Loading...
HomeMy WebLinkAbout6269 EL FUERTE ST; ; AS140164; PermitCity of Carlsbad Sprinkler Permit Permit No: AS140164 Job Address: 6269 EL FUERTE ST Status: ISSUED Permit Type: SPRINK Applied 7/15/2014 Parcel No: 2131221700 Approved: 7/17/2014 Lot #: 0 Reference No.: Issued: 7/17/2014 PC #: Inspector: Project Title: PACIFIC RIDGE SCHOOL-NEW ADMIN NEW WET FIRE SPRINKLER SYSTEM FOR NEW MIDDLE SCHOOL 1ST & 2ND FL. 45424 S.F. Applicant: EPIC FIRE PROTECTION, INC. 765 TURTLE POINT WY SAN MARCOS, CA 760-310-6122 Owner: PACIFIC RIDGE SCHOOL ATTN:PHILIP HITCH 6269 EL FUERTE ST CARLSBAD CA Fees ($) Add'I Fees ($) Total ($) Balance ($) 401 0 401 0 Parsley Consulting Plan Review Comments for Pacific Ridge School page 2 of 2 1) In the event that the t-bar ceilings are not rigidly braced per ASME E580, the sprinklers to be installed in the suspended panels will require either a 2" clearance around the penetration through the panel, or thG lisp-of a flexible drop fitting, per ASCE7 10, ootion 1-3.5.6.2. p.Jai qørr /?J through 15.6.3, which is attached. However, gypsum board ceilings are assumed to be rigidly CEP braced. All the above conditions can be field verified. This applies to both buildings, both floors. File: i:\Plan Rev iews\Rev2 14250.2.Docx CHAPTER 13 SEISMIC DESIGN REQUIREMENTS FOR NONSTRUCTURAL COMPONENTS 13.5 ARCHITECTURAL COMPONENTS 13.5.1 General Architectural components, and their supports and attachments, shall satisfy the requirements of this section. Appropriate coefficients shall be selected from Table 13.5-1. EXCEPTION: Components supported by chains or otherwise suspended from the structure are not required to satisfy the seismic force and relative displacement requirements provided they meet all of the following criteria: The design load for such items shall be equal to 1.4 times the operating weight acting down with a simultaneous horizontal load equal to 1.4 times the operating weight. The horizontal load shall be applied in the direction that results in the most critical loading for design. Seismic interaction effects shall he considered in accordance with Section 1.3.2.3. The connection to the structure shall allow a 360° range of motion in the horizontal plane. 13.5.2 Forces and Displacements All architectural components, and their supports and attachments, shall be designed for the seismic forces defined in Section 13.3.1. Architectural components that could pose a life-safety hazard shall be designed to accommodate the seismic relative displacement requirements of Section 13.3.2. Architectural components shall he designed considering vertical deflection due to joint rotation of cantilever structural members. .13.5.3 Exterior Nonstructural Wall Elements and Connections Exterior nonstructural wall panels or elements that are attached to or enclose the structure shall be designed to accommodate the seismic relative dis- placements defined in Section 13.3.2 and movements due to temperature changes. Such elements shall be supported by means of positive and direct structural supports or by mechanical connections and fasteners in accordance with the following requirements: Connections and panel joints shall allow for the story drift caused by relative seismic displacements (Dr) determined in Section 13.3.2, or 0.5 in. (13 mm), whichever is greatest. Connections to permit movement in the plane of the panel for story drift shall be sliding connections using slotted or oversize holes, connections that permit movement by bending of steel, or other connections that provide equivalent sliding or ductile capacity. The connecting member itself shall have sufficient ductility and rotation capacity to preclude fracture of the concrete or brittle failures at or near welds. All fasteners in the connecting system such as bolts, inserts, welds, and dowels and the body of the connectors shall be designed for the force (Fr) determined by Section 13.3.1 with values of R1, and a1, taken from. Table 13.5-1 applied at the center of mass of the panel. Where anchorage is achieved using flat straps embedded in concrete or masonry, such straps shall be attached to or hooked around reinforcing steel or otherwise terminated so as to effectively transfer forces to the reinforcing steel or to assure that pullout of anchorage is not the initial failure mechanism. 13.5.4 Glass Glass in glazed curtain walls and storefronts shall be designed and installed in accordance with Section 13.5.9. .13.5.5 Out-of-Plane Bending Transverse or out-of-plane bending or deforma- tion of a component or system that is subjected to forces as determined in Section 13.5.2 shall not exceed the deflection capability of the component or system. 