 3.465 0.643 12.32 0.028 0.449 3.541 0.644 12.33 0.065 0.441 3.620 0.645 12.36 0.120 0.434 3.703 0.647 12.40 0.195 0.426 3.790 0.649 12.45 0.292 0.419 3.880 0.653 12.51 0.413 0.411 3.975 0.657 12.59 0.564 0.404 4.074 0.661 12.68 0.746 0.396 4.177 0.667 12.79 5 0.966 0.389 4.286 0.674 12.91 1.228 0.381 4.400 0.682 13.05 1.540 0.374 4.520 0.691 13.20 1.910 0.366 4.647 0.701 13.37 2.350 0.358 4.779 0.713 13.56 2.873 0.351 4.919 0.727 13.77 3.499 0.343 5.067 0.742 14.01 4.253 0.336 5.223 0.760 14.26 5.171 0.328 5.388 0.779 14.54 6.306 0.321 5.563 0.802 14.85 7.739 0.313 5.748 0.827 15.18 9.607 0.306 5.945 0.855 15.55 12.167 0.298 6.154 0.887 15.94 15.996 0.291 6.377 0.922 16.37 22.946 0.283 6.614 0.963 16.84 66.000 0.282 6.641 0.968 16.90 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.75 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.750 1.913 0.807 17.74 0.238 0.739 1.944 0.798 17.36 0.473 0.727 1.976 0.788 16.99 0.706 0.716 2.010 0.779 16.64 0.935 0.705 2.045 0.770 16.30 1.161 0.693 2.083 0.760 15.96 1.384 0.682 2.121 0.752 15.64 1.603 0.670 2.162 0.743 15.33 1.817 0.659 2.205 0.734 15.04 2.027 0.647 2.249 0.726 14.75 2.232 0.636 2.296 0.718 14.48 2.432 0.624 2.346 0.710 14.23 2.626 0.613 2.397 0.702 13.98 2.813 0.601 2.452 0.695 13.75 2.993 0.590 2.509 0.688 13.54 3.164 0.578 2.569 0.681 13.34 3.327 0.567 2.632 0.675 13.16 3.481 0.556 2.699 0.669 12.99 3.623 0.544 2.770 0.663 12.84 3.753 0.533 2.844 0.658 12.70 3.869 0.521 2.923 0.654 12.59 3.970 0.510 3.006 0.650 12.49 4.053 0.498 3.094 0.647 12.41 4.117 0.487 3.187 0.645 12.36 4.157 0.475 3.287 0.643 12.32 4.172 0.464 3.392 0.643 12.31 66.000 0.464 3.392 0.643 12.31 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 0.54 FEET UPSTREAM OF NODE 105.00 | | DOWNSTREAM DEPTH = 0.724 FEET, UPSTREAM CONJUGATE DEPTH = 0.282 FEET | ------------------------------------------------------------------------------ NODE 104.00 : HGL = < 429.264>;EGL= < 429.443>;FLOWLINE= < 428.800> ****************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 5 UPSTREAM NODE 104.00 ELEVATION = 428.97 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 6 UPSTREAM 0.67 12.00 0.00 428.97 0.34 1.348 DOWNSTREAM 1.21 12.00 - 428.80 0.46 3.393 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.54===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00076 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00598 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00337 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.013 FEET ENTRANCE LOSSES = 0.036 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.125)+( 0.036) = 0.161 ------------------------------------------------------------------------------ NODE 104.00 : HGL = < 429.575>;EGL= < 429.604>;FLOWLINE= < 428.970> ****************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 103.00 IS CODE = 1 UPSTREAM NODE 103.00 ELEVATION = 432.00 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.67 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 77.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.21 CRITICAL DEPTH(FT) = 0.34 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.23 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.234 4.779 0.589 7.05 0.238 0.233 4.810 0.593 7.08 0.489 0.232 4.841 0.596 7.11 0.754 0.231 4.872 0.600 7.14 1.035 0.230 4.904 0.604 7.17 1.333 0.229 4.936 0.608 7.20 1.650 0.228 4.968 0.612 7.24 1.988 0.227 5.001 0.616 7.27 2.350 0.226 5.034 0.620 7.31 2.738 0.225 5.068 0.624 7.34 3.156 0.224 5.102 0.628 7.38 3.607 0.223 5.136 0.633 7.41 4.098 0.222 5.171 0.637 7.45 4.634 0.221 5.206 0.642 7.49 5.223 0.220 5.242 0.647 7.52 5.875 0.219 5.278 0.651 7.56 6.604 0.217 5.314 0.656 7.60 7.427 0.216 5.351 0.661 7.64 8.371 0.215 5.389 0.667 7.68 9.473 0.214 5.426 0.672 7.72 10.790 0.213 5.465 0.677 7.76 12.418 0.212 5.503 0.683 7.81 14.541 0.211 5.543 0.688 7.85 17.564 0.210 5.582 0.694 7.89 22.796 0.209 5.623 0.700 7.94 77.000 0.209 5.631 0.701 7.95 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS 7 ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.61 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.605 1.347 0.634 9.87 0.243 0.595 1.376 0.624 9.59 0.483 0.584 1.406 0.615 9.31 0.722 0.574 1.437 0.606 9.04 0.958 0.563 1.470 0.597 8.78 1.192 0.552 1.505 0.588 8.53 1.423 0.542 1.541 0.579 8.28 1.651 0.531 1.580 0.570 8.05 1.875 0.521 1.620 0.562 7.83 2.096 0.510 1.663 0.553 7.61 2.313 0.500 1.707 0.545 7.41 2.525 0.489 1.755 0.537 7.21 2.731 0.478 1.805 0.529 7.03 2.932 0.468 1.857 0.521 6.86 3.127 0.457 1.913 0.514 6.70 3.314 0.447 1.973 0.507 6.55 3.493 0.436 2.036 0.501 6.41 3.663 0.426 2.103 0.494 6.28 3.822 0.415 2.174 0.488 6.17 3.968 0.404 2.250 0.483 6.06 4.101 0.394 2.331 0.478 5.98 4.217 0.383 2.417 0.474 5.90 4.315 0.373 2.510 0.471 5.84 4.390 0.362 2.610 0.468 5.80 4.439 0.352 2.717 0.466 5.77 4.456 0.341 2.833 0.466 5.77 77.000 0.341 2.833 0.466 5.77 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 1.76 FEET UPSTREAM OF NODE 104.00 | | DOWNSTREAM DEPTH = 0.526 FEET, UPSTREAM CONJUGATE DEPTH = 0.209 FEET | ------------------------------------------------------------------------------ NODE 103.00 : HGL = < 432.234>;EGL= < 432.589>;FLOWLINE= < 432.000> ****************************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 103.00 IS CODE = 5 UPSTREAM NODE 103.00 ELEVATION = 432.17 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 0.67 12.00 20.00 432.17 0.34 5.338 DOWNSTREAM 0.67 12.00 - 432.00 0.34 4.781 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03327 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02438 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02882 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.115 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.240)+( 0.000) = 0.240 ------------------------------------------------------------------------------ NODE 103.00 : HGL = < 432.387>;EGL= < 432.829>;FLOWLINE= < 432.170> 8 ****************************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 102.00 IS CODE = 1 UPSTREAM NODE 102.00 ELEVATION = 433.66 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.67 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 41.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.21 CRITICAL DEPTH(FT) = 0.34 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.34 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.341 2.833 0.466 5.77 0.005 0.336 2.893 0.466 5.77 0.021 0.331 2.955 0.466 5.77 0.049 0.326 3.019 0.467 5.79 0.090 0.320 3.086 0.468 5.80 0.146 0.315 3.156 0.470 5.82 0.218 0.310 3.229 0.472 5.85 0.309 0.305 3.304 0.475 5.88 0.420 0.300 3.383 0.478 5.92 0.556 0.295 3.466 0.481 5.97 0.718 0.289 3.552 0.486 6.02 0.912 0.284 3.642 0.490 6.07 1.142 0.279 3.736 0.496 6.14 1.415 0.274 3.835 0.503 6.21 1.738 0.269 3.938 0.510 6.29 2.121 0.264 4.047 0.518 6.37 2.579 0.259 4.161 0.528 6.47 3.129 0.253 4.280 0.538 6.57 3.798 0.248 4.406 0.550 6.69 4.622 0.243 4.539 0.563 6.81 5.659 0.238 4.678 0.578 6.95 7.009 0.233 4.826 0.595 7.09 8.853 0.228 4.982 0.613 7.25 11.603 0.222 5.146 0.634 7.42 16.581 0.217 5.321 0.657 7.61 41.000 0.217 5.336 0.659 7.62 ------------------------------------------------------------------------------ NODE 102.00 : HGL = < 434.001>;EGL= < 434.126>;FLOWLINE= < 433.660> ****************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 102.00 IS CODE = 8 UPSTREAM NODE 102.00 ELEVATION = 433.66 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 0.67 CFS PIPE DIAMETER = 12.00 INCHES FLOW VELOCITY = 2.83 FEET/SEC. VELOCITY HEAD = 0.125 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.125) = 0.025 ------------------------------------------------------------------------------ NODE 102.00 : HGL = < 434.151>;EGL= < 434.151>;FLOWLINE= < 433.660> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 102.00 FLOWLINE ELEVATION = 433.66 ASSUMED UPSTREAM CONTROL HGL = 434.00 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 9 ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: PASCO LARET SUITER & ASSOCIATES 535 NORTH HIGHWAY 101, STE A SOLANA BEACH, CA 92075 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * 3925 IONIS LOTS 21 AND 22 * * 100-YR * * * ************************************************************************** FILE NAME: 106.PIP TIME/DATE OF STUDY: 17:04 01/24/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 106.00- 1.07* 34.47 0.43 19.84 } FRICTION } HYDRAULIC JUMP 106.20- 0.54*Dc 18.28 0.54*Dc 18.28 } JUNCTION 106.20- 0.74* 17.41 0.35 14.15 } FRICTION } HYDRAULIC JUMP 106.30- 0.47 Dc 12.58 0.43* 12.74 } JUNCTION 106.30- 0.45 Dc 9.46 0.31* 11.25 } FRICTION 106.40- 0.45*Dc 9.46 0.45*Dc 9.46 } JUNCTION 106.40- 0.81* 8.54 0.21 4.70 } FRICTION } HYDRAULIC JUMP 106.50- 0.33*Dc 3.61 0.33*Dc 3.61 } CATCH BASIN 106.50- 0.50* 2.09 0.33 Dc 1.20 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 106.00 FLOWLINE ELEVATION = 425.29 PIPE FLOW = 1.64 CFS PIPE DIAMETER = 12.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 426.358 FEET ------------------------------------------------------------------------------ NODE 106.00 : HGL = < 426.358>;EGL= < 426.426>;FLOWLINE= < 425.290> ****************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 106.20 IS CODE = 1 UPSTREAM NODE 106.20 ELEVATION = 425.89 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.64 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 39.50 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.42 CRITICAL DEPTH(FT) = 0.54 ============================================================================== 1 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.54 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.544 3.755 0.763 18.28 0.010 0.539 3.797 0.763 18.28 0.039 0.534 3.840 0.763 18.28 0.092 0.529 3.884 0.764 18.30 0.168 0.525 3.929 0.764 18.31 0.271 0.520 3.975 0.765 18.33 0.404 0.515 4.022 0.766 18.36 0.571 0.510 4.070 0.767 18.39 0.774 0.505 4.119 0.769 18.43 1.019 0.501 4.170 0.771 18.47 1.311 0.496 4.221 0.773 18.51 1.657 0.491 4.274 0.775 18.57 2.066 0.486 4.329 0.777 18.63 2.546 0.481 4.385 0.780 18.69 3.112 0.476 4.442 0.783 18.76 3.780 0.472 4.501 0.786 18.84 4.571 0.467 4.561 0.790 18.92 5.515 0.462 4.623 0.794 19.01 6.654 0.457 4.687 0.798 19.10 8.047 0.452 4.752 0.803 19.21 9.790 0.447 4.819 0.808 19.32 12.038 0.443 4.888 0.814 19.43 15.089 0.438 4.959 0.820 19.56 19.604 0.433 5.031 0.826 19.69 27.712 0.428 5.106 0.833 19.83 39.500 0.428 5.108 0.833 19.84 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.07 ============================================================================== PRESSURE FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.068 2.088 1.136 34.47 5.202 1.000 2.088 1.068 31.14 ============================================================================== ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.00 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 5.202 1.000 2.087 1.068 31.14 6.541 0.982 2.096 1.050 30.28 7.833 0.964 2.112 1.033 29.44 9.096 0.945 2.133 1.016 28.63 10.337 0.927 2.158 0.999 27.84 11.558 0.909 2.187 0.983 27.07 12.761 0.891 2.219 0.967 26.32 13.945 0.872 2.255 0.951 25.60 15.112 0.854 2.295 0.936 24.91 16.261 0.836 2.338 0.921 24.24 17.390 0.818 2.385 0.906 23.60 18.499 0.799 2.436 0.892 22.99 19.585 0.781 2.491 0.877 22.40 20.647 0.763 2.550 0.864 21.85 21.682 0.745 2.614 0.851 21.33 22.687 0.726 2.683 0.838 20.85 23.657 0.708 2.757 0.826 20.40 24.586 0.690 2.837 0.815 19.98 25.470 0.672 2.923 0.804 19.61 26.299 0.653 3.016 0.795 19.27 27.063 0.635 3.116 0.786 18.98 27.749 0.617 3.224 0.778 18.74 28.340 0.599 3.341 0.772 18.54 2 28.811 0.580 3.468 0.767 18.40 29.130 0.562 3.606 0.764 18.31 29.250 0.544 3.755 0.763 18.28 39.500 0.544 3.755 0.763 18.28 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 25.72 FEET UPSTREAM OF NODE 106.00 | | DOWNSTREAM DEPTH = 0.666 FEET, UPSTREAM CONJUGATE DEPTH = 0.440 FEET | ------------------------------------------------------------------------------ NODE 106.20 : HGL = < 426.434>;EGL= < 426.653>;FLOWLINE= < 425.890> ****************************************************************************** FLOW PROCESS FROM NODE 106.20 TO NODE 106.20 IS CODE = 5 UPSTREAM NODE 106.20 ELEVATION = 425.89 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 1.23 12.00 0.00 425.89 0.47 1.986 DOWNSTREAM 1.64 12.00 - 425.89 0.54 3.757 LATERAL #1 0.41 6.00 45.00 425.89 0.33 2.088 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00150 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00640 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00395 JUNCTION LENGTH = 1.00 FEET FRICTION LOSSES = 0.004 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.034)+( 0.000) = 0.034 ------------------------------------------------------------------------------ NODE 106.20 : HGL = < 426.626>;EGL= < 426.687>;FLOWLINE= < 425.890> ****************************************************************************** FLOW PROCESS FROM NODE 106.20 TO NODE 106.30 IS CODE = 1 UPSTREAM NODE 106.30 ELEVATION = 427.03 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.23 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 65.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.35 CRITICAL DEPTH(FT) = 0.47 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.43 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.428 3.836 0.656 12.74 0.149 0.424 3.874 0.658 12.76 0.316 0.421 3.912 0.659 12.79 0.504 0.418 3.952 0.661 12.82 0.713 0.415 3.992 0.662 12.86 0.947 0.412 4.032 0.664 12.89 1.208 0.409 4.074 0.666 12.93 1.499 0.405 4.117 0.669 12.98 1.823 0.402 4.160 0.671 13.02 2.185 0.399 4.204 0.674 13.07 2.589 0.396 4.249 0.676 13.12 3.042 0.393 4.295 0.679 13.17 3.551 0.390 4.342 0.683 13.23 4.125 0.386 4.390 0.686 13.28 4.774 0.383 4.439 0.689 13.35 5.515 0.380 4.489 0.693 13.41 6.367 0.377 4.539 0.697 13.48 7.355 0.374 4.591 0.701 13.55 8.516 0.371 4.645 0.706 13.62 3 9.905 0.367 4.699 0.710 13.70 11.605 0.364 4.754 0.715 13.78 13.756 0.361 4.811 0.721 13.87 16.621 0.358 4.869 0.726 13.95 20.790 0.355 4.928 0.732 14.04 28.155 0.352 4.989 0.738 14.14 65.000 0.351 4.994 0.739 14.15 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.74 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.736 1.985 0.797 17.41 0.549 0.725 2.016 0.788 17.08 1.093 0.714 2.048 0.780 16.75 1.631 0.704 2.082 0.771 16.43 2.163 0.693 2.117 0.763 16.12 2.688 0.682 2.154 0.754 15.83 3.206 0.672 2.193 0.746 15.54 3.716 0.661 2.233 0.738 15.26 4.217 0.650 2.275 0.731 15.00 4.709 0.639 2.319 0.723 14.75 5.190 0.629 2.365 0.716 14.51 5.660 0.618 2.413 0.708 14.28 6.118 0.607 2.464 0.702 14.06 6.562 0.596 2.517 0.695 13.85 6.991 0.586 2.572 0.689 13.66 7.402 0.575 2.630 0.683 13.49 7.795 0.564 2.691 0.677 13.32 8.166 0.554 2.756 0.672 13.17 8.513 0.543 2.823 0.667 13.04 8.833 0.532 2.894 0.662 12.92 9.121 0.521 2.969 0.658 12.82 9.374 0.511 3.048 0.655 12.73 9.585 0.500 3.131 0.652 12.67 9.748 0.489 3.219 0.650 12.62 9.853 0.479 3.312 0.649 12.59 9.892 0.468 3.410 0.649 12.58 65.000 0.468 3.410 0.649 12.58 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 5.93 FEET UPSTREAM OF NODE 106.20 | | DOWNSTREAM DEPTH = 0.612 FEET, UPSTREAM CONJUGATE DEPTH = 0.351 FEET | ------------------------------------------------------------------------------ NODE 106.30 : HGL = < 427.458>;EGL= < 427.686>;FLOWLINE= < 427.030> ****************************************************************************** FLOW PROCESS FROM NODE 106.30 TO NODE 106.30 IS CODE = 5 UPSTREAM NODE 106.30 ELEVATION = 427.20 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 0.82 6.00 24.00 427.20 0.45 6.403 DOWNSTREAM 1.23 12.00 - 427.03 0.47 3.837 LATERAL #1 0.41 6.00 90.00 427.20 0.33 3.026 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04271 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00824 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02548 JUNCTION LENGTH = 2.00 FEET FRICTION LOSSES = 0.051 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.461)+( 0.000) = 0.461 ------------------------------------------------------------------------------ 4 NODE 106.30 : HGL = < 427.510>;EGL= < 428.147>;FLOWLINE= < 427.200> ****************************************************************************** FLOW PROCESS FROM NODE 106.30 TO NODE 106.40 IS CODE = 1 UPSTREAM NODE 106.40 ELEVATION = 429.09 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.82 CFS PIPE DIAMETER = 6.00 INCHES PIPE LENGTH = 42.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.30 CRITICAL DEPTH(FT) = 0.45 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.45 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.448 4.419 0.751 9.46 0.008 0.442 4.462 0.752 9.47 0.035 0.436 4.508 0.752 9.47 0.079 0.431 4.557 0.753 9.49 0.143 0.425 4.608 0.755 9.50 0.229 0.419 4.663 0.757 9.53 0.337 0.414 4.720 0.760 9.56 0.471 0.408 4.780 0.763 9.59 0.633 0.402 4.843 0.767 9.63 0.827 0.396 4.910 0.771 9.68 1.055 0.391 4.980 0.776 9.73 1.324 0.385 5.053 0.782 9.79 1.639 0.379 5.130 0.788 9.85 2.007 0.374 5.210 0.795 9.92 2.439 0.368 5.294 0.803 10.00 2.946 0.362 5.382 0.812 10.09 3.545 0.356 5.475 0.822 10.18 4.257 0.351 5.572 0.833 10.28 5.113 0.345 5.673 0.845 10.39 6.159 0.339 5.779 0.858 10.51 7.465 0.334 5.891 0.873 10.63 9.149 0.328 6.007 0.889 10.77 11.432 0.322 6.130 0.906 10.92 14.811 0.316 6.258 0.925 11.07 20.882 0.311 6.393 0.946 11.24 42.000 0.310 6.401 0.947 11.25 ------------------------------------------------------------------------------ NODE 106.40 : HGL = < 429.538>;EGL= < 429.841>;FLOWLINE= < 429.090> ****************************************************************************** FLOW PROCESS FROM NODE 106.40 TO NODE 106.40 IS CODE = 5 UPSTREAM NODE 106.40 ELEVATION = 429.09 (FLOW UNSEALS IN REACH) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 0.41 6.00 0.00 429.09 0.33 2.088 DOWNSTREAM 0.82 6.00 - 429.09 0.45 4.421 LATERAL #1 0.41 6.00 45.00 429.09 0.33 2.088 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00534 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01888 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01211 JUNCTION LENGTH = 1.00 FEET FRICTION LOSSES = 0.012 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.128)+( 0.000) = 0.128 ------------------------------------------------------------------------------ NODE 106.40 : HGL = < 429.902>;EGL= < 429.970>;FLOWLINE= < 429.090> 5 ****************************************************************************** FLOW PROCESS FROM NODE 106.40 TO NODE 106.50 IS CODE = 1 UPSTREAM NODE 106.50 ELEVATION = 431.67 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.41 CFS PIPE DIAMETER = 6.00 INCHES PIPE LENGTH = 56.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.20 CRITICAL DEPTH(FT) = 0.33 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.33 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.326 3.025 0.468 3.61 0.004 0.321 3.079 0.468 3.61 0.017 0.316 3.136 0.469 3.61 0.040 0.311 3.195 0.469 3.62 0.074 0.306 3.256 0.471 3.63 0.119 0.301 3.321 0.472 3.64 0.178 0.296 3.388 0.474 3.66 0.253 0.291 3.458 0.477 3.67 0.344 0.286 3.531 0.480 3.70 0.455 0.281 3.608 0.483 3.72 0.587 0.276 3.689 0.487 3.75 0.746 0.271 3.773 0.492 3.78 0.934 0.266 3.861 0.498 3.82 1.157 0.261 3.954 0.504 3.86 1.422 0.256 4.052 0.511 3.91 1.736 0.251 4.154 0.519 3.96 2.111 0.246 4.262 0.528 4.01 2.562 0.241 4.375 0.538 4.07 3.111 0.236 4.495 0.550 4.14 3.787 0.231 4.621 0.563 4.21 4.640 0.226 4.754 0.577 4.29 5.750 0.221 4.895 0.593 4.38 7.269 0.216 5.044 0.611 4.47 9.537 0.211 5.202 0.631 4.57 13.647 0.206 5.369 0.654 4.68 56.000 0.205 5.402 0.659 4.70 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 0.81 ============================================================================== PRESSURE FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.812 2.088 0.880 8.54 7.658 0.500 2.088 0.568 4.72 ============================================================================== ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 0.50 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 7.658 0.500 2.087 0.568 4.72 7.819 0.493 2.093 0.561 4.64 7.971 0.486 2.104 0.555 4.57 8.117 0.479 2.118 0.549 4.49 8.259 0.472 2.134 0.543 4.42 8.396 0.465 2.153 0.537 4.35 8.530 0.458 2.174 0.532 4.29 8.660 0.451 2.198 0.526 4.22 8.786 0.444 2.223 0.521 4.16 8.909 0.437 2.251 0.516 4.11 9.028 0.430 2.280 0.511 4.05 6 9.142 0.423 2.312 0.506 4.00 9.253 0.416 2.346 0.502 3.95 9.359 0.409 2.382 0.498 3.90 9.460 0.402 2.420 0.493 3.86 9.556 0.395 2.461 0.490 3.82 9.646 0.389 2.504 0.486 3.78 9.731 0.382 2.549 0.483 3.75 9.809 0.375 2.598 0.479 3.71 9.880 0.368 2.649 0.477 3.69 9.943 0.361 2.703 0.474 3.66 9.997 0.354 2.760 0.472 3.64 10.041 0.347 2.821 0.470 3.63 10.075 0.340 2.885 0.469 3.62 10.096 0.333 2.953 0.468 3.61 10.104 0.326 3.025 0.468 3.61 56.000 0.326 3.025 0.468 3.61 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 7.71 FEET UPSTREAM OF NODE 106.40 | | DOWNSTREAM DEPTH = 0.498 FEET, UPSTREAM CONJUGATE DEPTH = 0.205 FEET | ------------------------------------------------------------------------------ NODE 106.50 : HGL = < 431.996>;EGL= < 432.138>;FLOWLINE= < 431.670> ****************************************************************************** FLOW PROCESS FROM NODE 106.50 TO NODE 106.50 IS CODE = 8 UPSTREAM NODE 106.50 ELEVATION = 431.67 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 0.41 CFS PIPE DIAMETER = 6.00 INCHES FLOW VELOCITY = 3.03 FEET/SEC. VELOCITY HEAD = 0.142 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.142) = 0.028 ------------------------------------------------------------------------------ NODE 106.50 : HGL = < 432.166>;EGL= < 432.166>;FLOWLINE= < 431.670> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 106.50 FLOWLINE ELEVATION = 431.67 ASSUMED UPSTREAM CONTROL HGL = 432.00 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 7 ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: PASCO LARET SUITER & ASSOCIATES 535 NORTH HIGHWAY 101, STE A SOLANA BEACH, CA 92075 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * 3925 IONIS LOTS 21 AND 22 * * 100-YR * * * ************************************************************************** FILE NAME: 106LAT2.PIP TIME/DATE OF STUDY: 17:04 01/24/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 106.00- 1.07* 12.02 0.22 5.13 } FRICTION } HYDRAULIC JUMP 106.10- 0.34*Dc 4.09 0.34*Dc 4.09 } CATCH BASIN 106.10- 0.53* 3.38 0.34 Dc 1.34 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 106.00 FLOWLINE ELEVATION = 425.29 PIPE FLOW = 0.45 CFS PIPE DIAMETER = 6.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 426.358 FEET ------------------------------------------------------------------------------ NODE 106.00 : HGL = < 426.358>;EGL= < 426.440>;FLOWLINE= < 425.290> ****************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 106.10 IS CODE = 1 UPSTREAM NODE 106.10 ELEVATION = 428.00 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.45 CFS PIPE DIAMETER = 6.00 INCHES PIPE LENGTH = 66.50 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.22 CRITICAL DEPTH(FT) = 0.34 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.34 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.342 3.146 0.496 4.09 0.005 0.337 3.197 0.496 4.09 0.019 0.332 3.250 0.496 4.09 0.044 0.327 3.306 0.497 4.10 0.081 0.322 3.364 0.498 4.11 0.131 0.317 3.424 0.499 4.12 1 0.196 0.312 3.487 0.501 4.13 0.278 0.307 3.553 0.504 4.15 0.378 0.303 3.621 0.506 4.17 0.499 0.298 3.692 0.509 4.20 0.645 0.293 3.767 0.513 4.23 0.818 0.288 3.845 0.518 4.26 1.023 0.283 3.927 0.522 4.29 1.265 0.278 4.012 0.528 4.33 1.552 0.273 4.101 0.534 4.38 1.893 0.268 4.195 0.542 4.43 2.299 0.263 4.293 0.550 4.48 2.787 0.258 4.396 0.559 4.54 3.378 0.253 4.504 0.569 4.60 4.107 0.249 4.617 0.580 4.67 5.023 0.244 4.736 0.592 4.74 6.214 0.239 4.862 0.606 4.82 7.840 0.234 4.994 0.621 4.91 10.264 0.229 5.133 0.638 5.01 14.648 0.224 5.281 0.657 5.11 66.500 0.223 5.313 0.662 5.13 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.07 ============================================================================== PRESSURE FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.068 2.292 1.150 12.02 16.550 0.500 2.292 0.582 5.06 ============================================================================== ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 0.50 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 16.550 0.500 2.291 0.582 5.06 16.722 0.494 2.297 0.576 4.99 16.882 0.487 2.307 0.570 4.92 17.035 0.481 2.320 0.565 4.86 17.183 0.475 2.336 0.559 4.79 17.326 0.468 2.354 0.554 4.73 17.464 0.462 2.374 0.550 4.67 17.598 0.456 2.395 0.545 4.62 17.727 0.449 2.419 0.540 4.57 17.852 0.443 2.445 0.536 4.52 17.972 0.437 2.473 0.532 4.47 18.088 0.430 2.502 0.528 4.42 18.200 0.424 2.534 0.524 4.38 18.306 0.418 2.567 0.520 4.34 18.407 0.411 2.603 0.517 4.30 18.503 0.405 2.640 0.513 4.27 18.593 0.399 2.680 0.510 4.23 18.677 0.392 2.721 0.507 4.20 18.753 0.386 2.765 0.505 4.18 18.823 0.380 2.812 0.503 4.15 18.884 0.373 2.860 0.501 4.13 18.937 0.367 2.912 0.499 4.12 18.979 0.361 2.966 0.497 4.10 19.012 0.354 3.023 0.496 4.09 19.032 0.348 3.083 0.496 4.09 19.039 0.342 3.146 0.496 4.09 66.500 0.342 3.146 0.496 4.09 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 16.40 FEET UPSTREAM OF NODE 106.00 | | DOWNSTREAM DEPTH = 0.505 FEET, UPSTREAM CONJUGATE DEPTH = 0.223 FEET | ------------------------------------------------------------------------------ NODE 106.10 : HGL = < 428.342>;EGL= < 428.496>;FLOWLINE= < 428.000> ****************************************************************************** FLOW PROCESS FROM NODE 106.10 TO NODE 106.10 IS CODE = 8 2 UPSTREAM NODE 106.10 ELEVATION = 428.00 (FLOW UNSEALS IN REACH) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 0.45 CFS PIPE DIAMETER = 6.00 INCHES FLOW VELOCITY = 3.15 FEET/SEC. VELOCITY HEAD = 0.154 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.154) = 0.031 ------------------------------------------------------------------------------ NODE 106.10 : HGL = < 428.526>;EGL= < 428.526>;FLOWLINE= < 428.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 106.10 FLOWLINE ELEVATION = 428.00 ASSUMED UPSTREAM CONTROL HGL = 428.34 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 3 ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: Pasco Laret Suiter & Associates 119 Aberdeen Drive Cardiff, California 92007 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * 3925 IONIS LOTS 21 AND 22 * * 100-YR * * * ************************************************************************** FILE NAME: 205-15.PIP TIME/DATE OF STUDY: 17:29 04/06/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 205.15- 1.59* 65.04 0.57 26.80 } FRICTION 205.10- 1.51* 61.03 0.63 Dc 26.42 } CATCH BASIN 205.10- 1.65* 56.38 0.63 Dc 8.90 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 205.15 FLOWLINE ELEVATION = 428.33 PIPE FLOW = 2.17 CFS PIPE DIAMETER = 12.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 429.920 FEET ------------------------------------------------------------------------------ NODE 205.15 : HGL = < 429.920>;EGL= < 430.039>;FLOWLINE= < 428.330> ****************************************************************************** FLOW PROCESS FROM NODE 205.15 TO NODE 205.10 IS CODE = 1 UPSTREAM NODE 205.10 ELEVATION = 428.46 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.17 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 13.00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 2.17)/( 35.631))**2 = 0.00371 HF=L*SF = ( 13.00)*(0.00371) = 0.048 ------------------------------------------------------------------------------ NODE 205.10 : HGL = < 429.968>;EGL= < 430.087>;FLOWLINE= < 428.460> ****************************************************************************** FLOW PROCESS FROM NODE 205.10 TO NODE 205.10 IS CODE = 8 UPSTREAM NODE 205.10 ELEVATION = 428.46 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ 1 CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 2.17 CFS PIPE DIAMETER = 12.00 INCHES FLOW VELOCITY = 2.76 FEET/SEC. VELOCITY HEAD = 0.119 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.119) = 0.024 ------------------------------------------------------------------------------ NODE 205.10 : HGL = < 430.110>;EGL= < 430.110>;FLOWLINE= < 428.460> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 205.10 FLOWLINE ELEVATION = 428.46 ASSUMED UPSTREAM CONTROL HGL = 429.09 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 2 ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: Pasco Laret Suiter & Associates 119 Aberdeen Drive Cardiff, California 92007 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * ON-SITE HYDRAULICS -NODE 205 * * * * * ************************************************************************** FILE NAME: 205.PIP TIME/DATE OF STUDY: 17:04 04/10/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 205.00- 1.59* 111.88 0.64 59.37 } FRICTION 204.00- 1.36* 87.70 0.78 Dc 55.88 } JUNCTION 204.00- 1.12* 68.35 0.68 57.58 } FRICTION } HYDRAULIC JUMP 203.20- 0.78*Dc 55.88 0.78*Dc 55.88 } JUNCTION 203.20- 0.98* 56.44 0.69 51.06 } FRICTION 203.10- 0.93* 54.22 0.75 Dc 50.40 } JUNCTION 203.10- 1.01* 54.55 0.62 46.67 } FRICTION } HYDRAULIC JUMP 203.00- 0.72*Dc 45.23 0.72*Dc 45.23 } JUNCTION 203.00- 1.05* 34.12 0.50 19.27 } FRICTION } HYDRAULIC JUMP 202.00- 0.55*Dc 19.01 0.55*Dc 19.01 } JUNCTION 202.00- 0.83* 19.41 0.37 9.85 } FRICTION } HYDRAULIC JUMP 202.10- 0.42 Dc 9.63 0.38* 9.81 } ANGLE-POINT 202.10- 0.42 Dc 9.63 0.38* 9.81 } FRICTION 201.00- 0.42*Dc 9.63 0.42*Dc 9.63 } CATCH BASIN 201.00- 0.61* 5.16 0.42 Dc 3.44 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. 1 ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 205.00 FLOWLINE ELEVATION = 428.33 PIPE FLOW = 4.19 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 429.920 FEET ------------------------------------------------------------------------------ NODE 205.00 : HGL = < 429.920>;EGL= < 430.007>;FLOWLINE= < 428.330> ****************************************************************************** FLOW PROCESS FROM NODE 205.00 TO NODE 204.00 IS CODE = 1 UPSTREAM NODE 204.00 ELEVATION = 428.58 (FLOW SEALS IN REACH) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.19 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 19.00 FEET MANNING'S N = 0.01300 ============================================================================== DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.59 ============================================================================== PRESSURE FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.590 2.371 1.677 111.88 7.783 1.500 2.371 1.587 101.95 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.61 CRITICAL DEPTH(FT) = 0.78 ============================================================================== ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 7.783 1.500 2.370 1.587 101.95 10.171 1.471 2.381 1.559 98.89 12.485 1.443 2.400 1.532 95.92 14.754 1.414 2.426 1.506 93.02 16.988 1.385 2.456 1.479 90.20 19.000 1.359 2.488 1.456 87.70 ------------------------------------------------------------------------------ NODE 204.00 : HGL = < 429.939>;EGL= < 430.035>;FLOWLINE= < 428.580> ****************************************************************************** FLOW PROCESS FROM NODE 204.00 TO NODE 204.00 IS CODE = 5 UPSTREAM NODE 204.00 ELEVATION = 428.91 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 4.19 18.00 59.00 428.91 0.78 2.957 DOWNSTREAM 4.19 18.00 - 428.58 0.78 2.489 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00193 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00139 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00166 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.007 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.132)+( 0.000) = 0.132 2 ------------------------------------------------------------------------------ NODE 204.00 : HGL = < 430.031>;EGL= < 430.167>;FLOWLINE= < 428.910> ****************************************************************************** FLOW PROCESS FROM NODE 204.00 TO NODE 203.20 IS CODE = 1 UPSTREAM NODE 203.20 ELEVATION = 429.31 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.19 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 44.