Loading...
HomeMy WebLinkAboutCDP 2020-0018; FORESTER RESIDENCE; DRAINAGE STUDY; 2022-10-01DRAINAGE STUDY Forester Residence 4464 Adams Street Carlsbad, California 92008 Project Tracking/Permit Number: CDP2020-0018 DWG. 533-8A Submittal Date(s): 1st Final Engineering Submittal: August, 2021 2nd Submittal: July 2022 Prepared for: John and Julie Forester Owner 300 Carlsbad Village Drive Suite 108A-355 Carlsbad, CA 92008 Prepared by: Fusion Engineering & Technology Contact Person: John S. Rivera, RCE # 73878 Fusion Project Number WO#0004-0001, DLN003 Fusion Engineering & Technology 1810 Gillespie Way, Suite 207 El Cajon, CA 92020 P: (619) 736-2800 3rd Submittal: October 2022 [THIS PAGE INTENTIONALLY LEFT BLANK] DECLARATION OF RESPONSIBLE CHARGE I HEREBY DECLARE THAT I AM THE ENGINEER OF WORK FOR THIS PROJECT, THAT I HAVE EXERCISED RESPONSIBLE CHARGE OVER THE DESIGN OF THE PROJECT AS DEFINED IN SECTION 6703 OF THE BUSINESS AND PROFESSIONS CODE, AND THAT THE DESIGN IS CONSISTENT WITH CURRENT STANDARDS. I UNDERSTAND THAT THE CHECK OF PROJECT DRAWINGS AND SPECIFICATIONS BY THE COUNTY OF SAN DIEGO IS CONFINED TO A REVIEW ONLY AND DOES NOT RELIEVE ME, AS ENGINEER OF WORK, OF MY RESPONSIBILITIES FOR PROJECT DESIGN. BY: DATE:________ John Silas Rivera, P.E. C73878 RCE NO.: 73878 EXPIRES: 06/30/2023 FUSION ENGINEERING & TECHNOLOGY 1810 GILLESPIE WAY, SUITE 207 EL CAJON, CA 92020 PHONE: (619) 736-2800 7/13/2022 [THIS PAGE INTENTIONALLY LEFT BLANK] Table of Contents Executive Summary Section 1 – Project Information Project Description Hydrologic Setting Section 2 – Methodology and Design Criteria Hydrology/ Rational Method Storm Drain/Hydraulics Detention Analysis Section 3 – Hydrologic Effect of Project Existing Condition Proposed Condition Project Erosion and Sedimentation Section 4 – Summary and Conclusions Section 5 – References List of Exhibits Exhibit A – Vicinity Map Exhibit B – Watershed Vicinity Map Exhibit C – City General Plan Land Use/Zoning Map Exhibit D – Hydrologic Soil Type(s) Exhibit E – FEMA Firmette Map List of Appendices Appendix A – Hydrologic Calculations & Maps Appendix B – Hydraulic Calculations Executive Summary This drainage study presents an analysis of the effects that the proposed construction of the Forester Residence project will have on the quantity and pattern of storm water runoff in the local watershed. This study examines the existing and proposed hydrology of the site and presents final design engineering recommendations for the project drainage facilities necessary to mitigate runoff due to the proposed improvements. Section 1 – Project Information Project Description The Forester Residence project site is located at 4464 Adams Street in the City of Carlsbad, CA. The site at the southeast corner of Adams Street and Highland Drive intersection. Refer to Exhibit A for the vicinity map of the project location. The current site consists of a single-family residence with driveway improvements. The project proposes to replace the existing residence and driveway along Adams Street with a new residence and driveway connecting to Highland Drive. The project proposes a moderate increase in impervious area. Section 3 of this study fully describes the pre and post condition hydrological results of the developed site including whether detention at the site is necessary. Hydrologic Setting The project site is located in the Los Monos Hydrologic Sub Area (904.31) which is part of the Agua Hedionda Watershed (904.00).Exhibit B illustrates the project site in the context of the watershed. The project site is currently developed and slopes from north to south from an elevation of 100 msl to 70 msl. The subject lot includes a slope down from Highland Drive in the north, a building pad in the center, and a slope down to Adams Street in the south. The property drains in sheet flow condition towards Adams Street which then flows in a southeasterly direction until it is collected by curb inlet approximately and discharges to Agua Hedionda Lagoon. The existing surrounding areas generally consists of single residential development. The general plan designation for the area is currently Residential. The assessor’s parcel numbers (APNs) for the site is 206- 192-08.Exhibit C illustrates the City of Carlsbad General Plan and Zoning near the project site. The NRCS WebSoil Survey for the by the United States Department of Agriculture Soil Conservation Service was reference as a source to determine the site’s underlying hydrologic soil group classification. It determined the sites underlying soil to consist of Type B soils (Marina Loamy Coarse Sand). Type B soils are characterized as ‘soils having a moderate infiltration rate (moderate runoff potential) when thoroughly wet’ and ‘consist chiefly or moderately deep to deep, moderately well to well drained soils with moderately fine to moderately coarse textures. These soils have a moderate rate of water transmission.Exhibit D illustrates the soil types and limits. The Federal Emergency Management Agency (FEMA) website was referenced to determine the site’s location relative to any mapped flood hazard areas. The project site was determined to be within an area on the FEMA Flood Insurance Rate Map designated as Zone X, an area of minimal flood hazard. The FIRMette Map associated with the Forester Residence project is included in Exhibit E. The FiIRMette was derived from Map Panel 06073C0764H. Section 2 – Methodology and Design Criteria Hydrology/ Rational Method Per the city drainage standards, the critical 100-year frequency, 6-hour storm has a total rainfall of 2.25 inches. 2.5 Rational Method Hydrologic Analysis Computer Software Package – AES-2016 Design Storm - 100-year return intervals Land Use – Single Family development Soil Type – Hydrologic soil group B was assumed for all areas after referencing the NRCS Web Soil Survey website. Runoff Coefficient – In accordance with the San Diego County Hydrology Manual (SDCHM) Standards, the C coefficient for natural and undeveloped areas is 0.25; the C coefficient for developed areas is a weighted factor of 0.25 (landscape in soil ) and 0.9 (impervious areas) as a function of the fraction of impervious areas (ai expressed as a decimal value between 0 and 1) according to: C = 0.25(1-ai) + 0.9ai Rainfall Intensity - Initial time of concentration values were determined using the County of San Diego’s overland flow nomograph for urban areas. Downstream Tc values are determined by adding the initial sub-basin time of concentration and the downstream routing time. Per SDCHM standards, intensity values were determined from the County of San Diego’s Intensity-Duration equation. Method of Analysis – The Rational Method is the most widely used hydrologic model for estimating peak runoff rates. Applied to small urban and semi-urban areas with drainage areas less than 0.5 square miles, the Rational Method relates storm rainfall intensity, a runoff coefficient, and drainage area to peak runoff rate. This relationship is expressed by the equation: Q = CIA where: Q = The peak runoff rate in cubic feet per second