13.5.6 Suspended Ceilings Suspended ceilings shall be in accordance with this section... EXCEPTIONS: I. Suspended ceilings with areas less than or equal to 144 ft' (13.4 m2) that are surrounded by walls or soffits that are laterally braced to the structure above are exempt from the requirements of this section. 2. Suspended ceilings constructed of screw- or nail-attached gypsum board on one level that are surrounded by and connected to walls or soffits that are laterally braced to the structure above are exempt from the requirements of this section. 13.5.6.1 Seismic Forces The weight of the ceiling, W, shall include the ceiling grid; ceiling tiles or panels; light fixtures if attached to, clipped to, or laterally supported by the ceiling grid; and other components that are laterally supported by the ceiling. VVP shall be taken as not less than 4 psf (192 N/rn2). UM MINIMUM DESIGN LOADS Table 13.5-1 Coefficients for Architectural Components Architectural Component R,,5 Interior non,.tural walls and partitions" Plain unreied) masonry wails 1.0 1.5 All other walls .'1 partitions 1.0 2.5 Cantilever elements '.ib -ac ed or braced to structural frame below its center of mass) Parapets and cantilecnterior nonstructural walls 2.5 2.5 Chimneys where laterahThraced or supported by the structural frame 2.5 2.5 Cantilever elements (Braced"h\ruc1ural frame above its center of mass) Parapets 1.0 2.5 Chimneys 1.0 2.5 Exterior nonstructural walls" I 0h 2.5 Exterior nonstructural wall elements an nnections5 Wall element 1.0 2.5 Body of wall panel connections 1.0 2.5 Fasteners of the connecting system 1.25 1.0 Veneer Limited deformability elements and attachments 1.0 2.5 Low deformability elements and attachments Lo 1.5 Penthouses (except where framed by an extension of the b 4ing frame) 2.5 3.5 Ceilings All 1.0 2.5 Cabinets Permanent floor-supported storage cabinets over 6 ft (1,829 mm) tal eluding contents 1.0 2.5 Permanent floor-supported library shelving, book stacks, and bookshel over 6 ft (1,829 mm) tall, including contents 1.0 2.5 Laboratory equipment 1.0 2.5 Access floors Special access floors (designed in accordance with Section 13.5.7.2) 1.0 2.5 All other 1.0 1.5 Appendages and ornamentations 2.5 2.5 Signs and billboards 2.5 3.0 Other rigid components High deformability elements and attachments .1.0 3.5 Limited deformability elements and attachments \ .1 .0 2.5 Low deformability materials and attachments \, 1.0 1.5 Other flexible components High deformability elements and attachments 3.5 Limited deformability elements and attachments . 2.5 Low deformability materials and attachments . 2.5\\ 1.5 U Egress stairways not part of the building structure 1.0 2.5 'A lower value for a, shall not be used unless justified by detailed dynamic analysis. The value for a,, shall not be less than 1.00. The value\\ = 1 is for rigid components and rigidly attached components. The value of a,, = 2.5 is for flexible components and flexibly attached composi. "Where flexible diaphragms provide lateral support for concrete or masonry walls and partitions, the design forces for anchorage to the diaphragm shall be as specified in Section 12.11.2. The seismic force, F,, shall be transmitted 13.5.6.2 Indurt,y Standard Construction for Acou(t through the ceiling attachments to the building cal Tile or Lay-in Panel Ceilings structural elements or the ceiling-structure Unless designed in accordance with Section boundary. 13.5.6.3, or seismically qualified in accordance with 117 CHAPTER 13 SEISMIC DESIGN REQUIREMENTS FOR NONSTRUCTURAL COMPONENTS Section 13.2.5 or 13.2,6, acoustical tile or lay-in panel ceilings shall be designed and constructed in accor- dance with this section. 13.5.62.1 Seismic Design Category C Acoustical tile or lay-in panel ceilings in structures assigned to Seismic Design Category C shall be designed and installed in accordance with ASTM C635, ASTM C636, and,ASTM E580, Section 4—Seismic Design Category C. 13.5.62.2 Seismic Design Caregoiies D through F Acoustical tile or lay-in panel ceilings in Seismic Design Categories D, F, andF shall be designed and installed in accordance with ASTM C635 ASTM C636, and ASTM E580, Section 5—Seismic Design Categories D, E, and F as modified by this section. Acoustical tile or lay-in panel ceilings shall also comply with the following: The width of the perimeter supporting closure angle or channel