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.68 CRITICAL DEPTH(FT) = 0.78 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.78 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.784 4.481 1.096 55.88 0.013 0.780 4.512 1.096 55.89 0.053 0.776 4.543 1.096 55.89 0.122 0.771 4.575 1.097 55.91 0.224 0.767 4.608 1.097 55.93 0.362 0.763 4.641 1.097 55.95 0.539 0.758 4.674 1.098 55.98 0.759 0.754 4.708 1.098 56.02 1.028 0.750 4.742 1.099 56.06 1.352 0.745 4.777 1.100 56.10 1.738 0.741 4.813 1.101 56.16 2.194 0.737 4.849 1.102 56.22 2.732 0.733 4.885 1.103 56.28 3.363 0.728 4.922 1.105 56.35 4.105 0.724 4.960 1.106 56.43 4.978 0.720 4.998 1.108 56.52 6.012 0.715 5.037 1.110 56.61 7.243 0.711 5.076 1.111 56.70 8.724 0.707 5.116 1.113 56.81 10.534 0.702 5.156 1.116 56.92 12.793 0.698 5.198 1.118 57.03 15.703 0.694 5.239 1.120 57.16 19.643 0.690 5.282 1.123 57.29 25.462 0.685 5.325 1.126 57.43 35.891 0.681 5.369 1.129 57.57 44.000 0.681 5.369 1.129 57.58 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.12 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.121 2.957 1.257 68.35 1.406 1.108 2.994 1.247 67.47 2.798 1.094 3.033 1.237 66.61 4.177 1.081 3.073 1.227 65.78 5.540 1.067 3.114 1.218 64.98 6.888 1.054 3.158 1.209 64.21 8.218 1.040 3.202 1.200 63.46 9.530 1.027 3.249 1.191 62.75 10.821 1.013 3.297 1.182 62.07 3 12.091 1.000 3.347 1.174 61.41 13.336 0.986 3.399 1.166 60.79 14.555 0.973 3.453 1.158 60.20 15.745 0.959 3.509 1.151 59.64 16.903 0.946 3.567 1.144 59.12 18.025 0.932 3.628 1.137 58.63 19.107 0.919 3.691 1.131 58.18 20.145 0.906 3.756 1.125 57.76 21.131 0.892 3.824 1.119 57.38 22.060 0.879 3.895 1.114 57.04 22.923 0.865 3.968 1.110 56.75 23.708 0.852 4.045 1.106 56.49 24.404 0.838 4.125 1.102 56.28 24.994 0.825 4.208 1.100 56.11 25.456 0.811 4.295 1.098 55.98 25.762 0.798 4.386 1.097 55.91 25.875 0.784 4.481 1.096 55.88 44.000 0.784 4.481 1.096 55.88 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 21.18 FEET UPSTREAM OF NODE 204.00 | | DOWNSTREAM DEPTH = 0.891 FEET, UPSTREAM CONJUGATE DEPTH = 0.687 FEET | ------------------------------------------------------------------------------ NODE 203.20 : HGL = < 430.094>;EGL= < 430.406>;FLOWLINE= < 429.310> ****************************************************************************** FLOW PROCESS FROM NODE 203.20 TO NODE 203.20 IS CODE = 5 UPSTREAM NODE 203.20 ELEVATION = 429.31 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 3.87 18.00 0.00 429.31 0.75 3.162 DOWNSTREAM 4.19 18.00 - 429.31 0.78 4.482 LATERAL #1 0.32 6.00 90.00 429.31 0.29 1.630 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00233 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00548 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00391 JUNCTION LENGTH = 1.00 FEET FRICTION LOSSES = 0.004 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.040)+( 0.000) = 0.040 ------------------------------------------------------------------------------ NODE 203.20 : HGL = < 430.290>;EGL= < 430.446>;FLOWLINE= < 429.310> ****************************************************************************** FLOW PROCESS FROM NODE 203.20 TO NODE 203.10 IS CODE = 1 UPSTREAM NODE 203.10 ELEVATION = 429.35 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.87 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 4.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.63 CRITICAL DEPTH(FT) = 0.75 ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.98 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ 4 CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.980 3.161 1.136 56.44 0.755 0.971 3.195 1.130 56.00 1.499 0.962 3.230 1.124 55.58 2.233 0.953 3.266 1.119 55.17 2.956 0.944 3.303 1.113 54.78 3.666 0.935 3.341 1.108 54.40 4.000 0.930 3.359 1.106 54.22 ------------------------------------------------------------------------------ NODE 203.10 : HGL = < 430.280>;EGL= < 430.456>;FLOWLINE= < 429.350> ****************************************************************************** FLOW PROCESS FROM NODE 203.10 TO NODE 203.10 IS CODE = 5 UPSTREAM NODE 203.10 ELEVATION = 429.35 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 3.56 18.00 0.00 429.35 0.72 2.806 DOWNSTREAM 3.87 18.00 - 429.35 0.75 3.360 LATERAL #1 0.31 6.00 90.00 429.35 0.28 1.579 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00181 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00272 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00226 JUNCTION LENGTH = 1.00 FEET FRICTION LOSSES = 0.002 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.029)+( 0.000) = 0.029 ------------------------------------------------------------------------------ NODE 203.10 : HGL = < 430.362>;EGL= < 430.484>;FLOWLINE= < 429.350> ****************************************************************************** FLOW PROCESS FROM NODE 203.10 TO NODE 203.00 IS CODE = 1 UPSTREAM NODE 203.00 ELEVATION = 429.97 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.56 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 69.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.62 CRITICAL DEPTH(FT) = 0.72 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.72 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.720 4.243 1.000 45.23 0.012 0.716 4.274 1.000 45.23 0.049 0.712 4.305 1.000 45.23 0.113 0.708 4.337 1.000 45.25 0.207 0.704 4.369 1.001 45.26 0.334 0.700 4.401 1.001 45.28 0.498 0.696 4.434 1.001 45.31 0.702 0.692 4.467 1.002 45.34 0.951 0.688 4.501 1.003 45.37 1.250 0.684 4.536 1.004 45.41 5 1.607 0.680 4.570 1.005 45.46 2.028 0.676 4.606 1.006 45.51 2.525 0.672 4.642 1.007 45.56 3.109 0.668 4.678 1.008 45.63 3.794 0.664 4.715 1.009 45.69 4.602 0.660 4.753 1.011 45.76 5.557 0.656 4.791 1.013 45.84 6.695 0.652 4.830 1.014 45.92 8.065 0.648 4.869 1.016 46.01 9.738 0.644 4.909 1.018 46.10 11.826 0.640 4.950 1.021 46.20 14.516 0.636 4.991 1.023 46.31 18.157 0.632 5.033 1.025 46.42 23.537 0.628 5.076 1.028 46.54 33.176 0.624 5.119 1.031 46.66 69.000 0.624 5.122 1.031 46.67 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.01 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.012 2.805 1.134 54.55 1.182 1.000 2.842 1.126 53.88 2.352 0.989 2.880 1.118 53.24 3.510 0.977 2.920 1.110 52.62 4.656 0.965 2.960 1.102 52.01 5.788 0.954 3.002 1.094 51.43 6.904 0.942 3.046 1.086 50.87 8.005 0.930 3.091 1.079 50.34 9.088 0.919 3.137 1.072 49.83 10.152 0.907 3.185 1.065 49.34 11.194 0.895 3.235 1.058 48.87 12.214 0.884 3.286 1.051 48.43 13.208 0.872 3.340 1.045 48.01 14.175 0.860 3.395 1.039 47.62 15.110 0.849 3.452 1.034 47.26 16.011 0.837 3.511 1.028 46.92 16.872 0.825 3.572 1.024 46.62 17.690 0.814 3.636 1.019 46.33 18.458 0.802 3.702 1.015 46.08 19.170 0.790 3.771 1.011 45.86 19.816 0.778 3.842 1.008 45.67 20.387 0.767 3.916 1.005 45.51 20.868 0.755 3.993 1.003 45.39 21.244 0.743 4.073 1.001 45.30 21.491 0.732 4.157 1.000 45.24 21.582 0.720 4.243 1.000 45.23 69.000 0.720 4.243 1.000 45.23 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 16.72 FEET UPSTREAM OF NODE 203.10 | | DOWNSTREAM DEPTH = 0.827 FEET, UPSTREAM CONJUGATE DEPTH = 0.624 FEET | ------------------------------------------------------------------------------ NODE 203.00 : HGL = < 430.690>;EGL= < 430.970>;FLOWLINE= < 429.970> ****************************************************************************** FLOW PROCESS FROM NODE 203.00 TO NODE 203.00 IS CODE = 5 UPSTREAM NODE 203.00 ELEVATION = 430.14 (FLOW UNSEALS IN REACH) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) 6 UPSTREAM 1.69 12.00 0.00 430.14 0.55 2.152 DOWNSTREAM 3.56 18.00 - 429.97 0.72 4.245 LATERAL #1 1.08 6.00 90.00 430.14 0.48 5.500 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.79===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00225 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00528 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00377 JUNCTION LENGTH = 2.00 FEET FRICTION LOSSES = 0.008 FEET ENTRANCE LOSSES = 0.056 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.239)+( 0.056) = 0.294 ------------------------------------------------------------------------------ NODE 203.00 : HGL = < 431.192>;EGL= < 431.264>;FLOWLINE= < 430.140> ****************************************************************************** FLOW PROCESS FROM NODE 203.00 TO NODE 202.00 IS CODE = 1 UPSTREAM NODE 202.00 ELEVATION = 430.75 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.69 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 68.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.50 CRITICAL DEPTH(FT) = 0.55 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.55 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.553 3.795 0.776 19.01 0.006 0.550 3.813 0.776 19.01 0.025 0.548 3.831 0.776 19.01 0.059 0.546 3.849 0.776 19.01 0.107 0.544 3.867 0.777 19.01 0.173 0.542 3.886 0.777 19.02 0.258 0.540 3.904 0.777 19.02 0.363 0.538 3.923 0.777 19.03 0.492 0.536 3.942 0.777 19.03 0.646 0.534 3.961 0.778 19.04 0.830 0.532 3.981 0.778 19.05 1.048 0.530 4.000 0.778 19.06 1.304 0.528 4.020 0.779 19.07 1.604 0.525 4.040 0.779 19.08 1.958 0.523 4.060 0.780 19.09 2.373 0.521 4.081 0.780 19.11 2.865 0.519 4.101 0.781 19.12 3.450 0.517 4.122 0.781 19.13 4.153 0.515 4.143 0.782 19.15 5.013 0.513 4.165 0.782 19.17 6.085 0.511 4.186 0.783 19.18 7.465 0.509 4.208 0.784 19.20 9.332 0.507 4.230 0.785 19.22 12.089 0.505 4.252 0.786 19.24 17.027 0.503 4.274 0.786 19.27 68.000 0.502 4.279 0.787 19.27 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS 7 ============================================================================== DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.05 ============================================================================== PRESSURE FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.052 2.152 1.124 34.12 7.795 1.000 2.152 1.072 31.55 ============================================================================== ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.00 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 7.795 1.000 2.151 1.072 31.55 10.320 0.982 2.160 1.055 30.70 12.730 0.964 2.176 1.038 29.89 15.079 0.946 2.197 1.021 29.09 17.382 0.928 2.222 1.005 28.32 19.647 0.911 2.251 0.989 27.57 21.881 0.893 2.283 0.974 26.84 24.085 0.875 2.319 0.958 26.14 26.261 0.857 2.358 0.943 25.46 28.411 0.839 2.402 0.929 24.81 30.534 0.821 2.448 0.914 24.19 32.630 0.803 2.499 0.900 23.59 34.698 0.785 2.554 0.887 23.02 36.735 0.767 2.613 0.873 22.48 38.739 0.749 2.676 0.861 21.98 40.706 0.732 2.744 0.849 21.51 42.629 0.714 2.817 0.837 21.07 44.503 0.696 2.896 0.826 20.66 46.317 0.678 2.981 0.816 20.30 48.060 0.660 3.073 0.807 19.98 49.712 0.642 3.171 0.798 19.69 51.250 0.624 3.277 0.791 19.46 52.635 0.606 3.392 0.785 19.27 53.809 0.588 3.516 0.780 19.12 54.670 0.570 3.650 0.777 19.04 55.030 0.553 3.795 0.776 19.01 68.000 0.553 3.795 0.776 19.01 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 52.69 FEET UPSTREAM OF NODE 203.00 | | DOWNSTREAM DEPTH = 0.605 FEET, UPSTREAM CONJUGATE DEPTH = 0.503 FEET | ------------------------------------------------------------------------------ NODE 202.00 : HGL = < 431.303>;EGL= < 431.526>;FLOWLINE= < 430.750> ****************************************************************************** FLOW PROCESS FROM NODE 202.00 TO NODE 202.00 IS CODE = 5 UPSTREAM NODE 202.00 ELEVATION = 430.75 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 1.00 12.00 0.00 430.75 0.42 1.432 DOWNSTREAM 1.69 12.00 - 430.75 0.55 3.797 LATERAL #1 0.69 6.00 90.00 430.75 0.42 3.514 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES 8 UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00077 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00646 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00362 JUNCTION LENGTH = 1.00 FEET FRICTION LOSSES = 0.004 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.087)+( 0.000) = 0.087 ------------------------------------------------------------------------------ NODE 202.00 : HGL = < 431.582>;EGL= < 431.614>;FLOWLINE= < 430.750> ****************************************************************************** FLOW PROCESS FROM NODE 202.00 TO NODE 202.10 IS CODE = 1 UPSTREAM NODE 202.10 ELEVATION = 431.17 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.00 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 46.60 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.37 CRITICAL DEPTH(FT) = 0.42 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.38 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.377 3.696 0.589 9.81 0.243 0.376 3.698 0.589 9.81 0.497 0.376 3.700 0.589 9.81 0.763 0.376 3.702 0.589 9.82 1.043 0.376 3.704 0.589 9.82 1.338 0.376 3.706 0.589 9.82 1.648 0.376 3.709 0.589 9.82 1.977 0.375 3.711 0.589 9.82 2.326 0.375 3.713 0.589 9.82 2.697 0.375 3.715 0.590 9.82 3.093 0.375 3.717 0.590 9.83 3.519 0.375 3.719 0.590 9.83 3.977 0.375 3.721 0.590 9.83 4.474 0.374 3.723 0.590 9.83 5.016 0.374 3.725 0.590 9.83 5.612 0.374 3.727 0.590 9.83 6.273 0.374 3.729 0.590 9.83 7.015 0.374 3.732 0.590 9.84 7.858 0.374 3.734 0.590 9.84 8.835 0.374 3.736 0.590 9.84 9.995 0.373 3.738 0.590 9.84 11.420 0.373 3.740 0.591 9.84 13.262 0.373 3.742 0.591 9.84 15.868 0.373 3.744 0.591 9.85 20.347 0.373 3.746 0.591 9.85 46.600 0.373 3.747 0.591 9.85 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.83 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.832 1.432 0.864 19.41 1.858 0.815 1.458 0.848 18.75 9 3.710 0.799 1.486 0.833 18.11 5.554 0.782 1.516 0.818 17.48 7.391 0.766 1.549 0.803 16.87 9.220 0.749 1.583 0.788 16.28 11.040 0.733 1.620 0.774 15.71 12.851 0.716 1.660 0.759 15.16 14.651 0.700 1.702 0.745 14.63 16.440 0.684 1.748 0.731 14.12 18.216 0.667 1.796 0.717 13.64 19.977 0.651 1.848 0.704 13.17 21.722 0.634 1.903 0.690 12.73 23.447 0.618 1.963 0.678 12.32 25.149 0.601 2.027 0.665 11.93 26.825 0.585 2.096 0.653 11.56 28.469 0.568 2.170 0.641 11.22 30.074 0.552 2.250 0.630 10.91 31.633 0.535 2.336 0.620 10.63 33.134 0.519 2.430 0.610 10.38 34.560 0.502 2.531 0.602 10.16 35.890 0.486 2.641 0.594 9.98 37.092 0.469 2.761 0.588 9.83 38.112 0.453 2.892 0.583 9.72 38.864 0.436 3.036 0.580 9.65 39.179 0.420 3.194 0.578 9.63 46.600 0.420 3.194 0.578 9.63 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 37.01 FEET UPSTREAM OF NODE 202.00 | | DOWNSTREAM DEPTH = 0.470 FEET, UPSTREAM CONJUGATE DEPTH = 0.373 FEET | ------------------------------------------------------------------------------ NODE 202.10 : HGL = < 431.547>;EGL= < 431.759>;FLOWLINE= < 431.170> ****************************************************************************** FLOW PROCESS FROM NODE 202.10 TO NODE 202.10 IS CODE = 6 UPSTREAM NODE 202.10 ELEVATION = 431.17 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE ANGLE-POINT LOSSES(LACRD): PIPE FLOW = 1.00 CFS PIPE DIAMETER = 12.00 INCHES PIPE ANGLE-POINT = 11.00 DEGREES ANGLE-POINT COEFFICIENT KA = 0.00000 Note: For open flow conditions, computer program WSPG (see LAFCD program) does NOT estimate losses for angle points. Therefore, to be consistent with WSPG results, a zero loss is used. Energy loss estimate, per WSPG results,= 0.0 ------------------------------------------------------------------------------ NODE 202.10 : HGL = < 431.547>;EGL= < 431.759>;FLOWLINE= < 431.170> ****************************************************************************** FLOW PROCESS FROM NODE 202.10 TO NODE 201.00 IS CODE = 1 UPSTREAM NODE 201.00 ELEVATION = 431.35 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.00 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 20.40 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.37 CRITICAL DEPTH(FT) = 0.42 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.42 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.420 3.194 0.578 9.63 0.005 0.418 3.213 0.578 9.63 0.021 0.416 3.231 0.579 9.63 0.049 0.415 3.250 0.579 9.63 10 0.089 0.413 3.269 0.579 9.63 0.144 0.411 3.288 0.579 9.64 0.214 0.409 3.307 0.579 9.64 0.301 0.407 3.327 0.579 9.64 0.408 0.405 3.346 0.579 9.65 0.536 0.404 3.366 0.580 9.65 0.689 0.402 3.387 0.580 9.66 0.869 0.400 3.407 0.580 9.67 1.082 0.398 3.428 0.581 9.67 1.332 0.396 3.449 0.581 9.68 1.625 0.395 3.470 0.582 9.69 1.970 0.393 3.491 0.582 9.70 2.378 0.391 3.513 0.583 9.71 2.863 0.389 3.535 0.583 9.72 3.448 0.387 3.557 0.584 9.73 4.161 0.386 3.579 0.585 9.74 5.052 0.384 3.602 0.585 9.75 6.198 0.382 3.625 0.586 9.77 7.748 0.380 3.648 0.587 9.78 10.038 0.378 3.672 0.588 9.80 14.139 0.377 3.696 0.589 9.81 20.400 0.377 3.696 0.589 9.81 ------------------------------------------------------------------------------ NODE 201.00 : HGL = < 431.770>;EGL= < 431.928>;FLOWLINE= < 431.350> ****************************************************************************** FLOW PROCESS FROM NODE 201.00 TO NODE 201.00 IS CODE = 8 UPSTREAM NODE 201.00 ELEVATION = 431.35 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 1.00 CFS PIPE DIAMETER = 12.00 INCHES FLOW VELOCITY = 3.20 FEET/SEC. VELOCITY HEAD = 0.159 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.159) = 0.032 ------------------------------------------------------------------------------ NODE 201.00 : HGL = < 431.960>;EGL= < 431.960>;FLOWLINE= < 431.350> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 201.00 FLOWLINE ELEVATION = 431.35 ASSUMED UPSTREAM CONTROL HGL = 431.77 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 11 ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: PASCO LARET SUITER & ASSOCIATES 535 NORTH HIGHWAY 101, STE A SOLANA BEACH, CA 92075 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * 3925 IONIS LOTS 21 AND 22 * * 100-YR * * * ************************************************************************** FILE NAME: 203-2.PIP TIME/DATE OF STUDY: 11:23 01/24/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 203.20- 0.48* 3.91 0.19 3.40 } FRICTION } HYDRAULIC JUMP 203.30- 0.29*Dc 2.71 0.29*Dc 2.71 } CATCH BASIN 203.30- 0.44* 1.50 0.29 Dc 0.93 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 203.20 FLOWLINE ELEVATION = 429.81 PIPE FLOW = 0.33 CFS PIPE DIAMETER = 6.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 430.290 FEET ------------------------------------------------------------------------------ NODE 203.20 : HGL = < 430.290>;EGL= < 430.335>;FLOWLINE= < 429.810> ****************************************************************************** FLOW PROCESS FROM NODE 203.20 TO NODE 203.30 IS CODE = 1 UPSTREAM NODE 203.30 ELEVATION = 431.50 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.33 CFS PIPE DIAMETER = 6.00 INCHES PIPE LENGTH = 44.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.19 CRITICAL DEPTH(FT) = 0.29 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.29 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.291 2.782 0.411 2.71 0.004 0.287 2.830 0.411 2.71 0.016 0.283 2.881 0.412 2.71 0.037 0.279 2.933 0.412 2.71 0.068 0.275 2.988 0.413 2.72 0.111 0.270 3.045 0.414 2.73 1 0.165 0.266 3.104 0.416 2.74 0.234 0.262 3.165 0.418 2.75 0.319 0.258 3.229 0.420 2.77 0.421 0.254 3.295 0.423 2.78 0.543 0.250 3.365 0.426 2.80 0.689 0.246 3.437 0.429 2.82 0.862 0.241 3.513 0.433 2.85 1.067 0.237 3.592 0.438 2.87 1.310 0.233 3.674 0.443 2.90 1.598 0.229 3.760 0.449 2.93 1.940 0.225 3.850 0.455 2.97 2.352 0.221 3.945 0.463 3.01 2.851 0.217 4.044 0.471 3.05 3.466 0.213 4.148 0.480 3.10 4.240 0.208 4.257 0.490 3.15 5.245 0.204 4.372 0.501 3.20 6.617 0.200 4.492 0.514 3.26 8.661 0.196 4.619 0.528 3.32 12.356 0.192 4.753 0.543 3.39 44.000 0.191 4.775 0.546 3.40 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.48 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.480 1.703 0.525 3.91 0.192 0.472 1.717 0.518 3.83 0.381 0.465 1.734 0.512 3.75 0.566 0.457 1.752 0.505 3.67 0.747 0.450 1.773 0.499 3.59 0.926 0.442 1.796 0.492 3.52 1.101 0.435 1.820 0.486 3.45 1.272 0.427 1.847 0.480 3.38 1.440 0.420 1.875 0.474 3.32 1.605 0.412 1.906 0.468 3.26 1.765 0.404 1.939 0.463 3.20 1.921 0.397 1.974 0.457 3.14 2.073 0.389 2.011 0.452 3.08 2.219 0.382 2.051 0.447 3.03 2.360 0.374 2.093 0.442 2.99 2.495 0.367 2.138 0.438 2.94 2.623 0.359 2.186 0.433 2.90 2.744 0.352 2.237 0.429 2.86 2.857 0.344 2.291 0.425 2.83 2.960 0.336 2.348 0.422 2.80 3.053 0.329 2.409 0.419 2.77 3.134 0.321 2.475 0.416 2.75 3.201 0.314 2.544 0.414 2.73 3.252 0.306 2.618 0.413 2.72 3.285 0.299 2.697 0.412 2.71 3.297 0.291 2.782 0.411 2.71 44.000 0.291 2.782 0.411 2.71 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 1.24 FEET UPSTREAM OF NODE 203.20 | | DOWNSTREAM DEPTH = 0.429 FEET, UPSTREAM CONJUGATE DEPTH = 0.191 FEET | ------------------------------------------------------------------------------ NODE 203.30 : HGL = < 431.791>;EGL= < 431.911>;FLOWLINE= < 431.500> ****************************************************************************** FLOW PROCESS FROM NODE 203.30 TO NODE 203.30 IS CODE = 8 UPSTREAM NODE 203.30 ELEVATION = 431.50 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 0.33 CFS PIPE DIAMETER = 6.00 INCHES FLOW VELOCITY = 2.78 FEET/SEC. VELOCITY HEAD = 0.120 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.120) = 0.024 ------------------------------------------------------------------------------ NODE 203.30 : HGL = < 431.935>;EGL= < 431.935>;FLOWLINE= < 431.500> 2 ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 203.30 FLOWLINE ELEVATION = 431.50 ASSUMED UPSTREAM CONTROL HGL = 431.79 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 3 ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: Pasco Laret Suiter & Associates 119 Aberdeen Drive Cardiff, California 92007 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * 3925 IONIS LOTS 21 AND 22 * * 100-YR * * * ************************************************************************** FILE NAME: 303.PIP TIME/DATE OF STUDY: 12:59 04/06/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 303.00- 0.85* 21.52 0.55 Dc 16.48 } FRICTION 302.10- 1.03* 25.50 0.55 Dc 16.48 } JUNCTION 302.10- 1.29* 25.70 0.46 Dc 9.92 } FRICTION 302.00- 1.27* 25.20 0.46 Dc 9.92 } JUNCTION 302.00- 1.29* 22.94 0.25 7.19 } FRICTION 301.00- 0.98* 16.23 0.37 Dc 5.83 } CATCH BASIN 301.00- 1.04* 15.35 0.37 Dc 2.01 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 303.00 FLOWLINE ELEVATION = 415.67 PIPE FLOW = 1.36 CFS PIPE DIAMETER = 8.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 416.520 FEET ------------------------------------------------------------------------------ NODE 303.00 : HGL = < 416.520>;EGL= < 416.756>;FLOWLINE= < 415.670> ****************************************************************************** FLOW PROCESS FROM NODE 303.00 TO NODE 302.10 IS CODE = 1 UPSTREAM NODE 302.10 ELEVATION = 415.88 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.36 CFS PIPE DIAMETER = 8.00 INCHES PIPE LENGTH = 31.00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 1.36)/( 12.084))**2 = 0.01267 1 HF=L*SF = ( 31.00)*(0.01267) = 0.393 ------------------------------------------------------------------------------ NODE 302.10 : HGL = < 416.913>;EGL= < 417.148>;FLOWLINE= < 415.880> ****************************************************************************** FLOW PROCESS FROM NODE 302.10 TO NODE 302.10 IS CODE = 5 UPSTREAM NODE 302.10 ELEVATION = 415.88 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 0.94 8.00 0.00 415.88 0.46 2.693 DOWNSTREAM 1.36 8.00 - 415.88 0.55 3.896 LATERAL #1 0.42 6.00 90.00 415.88 0.33 2.139 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00605 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01267 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00936 JUNCTION LENGTH = 1.00 FEET FRICTION LOSSES = 0.009 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.132)+( 0.000) = 0.132 ------------------------------------------------------------------------------ NODE 302.10 : HGL = < 417.168>;EGL= < 417.281>;FLOWLINE= < 415.880> ****************************************************************************** FLOW PROCESS FROM NODE 302.10 TO NODE 302.00 IS CODE = 1 UPSTREAM NODE 302.00 ELEVATION = 416.00 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.94 CFS PIPE DIAMETER = 8.00 INCHES PIPE LENGTH = 16.00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 0.94)/( 12.085))**2 = 0.00605 HF=L*SF = ( 16.00)*(0.00605) = 0.097 ------------------------------------------------------------------------------ NODE 302.00 : HGL = < 417.265>;EGL= < 417.378>;FLOWLINE= < 416.000> ****************************************************************************** FLOW PROCESS FROM NODE 302.00 TO NODE 302.00 IS CODE = 5 UPSTREAM NODE 302.00 ELEVATION = 416.17 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 0.63 8.00 90.00 416.17 0.37 1.805 DOWNSTREAM 0.94 8.00 - 416.00 0.46 2.693 LATERAL #1 0.31 6.00 0.00 416.17 0.28 1.579 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00272 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00605 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00438 JUNCTION LENGTH = 2.00 FEET FRICTION LOSSES = 0.009 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.128)+( 0.000) = 0.128 2 ------------------------------------------------------------------------------ NODE 302.00 : HGL = < 417.455>;EGL= < 417.506>;FLOWLINE= < 416.170> ****************************************************************************** FLOW PROCESS FROM NODE 302.00 TO NODE 301.00 IS CODE = 1 UPSTREAM NODE 301.00 ELEVATION = 416.50 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.63 CFS PIPE DIAMETER = 8.00 INCHES PIPE LENGTH = 8.00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 0.63)/( 12.080))**2 = 0.00272 HF=L*SF = ( 8.00)*(0.00272) = 0.022 ------------------------------------------------------------------------------ NODE 301.00 : HGL = < 417.477>;EGL= < 417.528>;FLOWLINE= < 416.500> ****************************************************************************** FLOW PROCESS FROM NODE 301.00 TO NODE 301.00 IS CODE = 8 UPSTREAM NODE 301.00 ELEVATION = 416.50 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 0.63 CFS PIPE DIAMETER = 8.00 INCHES FLOW VELOCITY = 1.80 FEET/SEC. VELOCITY HEAD = 0.051 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.051) = 0.010 ------------------------------------------------------------------------------ NODE 301.00 : HGL = < 417.538>;EGL= < 417.538>;FLOWLINE= < 416.500> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 301.00 FLOWLINE ELEVATION = 416.50 ASSUMED UPSTREAM CONTROL HGL = 416.87 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 3 ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: Pasco Laret Suiter & Associates 119 Aberdeen Drive Cardiff, California 92007 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * 3925 IONIS LOTS 21 AND 22 * * 100-YR * * * ************************************************************************** FILE NAME: 412.PIP TIME/DATE OF STUDY: 11:36 04/06/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 412.00- 1.54 Dc 361.19 0.55* 934.09 } FRICTION 411.00- 1.54 Dc 361.19 0.79* 583.55 } JUNCTION 411.00- 1.16 Dc 153.44 0.43* 372.44 } FRICTION 410.00- 1.16*Dc 153.44 1.16*Dc 153.44 } JUNCTION 410.00- 1.42* 91.66 0.79 69.93 } FRICTION 410.10- 1.39* 90.41 0.88 Dc 68.88 } CATCH BASIN 410.10- 1.96* 71.74 0.88 Dc 18.59 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 412.00 FLOWLINE ELEVATION = 374.92 PIPE FLOW = 18.26 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 375.081 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.16 FT.) IS LESS THAN CRITICAL DEPTH( 1.54 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS ------------------------------------------------------------------------------ NODE 412.00 : HGL = < 375.468>;EGL= < 386.062>;FLOWLINE= < 374.920> ****************************************************************************** FLOW PROCESS FROM NODE 412.00 TO NODE 411.00 IS CODE = 1 UPSTREAM NODE 411.00 ELEVATION = 391.10 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ 1 CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 18.26 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 57.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.53 CRITICAL DEPTH(FT) = 1.54 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.79 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.790 15.814 4.676 583.55 0.594 0.780 16.102 4.808 592.99 1.232 0.769 16.400 4.948 602.78 1.918 0.759 16.708 5.096 612.96 2.656 0.748 17.027 5.253 623.54 3.453 0.737 17.358 5.419 634.54 4.315 0.727 17.700 5.595 645.98 5.250 0.716 18.055 5.781 657.88 6.268 0.706 18.424 5.980 670.27 7.378 0.695 18.806 6.190 683.16 8.594 0.685 19.204 6.415 696.59 9.933 0.674 19.617 6.653 710.59 11.412 0.663 20.046 6.907 725.18 13.056 0.653 20.493 7.178 740.40 14.895 0.642 20.958 7.467 756.28 16.969 0.632 21.443 7.776 772.87 19.327 0.621 21.948 8.106 790.20 22.041 0.611 22.475 8.459 808.31 25.207 0.600 23.025 8.837 827.26 28.969 0.590 23.600 9.243 847.09 33.547 0.579 24.201 9.679 867.86 39.315 0.568 24.830 10.148 889.64 46.968 0.558 25.489 10.652 912.48 57.000 0.548 26.111 11.142 934.09 ------------------------------------------------------------------------------ NODE 411.00 : HGL = < 391.890>;EGL= < 395.776>;FLOWLINE= < 391.100> ****************************************************************************** FLOW PROCESS FROM NODE 411.00 TO NODE 411.00 IS CODE = 5 UPSTREAM NODE 411.00 ELEVATION = 395.35 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 8.94 18.00 0.00 395.35 1.16 21.228 DOWNSTREAM 18.26 24.00 - 391.10 1.54 15.819 LATERAL #1 0.47 6.00 90.00 395.85 0.35 3.207 LATERAL #2 8.85 18.00 69.00 395.35 1.15 6.081 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.22153 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.06003 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.14078 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.563 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 7.003)+( 0.000) = 7.003 ------------------------------------------------------------------------------ NODE 411.00 : HGL = < 395.782>;EGL= < 402.779>;FLOWLINE= < 395.350> 2 ****************************************************************************** FLOW PROCESS FROM NODE 411.00 TO NODE 410.00 IS CODE = 1 UPSTREAM NODE 410.00 ELEVATION = 403.50 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 8.94 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 20.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.37 CRITICAL DEPTH(FT) = 1.16 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.16 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.157 6.111 1.737 153.44 0.005 1.125 6.284 1.739 153.61 0.019 1.094 6.473 1.745 154.12 0.046 1.062 6.678 1.755 155.01 0.085 1.031 6.902 1.771 156.30 0.140 0.999 7.145 1.793 158.02 0.213 0.968 7.411 1.821 160.22 0.306 0.937 7.702 1.858 162.92 0.423 0.905 8.019 1.904 166.20 0.570 0.874 8.368 1.961 170.09 0.751 0.842 8.750 2.032 174.67 0.973 0.811 9.172 2.118 180.02 1.246 0.779 9.638 2.223 186.23 1.582 0.748 10.155 2.350 193.42 1.995 0.716 10.731 2.505 201.71 2.506 0.685 11.374 2.695 211.27 3.143 0.653 12.097 2.927 222.29 3.945 0.622 12.913 3.213 235.03 4.969 0.590 13.839 3.566 249.77 6.297 0.559 14.898 4.008 266.90 8.066 0.527 16.118 4.564 286.90 10.502 0.496 17.533 5.272 310.38 14.041 0.464 19.191 6.187 338.16 19.667 0.433 21.155 7.387 371.32 20.000 0.432 21.221 7.429 372.44 ------------------------------------------------------------------------------ NODE 410.00 : HGL = < 404.657>;EGL= < 405.237>;FLOWLINE= < 403.500> ****************************************************************************** FLOW PROCESS FROM NODE 410.00 TO NODE 410.00 IS CODE = 5 UPSTREAM NODE 410.00 ELEVATION = 404.90 (FLOW UNSEALS IN REACH) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 4.35 12.00 90.00 404.90 0.88 5.538 DOWNSTREAM 8.94 18.00 - 403.50 1.16 6.113 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 4.59===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01491 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00818 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01154 JUNCTION LENGTH = 3.00 FEET FRICTION LOSSES = 0.035 FEET ENTRANCE LOSSES = 0.116 FEET 3 JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.441)+( 0.116) = 1.557 ------------------------------------------------------------------------------ NODE 410.00 : HGL = < 406.318>;EGL= < 406.794>;FLOWLINE= < 404.900> ****************************************************************************** FLOW PROCESS FROM NODE 410.00 TO NODE 410.10 IS CODE = 1 UPSTREAM NODE 410.10 ELEVATION = 405.00 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 4.35 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 5.00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 4.35)/( 35.624))**2 = 0.01491 HF=L*SF = ( 5.00)*(0.01491) = 0.075 ------------------------------------------------------------------------------ NODE 410.10 : HGL = < 406.392>;EGL= < 406.869>;FLOWLINE= < 405.000> ****************************************************************************** FLOW PROCESS FROM NODE 410.10 TO NODE 410.10 IS CODE = 8 UPSTREAM NODE 410.10 ELEVATION = 405.00 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 4.35 CFS PIPE DIAMETER = 12.00 INCHES FLOW VELOCITY = 5.54 FEET/SEC. VELOCITY HEAD = 0.476 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.476) = 0.095 ------------------------------------------------------------------------------ NODE 410.10 : HGL = < 406.964>;EGL= < 406.964>;FLOWLINE= < 405.