Loading...
HomeMy WebLinkAboutCT 04-14A; TRAILS END; RESPONSE TO PLAN REVIEW; 2017-11-16I A ENGINEERING I CONSULTANTS. INC. 1701 E. Edinger Avenue, Suite A9, Santa Ma, CA 92705 Tel.: (888) 220-5596 Fax: (714) 866-4171 E-Mail: abi@abiconsultants.com Memo To: Paul Hutêhins, DM1 From: Daya Bettadapura CC: Date: November 16, 2017 Re: Response to Plan Review comments from City of Fullerton Keystone Retaining Wall Plan Trails End Development, Carlsbad, CA ABI Project No. 17201 The Keystone wall plan for the subject project, prepared by ABI, has been revised to incorporate recommendations from project Geotechnical Engineer. The design calculations for the wall for its internal and external stability (see attached) requires shorter geogrid reinforcement length relative to that required for global stability. Based on the results of global stability analysis results (see attached) the recommended geogrids length is 18 feet. ABI has also incorporated a drainage ditch at the top of wall to drain the surface water drainage over the slope. The attached plans are electronically stamped and signed. Wet signed plans will be sent via overnight mail to Pacifica office. If you have any questions regarding this memo, please contact me at (888) 220-5596. RECEIVED NOV 202017 LAND DEVELOPMENT ENGINEERING Unit Type: Leveling Pad Wall HI: BackSlope: Surcharge: Results: Factors ofSafelv: Compaclll / 120.00 pcI Crushed Stone 6.00 ft 26.60 deg. slope, LL: 0 psfunform surcharge Load Width: 0.00 ft Sliding Overturning 1.57 3.82 'STONE _RE1A1N1NGWMLSYS1MS RETAINING WALL DESIGN KeyWall 2012 Version 3.7.2 Build 10 Project: Trails End Project No: 17201 Case: Case 1 Design Method: NCI14 3rd Edition (parallelogram soil interface) Desin Parameters Soil Parameters: 4) deg c psf y pcf Reinforced Fill 30 0 130 Retained Zone 30 0 130 Foundation Soil 20 100 130 Reinforced Fill Type: Sand, Silt or Clay Unit Fill: Crushed Stone, 1 inch minus Minimum Design Factors of Safety sliding: 1.50 pullout: 1.50 uncertainties: 1.50 overturning: 2.00 shear: 1.50 connection: 1.50 bearing: 2.00 bending: 1.50 Date: 11/8/2017 Designer: JC-. Design Preferences Professional Mode Reinforcing Parameters: MirafiXT Geogrids Tult RFcr RFd RFid LTDS FS Tal Ci Cds 3XT 3500 1.58 1.10 1.05 1918 1.50 1279 0.80 0.80 Analysis: Case: Case 1 Wall Batter: 0.90 deg (Hinge fit N/A) embedment: 0.50 ft 9.00 ft long DL: 0 pf uniform surcharge Load Width: 0. 00ft Bearing Shear Bending 3.21 6.60 3.28 Calculated Bearing Pressure: 1122/1122 psf Eccentricity at base: 0.58 ft Reinforcing: (ft & lbs/fl) Calc. Layer Height Length Tension 4 4.67 6.0 126 3 3.33 6.0 224 2 2.00 6.0 331 1 0.67 6.0 428 Allow Ten Pk Conn Pullout Reinf. Tyne Li Is.! FS 3XT 1279 ok 747 ok 3.51 ok 3XT 1279 ok 844 ok 5.35 ok 3XT 1279 ok 941 ok 6.76 ok 3XT 1279 ok 1038 ok 8.32 ok Reinforcing Quantities (no waste included): 3XT 2.67 sy/ft Date 11/8/2017 Case 1 Page 1 I I DETAILED CALCULATIONS Project: Trails End Project No: 17201 Case: Case 1 Design Method: NCIvIA 3rd Edition (parallelogram soil interface) Soil Parameters: 4b deg c nsf y ncf Reinforced Fill 30 0 130 Retained Zone 30 0 130 Foundation Soil 20 100 130 Leveling Pad: Crushed Stone Modular Concrete Unit: Compaclil Depth: 1.00 ft in-Place Wt: 120 pcf Date: 11/8/2017 Designer: JCW Geometry Internal Stability (Broken geometry) Height: 6.00 ft BackSlope: Angle: 26.6 deg Height: 4.5/ ft Batter: 0. 90deg Surcharge: DeadLoad: 0.00 psf Live Load: 0.00 psf Base width: 6. Oft Earth Pressures: mn2(c+) ka - sink stn(a—c) 1+ n(a-c)stn(c+/3) External Stability (Broken geometry) Height: 8.52 ft Angle: 26.6 deg Height: 1.98 ft Batter: 0. 90deg Dead Load: 0.00 psf Live Load.0.00 psf Internal External 0 = 30 deg 4) = 30 deg a = 90.90 deg a = 90.90 deg = 26.60 deg = 26.60 deg 6 = 20.00 deg 6 = 30.00 deg I-I = 6.00 ft ka = 0.481 ka = 0.399 Hinge Height: Hinge Ht= Not applicable Date 11/8/2017 Case 1 Page 2 Pa 0.5H.