at the point of analysis. C = A runoff coefficient representing the area - averaged ratio of runoff to rainfall intensity. I =The time-averaged rainfall intensity in in/hr. corresponding to the time of concentration. A = The drainage basin area in acres. To perform a node-link study, the total watershed area is divided into subareas which discharge at designated nodes. The procedure for the subarea summation model is as follows: (1)Subdivide the watershed into an initial subarea (generally 1 lot in developed conditions or an area with a maximum overland flow length does not exceed values displayed in Table 3.2 of the SDCHM) and subsequent subareas, which are generally less than 10 acres in size. Assign upstream and downstream node numbers to each subarea. (2)Estimate an initial Tc by using the appropriate nomograph or overland flow velocity estimation. (3)Using the initial Tc, determine the corresponding values of I. Then Q = C I A. (4)Using Q, estimate the travel time between this node and the next by Manning’s equation as applied to the particular channel or conduit linking the two nodes. Then, repeat the calculation for Q based on the revised intensity (which is a function of the revised time of concentration) The nodes are joined together by links, which may be street gutter flows, drainage swales, drainage ditches, pipe flow, or various channel flows. The AES-2016 computer subarea menu is as follows: SUBAREA HYDROLOGIC PROCESS 1.Confluence analysis at node. 2.Initial subarea analysis (including time of concentration calculation). 3.Pipe flow travel time (computer estimated). 4.Pipe flow travel time (user specified). 5.Trapezoidal channel travel time. 6.Street flow analysis through subarea. 7.User - specified information at node. 8.Addition of subarea runoff to main line. 9.V-gutter flow through area. 10.Copy main stream data to memory bank 11.Confluence main stream data with a memory bank 12.Clear a memory bank At the confluence point of two or more basins, the following procedure is used to combine peak flow rates to account for differences in the basin’s times of concentration. This adjustment is based on the assumption that each basin’s hydrographs are triangular in shape. (1).If the collection streams have the same times of concentration, then the Q values are directly summed, Qp = Qa + Qb; Tp = Ta = Tb (2).If the collection streams have different times of concentration, the smaller of the tributary Q values may be adjusted as follows: (i).The most frequent case is where the collection stream with the longer time of concentration has the larger Q. The smaller Q value is adjusted by the ratio of rainfall intensities. Qp = Qa + Qb (Ia/Ib); Tp = Ta (ii).In some cases, the collection stream with the shorter time of concentration has the larger Q. Then the smaller Q is adjusted by a ratio of the T values. Qp = Qb +Qa (Tb/Ta); Tp = Tb For more than 3 peaks that have a confluence in a discharge area a similar logic but more complex approach is used: If “N” peaks are at confluence, and “N” different times of concentration are analyzed, “N” confluence calculations are made at each of the “N” time of concentration values. Peak flows are arranged from smaller to larger in terms of time of concentration and not in terms of value. For a time of concentration Tci belonging to a peak Qi the peaks whose time of concentration is smaller than Tci are adjusted by intensity and the peaks whose time of concentration is larger than Tci are adjusted by a ratio of the Tci values. The total peak flow with the time of concentration Tci (denoted as QTTci) will be: QTTci = Q1·(Ii/I1) + Q2·(Ii/I2) + … + Qi + Qi+1 (Tci/Tci+1) + … + QN·(Tci/TcN) The confluence peak is chosen as the larger between QTTc1, QTTc2, …. , QTTci, QTTci+1, …. , QTTcN-1, QTTcN See Appendix A for Pre-project and Post-project rational method hydrology calculations. Storm Drain/Hydraulics Onsite Storm drain will be sized to convey the runoff from the 100-year storm event. Storm drain routing hydraulics will be performed utilizing the AutoCAD Civil3D StormSewers extension. Catch basins will be sized based on location (sag or continuous grade), grade, and flow rate received. The calculations will be performed utilizing the AutoCAD Civil3D Hydraflow Express extension. See Appendix B for hydraulic calculations Section 3 – Hydrologic Effect of Project Existing Condition The existing site is currently developed with a single-family residence with driveway and slope landscape improvements. Stormwater runoff generated by the site sheet flows towards Adams Street. Gutter flow adjacent to the site drains southeast towards a curb inlet located downstream of the site which subsequently discharges to Agua Hedionda Lagoon. The site was calculated to have a weighted runoff coefficient of 0.441 based on the amount of pervious and impervious surfaces. The hydrologic calculations included in Appendix A determined the amount of runoff from the site to be 2.11 cfs from 0.71 acres.Appendix A also includes the Existing Condition Drainage Map depicting the sites current drainage patterns. Proposed Condition The project proposes to replace the existing single-family residence and driveway connecting to Adams street with a new single-family residence and driveway connecting to Highland Drive. The roof downspouts will discharge at the surface to the new driveway and/or landscaped dispersion areas. Flow from the new driveway and adjacent landscape areas will be directed to onsite catch basins and then piped to a BMP to satisfy pollutant control requirements. The slope area along Adams Street will sheet flow directly to Adams Street and is not tributary to the project BMP. Please refer to the project Storm Water Quality Management Plan for further details. The discharge from the site BMP will then be piped down the slope along Adams Street and discharges to Adams Street via curb outlet. The existing drainage patterns will generally be maintained as runoff from the site is directed towards Adams Street. The site proposes an increase in impervious surfaces. However, due to the extended path of travel the increase in runoff is negligible from 2.11 cfs in existing condition to 2.33 cfs in proposed condition. Therefore, the negligible increase in flow is not expected to present any significant risk to life or property downstream of the project site. Refer to Appendix A for post condition calculations and drainage map associated with the proposed improvements at the site. Table 1 below summarizes the hydrologic calculations for both the existing and proposed conditions. The Nodes on the table correspond to those shown on the hydrology maps in Appendix A. Table 1- Summary of Total Pre Vs Post Developed Conditions Condition Watershed Area (acres) 100-Year Peak Flow (cfs) Existing 0.71 2.11 Proposed 0.71 2.33 Difference:0.0 +0.22 Project Erosion and Sedimentation Since the project will not significantly increase the amount of runoff versus existing condition, runoff will be over non-erodible surfaces, and since the project will not create a runoff diversion, neither