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 410.10 FLOWLINE ELEVATION = 405.00 ASSUMED UPSTREAM CONTROL HGL = 405.88 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 4 ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: PASCO LARET SUITER & ASSOCIATES 535 NORTH HIGHWAY 101, STE A SOLANA BEACH, CA 92075 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * 3925 IONIS LOTS 21 AND 22 * * 100-YR * * * ************************************************************************** FILE NAME: 411LAT.PIP TIME/DATE OF STUDY: 12:14 01/20/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 411.00- 0.37 Dc 5.10 0.21* 7.42 } FRICTION 803.00- 0.37*Dc 5.10 0.37*Dc 5.10 } CATCH BASIN 803.00- 0.59* 4.11 0.37 Dc 1.62 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 411.00 FLOWLINE ELEVATION = 395.85 PIPE FLOW = 0.53 CFS PIPE DIAMETER = 6.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 395.782 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( -0.07 FT.) IS LESS THAN CRITICAL DEPTH( 0.37 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS ------------------------------------------------------------------------------ NODE 411.00 : HGL = < 396.059>;EGL= < 396.780>;FLOWLINE= < 395.850> ****************************************************************************** FLOW PROCESS FROM NODE 411.00 TO NODE 803.00 IS CODE = 1 UPSTREAM NODE 803.00 ELEVATION = 398.90 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.53 CFS PIPE DIAMETER = 6.00 INCHES PIPE LENGTH = 41.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.20 CRITICAL DEPTH(FT) = 0.37 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.37 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.371 3.391 0.550 5.10 0.004 0.364 3.456 0.550 5.10 0.017 0.358 3.525 0.551 5.11 0.039 0.351 3.599 0.552 5.12 1 0.072 0.344 3.676 0.554 5.14 0.116 0.337 3.758 0.557 5.16 0.174 0.331 3.844 0.560 5.19 0.247 0.324 3.935 0.565 5.23 0.337 0.317 4.032 0.570 5.27 0.446 0.311 4.134 0.576 5.33 0.578 0.304 4.242 0.583 5.38 0.735 0.297 4.357 0.592 5.45 0.923 0.290 4.479 0.602 5.52 1.147 0.284 4.608 0.614 5.61 1.413 0.277 4.746 0.627 5.70 1.732 0.270 4.893 0.642 5.81 2.114 0.264 5.049 0.660 5.92 2.575 0.257 5.216 0.680 6.05 3.139 0.250 5.395 0.702 6.19 3.840 0.243 5.586 0.728 6.35 4.728 0.237 5.791 0.758 6.52 5.892 0.230 6.011 0.791 6.71 7.495 0.223 6.249 0.830 6.92 9.905 0.216 6.505 0.874 7.14 14.304 0.210 6.782 0.924 7.40 41.000 0.209 6.812 0.930 7.42 ------------------------------------------------------------------------------ NODE 803.00 : HGL = < 399.271>;EGL= < 399.450>;FLOWLINE= < 398.900> ****************************************************************************** FLOW PROCESS FROM NODE 803.00 TO NODE 803.00 IS CODE = 8 UPSTREAM NODE 803.00 ELEVATION = 398.90 (FLOW UNSEALS IN REACH) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 0.53 CFS PIPE DIAMETER = 6.00 INCHES FLOW VELOCITY = 3.39 FEET/SEC. VELOCITY HEAD = 0.179 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.179) = 0.036 ------------------------------------------------------------------------------ NODE 803.00 : HGL = < 399.485>;EGL= < 399.485>;FLOWLINE= < 398.900> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 803.00 FLOWLINE ELEVATION = 398.90 ASSUMED UPSTREAM CONTROL HGL = 399.27 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 2 ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: Pasco Laret Suiter & Associates 119 Aberdeen Drive Cardiff, California 92007 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * 3925 IONIS LOTS 21 AND 22 * * 100-YR * * * ************************************************************************** FILE NAME: 411LAT2.PIP TIME/DATE OF STUDY: 12:28 04/06/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 411.00- 1.22 Dc 179.10 0.56* 331.15 } FRICTION 210.00- 1.22*Dc 179.10 1.22*Dc 179.10 } JUNCTION 210.00- 1.87* 232.99 1.17 179.52 } FRICTION 209.00- 1.69* 213.60 1.22 Dc 179.10 } JUNCTION 209.00- 1.79* 180.42 0.96 129.06 } FRICTION 208.10- 1.51* 149.96 1.00 127.70 } JUNCTION 208.10- 1.51* 150.56 0.96 128.94 } FRICTION } HYDRAULIC JUMP 208.00- 1.08*Dc 126.65 1.08*Dc 126.65 } JUNCTION 208.00- 1.66 166.03 0.58* 195.13 } FRICTION 208.20- 1.08 Dc 126.65 0.59* 190.87 } ANGLE-POINT 208.20- 1.08 Dc 126.65 0.59* 190.87 } FRICTION 207.00- 1.08 Dc 126.65 0.89* 133.41 } JUNCTION 207.00- 1.05 Dc 117.48 0.92* 120.30 } FRICTION 207.10- 1.05 Dc 117.48 0.91* 120.69 } ANGLE-POINT 207.10- 1.05 Dc 117.48 0.91* 120.69 } FRICTION 207.20- 1.05 Dc 117.48 0.96* 118.73 } ANGLE-POINT 207.20- 1.05 Dc 117.48 0.96* 118.73 } FRICTION 206.00- 1.05*Dc 117.48 1.05*Dc 117.48 1 } CATCH BASIN 206.00- 1.63* 96.66 1.05 Dc 38.24 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 411.00 FLOWLINE ELEVATION = 395.35 PIPE FLOW = 9.99 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 395.782 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.43 FT.) IS LESS THAN CRITICAL DEPTH( 1.22 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS ------------------------------------------------------------------------------ NODE 411.00 : HGL = < 395.909>;EGL= < 400.216>;FLOWLINE= < 395.350> ****************************************************************************** FLOW PROCESS FROM NODE 411.00 TO NODE 210.00 IS CODE = 1 UPSTREAM NODE 210.00 ELEVATION = 404.94 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.99 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 77.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.53 CRITICAL DEPTH(FT) = 1.22 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.22 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.217 6.504 1.874 179.10 0.014 1.189 6.646 1.876 179.24 0.054 1.162 6.799 1.880 179.67 0.123 1.135 6.964 1.888 180.38 0.225 1.107 7.142 1.900 181.41 0.364 1.080 7.334 1.915 182.76 0.545 1.052 7.540 1.936 184.46 0.774 1.025 7.762 1.961 186.53 1.057 0.998 8.002 1.992 189.00 1.405 0.970 8.260 2.030 191.90 1.826 0.943 8.539 2.076 195.27 2.334 0.915 8.841 2.130 199.15 2.946 0.888 9.167 2.194 203.58 3.681 0.861 9.521 2.269 208.61 4.567 0.833 9.906 2.358 214.30 5.636 0.806 10.325 2.462 220.73 6.936 0.778 10.783 2.585 227.96 8.527 0.751 11.283 2.729 236.11 10.500 0.724 11.832 2.899 245.26 12.986 0.696 12.437 3.099 255.56 16.188 0.669 13.104 3.337 267.16 20.451 0.641 13.845 3.620 280.23 26.425 0.614 14.669 3.958 295.00 35.570 0.587 15.591 4.364 311.72 52.580 0.559 16.628 4.855 330.73 77.000 0.559 16.650 4.866 331.15 ------------------------------------------------------------------------------ NODE 210.00 : HGL = < 406.157>;EGL= < 406.814>;FLOWLINE= < 404.940> 2 ****************************************************************************** FLOW PROCESS FROM NODE 210.00 TO NODE 210.00 IS CODE = 5 UPSTREAM NODE 210.00 ELEVATION = 405.27 (FLOW UNSEALS IN REACH) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 9.99 18.00 75.00 405.27 1.22 5.653 DOWNSTREAM 9.99 18.00 - 404.94 1.22 6.499 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00904 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00920 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00912 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.036 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.823)+( 0.000) = 0.823 ------------------------------------------------------------------------------ NODE 210.00 : HGL = < 407.140>;EGL= < 407.637>;FLOWLINE= < 405.270> ****************************************************************************** FLOW PROCESS FROM NODE 210.00 TO NODE 209.00 IS CODE = 1 UPSTREAM NODE 209.00 ELEVATION = 407.11 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.99 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 184.00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 9.99)/( 105.044))**2 = 0.00904 HF=L*SF = ( 184.00)*(0.00904) = 1.664 ------------------------------------------------------------------------------ NODE 209.00 : HGL = < 408.805>;EGL= < 409.301>;FLOWLINE= < 407.110> ****************************************************************************** FLOW PROCESS FROM NODE 209.00 TO NODE 209.00 IS CODE = 5 UPSTREAM NODE 209.00 ELEVATION = 407.44 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 7.77 18.00 0.00 407.44 1.08 4.397 DOWNSTREAM 9.99 18.00 - 407.11 1.22 5.653 LATERAL #1 2.22 12.00 90.00 407.44 0.64 2.827 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00547 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00904 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00726 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.029 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.225)+( 0.000) = 0.225 ------------------------------------------------------------------------------ NODE 209.00 : HGL = < 409.226>;EGL= < 409.526>;FLOWLINE= < 407.440> ****************************************************************************** 3 FLOW PROCESS FROM NODE 209.00 TO NODE 208.10 IS CODE = 1 UPSTREAM NODE 208.10 ELEVATION = 408.05 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 7.77 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 61.00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 7.77)/( 105.047))**2 = 0.00547 HF=L*SF = ( 61.00)*(0.00547) = 0.334 ------------------------------------------------------------------------------ NODE 208.10 : HGL = < 409.559>;EGL= < 409.860>;FLOWLINE= < 408.050> ****************************************************************************** FLOW PROCESS FROM NODE 208.10 TO NODE 208.10 IS CODE = 5 UPSTREAM NODE 208.10 ELEVATION = 408.05 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 7.77 18.00 0.00 408.05 1.08 4.397 DOWNSTREAM 7.77 18.00 - 408.05 1.08 4.397 LATERAL #1 0.00 6.00 90.00 408.05 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00547 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00547 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00547 JUNCTION LENGTH = 1.00 FEET FRICTION LOSSES = 0.005 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.005)+( 0.000) = 0.005 ------------------------------------------------------------------------------ NODE 208.10 : HGL = < 409.565>;EGL= < 409.865>;FLOWLINE= < 408.050> ****************************************************************************** FLOW PROCESS FROM NODE 208.10 TO NODE 208.00 IS CODE = 1 UPSTREAM NODE 208.00 ELEVATION = 408.68 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 7.77 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 63.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.96 CRITICAL DEPTH(FT) = 1.08 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.08 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.077 5.717 1.585 126.65 0.032 1.073 5.744 1.585 126.66 0.097 1.068 5.771 1.586 126.67 0.199 1.063 5.799 1.586 126.69 0.341 1.059 5.827 1.586 126.72 0.527 1.054 5.855 1.587 126.76 0.761 1.049 5.884 1.587 126.80 1.049 1.045 5.913 1.588 126.85 1.397 1.040 5.942 1.588 126.91 1.812 1.035 5.972 1.589 126.98 4 2.303 1.030 6.002 1.590 127.05 2.879 1.026 6.032 1.591 127.13 3.555 1.021 6.063 1.592 127.22 4.345 1.016 6.095 1.593 127.32 5.271 1.012 6.126 1.595 127.42 6.356 1.007 6.158 1.596 127.53 7.636 1.002 6.191 1.598 127.65 9.157 0.998 6.224 1.599 127.78 10.982 0.993 6.257 1.601 127.92 13.206 0.988 6.291 1.603 128.07 15.975 0.983 6.325 1.605 128.22 19.534 0.979 6.360 1.607 128.39 24.343 0.974 6.395 1.610 128.56 31.433 0.969 6.431 1.612 128.74 44.115 0.965 6.467 1.614 128.93 63.000 0.965 6.468 1.615 128.94 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.51 ============================================================================== PRESSURE FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.515 4.397 1.815 150.56 3.306 1.500 4.397 1.800 148.91 ============================================================================== ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 3.306 1.500 4.396 1.800 148.91 6.555 1.483 4.404 1.785 147.19 9.439 1.466 4.421 1.770 145.59 12.132 1.450 4.442 1.756 144.06 14.685 1.433 4.467 1.743 142.61 17.125 1.416 4.495 1.730 141.22 19.469 1.399 4.527 1.718 139.89 21.728 1.382 4.562 1.706 138.63 23.910 1.366 4.599 1.694 137.42 26.018 1.349 4.640 1.683 136.27 28.057 1.332 4.684 1.673 135.17 30.028 1.315 4.730 1.663 134.14 31.930 1.298 4.779 1.653 133.17 33.763 1.282 4.831 1.644 132.26 35.525 1.265 4.886 1.636 131.41 37.212 1.248 4.944 1.628 130.62 38.819 1.231 5.005 1.620 129.90 40.339 1.214 5.068 1.613 129.24 41.765 1.197 5.136 1.607 128.66 43.086 1.181 5.206 1.602 128.14 44.286 1.164 5.280 1.597 127.70 45.349 1.147 5.357 1.593 127.33 46.250 1.130 5.438 1.590 127.04 46.958 1.113 5.522 1.587 126.82 47.429 1.097 5.611 1.586 126.69 47.604 1.080 5.704 1.585 126.65 63.000 1.080 5.704 1.585 126.65 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 42.35 FEET UPSTREAM OF NODE 208.10 | | DOWNSTREAM DEPTH = 1.190 FEET, UPSTREAM CONJUGATE DEPTH = 0.978 FEET | ------------------------------------------------------------------------------ 5 NODE 208.00 : HGL = < 409.757>;EGL= < 410.265>;FLOWLINE= < 408.680> ****************************************************************************** FLOW PROCESS FROM NODE 208.00 TO NODE 208.00 IS CODE = 5 UPSTREAM NODE 208.00 ELEVATION = 409.01 (FLOW UNSEALS IN REACH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 7.77 18.00 90.00 409.01 1.08 12.327 DOWNSTREAM 7.77 18.00 - 408.68 1.08 5.705 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05469 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00727 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03098 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.124 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.684)+( 0.000) = 1.684 ------------------------------------------------------------------------------ NODE 208.00 : HGL = < 409.590>;EGL= < 411.949>;FLOWLINE= < 409.010> ****************************************************************************** FLOW PROCESS FROM NODE 208.00 TO NODE 208.20 IS CODE = 1 UPSTREAM NODE 208.20 ELEVATION = 414.56 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 7.77 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 101.20 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.58 CRITICAL DEPTH(FT) = 1.08 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.59 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.591 12.011 2.832 190.87 1.125 0.590 12.024 2.837 191.04 2.299 0.590 12.037 2.841 191.22 3.528 0.589 12.049 2.845 191.39 4.815 0.589 12.062 2.850 191.56 6.167 0.589 12.075 2.854 191.74 7.591 0.588 12.088 2.858 191.91 9.094 0.588 12.101 2.863 192.09 10.685 0.587 12.114 2.867 192.26 12.374 0.587 12.127 2.872 192.44 14.176 0.586 12.140 2.876 192.62 16.105 0.586 12.152 2.880 192.79 18.179 0.585 12.165 2.885 192.97 20.423 0.585 12.178 2.889 193.15 22.866 0.584 12.192 2.894 193.33 25.545 0.584 12.205 2.898 193.50 28.512 0.583 12.218 2.903 193.68 31.833 0.583 12.231 2.907 193.86 35.603 0.582 12.244 2.912 194.04 39.962 0.582 12.257 2.916 194.22 6 45.124 0.582 12.270 2.921 194.40 51.452 0.581 12.284 2.925 194.58 59.622 0.581 12.297 2.930 194.76 71.155 0.580 12.310 2.935 194.95 90.932 0.580 12.323 2.939 195.13 101.200 0.580 12.323 2.939 195.13 ------------------------------------------------------------------------------ NODE 208.20 : HGL = < 415.151>;EGL= < 417.392>;FLOWLINE= < 414.560> ****************************************************************************** FLOW PROCESS FROM NODE 208.20 TO NODE 208.20 IS CODE = 6 UPSTREAM NODE 208.20 ELEVATION = 414.56 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE ANGLE-POINT LOSSES(LACRD): PIPE FLOW = 7.77 CFS PIPE DIAMETER = 18.00 INCHES PIPE ANGLE-POINT = 11.25 DEGREES ANGLE-POINT COEFFICIENT KA = 0.00000 Note: For open flow conditions, computer program WSPG (see LAFCD program) does NOT estimate losses for angle points. Therefore, to be consistent with WSPG results, a zero loss is used. Energy loss estimate, per WSPG results,= 0.0 ------------------------------------------------------------------------------ NODE 208.20 : HGL = < 415.151>;EGL= < 417.392>;FLOWLINE= < 414.560> ****************************************************************************** FLOW PROCESS FROM NODE 208.20 TO NODE 207.00 IS CODE = 1 UPSTREAM NODE 207.00 ELEVATION = 422.33 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 7.77 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 141.80 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.58 CRITICAL DEPTH(FT) = 1.08 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.89 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.888 7.127 1.677 133.41 0.352 0.876 7.248 1.692 134.41 0.745 0.864 7.374 1.708 135.48 1.184 0.851 7.505 1.726 136.65 1.673 0.839 7.640 1.746 137.90 2.219 0.827 7.781 1.767 139.25 2.826 0.814 7.928 1.791 140.69 3.504 0.802 8.080 1.816 142.24 4.260 0.789 8.239 1.844 143.90 5.106 0.777 8.404 1.875 145.66 6.054 0.765 8.576 1.908 147.55 7.118 0.752 8.755 1.943 149.56 8.319 0.740 8.942 1.982 151.69 9.678 0.728 9.137 2.025 153.97 11.225 0.715 9.341 2.071 156.39 12.998 0.703 9.554 2.121 158.96 15.047 0.691 9.776 2.175 161.69 17.439 0.678 10.009 2.235 164.58 20.269 0.666 10.252 2.299 167.66 23.676 0.654 10.507 2.369 170.93 27.874 0.641 10.775 2.445 174.40 33.226 0.629 11.056 2.528 178.08 40.407 0.616 11.351 2.619 181.99 50.940 0.604 11.662 2.717 186.15 69.705 0.592 11.989 2.825 190.56 141.800 0.591 12.011 2.832 190.87 7 ------------------------------------------------------------------------------ NODE 207.00 : HGL = < 423.218>;EGL= < 424.007>;FLOWLINE= < 422.330> ****************************************************************************** FLOW PROCESS FROM NODE 207.00 TO NODE 207.00 IS CODE = 5 UPSTREAM NODE 207.00 ELEVATION = 422.66 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 7.35 18.00 17.00 422.66 1.05 6.451 DOWNSTREAM 7.77 18.00 - 422.33 1.08 7.129 LATERAL #1 0.42 6.00 90.00 422.66 0.33 2.139 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01008 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01262 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01135 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.045 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.221)+( 0.000) = 0.221 ------------------------------------------------------------------------------ NODE 207.00 : HGL = < 423.582>;EGL= < 424.228>;FLOWLINE= < 422.660> ****************************************************************************** FLOW PROCESS FROM NODE 207.00 TO NODE 207.10 IS CODE = 1 UPSTREAM NODE 207.10 ELEVATION = 423.40 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 7.35 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 73.50 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.92 CRITICAL DEPTH(FT) = 1.05 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.91 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.914 6.516 1.574 120.69 0.867 0.914 6.513 1.573 120.67 1.769 0.915 6.510 1.573 120.65 2.708 0.915 6.508 1.573 120.64 3.689 0.915 6.505 1.573 120.62 4.715 0.916 6.502 1.573 120.60 5.791 0.916 6.499 1.572 120.59 6.922 0.916 6.496 1.572 120.57 8.115 0.917 6.493 1.572 120.55 9.377 0.917 6.491 1.572 120.54 10.717 0.917 6.488 1.571 120.52 12.146 0.918 6.485 1.571 120.51 13.677 0.918 6.482 1.571 120.49 15.326 0.918 6.479 1.571 120.47 17.115 0.919 6.477 1.570 120.46 19.069 0.919 6.474 1.570 120.44 21.223 0.919 6.471 1.570 120.43 23.625 0.920 6.468 1.570 120.41 26.341 0.920 6.466 1.570 120.39 29.469 0.920 6.463 1.569 120.38 8 33.158 0.921 6.460 1.569 120.36 37.661 0.921 6.457 1.569 120.35 43.452 0.921 6.454 1.569 120.33 51.594 0.922 6.452 1.568 120.31 65.498 0.922 6.449 1.568 120.30 73.500 0.922 6.449 1.568 120.30 ------------------------------------------------------------------------------ NODE 207.10 : HGL = < 424.314>;EGL= < 424.974>;FLOWLINE= < 423.400> ****************************************************************************** FLOW PROCESS FROM NODE 207.10 TO NODE 207.10 IS CODE = 6 UPSTREAM NODE 207.10 ELEVATION = 423.40 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE ANGLE-POINT LOSSES(LACRD): PIPE FLOW = 7.35 CFS PIPE DIAMETER = 18.00 INCHES PIPE ANGLE-POINT = 22.50 DEGREES ANGLE-POINT COEFFICIENT KA = 0.00000 Note: For open flow conditions, computer program WSPG (see LAFCD program) does NOT estimate losses for angle points. Therefore, to be consistent with WSPG results, a zero loss is used. Energy loss estimate, per WSPG results,= 0.0 ------------------------------------------------------------------------------ NODE 207.10 : HGL = < 424.314>;EGL= < 424.974>;FLOWLINE= < 423.400> ****************************************************************************** FLOW PROCESS FROM NODE 207.10 TO NODE 207.20 IS CODE = 1 UPSTREAM NODE 207.20 ELEVATION = 424.20 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 7.35 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 76.80 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.91 CRITICAL DEPTH(FT) = 1.05 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.96 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.963 6.129 1.547 118.73 0.544 0.961 6.144 1.548 118.80 1.125 0.959 6.159 1.548 118.86 1.745 0.957 6.175 1.549 118.93 2.408 0.955 6.190 1.550 118.99 3.120 0.953 6.205 1.551 119.06 3.883 0.951 6.221 1.552 119.13 4.705 0.949 6.236 1.553 119.20 5.592 0.947 6.252 1.554 119.28 6.551 0.945 6.268 1.555 119.35 7.593 0.943 6.284 1.556 119.43 8.728 0.941 6.300 1.557 119.51 9.970 0.939 6.316 1.558 119.59 11.337 0.937 6.332 1.559 119.67 12.851 0.934 6.348 1.561 119.75 14.538 0.932 6.364 1.562 119.84 16.437 0.930 6.381 1.563 119.92 18.597 0.928 6.397 1.564 120.01 21.087 0.926 6.414 1.566 120.10 24.010 0.924 6.431 1.567 120.20 27.525 0.922 6.447 1.568 120.29 31.898 0.920 6.464 1.569 120.39 37.627 0.918 6.481 1.571 120.48 45.832 0.916 6.498 1.572 120.58 60.106 0.914 6.516 1.574 120.69 76.800 0.914 6.516 1.574 120.69 9 ------------------------------------------------------------------------------ NODE 207.20 : HGL = < 425.163>;EGL= < 425.747>;FLOWLINE= < 424.200> ****************************************************************************** FLOW PROCESS FROM NODE 207.20 TO NODE 207.20 IS CODE = 6 UPSTREAM NODE 207.20 ELEVATION = 424.20 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE ANGLE-POINT LOSSES(LACRD): PIPE FLOW = 7.35 CFS PIPE DIAMETER = 18.00 INCHES PIPE ANGLE-POINT = 45.00 DEGREES ANGLE-POINT COEFFICIENT KA = 0.00000 Note: For open flow conditions, computer program WSPG (see LAFCD program) does NOT estimate losses for angle points. Therefore, to be consistent with WSPG results, a zero loss is used. Energy loss estimate, per WSPG results,= 0.0 ------------------------------------------------------------------------------ NODE 207.20 : HGL = < 425.163>;EGL= < 425.747>;FLOWLINE= < 424.200> ****************************************************************************** FLOW PROCESS FROM NODE 207.20 TO NODE 206.00 IS CODE = 1 UPSTREAM NODE 206.00 ELEVATION = 424.50 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 7.35 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 33.40 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.96 CRITICAL DEPTH(FT) = 1.05 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.05 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.050 5.561 1.531 117.48 0.013 1.046 5.582 1.531 117.48 0.053 1.043 5.604 1.531 117.49 0.123 1.039 5.626 1.531 117.50 0.225 1.035 5.647 1.531 117.51 0.362 1.032 5.669 1.531 117.53 0.539 1.028 5.692 1.531 117.56 0.759 1.024 5.714 1.532 117.58 1.027 1.021 5.737 1.532 117.61 1.350 1.017 5.760 1.533 117.65 1.734 1.013 5.783 1.533 117.69 2.187 1.010 5.807 1.534 117.74 2.720 1.006 5.830 1.534 117.79 3.346 1.003 5.854 1.535 117.84 4.081 0.999 5.879 1.536 117.90 4.946 0.995 5.903 1.537 117.96 5.968 0.992 5.928 1.538 118.03 7.183 0.988 5.953 1.538 118.11 8.645 0.984 5.978 1.539 118.18 10.429 0.981 6.003 1.541 118.27 12.654 0.977 6.029 1.542 118.35 15.516 0.973 6.055 1.543 118.45 19.387 0.970 6.081 1.544 118.54 25.101 0.966 6.107 1.546 118.65 33.400 0.963 6.129 1.547 118.73 ------------------------------------------------------------------------------ NODE 206.00 : HGL = < 425.550>;EGL= < 426.031>;FLOWLINE= < 424.500> ****************************************************************************** FLOW PROCESS FROM NODE 206.00 TO NODE 206.00 IS CODE = 8 UPSTREAM NODE 206.00 ELEVATION = 424.50 (FLOW UNSEALS IN REACH) ------------------------------------------------------------------------------ 10 CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 7.35 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 5.56 FEET/SEC. VELOCITY HEAD = 0.480 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.480) = 0.096 ------------------------------------------------------------------------------ NODE 206.00 : HGL = < 426.127>;EGL= < 426.127>;FLOWLINE= < 424.500> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 206.00 FLOWLINE ELEVATION = 424.50 ASSUMED UPSTREAM CONTROL HGL = 425.55 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 11 ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: Pasco Laret Suiter & Associates 119 Aberdeen Drive Cardiff, California 92007 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * 3925 IONIS LOTS 21 AND 22 * * 100-YR * * * ************************************************************************** FILE NAME: 207LAT.PIP TIME/DATE OF STUDY: 17:27 04/05/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 207.00- 0.92* 10.06 0.15 7.20 } FRICTION } HYDRAULIC JUMP 702.00- 0.33*Dc 3.84 0.33*Dc 3.84 } CATCH BASIN 702.00- 0.51* 3.20 0.33 Dc 1.27 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 207.00 FLOWLINE ELEVATION = 422.66 PIPE FLOW = 0.43 CFS PIPE DIAMETER = 6.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 423.582 FEET ------------------------------------------------------------------------------ NODE 207.00 : HGL = < 423.582>;EGL= < 423.656>;FLOWLINE= < 422.660> ****************************************************************************** FLOW PROCESS FROM NODE 207.00 TO NODE 702.00 IS CODE = 1 UPSTREAM NODE 702.00 ELEVATION = 426.50 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.43 CFS PIPE DIAMETER = 6.00 INCHES PIPE LENGTH = 23.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.15 CRITICAL DEPTH(FT) = 0.33 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.33 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ 1 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.334 3.085 0.482 3.84 0.002 0.326 3.166 0.482 3.85 0.009 0.319 3.252 0.483 3.86 0.021 0.311 3.343 0.485 3.87 0.039 0.304 3.441 0.488 3.89 0.064 0.296 3.545 0.492 3.92 0.096 0.289 3.656 0.497 3.96 0.137 0.281 3.775 0.503 4.00 0.189 0.274 3.902 0.511 4.06 0.252 0.267 4.039 0.520 4.12 0.329 0.259 4.186 0.531 4.20 0.422 0.252 4.345 0.545 4.28 0.534 0.244 4.516 0.561 4.38 0.670 0.237 4.700 0.580 4.49 0.833 0.229 4.900 0.602 4.61 1.031 0.222 5.118 0.629 4.75 1.272 0.214 5.354 0.660 4.91 1.567 0.207 5.613 0.696 5.09 1.934 0.199 5.896 0.739 5.29 2.396 0.192 6.207 0.790 5.52 2.992 0.184 6.550 0.851 5.77 3.785 0.177 6.930 0.923 6.06 4.898 0.169 7.352 1.009 6.38 6.601 0.162 7.823 1.113 6.75 9.768 0.154 8.353 1.238 7.17 23.000 0.154 8.392 1.248 7.20 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 0.92 ============================================================================== PRESSURE FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.922 2.190 0.996 10.06 2.620 0.500 2.190 0.574 4.89 ============================================================================== ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 0.50 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 2.620 0.500 2.189 0.574 4.89 2.659 0.493 2.195 0.568 4.81 2.695 0.487 2.205 0.562 4.74 2.731 0.480 2.219 0.557 4.67 2.765 0.473 2.235 0.551 4.60 2.798 0.467 2.253 0.546 4.54 2.830 0.460 2.274 0.540 4.48 2.861 0.453 2.297 0.535 4.42 2.891 0.447 2.321 0.531 4.36 2.920 0.440 2.348 0.526 4.31 2.948 0.434 2.377 0.521 4.26 2.975 0.427 2.407 0.517 4.21 3.001 0.420 2.440 0.513 4.16 3.026 0.414 2.475 0.509 4.12 3.050 0.407 2.512 0.505 4.08 3.072 0.400 2.551 0.501 4.04 3.093 0.394 2.592 0.498 4.00 3.112 0.387 2.636 0.495 3.97 3.130 0.380 2.682 0.492 3.94 2 3.145 0.374 2.731 0.490 3.92 3.159 0.367 2.782 0.487 3.90 3.171 0.360 2.836 0.485 3.88 3.181 0.354 2.894 0.484 3.86 3.188 0.347 2.954 0.483 3.85 3.193 0.341 3.018 0.482 3.85 3.195 0.334 3.085 0.482 3.84 23.000 0.334 3.085 0.482 3.84 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 1.45 FEET UPSTREAM OF NODE 207.00 | | DOWNSTREAM DEPTH = 0.688 FEET, UPSTREAM CONJUGATE DEPTH = 0.154 FEET | ------------------------------------------------------------------------------ NODE 702.00 : HGL = < 426.834>;EGL= < 426.982>;FLOWLINE= < 426.500> ****************************************************************************** FLOW PROCESS FROM NODE 702.00 TO NODE 702.00 IS CODE = 8 UPSTREAM NODE 702.00 ELEVATION = 426.50 (FLOW UNSEALS IN REACH) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 0.43 CFS PIPE DIAMETER = 6.00 INCHES FLOW VELOCITY = 3.09 FEET/SEC. VELOCITY HEAD = 0.148 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.148) = 0.030 ------------------------------------------------------------------------------ NODE 702.00 : HGL = < 427.011>;EGL= < 427.011>;FLOWLINE= < 426.500> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 702.00 FLOWLINE ELEVATION = 426.50 ASSUMED UPSTREAM CONTROL HGL = 426.83 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 3 ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: Pasco Laret Suiter & Associates 119 Aberdeen Drive Cardiff, California 92007 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * 3925 IONIS LOTS 21 AND 22 * * 100-YR * * * ************************************************************************** FILE NAME: 209LAT.PIP TIME/DATE OF STUDY: 17:42 04/06/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 209.00- 1.95* 84.33 0.34 46.54 } FRICTION } HYDRAULIC JUMP 304.00- 0.65*Dc 28.71 0.65*Dc 28.71 } CATCH BASIN 304.00- 0.99* 16.57 0.65 Dc 9.58 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 209.00 FLOWLINE ELEVATION = 407.44 PIPE FLOW = 2.31 CFS PIPE DIAMETER = 12.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 409.392 FEET ------------------------------------------------------------------------------ NODE 209.00 : HGL = < 409.392>;EGL= < 409.526>;FLOWLINE= < 407.440> ****************************************************************************** FLOW PROCESS FROM NODE 209.00 TO NODE 304.00 IS CODE = 1 UPSTREAM NODE 304.00 ELEVATION = 411.83 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.31 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 54.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.32 CRITICAL DEPTH(FT) = 0.65 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.65 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ 1 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.650 4.271 0.934 28.71 0.007 0.637 4.372 0.934 28.72 0.029 0.624 4.479 0.936 28.78 0.069 0.611 4.592 0.939 28.87 0.127 0.598 4.711 0.943 29.00 0.208 0.585 4.838 0.949 29.17 0.312 0.572 4.972 0.956 29.39 0.444 0.559 5.114 0.965 29.65 0.608 0.546 5.265 0.977 29.97 0.809 0.533 5.426 0.990 30.34 1.052 0.520 5.598 1.007 30.76 1.344 0.507 5.780 1.026 31.25 1.694 0.494 5.975 1.049 31.81 2.113 0.481 6.184 1.075 32.43 2.616 0.468 6.407 1.106 33.13 3.219 0.455 6.647 1.141 33.92 3.947 0.442 6.905 1.182 34.80 4.832 0.429 7.183 1.230 35.77 5.922 0.416 7.483 1.285 36.86 7.282 0.402 7.807 1.349 38.07 9.019 0.389 8.159 1.424 39.41 11.309 0.376 8.541 1.510 40.89 14.485 0.363 8.959 1.610 42.55 19.293 0.350 9.415 1.728 44.39 28.131 0.337 9.916 1.865 46.43 54.000 0.337 9.941 1.872 46.54 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.95 ============================================================================== PRESSURE FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.952 2.941 2.086 84.33 12.349 1.000 2.941 1.134 37.67 ============================================================================== ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.00 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 12.349 1.000 2.940 1.134 37.67 12.520 0.986 2.949 1.121 37.02 12.683 0.972 2.964 1.108 36.41 12.840 0.958 2.983 1.096 35.82 12.992 0.944 3.007 1.085 35.25 13.140 0.930 3.034 1.073 34.70 13.283 0.916 3.064 1.062 34.18 13.423 0.902 3.097 1.051 33.67 13.558 0.888 3.133 1.041 33.18 13.689 0.874 3.171 1.030 32.72 13.816 0.860 3.213 1.021 32.27 13.939 0.846 3.258 1.011 31.85 14.056 0.832 3.306 1.002 31.45 14.169 0.818 3.357 0.993 31.08 14.277 0.804 3.412 0.985 30.72 14.378 0.790 3.469 0.977 30.40 14.474 0.776 3.530 0.970 30.09 14.563 0.762 3.595 0.963 29.82 14.645 0.748 3.664 0.957 29.57 2 14.719 0.734 3.736 0.951 29.35 14.785 0.720 3.813 0.946 29.16 14.841 0.706 3.895 0.942 29.00 14.887 0.692 3.981 0.938 28.88 14.921 0.678 4.072 0.936 28.78 14.943 0.664 4.169 0.934 28.73 14.950 0.650 4.271 0.934 28.71 54.000 0.650 4.271 0.934 28.71 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 10.01 FEET UPSTREAM OF NODE 209.00 | | DOWNSTREAM DEPTH = 1.180 FEET, UPSTREAM CONJUGATE DEPTH = 0.337 FEET | ------------------------------------------------------------------------------ NODE 304.00 : HGL = < 412.480>;EGL= < 412.764>;FLOWLINE= < 411.830> ****************************************************************************** FLOW PROCESS FROM NODE 304.00 TO NODE 304.00 IS CODE = 8 UPSTREAM NODE 304.00 ELEVATION = 411.83 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 2.31 CFS PIPE DIAMETER = 12.00 INCHES FLOW VELOCITY = 4.27 FEET/SEC. VELOCITY HEAD = 0.283 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.283) = 0.057 ------------------------------------------------------------------------------ NODE 304.00 : HGL = < 412.820>;EGL= < 412.820>;FLOWLINE= < 411.830> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 304.00 FLOWLINE ELEVATION = 411.83 ASSUMED UPSTREAM CONTROL HGL = 412.48 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 3 ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: PASCO LARET SUITER & ASSOCIATES 535 NORTH HIGHWAY 101, STE A SOLANA BEACH, CA 92075 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * 3925 IONIS LOTS 21 AND 22 * * 100-YR * * * ************************************************************************** FILE NAME: 409-15.PIP TIME/DATE OF STUDY: 11:59 01/24/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 409.15- 0.90* 12.66 0.42 Dc 7.36 } FRICTION 409.10- 0.97* 13.53 0.42 Dc 7.36 } CATCH BASIN 409.10- 1.20* 11.65 0.42 Dc 2.12 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 409.15 FLOWLINE ELEVATION = 408.83 PIPE FLOW = 0.69 CFS PIPE DIAMETER = 6.