shall be not less than 2.0 in. (50 mm). Where perimeter supporting clips are used, they shall be qualified in accordance with approved test criteria. In each orthogonal horizontal direc- tion, one end of the ceiling grid shall be attached to the closure angle or channel. The other end in each horizontal direction shall have a 0.75 in. (19 mm) clearance from the wall and shall rest upon and be free to slide on a closure angle or channel. For ceiling areas exceeding 2,500 ft2 (232 m2), a seismic separation joint or full height partition that breaks the ceiling up into areas not exceeding 2.500 ft2 (232 m2), each with a ratio of the long to short dimension less than or equal to 4, shall be provided unless structural analyses are performed of the ceiling bracing system for the prescribed seismic forces that demonstrate ceiling penetrations and closure angles or channels .provide sufficient clearance to accommodate the anticipated lateral displacement. Each area shall he provided with closure angles or channels in accordance with Section 13.5.6.2.2.a and horizontal restraints or bracing. 13.5.6.3 Integral Construction As an alternate to providing large clearances around sprinkler system penetrations through ceilings,. the sprinkler system and ceiling grid are permitted to be designed and tied together as an integral unit. Such. a design shall consider the mss and flexibility of all elements involved, including the ceiling, sprinkler system light fixtures, and mechanical (HVAC) appurtenances Such design shall be performed by a registered design professional. 13.5.7 Access Floors 13.5.7.1 General The weight of the access floor, W',,, shall include the weight of the floor system, 100 percent of the weight of all equipment fastened to the floor, and 25 percent of the weight of all equipment supported by but not fastened to the floor. The seismic force, F, shall be transmitted from the top surface of the access floor to the supporting structure. Overturning effects of equipment fastened to the access floor panels also shall be considered. The ability of "slip on" heads for pedestals shall be evaluated for suitability to transfer overturning effects of equipment. Where checking individual pedestals for Overturn- ing effects, the maximum concurrent axial load shall not exceed the portion of W, assigned to the pedestal under consideration. 13.5.7.2 Special Access Floors Access floors shall be considered to be "special access floors" if they are designed to comply with the following considerations: Connections transmitting seismic loads consist of mechanical fasteners, anchors satisfying the requirements of.A.ppendix D of ACI 318, welding, or bearing. Design load capacities comply with recognized design codes and/or certified test results. Seismic loads are not transmitted by friction, power actuated fasteners, adhesives, or by friction produced solely by the effects of gravity. The design analysis of the bracing system includes the destabilizing effects of individual members buckling in compression. Bracing and pedestals are of structural or mechani- cal shapes produced to ASTM specifications that specify minimum mechanical properties. Electrical tubing shall not be used. Floor stringers that are designed to carry axial seismic loads and that are mechanically fastened to the supporting pedestals are used. 13.5.8 Partitions 13.5.8.1 General Partitions that are tied to the ceiling and all partitions greater than 6 ft (1.8 in) in height shall be lut 4èoo' Hydraulics Summary Sheet Dashboard Hydiaulks Project Information Calculation Date: 5/22/2014 9:46:29 AM PACIFIC RIDGE SCHOOL system ID drawing ref FP-3 MIDDLE SCHOOL SECOND FLOOR AREA #1 building MIDDLE SCHOOL 6269 EL FUERTE RD. construction NON COMBUSTIBLE CARSBAD, CA 92009 occupancy CLASSROOM/OFFICE contract U authority Contractor Information Epic Fire Protection, Inc. 765 Turtle Point Way San Marcos, CA 92069 calculated by Adam Boisvert telephone 760-310-6122 fax 760-798-0556 email epicfirecox.net CnAnklare in Dma No. Mfgr Mod SIN# Size K 7 GLOBE GL8109 17/32' 8.1 1 GLOBE GL5601 lIT 1 5.6 - Hydraulics Criteria - density system type WET . design std NFPA13 remote area 1500 ft2 hazard LIGHT spr coverage 15x15 AND 20> sprs flowing 8 figure calcd volume 191.9 gal curve Flow Test static pressure 113.40 psi residual pressure 100.80 psi quantity flowing 1,520.0 GPM elevation from if 0.00 ft date & time of flow test 9-30-13 location of flow test ON SITE LOOP 225 300 375 450 525 Water Flow (GPM) Demand at sprinkler and interior hose