(}i-ka - 2c) Pq := q-}Ika P Pa-COS(6) P%:= Pq•co(6) := Pa sin(s) Pq, p sin(8) Reactions are: Area Force Arm-x Wi 720.00 [0.547] W2 36.76 [1.063] W3 3826.48 [3.547] W4 36.76 [6.031] W5 820.19 [4.441] Pa_h 1647.86 6.031 Sum V= 5440.19 Sum 11= 1647.86 L 4 pa V12 Arm-y Moment 3.000 393.93 2.000 39.07 3.000 13573.02 4.000 221.71 6.841 3642.31 [2.841] -4681.92 Sum Mr = 17870.04 Sum Mo = -4681.92 Reinforcing Parameters: MirafiXT Cieogrids Tult RFcr RFd REid LTDS FS Tal Ci Cds 3X7' 3500 1.58 1.10 1.05 1918 1.50 1279 0.80 0.80 Connection Parameters: Mirafi XT Geogrids Frictional 1 Break Pt Frictional 2 3XT Tcl=Ntan(42.30) + 975 1300 Tc1=Ntan(8.10) +1973 Unit Shear Data Shear = N tan (40. 00) Inter- Unit ShearShear = N tan(34. 00) + 900.00 Calculated Reactions effective sliding length = 6.00 ft Date 11/8/2017 Case 1 Page 3 I Calculate Sliding at Base For Sliding, Vertical Force = Wl+W2+W3+W4+W5+W6+qd The resisting force within therein. mass, Rf_1 The resisting force at the foundation, Rf_2 The driving forces, Df, are the sum of the external earth pressures: Pa_h + Pql_h + Pqd_h the Factor of Safety for Sliding is Rf_2/Df Calculate Overturning: Overturning moment: Mo = Sum Mo Resisting moment: Mr = Sum Mr Factor of Safety of Overturning: Mr/Mo = 5440 = N tan(30) = 3141 = N tan(20) + (6.00 x 100.00) = 2580 = 1648 = 1.57 = -4682 = 17870 = 3.82 Date 11/8/2017 Case 1 Page 4 Calculate eccentricity at base: with Surcharge / without Surcharge Sum Moments = 13188! 13188 Sum Vertical = 5440/5440 Base Length = 6.00 e = 0.576 / 0.576 Calculate Ultimate Bearing based on shear: where: Nq=6.40 Nc = 14.83 Ng = 5.39 (ref. Vesic(1973, 1975) eqns) Qult= 3597 psf Equivalent footing width, B'= L -2e = 4.85 / 4.85 Bearing pressure = sumV!B' = 1122 psf / 1122 psf [bearing is greatest without liveload] Factor of Safety for bearing = Qultibearing= 3.21 Calculate Tensions in Reinforcing: The tensions in the reinforcing layer, and the assumed load at the connection, is the vertical area supported by each respective layer, Sv.Column [7] is 2c sqrt(ka)'. Table of Results ppf [i] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] Layer Depth zi hi ka/rho Pa (Pas+Pasd) c (5+6)cos(d)-7 Ti Tcl Tsc 4 1.33 1.00 0.513/42 133 0 0 126 126 747 N/A 3 2.67 2.67 0.513/42 237 0 0 224 224 844 N/A 2 4.00 4.00 0.505/45 350 0 0 331 331 941 N/A 1 5.33 5.33 0.490/47 453 0 0 428 428 1038 N/A Calculate sliding on the reinforcing: The shear value is the lessor of base-shear or inter -unit shear. [1] [2] [3] [4] [5] [6] [7] [8] 191 [101 [11] [12] Layer Depth zi Pas+Pasd ji E 4 1.33 1687 5.00 0.80 1008 1787 0.475 460 0 402 4.45 3 2.67 2554 5.00 0.80 1116 2295 0.446 780 0 682 3.37 2 4.00 3420 5.00 0.80 1224 2803 0.424 1172 0 1024 2.74 1 5.33 4287 5.00 0.80 1332 3312 0.406 1631 0 1425 2.32 Date 11/8/2017 Case 1 Page 5 1] Calculate pullout of each layer The FoS (R*/S*) of pullout is calculated as the individual layer pullout (RI) divided by the tension (DI) in that layer. The angle of the failure plane is: 40.90 degrees from vertical. [1] [2] [3] [4] [5] [6] [7] [8] Layer Depth zi Le SumV Ci IQi Ti FS P0 4 1.33 1.03 478 0.80 442 126 3.51 3 2.67 2.16 1297 0.80 1198 224 5.35 2 4.00 3.30 2422 0.80 2237 331 6.76 1 5.33 4.43 3853 0.80 3559 428 8.32 Check Shear & Bending at each layer Bending on the top layer is the FOS of overturning of the Units (Most surcharge loads need to be moved back from the face) [1] [2] [3] [4] [5] [6] [7] [8] [9] Layer Depth z Si DM Pv LM LIk DS RS FS_Sh 4 1.33 1.33 25 160 82 3.28 56 1008 18.00 3 2.67 1.33 31 240 198 6.39 98 1116 11.42 2 4.00 1.33 49 400 303 6.16 152 1224 8.05 1 5.33 1.33 66 560 408 6.19 202 1332 6.60 Date 11/8/2017 Case 1 Page 6