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 409.730 FEET ------------------------------------------------------------------------------ NODE 409.15 : HGL = < 409.730>;EGL= < 409.922>;FLOWLINE= < 408.830> ****************************************************************************** FLOW PROCESS FROM NODE 409.15 TO NODE 409.10 IS CODE = 1 UPSTREAM NODE 409.10 ELEVATION = 408.96 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.69 CFS PIPE DIAMETER = 6.00 INCHES PIPE LENGTH = 13.30 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 0.69)/( 5.611))**2 = 0.01512 HF=L*SF = ( 13.30)*(0.01512) = 0.201 ------------------------------------------------------------------------------ NODE 409.10 : HGL = < 409.931>;EGL= < 410.123>;FLOWLINE= < 408.960> ****************************************************************************** FLOW PROCESS FROM NODE 409.10 TO NODE 409.10 IS CODE = 8 UPSTREAM NODE 409.10 ELEVATION = 408.96 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 0.69 CFS PIPE DIAMETER = 6.00 INCHES FLOW VELOCITY = 3.51 FEET/SEC. VELOCITY HEAD = 0.192 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.192) = 0.038 ------------------------------------------------------------------------------ NODE 409.10 : HGL = < 410.161>;EGL= < 410.161>;FLOWLINE= < 408.960> ****************************************************************************** 1 UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 409.10 FLOWLINE ELEVATION = 408.96 ASSUMED UPSTREAM CONTROL HGL = 409.38 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 2 ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: PASCO LARET SUITER & ASSOCIATES 535 NORTH HIGHWAY 101, STE A SOLANA BEACH, CA 92075 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * 3925 IONIS LOTS 21 AND 22 * * 100-YR * * * ************************************************************************** FILE NAME: 410-8.PIP TIME/DATE OF STUDY: 13:16 01/24/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 410.80- 0.90* 39.97 0.64 37.70 } FRICTION } HYDRAULIC JUMP 410.70- 0.72*Dc 36.99 0.72*Dc 36.99 } JUNCTION 410.70- 0.90 37.82 0.51* 38.85 } FRICTION 410.65- 0.70 Dc 34.33 0.56* 36.73 } ANGLE-POINT 410.65- 0.70 Dc 34.33 0.56* 36.73 } FRICTION 410.60- 0.70*Dc 34.33 0.70*Dc 34.33 } JUNCTION 410.60- 0.98* 35.08 0.46 29.58 } FRICTION } HYDRAULIC JUMP 410.50- 0.63*Dc 26.10 0.63*Dc 26.10 } JUNCTION 410.50- 0.90* 26.62 0.40 20.98 } FRICTION } HYDRAULIC JUMP 410.40- 0.54*Dc 18.28 0.54*Dc 18.28 } JUNCTION 410.40- 0.74* 17.11 0.33 13.89 } FRICTION } HYDRAULIC JUMP 410.35- 0.46 Dc 11.92 0.33* 13.89 } ANGLE-POINT 410.35- 0.46 Dc 11.92 0.33* 13.89 } FRICTION 410.30- 0.46 Dc 11.92 0.39* 12.46 } JUNCTION 410.30- 0.49 6.10 0.15* 12.65 } FRICTION 410.25- 0.38 Dc 5.50 0.19* 9.17 } ANGLE-POINT 410.25- 0.38 Dc 5.50 0.19* 9.17 } FRICTION 410.22- 0.38*Dc 5.50 0.38*Dc 5.50 } JUNCTION 410.22- 0.73 9.00 0.17* 10.85 } FRICTION 410.20- 0.38*Dc 5.50 0.38*Dc 5.50 } CATCH BASIN 410.20- 0.61* 4.38 0.38 Dc 1.72 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 1 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 410.80 FLOWLINE ELEVATION = 408.83 PIPE FLOW = 2.79 CFS PIPE DIAMETER = 12.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 409.730 FEET ------------------------------------------------------------------------------ NODE 410.80 : HGL = < 409.730>;EGL= < 409.948>;FLOWLINE= < 408.830> ****************************************************************************** FLOW PROCESS FROM NODE 410.80 TO NODE 410.70 IS CODE = 1 UPSTREAM NODE 410.70 ELEVATION = 409.37 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.79 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 47.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.63 CRITICAL DEPTH(FT) = 0.72 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.72 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.716 4.634 1.050 36.99 0.009 0.713 4.657 1.050 36.99 0.039 0.710 4.680 1.050 37.00 0.089 0.706 4.704 1.050 37.00 0.164 0.703 4.727 1.050 37.01 0.264 0.700 4.751 1.051 37.02 0.393 0.697 4.776 1.051 37.03 0.553 0.693 4.800 1.051 37.05 0.748 0.690 4.825 1.052 37.07 0.983 0.687 4.851 1.052 37.09 1.263 0.683 4.876 1.053 37.11 1.593 0.680 4.903 1.054 37.13 1.982 0.677 4.929 1.054 37.16 2.438 0.674 4.956 1.055 37.19 2.973 0.670 4.983 1.056 37.22 3.603 0.667 5.010 1.057 37.26 4.347 0.664 5.038 1.058 37.29 5.233 0.661 5.066 1.059 37.33 6.299 0.657 5.095 1.061 37.38 7.599 0.654 5.124 1.062 37.42 9.221 0.651 5.153 1.063 37.47 11.307 0.648 5.183 1.065 37.52 14.130 0.644 5.213 1.067 37.58 18.297 0.641 5.244 1.068 37.64 25.758 0.638 5.275 1.070 37.70 47.000 0.638 5.277 1.070 37.70 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.90 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.900 3.746 1.118 39.97 0.775 0.893 3.769 1.113 39.75 1.534 0.885 3.793 1.109 39.54 2.276 0.878 3.817 1.104 39.34 3.002 0.871 3.843 1.100 39.14 3.711 0.863 3.870 1.096 38.95 4.404 0.856 3.897 1.092 38.77 5.079 0.849 3.926 1.088 38.60 2 5.738 0.841 3.955 1.084 38.44 6.378 0.834 3.986 1.081 38.28 6.999 0.826 4.018 1.077 38.13 7.600 0.819 4.051 1.074 37.99 8.181 0.812 4.085 1.071 37.86 8.739 0.804 4.119 1.068 37.74 9.274 0.797 4.156 1.065 37.62 9.784 0.790 4.193 1.063 37.52 10.266 0.782 4.231 1.060 37.42 10.719 0.775 4.271 1.058 37.33 11.138 0.768 4.312 1.056 37.25 11.522 0.760 4.354 1.055 37.19 11.866 0.753 4.397 1.053 37.13 12.164 0.746 4.442 1.052 37.08 12.412 0.738 4.488 1.051 37.04 12.602 0.731 4.535 1.050 37.01 12.724 0.723 4.584 1.050 37.00 12.768 0.716 4.634 1.050 36.99 47.000 0.716 4.634 1.050 36.99 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 8.92 FEET UPSTREAM OF NODE 410.80 | | DOWNSTREAM DEPTH = 0.802 FEET, UPSTREAM CONJUGATE DEPTH = 0.638 FEET | ------------------------------------------------------------------------------ NODE 410.70 : HGL = < 410.086>;EGL= < 410.420>;FLOWLINE= < 409.370> ****************************************************************************** FLOW PROCESS FROM NODE 410.70 TO NODE 410.70 IS CODE = 5 UPSTREAM NODE 410.70 ELEVATION = 409.70 (FLOW IS SUBCRITICAL) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 2.64 12.00 58.00 409.70 0.70 6.518 DOWNSTREAM 2.79 12.00 - 409.37 0.72 4.636 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.15===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02023 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00825 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01424 JUNCTION LENGTH = 2.00 FEET FRICTION LOSSES = 0.028 FEET ENTRANCE LOSSES = 0.067 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.385)+( 0.067) = 0.452 ------------------------------------------------------------------------------ NODE 410.70 : HGL = < 410.212>;EGL= < 410.872>;FLOWLINE= < 409.700> ****************************************************************************** FLOW PROCESS FROM NODE 410.70 TO NODE 410.65 IS CODE = 1 UPSTREAM NODE 410.65 ELEVATION = 411.48 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.64 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 87.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.51 CRITICAL DEPTH(FT) = 0.70 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.56 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.557 5.866 1.092 36.73 0.510 0.555 5.890 1.095 36.80 1.050 0.554 5.915 1.097 36.87 1.622 0.552 5.940 1.100 36.95 2.229 0.550 5.965 1.103 37.02 3 2.875 0.548 5.990 1.105 37.10 3.562 0.546 6.015 1.108 37.18 4.297 0.544 6.041 1.111 37.26 5.085 0.542 6.067 1.114 37.34 5.931 0.541 6.093 1.117 37.42 6.844 0.539 6.119 1.120 37.51 7.833 0.537 6.146 1.124 37.59 8.908 0.535 6.172 1.127 37.68 10.085 0.533 6.200 1.130 37.77 11.380 0.531 6.227 1.134 37.86 12.817 0.529 6.254 1.137 37.95 14.425 0.527 6.282 1.141 38.05 16.244 0.526 6.310 1.144 38.14 18.332 0.524 6.339 1.148 38.24 20.771 0.522 6.367 1.152 38.33 23.691 0.520 6.396 1.156 38.43 27.307 0.518 6.425 1.159 38.53 32.023 0.516 6.454 1.163 38.64 38.750 0.514 6.484 1.168 38.74 50.404 0.512 6.514 1.172 38.85 87.000 0.512 6.516 1.172 38.85 ------------------------------------------------------------------------------ NODE 410.65 : HGL = < 412.037>;EGL= < 412.572>;FLOWLINE= < 411.480> ****************************************************************************** FLOW PROCESS FROM NODE 410.65 TO NODE 410.65 IS CODE = 6 UPSTREAM NODE 410.65 ELEVATION = 411.48 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE ANGLE-POINT LOSSES(LACRD): PIPE FLOW = 2.64 CFS PIPE DIAMETER = 12.00 INCHES PIPE ANGLE-POINT = 11.00 DEGREES ANGLE-POINT COEFFICIENT KA = 0.00000 Note: For open flow conditions, computer program WSPG (see LAFCD program) does NOT estimate losses for angle points. Therefore, to be consistent with WSPG results, a zero loss is used. Energy loss estimate, per WSPG results,= 0.0 ------------------------------------------------------------------------------ NODE 410.65 : HGL = < 412.037>;EGL= < 412.572>;FLOWLINE= < 411.480> ****************************************************************************** FLOW PROCESS FROM NODE 410.65 TO NODE 410.60 IS CODE = 1 UPSTREAM NODE 410.60 ELEVATION = 411.70 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.64 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 11.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.51 CRITICAL DEPTH(FT) = 0.70 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.70 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.696 4.520 1.014 34.33 0.013 0.689 4.573 1.014 34.34 0.053 0.682 4.627 1.014 34.35 0.123 0.674 4.683 1.015 34.38 0.225 0.667 4.741 1.016 34.42 0.364 0.660 4.800 1.018 34.47 0.542 0.653 4.861 1.020 34.54 0.765 0.645 4.924 1.022 34.62 1.038 0.638 4.990 1.025 34.71 1.366 0.631 5.057 1.028 34.81 1.759 0.623 5.126 1.032 34.93 2.224 0.616 5.197 1.036 35.06 2.773 0.609 5.271 1.041 35.21 3.420 0.602 5.347 1.046 35.37 4.182 0.594 5.426 1.052 35.55 5.082 0.587 5.507 1.058 35.75 6.149 0.580 5.591 1.065 35.96 7.424 0.572 5.678 1.073 36.19 8.963 0.565 5.767 1.082 36.44 4 10.849 0.558 5.860 1.091 36.71 11.000 0.557 5.866 1.092 36.73 ------------------------------------------------------------------------------ NODE 410.60 : HGL = < 412.396>;EGL= < 412.714>;FLOWLINE= < 411.700> ****************************************************************************** FLOW PROCESS FROM NODE 410.60 TO NODE 410.60 IS CODE = 5 UPSTREAM NODE 410.60 ELEVATION = 411.70 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 2.15 12.00 0.00 411.70 0.63 2.749 DOWNSTREAM 2.64 12.00 - 411.70 0.70 4.521 LATERAL #1 0.49 6.00 90.00 411.95 0.36 2.496 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00328 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00794 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00561 JUNCTION LENGTH = 1.00 FEET FRICTION LOSSES = 0.006 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.086)+( 0.000) = 0.086 ------------------------------------------------------------------------------ NODE 410.60 : HGL = < 412.682>;EGL= < 412.799>;FLOWLINE= < 411.700> ****************************************************************************** FLOW PROCESS FROM NODE 410.60 TO NODE 410.50 IS CODE = 1 UPSTREAM NODE 410.50 ELEVATION = 412.75 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.15 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 52.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.45 CRITICAL DEPTH(FT) = 0.63 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.63 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.627 4.150 0.894 26.10 0.011 0.620 4.204 0.894 26.10 0.047 0.613 4.260 0.895 26.11 0.109 0.606 4.317 0.896 26.14 0.200 0.599 4.376 0.897 26.17 0.323 0.592 4.437 0.898 26.22 0.482 0.585 4.500 0.900 26.27 0.681 0.578 4.565 0.902 26.34 0.924 0.572 4.631 0.905 26.42 1.218 0.565 4.700 0.908 26.51 1.569 0.558 4.771 0.912 26.61 1.985 0.551 4.845 0.916 26.72 2.477 0.544 4.920 0.920 26.85 3.057 0.537 4.999 0.926 26.99 3.741 0.530 5.080 0.931 27.15 4.549 0.524 5.163 0.938 27.31 5.508 0.517 5.250 0.945 27.50 6.655 0.510 5.339 0.953 27.70 8.041 0.503 5.432 0.961 27.91 9.739 0.496 5.528 0.971 28.14 11.867 0.489 5.627 0.981 28.39 14.619 0.482 5.730 0.993 28.66 18.359 0.476 5.836 1.005 28.94 23.906 0.469 5.947 1.018 29.25 5 33.887 0.462 6.062 1.033 29.57 52.000 0.462 6.065 1.033 29.58 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.98 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.982 2.748 1.099 35.08 0.759 0.968 2.763 1.086 34.45 1.495 0.954 2.783 1.074 33.84 2.211 0.939 2.806 1.062 33.26 2.909 0.925 2.833 1.050 32.69 3.592 0.911 2.862 1.038 32.15 4.258 0.897 2.895 1.027 31.62 4.909 0.882 2.930 1.016 31.11 5.545 0.868 2.968 1.005 30.62 6.165 0.854 3.009 0.995 30.15 6.768 0.840 3.052 0.985 29.71 7.354 0.826 3.099 0.975 29.28 7.921 0.811 3.149 0.965 28.88 8.469 0.797 3.202 0.956 28.50 8.996 0.783 3.258 0.948 28.14 9.500 0.769 3.318 0.940 27.81 9.978 0.755 3.381 0.932 27.50 10.429 0.740 3.448 0.925 27.22 10.849 0.726 3.519 0.918 26.97 11.234 0.712 3.594 0.913 26.75 11.580 0.698 3.674 0.907 26.56 11.881 0.683 3.758 0.903 26.40 12.132 0.669 3.848 0.899 26.27 12.325 0.655 3.943 0.896 26.17 12.450 0.641 4.043 0.895 26.11 12.494 0.627 4.150 0.894 26.10 52.000 0.627 4.150 0.894 26.10 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 6.94 FEET UPSTREAM OF NODE 410.60 | | DOWNSTREAM DEPTH = 0.836 FEET, UPSTREAM CONJUGATE DEPTH = 0.462 FEET | ------------------------------------------------------------------------------ NODE 410.50 : HGL = < 413.377>;EGL= < 413.644>;FLOWLINE= < 412.750> ****************************************************************************** FLOW PROCESS FROM NODE 410.50 TO NODE 410.50 IS CODE = 5 UPSTREAM NODE 410.50 ELEVATION = 412.75 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 1.64 12.00 0.00 412.75 0.54 2.207 DOWNSTREAM 2.15 12.00 - 412.75 0.63 4.152 LATERAL #1 0.51 6.00 90.00 413.00 0.36 2.597 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00187 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00708 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00448 JUNCTION LENGTH = 1.00 FEET FRICTION LOSSES = 0.004 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.079)+( 0.000) = 0.079 ------------------------------------------------------------------------------ NODE 410.50 : HGL = < 413.648>;EGL= < 413.723>;FLOWLINE= < 412.750> ****************************************************************************** FLOW PROCESS FROM NODE 410.50 TO NODE 410.40 IS CODE = 1 UPSTREAM NODE 410.40 ELEVATION = 413.75 (HYDRAULIC JUMP OCCURS) 6 ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.64 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 49.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.39 CRITICAL DEPTH(FT) = 0.54 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.54 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.544 3.755 0.763 18.28 0.010 0.538 3.809 0.763 18.28 0.040 0.532 3.864 0.764 18.29 0.093 0.525 3.921 0.764 18.31 0.172 0.519 3.979 0.765 18.34 0.278 0.513 4.039 0.767 18.37 0.414 0.507 4.101 0.768 18.41 0.585 0.501 4.165 0.770 18.46 0.795 0.495 4.231 0.773 18.52 1.047 0.489 4.299 0.776 18.59 1.350 0.482 4.370 0.779 18.67 1.708 0.476 4.442 0.783 18.76 2.132 0.470 4.517 0.787 18.86 2.633 0.464 4.595 0.792 18.97 3.223 0.458 4.675 0.798 19.09 3.920 0.452 4.758 0.804 19.22 4.748 0.446 4.844 0.810 19.36 5.739 0.439 4.933 0.818 19.51 6.936 0.433 5.025 0.826 19.68 8.404 0.427 5.121 0.835 19.86 10.244 0.421 5.220 0.844 20.05 12.624 0.415 5.323 0.855 20.26 15.860 0.409 5.429 0.867 20.48 20.661 0.403 5.540 0.879 20.72 29.302 0.396 5.655 0.893 20.97 49.000 0.396 5.659 0.894 20.98 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.90 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.898 2.206 0.973 26.62 0.665 0.884 2.233 0.961 26.05 1.322 0.869 2.261 0.949 25.49 1.971 0.855 2.292 0.937 24.96 2.612 0.841 2.325 0.925 24.43 3.243 0.827 2.360 0.914 23.93 3.865 0.813 2.398 0.902 23.44 4.477 0.799 2.438 0.891 22.97 5.079 0.785 2.480 0.880 22.51 5.669 0.770 2.525 0.869 22.08 6.247 0.756 2.573 0.859 21.66 6.811 0.742 2.623 0.849 21.26 7.361 0.728 2.677 0.839 20.89 7.894 0.714 2.734 0.830 20.53 8.410 0.700 2.794 0.821 20.20 8.905 0.685 2.857 0.812 19.89 9.378 0.671 2.925 0.804 19.60 9.826 0.657 2.996 0.797 19.34 10.246 0.643 3.072 0.790 19.10 10.633 0.629 3.152 0.783 18.89 10.983 0.615 3.238 0.778 18.71 11.290 0.601 3.329 0.773 18.56 11.548 0.586 3.425 0.769 18.44 7 11.747 0.572 3.528 0.766 18.35 11.877 0.558 3.638 0.764 18.29 11.924 0.544 3.755 0.763 18.28 49.000 0.544 3.755 0.763 18.28 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 7.23 FEET UPSTREAM OF NODE 410.50 | | DOWNSTREAM DEPTH = 0.731 FEET, UPSTREAM CONJUGATE DEPTH = 0.396 FEET | ------------------------------------------------------------------------------ NODE 410.40 : HGL = < 414.294>;EGL= < 414.513>;FLOWLINE= < 413.750> ****************************************************************************** FLOW PROCESS FROM NODE 410.40 TO NODE 410.40 IS CODE = 5 UPSTREAM NODE 410.40 ELEVATION = 413.75 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 1.18 12.00 0.00 413.75 0.46 1.899 DOWNSTREAM 1.64 12.00 - 413.75 0.54 3.757 LATERAL #1 0.46 6.00 45.00 413.75 0.35 2.343 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00137 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00640 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00389 JUNCTION LENGTH = 1.00 FEET FRICTION LOSSES = 0.004 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.031)+( 0.000) = 0.031 ------------------------------------------------------------------------------ NODE 410.40 : HGL = < 414.488>;EGL= < 414.544>;FLOWLINE= < 413.750> ****************************************************************************** FLOW PROCESS FROM NODE 410.40 TO NODE 410.35 IS CODE = 1 UPSTREAM NODE 410.35 ELEVATION = 413.95 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.18 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 10.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.33 CRITICAL DEPTH(FT) = 0.46 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.33 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.329 5.232 0.755 13.89 0.449 0.329 5.232 0.755 13.89 0.918 0.329 5.232 0.755 13.89 1.407 0.329 5.232 0.755 13.89 1.919 0.329 5.233 0.755 13.89 2.456 0.329 5.233 0.755 13.89 3.021 0.329 5.233 0.755 13.89 3.616 0.329 5.233 0.755 13.89 4.245 0.329 5.233 0.755 13.89 4.913 0.329 5.233 0.755 13.89 5.623 0.329 5.233 0.755 13.89 6.383 0.329 5.233 0.755 13.89 7.199 0.329 5.233 0.755 13.89 8.081 0.329 5.234 0.755 13.89 9.039 0.329 5.234 0.755 13.89 10.000 0.329 5.234 0.755 13.89 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== 8 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.74 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.738 1.898 0.794 17.11 0.504 0.727 1.929 0.785 16.75 1.003 0.716 1.961 0.775 16.40 1.497 0.704 1.995 0.766 16.06 1.986 0.693 2.030 0.757 15.73 2.468 0.682 2.067 0.748 15.41 2.944 0.671 2.106 0.740 15.10 3.412 0.660 2.147 0.731 14.81 3.873 0.648 2.189 0.723 14.53 4.326 0.637 2.234 0.715 14.25 4.768 0.626 2.280 0.707 14.00 5.201 0.615 2.329 0.699 13.75 5.622 0.604 2.381 0.692 13.52 6.031 0.592 2.435 0.684 13.30 6.425 0.581 2.491 0.678 13.09 6.804 0.570 2.551 0.671 12.90 7.166 0.559 2.614 0.665 12.73 7.508 0.548 2.680 0.659 12.57 7.828 0.536 2.750 0.654 12.42 8.122 0.525 2.824 0.649 12.29 8.388 0.514 2.901 0.645 12.18 8.621 0.503 2.984 0.641 12.09 8.815 0.491 3.071 0.638 12.02 8.965 0.480 3.163 0.636 11.96 9.062 0.469 3.261 0.634 11.93 9.098 0.458 3.365 0.634 11.92 10.000 0.458 3.365 0.634 11.92 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 4.96 FEET UPSTREAM OF NODE 410.40 | | DOWNSTREAM DEPTH = 0.621 FEET, UPSTREAM CONJUGATE DEPTH = 0.329 FEET | ------------------------------------------------------------------------------ NODE 410.35 : HGL = < 414.279>;EGL= < 414.705>;FLOWLINE= < 413.950> ****************************************************************************** FLOW PROCESS FROM NODE 410.35 TO NODE 410.35 IS CODE = 6 UPSTREAM NODE 410.35 ELEVATION = 413.95 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE ANGLE-POINT LOSSES(LACRD): PIPE FLOW = 1.18 CFS PIPE DIAMETER = 12.00 INCHES PIPE ANGLE-POINT = 11.00 DEGREES ANGLE-POINT COEFFICIENT KA = 0.00000 Note: For open flow conditions, computer program WSPG (see LAFCD program) does NOT estimate losses for angle points. Therefore, to be consistent with WSPG results, a zero loss is used. Energy loss estimate, per WSPG results,= 0.0 ------------------------------------------------------------------------------ NODE 410.35 : HGL = < 414.279>;EGL= < 414.705>;FLOWLINE= < 413.950> ****************************************************************************** FLOW PROCESS FROM NODE 410.35 TO NODE 410.30 IS CODE = 1 UPSTREAM NODE 410.30 ELEVATION = 414.75 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.18 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 39.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.33 CRITICAL DEPTH(FT) = 0.46 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.39 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.386 4.221 0.663 12.46 0.239 0.383 4.256 0.665 12.50 0.496 0.381 4.291 0.667 12.54 0.774 0.379 4.327 0.670 12.58 9 1.075 0.376 4.363 0.672 12.63 1.399 0.374 4.400 0.675 12.67 1.752 0.372 4.438 0.678 12.72 2.134 0.369 4.476 0.681 12.77 2.549 0.367 4.515 0.684 12.82 3.003 0.365 4.554 0.687 12.87 3.499 0.362 4.594 0.690 12.92 4.044 0.360 4.635 0.694 12.98 4.645 0.358 4.676 0.697 13.04 5.311 0.355 4.719 0.701 13.10 6.054 0.353 4.761 0.705 13.16 6.887 0.351 4.805 0.709 13.22 7.831 0.348 4.849 0.714 13.29 8.912 0.346 4.894 0.718 13.35 10.166 0.344 4.940 0.723 13.42 11.648 0.341 4.986 0.727 13.49 13.440 0.339 5.033 0.732 13.57 15.682 0.336 5.082 0.738 13.64 18.636 0.334 5.131 0.743 13.72 22.892 0.332 5.180 0.749 13.80 30.337 0.329 5.231 0.755 13.88 39.000 0.329 5.232 0.755 13.89 ------------------------------------------------------------------------------ NODE 410.30 : HGL = < 415.136>;EGL= < 415.413>;FLOWLINE= < 414.750> ****************************************************************************** FLOW PROCESS FROM NODE 410.30 TO NODE 410.30 IS CODE = 5 UPSTREAM NODE 410.30 ELEVATION = 414.92 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 0.56 6.00 5.00 414.92 0.38 11.483 DOWNSTREAM 1.18 12.00 - 414.75 0.46 4.222 LATERAL #1 0.50 6.00 45.00 414.92 0.36 3.299 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.12===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.27142 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01104 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.14123 JUNCTION LENGTH = 2.00 FEET FRICTION LOSSES = 0.282 FEET ENTRANCE LOSSES = 0.055 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.648)+( 0.055) = 1.703 ------------------------------------------------------------------------------ NODE 410.30 : HGL = < 415.068>;EGL= < 417.116>;FLOWLINE= < 414.920> ****************************************************************************** FLOW PROCESS FROM NODE 410.30 TO NODE 410.25 IS CODE = 1 UPSTREAM NODE 410.25 ELEVATION = 429.56 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.56 CFS PIPE DIAMETER = 6.00 INCHES PIPE LENGTH = 52.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.15 CRITICAL DEPTH(FT) = 0.38 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.19 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.191 8.135 1.219 9.17 0.138 0.189 8.236 1.243 9.28 0.284 0.187 8.341 1.268 9.38 0.439 0.185 8.447 1.294 9.49 0.605 0.184 8.556 1.321 9.60 0.782 0.182 8.668 1.349 9.71 10 0.971 0.180 8.783 1.379 9.83 1.175 0.178 8.900 1.409 9.95 1.393 0.177 9.021 1.441 10.08 1.629 0.175 9.144 1.474 10.20 1.885 0.173 9.270 1.508 10.33 2.164 0.171 9.400 1.544 10.47 2.468 0.170 9.533 1.582 10.61 2.803 0.168 9.669 1.621 10.75 3.173 0.166 9.810 1.661 10.89 3.586 0.164 9.953 1.704 11.04 4.051 0.163 10.101 1.748 11.20 4.579 0.161 10.253 1.794 11.36 5.190 0.159 10.409 1.843 11.52 5.906 0.157 10.569 1.893 11.69 6.769 0.156 10.734 1.946 11.86 7.844 0.154 10.903 2.001 12.04 9.255 0.152 11.077 2.059 12.22 11.279 0.150 11.257 2.119 12.41 14.808 0.149 11.441 2.183 12.61 52.000 0.148 11.479 2.196 12.65 ------------------------------------------------------------------------------ NODE 410.25 : HGL = < 429.751>;EGL= < 430.779>;FLOWLINE= < 429.560> ****************************************************************************** FLOW PROCESS FROM NODE 410.25 TO NODE 410.25 IS CODE = 6 UPSTREAM NODE 410.25 ELEVATION = 429.56 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE ANGLE-POINT LOSSES(LACRD): PIPE FLOW = 0.56 CFS PIPE DIAMETER = 6.00 INCHES PIPE ANGLE-POINT = 11.00 DEGREES ANGLE-POINT COEFFICIENT KA = 0.00000 Note: For open flow conditions, computer program WSPG (see LAFCD program) does NOT estimate losses for angle points. Therefore, to be consistent with WSPG results, a zero loss is used. Energy loss estimate, per WSPG results,= 0.0 ------------------------------------------------------------------------------ NODE 410.25 : HGL = < 429.751>;EGL= < 430.779>;FLOWLINE= < 429.560> ****************************************************************************** FLOW PROCESS FROM NODE 410.25 TO NODE 410.22 IS CODE = 1 UPSTREAM NODE 410.22 ELEVATION = 430.40 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.56 CFS PIPE DIAMETER = 6.00 INCHES PIPE LENGTH = 3.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.15 CRITICAL DEPTH(FT) = 0.38 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.38 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.380 3.495 0.570 5.50 0.002 0.371 3.585 0.571 5.51 0.008 0.362 3.683 0.572 5.52 0.019 0.352 3.788 0.575 5.55 0.035 0.343 3.901 0.579 5.59 0.057 0.334 4.023 0.585 5.64 0.085 0.324 4.155 0.592 5.70 0.121 0.315 4.298 0.602 5.78 0.166 0.306 4.452 0.614 5.87 0.222 0.296 4.620 0.628 5.98 0.289 0.287 4.802 0.645 6.11 0.372 0.278 5.000 0.666 6.26 0.472 0.268 5.217 0.691 6.43 0.593 0.259 5.453 0.721 6.63 0.740 0.250 5.712 0.757 6.85 0.920 0.240 5.998 0.799 7.10 1.140 0.231 6.312 0.850 7.39 1.412 0.222 6.661 0.911 7.72 1.753 0.212 7.048 0.984 8.09 2.188 0.203 7.481 1.073 8.52 11 2.755 0.194 7.966 1.180 9.00 3.000 0.191 8.135 1.219 9.17 ------------------------------------------------------------------------------ NODE 410.22 : HGL = < 430.780>;EGL= < 430.970>;FLOWLINE= < 430.400> ****************************************************************************** FLOW PROCESS FROM NODE 410.22 TO NODE 410.22 IS CODE = 5 UPSTREAM NODE 410.22 ELEVATION = 430.40 (FLOW UNSEALS IN REACH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 0.56 6.00 90.00 430.40 0.38 9.771 DOWNSTREAM 0.56 6.00 - 430.40 0.38 3.486 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.17317 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01154 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.09235 JUNCTION LENGTH = 1.00 FEET FRICTION LOSSES = 0.092 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.079)+( 0.000) = 1.079 ------------------------------------------------------------------------------ NODE 410.22 : HGL = < 430.567>;EGL= < 432.049>;FLOWLINE= < 430.400> ****************************************************************************** FLOW PROCESS FROM NODE 410.22 TO NODE 410.20 IS CODE = 1 UPSTREAM NODE 410.20 ELEVATION = 432.00 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.56 CFS PIPE DIAMETER = 6.00 INCHES PIPE LENGTH = 5.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.14 CRITICAL DEPTH(FT) = 0.38 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.38 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.381 3.485 0.570 5.50 0.002 0.372 3.577 0.570 5.50 0.007 0.362 3.676 0.572 5.52 0.016 0.353 3.783 0.575 5.55 0.030 0.343 3.899 0.579 5.59 0.050 0.333 4.025 0.585 5.64 0.075 0.324 4.161 0.593 5.70 0.108 0.314 4.308 0.603 5.78 0.148 0.305 4.467 0.615 5.88 0.199 0.295 4.641 0.630 6.00 0.260 0.286 4.830 0.648 6.13 0.336 0.276 5.036 0.670 6.29 0.427 0.266 5.261 0.697 6.47 0.538 0.257 5.509 0.728 6.67 0.674 0.247 5.781 0.767 6.91 0.840 0.238 6.081 0.812 7.18 1.044 0.228 6.413 0.867 7.49 1.298 0.219 6.782 0.933 7.84 1.616 0.209 7.194 1.013 8.24 2.024 0.200 7.657 1.110 8.69 2.557 0.190 8.179 1.229 9.22 3.279 0.180 8.770 1.375 9.82 4.307 0.171 9.446 1.557 10.52 5.000 0.167 9.768 1.649 10.85 ------------------------------------------------------------------------------ 12 NODE 410.20 : HGL = < 432.381>;EGL= < 432.570>;FLOWLINE= < 432.000> ****************************************************************************** FLOW PROCESS FROM NODE 410.20 TO NODE 410.20 IS CODE = 8 UPSTREAM NODE 410.20 ELEVATION = 432.00 (FLOW UNSEALS IN REACH) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 0.56 CFS PIPE DIAMETER = 6.00 INCHES FLOW VELOCITY = 3.49 FEET/SEC. VELOCITY HEAD = 0.189 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.189) = 0.038 ------------------------------------------------------------------------------ NODE 410.20 : HGL = < 432.608>;EGL= < 432.608>;FLOWLINE= < 432.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 410.20 FLOWLINE ELEVATION = 432.00 ASSUMED UPSTREAM CONTROL HGL = 432.38 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 13 ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: PASCO LARET SUITER & ASSOCIATES 535 NORTH HIGHWAY 101, STE A SOLANA BEACH, CA 92075 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * 3925 IONIS LOTS 21 AND 22 * * 100-YR * * * ************************************************************************** FILE NAME: 409.PIP TIME/DATE OF STUDY: 09:26 01/24/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 409.00- 0.95 Dc 91.15 0.75* 98.55 } FRICTION 408.00- 0.95*Dc 91.15 0.95*Dc 91.15 } JUNCTION 408.00- 1.13* 84.55 0.77 80.25 } FRICTION } HYDRAULIC JUMP 407.00- 0.89*Dc 77.53 0.89*Dc 77.53 } JUNCTION 407.00- 1.30* 78.60 0.63 51.05 } FRICTION } HYDRAULIC JUMP 406.00- 0.74*Dc 48.88 0.74*Dc 48.88 } JUNCTION 406.00- 0.94* 31.20 0.53 23.20 } FRICTION 406.10- 0.79* 25.95 0.59 Dc 22.78 } CATCH BASIN 406.10- 0.95* 19.21 0.59 Dc 7.77 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 409.00 FLOWLINE ELEVATION = 408.83 PIPE FLOW = 6.08 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 409.730 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.90 FT.) IS LESS THAN CRITICAL DEPTH( 0.95 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS ------------------------------------------------------------------------------ NODE 409.00 : HGL = < 409.581>;EGL= < 410.314>;FLOWLINE= < 408.830> ****************************************************************************** FLOW PROCESS FROM NODE 409.00 TO NODE 408.00 IS CODE = 1 UPSTREAM NODE 408.00 ELEVATION = 409.23 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 6.08 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 25.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ 1 NORMAL DEPTH(FT) = 0.71 CRITICAL DEPTH(FT) = 0.95 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.95 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.953 5.135 1.362 91.15 0.020 0.943 5.196 1.362 91.16 0.081 0.933 5.259 1.363 91.20 0.189 0.924 5.324 1.364 91.27 0.347 0.914 5.390 1.365 91.38 0.561 0.904 5.458 1.367 91.51 0.837 0.895 5.528 1.370 91.67 1.181 0.885 5.600 1.373 91.87 1.602 0.876 5.675 1.376 92.09 2.111 0.866 5.751 1.380 92.36 2.717 0.856 5.830 1.384 92.65 3.436 0.847 5.911 1.390 92.99 4.285 0.837 5.994 1.395 93.36 5.285 0.828 6.080 1.402 93.77 6.464 0.818 6.168 1.409 94.21 7.855 0.808 6.260 1.417 94.70 9.505 0.799 6.354 1.426 95.23 11.476 0.789 6.451 1.436 95.81 13.856 0.779 6.551 1.446 96.43 16.771 0.770 6.654 1.458 97.09 20.419 0.760 6.761 1.471 97.81 25.000 0.751 6.868 1.484 98.55 ------------------------------------------------------------------------------ NODE 408.00 : HGL = < 410.183>;EGL= < 410.592>;FLOWLINE= < 409.230> ****************************************************************************** FLOW PROCESS FROM NODE 408.00 TO NODE 408.00 IS CODE = 5 UPSTREAM NODE 408.00 ELEVATION = 409.48 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 5.38 18.00 45.00 409.48 0.89 3.756 DOWNSTREAM 6.08 18.00 - 409.23 0.95 5.137 LATERAL #1 0.70 6.00 90.00 409.48 0.42 3.565 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00310 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00626 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00468 JUNCTION LENGTH = 3.00 FEET FRICTION LOSSES = 0.014 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.240)+( 0.000) = 0.240 ------------------------------------------------------------------------------ NODE 408.00 : HGL = < 410.613>;EGL= < 410.832>;FLOWLINE= < 409.480> ****************************************************************************** FLOW PROCESS FROM NODE 408.00 TO NODE 407.00 IS CODE = 1 UPSTREAM NODE 407.00 ELEVATION = 410.07 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.38 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 59.