flows 'C> Total System Demand including Hose Flowè at Zero 0 Copyright 2013 Sigma Development Group, Inc. Page 1 of 5 180 Supply / Demand Graph 160 140 120 100 U) 80 I- 0 60 40 20 0 075 150 PACIFIC RIDGE SCHOOL IIDDLE SCHOOL SECOND FLOOR AREA #1 7 Pressure I Total / Total / System / Pressure / Available / Flow / Required / 112.23 psi 421.5 GPM 1 94.49 psi OiJOQ Supply Analysis Das hboard ffydraulle3 Quantity Source Static / Residua ~Flowing K Node /Pressure / Pressure Zero 113.40 psi 100.80 psi 1,520.0 GPM ( Sprinkler Flow: 321.5 GPM Additional Flows: None Hose Flow at Zero: 100.0 GPM Total System Flow: 421.5 GPM Maximum velocity in pipe 10- 100 is 23.0 ft/sec Nodes Analysis Minimum Node Actual Node Elev Device KFactor Flow Pressure Discharge Notes ft GPM psi GPM f 115, 20.5 Sprinkler 5.60 14.83 28.17 29.72 113 20.5 Sprinkler 8.10 40.00 24.39 40.00 117 20.5 Sprinkler 8.10 40.00 24.45 40.05 112 20.5 Sprinkler 8.10 40.00 24.96 40.47 116 20.5 Sprinkler 8.10 40.00 24.99 40.49 [ 111 20.5 Sprinkler 8.10 40.00 27.02 42.10 114 20.5 Sprinkler 8.10 40.00 28.40 43.17 r- -11011 20.5 Sprinkler 1 8.10 1 40.00 31.59 45.53 0 1 0.0 1 Hose@Zero 100.0 AS140165- ARTS BLDG tI&4.a: AS140164- k These plans have been reviewed for utiparetti compliance w oh the current applicable codes and iartdards in force in the jtirisiiciioii. The owner or contiaclor stay utilize this review ill support Of an apphtciiitott loT a huiIditt periint with the express understanding dial this review ill llo ii iv rchic us the o\viicr or contractor or their professional cilgtlicer or architect foi stile respottsiht hiPt or full coitipliattee with said codes and standard, including filehiiildittg code or for attv rcspoitsihiltv or ileticienctes. errors. oitttsslons or neglieeticc ill these plaits tvhcihter or llot noted iii 1 fits review. l)ate 7f<,/',> Rcvicwej..F 11-;' ] API-'RS)VAI ED Rk-ONINIF.ND Al'PR( )VAl.. AS (Se77 0 Copyright 2013 Sigma Development Group, Inc. Page 2 of 5 PACIFIC RIDGE SCHOOL RJOO oashboasdHyd,aull Pipe Information : SCHOOL SECOND FLOOR AREA #1 G From Elevi ft T Pipe ID Flows Added GPM Inside Diameter in Fittings Length ft C Value I Loss [ psi/ft ] IFriction I Total (Pt) psi Notes I Fitting ft I Elev (Pe) psi To ft EIev2 I Type I Total Total ft FriCt (Pf) psi 103 21.00 r Dyna Thead 1.0800 T,E Len 1.5 Ftg 8.1 C= 120 0.40709 Pt 113) 24.387 Pe -0.217 Pf 3.895 113 20.50 AO 40.0 Total 9.6 102 21.00 1%" Dyna Flow 1.7280 0 Len 16.0 Ftg 0.0 c = 120 0.04127 Pt 103) 28.065 Pe 0.000 Pf 0.660 103 21.00 BN 40.0 Total 16.0 Total Pressure at Node 102) 28.725 psi 107 21.00 1" Dyna Thead 1.0800 T,E Len 1.5 Ftg 8.1 c = 120 0.40804 Pt 117) 24.448 Pe -0.217 Pf 3.904 117 20.50 AO 40.1 Total 9.6 106 21.00 W Dyna Flow 1.7280 0 Len 15.0 Ftg 0.0 C = 120 0.04137 Pt 107) 28.135 Pe 0.000 Pf 0.620 107 21.00 BN 40.1 Total 15.0 105 - 21.00 1%" Dyna Flow 40.5 1.7280 0 Len 9.6 Ftg 0.0 C= 120 0.15064 Pt 106) 28.755 Pe 0.000 Pf 1.443 106 21.00 - BN 80.5 Total 9.6 104 21.00 1%" Dyna Flow 29.7 1.7280 0 Len 9.2 Ftg 0.0 C= 120 0.26934 Pt 105) 30.198 Pe 0.000 Pf 2.470 105 21.00 BN 110.3 11 - 21.00 1%" Dyna Flow 43.2 1.7280 T Len 60.2 Ftg 11.3 C = 120 0.49630 Pt 104) 32.668 Pe 0.000 Pf 35.465 104 21.00 BN 153.4 Total 71.5 Total Pressure at Node 11) 68.134 psi 106 21.00 1" Dyna Thead ______ 1.0800 T,E Len 1.5 Ftg 8.1 c = 120 I- 0.41638 Pt 116) 24.988 Pe -0.217 Pf 3.983 116 20.50 AO 40.5 Total 9.6 Total Pressure at Node 106) 28.755 psi 105 21.00 r Dyna Thead 10800 j T,E Len 1.51 Ftg 8.1 C=120 Pt 115) 28.167 Pe -0.217 Pf 2.248 115 20.50 AO 29.7 0.23499 Total Pressure at Node 105) 30.198 psi 104 21.00 1" Dyna Thead 1.0800 T,E Len 1.51 Ftg 8.1 c = 120 0.46872 Pt 114) 28.401 Pe -0.217 Pf 4.484 114 20.50 AO 43.2 Totai 9.6 Total Pressure at Node 104) 32.668 psi 0 Copyright 2013 Sigma Development Group, Inc. Page 3 of 5 98800 PACIFIC RIDGE SCHOOL Pipe Information SCHOOL SECOND FLOOR AREA #1 From ft Pipe ID Flows Added (3PM Inside Diameter In Fittings Length ft I l C Value I I Friction Loss psi/ft Total (Pt) PSI Notes Fitting ft I I Elev (Pe) psi I To Elev2 Type Total Total ftl 1F (Pf) psi 102 21.00 1" Dyna lhead 1.0800 T,E Len 1.5 Ftg 8.1 c = 120 0.41597 Pt 112) 24.962 Pe -0.217 Pf 3.979 112 20.50 AO 40.5 Total 9.6 101 21.00 1%- Dyna Flow 40.0 1.7280 0 Len 15.7 Ftg 0.0 C= 120 0.15039 Pt 102) 28.725 Pe 0.000 Pf 2.357 102 21.00 BN 80.5 Total 15.7 Total Pressure at Node 101) 31.081 psi 101 21.00 1" Dyna lhead 1.0800 T,E Len 1.5 Ftg 8.1 C= 120 0.44754 Pt 111) 27.017 Pe -0.217 N 4.281 111 20.50 AO 42.1 100 21.00 1WDyna Flow 80.5 1.7280 