erosion or sedimentation are anticipated. Once flows have exited the lot, the flows are conveyed via impervious surfaces (gutters and storm drain pipes) not subject to erosion, and discharges to the Agua Hedionda Lagoon. Section 4 – Summary and Conclusions æ The project proposes a redevelopment project to construct a new single-family residence with associated driveway and landscaped slope improvements. The proposed improvements to the site will not significantly increase the amount of runoff generated versus existing conditions due to the similarities in runoff coefficients and time of concentration. æ The proposed design of the onsite drainage collection and storm drain facilities is adequate to convey the expected peak flow rates generated at the site. Exhibit A- Vicinity Map PROJECT SITE VICINITY CITY OF OCEANSIDE PACIFIC OCEAN la MAP CITY OF ENCINITAS NOT TO SCALE CITY OF VISTA ITY OF N MARCOS Exhibit B- Watershed Vicinity Map l ayers □ 303(d) List and TMDLs 2014-2016 (bggend) D Areas of Special Biological Significance 0 Arid and Semi-Arid Regions 0 Caltrans Districts 0 Caltrans Facilities 0 Caltrans lier 1 Monitoring Sites ~ Calwater Watersheds 0 Coastal Zone 0 Counties 0 Geologic Map (bggend) 0 High Risk Receiving Watersheds 0 Monthly Precipita tion 0 MS4Areas 0 Post Miles 0 Rainfall Distribution 0 RWQCB Boundaries 0 USGS Topo Maps 0 Watershed Boundary Dataset Risk Level Oetennination lnfonnation Hover over a layer name for a description. Additional information, tables. coordinates, and links are below the map. HelQ Watershed Information CALWATER WATERSHED Hydrologic Unit Hydrologic Sub-Area Name Latitude,Longitude CARLSBAD Los Monos 33.1629. -117.2323 X Planning Watershed 4904310000 Hydrologic sub-Area # Regional Board Hydrologic Region Hydrologic Unit Hydrologic Area Hydrologic sub-Area Hydrologic Area Planning Watershed Agua Hedionda 4904310000 904.31 San Diego Hydrologic Sub-Area # HSA Area (acres) 904.31 13686 Map data ©2020 Imagery 2020. Data CS\JMB SFML. CJ Exhibit C- City General Plan and /or Zoning Map 3 $/2 0 $5 $,5 3 2 5 7 5 ' &$1 1 2 1 5 ' 3 2 ,1 6 (7 7,$/1 /$&267$$9 &$5/6%$' %/ & $0,12 9,'$52%/( $/*$5' )$5$'$<$9 &$5 /6 %$'9 ,//$*('5 2/,9(1+$,15' &2 //(*(%/ ( /  & $ 0 , 1 2 5 ( $ / 5$1&+26$17$)(5 ' 7$0$5$&.$9 $9,$ 5 $3< 0 ( /52 6 ( '5 0$5521 5' $9(1,'$ (1&,1$6 3$6(2 ' ( / 1 257( & 2 // ( *( %/ 32,16(77,$/1                                                                                            ]]]]]] ]] ]] ]] ]] ]] ]] ]] ]] ]] ]] ]] ]]]]]] ]] ]] ]]]]]]]]]] ]] ]] ]] ]] ]] ]] ]] ]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] ]] ]] ]] ]] ]] ]] ]] ]] ]] ]] ]] ]] ]] ]]]]]]]]]]]]]]]] ]] ]] ]] ]] ]] ]] ]] ]] ]] ]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]                                                                                                                              &) / / / / 2 2 2 2 26 26 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 3, 5 5 9& 9& 3 3 5 *& /&) 5 26 5 9& 9& 26 5 55 / 9% 9% 26 5 59& 5 5 3,3, 3 3, 5 5 / 5 5 / 5 5 5 5 5 3 5 55 5 59& 5 5 5 5 5 5 5 5 26 3 5 5 5 5 5 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 26 5 5 5 26 5 5 26 26 26 26 26 3, 3, 26 26 5 5 3 5 5 5 5 5 3 26 3, 3, 5 5 5 5 3 5 5 26 26 26 26 26 53,3, 5 5 26 5 5 26 26 26 26 26 26 26 5 5 5 5 26 26 26 5 5 265 9&5 3 26 3*& 2 26 5 3,2 2 3, 26 26 26 5 3, 5 26 26 9&26 265 5 5 5 5 &) 26 26 7& 26 5 5 3 3, *& 3,2 9& 26 5 5/ 5 5 3, 3, 263, 5 26 5/ 26 5 5 26 3 5 26 26 5 26 2 5 5 53 2 2 3*& 5 5 55 9& 3 52 9 5 9& 5 3 26 5 9& 9& 5 3 26 26 9& 5 5 5 9&5 9& 5 26 5 5 9& 26 5 *& 526 5 5 5 5 5 5 5 55 5 5 &)&) 5 &)5 5 5 5 5 5 5 &) 5 5 &) &)5 2 5 55 55 3 26 26 55 5 2 3,3 3,2 5 5 9& 26 2 9& 9& 9& 5 9&9& *& 2 2 3 26 5 5 26 9& 5 3, 3 26 26 5 5 5 5 5 5 9&5 5 5 5 55 59& 9& *& 5 55 5 55 5 55 5 5 5 5 26 5 5 5 55 55 555 2 *& *& 9& 5 5 5 5 5 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 5 5 5 5 5 55 &) 5 5 5 5 3 5 5 5 5 &) &) 5 26 2 5/ 55 2 (1&,1,7$6 0&&/(//$13$/20$5$,53257 $JXD +HGLRQGD/DJRRQ %XHQD 9LVWD /DJRRQ &DODYHUD /DNH 0DHUNOH 5HVHUYRLU 3DFLILF 2FHDQ A "õ %DWLTXLWRV /DJRRQ 3$6(2$/,62 81,&251,2 -())(56 2 1 &277217$,/ .12:/(6 *5$<:2/) /$*81$ *$ 5), (/' *(2'( /,1'(1 /,*+7+286( $'$06 * 5,= =/< 3$/0(5 &$51$7,21 '211$ &267 $$/7$ 721', &+(67187 -$0(6 0$*(//$1 +,*+/$1' $/'(5 ;$1$ /((:$5' /263,1 2 6 620%526$ :(67+$9(1 6$1 /8,6 +$5',1* &,1'< %5,$5:22' %/$&.5$,/ 5,'*(&5(67 085,//2 9 $ //(< 02152( 62/$12 7(/(6&23( 72:1*$5'(1 0,/721 3$/$&,2 '$,6< *5((1+ $9(1 %$7,48,726 7 8 77/( / ( 9 $ 1 7 ( +229(5 (6)(5$ *$</( 0$5,7,0( & 2/80%,1( 2 &($ 1 6($:$5' /$17$1$ 6 ($*$7( 3$/0(772 )5267 '$</,/< 2/<03,$ 7$1$*(5 &29(175< 58%< 3$6 (2$9(//$12 &$< .$/0,$ & 25 '2%$ 5(*$77$ +$5:,&+ )/$0(1 &2 :(67:22' 63221%,// 6$/,6%85< ($6< 3257$*( +$/,7( &$6 6,16 & 2 5,17,$ %$6 6 :2 2 ' 628 7 +$03721 3$5. %82< 1(%/,1$ 3$6(27$;&2 &,5&8/23$3$<2 $=$+$5 3$6(2 &$1'(/(52 7230$67 6 7$7( 0,&$ &257,1$ 526( +($7+ 3$/(14 8 ( 3,1( $33,$1 /21 *)(//2: 3$/0 0,/)25' &$'(1&,$ /21,&(5$ 675$7$ $0$5 *26 $ /$3,6 6.</,1( /$ * 2 / 2 1 ' 5,1 $ */(1 6,7,20$1$1$ 3217,$& 9,&725,$ 3 (/,&$1 *2/'6721( &$//,$1'5$ *$/(1 $ &257(25&+,',$ &$0,12/,1' 2 0,0 2 6 $ ,6/( 3$/20$52$.6 +2 63 3$1 121,$ +,//6,'( &<17+,$ 3/8075(( &$//(3$/0,72 $0%526,$ /$&267$ /2 0 $/$*81$ 7$0 $5$&. (/6$/72)$//6 3/$=$ 6$17$&/$5$ 6($ )$ 5(5 9(5'( +,*+ 5,'*( 48(%5$'$ +800,1*%,5 ' &$0,1 2 9,'$ 52%/( &$&$78$ &$0,126(5%$/ 3,.$ (6&$//21,$ 9,$&2148,67$'25 &(/,1 '$ $1,//2 5$1&+2)$026$ 3$&,),& 586+526( *5(%( /,/,80 6,7,2%$<$ 7 85482,6( $0(6 &$11$6 5$1&+2&257(6 6877(5 %5<$1 7 0$5,326$ &$55,//2 % / 8(25 &+,' /2786 $9(1,'$/$&,0$ &$0,12 $5(1 $ $9(1,'$$1$&$3$ 5((9( $1'5($ <2 5. :$/1 87 0$*12/,$ /$'8(/$ /,021,7( (1&(/,$ 0$5 5 2 1 /$ 3257$/$' $ 0$'5,/(1 $ &$0,12 52 %/('2 *5$1' 3$ &,),& 0$1=$1,7$ $9(1,'$+(/(&+2 52&,2 6(*29,$ 3(781,$ 67$1)25' 9$/(1&,$ :,/'526( &257(3$125$0$ )25(67 25,2/( 0,/$12 &,5&8/2 6(482,$ (67$1&,$ *$7(6+($' 6$33+,5( *$*( 25,21 0$< :$ 6+,1*721 &$//($&(592 $9( 1,'$9$ /( 5$ *$//(21 %($&21%$< &5<67$ //,1( * $ /,&,$ -($11( 858%8 9,6 7 $/$1,6$ //$0 $ )2853($.6 /<1&+ .(675(/ %8(1$9,67$ ( ',1 %85*+ &5(63, /$3$= &$//(&2 1,)(5$ & 257(520(52 3$6(2 $55$<$1 72:+(( 1,*+76+$'( $9(1,'$3$17(5$ &5(6 7 78 516721( $9(1,'$$5$*21 &2%%/( 672 1( 78/( /$1$, 6($ 6&$3( 3$6(2&5,67$/ +20 ( &(%8 9(50$5,1( ) 2 6 & $ 5$1&+2 5,2 &+,&2 &5(679,(: 7($ 75(( 25&+,' *$5%262 3$6 (2 $/0(1'52 &,75,1( 6$86$/,72 ,1129$7,21 &$7$/,1$ 2$. '$))2',/ /2.( 5 $9 ($67 5,// 520(5,$ 0(/2',$ 6($& 5(6 7 &$%2 +,''(19$//(< %2/(5 2 &2/7 %25'(1 5(')2; 5,)7 &$//(%$5&(/21$ 7+(&5266,1*6 %5 $'< (/. 3 5,( 67/< &,0$ (/5$6752 %(*21,$ &,$5', :+,37$,//223 3$6(2 $1&+2 /,1 '6 $< :+,0%5(/ 7,%8521 35,0$9(5 $ $9(1,'$ 0 $ 5$9,//$ 6.<6$,/ 6&$83 $9$/21 7</(5 5 226 (9(/7 :$7(5&2856( &$53$ /,1& 2/1 0$3 /( &257(/$1*2 67$ 685)&5(67 *$ 5) ,(/' /(( $&$&,$ $6+%(55< /,1'$ ),21$ +25,=21 ),1&+ -8 1,3 (5 &$//( 0$'(52 6811<+,// 9$/(:22' $9,$5$ $/0$'(1 2 :(1 6 +(0/2&. 681&83 $9,$5$ 5(6257 6<0( :22'/$1' &$5&28175< $9(1,'$',(675 2 7 2/.,(1 $5$3$+2 %8(1$ -$63 (5 3/ $<$ ,5,6 75,*2 '$5:,1 $67 21 &$/(7$ 6721(5,'*( 1(3(7$ (/0:22' %58&( 1(:721 0 $ 67(56 <285(// 0$5,$ &$0,1 2/$5*2 +$<0$5 6,7,2 )5217(5$ 75,721 .