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.76 CRITICAL DEPTH(FT) = 0.89 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.89 ============================================================================== 2 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.894 4.899 1.267 77.53 0.015 0.888 4.934 1.267 77.53 0.063 0.883 4.970 1.267 77.55 0.147 0.878 5.006 1.267 77.57 0.269 0.872 5.043 1.268 77.60 0.434 0.867 5.081 1.268 77.64 0.646 0.862 5.119 1.269 77.68 0.910 0.857 5.158 1.270 77.74 1.233 0.851 5.197 1.271 77.81 1.622 0.846 5.237 1.272 77.88 2.084 0.841 5.278 1.273 77.97 2.632 0.835 5.319 1.275 78.06 3.276 0.830 5.361 1.276 78.17 4.034 0.825 5.404 1.278 78.28 4.925 0.819 5.447 1.280 78.40 5.973 0.814 5.492 1.283 78.54 7.214 0.809 5.537 1.285 78.68 8.692 0.803 5.582 1.287 78.84 10.472 0.798 5.629 1.290 79.01 12.647 0.793 5.676 1.293 79.18 15.361 0.787 5.724 1.296 79.37 18.858 0.782 5.773 1.300 79.57 23.593 0.777 5.823 1.304 79.79 30.590 0.771 5.874 1.307 80.01 43.132 0.766 5.926 1.312 80.25 59.000 0.766 5.927 1.312 80.25 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.13 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.133 3.755 1.352 84.55 0.834 1.124 3.788 1.347 84.04 1.656 1.114 3.822 1.341 83.55 2.466 1.104 3.856 1.335 83.07 3.261 1.095 3.892 1.330 82.61 4.042 1.085 3.928 1.325 82.17 4.808 1.076 3.966 1.320 81.75 5.557 1.066 4.004 1.315 81.34 6.290 1.057 4.043 1.311 80.95 7.003 1.047 4.084 1.306 80.58 7.697 1.037 4.125 1.302 80.23 8.370 1.028 4.168 1.298 79.90 9.020 1.018 4.211 1.294 79.59 9.645 1.009 4.256 1.290 79.30 10.243 0.999 4.302 1.287 79.02 10.813 0.989 4.349 1.283 78.77 11.351 0.980 4.398 1.280 78.55 11.854 0.970 4.448 1.278 78.34 12.320 0.961 4.499 1.275 78.15 12.743 0.951 4.551 1.273 77.99 13.121 0.942 4.605 1.271 77.85 13.447 0.932 4.661 1.270 77.74 13.716 0.922 4.718 1.268 77.65 13.920 0.913 4.776 1.267 77.58 14.050 0.903 4.837 1.267 77.54 14.096 0.894 4.899 1.267 77.53 59.000 0.894 4.899 1.267 77.53 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 7.66 FEET UPSTREAM OF NODE 408.00 | | DOWNSTREAM DEPTH = 1.038 FEET, UPSTREAM CONJUGATE DEPTH = 0.766 FEET | ------------------------------------------------------------------------------ NODE 407.00 : HGL = < 410.964>;EGL= < 411.337>;FLOWLINE= < 410.070> ****************************************************************************** 3 FLOW PROCESS FROM NODE 407.00 TO NODE 407.00 IS CODE = 5 UPSTREAM NODE 407.00 ELEVATION = 410.07 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 3.78 18.00 0.00 410.07 0.74 2.320 DOWNSTREAM 5.38 18.00 - 410.07 0.89 4.900 LATERAL #1 1.60 6.00 90.00 410.57 0.50 8.149 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00118 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00594 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00356 JUNCTION LENGTH = 1.00 FEET FRICTION LOSSES = 0.004 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.119)+( 0.000) = 0.119 ------------------------------------------------------------------------------ NODE 407.00 : HGL = < 411.373>;EGL= < 411.456>;FLOWLINE= < 410.070> ****************************************************************************** FLOW PROCESS FROM NODE 407.00 TO NODE 406.00 IS CODE = 1 UPSTREAM NODE 406.00 ELEVATION = 410.75 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.78 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 68.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.62 CRITICAL DEPTH(FT) = 0.74 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.74 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.743 4.328 1.034 48.88 0.013 0.738 4.364 1.034 48.88 0.055 0.733 4.401 1.034 48.89 0.127 0.729 4.439 1.035 48.91 0.233 0.724 4.477 1.035 48.93 0.376 0.719 4.516 1.036 48.97 0.560 0.714 4.555 1.036 49.00 0.789 0.709 4.595 1.037 49.05 1.070 0.704 4.636 1.038 49.10 1.407 0.699 4.678 1.039 49.16 1.809 0.695 4.720 1.041 49.23 2.284 0.690 4.763 1.042 49.30 2.844 0.685 4.807 1.044 49.38 3.503 0.680 4.852 1.046 49.47 4.277 0.675 4.897 1.048 49.57 5.189 0.670 4.943 1.050 49.68 6.268 0.666 4.990 1.053 49.80 7.554 0.661 5.038 1.055 49.92 9.103 0.656 5.087 1.058 50.05 10.995 0.651 5.137 1.061 50.19 13.358 0.646 5.188 1.064 50.34 16.403 0.641 5.239 1.068 50.50 20.527 0.637 5.292 1.072 50.67 26.622 0.632 5.346 1.076 50.85 37.549 0.627 5.401 1.080 51.04 68.000 0.627 5.403 1.080 51.05 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.30 4 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.303 2.319 1.386 78.60 2.266 1.280 2.352 1.366 76.59 4.515 1.258 2.388 1.346 74.63 6.747 1.235 2.427 1.327 72.72 8.960 1.213 2.468 1.308 70.86 11.155 1.191 2.512 1.289 69.07 13.329 1.168 2.559 1.270 67.33 15.482 1.146 2.609 1.252 65.65 17.611 1.123 2.662 1.234 64.04 19.716 1.101 2.718 1.216 62.49 21.792 1.079 2.778 1.199 61.00 23.838 1.056 2.841 1.182 59.59 25.849 1.034 2.909 1.165 58.25 27.822 1.012 2.981 1.150 56.98 29.750 0.989 3.057 1.134 55.79 31.628 0.967 3.138 1.120 54.68 33.448 0.944 3.224 1.106 53.66 35.201 0.922 3.317 1.093 52.72 36.874 0.900 3.415 1.081 51.87 38.452 0.877 3.520 1.070 51.12 39.917 0.855 3.632 1.060 50.46 41.242 0.833 3.752 1.051 49.91 42.394 0.810 3.881 1.044 49.47 43.324 0.788 4.019 1.039 49.15 43.964 0.765 4.168 1.035 48.95 44.210 0.743 4.328 1.034 48.88 68.000 0.743 4.328 1.034 48.88 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 38.95 FEET UPSTREAM OF NODE 407.00 | | DOWNSTREAM DEPTH = 0.870 FEET, UPSTREAM CONJUGATE DEPTH = 0.631 FEET | ------------------------------------------------------------------------------ NODE 406.00 : HGL = < 411.493>;EGL= < 411.784>;FLOWLINE= < 410.750> ****************************************************************************** FLOW PROCESS FROM NODE 406.00 TO NODE 406.00 IS CODE = 5 UPSTREAM NODE 406.00 ELEVATION = 411.00 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 1.94 12.00 90.00 411.00 0.59 2.529 DOWNSTREAM 3.78 18.00 - 410.75 0.74 4.329 LATERAL #1 1.78 12.00 12.00 411.00 0.57 2.951 LATERAL #2 0.06 6.00 69.00 411.00 0.12 0.306 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00256 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00535 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00396 JUNCTION LENGTH = 3.00 FEET FRICTION LOSSES = 0.012 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.257)+( 0.000) = 0.257 ------------------------------------------------------------------------------ NODE 406.00 : HGL = < 411.942>;EGL= < 412.041>;FLOWLINE= < 411.000> ****************************************************************************** FLOW PROCESS FROM NODE 406.00 TO NODE 406.10 IS CODE = 1 UPSTREAM NODE 406.10 ELEVATION = 411.16 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.94 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 16.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.53 CRITICAL DEPTH(FT) = 0.59 5 ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.94 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.942 2.528 1.041 31.20 1.630 0.928 2.551 1.029 30.62 3.232 0.914 2.577 1.017 30.06 4.808 0.900 2.604 1.006 29.51 6.361 0.886 2.635 0.994 28.98 7.891 0.872 2.668 0.983 28.47 9.399 0.858 2.703 0.972 27.97 10.886 0.845 2.741 0.961 27.50 12.350 0.831 2.781 0.951 27.04 13.792 0.817 2.824 0.941 26.60 15.210 0.803 2.870 0.931 26.18 16.000 0.795 2.897 0.925 25.95 ------------------------------------------------------------------------------ NODE 406.10 : HGL = < 411.955>;EGL= < 412.085>;FLOWLINE= < 411.160> ****************************************************************************** FLOW PROCESS FROM NODE 406.10 TO NODE 406.10 IS CODE = 8 UPSTREAM NODE 406.10 ELEVATION = 411.16 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 1.94 CFS PIPE DIAMETER = 12.00 INCHES FLOW VELOCITY = 2.90 FEET/SEC. VELOCITY HEAD = 0.130 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.130) = 0.026 ------------------------------------------------------------------------------ NODE 406.10 : HGL = < 412.111>;EGL= < 412.111>;FLOWLINE= < 411.160> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 406.10 FLOWLINE ELEVATION = 411.16 ASSUMED UPSTREAM CONTROL HGL = 411.75 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 6 ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: PASCO LARET SUITER & ASSOCIATES 535 NORTH HIGHWAY 101, STE A SOLANA BEACH, CA 92075 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * 3925 IONIS LOTS 21 AND 22 * * 100-YR * * * ************************************************************************** FILE NAME: 407.PIP TIME/DATE OF STUDY: 13:55 01/24/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 407.00- 1.30* 46.32 0.36 23.90 } FRICTION } HYDRAULIC JUMP 407.10- 0.55*Dc 18.86 0.55*Dc 18.86 } CATCH BASIN 407.10- 0.82* 10.34 0.55 Dc 6.53 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 407.00 FLOWLINE ELEVATION = 410.07 PIPE FLOW = 1.68 CFS PIPE DIAMETER = 12.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 411.373 FEET ------------------------------------------------------------------------------ NODE 407.00 : HGL = < 411.373>;EGL= < 411.444>;FLOWLINE= < 410.070> ****************************************************************************** FLOW PROCESS FROM NODE 407.00 TO NODE 407.10 IS CODE = 1 UPSTREAM NODE 407.10 ELEVATION = 410.78 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.68 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 20.50 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.34 CRITICAL DEPTH(FT) = 0.55 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.55 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.551 3.787 0.774 18.86 0.009 0.543 3.859 0.774 18.87 0.036 0.534 3.934 0.775 18.89 0.084 0.526 4.012 0.776 18.92 0.155 0.518 4.093 0.778 18.97 0.252 0.509 4.178 0.780 19.04 1 0.377 0.501 4.266 0.784 19.12 0.534 0.493 4.358 0.788 19.21 0.728 0.484 4.454 0.793 19.33 0.962 0.476 4.554 0.798 19.46 1.243 0.468 4.659 0.805 19.61 1.579 0.459 4.768 0.813 19.79 1.977 0.451 4.883 0.822 19.98 2.449 0.443 5.003 0.832 20.20 3.009 0.435 5.129 0.843 20.43 3.673 0.426 5.261 0.856 20.70 4.467 0.418 5.400 0.871 20.98 5.421 0.410 5.546 0.888 21.30 6.579 0.401 5.699 0.906 21.65 8.009 0.393 5.861 0.927 22.02 9.809 0.385 6.031 0.950 22.43 12.152 0.376 6.211 0.976 22.87 15.355 0.368 6.401 1.005 23.36 20.135 0.360 6.603 1.037 23.88 20.500 0.359 6.611 1.039 23.90 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.30 ============================================================================== PRESSURE FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.303 2.139 1.374 46.32 9.348 1.000 2.139 1.071 31.47 ============================================================================== ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.00 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 9.348 1.000 2.138 1.071 31.47 9.883 0.982 2.147 1.054 30.62 10.400 0.964 2.163 1.037 29.80 10.906 0.946 2.184 1.020 29.00 11.403 0.928 2.209 1.004 28.22 11.892 0.910 2.238 0.988 27.47 12.372 0.892 2.270 0.972 26.74 12.844 0.874 2.306 0.957 26.03 13.308 0.856 2.346 0.942 25.35 13.763 0.838 2.389 0.927 24.70 14.208 0.820 2.436 0.913 24.07 14.644 0.802 2.486 0.898 23.47 15.068 0.784 2.541 0.885 22.90 15.480 0.766 2.600 0.871 22.36 15.879 0.748 2.664 0.859 21.85 16.263 0.730 2.732 0.846 21.37 16.630 0.713 2.805 0.835 20.93 16.979 0.695 2.885 0.824 20.53 17.306 0.677 2.970 0.814 20.16 17.608 0.659 3.061 0.804 19.84 17.882 0.641 3.160 0.796 19.55 18.123 0.623 3.266 0.788 19.31 18.326 0.605 3.382 0.782 19.12 18.482 0.587 3.506 0.778 18.98 18.585 0.569 3.641 0.775 18.89 18.622 0.551 3.787 0.774 18.86 20.500 0.551 3.787 0.774 18.86 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 16.84 FEET UPSTREAM OF NODE 407.00 | | DOWNSTREAM DEPTH = 0.702 FEET, UPSTREAM CONJUGATE DEPTH = 0.426 FEET | ------------------------------------------------------------------------------ NODE 407.10 : HGL = < 411.331>;EGL= < 411.554>;FLOWLINE= < 410.780> ****************************************************************************** FLOW PROCESS FROM NODE 407.10 TO NODE 407.10 IS CODE = 8 UPSTREAM NODE 407.10 ELEVATION = 410.78 (FLOW IS SUBCRITICAL) 2 ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 1.68 CFS PIPE DIAMETER = 12.00 INCHES FLOW VELOCITY = 3.79 FEET/SEC. VELOCITY HEAD = 0.223 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.223) = 0.045 ------------------------------------------------------------------------------ NODE 407.10 : HGL = < 411.598>;EGL= < 411.598>;FLOWLINE= < 410.780> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 407.10 FLOWLINE ELEVATION = 410.78 ASSUMED UPSTREAM CONTROL HGL = 411.33 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 3 ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: PASCO LARET SUITER & ASSOCIATES 535 NORTH HIGHWAY 101, STE A SOLANA BEACH, CA 92075 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * 3925 IONIS LOTS 21 AND 22 * * 100-YR * * * ************************************************************************** FILE NAME: 408.PIP TIME/DATE OF STUDY: 14:03 01/24/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 408.00- 1.13* 17.14 0.44 Dc 9.12 } FRICTION 408.10- 1.19* 17.82 0.44 Dc 9.12 } CATCH BASIN 408.10- 1.50* 15.30 0.44 Dc 2.40 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 408.00 FLOWLINE ELEVATION = 409.48 PIPE FLOW = 0.80 CFS PIPE DIAMETER = 6.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 410.613 FEET ------------------------------------------------------------------------------ NODE 408.00 : HGL = < 410.613>;EGL= < 410.871>;FLOWLINE= < 409.480> ****************************************************************************** FLOW PROCESS FROM NODE 408.00 TO NODE 408.10 IS CODE = 1 UPSTREAM NODE 408.10 ELEVATION = 409.81 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.80 CFS PIPE DIAMETER = 6.00 INCHES PIPE LENGTH = 19.00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 0.80)/( 5.611))**2 = 0.02033 HF=L*SF = ( 19.00)*(0.02033) = 0.386 ------------------------------------------------------------------------------ NODE 408.10 : HGL = < 410.999>;EGL= < 411.257>;FLOWLINE= < 409.810> ****************************************************************************** FLOW PROCESS FROM NODE 408.10 TO NODE 408.10 IS CODE = 8 UPSTREAM NODE 408.10 ELEVATION = 409.81 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 0.80 CFS PIPE DIAMETER = 6.00 INCHES FLOW VELOCITY = 4.07 FEET/SEC. VELOCITY HEAD = 0.258 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.258) = 0.052 ------------------------------------------------------------------------------ NODE 408.10 : HGL = < 411.309>;EGL= < 411.309>;FLOWLINE= < 409.810> ****************************************************************************** 1 UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 408.10 FLOWLINE ELEVATION = 409.81 ASSUMED UPSTREAM CONTROL HGL = 410.25 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 2 ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: PASCO LARET SUITER & ASSOCIATES 535 NORTH HIGHWAY 101, STE A SOLANA BEACH, CA 92075 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * 3925 IONIS LOTS 21 AND 22 * * 100-YR * * * ************************************************************************** FILE NAME: 406LAT1.DAT TIME/DATE OF STUDY: 09:55 01/24/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 406.00- 0.94* 30.52 0.48 22.81 } FRICTION } HYDRAULIC JUMP 405.00- 0.58*Dc 21.71 0.58*Dc 21.71 } JUNCTION 405.00- 0.78 24.65 0.35* 30.25 } FRICTION 404.00- 0.58*Dc 21.71 0.58*Dc 21.71 } JUNCTION 404.00- 0.83* 22.11 0.30 21.88 } FRICTION } HYDRAULIC JUMP 403.15- 0.51 Dc 15.29 0.34* 18.79 } ANGLE-POINT 403.15- 0.51 Dc 15.29 0.34* 18.79 } FRICTION 403.20- 0.51*Dc 15.29 0.51*Dc 15.29 } JUNCTION 403.20- 0.75* 15.59 0.23 11.17 } FRICTION } HYDRAULIC JUMP 403.00- 0.39 Dc 7.82 0.30* 8.63 } JUNCTION 403.00- 0.51 7.98 0.21* 9.03 } FRICTION 402.00- 0.36*Dc 6.43 0.36*Dc 6.43 } JUNCTION 402.00- 0.45 4.95 0.23* 5.92 } FRICTION 402.10- 0.36*Dc 4.58 0.36*Dc 4.58 } CATCH BASIN 402.10- 0.56* 3.75 0.36 Dc 1.48 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 406.00 FLOWLINE ELEVATION = 411.00 PIPE FLOW = 1.87 CFS PIPE DIAMETER = 12.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 411.942 FEET ------------------------------------------------------------------------------ NODE 406.00 : HGL = < 411.942>;EGL= < 412.034>;FLOWLINE= < 411.000> 1 ****************************************************************************** FLOW PROCESS FROM NODE 406.00 TO NODE 405.00 IS CODE = 1 UPSTREAM NODE 405.00 ELEVATION = 412.00 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.87 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 79.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.48 CRITICAL DEPTH(FT) = 0.58 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.58 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.583 3.936 0.823 21.71 0.009 0.578 3.970 0.823 21.71 0.039 0.574 4.005 0.824 21.71 0.091 0.570 4.040 0.824 21.72 0.166 0.566 4.075 0.824 21.73 0.268 0.562 4.112 0.825 21.75 0.400 0.558 4.149 0.825 21.77 0.564 0.554 4.187 0.826 21.79 0.764 0.550 4.225 0.827 21.81 1.005 0.546 4.265 0.828 21.84 1.292 0.542 4.305 0.830 21.88 1.632 0.538 4.346 0.831 21.92 2.033 0.533 4.387 0.833 21.96 2.504 0.529 4.430 0.834 22.00 3.057 0.525 4.473 0.836 22.05 3.710 0.521 4.517 0.838 22.11 4.483 0.517 4.563 0.840 22.17 5.404 0.513 4.609 0.843 22.23 6.513 0.509 4.656 0.846 22.30 7.869 0.505 4.704 0.849 22.37 9.562 0.501 4.753 0.852 22.44 11.746 0.497 4.803 0.855 22.53 14.703 0.492 4.854 0.859 22.61 19.076 0.488 4.906 0.862 22.70 26.919 0.484 4.959 0.866 22.80 79.000 0.484 4.966 0.867 22.81 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.94 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.942 2.437 1.034 30.52 1.230 0.928 2.460 1.022 29.92 2.440 0.913 2.485 1.009 29.33 3.631 0.899 2.513 0.997 28.76 4.804 0.884 2.544 0.985 28.21 5.959 0.870 2.577 0.973 27.68 7.096 0.856 2.612 0.962 27.16 8.215 0.841 2.651 0.951 26.66 9.315 0.827 2.691 0.940 26.18 10.396 0.813 2.735 0.929 25.72 11.457 0.798 2.781 0.918 25.28 12.496 0.784 2.830 0.908 24.86 13.511 0.769 2.883 0.899 24.46 14.500 0.755 2.938 0.889 24.09 15.460 0.741 2.997 0.880 23.73 16.388 0.726 3.059 0.872 23.41 17.281 0.712 3.125 0.864 23.10 18.133 0.698 3.195 0.856 22.83 18.938 0.683 3.270 0.849 22.58 19.690 0.669 3.349 0.843 22.36 2 20.379 0.654 3.432 0.837 22.17 20.993 0.640 3.521 0.833 22.00 21.517 0.626 3.615 0.829 21.88 21.932 0.611 3.716 0.826 21.78 22.210 0.597 3.823 0.824 21.73 22.314 0.583 3.936 0.823 21.71 79.000 0.583 3.936 0.823 21.71 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 18.20 FEET UPSTREAM OF NODE 406.00 | | DOWNSTREAM DEPTH = 0.696 FEET, UPSTREAM CONJUGATE DEPTH = 0.484 FEET | ------------------------------------------------------------------------------ NODE 405.00 : HGL = < 412.583>;EGL= < 412.823>;FLOWLINE= < 412.000> ****************************************************************************** FLOW PROCESS FROM NODE 405.00 TO NODE 405.00 IS CODE = 5 UPSTREAM NODE 405.00 ELEVATION = 412.17 (FLOW IS SUBCRITICAL) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 1.87 12.00 78.00 412.17 0.58 7.752 DOWNSTREAM 1.87 12.00 - 412.00 0.58 3.938 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04158 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00669 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02413 JUNCTION LENGTH = 2.00 FEET FRICTION LOSSES = 0.048 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.626)+( 0.000) = 0.626 ------------------------------------------------------------------------------ NODE 405.00 : HGL = < 412.516>;EGL= < 413.449>;FLOWLINE= < 412.170> ****************************************************************************** FLOW PROCESS FROM NODE 405.00 TO NODE 404.00 IS CODE = 1 UPSTREAM NODE 404.00 ELEVATION = 416.51 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.87 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 95.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.34 CRITICAL DEPTH(FT) = 0.58 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.58 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.583 3.936 0.823 21.71 0.008 0.573 4.018 0.824 21.71 0.035 0.563 4.104 0.825 21.74 0.081 0.553 4.194 0.826 21.79 0.149 0.543 4.287 0.829 21.86 0.242 0.534 4.386 0.832 21.96 0.363 0.524 4.489 0.837 22.07 0.514 0.514 4.597 0.842 22.21 0.702 0.504 4.710 0.849 22.38 0.929 0.494 4.830 0.857 22.57 1.203 0.485 4.955 0.866 22.79 1.531 0.475 5.087 0.877 23.04 1.921 0.465 5.226 0.889 23.32 2.385 0.455 5.373 0.904 23.64 2.936 0.445 5.528 0.920 23.99 3.593 0.436 5.692 0.939 24.38 4.380 0.426 5.865 0.960 24.81 3 5.329 0.416 6.048 0.984 25.29 6.486 0.406 6.243 1.012 25.81 7.919 0.396 6.450 1.043 26.38 9.730 0.387 6.670 1.078 27.00 12.096 0.377 6.905 1.118 27.68 15.343 0.367 7.155 1.162 28.43 20.208 0.357 7.423 1.213 29.24 29.055 0.347 7.710 1.271 30.13 95.000 0.346 7.749 1.279 30.25 ------------------------------------------------------------------------------ NODE 404.00 : HGL = < 417.093>;EGL= < 417.333>;FLOWLINE= < 416.510> ****************************************************************************** FLOW PROCESS FROM NODE 404.00 TO NODE 404.00 IS CODE = 5 UPSTREAM NODE 404.00 ELEVATION = 416.51 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 1.43 12.00 0.00 416.51 0.51 2.060 DOWNSTREAM 1.87 12.00 - 416.51 0.58 3.938 LATERAL #1 0.44 6.00 90.00 416.51 0.34 2.241 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00159 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00669 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00414 JUNCTION LENGTH = 1.00 FEET FRICTION LOSSES = 0.004 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.069)+( 0.000) = 0.069 ------------------------------------------------------------------------------ NODE 404.00 : HGL = < 417.337>;EGL= < 417.402>;FLOWLINE= < 416.510> ****************************************************************************** FLOW PROCESS FROM NODE 404.00 TO NODE 403.15 IS CODE = 1 UPSTREAM NODE 403.15 ELEVATION = 419.32 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.43 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 61.80 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.29 CRITICAL DEPTH(FT) = 0.51 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.34 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.342 6.021 0.905 18.79 0.346 0.340 6.068 0.912 18.89 0.711 0.338 6.115 0.919 19.00 1.099 0.336 6.163 0.926 19.10 1.511 0.334 6.212 0.934 19.21 1.949 0.332 6.261 0.942 19.32 2.416 0.330 6.311 0.949 19.43 2.915 0.329 6.362 0.958 19.54 3.451 0.327 6.414 0.966 19.66 4.027 0.325 6.466 0.974 19.78 4.648 0.323 6.519 0.983 19.90 5.322 0.321 6.573 0.992 20.02 6.056 0.319 6.628 1.002 20.15 6.860 0.317 6.683 1.011 20.28 7.745 0.315 6.740 1.021 20.41 8.728 0.313 6.797 1.031 20.54 9.829 0.311 6.855 1.041 20.68 4 11.076 0.309 6.914 1.052 20.81 12.509 0.307 6.974 1.063 20.96 14.185 0.305 7.035 1.074 21.10 16.194 0.304 7.097 1.086 21.25 18.684 0.302 7.160 1.098 21.40 21.936 0.300 7.224 1.110 21.55 26.579 0.298 7.289 1.123 21.71 34.634 0.296 7.355 1.136 21.87 61.800 0.296 7.359 1.137 21.88 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.83 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.827 2.059 0.892 22.11 0.249 0.814 2.089 0.881 21.64 0.494 0.801 2.120 0.871 21.19 0.737 0.788 2.153 0.860 20.74 0.976 0.775 2.188 0.850 20.31 1.212 0.762 2.225 0.839 19.90 1.444 0.750 2.264 0.829 19.50 1.672 0.737 2.304 0.819 19.11 1.895 0.724 2.347 0.810 18.74 2.114 0.711 2.393 0.800 18.38 2.327 0.698 2.440 0.791 18.04 2.535 0.686 2.491 0.782 17.71 2.737 0.673 2.544 0.773 17.41 2.932 0.660 2.600 0.765 17.12 3.119 0.647 2.659 0.757 16.85 3.298 0.634 2.721 0.749 16.59 3.468 0.622 2.786 0.742 16.36 3.627 0.609 2.856 0.735 16.15 3.775 0.596 2.929 0.729 15.96 3.911 0.583 3.007 0.724 15.79 4.032 0.570 3.089 0.719 15.64 4.137 0.557 3.176 0.714 15.52 4.224 0.545 3.269 0.711 15.42 4.290 0.532 3.367 0.708 15.35 4.332 0.519 3.472 0.706 15.30 4.347 0.506 3.583 0.706 15.29 61.800 0.506 3.583 0.706 15.29 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 0.12 FEET UPSTREAM OF NODE 404.00 | | DOWNSTREAM DEPTH = 0.820 FEET, UPSTREAM CONJUGATE DEPTH = 0.296 FEET | ------------------------------------------------------------------------------ NODE 403.15 : HGL = < 419.662>;EGL= < 420.225>;FLOWLINE= < 419.320> ****************************************************************************** FLOW PROCESS FROM NODE 403.15 TO NODE 403.15 IS CODE = 6 UPSTREAM NODE 403.15 ELEVATION = 419.32 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE ANGLE-POINT LOSSES(LACRD): PIPE FLOW = 1.43 CFS PIPE DIAMETER = 12.00 INCHES PIPE ANGLE-POINT = 11.00 DEGREES ANGLE-POINT COEFFICIENT KA = 0.00000 Note: For open flow conditions, computer program WSPG (see LAFCD program) does NOT estimate losses for angle points. Therefore, to be consistent with WSPG results, a zero loss is used. Energy loss estimate, per WSPG results,= 0.0 ------------------------------------------------------------------------------ NODE 403.15 : HGL = < 419.662>;EGL= < 420.225>;FLOWLINE= < 419.320> ****************************************************************************** FLOW PROCESS FROM NODE 403.15 TO NODE 403.20 IS CODE = 1 UPSTREAM NODE 403.20 ELEVATION = 419.65 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.43 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 7.20 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ 5 NORMAL DEPTH(FT) = 0.29 CRITICAL DEPTH(FT) = 0.51 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.51 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.506 3.583 0.706 15.29 0.007 0.498 3.661 0.706 15.29 0.030 0.489 3.743 0.707 15.32 0.069 0.481 3.828 0.708 15.35 0.127 0.472 3.918 0.711 15.40 0.206 0.464 4.011 0.714 15.47 0.309 0.455 4.109 0.717 15.55 0.439 0.447 4.212 0.722 15.66 0.599 0.438 4.319 0.728 15.78 0.794 0.430 4.432 0.735 15.92 1.028 0.421 4.551 0.743 16.08 1.308 0.413 4.676 0.752 16.26 1.641 0.404 4.808 0.763 16.46 2.037 0.396 4.947 0.776 16.69 2.508 0.387 5.093 0.790 16.95 3.070 0.379 5.248 0.806 17.23 3.742 0.370 5.412 0.825 17.54 4.553 0.361 5.585 0.846 17.88 5.542 0.353 5.769 0.870 18.26 6.766 0.344 5.964 0.897 18.67 7.200 0.342 6.021 0.905 18.79 ------------------------------------------------------------------------------ NODE 403.20 : HGL = < 420.156>;EGL= < 420.356>;FLOWLINE= < 419.650> ****************************************************************************** FLOW PROCESS FROM NODE 403.20 TO NODE 403.20 IS CODE = 5 UPSTREAM NODE 403.20 ELEVATION = 419.65 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 0.85 12.00 0.00 419.65 0.39 1.338 DOWNSTREAM 1.43 12.00 - 419.65 0.51 3.584 LATERAL #1 0.58 6.00 90.00 419.65 0.39 2.954 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00068 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00618 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00343 JUNCTION LENGTH = 1.00 FEET FRICTION LOSSES = 0.003 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.076)+( 0.000) = 0.076 ------------------------------------------------------------------------------ NODE 403.20 : HGL = < 420.404>;EGL= < 420.432>;FLOWLINE= < 419.650> ****************************************************************************** FLOW PROCESS FROM NODE 403.20 TO NODE 403.00 IS CODE = 1 UPSTREAM NODE 403.00 ELEVATION = 422.08 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.85 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 53.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.23 CRITICAL DEPTH(FT) = 0.39 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.30 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: 6 ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.298 4.325 0.589 8.63 0.169 0.295 4.385 0.594 8.70 0.351 0.292 4.445 0.599 8.76 0.549 0.289 4.508 0.605 8.83 0.764 0.286 4.572 0.611 8.90 0.997 0.284 4.637 0.618 8.98 1.251 0.281 4.704 0.625 9.05 1.527 0.278 4.773 0.632 9.13 1.829 0.275 4.844 0.639 9.22 2.160 0.272 4.917 0.648 9.31 2.524 0.269 4.992 0.656 9.40 2.925 0.266 5.068 0.665 9.49 3.369 0.263 5.147 0.675 9.59 3.863 0.260 5.228 0.685 9.70 4.416 0.257 5.311 0.696 9.81 5.039 0.254 5.397 0.707 9.92 5.748 0.252 5.485 0.719 10.04 6.563 0.249 5.576 0.732 10.16 7.513 0.246 5.669 0.745 10.28 8.640 0.243 5.765 0.759 10.41 10.009 0.240 5.865 0.774 10.55 11.729 0.237 5.967 0.790 10.69 14.006 0.234 6.072 0.807 10.84 17.300 0.231 6.181 0.825 11.00 23.087 0.228 6.293 0.844 11.16 53.000 0.228 6.303 0.845 11.17 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.75 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.754 1.338 0.782 15.59 0.300 0.739 1.365 0.768 15.06 0.599 0.724 1.394 0.755 14.54 0.895 0.710 1.425 0.741 14.04 1.189 0.695 1.458 0.728 13.55 1.481 0.680 1.493 0.715 13.08 1.770 0.666 1.531 0.702 12.63 2.055 0.651 1.570 0.689 12.19 2.337 0.636 1.612 0.677 11.77 2.616 0.621 1.657 0.664 11.36 2.889 0.607 1.704 0.652 10.98 3.158 0.592 1.755 0.640 10.61 3.422 0.577 1.809 0.628 10.26 3.679 0.563 1.867 0.617 9.93 3.929 0.548 1.929 0.606 9.62 4.171 0.533 1.996 0.595 9.33 4.404 0.518 2.067 0.585 9.07 4.625 0.504 2.144 0.575 8.82 4.835 0.489 2.227 0.566 8.60 5.029 0.474 2.316 0.558 8.40 5.207 0.459 2.413 0.550 8.23 5.364 0.445 2.517 0.543 8.09 5.497 0.430 2.631 0.538 7.97 5.601 0.415 2.755 0.533 7.89 5.669 0.401 2.891 0.530 7.83 5.694 0.386 3.040 0.529 7.82 53.000 0.386 3.040 0.529 7.82 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 2.75 FEET UPSTREAM OF NODE 403.20 | | DOWNSTREAM DEPTH = 0.614 FEET, UPSTREAM CONJUGATE DEPTH = 0.228 FEET | ------------------------------------------------------------------------------ NODE 403.00 : HGL = < 422.378>;EGL= < 422.669>;FLOWLINE= < 422.080> ****************************************************************************** FLOW PROCESS FROM NODE 403.00 TO NODE 403.00 IS CODE = 5 7 UPSTREAM NODE 403.00 ELEVATION = 422.08 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 0.73 12.00 0.00 422.08 0.36 5.909 DOWNSTREAM 0.85 12.00 - 422.08 0.39 4.327 LATERAL #1 0.12 6.00 90.00 422.08 0.17 1.184 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04131 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01521 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02826 JUNCTION LENGTH = 1.00 FEET FRICTION LOSSES = 0.028 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.168)+( 0.000) = 0.168 ------------------------------------------------------------------------------ NODE 403.00 : HGL = < 422.294>;EGL= < 422.837>;FLOWLINE= < 422.080> ****************************************************************************** FLOW PROCESS FROM NODE 403.00 TO NODE 402.00 IS CODE = 1 UPSTREAM NODE 402.00 ELEVATION = 422.83 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.73 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 16.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.21 CRITICAL DEPTH(FT) = 0.36 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.36 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.357 2.905 0.488 6.43 0.005 0.351 2.972 0.488 6.44 0.020 0.345 3.042 0.488 6.45 0.046 0.339 3.116 0.490 6.46 0.086 0.333 3.192 0.491 6.48 0.139 0.327 3.272 0.493 6.51 0.208 0.321 3.356 0.496 6.55 0.295 0.315 3.444 0.499 6.59 0.403 0.309 3.536 0.503 6.65 0.533 0.303 3.632 0.508 6.71 0.691 0.297 3.734 0.514 6.78 0.879 0.291 3.840 0.520 6.86 1.102 0.285 3.952 0.528 6.95 1.368 0.279 4.070 0.537 7.04 1.684 0.273 4.195 0.547 7.16 2.060 0.267 4.326 0.558 7.28 2.511 0.261 4.465 0.571 7.41 3.054 0.255 4.612 0.586 7.56 3.716 0.249 4.767 0.603 7.72 4.534 0.244 4.933 0.622 7.90 5.568 0.238 5.108 0.643 8.10 6.918 0.232 5.295 0.667 8.31 8.768 0.226 5.494 0.695 8.54 11.539 0.220 5.707 0.726 8.79 16.000 0.214 5.908 0.757 9.03 ------------------------------------------------------------------------------ NODE 402.00 : HGL = < 423.186>;EGL= < 423.318>;FLOWLINE= < 422.830> ****************************************************************************** FLOW PROCESS FROM NODE 402.00 TO NODE 402.00 IS CODE = 5 UPSTREAM NODE 402.00 ELEVATION = 423.00 (FLOW IS SUBCRITICAL) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) ------------------------------------------------------------------------------ 8 CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 0.49 6.00 90.00 423.00 0.36 5.703 DOWNSTREAM 0.73 12.00 - 422.83 0.36 2.906 LATERAL #1 0.24 6.00 10.00 423.00 0.25 2.491 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.04365 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00567 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02466 JUNCTION LENGTH = 2.00 FEET FRICTION LOSSES = 0.049 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.413)+( 0.000) = 0.413 ------------------------------------------------------------------------------ NODE 402.00 : HGL = < 423.225>;EGL= < 423.730>;FLOWLINE= < 423.000> ****************************************************************************** FLOW PROCESS FROM NODE 402.00 TO NODE 402.10 IS CODE = 1 UPSTREAM NODE 402.10 ELEVATION = 423.33 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.49 CFS PIPE DIAMETER = 6.00 INCHES PIPE LENGTH = 4.