0 Len 16.0 Ftg 0.0 C= 120 0.32759 Pt 101) 31.081 Pe 0.000 Pf 5.241 101 21.00 BN 122.6 Total 16.0 1 Total Pressure at Node 100) 36.323 psi 100 21.00 1" Dyna Thead 1.0800 T,E Len 1.5 Ftg 8.1 C= 120 0.51723 Pt 110) 31.591 Pe -0.217 Pf 4.948 110 20.50 AO 45.5 Total 9.6 10 21.00 1%" Dyna Flow 122.6 1.7280 1 Len Ftg 11.3 C= 120 0.58764 Pt 100) 36.323 Pe 0.000 N 32.784 100 21.00 BN 168.1 Total 55.8 Total Pressure at Node 10) 69.107 psi 10 21.00 2WDynaFlow 2.7030 0 Len 17.3 Ftg 0.0 C= 120 0.05617 Pt 11) 68.134 Pe 0.000 Pf 0.973 11 21.00 FM 153.4 Total 17.3 6 21.00 2%" Dyna Flow 168.1 2.7030 E Len 6.5 Ftg 9.3 C = 120 0.22076 Pt 10) 69.107 Pe 0.000 N 3.494 10 21.00 FM 321.5 5 9.00 2'A" Dyna Flow 2.7030 0 Len 12.0 Ftg 0.0 C = 120 0.22076 Pt 6) 72.601 Pe 5.196 Pt 2.649 6 21.00 FR 321.5 Total 12.0 2 0.00 2%" Dyna Flow 2.7030 2E Len 13.0 Ftg 18.7 C = 120 0.22076 Pt 5) 80.446 Pe 3.897 N 6.987 5 9.00 FR 321.5 Total 31.7 1 0.00 6" PVC C1200 5.8600 EE,E Len 75.0 Ftg 26.8 C= 150 0.00337 Pt 2) 91.330 Pe 0.000 N 0.343 2 0.00 UN 321.5 Total 101.8 0 Copyright 2013 Sigma Development Group, Inc. Page 4 of 5 gas 138900- Pipe Information PACIFIC RIDGE SCHOOL SCHOOL SECOND FLOOR AREA #1 From EIeVi ft Pipe ID Flows Added GPM T I Inside Diameter I in Fittings TLength ftF C Value ITotal Friction Loss [ psi/ft (Pt) psi 1 Notes Fitting ft Elev (Pe) psi To Elev2 Type o Ttal Totalft [Frict (Pfl psi 0 0.00 6" PVC CI100 5.8600 DDC,E Len 35.0 Ftg 17.9 C= 150 0.00337 Pt 91.673 Pe 0.000 Pf 0.178 DDCWILKINS35ODA DOUBLE DETECTOR CHECK 6 WILKINS DOUBLE DET. CHECK Loss =2.M 1 0.00 UN 321.5 Total 529 Total Pressure at Node 0) 94.495 psi 0 Copyright 2013 Sigma Development Group, Inc. Page 5 of 5 Da Hydraulics Summary Sheet Project Information Calculation Date: 5/22/2014 10:24:46 AM PACIFIC RIDGE SCHOOL system ID drawing ref FP-3 MIDDLE SCHOOL FIRST FLOOR building MIDDLE SCHOOL 6269 EL FUERTE RD. construction NON COMBUSTIBLE CARSBAD, CA 92009 occupancy CLASSROOM/OFFICE contract # authority - Contractor Information Epic Fire Protection, Inc. 765 Turtle Point Way San Marcos, CA 92069 calculated by Adam Boisvert telephone 760-310-6122 fax 760-798-0556 email epicfire@cox.net Cnrinliddare in Dgarn^fth No: Mfgr Mod SIN# Size K 2 GLOBE GL8109 17I32 8.1 10 GLOBE GL5601 1/2 5.6 Hydraulics Criteria density .10 GPM/ft2 system type WET design std NFPA 13 remote area 1500 ft' hazard LIGHT spr coverage 15x15 AND 20> sprs flowing 12 figure calc'd volume 203.0 gal curve Flow Test static pressure 113.40 psi residual pressure 100.80 psi quantity flowing 1520.0 GPM elevation from if 0.00 ft date & time of flow test 9-30-13 location of flow test ON SITE LOOP Supply I Demand Graph I 112.09 psi available at Sprinkler Demand of 75.29 psi with L Total System Flow of 446.7 GPMJ Margin: -'-32.8% --.-. 120 60 40 20 0 0 75 150 225 300 375 450 525 Water Flow (GPM) Demand at sprinkler and interior hose flows 0 Total System Demand including Hose Flows at Zero 0 Copyright 2013 Sigma Development Group, Inc. Page 1 of 6 180 160 140 08'aw - PACIFIC RIDGE SCHOOL DasIiboardHydrau/i Supply Analysis MIDDLE SCHOOL FIRST FLOOR Sprinkler Flow: 346.7 GPM Additional Flows: None Hose Flow at Zero: 100.0 GPM Total System Flow: 446.7 GPM Maximum velocity in pipe 2- 5 is 19.4 ft/sec Nodes Analysis Minimum Node Actual Node Elev Device KFactor Flow Pressure Discharge Notes ft GPM psi GPM 109 8.5 Sprinkler 5.60 21.00 17.71 23.57 110 8.5 Sprinkler 5.60 15.00 18.94 24.37 108 8.5 Sprinkler 5.60 15.00 19.69 24.85 107 8.5 Sprinkler 5.60 19.50 22.20 26.38 113 8.5 Sprinkler 5.60 15.00 22.35 26.48 ( 111 8.5 Sprinkler 5.60 19.50 22.38 26.49 112 8.5 Sprinkler 5.60 15.00 22.56 26.60 106 8.5 Sprinkler 5.60 16.00 26.25 28.69 105 8.5 Sprinkler 5.60 14.83 26.57 28.87 - 102 8.5 Sprinkler 5.60 14.83 26.85 29.02 t 1041 8.5 Sprinkler 8.10 40.00 24.39 40.00 [jpi 8.5 Sprinkler 8.10 40.00 26.13 41.41 0 0.0 Hose@Zero 75.29 100.0 0 Copyright 2013 Sigma Development Group, Inc. Page 2 of 6 PACIFIC RIDGE SCHOOL 8OO Pipe Information MIDDLE SCHOOL FIRST FLOOR Dash&am1Hyd,auII From Elevl Pipe ID J Flows Length ft c Value 1 Total (Pt) psi ft Added GPM Inside Diameter Fittings Notes I I Fitting ft I Elev (Pe) psi Elev2 Type in IFriction Lossl To ft Total Total ft psi/ft ] Frict (Pt) psi 24 - 9.00 1" Dyna Thead 1.0800 T,E Len 2.31 Ftg 8.1 c = 120 0.40709 Pt 104) 24.386 Pe -0.217 Pf 4.232 104 8.50 AO 40.0 Total 10.4 Total Pressure at Node 24) 28.402 psi 33 9.00 1" Dyna Thead 1.0800 T,E Len 3.0 Ftg 8.1 C =120 0.18973 Pt 113) 22.351 Pe -0.217 Pf 2.100 113 8.50 AO 26.5 Total 11.1 32 9.00 11/an