($76 0 86/2 *$ =(//( +$5%25 $0%(5 $/,&$17 ( ),6+( 5 *58//$ &$/,'5,6 &26026 -$'( 7(51 -(5(= $ 5/$1' 6$/. %$5%(55< $//6721 )(50, 0$9(5,& . 0$5&$6,7( *$9,27$ .(//< =2',$& /$.(:22' /8,6(12 $&81$ &$0(2 3233< 3,1725(6&2 6$9$11$+ 2/($1'(5 &+(6+,5( (/ $5%2/ 6.,00(5 621'5$ 0$1$*8$ $7 +(1 6 &2/,%5, . ,1* 67 2 1 /$5('2 %8&.5,'*(:$'6:257+ :+,7(:$7(5 &259$//,6 723(.$ $*8,/$ 7,7$1,7 ( 6$/,(17( /21*9,(: 0(/$ /(8&$ &259,'$( &267$'(/0$5 7,*(5581 3$ /20 $532,17 5 (() 6,7,2$/*2'21 52&.526( 6,7,2 2&($12 $5 (1$/ &$//(0 $'5 ,' /,216+($' :,/621 $9,/$ & $7$ /3$ 5(*(17 : ( 672$ . 6 2%(/,6&2 .(//2** )/((7 /$63$/0$6 %$%,/21,$ /2 .(5 $9 :(67 /(*2/$1' /$1$.$, % / $&.%,5 ' +(521 0$5%5,6$ &,75 $&$'2 /DQG8VH0DS *(1(5$/3/$1 *HQHUDO3ODQ/DQG8VH 55HVLGHQWLDOGXDF 55HVLGHQWLDOGXDF 55HVLGHQWLDOGXDF 55HVLGHQWLDOGXDF 5/5HVLGHQWLDOGXDF/RFDO6KRSSLQJ&HQWHU 59&5HVLGHQWLDOGXDF9LVLWRU&RPPHUFLDO 525HVLGHQWLDOGXDF2IILFH 55HVLGHQWLDOGXDF 55HVLGHQWLDOGXDF 99LOODJH 9%9LOODJH%DUULR //RFDO6KRSSLQJ&HQWHU /&)/RFDO6KRSSLQJ&HQWHU&RPPXQLW\)DFLOLWLHV *&*HQHUDO&RPPHUFLDO 9&9LVLWRU&RPPHUFLDO 9&269LVLWRU&RPPHUFLDO2SHQ6SDFH 55HJLRQDO&RPPHUFLDO 3,3ODQQHG,QGXVWULDO 3,23ODQQHG,QGXVWULDO2IILFH 22IILFH 33XEOLF &)&RPPXQLW\)DFLOLWLHV 262SHQ6SDFH 7&7UDQVSRUWDWLRQ&RUULGRU -?FEJLV?SURGXFWV?SODQQLQJ?6WDQGDUG0DS?*3/DQG8VH[P[G )HHW 8SGDWHG$SULO &RDVWDO=RQH +LJKZD\ 0DMRU6WUHHW 3ODQQHG6WUHHW 5DLOURDG /DJRRQ 5LJKWRI:D\ &LW\/LPLWV $LUSRUW,QIOXHQFH$UHD ]] ]] ]]5HYLHZ$UHD    5HYLHZ$UHD: = - I I I ' - \ = \ \ \ \ \ \ \ _.,,.--~~~ ... ---- r--------. . l_ ____ .\ -- - ---"T"'---.. C cityof Carlsbad -.. ... ' - .I I I I j ., Exhibit D- Hydrologic Soil Type(s) 6RLO0DS²6DQ'LHJR&RXQW\$UHD&DOLIRUQLD 1DWXUDO5HVRXUFHV &RQVHUYDWLRQ6HUYLFH :HE6RLO6XUYH\ 1DWLRQDO&RRSHUDWLYH6RLO6XUYH\  3DJHRI                                                                                                                                                ƒ  1   ƒ         : ƒ  1   ƒ         : ƒ  1   ƒ         : ƒ  1   ƒ         : 1 0DSSURMHFWLRQ:HE0HUFDWRU&RUQHUFRRUGLQDWHV:*6(GJHWLFV870=RQH1:*6  )HHW   0HWHUV 0DS6FDOHLISULQWHGRQ$ODQGVFDSH [ VKHHW 6RLO0DSPD\QRWEHYDOLGDWWKLVVFDOH USDA = 0$3/(*(1'0$3,1)250$7,21 $UHDRI,QWHUHVW $2, $UHDRI,QWHUHVW $2, 6RLOV 6RLO0DS8QLW3RO\JRQV 6RLO0DS8QLW/LQHV 6RLO0DS8QLW3RLQWV 6SHFLDO3RLQW)HDWXUHV %ORZRXW %RUURZ3LW &OD\6SRW &ORVHG'HSUHVVLRQ *UDYHO3LW *UDYHOO\6SRW /DQGILOO /DYD)ORZ 0DUVKRUVZDPS 0LQHRU4XDUU\ 0LVFHOODQHRXV:DWHU 3HUHQQLDO:DWHU 5RFN2XWFURS 6DOLQH6SRW 6DQG\6SRW 6HYHUHO\(URGHG6SRW 6LQNKROH 6OLGHRU6OLS 6RGLF6SRW 6SRLO$UHD 6WRQ\6SRW 9HU\6WRQ\6SRW :HW6SRW 2WKHU 6SHFLDO/LQH)HDWXUHV :DWHU)HDWXUHV 6WUHDPVDQG&DQDOV 7UDQVSRUWDWLRQ 5DLOV ,QWHUVWDWH+LJKZD\V 865RXWHV 0DMRU5RDGV /RFDO5RDGV %DFNJURXQG $HULDO3KRWRJUDSK\ 7KHVRLOVXUYH\VWKDWFRPSULVH\RXU$2,ZHUHPDSSHGDW  :DUQLQJ6RLO0DSPD\QRWEHYDOLGDWWKLVVFDOH (QODUJHPHQWRIPDSVEH\RQGWKHVFDOHRIPDSSLQJFDQFDXVH PLVXQGHUVWDQGLQJRIWKHGHWDLORIPDSSLQJDQGDFFXUDF\RIVRLO OLQHSODFHPHQW7KHPDSVGRQRWVKRZWKHVPDOODUHDVRI FRQWUDVWLQJVRLOVWKDWFRXOGKDYHEHHQVKRZQDWDPRUHGHWDLOHG VFDOH 3OHDVHUHO\RQWKHEDUVFDOHRQHDFKPDSVKHHWIRUPDS PHDVXUHPHQWV 6RXUFHRI0DS 1DWXUDO5HVRXUFHV&RQVHUYDWLRQ6HUYLFH :HE6RLO6XUYH\85/ &RRUGLQDWH6\VWHP :HE0HUFDWRU (36* 0DSVIURPWKH:HE6RLO6XUYH\DUHEDVHGRQWKH:HE0HUFDWRU SURMHFWLRQZKLFKSUHVHUYHVGLUHFWLRQDQGVKDSHEXWGLVWRUWV GLVWDQFHDQGDUHD$SURMHFWLRQWKDWSUHVHUYHVDUHDVXFKDVWKH $OEHUVHTXDODUHDFRQLFSURMHFWLRQVKRXOGEHXVHGLIPRUH DFFXUDWHFDOFXODWLRQVRIGLVWDQFHRUDUHDDUHUHTXLUHG 7KLVSURGXFWLVJHQHUDWHGIURPWKH86'$15&6FHUWLILHGGDWDDV RIWKHYHUVLRQGDWH V OLVWHGEHORZ 6RLO6XUYH\$UHD 6DQ'LHJR&RXQW\$UHD&DOLIRUQLD 6XUYH\$UHD'DWD 9HUVLRQ6HS 6RLOPDSXQLWVDUHODEHOHG DVVSDFHDOORZV IRUPDSVFDOHV RUODUJHU 'DWH V DHULDOLPDJHVZHUHSKRWRJUDSKHG 1RY²1RY  7KHRUWKRSKRWRRURWKHUEDVHPDSRQZKLFKWKHVRLOOLQHVZHUH FRPSLOHGDQGGLJLWL]HGSUREDEO\GLIIHUVIURPWKHEDFNJURXQG LPDJHU\GLVSOD\HGRQWKHVHPDSV$VDUHVXOWVRPHPLQRU VKLIWLQJRIPDSXQLWERXQGDULHVPD\EHHYLGHQW 6RLO0DS²6DQ'LHJR&RXQW\$UHD&DOLIRUQLD 1DWXUDO5HVRXUFHV &RQVHUYDWLRQ6HUYLFH :HE6RLO6XUYH\ 1DWLRQDO&RRSHUDWLYH6RLO6XUYH\  3DJHRI el D a ---, D Cb '{}1 6 [] ... -~ 181 ,,....,, • H-+ ◊ _,,.- X _,,.-. .. ~ 0 ~ A. • ~ 0 0 V + · .. . . 0 3, tJ - USDA = 6DQ'LHJR&RXQW\$UHD&DOLIRUQLD 0O(²0DULQDORDP\FRDUVHVDQGWRSHUFHQWVORSHV 0DS8QLW6HWWLQJ 1DWLRQDOPDSXQLWV\PEROKEI 0HDQDQQXDODLUWHPSHUDWXUHWRGHJUHHV) )URVWIUHHSHULRGWRGD\V )DUPODQGFODVVLILFDWLRQ1RWSULPHIDUPODQG 0DS8QLW&RPSRVLWLRQ 0DULQDDQGVLPLODUVRLOVSHUFHQW 0LQRUFRPSRQHQWVSHUFHQW (VWLPDWHVDUHEDVHGRQREVHUYDWLRQVGHVFULSWLRQVDQGWUDQVHFWVRI WKHPDSXQLW 'HVFULSWLRQRI0DULQD 6HWWLQJ /DQGIRUP5LGJHV 'RZQVORSHVKDSH&RQFDYH $FURVVVORSHVKDSH/LQHDU 3DUHQWPDWHULDO(ROLDQVDQGVGHULYHGIURPPL[HGVRXUFHV 7\SLFDOSURILOH +WRLQFKHVORDP\FRDUVHVDQG +WRLQFKHVORDP\VDQGORDP\FRDUVHVDQG +WRLQFKHVVDQGFRDUVHVDQG +WRLQFKHV +WRLQFKHV 3URSHUWLHVDQGTXDOLWLHV 6ORSHWRSHUFHQW 'HSWKWRUHVWULFWLYHIHDWXUH0RUHWKDQLQFKHV 1DWXUDOGUDLQDJHFODVV6RPHZKDWH[FHVVLYHO\GUDLQHG 5XQRIIFODVV+LJK &DSDFLW\RIWKHPRVWOLPLWLQJOD\HUWRWUDQVPLWZDWHU .VDW  0RGHUDWHO\KLJKWRKLJK WRLQKU 'HSWKWRZDWHUWDEOH0RUHWKDQLQFKHV )UHTXHQF\RIIORRGLQJ1RQH )UHTXHQF\RISRQGLQJ1RQH 6DOLQLW\PD[LPXPLQSURILOH1RQVDOLQHWRYHU\VOLJKWO\VDOLQH  WRPPKRVFP $YDLODEOHZDWHUVWRUDJHLQSURILOH0RGHUDWH DERXWLQFKHV ,QWHUSUHWLYHJURXSV /DQGFDSDELOLW\FODVVLILFDWLRQ LUULJDWHG H /DQGFDSDELOLW\FODVVLILFDWLRQ QRQLUULJDWHG H +\GURORJLF6RLO*URXS% +\GULFVRLOUDWLQJ1R 0DS8QLW'HVFULSWLRQ0DULQDORDP\FRDUVHVDQGWRSHUFHQWVORSHV6DQ'LHJR&RXQW\ $UHD&DOLIRUQLD 1DWXUDO5HVRXUFHV &RQVHUYDWLRQ6HUYLFH :HE6RLO6XUYH\ 1DWLRQDO&RRSHUDWLYH6RLO6XUYH\  3DJHRIIii 0LQRU&RPSRQHQWV &RUUDOLWRV 3HUFHQWRIPDSXQLWSHUFHQW +\GULFVRLOUDWLQJ1R &DUOVEDG 3HUFHQWRIPDSXQLWSHUFHQW +\GULFVRLOUDWLQJ1R &KHVWHUWRQ 3HUFHQWRIPDSXQLWSHUFHQW +\GULFVRLOUDWLQJ1R 'DWD6RXUFH,QIRUPDWLRQ 6RLO6XUYH\$UHD 6DQ'LHJR&RXQW\$UHD&DOLIRUQLD 6XUYH\$UHD'DWD 9HUVLRQ6HS 0DS8QLW'HVFULSWLRQ0DULQDORDP\FRDUVHVDQGWRSHUFHQWVORSHV6DQ'LHJR&RXQW\ $UHD&DOLIRUQLD 1DWXUDO5HVRXUFHV &RQVHUYDWLRQ6HUYLFH :HE6RLO6XUYH\ 1DWLRQDO&RRSHUDWLYH6RLO6XUYH\  3DJHRIIii 0DS8QLW/HJHQG 0DS8QLW6\PERO 0DS8QLW1DPH $FUHVLQ$2,3HUFHQWRI$2, 0O(0DULQDORDP\FRDUVHVDQG WRSHUFHQWVORSHV  7RWDOVIRU$UHDRI,QWHUHVW  6RLO0DS²6DQ'LHJR&RXQW\$UHD&DOLIRUQLD 1DWXUDO5HVRXUFHV &RQVHUYDWLRQ6HUYLFH :HE6RLO6XUYH\ 1DWLRQDO&RRSHUDWLYH6RLO6XUYH\  3DJHRIUSDA "" +\GURORJLF6RLO*URXS²6DQ'LHJR&RXQW\$UHD&DOLIRUQLD $GDPV6WUHHW 1DWXUDO5HVRXUFHV &RQVHUYDWLRQ6HUYLFH :HE6RLO6XUYH\ 1DWLRQDO&RRSHUDWLYH6RLO6XUYH\  3DJHRI                                                                                                                          ƒ  1   ƒ         : ƒ  1   ƒ         : ƒ  1   ƒ         : ƒ  1   ƒ         : 1 0DSSURMHFWLRQ:HE0HUFDWRU&RUQHUFRRUGLQDWHV:*6(GJHWLFV870=RQH1:*6 )HHW  0HWHUV 0DS6FDOHLISULQWHGRQ$ODQGVFDSH [ VKHHW 6RLO0DSPD\QRWEHYDOLGDWWKLVVFDOH USDA = 0$3/(*(1'0$3,1)250$7,21 $UHDRI,QWHUHVW $2, $UHDRI,QWHUHVW $2, 6RLOV 6RLO5DWLQJ3RO\JRQV $ $' % %' & &' ' 1RWUDWHGRUQRWDYDLODEOH 6RLO5DWLQJ/LQHV $ $' % %' & &' ' 1RWUDWHGRUQRWDYDLODEOH 6RLO5DWLQJ3RLQWV $ $' % %' & &' ' 1RWUDWHGRUQRWDYDLODEOH :DWHU)HDWXUHV 6WUHDPVDQG&DQDOV 7UDQVSRUWDWLRQ 5DLOV ,QWHUVWDWH+LJKZD\V 865RXWHV 0DMRU5RDGV /RFDO5RDGV %DFNJURXQG $HULDO3KRWRJUDSK\ 7KHVRLOVXUYH\VWKDWFRPSULVH\RXU$2,ZHUHPDSSHGDW  :DUQLQJ6RLO0DSPD\QRWEHYDOLGDWWKLVVFDOH (QODUJHPHQWRIPDSVEH\RQGWKHVFDOHRIPDSSLQJFDQFDXVH PLVXQGHUVWDQGLQJRIWKHGHWDLORIPDSSLQJDQGDFFXUDF\RIVRLO