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.19 CRITICAL DEPTH(FT) = 0.36 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.36 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.357 3.267 0.523 4.58 0.004 0.350 3.335 0.523 4.59 0.015 0.343 3.407 0.524 4.59 0.035 0.337 3.483 0.525 4.61 0.064 0.330 3.563 0.527 4.62 0.104 0.323 3.647 0.530 4.65 0.156 0.317 3.737 0.534 4.68 0.222 0.310 3.832 0.538 4.71 0.303 0.303 3.932 0.543 4.76 0.402 0.296 4.039 0.550 4.80 0.522 0.290 4.152 0.558 4.86 0.665 0.283 4.272 0.567 4.93 0.836 0.276 4.400 0.577 5.00 1.041 0.270 4.536 0.589 5.09 1.284 0.263 4.681 0.603 5.18 1.576 0.256 4.836 0.620 5.28 1.926 0.250 5.002 0.638 5.40 2.351 0.243 5.179 0.660 5.53 2.871 0.236 5.370 0.684 5.67 3.518 0.229 5.574 0.712 5.82 4.000 0.225 5.701 0.730 5.92 ------------------------------------------------------------------------------ NODE 402.10 : HGL = < 423.687>;EGL= < 423.853>;FLOWLINE= < 423.330> ****************************************************************************** FLOW PROCESS FROM NODE 402.10 TO NODE 402.10 IS CODE = 8 UPSTREAM NODE 402.10 ELEVATION = 423.33 (FLOW UNSEALS IN REACH) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 0.49 CFS PIPE DIAMETER = 6.00 INCHES FLOW VELOCITY = 3.27 FEET/SEC. VELOCITY HEAD = 0.166 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.166) = 0.033 ------------------------------------------------------------------------------ NODE 402.10 : HGL = < 423.886>;EGL= < 423.886>;FLOWLINE= < 423.330> 9 ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 402.10 FLOWLINE ELEVATION = 423.33 ASSUMED UPSTREAM CONTROL HGL = 423.69 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 10 ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: PASCO LARET SUITER & ASSOCIATES 535 NORTH HIGHWAY 101, STE A SOLANA BEACH, CA 92075 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * 3925 IONIS LOTS 21 AND 22 * * 100-YR * * * ************************************************************************** FILE NAME: 406LAT2.PIP TIME/DATE OF STUDY: 10:27 01/24/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 406.00- 0.94* 8.51 0.11 Dc 0.31 } FRICTION 406.21- 0.50* 3.06 0.11 Dc 0.31 } ANGLE-POINT 406.21- 0.50* 3.06 0.11 Dc 0.31 } FRICTION } HYDRAULIC JUMP 406.20- 0.12*Dc 0.30 0.12*Dc 0.30 } CATCH BASIN 406.20- 0.17* 0.16 0.12 Dc 0.11 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 406.00 FLOWLINE ELEVATION = 411.00 PIPE FLOW = 0.06 CFS PIPE DIAMETER = 6.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 411.942 FEET ------------------------------------------------------------------------------ NODE 406.00 : HGL = < 411.942>;EGL= < 411.943>;FLOWLINE= < 411.000> ****************************************************************************** FLOW PROCESS FROM NODE 406.00 TO NODE 406.21 IS CODE = 1 UPSTREAM NODE 406.21 ELEVATION = 411.45 (FLOW SEALS IN REACH) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.06 CFS PIPE DIAMETER = 6.00 INCHES PIPE LENGTH = 45.10 FEET MANNING'S N = 0.01300 ============================================================================== DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 0.94 ============================================================================== PRESSURE FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.942 0.306 0.943 8.51 44.809 0.500 0.306 0.501 3.10 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.11 CRITICAL DEPTH(FT) = 0.12 ============================================================================== ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 0.50 1 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 44.809 0.500 0.305 0.501 3.10 45.100 0.497 0.306 0.499 3.06 ------------------------------------------------------------------------------ NODE 406.21 : HGL = < 411.947>;EGL= < 411.949>;FLOWLINE= < 411.450> ****************************************************************************** FLOW PROCESS FROM NODE 406.21 TO NODE 406.21 IS CODE = 6 UPSTREAM NODE 406.21 ELEVATION = 411.45 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE ANGLE-POINT LOSSES(LACRD): PIPE FLOW = 0.06 CFS PIPE DIAMETER = 6.00 INCHES PIPE ANGLE-POINT = 23.00 DEGREES ANGLE-POINT COEFFICIENT KA = 0.00000 Note: For open flow conditions, computer program WSPG (see LAFCD program) does NOT estimate losses for angle points. Therefore, to be consistent with WSPG results, a zero loss is used. Energy loss estimate, per WSPG results,= 0.0 ------------------------------------------------------------------------------ NODE 406.21 : HGL = < 411.947>;EGL= < 411.949>;FLOWLINE= < 411.450> ****************************************************************************** FLOW PROCESS FROM NODE 406.21 TO NODE 406.20 IS CODE = 1 UPSTREAM NODE 406.20 ELEVATION = 412.08 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.06 CFS PIPE DIAMETER = 6.00 INCHES PIPE LENGTH = 62.90 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.11 CRITICAL DEPTH(FT) = 0.12 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.12 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.120 1.653 0.163 0.30 0.001 0.120 1.661 0.163 0.30 0.004 0.119 1.668 0.163 0.30 0.008 0.119 1.676 0.163 0.30 0.015 0.119 1.684 0.163 0.30 0.025 0.118 1.692 0.163 0.30 0.037 0.118 1.700 0.163 0.30 0.052 0.117 1.708 0.163 0.30 0.070 0.117 1.716 0.163 0.30 0.093 0.117 1.724 0.163 0.30 0.119 0.116 1.732 0.163 0.30 0.150 0.116 1.740 0.163 0.30 0.187 0.115 1.749 0.163 0.30 0.230 0.115 1.757 0.163 0.30 0.280 0.115 1.766 0.163 0.30 0.339 0.114 1.774 0.163 0.30 0.410 0.114 1.783 0.163 0.31 0.493 0.113 1.792 0.163 0.31 0.594 0.113 1.800 0.163 0.31 0.716 0.113 1.809 0.164 0.31 0.869 0.112 1.818 0.164 0.31 1.066 0.112 1.827 0.164 0.31 1.332 0.112 1.836 0.164 0.31 1.724 0.111 1.845 0.164 0.31 2.427 0.111 1.855 0.164 0.31 40.583 0.110 1.864 0.164 0.31 62.900 0.110 1.864 0.164 0.31 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.50 2 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.497 0.306 0.499 3.06 1.518 0.482 0.309 0.484 2.88 3.034 0.467 0.314 0.468 2.70 4.548 0.452 0.321 0.453 2.52 6.060 0.437 0.330 0.438 2.35 7.572 0.422 0.339 0.424 2.18 9.082 0.407 0.351 0.409 2.02 10.592 0.392 0.364 0.394 1.86 12.101 0.376 0.378 0.379 1.71 13.608 0.361 0.395 0.364 1.57 15.114 0.346 0.413 0.349 1.43 16.619 0.331 0.434 0.334 1.30 18.122 0.316 0.458 0.319 1.18 19.623 0.301 0.486 0.305 1.06 21.121 0.286 0.517 0.290 0.95 22.615 0.271 0.552 0.276 0.85 24.105 0.256 0.593 0.261 0.76 25.589 0.241 0.641 0.247 0.67 27.064 0.226 0.697 0.233 0.59 28.527 0.211 0.764 0.220 0.52 29.973 0.196 0.843 0.207 0.46 31.392 0.180 0.939 0.194 0.41 32.768 0.165 1.058 0.183 0.37 34.069 0.150 1.208 0.173 0.33 35.212 0.135 1.400 0.166 0.31 35.861 0.120 1.653 0.163 0.30 62.900 0.120 1.653 0.163 0.30 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 50.50 FEET UPSTREAM OF NODE 406.21 | | DOWNSTREAM DEPTH = 0.127 FEET, UPSTREAM CONJUGATE DEPTH = 0.111 FEET | ------------------------------------------------------------------------------ NODE 406.20 : HGL = < 412.200>;EGL= < 412.243>;FLOWLINE= < 412.080> ****************************************************************************** FLOW PROCESS FROM NODE 406.20 TO NODE 406.20 IS CODE = 8 UPSTREAM NODE 406.20 ELEVATION = 412.08 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 0.06 CFS PIPE DIAMETER = 6.00 INCHES FLOW VELOCITY = 1.65 FEET/SEC. VELOCITY HEAD = 0.042 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.042) = 0.008 ------------------------------------------------------------------------------ NODE 406.20 : HGL = < 412.251>;EGL= < 412.251>;FLOWLINE= < 412.080> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 406.20 FLOWLINE ELEVATION = 412.08 ASSUMED UPSTREAM CONTROL HGL = 412.20 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 3 ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: PASCO LARET SUITER & ASSOCIATES 535 NORTH HIGHWAY 101, STE A SOLANA BEACH, CA 92075 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * 3925 IONIS LOTS 21 AND 22 * * 100-YR * * * ************************************************************************** FILE NAME: 402.PIP TIME/DATE OF STUDY: 11:42 01/24/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 402.00- 0.25 Dc 1.88 0.15* 2.60 } FRICTION 401.00- 0.25*Dc 1.88 0.25*Dc 1.88 } CATCH BASIN 401.00- 0.37* 1.02 0.25 Dc 0.66 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 402.00 FLOWLINE ELEVATION = 423.00 PIPE FLOW = 0.25 CFS PIPE DIAMETER = 6.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 423.225 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.23 FT.) IS LESS THAN CRITICAL DEPTH( 0.25 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS ------------------------------------------------------------------------------ NODE 402.00 : HGL = < 423.152>;EGL= < 423.534>;FLOWLINE= < 423.000> ****************************************************************************** FLOW PROCESS FROM NODE 402.00 TO NODE 401.00 IS CODE = 1 UPSTREAM NODE 401.00 ELEVATION = 426.44 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.25 CFS PIPE DIAMETER = 6.00 INCHES PIPE LENGTH = 65.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.15 CRITICAL DEPTH(FT) = 0.25 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.25 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.252 2.524 0.351 1.88 0.003 0.248 2.578 0.351 1.88 0.012 0.243 2.633 0.351 1.89 0.028 0.239 2.691 0.352 1.89 1 0.052 0.235 2.752 0.353 1.90 0.084 0.231 2.816 0.354 1.90 0.126 0.227 2.882 0.356 1.91 0.179 0.223 2.951 0.358 1.93 0.244 0.219 3.024 0.361 1.94 0.324 0.215 3.100 0.364 1.96 0.419 0.211 3.180 0.368 1.97 0.532 0.207 3.264 0.372 2.00 0.668 0.202 3.353 0.377 2.02 0.828 0.198 3.446 0.383 2.04 1.019 0.194 3.543 0.389 2.07 1.246 0.190 3.646 0.397 2.11 1.518 0.186 3.755 0.405 2.14 1.846 0.182 3.870 0.415 2.18 2.244 0.178 3.992 0.425 2.22 2.737 0.174 4.121 0.438 2.27 3.360 0.170 4.258 0.451 2.32 4.171 0.166 4.403 0.467 2.38 5.284 0.161 4.557 0.484 2.44 6.949 0.157 4.722 0.504 2.50 9.972 0.153 4.897 0.526 2.57 65.000 0.152 4.958 0.534 2.60 ------------------------------------------------------------------------------ NODE 401.00 : HGL = < 426.692>;EGL= < 426.791>;FLOWLINE= < 426.440> ****************************************************************************** FLOW PROCESS FROM NODE 401.00 TO NODE 401.00 IS CODE = 8 UPSTREAM NODE 401.00 ELEVATION = 426.44 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 0.25 CFS PIPE DIAMETER = 6.00 INCHES FLOW VELOCITY = 2.53 FEET/SEC. VELOCITY HEAD = 0.099 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.099) = 0.020 ------------------------------------------------------------------------------ NODE 401.00 : HGL = < 426.810>;EGL= < 426.810>;FLOWLINE= < 426.440> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 401.00 FLOWLINE ELEVATION = 426.44 ASSUMED UPSTREAM CONTROL HGL = 426.69 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 2 ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: PASCO LARET SUITER & ASSOCIATES 535 NORTH HIGHWAY 101, STE A SOLANA BEACH, CA 92075 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * 3925 IONIS LOTS 21 AND 22 * * 100-YR * * * ************************************************************************** FILE NAME: 403-2.PIP TIME/DATE OF STUDY: 11:52 01/24/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 403.20- 0.75* 9.73 0.28 6.98 } FRICTION 403.30- 0.56* 7.38 0.39 Dc 6.05 } CATCH BASIN 403.30- 0.74* 5.96 0.39 Dc 1.85 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 403.20 FLOWLINE ELEVATION = 419.65 PIPE FLOW = 0.60 CFS PIPE DIAMETER = 6.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 420.404 FEET ------------------------------------------------------------------------------ NODE 403.20 : HGL = < 420.404>;EGL= < 420.549>;FLOWLINE= < 419.650> ****************************************************************************** FLOW PROCESS FROM NODE 403.20 TO NODE 403.30 IS CODE = 1 UPSTREAM NODE 403.30 ELEVATION = 419.91 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.60 CFS PIPE DIAMETER = 6.00 INCHES PIPE LENGTH = 6.00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 0.60)/( 5.611))**2 = 0.01143 HF=L*SF = ( 6.00)*(0.01143) = 0.069 ------------------------------------------------------------------------------ NODE 403.30 : HGL = < 420.473>;EGL= < 420.618>;FLOWLINE= < 419.910> ****************************************************************************** FLOW PROCESS FROM NODE 403.30 TO NODE 403.30 IS CODE = 8 UPSTREAM NODE 403.30 ELEVATION = 419.91 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 0.60 CFS PIPE DIAMETER = 6.00 INCHES FLOW VELOCITY = 3.06 FEET/SEC. VELOCITY HEAD = 0.145 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.145) = 0.029 ------------------------------------------------------------------------------ NODE 403.30 : HGL = < 420.647>;EGL= < 420.647>;FLOWLINE= < 419.910> ****************************************************************************** 1 UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 403.30 FLOWLINE ELEVATION = 419.91 ASSUMED UPSTREAM CONTROL HGL = 420.30 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 2 ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: PASCO LARET SUITER & ASSOCIATES 535 NORTH HIGHWAY 101, STE A SOLANA BEACH, CA 92075 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * 3925 IONIS LOTS 21 AND 22 * * 100-YR * * * ************************************************************************** FILE NAME: 404.PIP TIME/DATE OF STUDY: 11:46 01/24/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 404.00- 0.83* 9.25 0.26 4.81 } FRICTION 404.10- 0.70* 7.72 0.35 Dc 4.33 } CATCH BASIN 404.10- 0.81* 6.85 0.35 Dc 1.41 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 404.00 FLOWLINE ELEVATION = 416.51 PIPE FLOW = 0.47 CFS PIPE DIAMETER = 6.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 417.337 FEET ------------------------------------------------------------------------------ NODE 404.00 : HGL = < 417.337>;EGL= < 417.426>;FLOWLINE= < 416.510> ****************************************************************************** FLOW PROCESS FROM NODE 404.00 TO NODE 404.10 IS CODE = 1 UPSTREAM NODE 404.10 ELEVATION = 416.67 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.47 CFS PIPE DIAMETER = 6.00 INCHES PIPE LENGTH = 5.00 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 0.47)/( 5.610))**2 = 0.00702 HF=L*SF = ( 5.00)*(0.00702) = 0.035 ------------------------------------------------------------------------------ NODE 404.10 : HGL = < 417.372>;EGL= < 417.461>;FLOWLINE= < 416.670> ****************************************************************************** FLOW PROCESS FROM NODE 404.10 TO NODE 404.10 IS CODE = 8 UPSTREAM NODE 404.10 ELEVATION = 416.67 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 0.47 CFS PIPE DIAMETER = 6.00 INCHES FLOW VELOCITY = 2.39 FEET/SEC. VELOCITY HEAD = 0.089 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.089) = 0.018 ------------------------------------------------------------------------------ NODE 404.10 : HGL = < 417.479>;EGL= < 417.479>;FLOWLINE= < 416.670> ****************************************************************************** 1 UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 404.10 FLOWLINE ELEVATION = 416.67 ASSUMED UPSTREAM CONTROL HGL = 417.02 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 2 ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: Pasco Laret Suiter & Associates 119 Aberdeen Drive Cardiff, California 92007 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * ON-SITE HYDRAULICS -NODE 604 * * * * * ************************************************************************** FILE NAME: 604.PIP TIME/DATE OF STUDY: 17:34 04/05/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 604.00- 0.66 Dc 36.26 0.29* 74.68 } FRICTION 603.00- 0.66 Dc 36.26 0.32* 65.17 } JUNCTION 603.00- 0.63 Dc 26.58 0.31* 46.42 } FRICTION 602.00- 0.63*Dc 26.58 0.63*Dc 26.58 } CATCH BASIN 602.00- 0.96* 15.10 0.63 Dc 8.94 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 604.00 FLOWLINE ELEVATION = 388.50 PIPE FLOW = 3.00 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 387.932 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( -0.57 FT.) IS LESS THAN CRITICAL DEPTH( 0.66 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS ------------------------------------------------------------------------------ NODE 604.00 : HGL = < 388.790>;EGL= < 391.233>;FLOWLINE= < 388.500> ****************************************************************************** FLOW PROCESS FROM NODE 604.00 TO NODE 603.00 IS CODE = 1 UPSTREAM NODE 603.00 ELEVATION = 391.00 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.00 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 18.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ 1 NORMAL DEPTH(FT) = 0.28 CRITICAL DEPTH(FT) = 0.66 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.32 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.321 10.815 2.139 65.17 0.429 0.320 10.893 2.163 65.59 0.881 0.318 10.972 2.188 66.02 1.357 0.316 11.051 2.214 66.46 1.860 0.315 11.132 2.240 66.90 2.392 0.313 11.214 2.267 67.35 2.956 0.311 11.297 2.294 67.80 3.556 0.310 11.380 2.322 68.26 4.196 0.308 11.465 2.351 68.73 4.881 0.307 11.551 2.380 69.20 5.616 0.305 11.639 2.410 69.68 6.410 0.303 11.727 2.440 70.17 7.269 0.302 11.816 2.471 70.67 8.206 0.300 11.907 2.503 71.17 9.233 0.299 11.999 2.536 71.68 10.367 0.297 12.092 2.569 72.20 11.633 0.295 12.187 2.603 72.72 13.060 0.294 12.282 2.638 73.25 14.692 0.292 12.379 2.673 73.79 16.593 0.291 12.478 2.710 74.34 18.000 0.290 12.539 2.733 74.68 ------------------------------------------------------------------------------ NODE 603.00 : HGL = < 391.321>;EGL= < 393.139>;FLOWLINE= < 391.000> ****************************************************************************** FLOW PROCESS FROM NODE 603.00 TO NODE 603.00 IS CODE = 5 UPSTREAM NODE 603.00 ELEVATION = 395.00 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 2.18 12.00 78.00 395.00 0.63 10.602 DOWNSTREAM 3.00 18.00 - 391.00 0.66 10.819 LATERAL #1 0.41 6.00 90.00 395.00 0.33 3.041 LATERAL #2 0.41 6.00 13.00 395.00 0.32 3.011 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.08808 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.08080 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.08444 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.338 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 3.915)+( 0.000) = 3.915 ------------------------------------------------------------------------------ NODE 603.00 : HGL = < 395.308>;EGL= < 397.053>;FLOWLINE= < 395.000> ****************************************************************************** FLOW PROCESS FROM NODE 603.00 TO NODE 602.00 IS CODE = 1 UPSTREAM NODE 602.00 ELEVATION = 397.11 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.18 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 17.00 FEET MANNING'S N = 0.01300 2 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.28 CRITICAL DEPTH(FT) = 0.63 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.63 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.631 4.173 0.902 26.58 0.005 0.617 4.284 0.902 26.60 0.022 0.603 4.402 0.904 26.66 0.052 0.589 4.527 0.908 26.76 0.096 0.575 4.660 0.913 26.91 0.156 0.561 4.802 0.920 27.11 0.236 0.547 4.954 0.929 27.36 0.337 0.533 5.116 0.940 27.67 0.462 0.519 5.289 0.954 28.04 0.617 0.505 5.474 0.971 28.47 0.805 0.491 5.673 0.992 28.97 1.033 0.477 5.887 1.016 29.54 1.307 0.464 6.117 1.045 30.20 1.638 0.450 6.366 1.079 30.94 2.036 0.436 6.635 1.120 31.79 2.518 0.422 6.926 1.167 32.74 3.104 0.408 7.242 1.223 33.81 3.822 0.394 7.587 1.288 35.01 4.712 0.380 7.964 1.365 36.36 5.833 0.366 8.378 1.456 37.87 7.276 0.352 8.833 1.564 39.57 9.196 0.338 9.335 1.692 41.49 11.882 0.324 9.891 1.844 43.64 15.987 0.310 10.511 2.027 46.07 17.000 0.308 10.599 2.053 46.42 ------------------------------------------------------------------------------ NODE 602.00 : HGL = < 397.741>;EGL= < 398.012>;FLOWLINE= < 397.110> ****************************************************************************** FLOW PROCESS FROM NODE 602.00 TO NODE 602.00 IS CODE = 8 UPSTREAM NODE 602.00 ELEVATION = 397.11 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 2.18 CFS PIPE DIAMETER = 12.00 INCHES FLOW VELOCITY = 4.17 FEET/SEC. VELOCITY HEAD = 0.271 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.271) = 0.054 ------------------------------------------------------------------------------ NODE 602.00 : HGL = < 398.066>;EGL= < 398.066>;FLOWLINE= < 397.110> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 602.00 FLOWLINE ELEVATION = 397.11 ASSUMED UPSTREAM CONTROL HGL = 397.74 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 3 ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: Pasco Laret Suiter & Associates 119 Aberdeen Drive Cardiff, California 92007 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * ON-SITE HYDRAULICS -NODE 603 * * * * * ************************************************************************** FILE NAME: 603.PIP TIME/DATE OF STUDY: 13:17 04/06/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 603.00- 0.64 11.55 0.26* 13.60 } FRICTION 603.10- 0.45*Dc 9.64 0.45*Dc 9.64 } JUNCTION 603.10- 0.84* 8.98 0.13 8.21 } FRICTION } HYDRAULIC JUMP 603.20- 0.33*Dc 3.73 0.33*Dc 3.73 } CATCH BASIN 603.20- 0.50* 3.11 0.33 Dc 1.24 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 603.00 FLOWLINE ELEVATION = 394.67 PIPE FLOW = 0.83 CFS PIPE DIAMETER = 6.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 395.308 FEET ------------------------------------------------------------------------------ NODE 603.00 : HGL = < 394.931>;EGL= < 395.926>;FLOWLINE= < 394.670> ****************************************************************************** FLOW PROCESS FROM NODE 603.00 TO NODE 603.10 IS CODE = 1 UPSTREAM NODE 603.10 ELEVATION = 401.40 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.83 CFS PIPE DIAMETER = 6.00 INCHES PIPE LENGTH = 82.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.25 CRITICAL DEPTH(FT) = 0.45 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.45 ============================================================================== 1 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.450 4.460 0.759 9.64 0.007 0.442 4.519 0.759 9.64 0.027 0.434 4.583 0.760 9.66 0.062 0.426 4.653 0.763 9.68 0.113 0.418 4.728 0.766 9.71 0.181 0.411 4.808 0.770 9.76 0.267 0.403 4.894 0.775 9.81 0.375 0.395 4.986 0.781 9.88 0.505 0.387 5.084 0.789 9.96 0.662 0.380 5.189 0.798 10.05 0.848 0.372 5.301 0.808 10.15 1.069 0.364 5.420 0.820 10.27 1.329 0.356 5.547 0.834 10.40 1.636 0.348 5.682 0.850 10.54 1.999 0.341 5.826 0.868 10.70 2.429 0.333 5.979 0.888 10.88 2.940 0.325 6.143 0.911 11.08 3.554 0.317 6.317 0.937 11.30 4.299 0.309 6.504 0.967 11.53 5.219 0.302 6.704 1.000 11.79 6.378 0.294 6.918 1.037 12.08 7.887 0.286 7.147 1.080 12.39 9.955 0.278 7.393 1.127 12.73 13.049 0.270 7.658 1.181 13.10 18.668 0.263 7.943 1.243 13.51 82.000 0.261 8.003 1.256 13.60 ------------------------------------------------------------------------------ NODE 603.10 : HGL = < 401.850>;EGL= < 402.159>;FLOWLINE= < 401.400> ****************************************************************************** FLOW PROCESS FROM NODE 603.10 TO NODE 603.10 IS CODE = 5 UPSTREAM NODE 603.10 ELEVATION = 401.57 (FLOW UNSEALS IN REACH) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 0.42 6.00 38.00 401.57 0.33 2.139 DOWNSTREAM 0.83 6.00 - 401.40 0.45 4.462 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.41===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00560 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01928 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01244 JUNCTION LENGTH = 1.00 FEET FRICTION LOSSES = 0.012 FEET ENTRANCE LOSSES = 0.062 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.261)+( 0.062) = 0.323 ------------------------------------------------------------------------------ NODE 603.10 : HGL = < 402.410>;EGL= < 402.482>;FLOWLINE= < 401.570> ****************************************************************************** FLOW PROCESS FROM NODE 603.10 TO NODE 603.20 IS CODE = 1 UPSTREAM NODE 603.20 ELEVATION = 414.80 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.42 CFS PIPE DIAMETER = 6.00 INCHES 2 PIPE LENGTH = 49.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.13 CRITICAL DEPTH(FT) = 0.33 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.33 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.330 3.055 0.475 3.73 0.002 0.322 3.143 0.475 3.73 0.006 0.314 3.237 0.477 3.74 0.015 0.306 3.338 0.479 3.76 0.028 0.298 3.446 0.482 3.78 0.046 0.290 3.562 0.487 3.82 0.069 0.281 3.687 0.493 3.86 0.099 0.273 3.822 0.500 3.91 0.137 0.265 3.967 0.510 3.98 0.183 0.257 4.124 0.522 4.05 0.240 0.249 4.294 0.536 4.14 0.310 0.241 4.479 0.553 4.24 0.395 0.233 4.680 0.573 4.36 0.497 0.225 4.899 0.598 4.50 0.622 0.217 5.139 0.627 4.65 0.774 0.209 5.403 0.662 4.82 0.962 0.201 5.694 0.705 5.02 1.193 0.193 6.015 0.755 5.25 1.484 0.185 6.372 0.816 5.50 1.855 0.177 6.770 0.889 5.80 2.337 0.169 7.216 0.978 6.13 2.988 0.160 7.719 1.086 6.51 3.912 0.152 8.289 1.220 6.95 5.345 0.144 8.940 1.386 7.45 8.045 0.136 9.687 1.594 8.04 49.000 0.134 9.900 1.657 8.21 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 0.84 ============================================================================== PRESSURE FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.840 2.139 0.911 8.98 1.288 0.500 2.139 0.571 4.80 ============================================================================== ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 0.50 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 1.288 0.500 2.138 0.571 4.80 1.312 0.493 2.144 0.565 4.73 1.335 0.486 2.155 0.559 4.65 1.357 0.480 2.168 0.553 4.58 1.379 0.473 2.185 0.547 4.51 1.400 0.466 2.203 0.541 4.45 1.420 0.459 2.224 0.536 4.38 1.439 0.452 2.247 0.531 4.32 1.458 0.446 2.272 0.526 4.26 3 1.477 0.439 2.299 0.521 4.21 1.495 0.432 2.329 0.516 4.15 1.512 0.425 2.360 0.512 4.10 1.528 0.418 2.393 0.507 4.05 1.544 0.412 2.428 0.503 4.01 1.559 0.405 2.466 0.499 3.97 1.573 0.398 2.506 0.495 3.93 1.586 0.391 2.548 0.492 3.89 1.598 0.384 2.593 0.489 3.86 1.610 0.378 2.640 0.486 3.83 1.620 0.371 2.690 0.483 3.80 1.629 0.364 2.743 0.481 3.78 1.636 0.357 2.798 0.479 3.76 1.643 0.350 2.857 0.477 3.75 1.647 0.343 2.920 0.476 3.73 1.650 0.337 2.986 0.475 3.73 1.651 0.330 3.055 0.475 3.73 49.000 0.330 3.055 0.475 3.73 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 0.24 FEET UPSTREAM OF NODE 603.10 | | DOWNSTREAM DEPTH = 0.778 FEET, UPSTREAM CONJUGATE DEPTH = 0.134 FEET | ------------------------------------------------------------------------------ NODE 603.20 : HGL = < 415.130>;EGL= < 415.275>;FLOWLINE= < 414.800> ****************************************************************************** FLOW PROCESS FROM NODE 603.20 TO NODE 603.20 IS CODE = 8 UPSTREAM NODE 603.20 ELEVATION = 414.80 (FLOW UNSEALS IN REACH) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 0.42 CFS PIPE DIAMETER = 6.00 INCHES FLOW VELOCITY = 3.06 FEET/SEC. VELOCITY HEAD = 0.145 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.145) = 0.029 ------------------------------------------------------------------------------ NODE 603.20 : HGL = < 415.304>;EGL= < 415.304>;FLOWLINE= < 414.800> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 603.20 FLOWLINE ELEVATION = 414.80 ASSUMED UPSTREAM CONTROL HGL = 415.13 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 4 ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: Pasco Laret Suiter & Associates 119 Aberdeen Drive Cardiff, California 92007 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * 3925 IONIS LOTS 21 AND 22 * * 100-YR * * * ************************************************************************** FILE NAME: 603LAT2.PIP TIME/DATE OF STUDY: 13:14 04/06/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 603.00- 0.64 11.55 0.21* 17.51 } FRICTION 603.40- 0.45*Dc 9.64 0.45*Dc 9.64 } CATCH BASIN 603.40- 0.82* 6.99 0.45 Dc 2.46 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 603.00 FLOWLINE ELEVATION = 394.67 PIPE FLOW = 0.83 CFS PIPE DIAMETER = 6.