Dyna Flow 1.7280 0 Len 12.0 Ftg 0.0 C = 120 0.01923 Pt 33) 24.234 Pe 0.000 Pt 0.231 33 1 9.00 BN 26.5 12.0 Total Pressure at Node 32) 24.465 psi 31 9.00 1%" Dyna Flow 26.5 ILen r c = 120 Pt 32) 24.465 1.7280 0 Ftg 0.0 Pe 0.000 1 32 9.00 BN 53.1 Total 5.3 0.06964 Pt 0.371 Total Pressure at Node 31) 24.835 psi 31 9.00 1" Dyna Thead 1.0800 T,E Len 6.0 Ftg 8.1 C= 120 0.18996 Pt 111) 22.380 Pe -0.217 Pf 2.672 I 111 8.50 AO 26.5 Total 14.1 23 - 9.00 1%- Dyna Flow 53.1 1.7280 T Len 13.2, Ftg 11.3 C= 120 0.1 4729 Pt 31) 24.836 Pe 0.000 Pf 3.603 31 9.00 BN 79.6 Total 24.5 Total Pressure at Node 23) 28.439 psi 30 9.00 1" Dyna Thead 1.0800 T,2E Len 3.5 Ftg 10.4 C=120 0.16276 Pt 110) 18.937 Pe -0.217 Pt 2.258 110 8.50 AO 24.4 Total 13.9 29 - 9.00 W Dyna Flow 1.7280 0 Len 6.0 Ftg 0.0 C = 120 0.01650 Pt 30) 20.978 Pe 0.000 Pt 0.099 30 9.00 BN 24.4 Total 6.0 Total Pressure at Node 29) 21.011 psi 29 9.00 1" Dyna Thead 1.0800 T,E Len 15.31 C=120 0.15301 Pe -0.217 Pt 109) 17.714 Pt 3.580 109 8.50 AO 23.6 Total 23.4j 0 Copyright 2013 Sigma Development Group, Inc. Page 3 of 6 Pipe Information MIDDLE SCHOOL FIRST FLOOR PACIFIC RIDGE SCHOOL D asIthoa,dHyd,au/L From Elevi Pipe ID Flows J Length C Value I Total (Pt) PSI I Added GPM Inside Diameter Fittings __________ I Notes I Fitting ft I Elev (Pe) psi To Elev2 Type Friction Loss Total Total ft psi/ft Frict (PI) psi 28 9.00 1'/a" Dyna Flow 24.4 1.7280 0 Len 6.0 Ftg 0.0 0.05769 Pt 29) 21.077 Pe 0.000 Pf 0.346 29 9.00 BN 47.9 Total :5 j Total Pressure at Node 28) 21.423 psi 28 9.00 1" Dyna Thead 1.0800 T,E Len 3.5 Ftg 8.1 c =120 0.16872 Pt 108) 19.688 Pe -0.217 Pt 1.952 108 8.50 AO 24.8 Total 11.6 27 - 9.00 W Dyna Flow 47.9 1.7280 2E Len 12.5 Ftg 11.3 C= 120 0.12491 Pt 28) 21.423 Pe 0.000 Pt 2.972 28 9.00 BN 72.8 Total 23.8 Total Pressure at Node 27) 24.395 psi 27 9.00 1" Dyna Thead 1.0800 T,E Len 4.8 Ftg 8.1 C = 120 0.18850 Pt 107) 22.196 Pe -0.217 Pt 2.416 107 8.50 AO 26.4 Total 12.8 20 9.00 1u/* Dyna Flow 72.8 1.7280 T Len 15.3 C = 120 0.22137 _________ Pt 27) 24.395 Pe 0.000 Pt 5.875 27 9.00 BN 99.2 9ER Total Pressure at Node 20) 30.270 psi 26 9.00 1" Dyna Thead 1.0800 T,E Ftg 8.1 0.22012 106) 26.247 Pe -0.217 Pt 2.289 106 8.50 AO 28.7 Total 10.4 Total Pressure at Node 26) 28.319 psi 25 9.00 1" Dynalhead 1.0800 T,E Len 0.8 0.22263 1.981 Pt 105) 26.570 -0.217 105 8.50 AO 28.9 Total 8.9 Total Pressure at Node 25) 28.334 psi 22 9.00 1" Dyna lhead 1.0800 T,E Len 1.5 fFt9 8.1 120 0.22477 2.150 Pt 102) 26.847 -0.217 102 8.50 AO 29.0 Total 9.6 Total Pressure at Node 22) 28.781 psi 21 9.00 1" Dyna Thead 1.0800 T,E ILen 1.5[ I Ftg 8.1 C=120 - 0.43395jPt TPt 101) 26.131 Pe Pe -0.217 4.152 101 8.50 AO 41.4 Total 9.6 Total Pressure at Node 21) 30.066 psi 0 Copyright 2013 Sigma Development Group, Inc. Page 4 of 6 PACIFIC RIDGE SCHOOL 8OO' Pipe Information MIDDLE SCHOOL FIRST FLOOR Das1,boardHvdrauII, From Elevi Pipe ID Flows Total (Pt) psi ft T Length ft I C Value I Added GPM Inside Diameter Fittings I Notes I Fitting ft I Elev (Pe) psi To EIev2 Type . In Friction Loss Total Total ft psi/ft Fd (P psi - 25 9.00 2W Dyna Flow 2.7030 0 Len 6.0 Ftg 0.0 C= 120 0.00253 Pt 26) 28.319 Pe 0.000 pf 0.015 26 9.00 FM 28.7 Total 6.0 24 9.00 21/2" Dyna Flow 28.9 2.7030 0 Len 7.4 Ftg 0.0 c = 120 0.00916 Pt 25) 28.334 Pe 0.000 Pt 0.068 25 9.00 FM 57.6 Total 7.4 23 9.00 21/in Dyna Flow 40.0 2.7030 0 Len 1.5 Ftg 0.0 C = 120 0.02430 Pt 24) 28.402 Pe 0.000 Pt 0.036 24 9.00 FM 97.6 Total 1.5 22 9.00 21/2 Dyna Flow 79.6 2.7030 0 Len 4.7 Ftg 0.0 C = 120 0.07326 Pt 23) 28.439 Pe 0.000 Pt 0.342 23 9.00 FM 177.1 Total 4.7 21 9.00 2%" Dyna Flow 29.0 2.7030 0 . Len 13.3 Ftg 0.0 C = 120 0.09700 Pt 22) 28.781 Pe 0.000 Pf 1.285 22 9.00 FM 206.1 Total 13.3 20 9.00 2W Dyna Flow 41.4 2.7030 0 Len 1.5 Ftg 0.0 C= 120 0.13609 Pt 21) 30.066 Pe 0.000 Pt 0.204 21 9.00 FM 247.5 11 9.00 21/2 Dyna Flow 99.2 2.7030 T Len 62.1 Ftg 18.7 c = 120 0.25381 Pt 20) 30.270 Pe 0.000 Pf 20.490 20 9.00 FM 346.7 Total 80.7 10 9.00 2W Dyna Flow 2.7030 0 Len 14.0 Ftg 0.0 C= 120 0.25381 Pt 11) 50.760 Pe 0.000 pf 3.553 11 9.00 FM 346.7 Total 14.0 5 9.00 2h/2 Dyna Flow 2.7030 T Len 4.0 Ftg 18.7 c = 120 0.25381 Pt 10) 54.314 Pe 0.000 Pt 5.749 10 9.00 FM 346.7 Total 22.7 2 0.00 2'/2" Dyna Flow 2.7030 2E Len 13.0 Ftg 18.7 C = 120 0.25381 Pt 5) 60.063 Pe 3.897 Pf 8.033 5 9.00 FR 346.7 1 0.00 6" PVC CL200 5.8600 EE,E Len 75.0 Ftg 26.8 C = 150 0.00388 Pt 2) 71.993 Pe 0.000 pf 0.395 2 0.00 UN 346.7 Total 101.8 0 0.00 6" PVC CL200 5.8600 DDC,E Len 35.0 Ftg 17.9 150 0.00388 Pt1) 72.388 Pe 0.000 pf 0.205 DDC WILKINS 