OLQHSODFHPHQW7KHPDSVGRQRWVKRZWKHVPDOODUHDVRI FRQWUDVWLQJVRLOVWKDWFRXOGKDYHEHHQVKRZQDWDPRUHGHWDLOHG VFDOH 3OHDVHUHO\RQWKHEDUVFDOHRQHDFKPDSVKHHWIRUPDS PHDVXUHPHQWV 6RXUFHRI0DS 1DWXUDO5HVRXUFHV&RQVHUYDWLRQ6HUYLFH :HE6RLO6XUYH\85/ &RRUGLQDWH6\VWHP :HE0HUFDWRU (36* 0DSVIURPWKH:HE6RLO6XUYH\DUHEDVHGRQWKH:HE0HUFDWRU SURMHFWLRQZKLFKSUHVHUYHVGLUHFWLRQDQGVKDSHEXWGLVWRUWV GLVWDQFHDQGDUHD$SURMHFWLRQWKDWSUHVHUYHVDUHDVXFKDVWKH $OEHUVHTXDODUHDFRQLFSURMHFWLRQVKRXOGEHXVHGLIPRUH DFFXUDWHFDOFXODWLRQVRIGLVWDQFHRUDUHDDUHUHTXLUHG 7KLVSURGXFWLVJHQHUDWHGIURPWKH86'$15&6FHUWLILHGGDWDDV RIWKHYHUVLRQGDWH V OLVWHGEHORZ 6RLO6XUYH\$UHD 6DQ'LHJR&RXQW\$UHD&DOLIRUQLD 6XUYH\$UHD'DWD 9HUVLRQ6HS 6RLOPDSXQLWVDUHODEHOHG DVVSDFHDOORZV IRUPDSVFDOHV RUODUJHU 'DWH V DHULDOLPDJHVZHUHSKRWRJUDSKHG 1RY²1RY  7KHRUWKRSKRWRRURWKHUEDVHPDSRQZKLFKWKHVRLOOLQHVZHUH FRPSLOHGDQGGLJLWL]HGSUREDEO\GLIIHUVIURPWKHEDFNJURXQG LPDJHU\GLVSOD\HGRQWKHVHPDSV$VDUHVXOWVRPHPLQRU VKLIWLQJRIPDSXQLWERXQGDULHVPD\EHHYLGHQW +\GURORJLF6RLO*URXS²6DQ'LHJR&RXQW\$UHD&DOLIRUQLD $GDPV6WUHHW 1DWXUDO5HVRXUFHV &RQVHUYDWLRQ6HUYLFH :HE6RLO6XUYH\ 1DWLRQDO&RRSHUDWLYH6RLO6XUYH\  3DJHRIUSDA = D D D D D D D D D ,....,,,. ,....,,,. .. " □ ■ ■ □ □ ,....._, t-H ,,,.,_, _., ---• +\GURORJLF6RLO*URXS 0DSXQLWV\PERO 0DSXQLWQDPH 5DWLQJ $FUHVLQ$2,3HUFHQWRI$2, 0O(0DULQDORDP\FRDUVH VDQGWRSHUFHQW VORSHV % 7RWDOVIRU$UHDRI,QWHUHVW  'HVFULSWLRQ +\GURORJLFVRLOJURXSVDUHEDVHGRQHVWLPDWHVRIUXQRIISRWHQWLDO6RLOVDUH DVVLJQHGWRRQHRIIRXUJURXSVDFFRUGLQJWRWKHUDWHRIZDWHULQILOWUDWLRQZKHQWKH VRLOVDUHQRWSURWHFWHGE\YHJHWDWLRQDUHWKRURXJKO\ZHWDQGUHFHLYH SUHFLSLWDWLRQIURPORQJGXUDWLRQVWRUPV 7KHVRLOVLQWKH8QLWHG6WDWHVDUHDVVLJQHGWRIRXUJURXSV $%&DQG' DQG WKUHHGXDOFODVVHV $'%'DQG&' 7KHJURXSVDUHGHILQHGDVIROORZV *URXS$6RLOVKDYLQJDKLJKLQILOWUDWLRQUDWH ORZUXQRIISRWHQWLDO ZKHQ WKRURXJKO\ZHW7KHVHFRQVLVWPDLQO\RIGHHSZHOOGUDLQHGWRH[FHVVLYHO\ GUDLQHGVDQGVRUJUDYHOO\VDQGV7KHVHVRLOVKDYHDKLJKUDWHRIZDWHU WUDQVPLVVLRQ *URXS%6RLOVKDYLQJDPRGHUDWHLQILOWUDWLRQUDWHZKHQWKRURXJKO\ZHW7KHVH FRQVLVWFKLHIO\RIPRGHUDWHO\GHHSRUGHHSPRGHUDWHO\ZHOOGUDLQHGRUZHOO GUDLQHGVRLOVWKDWKDYHPRGHUDWHO\ILQHWH[WXUHWRPRGHUDWHO\FRDUVHWH[WXUH 7KHVHVRLOVKDYHDPRGHUDWHUDWHRIZDWHUWUDQVPLVVLRQ *URXS&6RLOVKDYLQJDVORZLQILOWUDWLRQUDWHZKHQWKRURXJKO\ZHW7KHVHFRQVLVW FKLHIO\RIVRLOVKDYLQJDOD\HUWKDWLPSHGHVWKHGRZQZDUGPRYHPHQWRIZDWHURU VRLOVRIPRGHUDWHO\ILQHWH[WXUHRUILQHWH[WXUH7KHVHVRLOVKDYHDVORZUDWHRI ZDWHUWUDQVPLVVLRQ *URXS'6RLOVKDYLQJDYHU\VORZLQILOWUDWLRQUDWH KLJKUXQRIISRWHQWLDO ZKHQ WKRURXJKO\ZHW7KHVHFRQVLVWFKLHIO\RIFOD\VWKDWKDYHDKLJKVKULQNVZHOO SRWHQWLDOVRLOVWKDWKDYHDKLJKZDWHUWDEOHVRLOVWKDWKDYHDFOD\SDQRUFOD\ OD\HUDWRUQHDUWKHVXUIDFHDQGVRLOVWKDWDUHVKDOORZRYHUQHDUO\LPSHUYLRXV PDWHULDO7KHVHVRLOVKDYHDYHU\VORZUDWHRIZDWHUWUDQVPLVVLRQ ,IDVRLOLVDVVLJQHGWRDGXDOK\GURORJLFJURXS $'%'RU&' WKHILUVWOHWWHULV IRUGUDLQHGDUHDVDQGWKHVHFRQGLVIRUXQGUDLQHGDUHDV2QO\WKHVRLOVWKDWLQ WKHLUQDWXUDOFRQGLWLRQDUHLQJURXS'DUHDVVLJQHGWRGXDOFODVVHV 5DWLQJ2SWLRQV $JJUHJDWLRQ0HWKRG'RPLQDQW&RQGLWLRQ +\GURORJLF6RLO*URXS²6DQ'LHJR&RXQW\$UHD&DOLIRUQLD $GDPV6WUHHW 1DWXUDO5HVRXUFHV &RQVHUYDWLRQ6HUYLFH :HE6RLO6XUYH\ 1DWLRQDO&RRSHUDWLYH6RLO6XUYH\  3DJHRIUSDA "" &RPSRQHQW3HUFHQW&XWRII1RQH6SHFLILHG 7LHEUHDN5XOH+LJKHU +\GURORJLF6RLO*URXS²6DQ'LHJR&RXQW\$UHD&DOLIRUQLD $GDPV6WUHHW 1DWXUDO5HVRXUFHV &RQVHUYDWLRQ6HUYLFH :HE6RLO6XUYH\ 1DWLRQDO&RRSHUDWLYH6RLO6XUYH\  3DJHRIIii Exhibit E- FEMA Firmette Map 86*67KH1DWLRQDO0DS2UWKRLPDJHU\'DWDUHIUHVKHG$SULO 1DWLRQDO)ORRG+D]DUG/D\HU),50HWWH  )HHW ö   ƒ         :  ƒ 1   ƒ         :  ƒ 1 6((),65(3257)25'(7$,/('/(*(1'$1',1'(;0$3)25),503$1(//$<287 63(&,$/)/22' +$=$5'$5($6 :LWKRXW%DVH)ORRG(OHYDWLRQ %)( =RQH$9$ :LWK%)(RU'HSWK =RQH$($2$+9($5 5HJXODWRU\)ORRGZD\ $QQXDO&KDQFH)ORRG+D]DUG$UHDVRIDQQXDOFKDQFHIORRGZLWKDYHUDJHGHSWKOHVVWKDQRQHIRRWRUZLWKGUDLQDJHDUHDVRIOHVVWKDQRQHVTXDUHPLOH=RQH; )XWXUH&RQGLWLRQV$QQXDO &KDQFH)ORRG+D]DUG =RQH; $UHDZLWK5HGXFHG)ORRG5LVNGXHWR /HYHH6HH1RWHV=RQH; $UHDZLWK)ORRG5LVNGXHWR/HYHH=RQH' 126&5((1 $UHDRI0LQLPDO)ORRG+D]DUG =RQH; $UHDRI8QGHWHUPLQHG)ORRG+D]DUG =RQH' &KDQQHO&XOYHUWRU6WRUP6HZHU /HYHH'LNHRU)ORRGZDOO &URVV6HFWLRQVZLWK$QQXDO&KDQFH :DWHU6XUIDFH(OHYDWLRQ &RDVWDO7UDQVHFW &RDVWDO7UDQVHFW%DVHOLQH 3URILOH%DVHOLQH +\GURJUDSKLF)HDWXUH %DVH)ORRG(OHYDWLRQ/LQH %)( (IIHFWLYH/205V /LPLWRI6WXG\ -XULVGLFWLRQ%RXQGDU\ 'LJLWDO'DWD$YDLODEOH 1R'LJLWDO'DWD$YDLODEOH 8QPDSSHG 7KLVPDSFRPSOLHVZLWK)(0$ VVWDQGDUGVIRUWKHXVHRI GLJLWDOIORRGPDSVLILWLVQRWYRLGDVGHVFULEHGEHORZ7KHEDVHPDSVKRZQFRPSOLHVZLWK)(0$ VEDVHPDSDFFXUDF\VWDQGDUGV 7KHIORRGKD]DUGLQIRUPDWLRQLVGHULYHGGLUHFWO\IURPWKHDXWKRULWDWLYH1)+/ZHEVHUYLFHVSURYLGHGE\)(0$7KLVPDSZDVH[SRUWHGRQDW30DQGGRHVQRWUHIOHFWFKDQJHVRUDPHQGPHQWVVXEVHTXHQWWRWKLVGDWHDQGWLPH7KH1)+/DQGHIIHFWLYHLQIRUPDWLRQPD\FKDQJHRU EHFRPHVXSHUVHGHGE\QHZGDWDRYHUWLPH 7KLVPDSLPDJHLVYRLGLIWKHRQHRUPRUHRIWKHIROORZLQJPDS HOHPHQWVGRQRWDSSHDUEDVHPDSLPDJHU\IORRG]RQHODEHOV OHJHQGVFDOHEDUPDSFUHDWLRQGDWHFRPPXQLW\LGHQWLILHUV ),50SDQHOQXPEHUDQG),50HIIHFWLYHGDWH0DSLPDJHVIRUXQPDSSHGDQGXQPRGHUQL]HGDUHDVFDQQRWEHXVHGIRUUHJXODWRU\SXUSRVHV /HJHQG 27+(5$5($62) )/22'+$=$5' 27+(5$5($6 *(1(5$/ 6758&785(6 27+(5 )($785(6 0$33$1(/6   % 7KHSLQGLVSOD\HGRQWKHPDSLVDQDSSUR[LPDWHSRLQWVHOHFWHGE\WKHXVHUDQGGRHVQRWUHSUHVHQWDQDXWKRULWDWLYHSURSHUW\ORFDWLRQ 1111111 0-- - ,_,.,,.,,513 ............... Appendix A- Hydrologic Calculations & Maps 4464 Adams Street Hydrology Calculations Node Node Area (s.f.) Area (ac.) Elev Up (ft)Elev Down (ft)Length (ft)Slope Notes Area Imp % Imp C Code 2 11 12 4859 0.112 106.3 90.0 100 16.3%3044 63%0.66 Code 6 12 13 9577 0.220 90.0 79.0 142 7.7%2832 30%0.45 Code 6 13 14 16444 0.378 79.0 66.5 224 5.6%2987 18%0.37 Total 30880 0.709 8863 Node Node Area (s.f.) Area (ac.) Elev Up (ft)Elev Down (ft)Length (ft)Slope Notes Area Imp % Imp C Code 2 31 32 4712 0.108 106.3 91.4 108 13.8%2578 55%0.61 Code 6 32 33 7875 0.181 91.4 90.6 103 0.8%4328 55%0.61 Code 3 33 34 86.6 81.0 143 3.9% Code 8 33 34 8183 0.188 5394 66%0.67 Code 3 34 35 76.0 66.5 77 12.3% Code 8 62 35 10110 0.232 463 5%0.28 Total 30880 0.709 12763 Existing Condition Hydrology Parameters Proposed Condition Hydrology Parameters P6= 2.6 in PROJECT SITE I I I I H-++-H-++-H-+-+-H--+-,~-t-H---t----t-H-++H-++Hr>+++--14++--14+-1----,1----J.+o •+-t--1H--+--t--1H--+--t--1H--+-+-cfu,+-+-<-+-+-+-<-+--+-+-<-+--+-+-Juu,+-+-+-++-+-+-+-+-+-+-+-+--1 r,-H-++-H--++-H--++-H-+,!.-H-+-+-H-+-+-H-+-+-H~~•~-+-+-H--+--+-+--l--+--+-+--l--+--<l:;;➔++--IH---1---+--IH--+-+--IH----1 L a. .l, t f' :r i "' V .....,1<,., r - '' -'-"'""" I ~~++=+~~~~tt~~--~-~-~--t·t·,,t,ij~~tttt⇒q;~ttt"~··tt.Jj·t...,:·1·~1-7~·:-:;~i,;~t_ c;··~t t 1-+r~~4;j:,-tt tt1:::+p;-+t---ftti=L1=tt=..-1=-+t=..,tl=L11 .. 1=-+1:= ... :j:.; ..... tt+ zj .... ::::j~r-f .. ..i~=.:1:+-:1:+ ::1;+ ::l-+ :::1_r_1:=,J.__:!:=+ ::1;+ ::1;+ ::::j;=J= .... 1:=~:t=+-t+;,1;+ ::l_c+ ,;,J=J .... =J:,,._:t •• ~=1a+ ,cf-+. =let =J=_;:~=i:+-:l:+ ::1;+ :::t-+ 7J-J-.... t-i...., v .. / · o,· ~ 0 • 'f• ••••·• ·i, .. '" · · . .'. ~c. ·r •• ... .. i< L.o ,~· ('l ...., ' . · ··· .i•t-r-f'.'i·v_·~,'ll':N>t"\\t-b.•f:11.~1l.··,!;" .;-d-H --ti-'+·-t· ~-H-+R''-l·-t··:1··1tj-··"i'1""· r ll-t-l-'t -t-r-,t--t-H.,P,H tii-H +H4-H+H-+.-t-t->;;-+··9~•1s-•• ,·, -+-,+-+-+-+-+-+-+-+-+-t ,•• ' .,_ ,'• .. ·\ ~ . •, .. ,.., A NCINI I 1(1 I so '11 E ,,. ',J ;) I/ r-' ~ •· ··l •. \ C~ '. "' r 11 r"II •• ,--il•, l'lllrr,,.,. ·.