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 395.308 FEET ------------------------------------------------------------------------------ NODE 603.00 : HGL = < 394.880>;EGL= < 396.630>;FLOWLINE= < 394.670> ****************************************************************************** FLOW PROCESS FROM NODE 603.00 TO NODE 603.40 IS CODE = 1 UPSTREAM NODE 603.40 ELEVATION = 398.90 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.83 CFS PIPE DIAMETER = 6.00 INCHES PIPE LENGTH = 22.00 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.20 CRITICAL DEPTH(FT) = 0.45 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.45 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 1 0.000 0.450 4.460 0.759 9.64 0.004 0.440 4.537 0.759 9.64 0.016 0.430 4.622 0.762 9.67 0.037 0.420 4.715 0.765 9.71 0.068 0.410 4.818 0.770 9.76 0.109 0.400 4.930 0.777 9.84 0.162 0.390 5.052 0.786 9.93 0.229 0.380 5.185 0.798 10.04 0.311 0.370 5.329 0.811 10.18 0.410 0.360 5.485 0.827 10.33 0.529 0.350 5.655 0.847 10.51 0.672 0.340 5.838 0.869 10.72 0.843 0.330 6.038 0.896 10.95 1.047 0.320 6.255 0.928 11.22 1.291 0.310 6.490 0.964 11.52 1.584 0.300 6.747 1.007 11.85 1.939 0.290 7.028 1.057 12.23 2.372 0.280 7.335 1.116 12.65 2.906 0.270 7.672 1.184 13.12 3.577 0.260 8.042 1.265 13.65 4.437 0.250 8.451 1.360 14.25 5.579 0.240 8.903 1.472 14.92 7.173 0.230 9.406 1.605 15.67 9.607 0.220 9.967 1.764 16.52 14.120 0.210 10.596 1.955 17.48 22.000 0.210 10.614 1.960 17.51 ------------------------------------------------------------------------------ NODE 603.40 : HGL = < 399.350>;EGL= < 399.659>;FLOWLINE= < 398.900> ****************************************************************************** FLOW PROCESS FROM NODE 603.40 TO NODE 603.40 IS CODE = 8 UPSTREAM NODE 603.40 ELEVATION = 398.90 (FLOW UNSEALS IN REACH) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 0.83 CFS PIPE DIAMETER = 6.00 INCHES FLOW VELOCITY = 4.46 FEET/SEC. VELOCITY HEAD = 0.309 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.309) = 0.062 ------------------------------------------------------------------------------ NODE 603.40 : HGL = < 399.721>;EGL= < 399.721>;FLOWLINE= < 398.900> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 603.40 FLOWLINE ELEVATION = 398.90 ASSUMED UPSTREAM CONTROL HGL = 399.35 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 2 112.00- 1.69 Dc 482.61 0.89* 751.11 } FRICTION 901.00- 1.69 Dc 482.61 0.89* 752.57 } JUNCTION 901.00- 2.39 529.92 0.67* 884.16 } FRICTION 902.00- 1.62*Dc 421.40 1.62*Dc 421.40 } JUNCTION 902.00- 2.97 642.65 0.71* 824.53 } FRICTION 903.00- 1.62*Dc 421.40 1.62*Dc 421.40 } CATCH BASIN 903.00- 2.66* 326.09 1.62 Dc 125.63 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 112.00 FLOWLINE ELEVATION = 393.16 PIPE FLOW = 22.45 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 393.450 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.29 FT.) IS LESS THAN CRITICAL DEPTH( 1.69 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS ------------------------------------------------------------------------------ NODE 112.00 : HGL = < 394.053>;EGL= < 398.297>;FLOWLINE= < 393.160> ****************************************************************************** FLOW PROCESS FROM NODE 112.00 TO NODE 901.00 IS CODE = 1 UPSTREAM NODE 901.00 ELEVATION = 395.64 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ 1 NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ UPSTREAM RUN DOWNSTREAM RUN (Note: "*" indicates nodal point data used.) NODAL POINT STATUS TABLE GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM ****************************************************************************** ______________________________________________________________________________ TIME/DATE OF STUDY: 11:48 04/11/2023 FILE NAME: 112.PIP ************************************************************************** * * * GAZELLE COURT 24" PIPE * * IONIS OFF-SITE HYDRAULICS * ************************** DESCRIPTION OF STUDY ************************** 858-259-8212 Cardiff, California 92007 119 Aberdeen Drive Pasco Laret Suiter & Associates Analysis prepared by: Ver. 23.0 Release Date: 07/01/2016 License ID 1452 (c) Copyright 1982-2016 Advanced Engineering Software (aes) (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE ****************************************************************************** ______________________________________________________________________________ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 22.45 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 42.75 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.89 CRITICAL DEPTH(FT) = 1.69 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.89 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.892 16.564 5.155 752.57 2.031 0.892 16.561 5.154 752.47 4.149 0.892 16.559 5.152 752.37 6.360 0.892 16.556 5.151 752.27 8.673 0.892 16.554 5.150 752.16 11.099 0.892 16.551 5.149 752.06 13.648 0.892 16.549 5.148 751.96 16.336 0.893 16.546 5.146 751.86 19.176 0.893 16.544 5.145 751.76 22.187 0.893 16.541 5.144 751.66 25.393 0.893 16.538 5.143 751.56 28.819 0.893 16.536 5.142 751.46 32.499 0.893 16.533 5.140 751.35 36.472 0.893 16.531 5.139 751.25 40.790 0.893 16.528 5.138 751.15 42.750 0.893 16.527 5.137 751.11 ------------------------------------------------------------------------------ NODE 901.00 : HGL = < 396.532>;EGL= < 400.795>;FLOWLINE= < 395.640> ****************************************************************************** FLOW PROCESS FROM NODE 901.00 TO NODE 901.00 IS CODE = 5 UPSTREAM NODE 901.00 ELEVATION = 395.64 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 20.40 24.00 0.00 395.64 1.62 21.956 DOWNSTREAM 22.45 24.00 - 395.64 1.69 16.569 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 2.05===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.13631 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05862 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.09746 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.390 FEET ENTRANCE LOSSES = 0.853 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.152)+( 0.853) = 3.004 ------------------------------------------------------------------------------ NODE 901.00 : HGL = < 396.313>;EGL= < 403.799>;FLOWLINE= < 395.640> ****************************************************************************** FLOW PROCESS FROM NODE 901.00 TO NODE 902.00 IS CODE = 1 UPSTREAM NODE 902.00 ELEVATION = 404.65 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 20.40 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 41.14 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ 2 NORMAL DEPTH(FT) = 0.60 CRITICAL DEPTH(FT) = 1.62 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.62 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.617 7.493 2.490 421.40 0.013 1.576 7.678 2.492 421.86 0.050 1.536 7.879 2.500 423.14 0.115 1.495 8.099 2.514 425.30 0.211 1.454 8.337 2.534 428.39 0.342 1.413 8.596 2.561 432.48 0.513 1.372 8.877 2.596 437.65 0.731 1.331 9.183 2.641 443.99 1.004 1.290 9.517 2.697 451.60 1.340 1.249 9.880 2.766 460.59 1.752 1.208 10.276 2.849 471.09 2.253 1.168 10.709 2.950 483.27 2.862 1.127 11.184 3.070 497.30 3.602 1.086 11.707 3.215 513.40 4.503 1.045 12.282 3.389 531.81 5.605 1.004 12.918 3.597 552.83 6.961 0.963 13.624 3.847 576.81 8.645 0.922 14.410 4.148 604.18 10.763 0.881 15.289 4.513 635.44 13.472 0.840 16.277 4.957 671.22 17.021 0.799 17.394 5.500 712.29 21.827 0.759 18.664 6.171 759.61 28.684 0.718 20.117 7.005 814.38 39.381 0.677 21.792 8.056 878.15 41.140 0.673 21.949 8.159 884.16 ------------------------------------------------------------------------------ NODE 902.00 : HGL = < 406.267>;EGL= < 407.140>;FLOWLINE= < 404.650> ****************************************************************************** FLOW PROCESS FROM NODE 902.00 TO NODE 902.00 IS CODE = 5 UPSTREAM NODE 902.00 ELEVATION = 404.95 (FLOW UNSEALS IN REACH) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 20.40 24.00 90.00 404.95 1.62 20.391 DOWNSTREAM 20.40 24.00 - 404.65 1.62 7.482 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.11107 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00831 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.05969 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.239 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 4.977)+( 0.000) = 4.977 ------------------------------------------------------------------------------ NODE 902.00 : HGL = < 405.661>;EGL= < 412.117>;FLOWLINE= < 404.950> ****************************************************************************** FLOW PROCESS FROM NODE 902.00 TO NODE 903.00 IS CODE = 1 3 UPSTREAM NODE 903.00 ELEVATION = 412.17 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 20.40 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 37.74 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.62 CRITICAL DEPTH(FT) = 1.62 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.62 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.620 7.479 2.490 421.40 0.012 1.580 7.660 2.492 421.78 0.052 1.540 7.856 2.499 422.96 0.121 1.500 8.069 2.512 424.97 0.224 1.460 8.301 2.530 427.88 0.366 1.420 8.552 2.556 431.74 0.552 1.379 8.825 2.589 436.63 0.789 1.339 9.120 2.632 442.63 1.085 1.299 9.442 2.684 449.84 1.450 1.259 9.792 2.749 458.35 1.896 1.219 10.173 2.827 468.29 2.438 1.179 10.589 2.921 479.81 3.097 1.138 11.043 3.033 493.07 3.895 1.098 11.542 3.168 508.26 4.866 1.058 12.090 3.329 525.60 6.050 1.018 12.694 3.522 545.36 7.504 0.978 13.362 3.752 567.86 9.305 0.938 14.104 4.028 593.46 11.564 0.897 14.931 4.361 622.63 14.445 0.857 15.856 4.764 655.90 18.205 0.817 16.897 5.253 693.96 23.281 0.777 18.075 5.853 737.62 30.496 0.737 19.416 6.594 787.92 37.740 0.711 20.384 7.167 824.53 ------------------------------------------------------------------------------ NODE 903.00 : HGL = < 413.790>;EGL= < 414.660>;FLOWLINE= < 412.170> ****************************************************************************** FLOW PROCESS FROM NODE 903.00 TO NODE 903.00 IS CODE = 8 UPSTREAM NODE 903.00 ELEVATION = 412.17 (FLOW UNSEALS IN REACH) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 20.40 CFS PIPE DIAMETER = 24.00 INCHES FLOW VELOCITY = 7.48 FEET/SEC. VELOCITY HEAD = 0.869 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.869) = 0.174 ------------------------------------------------------------------------------ NODE 903.00 : HGL = < 414.833>;EGL= < 414.833>;FLOWLINE= < 412.170> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 903.00 FLOWLINE ELEVATION = 412.17 ASSUMED UPSTREAM CONTROL HGL = 413.79 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 4 APPENDIX E Inlet Calculations Hydraulic Analysis Report Project Data Project Title: Ionis Lots 21 & 22 Designer: PLSA Project Date: April 5, 2023 Project Units: U.S. Customary Units Notes: Median/Ditch Drop-Inlet Analysis: Grate Inlet Node 104 Notes: Using the following channel: Ribbon Gutter Node 104 Channel Analysis: Ribbon Gutter Node 104 Notes: Input Parameters Channel Type: Triangular Side Slope 1 (Z1): 12.5000 ft/ft Side Slope 2 (Z2): 12.5000 ft/ft Longitudinal Slope: 0.0430 ft/ft Manning's n: 0.0150 Flow 0.4200 cfs Result Parameters Depth 0.1073 ft Area of Flow 0.1440 ft^2 Wetted Perimeter 2.6919 ft Hydraulic Radius 0.0535 ft Average Velocity 2.9166 ft/s Top Width 2.6833 ft Froude Number: 2.2187 Critical Depth 0.1476 ft Critical Velocity 1.5417 ft/s Critical Slope: 0.0079 ft/ft Critical Top Width 3.69 ft Calculated Max Shear Stress 0.2880 lb/ft^2 Calculated Avg Shear Stress 0.1435 lb/ft^2 Inlet Data: Not computing the channel block (berm) height Inlet Location: Inlet on grade Grate Type: P - 1-7/8 Grate Width: 2.00 ft Grate Length: 2.00 ft Computed Data: Intercepted flow: 0.42 cfs Bypass flow: 0.00 cfs Efficiency: 1.4683 Channel Analysis: Ribbon Gutter Node 104 Notes: Input Parameters Channel Type: Triangular Side Slope 1 (Z1): 12.5000 ft/ft Side Slope 2 (Z2): 12.5000 ft/ft Longitudinal Slope: 0.0430 ft/ft Manning's n: 0.0150 Flow 0.4200 cfs Result Parameters Depth 0.1073 ft Area of Flow 0.1440 ft^2 Wetted Perimeter 2.6919 ft Hydraulic Radius 0.0535 ft Average Velocity 2.9166 ft/s Top Width 2.6833 ft Froude Number: 2.2187 Critical Depth 0.1476 ft Critical Velocity 1.5417 ft/s Critical Slope: 0.0079 ft/ft Critical Top Width 3.69 ft Calculated Max Shear Stress 0.2880 lb/ft^2 Calculated Avg Shear Stress 0.1435 lb/ft^2 Median/Ditch Drop-Inlet Analysis: Grate Inlet Node 105 Notes: Using the following channel: Ribbon Gutter Node 105 Channel Analysis: Ribbon Gutter Node 105 Notes: Input Parameters Channel Type: Triangular Side Slope 1 (Z1): 12.5000 ft/ft Side Slope 2 (Z2): 12.5000 ft/ft Longitudinal Slope: 0.0430 ft/ft Manning's n: 0.0150 Flow 0.5500 cfs Result Parameters Depth 0.1188 ft Area of Flow 0.1763 ft^2 Wetted Perimeter 2.9784 ft Hydraulic Radius 0.0592 ft Average Velocity 3.1200 ft/s Top Width 2.9689 ft Froude Number: 2.2564 Critical Depth 0.1644 ft Critical Velocity 1.6271 ft/s Critical Slope: 0.0076 ft/ft Critical Top Width 4.11 ft Calculated Max Shear Stress 0.3186 lb/ft^2 Calculated Avg Shear Stress 0.1588 lb/ft^2 Inlet Data: Not computing the channel block (berm) height Inlet Location: Inlet on grade Grate Type: P - 1-7/8 Grate Width: 2.00 ft Grate Length: 2.00 ft Computed Data: Intercepted flow: 0.55 cfs Bypass flow: 0.00 cfs Efficiency: 1.3332 Channel Analysis: Ribbon Gutter Node 105 Notes: Input Parameters Channel Type: Triangular Side Slope 1 (Z1): 12.5000 ft/ft Side Slope 2 (Z2): 12.5000 ft/ft Longitudinal Slope: 0.0430 ft/ft Manning's n: 0.0150 Flow 0.5500 cfs Result Parameters Depth 0.1188 ft Area of Flow 0.1763 ft^2 Wetted Perimeter 2.9784 ft Hydraulic Radius 0.0592 ft Average Velocity 3.1200 ft/s Top Width 2.9689 ft Froude Number: 2.2564 Critical Depth 0.1644 ft Critical Velocity 1.6271 ft/s Critical Slope: 0.0076 ft/ft Critical Top Width 4.11 ft Calculated Max Shear Stress 0.3186 lb/ft^2 Calculated Avg Shear Stress 0.1588 lb/ft^2 Median/Ditch Drop-Inlet Analysis: Grate Inlet Node 401 Notes: Using the following channel: Ribbon Gutter Node 401 Channel Analysis: Ribbon Gutter Node 401 Notes: Input Parameters Channel Type: Triangular Side Slope 1 (Z1): 12.5000 ft/ft Side Slope 2 (Z2): 12.5000 ft/ft Longitudinal Slope: 0.0500 ft/ft Manning's n: 0.0150 Flow 0.2500 cfs Result Parameters Depth 0.0859 ft Area of Flow 0.0922 ft^2 Wetted Perimeter 2.1542 ft Hydraulic Radius 0.0428 ft Average Velocity 2.7109 ft/s Top Width 2.1473 ft Froude Number: 2.3052 Critical Depth 0.1200 ft Critical Velocity 1.3897 ft/s Critical Slope: 0.0084 ft/ft Critical Top Width 3.00 ft Calculated Max Shear Stress 0.2680 lb/ft^2 Calculated Avg Shear Stress 0.1336 lb/ft^2 Inlet Data: Not computing the channel block (berm) height Inlet Location: Inlet on grade Grate Type: P - 1-7/8 Grate Width: 2.00 ft Grate Length: 2.00 ft Computed Data: Intercepted flow: 0.25 cfs Bypass flow: 0.00 cfs Efficiency: 1.8182 Channel Analysis: Ribbon Gutter Node 401 Notes: Input Parameters Channel Type: Triangular Side Slope 1 (Z1): 12.5000 ft/ft Side Slope 2 (Z2): 12.5000 ft/ft Longitudinal Slope: 0.0500 ft/ft Manning's n: 0.0150 Flow 0.2500 cfs Result Parameters Depth 0.0859 ft Area of Flow 0.0922 ft^2 Wetted Perimeter 2.1542 ft Hydraulic Radius 0.0428 ft Average Velocity 2.7109 ft/s Top Width 2.1473 ft Froude Number: 2.3052 Critical Depth 0.1200 ft Critical Velocity 1.3897 ft/s Critical Slope: 0.0084 ft/ft Critical Top Width 3.00 ft Calculated Max Shear Stress 0.2680 lb/ft^2 Calculated Avg Shear Stress 0.1336 lb/ft^2 Median/Ditch Drop-Inlet Analysis: Grate Inlet Node 402.1 Notes: Using the following channel: Ribbon Gutter Node 402.1 Channel Analysis: Ribbon Gutter Node 402.1 Notes: Input Parameters Channel Type: Triangular Side Slope 1 (Z1): 12.5000 ft/ft Side Slope 2 (Z2): 12.5000 ft/ft Longitudinal Slope: 0.0500 ft/ft Manning's n: 0.0150 Flow 0.4900 cfs Result Parameters Depth 0.1105 ft Area of Flow 0.1528 ft^2 Wetted Perimeter 2.7726 ft Hydraulic Radius 0.0551 ft Average Velocity 3.2075 ft/s Top Width 2.7637 ft Froude Number: 2.4043 Critical Depth 0.1570 ft Critical Velocity 1.5900 ft/s Critical Slope: 0.0077 ft/ft Critical Top Width 3.93 ft Calculated Max Shear Stress 0.3449 lb/ft^2 Calculated Avg Shear Stress 0.1719 lb/ft^2 Inlet Data: Not computing the channel block (berm) height Inlet Location: Inlet on grade Grate Type: P - 1-7/8 Grate Width: 2.00 ft Grate Length: 2.00 ft Computed Data: Intercepted flow: 0.49 cfs Bypass flow: 0.00 cfs Efficiency: 1.4300 Channel Analysis: Ribbon Gutter Node 402.1 Notes: Input Parameters Channel Type: Triangular Side Slope 1 (Z1): 12.5000 ft/ft Side Slope 2 (Z2): 12.5000 ft/ft Longitudinal Slope: 0.0500 ft/ft Manning's n: 0.0150 Flow 0.4900 cfs Result Parameters Depth 0.1105 ft Area of Flow 0.1528 ft^2 Wetted Perimeter 2.7726 ft Hydraulic Radius 0.0551 ft Average Velocity 3.2075 ft/s Top Width 2.7637 ft Froude Number: 2.4043 Critical Depth 0.1570 ft Critical Velocity 1.5900 ft/s Critical Slope: 0.0077 ft/ft Critical Top Width 3.93 ft Calculated Max Shear Stress 0.3449 lb/ft^2 Calculated Avg Shear Stress 0.1719 lb/ft^2 Median/Ditch Drop-Inlet Analysis: Grate Inlet Node 403.3 Notes: Using the following channel: Ribbon Gutter Node 403.3 Channel Analysis: Ribbon Gutter Node 403.3 Notes: Input Parameters Channel Type: Triangular Side Slope 1 (Z1): 12.5000 ft/ft Side Slope 2 (Z2): 12.5000 ft/ft Longitudinal Slope: 0.0500 ft/ft Manning's n: 0.0150 Flow 0.6000 cfs Result Parameters Depth 0.1193 ft Area of Flow 0.1778 ft^2 Wetted Perimeter 2.9913 ft Hydraulic Radius 0.0594 ft Average Velocity 3.3741 ft/s Top Width 2.9818 ft Froude Number: 2.4349 Critical Depth 0.1703 ft Critical Velocity 1.6557 ft/s Critical Slope: 0.0075 ft/ft Critical Top Width 4.26 ft Calculated Max Shear Stress 0.3721 lb/ft^2 Calculated Avg Shear Stress 0.1855 lb/ft^2 Inlet Data: Not computing the channel block (berm) height Inlet Location: Inlet on grade Grate Type: P - 1-7/8 Grate Width: 2.00 ft Grate Length: 2.00 ft Computed Data: Intercepted flow: 0.60 cfs Bypass flow: 0.00 cfs Efficiency: 1.3294 Channel Analysis: Ribbon Gutter Node 403.3 Notes: Input Parameters Channel Type: Triangular Side Slope 1 (Z1): 12.5000 ft/ft Side Slope 2 (Z2): 12.5000 ft/ft Longitudinal Slope: 0.0500 ft/ft Manning's n: 0.0150 Flow 0.6000 cfs Result Parameters Depth 0.1193 ft Area of Flow 0.1778 ft^2 Wetted Perimeter 2.9913 ft Hydraulic Radius 0.0594 ft Average Velocity 3.3741 ft/s Top Width 2.9818 ft Froude Number: 2.4349 Critical Depth 0.1703 ft Critical Velocity 1.6557 ft/s Critical Slope: 0.0075 ft/ft Critical Top Width 4.26 ft Calculated Max Shear Stress 0.3721 lb/ft^2 Calculated Avg Shear Stress 0.1855 lb/ft^2 Median/Ditch Drop-Inlet Analysis: Grate Inlet Node 404.1 Notes: Using the following channel: Ribbon Gutter Node 404.1 Channel Analysis: Ribbon Gutter Node 404.1 Notes: Input Parameters Channel Type: Triangular Side Slope 1 (Z1): 12.5000 ft/ft Side Slope 2 (Z2): 12.5000 ft/ft Longitudinal Slope: 0.0500 ft/ft Manning's n: 0.0150 Flow 0.4700 cfs Result Parameters Depth 0.1088 ft Area of Flow 0.1481 ft^2 Wetted Perimeter 2.7296 ft Hydraulic Radius 0.0542 ft Average Velocity 3.1743 ft/s Top Width 2.7209 ft Froude Number: 2.3980 Critical Depth 0.1544 ft Critical Velocity 1.5768 ft/s Critical Slope: 0.0077 ft/ft Critical Top Width 3.86 ft Calculated Max Shear Stress 0.3396 lb/ft^2 Calculated Avg Shear Stress 0.1692 lb/ft^2 Inlet Data: Not computing the channel block (berm) height Inlet Location: Inlet on grade Grate Type: P - 1-7/8 Grate Width: 2.00 ft Grate Length: 2.00 ft Computed Data: Intercepted flow: 0.47 cfs Bypass flow: 0.00 cfs Efficiency: 1.4516 Channel Analysis: Ribbon Gutter Node 404.1 Notes: Input Parameters Channel Type: Triangular Side Slope 1 (Z1): 12.5000 ft/ft Side Slope 2 (Z2): 12.5000 ft/ft Longitudinal Slope: 0.0500 ft/ft Manning's n: 0.0150 Flow 0.4700 cfs Result Parameters Depth 0.1088 ft Area of Flow 0.1481 ft^2 Wetted Perimeter 2.7296 ft Hydraulic Radius 0.0542 ft Average Velocity 3.1743 ft/s Top Width 2.7209 ft Froude Number: 2.3980 Critical Depth 0.1544 ft Critical Velocity 1.5768 ft/s Critical Slope: 0.0077 ft/ft Critical Top Width 3.86 ft Calculated Max Shear Stress 0.3396 lb/ft^2 Calculated Avg Shear Stress 0.1692 lb/ft^2 Curb and Gutter Analysis: Curb Inlet Node 502 Notes: Gutter Input Parameters Longitudinal Slope of Road: 0.0000 ft/ft Cross-Slope of Pavement: 0.0810 ft/ft Depressed Gutter Geometry Cross-Slope of Gutter: 0.0830 ft/ft Manning's n: 0.0150 Gutter Width: 1.5000 ft Gutter Result Parameters Width of Spread: 1.9795 ft Gutter Result Parameters Design Flow: 1.1900 cfs Gutter Depression: 0.0360 in Area of Flow: 0.1610 ft^2 Eo (Gutter Flow to Total Flow): 0.9779 Gutter Depth at Curb: 1.9601 in Inlet Input Parameters Inlet Location: Inlet on Grade Inlet Type: Curb Opening Length of Inlet: 11.0000 ft Local Depression: 2.0000 in Inlet Result Parameters Intercepted Flow: 1.1895 cfs Bypass Flow: 0.0005 cfs Efficiency: 0.9996 Curb and Gutter Analysis: Curb Inlet Node 602 Notes: Gutter Input Parameters Longitudinal Slope of Road: 0.0000 ft/ft Cross-Slope of Pavement: 0.0570 ft/ft Depressed Gutter Geometry Cross-Slope of Gutter: 0.0830 ft/ft Manning's n: 0.0150 Gutter Width: 1.5000 ft Gutter Result Parameters Width of Spread: 3.0547 ft Gutter Result Parameters Design Flow: 2.0700 cfs Gutter Depression: 0.4680 in Area of Flow: 0.2952 ft^2 Eo (Gutter Flow to Total Flow): 0.8660 Gutter Depth at Curb: 2.5574 in Inlet Input Parameters Inlet Location: Inlet on Grade Inlet Type: Curb Opening Length of Inlet: 13.0000 ft Local Depression: 2.0000 in Inlet Result Parameters Intercepted Flow: 2.0693 cfs Bypass Flow: 0.0007 cfs Efficiency: 0.9997 Curb and Gutter Analysis: Node 201 Curb and Gutter Analysis Notes: Gutter Input Parameters Longitudinal Slope of Road: 0.0000 ft/ft Cross-Slope of Pavement: 0.0500 ft/ft Depressed Gutter Geometry Cross-Slope of Gutter: 0.0830 ft/ft Manning's n: 0.0150 Gutter Width: 3.0000 ft Gutter Result Parameters Width of Spread: 2.2292 ft Gutter Result Parameters Design Flow: 0.5000 cfs Gutter Depression: 1.1880 in Area of Flow: 0.2727 ft^2 Eo (Gutter Flow to Total Flow): 1.0000 Gutter Depth at Curb: 2.2203 in Inlet Input Parameters Inlet Location: Inlet on Grade Inlet Type: Grate Grate Type: P - 1-7/8 Grate Width: 2.0000 ft Grate Length: 2.0000 ft Local Depression: 1.2000 in Inlet Result Parameters Intercepted Flow: 0.3977 cfs Bypass Flow: 0.1023 cfs Approach Velocity: 1.8333 ft/s Splash-over Velocity: 8.1290 ft/s Efficiency: 0.7954 Curb and Gutter Analysis: Node 203 Curb and Gutter Analysis Notes: Gutter Input Parameters Longitudinal Slope of Road: 0.0000 ft/ft Cross-Slope of Pavement: 0.0450 ft/ft Depressed Gutter Geometry Cross-Slope of Gutter: 0.0830 ft/ft Manning's n: 0.0150 Gutter Width: 3.0000 ft Gutter Result Parameters Width of Spread: 2.8042 ft Gutter Result Parameters Design Flow: 0.9220 cfs Gutter Depression: 1.3680 in Area of Flow: 0.3479 ft^2 Eo (Gutter Flow to Total Flow): 1.0000 Gutter Depth at Curb: 2.7930 in Inlet Input Parameters Inlet Location: Inlet on Grade Inlet Type: Grate Grate Type: P - 1-7/8 Grate Width: 2.0000 ft Grate Length: 2.0000 ft Local Depression: 1.2000 in Inlet Result Parameters Intercepted Flow: 0.8058 cfs Bypass Flow: 0.1162 cfs Approach Velocity: 2.6499 ft/s Splash-over Velocity: 8.1290 ft/s Efficiency: 0.8739 Curb and Gutter Analysis: Node 410.8 Curb and Gutter Analysis Notes: Gutter Input Parameters Longitudinal Slope of Road: 0.0000 ft/ft Cross-Slope of Pavement: 0.0300 ft/ft Depressed Gutter Geometry Cross-Slope of Gutter: 0.0830 ft/ft Manning's n: 0.0150 Gutter Width: 3.0000 ft Gutter Result Parameters Width of Spread: 2.3811 ft Gutter Result Parameters Design Flow: 0.7300 cfs Gutter Depression: 1.9080 in Area of Flow: 0.3235 ft^2 Eo (Gutter Flow to Total Flow): 1.0000 Gutter Depth at Curb: 2.3715 in Inlet Input Parameters Inlet Location: Inlet on Grade Inlet Type: Grate Grate Type: P - 1-7/8 Grate Width: 3.0000 ft Grate Length: 3.0000 ft Local Depression: 1.2000 in Inlet Result Parameters Intercepted Flow: 0.7300 cfs Bypass Flow: 0.0000 cfs Approach Velocity: 2.2563 ft/s Splash-over Velocity: 9.9703 ft/s Efficiency: 1.0000 Channel Analysis: D-75 Brow Ditch Capacity Notes: Input Parameters Channel Type: Circular Pipe Diameter 2.00 ft Longitudinal Slope: 0.0100 ft/ft Manning's n: 0.0190 Depth 1.0000 ft Result Parameters Flow 7.7392 cfs Area of Flow 1.5708 ft^2 Wetted Perimeter 3.1416 ft Hydraulic Radius 0.5000 ft Average Velocity 4.9270 ft/s Top Width 2.0000 ft Froude Number: 0.9797 Critical Depth 0.9893 ft Critical Velocity 4.9953 ft/s Critical Slope: 0.0104 ft/ft Critical Top Width 2.00 ft Calculated Max Shear Stress 0.6240 lb/ft^2 Calculated Avg Shear Stress 0.3120 lb/ft^2 Channel Analysis: Node 102 D-75 Brow Ditch Capacity Notes: Input Parameters Channel Type: Circular Pipe Diameter 2.00 ft Longitudinal Slope: 0.0100 ft/ft Manning's n: 0.0190 Flow 0.6700 cfs Result Parameters Depth 0.2837 ft Area of Flow 0.2724 ft^2 Wetted Perimeter 1.5445 ft Hydraulic Radius 0.1764 ft Average Velocity 2.4594 ft/s Top Width 1.3955 ft Froude Number: 0.9809 Critical Depth 0.2808 ft Critical Velocity 2.4964 ft/s Critical Slope: 0.0104 ft/ft Critical Top Width 1.39 ft Calculated Max Shear Stress 0.1770 lb/ft^2 Calculated Avg Shear Stress 0.1101 lb/ft^2 Project: Project #: By:MM Date: 4/5/2023 Node #Subarea Runoff1 (cfs) Inlet Size 2 107.1 1.17 24" x 24" CB 107.2 1.08 24" x 24" CB 205.1 3 2.29 24" x 24" CB 205.3 0.45 12" x 12" CB 302 0.31 24" x 24" CB 406.1 1.94 24" x 24" CB 407.1 1.68 24" x 24" CB 408.1 0.8 24" x 24" CB 409.1 0.69 24" x 24" CB 410.1 0.23 24" x 24" CB Notes: 1 Subarea runoff determined by AES Rational Method Analysis; subarea runoff specific to receiving inlets 2 Grate Inlet sizing determined by governing capacity equations shown below 3 Node 205.1 includes upstream bypass flow (0.12 cfs) from Nodes 201 & 203 3925 Ionis Pharmaceuticals Lots 21 & 22PASCO LARET SUITER & ASSOC I ATES CIVIL ENGINEERING+ LAND PLANNING+ LAND SURVEYING Weir coefficient, Cw Orifice coefficient, C0 Available head, h (feet) 3.0 0.60 0.25 Inlet Type 1212 Series -12"x12" Catch Basin 1 1218 Series -12"x18" Catch Basin 1 1818 Series -18"x18" Catch Basin 1 2424 Series -24"x24" Catch Basin 1 3636 Series -36"x36" Catch Basin 1 I Type 'I' Catch Basin2 Note: Capacity based on Weir Equation3'4, Ocap (cfs5) 0.80 0.92 1.05 1.35 1.97 1.73 I I Capacity based on Orifice Equation 3' 4, O cap (cfs5) 1.34 1.79 2.28 3.81 7.96 5.85 1. Based on Brooks Products, Inc. -H 20-44 Traffic, Steel Grate, not Parkway, Cast-iron grate Governing Equation Weir Weir Weir Weir Weir Weir 2. Based on Drawing Number D-13 & D-15 in the City of San Diego Regional Standard Drawings, dated April 2003 3. A reduction factor of 50% assumed for clogging. 4. Weir equation, Q = c.;..(h)312; Orifice equation, Q = C.A,(2gh)"2 5. "cfs" = cubic feet per second Weir coefficient, Cw Orifice coefficient, C0 Available head, h (feet) Weir coefficient, Cw Orifice coefficient, C0 Available head, h (feet) 3.0 0.60 0.30 Capacity based on Capacity based on Inlet Type Weir Equation3'4, Orifice Equation3· 4, Governing Equation Q cap Q cap (cfs5) (cfs5) 1212 Series -12"x12" 1.05 1.47 Weir Catch Basin1 1218 Series -12"x18" Catch Basin 1 1.22 1.96 Weir 1818 Series -18"x18" Catch Basin 1 1.38 2.50 Weir 2424 Series -24"x24" Catch Basin 1 1.78 4.18 Weir 3636 Series -36"x36" 2.60 8.72 Weir r.,.trh Basin 1 I Type 'I' Catch Basin2 2.27 6.41 Weir Note: 1. Based on Brooks Products, Inc. -H 20-44 Traffic, Steel Grate, not Parkway, Cast-iron grate 2. Based on Drawing Number D-13 & D-15 in the City of San Diego Regional Standard Drawings, dated April 2003 3. A reduction factor of 50% assumed for clogging. 4. Weir equation, Q = C,.L.(h)312; Orifice equation, Q = CoA,(2gh)112 5. "cfs" = cubic feet per second 3.0 0.60 0.35 Capacity based on Capacity based on Inlet Type Weir Equation3·4, Orifice Equation3·4, Governing Equation Q cap Q cap (cfs5) (cfs5) 1212 Series -12"x12" Catch Basin 1 1.32 1.59 Weir 1218 Series -12"x1 8" 1.53 2.12 Weir Catch Basin 1 1818 Series -18"x18" 1.74 2.70 Weir Catch Basin 1 2424 Series -24"x24" Catch Basin 1 2.24 4.51 Weir 3636 Series -36"x36" Catch Basin 1 3.27 9.42 Weir I Type 'I' Catch Basin2 2.87 6.92 Weir Note: 1. Based on Brooks Products, Inc. -H 20-44 Traffic, Steel Grate, not Parkway, Cast-iron grate 2. Based on Drawing Number D-13 & D-15 in the City of San Diego Regional Standard Drawings, dated April 2003 3. A reduction factor of 50% assumed for clogging. 4. Weir equation, Q = C.,L.(h)312; Orifice equation, Q = CoA,(2gh)112 5. "cfs" = cubic feel per second Weir coefficient, Cw Orifice coefficient, C0 Available head, h (feet) 3.0 0.60 0.40 Capacity based on Capacity based on Inlet Type Weir Equation3'4, Orifice Equation3· 4, O cap O cap (cfs5) (cfs5) 1212 Series -12"x12" Catch Basin 1 1.62 1.70 1218 Series -12"x18" Catch Basin 1 1.87 2.27 1818 Series -18"x18" 2.12 2.88 Catch Basin 1 2424 Series -24"x24" 2.74 4.82 Catch Basin 1 3636 Series -36"x36" 4.00 10.07 Catch Basin 1 I Type 'I' Catch Basin2 3.50 7.40 Note: 1. Based on Brooks Products, Inc. -H 20-44 Traffic, Steel Grate, not Parkway, Cast-iron grate Governing Equation Weir Weir Weir Weir Weir Weir 2. Based on Drawing Number D-13 & D-15 in the City of San Diego Regional Standard Drawings, dated April 2003 3. A reduction factor of 50% assumed for clogging. 4. Weir equation, Q = C.,L.{h)312; Orifice equation, Q = C.A,(2gh)112 5. "els" = cubic feet per second Weir coefficient, Cw Orifice coefficient, C0 Available head, h (feet) 3.0 0.60 0.45 Inlet Type 1212 Series -12"x12" Catch Basin 1 1218 Series -12"x18" Catch Basin 1 1818 Series -18"x18" Catch Basin 1 2424 Series -24"x24" Catch Basin 1 3636 Series -36"x36" r.,.t,-h Basin 1 I Type 'I' Catch Basin2 Note: Capacity based on Capacity based on Weir Equation3· 4, Orifice Equation3· 4, O cap Qcap (cfs5) (cfs5) 1.93 1.80 2.23 2.41 2.53 3.06 3.27 5.11 4.77 10.68 4.18 7.85 1. Based on Brooks Products, Inc. -H 20-44 Traffic, Steel Grate, not Parkway, Cast-iron grate Governing Equation Orifice Weir Weir Weir Weir Weir 2. Based on Drawing Number D-13 & D-15 in the City of San Diego Regional Standard Drawings, dated April 2003 3. A reduction factor of 50% assumed for clogging. 4. Weir equation, Q = C.,l8(h)312; Orifice equation, Q = C.A,(2gh)112 5. "els" = cubic feet per second Weir coefficient, Cw Orifice coefficient, C0 Available head, h (feet) 3.0 0.60 0.50 Capacity based on Capacity based on Inlet Type Weir Equation3'4, Orifice Equation3'4, Governing Equation Q cap Qcap (cfs5) (cfs5) 1212 Series -12"x12" 2.26 1.90 Orifice Catch Basin 1 1218 Series -12"x18" 2.61 2.54 Orifice Catch Basin 1 1818 Series -18"x18" 2.96 3.22 Weir Catch Basin 1 2424 Series -24"x24" Catch Basin 1 3.83 5.39 Weir 3636 Series -36"x36" 5.59 11.26 Weir r,.+rh B""in1 I Type 'I' Catch Basin2 4.89 8.27 Weir Note: 1. Based on Brooks Products, Inc. -H 20-44 Traffic, Steel Grate, not Parkway, Cast-iron grate 2. Based on Drawing Number D-13 & D-15 in the City of San Diego Regional Standard Drawings, dated April 2003 3. A reduction factor of 50% assumed for clogging. 4. Weir equation, Q = Cwl-.(h)312; Orifice equation, Q = C.A,(2gh)112 5. "els" = cubic feet per second   I I r -. •--·-· ·-·· • L • " ' --------·· I ; .. •·-·--. ---, ... ·-··. . " ' (-------·-----. T'iPe. F CA-Tl,H P.>.P,<;/ rJ C-AP Pic.. rr---t Ctt 5'-K. ··.o~if;c.e,.\?10.w I Q =O.~A]~qh 1 _ .. __ whvt.. A..= d'fec.:lill't on'~tA. t>ftA.. ... -----·-·· .. h?.~~'ll'!-1'1(.0..~ c.utYo,'d ..... _ •·--+12. +op ofl-~it'\ (oit. 1,1$£(.) ···-~= ---~:_:~.--~Q __ -= O,~l t,C\c/.(lt1-) l i(~~ft~tXo:tt') 1 = 1.9 c~ ----_t:~-r ½9 -~~\~ G "" ::!.(1.f ) "'IS:'6 ,.f.s APPENDIX F Rancho Carlsbad Channel & Basin Project Report, dated June 1998, prepared by Rick Engineering Company (Job Number 13182) June 30, 1998 Prepared for: City of Caris bad 2075 Las Palrnas Drive Carlsbad, California 92009-1576 \J~\. 'i II; i · . .:j ~· NO. 32833 ~ (? (;') ••• C/IJ\\, ... ·· . . .. ~ R.C.E. #32838 Exp. 6/02 Rick Engineering Company \Vater Resources Division 5620 Friars Road S1n Dkgo. California 9:21 J n~?596 <10\ /Ci1 'l f~ j_.!.~-',?