350 DA DOUBLE DETECTOR CHECK 6"WILKINS DOUBLE DET. CHECK: Loss = 2.69 1 0.00 UN 346.7 Total 52.9 0 Copyright 2013 Sigma Development Group, Inc. Page 5 of 6 PACIFIC RIDGE SCHOOL 8OO' Pipe Information MIDDLE SCHOOL FIRST FLOOR DasJ,boardHyd,auIi From Elevi Pipe ID I Flows I I I I Total (Pt) psi ft I Length ft I I C Value I Added I GPM Inside I Diameter I Fittings I I I I Notes I I Fitting ft I Elev (Pe) psi I To Elev2 Type lFrjfion Loss I I Total i Total ft psi/ft Frict (Pf) psi I Total Pressure at Node 0) 75.286 psi 0 Copyright 2013 Sigma Development Group, Inc. Page 6 of 6 contract # Contractor Information Epic Fire Protection, Inc. 765 Turtle Point Way San Marcos, CA 92069 calculated by Adam Boisvert telephone 760-310-6122 fax 760-798-0556 email epicfirecox.net cnrinktrc in Rmr* No. Mfgr Mod SIN# Size K 4 GLOBE GL8109 17/32w 8.1 L 7 GLOBE GL5601 1/2 5.6 d8OO Hydraulics Summary Sheet r FWJLL Information Calculation Date: 5/22/2014 10:31:23 AM PACIFIC RIDGE SCHOOL system ID drawing ref FP-5 ARTS BUILDING 2ND FLOOR building construction occupancy authority Hydraulics Criteria density .10 GPM/ft2 system type WET design std NFPA 13 remote area 1500 ft2 hazard LIGHT spr coverage 225,400 ft2 sprs flowing 11 figure calc'd volume 242.4 gal curve Itw Tf static pressure 113.40 psi residual pressure 100.80 psi quantity flowing 1,520.0 GPM - elevation from if 0.00 ft date & time of flow test 9-30-13 location of flow test ON SITE LOOP 180 160 140 supply / uemana lurapn 111.91 psi available at Sprinkler Demand of 107.20 psi with System Flow of 479.2 GPM I Marain: +4.2% F,- 120 (I) 0. - 100 C) C) 80 C) IL 60 40 20 0 075 150 225 300 375 450 525 600 Water Flow (GPM) © Copyright 2013 Sigma Development Group, Inc. Page 1 of 5 PACIFIC RIDGE SCHOOL ARTS BUILDING 2ND FLOOR 7 Pressure I Total / Total / System / Pressure I Available / Flow / Required / 111.91 psi 479.2 GPM 1 107.20 psi A @- Supply Analysis Da s*boardffyd,aullcs / Static / Residual / Quantity Node / Pressure / Pressure (/ Source / Flowing Zero 113.40 psi 100.80 psi 1 1,520.0 GPM ( Sprinkler Flow: 379.2 GPM Additional Flows: 100.0 GPM Hose Flow at Zero: None Total System Flow: 479.2 GPM Maximum velocity in pipe 7-20 is 23.5 ft/sec Nodes Analysis Minimum Node Actual Node Elev Device KFactorl Flow Pressure Discharge Notes ft j GPM psi - GPM 208 21.5 Sprinkler 5.60 17.00 20.56 25.39 209 21.5 Sprinkler 5.60 15.00 20.64 25.44 207 21.5 Sprinkler 5.60 15.00 23.03 26.88 2061 21.5 Sprinkler 1 5.60 15.00 24.76 27.87 211 21.5 Sprinkler 8.10 33.00 16.60 33.00 210 21.5 Sprinkler 8.10 33.00 16.99 33.39 202 21.5 Sprinkler 5.60 15.00 40.75 35.75 201 21.5 Sprinkler 1 5.60 15.00 41.14 35.92 200 21.5 Sprinkler 5.60 14.83 42.55 36.53 205 21.5 Sprinkler 8.10 40.00 37.00 49.27 204 21.5 Sprinkler 8.10 40.00 37.81 49.81 1 0.0 Hose Flow 103.59 100.0 0 Copyright 2013 Sigma Development Group, Inc. Page 2 of 5 - 9- PACIFIC RIDGE SCHOOL Dashboaid hWraulics Pipe Information ARTS BUILDING 2ND FLOOR From Elevi Pipe ID Flows Length ft C Value 1 Total (Pt) psi ft J Added GPM Inside Diameter Fittings Notes Fitting ft Elev (Pe) psi Elev2 in Friction Loss Total Total ft Frict (Pt) psi To Type [ psi/ft ] 25 22.50 1" Dyna lhead 1.0800 T,E Len 2.0 Ftg 8.1 0=120 0.28519 Pt 211) 16.598 Pe -0.433 Pt 2.871 211 21.50 AO 33.0 Total 10.1 24 22.50 1W' Dyna Flow 1.7280 0 Len 15.8 Ftg 0.0 C = 120 0.02891 Pt 25) 19.036 e 0.000 Pf 0.458 25 22.50 BN 33.0 Total 15.8 Total Pressure at Node 24) 19.494 psi 24 22.50 1" Dynalhead 1.0800 T,E Len 2.0 Ftg 8.1 c = 120 0.29145 Pt 210) 16.993 Pe -0.433 Pt 2.934 210 21.50 AO 33.4 Total 10.1 23 - 22.50 1h/2 Dyna Flow 33.0 1.7280 2E Len 12.5 Ftg 11.3 C = 120 0.10537 Pt 24) 19.494 Pe 0.000 Pt 2.507 24 22.50 BN ____________ 66.4 Total 23.8 Total Pressure at Node 23) 22.000 psi 23 22.50 1" Dyna Thead 1.0800 T,E Len 2.1 Ftg 8.1 C= 120 0.17629 Pt 209) 20.645 Pe -0.433 Pt 1.789 209 21.50 AO 25.4 Total 10.1 22 - 22.50 1'/z' Dyna Flow 66.4 1.7280 0 Len 4.0 Ftg 0.0 C = 120 0.19203 Pt 23) 22.000 Pe 0.000 Pf 0.768 23 22.50 BN 91.8 Tot al 4.0 Total Pressure at Node 22) 22.768 psi 22 22.50 1" Dyna lhead 1.0800 T,E Len 7.0 Ftg 8.1 0=120 0.17559 Pt 208) 20.556 Pe -0.433 P1 2.646 208 21.50 AO 25.4 Total 15.1 21 - 22.50 1%" Dyna Flow 91.8 1.7280 0 Len 6.0 Ftg 0.0 C = 120 0.30164 Pt 22) 22.768 Pe 0.000 Pt 1.810 22 22.50 BN 117.2 Total 6.0 Total Pressure at Node 21) 24.578 psi 20 22.50 l 1',4"Dyna Flow 117.2 I Len 6.1 I = 120 I Pt 21) 24.578 I 1 1.7280 0 I Ftg 0.0 I Pe 0.000 I [ 21 22.50 BN Total 6.11 0.44191IPf 2.687 I I Total Pressure at Node 20) 27.265 