-J\ 11'1~ -r :• k •,:l'i, ' -~·t.1.~±'ilf-~f'Jk-t1-Jrt,,--!lrt+H+H-t.,,;""l-~-'-i+H +.H---t--ji-+,'!--4-;r.~+H+f-l',l--l~,+-t+H+H-+l+.J;;t+H+l-lf-+iH-+ll '(, -. -· ~~- ·r •• --y .. IIH EIG : . .,.,, I • I P. I, ( ,. I 3-'"'lOH"ti-tt-t-t-H+t-++t-++,++-t++-++H+!+!-+.ii-++-l++-++W+l-+~f--l-+-l-l-W+W+l-+-l--f--l-+-l-l-W+W-l-W..!-i-l-..l....l-l-W+W..l...W-l---l-..l....l-l-U 2 31• --~ ~ "i "i "i 'i "i 3 County of San Diego Hydrology Manual 100 Year Rainfall Event -6 Hours I lsopluvial (inches) I DPW *GIS Otp,o.-irt,IP.Jtk\l\:tKI ~.'f<l',,,,,,,,<11M1S-..nll:...- s1iGIS We H:h·..: S:.in Dir.:gu C,m.'.:rtd! THIS M,tt.P IS PROVIDED WITHOUT WARRANTY OF r,,j'( KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, 8UT NOT UMITEDTO, THE IMPI.IED W.of!RPlfTIES OF MERCHMTABIUTY ANO ATNESS FOR A PMTICUL.AR PURPOSE CopyrlghtSanGIS. All Rights Roeorwd, TIiis pro,lUCta may eontaln lnfonnatlon hun Ille SANDAO Regional lnformetion8~..tiicheennott>erepf'()(lucecl...thouttroe wr1ttenpennilalonolSNIOAG. TIiis pn:dld:mayoont11_,. lnfonnation ..tilch hll& been rep'Odueeo:1 .a, permisaiongraneo:itiyThanaa8rOIMl"IIMaps 3 Miles I San Diego County Hydrology Manual Date: June 2003 Table 3-1 Section: Page: RUNOFF COEFFICIENTS FOR URBAN AREAS Land Use Runoff Coefficient "C" Soil Type NRCS Elements County Elements %IMPER. A t 'B ~ \...>...>.J Undisturbed Natural Terrain (Natural) Permanent Open Space 0* 0.20 0.25 Low Density Residential (LDR) Residential, 1.0 DU/A or less 10 0.27 0.32 Low Density Residential (LOR) Residential, 2.0 DU/A or less 20 0.34 0.38 Low Density Residential (LOR) Residential, 2.9 DU/A or less 25 0.38 0.41 Medium Density Residential (MDR) Residential, 4.3 DU/A or less 30 0.41 0.45 Medium Density Residential (MDR) Residential, 7.3 DU/A or less 40 0.48 0.51 Medium Density Residential (MDR) Residential, 10.9 DU/A or less 45 0.52 0.54 Medium Density Residential (MDR) Residential, 14.5 DU/A or less 50 0.55 0.58 High Density Residential (HOR) Residential, 24.0 DU/ A or less 65 0.66 0.67 High Density Residential (HOR) Residential, 43.0 DU/A or less 80 0.76 0.77 Commercial/Industrial (N. Com) Neighborhood Commercial 80 0.76 0.77 Commercial/Industrial (G. Com) General Commercial 85 0.80 0.80 Commercial/Industrial (O.P. Com) Office Professional/Commercial 90 0.83 0.84 Commercial/Industrial (Limited I.) Limited Industrial 90 0.83 0.84 Commercial/Industrial (General I.) General Industrial 95 0.87 0.87 C 0.30 0.36 0.42 0.45 0.48 0.54 0.57 0.60 0.69 0.78 0.78 0.81 0.84 0.84 0.87 3 6 of26 D 0.35 0.41 0.46 0.49 0.52 0.57 0.60 0.63 0.71 0.79 0.79 0.82 0.85 0.85 0.87 *The values associated with 0% impervious may be used for direct calculation of the runoff coefficient as described in Section 3.1.2 (representing the pervious runoff coefficient, Cp, for the soil type), or for areas that will remain undisturbed in perpetuity. Justification must be given that the area will remain natural forever (e.g., the area is located in Cleveland National Forest). DU/ A = dwelling units per acre NRCS = National Resources Conservation Service 3-6 H I G H LA N D D RI V E ADAMS STREET Node 14 Q100EX = 2.11 cfs AEX = 0.7 ac Tc = 5.12 min APN 206-192-08 206-192-07 4464 ADAMS STREET PREPARED BY: FUSION ENG TECH 1810 GILLESPIE WAY #207 EL CAJON, CA 92020 (619) 736-2800 PROJECT BOUNDARY DRAINAGE BOUNDARY INTIAL SUBAREA FLOW DIRECTION AREA HYDROLOGIC SOIL TYPE NODE NUMBER IMPERVIOUS AREA \ \ \ \ \ \ U "~ \ ' ~ \ '"" '~ -,-______ ---::7---~===~~~/f \ 2 -------==-+-------- ASPH ~ -------~>-<:: ' -----------. ~-\--1-·-,-""" \ \ ~-= --- ---- / I --,~""·· =-------.., -1--=~,.,.,----100 \ ~'•-----~ -------- 20 0 20 40 60 SCALE 1"; 20' LEGEND ------ I 00.00 ACRES I ® G EXISTING CONDITION HYDROLOGY MAP FORESTER RESIDENCE 4464 ADAMS STREET CITY OF CARLSBAD, CALIFORNIA MAP 1 OF 1 R:\0003\Hyd\CAD\0003$HYD.dwgOJul-06-2022:11 :05 8 0 ,j. 8 0 .. d 3 _________________________________________________________________________ ___ ************************************************************************* *** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1239 Analysis prepared by: ************************** DESCRIPTION OF STUDY ************************** * 4464 Adams Street * * Q100 Existing * * WO#0004-0001 * ************************************************************************* * FILE NAME: R:\AES\0003\EX100.DAT TIME/DATE OF STUDY: 16:15 02/10/2022 ------------------------------------------------------------------------ ---- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ------------------------------------------------------------------------ ---- 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.600 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) === ===== ========= ================= ====== ===== ====== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 2 17.0 10.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 3 20.0 12.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 4 16.0 10.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 5 26.0 18.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 6 44.0 12.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.50 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ************************************************************************* *** FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 21 ------------------------------------------------------------------------ ---- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ========================================================================= === *USER SPECIFIED(SUBAREA): RESIDENTIAL (2. DU/AC OR LESS) RUNOFF COEFFICIENT = .6600 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 UPSTREAM ELEVATION(FEET) = 106.30 DOWNSTREAM ELEVATION(FEET) = 90.00 ELEVATION DIFFERENCE(FEET) = 16.30 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 3.676 WARNING: THE MAXIMUM OVERLAND FLOW SLOPE, 10.%, IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.850 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.51 TOTAL AREA(ACRES) = 0.11 TOTAL RUNOFF(CFS) = 0.51 ************************************************************************* *** FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 62 ------------------------------------------------------------------------ ---- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STREET TABLE SECTION # 4 USED)<<<<< ========================================================================= === UPSTREAM ELEVATION(FEET) = 90.00 DOWNSTREAM ELEVATION(FEET) = 79.00 STREET LENGTH(FEET) = 142.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 16.