·-~·.!._ .:, Introduction This report has been prepared to summarize the hydrologic and hydraulic studies conducted by Rick Engineering Company for the City of Carlsbad as part of the Rancho Carlsbad Channel and Basin Project. Rancho Carlsbad Mobile Home Park (RC11HP) is located north of El Camino Real midway between College Boulevard and Tamarack Avenue. See the Vicinity Map on the next page. RCMHP contains portions of both Agua Hedionda and Calaveras Creeks. Agua Hedionda Creek flows westeriy through the southern portion ofRCMHP. Calaveras Creek flows southwesterly along the northern property boundary. Calaveras Creek confluences with Agua Hedionda Creek within RCMHP approximately 300 feet upstream of El Camino Real. The Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) shows that a large portion of RCMHP is inundated by the 100-year storm. See the FIRM in Map Pocket 1. The purpose of this study is to provide recommendations for minimizing the 100-year flooding in RCMHP. These recommendations include upstream detention basins to decrease the peak flow and on-site creek improvements to increase the creek capacities. Hydrologic Methodology Hydrologic analyses were prepared to detennine the 100-year peak discharge within RCMHP and to analyze proposed detention scenarios. Two hydrologic analyses using the U. S. Army Corps of Engineers' HEC-1 flood hydro graph program are included in this report. The first analysis modeled the existing detention facilities and ultimate development. Ultimate development was assumed in order to account for the maximum anticipated discharge in the watershed. The results of the first analysis con.firmed that the creeks in RCNIHP are inadequate to convey the 100-year Prepared By: Rick Engineering Company -Water Resourc..:s DiYision DCB:MDL:emn/Report/J-13182.001 07/01/98 '_j J ! storm. Therefore, additional analyses were performed in order to study detention scenarios. The HEC-1 analysis containing the most desirable detention scenario is included in this report and is based on the existing and four proposed detention facilities and ultimate development within the entire watershed. Tne HEC-1 input and methodology are discussed below. The HEC-1 results are discussed in the following section. Prior to preparing the HEC-1 input, previous studies (listed in "References") for RC11HP were reviewed and site visits were performed. The site visit objectives were to verify the watershed boundary and major flow paths of both Agua Hedionda and Calaveras Creeks, determine existing detention locations, and review proposed detention locations. Prior to the site,visits, the watershed boundary and flow paths were delineated on the United States Geological Survey's (USGS) quadrangle maps. The watershed was divided into sub-basins in order to obtain peak flows at existing and proposed detention facility locations and at locations listed in the current Flood Insurance Study. The watershed boundary, flow paths, and sub-basin boundaries were verified during the site visits and adjusted appropriately. See Map Pocket 2 for the RCMHP watershed boundary map. During the site visits, existing detention facilities such as dams and road embankments were noted. Two dams exist within the RCMHP watershed: Calaveras and Squires. Of these two, only Calaveras dam provides significant detention. It is located within Calaveras Creek and detains the upstream creek flows. On the other hand, Squires Dam is located at the upper end of a drainage basin and provides minimal detention. The plans for Calaveras Dam were obtained from the Division of Safety of Dams (DSOD) and the outlet works and storage capacity were modeled in the hydrologic analyses. Prcpan:d By: Rick Engineering Company -Water Resources Division 3 DCB:MDL:cm1,1Repart/J-13182.001 07101/98 ·.1 'i Furthermore, the following road embankments \vere identified as potential existing detention facilities: Business Park Drive (south of Park Center Drive), Sycamore Avenue (north of Grand Avenue), ShadoVvridge Drive (north of Antiqua Drive), Melrose Drive (north of Cannon Road), and Melrose Drive (south of Aspen \Vay). As-built plans for these road crossings were obtained from the appropriate agencies. The culverts and storage capacities of the Sycamore A venue, ShadoVvTidge Drive, and Melrose Drive (Cannon Road) facilities were modeled in the hydrologic analyses. The Business Park Drive and Melrose Drive (Aspen Way) crossings were not modeled because the culverts at these locations are large enough to convey most of the upstream flows with minimal detention. Two main criteria were considered in selecting potential proposed detention basin sites. First, the facilities listed in the Master Drainage Plan were considered. Second, existing or proposed road crossings were considered. Detention basin construction at road crossings provides several benefits. Road crossings create a natural location for detention. They are cost-effective because the road emban..1<.ment is used for detention. They do not create a significant increase in environmental impacts. The above-mentioned sub-basins and detention facilities were modeled in the HEC-1 progran1. The progra..rn parameters include sub-basin area, rainfall distribution, lag time, a.,7.d curve number. These para.meters were determined as follows: The sub-basin area was obtained from the USGS watershed boundary map. The rainfall distribution was based on storm duration and frequency, as well as the sub-basin's geographic location; The lag time was based on sub-basin characteristics such as topography, basin shape, vegetative cover, existing development, and storm duration. Both rainfall distribution and lag time were generated by utilizing the criteria outlined in Prepared By: Rick Engin~ering Company -Wata ResuurcGS Division 4 DCB),,fDL:c:mn/ReportiJ-13!32 001 07,01,98 r; the County of San Diego Hydrology i\lfanual. Curve numbers are a function of land use and soil type. The land use coverages \Vere obtained from the City of Carlsbad's Geographic Information System (GIS). The land use was revised slightly in three locations according to a December 12, 1997 exhibit from the City of Carlsbad. In open space areas, land use was based on vegetative cover estimates obtained from the Soil Conservation Service's (SCS) San Diego County Soil Interpretation Study Ground Cover maps, as well as field observations. The soil type coverages are delineated on the SCS's Soil Survey maps: These coverages were obtained from the San Diego Association of Governments (SANDAG) in digital format. Once the land use and soil types were established, the curve numbers were then calculated using the method outlined in the San Diego County Hydrology lvfanual. The curve number, lag time, rainfall distribution, arid area for each sub-basin were generated and input into the HEC-1 program. The HEC-1 program then computed the runoff hydro graph and peak discharge for each sub-basin. The existing detention facilities were modeled in the first HEC-1 analysis, while both existing and proposed detention facilities were modeled in the second HEC-1 analysis. Hydrologic Results The results of the two aforementioned HEC-1 analyses for RCMHP are discussed below. For the first HEC-1 analysis, which modeled the existing detention facilities and ultimate develoIJment, both six-and 24-hour, 100-year stonns were simulated. The 24-hour storm resulted in higher peak flow discharges at RCN1HP for both creeks, thus it was used in all subsequent analyses. Prepared By: Rick Engineering Company -Water Resources Division 5 DCB:MDL:emn/ReportJJ-1) 1 82.C0 1 07/01/98 Appendix 1 contains the 100-yea:r, 24-hour HEC-l analysis for the RCMHP watershed with the existing detention facilities and ultimate development. The second HEC-1 analysis modeled both existing and proposed detention facilities and ultimate development. Several proposed detention scenarios were investigated and it was determined that the most feasible scenario was the combination of four detention basins, all located at proposed road crossings. Two of the proposed detention facilities are listed in the 1994 Master Drainage Plan as Detention Basins BJB and BJ. These facilities are located immediately upstream of RCNfHP in Calaveras Creek. Both ofH1e detention basins were designed as flow-by facilities. A flow-by facility detains the higher creek flows, while allowing lower flows to pass through the ·r basin relatively undetained. The other two detention basins are further upstream in Agua Hedionda Creek at the proposed road extensions of Melrose Drive (southof Aspen \Vay) and Faraday Avenue. Both of the Agua Hedionda detention basins are flow~through.types where all of the creek flow is detained. All proposed detention facilities were designed to be outside DSOD's jurisdictional limits, i.e., less than 50 acre-feet of storage volume and less than 25 feet high. Appendix 2 contains the HEC-1 analysis of the 100-year, 24-hour storm for the RCMHP watershed with both existing and proposed detention facilities and ultimate development. Table 1 summarizes the results of both HEC-1 analyses. The table shows that with the proposed detention basins, the peak discharge at RCMHP decreased by approximately 1 O to 15 percent. Preliminary design of the proposed detention facilities are discussed below. Prepared By: Rick Engineering Company. \Vater Rcscurccs Division 6 DCB:~!DL:rnn, ReportJJ-13182 001 07,0L98 Table 1 Comparison of 100-year, 24-hour Peak Flow Discharges with Existing Detention Facilities and with Both Existing and Proposed Detention Facilities Ultimate Development Rancho Carlsbad Mobile Home Park Calaveras Creek 1,910 •· Agua Hedionda (upstream of 8,050 confluence with CalaverasCreek) Agua Hedionda ( downstream of 9,950 confluence with CalaverasCreek) * cfs = cubic feet per second Prepared By: Rick Engineering Company -Water Resources Division 7 1,550 7,600 8,970 DCB:MDL:~mn/Report/J-13182.001 07/01/98 Preliminary designs were performed for each proposed detention facility to determine the outlet works required to achieve maximum detention, while maintaining the height and storage volume below DSOD jurisdictional limits. The preliminary design of each detention facility and the results for each detention facility design are described below. The most upstream proposed detention facility in Agua Hedionda Creek is at Melrose Drive. This facility will be a flow-through detention basin. Melrose Drive runs north-south and currently ends just south of Aspen Way near the Carlsbad Corporate boundary. Future plans call for the extension of Melrose Drive to Palomar Airport Road. An existing reinforced concrete box (RCB) culvert conveys flow under Melrose Drive and is 10 feet wide by 7 feet high. The existing Melrose Drive emban...lanent provides minimal detention because of the RCB's large capacity. Hydro logic calculations show that a 36-inch diameter opening at this location will detain the peak flow discharge from approximately 450 cubic feet per second (cfs) to 180 cfs. There are two alternatives for creating the 36-inch opening. One is to replace the existing culvert with a 36-inch RCP and the other is to construct a concrete barrier at the inlet ·with a 36-inch diameter opening. The resultant storage volume and ponded water surface elevation (WSEL) with the new outlet works will be approximately 41 acre-feet and 329 feet, respectively. This will create an inundation area of approximately seven acres. The estimated outlet velocities for the first and second alternative will be 25 and 13 feet per second (fps), respectively. The velocity under the first alternative is greater than the ma.ximum desired velocity of 20 fps. The velocity calculation assumed that the proposed 3 6-inch RCP was constructed at the slope of the existing culvert, which is one percent. If this alternative is selected, the final culvert design should analyze methods for reducing the outlet velocity, such as placing the culvert at a flatter slope or using multiple small diameter culverts. A Prcp:ir~LI By: Rick Engineering Company• WJt~r Rcsourc~s Division 8 DCB:MDL:emn/Report/J-13181.00 l 07/01,98 conceptual plan for the second alternative is included in Map Pocket 3. The other detention facility proposed for Agua Hedionda Creek is the Faraday Avenue flow- through detention basin. Currently, Faraday Avenue runs east-west and ends at Orion Street. The extension of Faraday Avenue to Park Center Drive in the city of Vista is planned as part of Carlsbad Oaks North Business Park. The hydrologic calculations and preliminary design in this report were based on the proposed embankment and topographic information shown on the Tentative Map for Carlsbad Oaks North Business Parkby O'Day Consultants, dated 1\pril 6, 1998. The calculations show that a single 6-foot wide by 7-foot high RCB culvert \vill detain approximately 49 acre feet of storage volume and will pond up to an elevation of 240 feet. The inundation area will be approximately seven acres. The 100-year peak discharge of 1,050 cfs entering the detention hasin will be detained down to approximately 780 cfs. The approximate calculated outlet velocity will be 19 fps. A conceptual plan for this detention facility is included in Map Pocket 4. The two proposed detention facilities in Calaveras Creek are located just upstream of RCMHP and were designed as flow-by basins. The first facility, Detention Basin BJB, is located north of RCMHP at the proposed College Road extension and west of the proposed Cannon Road extension. College Boulevard currently ends at El Camino Real. North ofRCMHP, the proposed College Boulevard extension runs roughly east-west. College Boulevard intersects the proposed Cannori Road extension at the northeast comer of RCivfHP. Cannon Road currently ends east of Interstate 5 at Paseo Del Norte. The proposed Cannon Road extension alignment will be parallel to Calaveras Creek and immediately north of RCMHP. The detention basin design consists of an earthen embankment, outlet works, and a small berm. The embankment will have a l 0-foot top width and a 76-foot crest elevation with 2: 1 (horizontal:vertical) side slopes. The outlet works Prepared By: Rick Engineering Company -Water Resources Division 9 DCB:MDL:emn/Report/J-13182.001 07/0 l/98 ' ( consist of a single 10-foot wide by 7-foot high RCB and a 48-inch RCP. The 48-inch RCP joins the RCB downstream of the embankment. The RCB then extends to Calaveras Creek. An emergency spillway is also provided. The small berm will run parallel to the creek for approximately 1,200 feet. The berm will have an approximate 74-foot crest elevation, 10-foot top width, 2:1 (horizontal:vertical) side slopes, and a weir section. The weir section, located near the embankment, will allow flow to enter the basin at an approximate WSEL of 73 feet. Hydrologic calculations show that with the outlet works described above, a storage volume of approximately 49 acre feet will be attained. The resultant ponded \VSEL will be approximately 7 5 feet and the inundation area will be approximately 15 acres. The peak discharge of 1,570 cfs entering the basin will be detained down to 1,200 cfs. The approximate outlet velocity will be 19 fps for the RCB. See Map Pocket 5 for a copy of the conceptual design of Detention Basin BIB. The other Calaveras Creek detention facility, Detention Basin BJ, is located northeast of RCMHP at the proposed College Boulevard extension and east of the proposed Cannon Road extension. The earthen embankment will have a crest elevation of approximately 81 feet, a top width of 1 O feet, and 2: 1 side slopes. An emergency spillway will be provided. Approximately 600 feet of channel improvements upstream of the proposed embankment are necessary. The channel improvements include grading the creek as follows: Trapezoidal-shaped grass-lined channel with a 3-foot bottom 'vvidth, 4-foot depth, and 2: 1 side slopes. The hydrologic calculations showed that a 6-foot wide by 3-foot high RCB would detain the peak flow of 670 cfs down to approximately 350 cfs. The inundation area is approximately eight acres and the ponded WSEL is approximately 76 feet. The detention basin stores approximately 48 acre feet of water. The calculated outlet velocity will be approximately 19 fps. See Map Pocket 6 for the conceptual plans for Detention Basin BJ. Prepared By: Rick Engineedng Company • Water Resouices Division DCB:MDL:emn,R~port/J-13182.00 l 07/0 li98 .... J As discussed above, with the addition of the proposed detention facilities, the peak disctJ.arge at RCMHP is decreased by approximately 10 to 15 percent. All four of the proposed detention facilities were designed to fall below DSOD's jurisdictional limits. Also, all the facilities are located at existing or proposed road crossings and at least one foot of freeboard is maintained at the road emban.lanents. The results are summarized in Table 2, which contains results such as outlet works, velocity, peak flow discharge into and out of the basin (Qin and Q0uJ, storage volume, ponded \VSEL, and surface area . Prepared By: Rick Engineering Compa.ny • Water Resources Division 1 1 DCB::\!DL:crmvReport/J-13I82.001 07/01,98 Table 2 Summary of Proposed Detention l?acilities Rancho Carlsbad Cl}anncl and Basin Project 100-ycar, 24-hour Storm Event .. .., ·: . Facility Nmne Q~u1,cfs Outlet Works . Storag~,~~--f( Srirfacc.·· A1·~a,··a~ •.... outi~t ? ........ . ···· V~lo~ity; fps Melrose (south of Aspen Way) Faraday BJB BJ Prcpu1cd By: 450 1,050 1,560 670 H.ick Engin~cring Company -Water Resource, Division 180 780 1,200 350 36" RCP 6'x7' RCB 1-1 0'x7' RCB &48" RCP 6'x3' RCB 329 41 240 49 75 49 76 48 12 7 7 15 8 13 (Alt. 2) 25 (Alt. 1) 19 19 19 DCB:MDL:cmn/Report/J-13182.00 I 07/01/98 ' ••••• 1 Hydraulics Hydraulic analyses were performed to determine the amount of silt removal and re-grading required to minimize the 100-year flooding at RCMHP. In order to effectively analyze flood levels in both Agua Hedionda and Calaveras Creeks, the U.S. Army Corps of Engineers HEC-2 Water Surface Profiles program was used. The program is intended for calculating \VSELs for steady gradually varied flow in natural or man-made channels. The effects of various obstructions such as bridges and culverts may be considered in the computations. The program also has capabilities available for assessing the effects of channel improvements. The input parameters vvere based on channel and overban..1< roughnesses, 100-year discharge, downstream \VSEL, and topography. The channel and overbank roughnesses were determined by field observations. The 100-year discharge was obtained from the HEC-1 analysis in Appendix 2 modeling: both existing and proposed detention facilities. The downstream WSEL was estimated in the HEC-2 analysis by using the slope-area method. FEMA-approved HEC-2 cross-sections for the area downstream of the site were included in the analysis. The 100-year discharge for the downstream area was obtained using the split-flow analysis from the Flood Insurance Study. The existing topography was based on June, 1995 topographic maps by Manitou Engineering. The topography was used to prepare cross-sections of both creeks, as well as the overbank areas. Since prior studies showed that the creeks were under-capacity, the original grading plans for RCMHP were obtained and modeled in the HEC-2 analysis by using the channel improvement option. The original grading plans were prepared October 15, 1969 and approved by the City on 1-farch 24, 1971. The original design consisted of a trapezoidal channel with an overall length of approximately 1.2 miles and included both Agua Hedionda and Calaveras Creeks within Prepared By: Rick Engineering C,,mrany -\Vl\tcr R~sources Division 13 DCB:'.',!DL:emn/RcportiJ-13 l 82.00 I 07/01198 RCMHP. The side slopes were 2:1 (horizontal:vertical) and the approximate bed slopes were 0.15 and 0.30 percent in Agua Hedionda Creek and Calaveras Creek, respectively. The bottom width of Agua Hedionda Creek varied from 58 feet at the El Camino Real bridge to 44 feet upstream of the confluence. The approximate channel depth was 11.5 feet. The bottom width and channel depth of Calaveras Creek were four feet and nine feet, respectively. A HEC-2 analysis was performed based on the original design. The HEC-2 results showed that a large portion of RCMHP remained inundated by the 100-year flood. In order to increase channel capacity, additional channel improvements were modeled in the HEC-2 analysis for the downstream sections of both creeks. At the El Camino Real bridge, the bottom width was widened to 87 feet. \Vithln the next 1,400 feet upstream of the bridge, the bottom width then tapered down to the original design bottom ·width of 44 feet in Agua Hedionda Creek and four feet in Calaveras Creek. The results of the hydraulic study are contained in Appendix 3. The results are also depicted on the RCMHP 100-year Floodplain Map in Map Pocket 7. The map shows that with the proposed detention facilities and channel improvements discussed above, a majority of RCMHP will be outside of the 100-year floodplain. lv1aintenance Plan This Maintenance Plan contains maintenance requirements for Aqua Hedionda and Calaveras Creek within RC:MHP. This plan also contains requirements for the four upstream detention basins. It is vital that the creeks and detention basins be maintained on a regular basis to ensure an acceptable level of flood protection for RCI\.11-IP. It is recommended that the maintenance described Prepared By: Rick Engineering Comp:iny -Water Resources Division 14 DCB:MDL:emn/Report/J-13182.00l 07/01/98 below be performed annually prior to the rainy season and after any storm event exceeding the 10- year peak discharge. Aqua Hedionda and Calaveras Creek must be maintained to prevent adverse siltation in each creek. Siltation v,.rill reduce the flow capacity of the creeks and increase the likelihood of inundation within the mobile home park. The first step is to devise a system for monitoring the silt level in each creek. This can be done using metal posts with markings placed si.x inches apai'i. The posts should be placed vertically in each creek at intervals not exceeding 500. feet. The posts should extend at least two feet above the creek bed and must be embedded deep enough so that they will not be moved by large creek flows. A geotechnical engineer should be consulted for the required embedment depth. Once the posts are installed, the silt level can be easily monitored by maintenance personnel. As the silt level reaches one foot, the silt should be removed by maintenance crews to the design elevations. The topographic maps have been reviewed to determine the siltation that has occurred in both creeks over the past few years. The design of the creeks within the mobile home park is shown on the grading plan for RCMHP approved March 24, 1971. The creek bed elevations on the grading plan served as the base elevations in determining the amount of siltation in each creek. A comparison of the grading plan with a June 1995 topographic map indicates that the silt in Aqua Hedionda and Calaveras Creek raised the creek beds as much as seven and five feet, respectively. Therefore, siltation has occurred in Agua Hedionda and Calaveras Creek at a rate of up to 0.3 and 0.2 feet per year. Using these rates and an acceptable silt level of one foot indicates that portions of the creeks could require maintenance approximately once every three to five years. It is important to point out that this is a rough approximation because the creek siltation will depend on the PrepareJ By: Rick Engineering Compny -W;}ter Resources Divisicn 15 DCB:1\1DL:~mr"'Rc:pvrUJ-!3182.001 07/01/98 frequency and magnitude of future storm events. It is likely that future storm events will not mimic past events. Additionally, it is possible that maintenance has been performed on the creek between 1971 and 1995, which would affect the calculated siltation rates. Maintenance is. also required at each of the four detention basins. Maintenance will involve keeping the entrance to each of the detention basin outlet facilities free from silt. Silt should be removed from an entrance once the silt level reaches six inches above the entrance's flowline elevation. The amount of deposition should be easy to determine since each outlet facility is a known size. The silt should be removed a distance of IO feet upstream of the facilities entrance. This will have minimal environmental impacts and will restore the capacity of the outlet facility. The maintenance steps described above are essential for protection of RCMHP. The maintenance must be performed routinely by qualified personnel and a sufficient budget should be established for the maintenance. If any questions arise during the maintenance, a professional engineer specializing in water resources should be contacted. Environmental Issues The environmental issues associated with the Rancho Carlsbad Chann.el & Basin Project have been addressed by the environmental consultant, RECON, and are summarized below. In regards to the on-site channel silt removal and improvements, it is likely that no environmental mitigation will be necessary. In regards to the four proposed detention facilities, the direct impacts, mitigation requirements, and potential indirect environmental impacts are listed by habitat type in Tables 3, 4, and 5, respectively. Direct impacts are from embankment construction. As mentioned above, all of the embankments are within footprints of future roadways. Mitigation requirements Prepared By: Rick Engineering Company -Water Resources Division 16 DCB:MDL:ernn/Repori/J-13182.00 l 07/0li98 Appendix 1 100-year, 24-hour HEC-1 Analysii for Rancho Carlsbad Mobile Home Park Ultimate Development with Existing Detention Basins (File Name: rcmh24r.hcl) ::----------·---·---------Prcp~,n;J B} · ------------------------------------·-·---!)i~lL.\1DI ·:c-i;: }{.:r,•~r:J-lJi .;;~_:":!',! Rkk Engir.ccr!:i:; 1_",· ;-n;~-11:y -\\ ::t·~r P ,::-··•.:!': ;•. Di·,, i:-kn i '1·· . ~ .. ,. -.,.....,, . , . ..._....,_--~•·tu,-1 OFEP_>,Tiotl STATION FLOti 6-EOtJR. 24-i-iOUR 7 2 -HOucc SW.GS 10.53 S9c. 576. P.OUT::::D TO 2i2C2 2743. 10.53 1453. 537. 575. 10.58 3Sl'8C2 357. 10.00 169. 69. 66. .55 304:3. 10.50 1619. 666, 642. . 8 9 ROUTZD TO RTBC3 3028. 10.53 1619. 664. . 8 9 385.09 10.58 3S~f3C3 7B. i0.00 353. 145. 140. 1.18 2 C0~·1BIN2D AT 3633. 10.50 1959. 509. 779. 6.07 P-Ol.TTED TO RT?C4 1549. 10.53 1963. sos. 6.07 20.53 HYDROGRAPH AT BSNBC4 184. 10.00 85. 35. 33. . 31 2 COMBINED AT nC3&BC4 3798. 10.50 2052. 240 809. 6. 3 B HYDROGRAPH AT AHl 18C)2. 10.17 881. 363. 34 9. 2.B3 D2TSYC 1736. 10.25 Sal. 362. 3?9. 2. 8 3 372.32 10.25 2 CO~·GIHED AT ac&J\_'!1 5526. 10.50 2931. 12 02. 1158. 9. 21 5235. 10. 7 S 2892. 1135. 9.21 313. 99 10.75 A.'!3 516. 10.CO 2·13. lOC. 35. . '3 3 b)l.fTSD TO .;;oo. 10.17 243. 100. 36. .83 351.95 10.17 457. 10.50 243. 100. ')6. .83 321.25 lQ.50 .,_u. OIJ 367 . ss 1352.. JC 77. 2 CO!.ffiINED A'i' CGM3INE 1290. 10.08 654. 274. 264. 2.35 ROlJTED TO F>Y,6-7 1265. 10 .25 664. _ 273. 263. 2.35 161.74 10.25 HYDROGRAPH AT AHS 177. 10.00 83. 34. 33. .31 ROUTED TO AHB-7 174. 10.00 83. 34. 33. . 31 160.24 10.00 HYDROGRA.PH AT iU-!7 512. 10.08 240. 98. 94. 1. 12 4 COMBINED AT COMBINE 7995. 10.58 4455. 1831. 1764. 15.23 ROUTED TO AH7-l'39 7663. 10.83 4443_ 1821. 1754. 15.23 103.49 10.83 l-IYDROGRAPH AT ;,_q9 500. 10.08 235. 96. 92. 1.00 2 COMBINED AT CO!--'£INE 7987. 10.75 4671. 1916. 1846. 16.23 ROUTED TO AH9-10 7874. 10.92 4669. 1997. 1941. 16.23 HYDROGRAPH AT AHlO 338. 10.00 156. 64. 61. .66 2 COMBINED AT COMBIN;: 8025. 10.32 4615. 2060. 2002-1.6.89 ROUTED TO l'JUO-RCA 8025. 11. 00 4815. 2053. 1997. 16.89 49.72 11. 00 HYDROGRAPl-I AT RCA 54. 10.QO 24. 10. 10. .11 2 COMBINED AT C0113INE 8049. 11. 00 4833. 2068. 2007. 17.00 l-fYDROGRAPH AT Cl 531. 10.00 249. 102. 98. .87 ROUTED TO DETNMSLR 528. 10.00 249. 102. 98. .87 335.95 10.00 ROUTC:D TO Cl-C2 373. 10.67 236. 99. 95. .87 241.02 10.67 HYDROGRAPH AT C2 1545. 10.25 761. 311. 300. 2.72 2 COMBINED AT COM.BIN~ 1830. 10.25 992. 411. 395. 3.59 ROUTED TO DETCALA 1401. 11. 00 748. 293. 282. 3.59 218.82 11.00 ROUTED TO C2-C3 1373. 11.17 745. 291. 281. 3.59 100.25 11. 17 hYDROGRAPH AT C3 ,us. 10.00 209. 85. 82. .32 2 COMBINED AT COMBINE 1560. 11. OB 976. 377. 3 63. 4.41 HYDROGRAPH AT C4 667. 10.03 315. 129. 124. 1. 24 2 COMBI~""ED AT COMBil--i'E 1836. 10.67 1153. 505. 487. 5.65 ROUTED TO C3&-RCC 1375. 11.03 1153. 503. -135. 5 .65 46.63 11.03 EYDR.OGRAPH _;;.r ;,_cc 13. U.00 33. 14. 13. .15 2 COM3IN2D AT co:-~BINE lS:06. 11 . 1J 3 1133. 517. ,;53 . s. e,Q 2 co:--raINED AT COMBINE 9348. 11. 00 6013. 2585. 2505. 22. 80 Appendix 2 100-year, 24-hour HEC-1 Analysis for Rancho Carlsbad Mobile Home Park Ultimate Development with Existing and Proposed Detention Basins (File Name: rccbpr.hcl) Prepared By: Rick Engineering Company -\\later R~sourc<!s Division DCB:MDL:emn/Report'J-13182.001 07/01!98 hYDROGRAPH AT A..iI6 549. 10. 00 261. 108. . 104. .91 ~--·-,-·=-----="-"' ._.,._,._ .... ~ ---=--•- 2 COMBINED AT COMBINE 1052. 10.oa 609. 274. 263. 2. 35 ROUTE:D TO DETNFARJ\. 777. 10. 83 606. 273. 263. 2. 35 240.33 10.83 ---------------~........,---~ ... ~· ---_..... , _____ __,._...,. __ ._ ~ ---........ _ -..a•.-MC·,,__........_..._...,_r_...-:..-,_ ROUTED TO AF.6-7 775. 11.00 606. 273. 263. 2. 35 161.06 11.00 HYDROGRAPH AT 1'.HS 177. 10.00 83. 34. 33. .31 ROUTED TO AH8-7 174. 10.00 83. 34. 33. .:n 160.24 10.00 HYDROGRAPH AT A..'l7 512. 10.08 240. 98. 94. 1.12 4 COMBINED AT COMBI!IE 7521. 10. 67 4404. 1831. 1764. 15.23 ROUTED TO .l'J!7-AH9 7236. 10 .92 4392. 1820. 1753. 15.23 103.30 10.92 HYDROGRAPH AT AH9 500. 10.08 235. 96. 92. l.00 2 COMBINED AT COMBINE 7523. 10.83 4618. 1916. 1845. 16.23 ROUTED TO .'-1'!9-10 7H3. 11.00 4615. 1996. 1940. ·,i5. 23 HYDROGRAPH AT AHlD 338. 10.00 156. 64. 61. .66 2 COMBINED AT COMBINE 759-i. 11.00 4759. 2060. 2002. 16.89 ROUTED TO AHlO-RCA 7581. 11.08 -1759. 2058. 1997. 16.89 49.52 11.08 HYDROGRl\.PH AT RO\. SL 10.00 24. 10. 10. .11 2 COMBINED AT AGUA 7603. 11.00 4782. 2068. 2007. 17.00 HYDROGRAPH AT Cl 531. 10.00 249. 102. 98. .87 ROUTED TO DETNMELR 528. 10.00 249. 102. 98. .87 335.95 10.00 ROUTED TO Cl-C2 373. 10.67 236. 99. 95. .87 241. 02 10.67 HYDROGRAPH AT C2 1545~ 10.25 761. 311. 300. 2.72 2 COMBHiED AT COMBINE 1890. 10.25 992. 411. 395. 3.59 ROUTED TO DETCAUI 1401. 11. 00 748. 293. 282. 3.59 na.92 11. 00 ROUTED TO C2-C3 1373. 11.17 745. 291. 281, 3.59 100.25 11.17 HYDROGRA!?H AT C3 448. 10.00 209. as. 82. .82 2 COMBINED AT COMBINE 1560. 11, 08 876. 377. 3 63. 4.41 ROUTED TO DETNBJB 1196. 11.92 876. 377. 363. 4.41 74.77 11. 92 H'iDROGRAP:H AT C4 667. 10.os 315. 129. 124. l. 24 -· ROUTED TO DE:TNC4 352. 11. 00 297. 129. 124. l. 24 76.19 11.00 --_r 2 COMBINED AT COMBINE 1532. 11. 83 1163. 505. 4B7. 5.65 ( RICK Ei'JGINEERING , C01\!1PANY San Diego • l{iwrsidc February 11, 2004 Mr. Glen Van Peski GYP Consultants 3764 Cavern Place Carlsbad, California 92008-6585 Orange • Phoenix • Tucson Huter Rewurce, /)il'ision SUBJECT: CHANGES TO OUTLET STRUCTURES AT PROPOSED MELROSE AND FARADAY DETENTION BASINS (RICK ENGINEERING COMPANY JOB NUMBER 13182-D) Dear Mr. Van Peski: Rick Engineering Company has completed revisions to the hydrologic analysis for the watershed tributary to Agua Hedionda Creek within the Rancho Carlsbad Mobile Home Park in the City of Carlsbad, California. These revisions resulted in changes to the geometry of the outlet structures at the proposed Melrose and Faraday detention basins. This letter specifies the revised geometry of each outlet structure. Modifications to the HEC-1 hydro logic model included the following: • Basin factors were reevaluated and changed appropriately based on the impact of new environmental regulations and their restrictions on the ultimate development of the watershed. Lag times were recalculated based on the modified basin factors. • Manning's roughness coefficients in the stream routing were reevaluated and modified in the HEC-1 where appropriate based on the impact of new environmental regulations and their restrictions on the ultimate development in the watershed. o The storage routing rating curve for the proposed Melrose detention basin was revised based on the grading plans titled "Carlsbad Raceway" Project No. C.T. 98-10, Drawing No. 409-1 A, Sheet 4 of 14, dated September 2002. • The storage routing rating curve for the proposed Faraday detention basin was revised based on the grading plans titled "Carlsbad -Oaks North El Fuerte Street" Project No. C.T. 97-13, Drawing No. XXX-XA, Sheet 3 of 7, dated April 2003, and grading plans titled "Carlsbad Oaks North Faraday Avenue" Project No. C.T. 97-13, Drawing No. XXX-XA, Sheets 9 and 10 of 19, dated March 2003. Mr. Glen Van Peski February 11, 2004 Page 2 The geometry of the Melrose outlet structure was specified on the above-mentioned plans as a 36" reinforced concrete pipe (RCP) placed within the existing 10'x7' reinforced concrete box (RCB). The RCP would maintain the existing flow1ine elevation, and a concrete wall would be constructed to block the void. The modified geometry consists of an orifice plate with a rectangular opening of 5.6' wide by 4' tall in place of the 36" RCP. The existing flow line elevation of 308 ft is maintained. This opening allows approximately 489 cfs out of the basin. The ponded water surface elevation within the basin is 330.5 ft, which results in approximately 49.3 ac-ft of storage. On the above-mentioned grading plans, the geometry of the Faraday outlet structure was designated as a 6' by 7' RCB with a flowline elevation of 221.84 ft. The modified geometry specifies a 4.3' wide by 5.7' tall RCB in place of the 6' by 7' RCB. The existing flowline elevation of 221.84 ft is maintained. This opening allows approximately 642 cfs out of the basin. The ponded water surface elevation within the basin is 241.4 fl, which results in approximately 49.8 ac-ft of storage. The hydraulics of the outlet structures are so sensitive that even the slightest change in the dimensions results in significant fluctuations in storage volume. If the structures are constructed with standardized dimensions (whole or half foot increments) they will not function properly. If the outlet is too large it under-utilizes the available storage and increases the flow rate downstream. If it is too small the basin will store too much and exceed the 50 ac-ft maximum volume limit per the regulations of the Division of Safety of Dams (DSOD). Please forward this infonnation-to the appropriate consultants so the grading plans can be modified to reflect the new outlet structure geometries. ff you have any questions regarding this letter please contact me at (6 l 9) 291-0707. Sincerely, Dennis C. Bowling, M. L~=---- R.C.E. #32838, Exp. 06/06 Principal DCB:KH:jc.001 NOTE!! ElECTRON/C DATA filES AH£ FOR REFERENCE ONl Y ANO ARE NOT TO BE USEIJ FOR HORIZONTAL OR ~llCAl SURVEY CONTROL ©2008 O'Day Consultants, Inc. p RE INSPECTOR SEE SHEET No. 2 BUil T" DATE DATE BENCHMARK: DESCRIPTION: LOCATION: 2" ALUMINUM DISC STAMPED GPS CONlROL PT. 2002 IN SIDEWALK NORTH SIOE OF PALOMAR AIRPORT ROAD, 300 FEET M"ST OF MELROSE DRI/IE RECORD FROM: R.O.S. NO. 1727! {PT. NO. 71) ELEVATION: 444.00 M.S.L. DATUM: NGVD 1929 SEE SHEET No. 3 DATE INITIAL ENGINEER OF WORK REVISION DESCRIPTION l:\961005\9605Chy.:14.ctw~ Moy 20, 2008" 2:09pm Xrefs:: 9605TPO.S; 96051?06; 9605WC4; 9605plan; 9605iP01; 9605TP02; 9605HYLY; 9605CG; 96050-IR; 96DSCHYD I DATE I I I I I I \ r-- I I I j .INITIAL OTHER APPROVAL ---- DATE INITIAL CITY APPROVAL o· 200' 100 SCALE: 1" = 100' NOT£: All Q's AH£ CFS FOH 100-YH STOHJI CITY OF CARIBBAD I SHEETS I ENGINEERING DEPARTMENT GRADING ANO EROSION CONTROJ. Pl.ANS FOR: CARLSBAD OAKS NORTH PHASE .I CT97-1J APPROVED BY: DAVID A. HAUSER PE 33081 EXP: 06/30 OB DEPUTY CITY ENGINEER DATE OWN BY: PROJECT NO. DRAWING NO. CHKD BY: __ _ RVWD BY: C. T. 97-13 415-9X • . .,,..· . . . ~.,,,.;..,,~-yby: . . . •. RICK ENGIN RING COMPANY . -ssro:FRIAAS . . . ,"SAN DIEGO, CA 9211 a ." .· . 619) 291-0707 . . . . I .. . . OCEAN BOTTOM· CONTOURS. DERIVED FROM 1968 U.S.G.S. QUAD MAPS. ..f ,.._.-·· . .'. . ~ ._. , . ..:.~.;: .. ·,,/'r::·'-:.-~_ --~---~: _ ......... ' ··.·i-.; :\,-,._/·"' \. ;· -:_ , $.t-i°E ~'.":(;.;;· 6 7 10 I 11 I 13 14 I 1 tf!,~r-: .. .-. . . . .,.. i·!. ';:- . . . . . . ....... ,, .. , C-.•~---: .. i _1,f, . ~J,~' :/'·,:\ .,.•,.,;':• .. · .,-~i)i:,~;'" /:.:: ~:•-.' ·-,~:;:i?-t!ft ··:·'.~ GRAPHIC SCALE ; 1" = 400' \ Aerial Photo Date -Sept. -Oct. 1988.' Aerial Photo Scale 1 ':,9600 \ This map was compiled by photogrammetric medthods and meets nalonal map standard . a=iracy specifications. Horizontal Control is Based On the CaliforniaCoordinate System JliAD 83. Vertical Control is Based On the 1929 MEAN SEAIEVEL DATUM. . . ' . CARLSBAD. , -OAK'S .• .•. .. . ·•. N_. . -- \ Tllb'( .... . ' II . ,I> 0 O• "ti r z 0 .. .. :u, rn <- .V> -., .. 0 2 ( 0 . m V) " :u 'O -I -0 2 .-'ri 0 -I )> -< -I rn )> . 'O 'O :u 2 0 -I ~ -)> r r I\') W- 0) I 0) :::E 0 z 0 . •. " .. _ 0 :u )> :,: z G) z 9 ' l\•--;' ,.,?,,. -- 0 :XI. ,... ~ z a, -< • .--..·; . . .,,,.,,;,,., . ,_.,J ',.•" ,. ~ __ ,.., .,...... <· ·.-..i;,• . '· I:· ) ,, I 0 (I) 'T] :i: ·, m rn -j k . t-N i (>I -·~--:-