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.85 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.18 HALFSTREET FLOOD WIDTH(FEET) = 2.66 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.48 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.80 STREET FLOW TRAVEL TIME(MIN.) = 0.53 Tc(MIN.) = 4.21 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.850 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .4500 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.521 SUBAREA AREA(ACRES) = 0.22 SUBAREA RUNOFF(CFS) = 0.68 TOTAL AREA(ACRES) = 0.3 PEAK FLOW RATE(CFS) = 1.18 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.20 HALFSTREET FLOOD WIDTH(FEET) = 3.86 FLOW VELOCITY(FEET/SEC.) = 4.44 DEPTH*VELOCITY(FT*FT/SEC.) = 0.90 LONGEST FLOWPATH FROM NODE 11.00 TO NODE 13.00 = 242.00 FEET. ************************************************************************* *** FLOW PROCESS FROM NODE 13.00 TO NODE 14.00 IS CODE = 62 ------------------------------------------------------------------------ ---- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STREET TABLE SECTION # 3 USED)<<<<< ========================================================================= === UPSTREAM ELEVATION(FEET) = 79.00 DOWNSTREAM ELEVATION(FEET) = 66.50 STREET LENGTH(FEET) = 224.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 12.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.66 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.23 HALFSTREET FLOOD WIDTH(FEET) = 5.38 AVERAGE FLOW VELOCITY(FEET/SEC.) = 4.06 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.95 STREET FLOW TRAVEL TIME(MIN.) = 0.92 Tc(MIN.) = 5.12 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.743 *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .3700 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.441 SUBAREA AREA(ACRES) = 0.38 SUBAREA RUNOFF(CFS) = 0.94 TOTAL AREA(ACRES) = 0.7 PEAK FLOW RATE(CFS) = 2.11 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.25 HALFSTREET FLOOD WIDTH(FEET) = 6.15 FLOW VELOCITY(FEET/SEC.) = 4.25 DEPTH*VELOCITY(FT*FT/SEC.) = 1.06 LONGEST FLOWPATH FROM NODE 11.00 TO NODE 14.00 = 466.00 FEET. ========================================================================= === END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 0.7 TC(MIN.) = 5.12 PEAK FLOW RATE(CFS) = 2.11 ========================================================================= === ========================================================================= === END OF RATIONAL METHOD ANALYSIS H I G H L A N D DR I V E ADAMS STREET Node 35Q100PR = 2.33 cfsAPR = 0.7 acTc = 5.64 min Node 33Q100PR = 1.18 cfsAPR = 0.3 acTc = 5.16 min 206-192-07 Node 34Q100PR = 1.94 cfsAPR = 0.5 acTc = 5.53 min 4464 ADAMS STREET APN 206-192-08 PROJECT BOUNDARY DRAINAGE BOUNDARY INTIAL SUBAREA FLOW DIRECTION AREA HYDROLOGIC SOIL TYPE NODE NUMBER IMPERVIOUS AREA PREPARED BY: FUSION ENG TECH 1810 GILLESPIE WAY #207 EL CAJON, CA 92020 (619) 736-2800 I I I I I 0 I I z I I I I w I I I I C ) I I I w I I I _ J I I \ \ ,, / ,, / ~ ~ @) 0 "' ( 8 c: i 0 \ I __ j ' ~ , - - \ 1 1 1 1 \ \ \, -1 \ \ - ~ ( ~ / ___ _ _ _ , \' \ \ _J 'l - ... ,. f" ~' I "- 1' · \ , " ti ,, , \ \ ! i I ,. \ \I ii \.~ I i i t,L I ' ) /\I ' . ~ ,, !, - " \ I \ I ,, , \ □ !4 • '/) < ' / , -. - . -s« ,< , y ' c:i I I I I ' I I I ' I I • ,. ~ I ~ ~, l\ . ( ~ X ~ ')< N n"v V 1N v < J <Ji v : 7 .i><. . > l'. ) { > < ) 1Q < tx , ; ; 1 !I ) ~ Y ' > ( lk x ' Y r '" ' /'' V JI' \ j ' y ~ l l: l fA, X 11)\ X , , / : I gx ,v ,JA J \ / ' 1 ~ I 1, - 1 / ' - / v ' ,/ v l ~ \I c: i I. I I I 1' . . _ ,, \} ,( \ ( ' , , f v \ d 1, J n 1, I : I I I I, :◄ I I I ) u f ,: OI'- A / ' • " ' / u ~, ' ✓QLX \I I : A '" ' / ' , A A ; , ,- - . . . . _ ,. , , , ~ 1// ! ; I '' - - 1- I I 71 , I I \ I J \. ' I I J I 'i l . ? ' /V v ' Y I ◄ ,< : I / I I / \ I -·i ' I \ , ◄ ' \ ' ' ' , ~- ~ 17 f- _ "- (, _ \. -~ \ \ ~ ~ \ 0 co ~ 0 "' 0 b N II ' -"J c) 1/ ) . ( i i ! Il l I l 1'/ J J' , \ \ ~ \ '1 \ \ I , . ; , • \ \ I 1; . ! _: I , 1'1 I I ,i ' , I I +-i_ . ·m : ~! , 11 / 4 1 .· I , , , .. , I I I , } , " , ' , J ,< ~J i L ' ! ! ! •j , - . , . I I I _f. B!J W0 0 - 1 > 0 0 0 f· o · M N o_ 0 < ( ~ LL ~ -- 2 0 "' N ~ I co 0 I w ~ :, - , D U W <t r " z w z c >- er : 0: : I ... n z w ~ e 0 0 0 0 0 ( 1 ) _ J / 0 f - Q_ ~ < ( c) o < t ( / ) u / " >, z 2 W ( / ) " I / n 0 >- er : 2 0 0 0 u ('. ) < ( 0 / rn °' o S <t (f ) ~ o e t : 0 ~ o ~ W < ( j Q_ >- ~ ~ I ( / ) °' T LL o_ Wc . . o o er : -t j - ~ 0 - t j - u LL V _________________________________________________________________________ ___ ************************************************************************* *** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1239 Analysis prepared by: ************************** DESCRIPTION OF STUDY ************************** * 4464 Adams Street * * Q100 Proposed * * WO#0004-0001 * ************************************************************************* * FILE NAME: R:\AES\0003\PR100.DAT TIME/DATE OF STUDY: 15:58 02/10/2022 ------------------------------------------------------------------------ ---- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ------------------------------------------------------------------------ ---- 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.600 SPECIFIED MINIMUM PIPE SIZE(INCH) = 8.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) === ===== ========= ================= ====== ===== ====== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 2 17.0 10.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 3 20.0 12.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 4 16.0 10.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 5 26.0 18.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 6 44.0 12.0 0.020/0.020/0.020 0.50 1.50 0.0313 0.125 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.50 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* ************************************************************************* *** FLOW PROCESS FROM NODE 31.00 TO NODE 32.00 IS CODE = 21 ------------------------------------------------------------------------ ---- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ========================================================================= === *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .6100 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 108.00 UPSTREAM ELEVATION(FEET) = 106.30 DOWNSTREAM ELEVATION(FEET) = 91.40 ELEVATION DIFFERENCE(FEET) = 14.90 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 4.094 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 100.00 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.850 NOTE: RAINFALL INTENSITY IS BASED ON Tc = 5-MINUTE. SUBAREA RUNOFF(CFS) = 0.45 TOTAL AREA(ACRES) = 0.11 TOTAL RUNOFF(CFS) = 0.45 ************************************************************************* *** FLOW PROCESS FROM NODE 32.00 TO NODE 33.00 IS CODE = 62 ------------------------------------------------------------------------ ---- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STREET TABLE SECTION # 4 USED)<<<<< ========================================================================= === UPSTREAM ELEVATION(FEET) = 91.40 DOWNSTREAM ELEVATION(FEET) = 90.60 STREET LENGTH(FEET) = 103.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 16.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 10.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0150 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0150 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.82 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.25 HALFSTREET FLOOD WIDTH(FEET) = 6.27 AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.60 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.40 STREET FLOW TRAVEL TIME(MIN.) = 1.07 Tc(MIN.) = 5.16 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.709 *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .6100 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.610 SUBAREA AREA(ACRES) = 0.18 SUBAREA RUNOFF(CFS) = 0.74 TOTAL AREA(ACRES) = 0.3 PEAK FLOW RATE(CFS) = 1.18 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.28 HALFSTREET FLOOD WIDTH(FEET) = 7.52 FLOW VELOCITY(FEET/SEC.) = 1.73 DEPTH*VELOCITY(FT*FT/SEC.) = 0.48 LONGEST FLOWPATH FROM NODE 31.00 TO NODE 33.00 = 211.00 FEET. ************************************************************************* *** FLOW PROCESS FROM NODE 33.00 TO NODE 34.00 IS CODE = 31 ------------------------------------------------------------------------ ---- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ========================================================================= === ELEVATION DATA: UPSTREAM(FEET) = 86.60 DOWNSTREAM(FEET) = 81.00 FLOW LENGTH(FEET) = 143.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 3.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.55 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.18 PIPE TRAVEL TIME(MIN.) = 0.36 Tc(MIN.) = 5.53 LONGEST FLOWPATH FROM NODE 31.00 TO NODE 34.00 = 354.00 FEET. ************************************************************************* *** FLOW PROCESS FROM NODE 33.00 TO NODE 34.00 IS CODE = 81 ------------------------------------------------------------------------ ---- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ========================================================================= === 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.421 *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .6700 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.6336 SUBAREA AREA(ACRES) = 0.19 SUBAREA RUNOFF(CFS) = 0.81 TOTAL AREA(ACRES) = 0.5 TOTAL RUNOFF(CFS) = 1.94 TC(MIN.) = 5.53 ************************************************************************* *** FLOW PROCESS FROM NODE 34.00 TO NODE 35.00 IS CODE = 31 ------------------------------------------------------------------------ ---- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ========================================================================= === ELEVATION DATA: UPSTREAM(FEET) = 76.00 DOWNSTREAM(FEET) = 66.50 FLOW LENGTH(FEET) = 77.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 9.0 INCH PIPE IS 3.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.40 ESTIMATED PIPE DIAMETER(INCH) = 9.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.94 PIPE TRAVEL TIME(MIN.) = 0.11 Tc(MIN.) = 5.64 LONGEST FLOWPATH FROM NODE 31.00 TO NODE 35.00 = 431.00 FEET. ************************************************************************* *** FLOW PROCESS FROM NODE 34.00 TO NODE 35.00 IS CODE = 81 ------------------------------------------------------------------------ ---- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ========================================================================= === 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.338 *USER SPECIFIED(SUBAREA): RESIDENTIAL (1. DU/AC OR LESS) RUNOFF COEFFICIENT = .2800 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.5179 SUBAREA AREA(ACRES) = 0.23 SUBAREA RUNOFF(CFS) = 0.41 TOTAL AREA(ACRES) = 0.7 TOTAL RUNOFF(CFS) = 2.33 TC(MIN.) = 5.64 ========================================================================= === END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 0.7 TC(MIN.) = 5.64 PEAK FLOW RATE(CFS) = 2.33 ========================================================================= === ========================================================================= === END OF RATIONAL METHOD ANALYSIS Appendix B- Hydraulic Calculations Low orifice:1 "Top orifice:1 " Number:0 Number:0 Cg-low:0.61 Cg-low:0.61 invert elev:0.00 ft invert elev:0.00 ft Middle orifice:1 "Emergency Inlet: number of orif:0 Rim Elev:0.00 ft Cg-middle:0.61 Area 1.13 sq ft 18"x18" Grate Inlet (Assume 50% Opening) invert elev:0.00 ft Circumference 3.00 ft Elev H/D-low H/D-mid H/D-top Qlow-orif Qlow-weir Qtot-low Qmid-orif Qmid-weir Qtot-med Qtop-orif Qtop-weir Qtot-top Qemerg Qtot (ft)---(cfs)(cfs)(cfs)(cfs)(cfs)(cfs)(cfs)(cfs)(cfs)(cfs)(cfs) 0.0 0.00 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.1 1.20 1.20 1.20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.294 0.294 0.2 2.40 2.40 2.40 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.832 0.832 0.3 3.60 3.60 3.60 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.528 1.528 0.4 4.80 4.80 4.80 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.353 2.353 0.5 6.00 6.00 6.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3.288 3.288 4464 Adams Street 18"x18" Catch Basin Stage Discharge Table 4464 Adams Street_Basin Storage-Outlet-Drawdown_Project.xlsx Channel Report Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.Thursday, Feb 10 2022 <Name> Circular Diameter (ft)= 0.67 Invert Elev (ft)= 100.00 Slope (%)= 5.80 N-Value = 0.013 Calculations Compute by:Known Q Known Q (cfs)= 1.18 Highlighted Depth (ft)= 0.30 Q (cfs)= 1.180 Area (sqft)= 0.15 Velocity (ft/s)= 7.68 Wetted Perim (ft)= 0.98 Crit Depth, Yc (ft)= 0.52 Top Width (ft)= 0.67 EGL (ft)= 1.22 0 1 Elev (ft)Section 99.75 100.00 100.25 100.50 100.75 101.00 Reach (ft) 8" HDPE FROM DRIVEWAY CATCH BASIN TO BMP 8" HDPE FROM BMP TO CURB OUTLETChannel Report Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc. <Name> Circular Diameter (ft) Invert Elev (ft) Slope(%) N-Value Calculations Compute by: Known Q ( cfs) Elev (ft) 0 = 0.67 = 100.00 = 24.80 = 0.013 Known Q = 1.94 Highlighted Depth (ft) Q (cfs) Area (sqft) Velocity (ft/s) Wetted Perim (ft) Crit Depth, Ye (ft) Top Width (ft) EGL (ft) 1 Thursday, Feb 10 2022 = 0.26 = 1.940 = 0.13 = 15.21 = 0.90 = 0.63 = 0.65 = 3.86 Section Reach (ft) 4" AREA DRAIN PIPE AT 1.0% SLOPE THIS CALCULATION IS BEING PROVIDED FOR REFERENCE ONLY PER RE- VIEWER'S REQUEST. THE 4" AREA DRAIN PIPE IN THE DRIVEWAY IS NOT INTENDED TO CONVEY PEAK FLOWS, RATHER THE FLOWS ARE INTERCEPTED BY THE 18"x18" CATCH BASIN Channel Report Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc. <Name> Circular Diameter (ft) Invert Elev (ft) Slope(%) N-Value Calculations Compute by: Known Depth (ft) Elev (ft) 101 .00 100.75 100.50 100.25 100.00 99.75 0 = 0.33 = 100.00 = 1.00 = 0.012 Known Depth = 0.31 Wednesday, Sep 28 2022 Highlighted Depth (ft) = 0.31 Q (cfs) = 0.216 Area (sqft) = 0.08 Velocity (ft/s) = 2.59 Wetted Perim (ft) = 0.87 Crit Depth, Ye (ft) = 0.27 Top Width (ft) = 0.16 EGL (ft) = 0.41 Section ~ / -' - ' ' 1 Reach (ft) &KDQQHO5HSRUW +\GUDIORZ([SUHVV([WHQVLRQIRU$XWRGHVNŠ$XWR&$'Š&LYLO'ŠE\$XWRGHVN,QF 0RQGD\-DQ 1DPH! 5HFWDQJXODU %RWWRP:LGWK IW  7RWDO'HSWK IW  ,QYHUW(OHY IW  6ORSH   19DOXH  &DOFXODWLRQV &RPSXWHE\ .QRZQ4 .QRZQ4 FIV  +LJKOLJKWHG 'HSWK IW  4 FIV  $UHD VTIW  9HORFLW\ IWV  :HWWHG3HULP IW  &ULW'HSWK<F IW  7RS:LGWK IW  (*/ IW   (OHY IW 'HSWK IW 6HFWLRQ             5HDFK IW STANDARD CURB OUTLET D-25 CAPACITY