psi 0 Copyright 2013 Sigma Development Group, Inc. Page 3 of 5 A M- Pipe Information PACIFIC RIDGE SCHOOL ARTS BUILDING 2ND FLOOR From EIev1 Pipe ID Flows Added GPM Inside Diameter in Fittings Length I C Value Friction Loss I psi/ft I Total (Pt) psij I Notes Fitting ft I Elev (Pe) psi I To Elev2 Type Total Total ft Frict (Pf) psi 20 22.50 1" Dyna Thead 1.0800 T,E Len 6.0 Ftg 8.1 c = 120 0.20860 Pt 206) 24.764 Pe -0.433 Pf 2.934 206 21.50 AO 27.9 Total 14.1 7 22.50 1'/a"Dyna Flow 144.1 1.7280 T Len 23.6 Ftg 11.3 C= 120 0.61289 Pt 20) 27.265 Pe 0.000 Pt 21.372 20 22.50 BN 172.0 Total 349 Total Pressure at Node?) 48.637 psi 15 22.50 r Dyna Thead 1.0800 T,E Len 4.1 Ftg 8.1 C= 120 0.59865 Pt 205) 37.001 Pe -0.433 Pf 7.272 205 21.50 AO 49.3 Total 12.1 14 22.50 1%" Dyna Flow 1.7280 0 Len 15.8 Ftg 0.0 C = 120 0.06069 Pt 15) 43.840 Pe 0.000 Pt 0.961 15 22.50 BN 49.3 Total 15.8 Total Pressure at Node 14) 44.801 psi 14 22.50 1" Dyna Thead 1.0800 T,E Len 4.1 Ftg 8.1 C= 120 0.61081 Pt 204) 37.814 Pe -0.433 Pt 7.419 204 21.50 AO 49.8 Total 12.1 13 22.50 1W Dyna Flow 493 1.7280 0 Len 6.6 Ftg 0.0 C= 120 0.22100 Pt 14) 44.801 Pe 0.000 Pf 1.454 14 22.50 BN 99.1 al 6.6 Tot Total Pressure at Node 13) 46.255 psi 12 22.50 1" Dyna Thead 1.0800 T,2E Len 8.1 1 Ftg 10.4 c = 120 __________ 0.33066 Pt 202) 40.749 Pe -0.433 Pt 6.101 202 21.50 AO 35.7 r18.1. Total Pressure at Node 12) 46.417 psi 11 22.50 1' Dyna Thead 1.0800 T,2E Len 8.11 Ftg 10.4 C=120 0.33357 Pt 201) 41.138 Pe -0.433 Pt 6.155 201 21.50 AO 35.9 Total 18.5 Total Pressure at Node 11) 46.860 psi 10 22.50 1" Dyna Thead 1.0800 T,E Len 7.11 Ftg 8.1 C= 120 0.34413 Pt 200) 42.548 Pe -0.433 Pt 5.212 200 21.50 AO 36.5 Total 15.1 Total Pressure at Node 10) 47.327 psi 6 22.50 214" Dyna Flow 2.7030 T Len 19.71 Ftg 18.7 C = 120 Pt 7) 48.637 Pe 0.000 Pt 2.658 7 22.50 FM 172.0 Total 38jJi06936 0 Copyright 2013 Sigma Development Group, Inc. Page 4 of 5 ffivQ (T PACIFIC RIDGE SCHOOL Das Pipe Information ARTS BUILDING 2ND FLOOR hboa,dHydmull From Ev1 ft Pipe ID Flows Added GPM Inside Diameter in Fittings Length ft C Value ITotal Loss psi/ft (Pt) psi Notes Fitting ftFriction Elev (Pe) psi To ft EIev2 Type Total Total ft Frict (Pt) psi 50 22.50 21/2" Dyna Flow 207.3 2.7030 2E Len 80.3 Ftg 18.7 c = 120 Pt 6) 51.295 Pe 0.000 N 29.631 6 22.50 FM 379.2 0.29961 Total 98.9 5 22.50 3" Dyna Flow 3.3140 T Len 14.1 Ftg 21.8 C= 120 0.11105 Pt 50) 80.926 Pe 0.000 N 3.989 50 22.50 FM 379.2 Total 35. 9 4 22.50 3" Dyna Flow 3.3140 E Len 33.3 Ftg 10.2 C= 120 0.11105 Pt 5) 84.915 Pe 0.000 N 4.833 5 22.50 FM 379.2 Total 43.5 3 9.50 3" Dyna Flow 3.3140 E Len 13.0 Ftg 10.2 0=120 0.11105 Pt 4) 89.748 Pe 5.629 N 2.575 4 22.50 FR 379.2 Total 23.2 2 0.00 3" Dyna Flow 3.3140 0 Len 9.5 Ftg 0.0 c= 120 0.11105 Pt 3) 97.952 Pe 4.114 N 1.055 3 9.50 FR 379.2 Total 9.5 1 0.00 6" PVC CL200 5.8600 EE,E Len 75.0 Ftg 26.8 0=150 0.00458 Pt 2) 103.121 Pe 0.000 Pt 0.466 2 0.00 UN 379.2 Total 101.8 0 0.00 6" PVC CL200 100.0 5.8600 DDC,T,E Len 35.0 Ftg 56.2 c= 150 0.00706 Pt 1) 103.587 Pe 0.000 p 0.644 DDC WILKINS 350 DA DOUBLE DETECTOR CHECK 6 WILKINS DOUBLE DEl. CHECK: Loss =2.97 1 0.00 UN 479.2 Total 91.2 1 Total Pressure at Node 0)107.199 psi 12 22.50 21/2" Dyna Flow Len 6.5 c = 120 Pt 13) 46.255 2.7030 0 Ftg 0.0 Pe 0.000 13 22,50 FM 99.1 0.02501 Pt 0.163 Total 6.5 11 22.50 2'12" Dyna Flow 35.7 Len 10.0 C = 120 Pt 12) 46.417 2.7030 0 Ftg 0.0 Pe 0.000 12 22.50 FM 134.8 0.04422 Pt 0.442 Total 10.0 10 - 22.50 2%" Dyna Flow 35.9 Len 6.8 = 120 Pt 11) 46.860 2.7030 0 Ftg 0.0 Pe 0.000 11 22.50 FM 170.7 0.06846 N 0.468 Total 6.8 6 - 22.50 2W Dyna Flow 36.5 Len 21.8 C=120 Pt 10) 47.327 2.7030 T Ftg 18.7 Pe 0.000 10 22.50 FM 07.3 F 0.09799 Pf 3.968 Total 40.5 Total Pressure at Node 6) 51.295 psi 0 Copyright 2013 Sigma Development Group, Inc. Page 5 of 5 Contractor Information Epic Fire Protection, Inc. 765 Turtle Point Way San Marcos, CA 92069 calculated by Adam Boisvert telephone 760-310-6122 fax 760-798-0556 email epicfirecox.net nrinkIr n Dam, No: Mfgr Mod SIN# Size K 5 GLOBE GL8109 17/32" 8.1 5 GLOBE GL5601 1/2" 5.6 8OO - Dal Hydraulics Summary Sheet ,. Project Information Calculation Date: 5/22/2014 10:05:42 AM I PACIFIC RIDGE SCHOOL system ID drawing ref FP-3 MIDDLE SCHOOL SECOND FLOOR AREA #2 6269 EL FUERTE RD. building MIDDLE SCHOOL construction NON COMBUSTIBLE CARSBAD, CA 92009 occupancy CLASSROOM/OFFICE contract # authority Hydraulics Criteria density .10 GPM/ft2 system type WET design std NFPA 13 remote area 1500 ft2 hazard LIGHT spr coverage 15x15 AND 20) sprs flowing 10 figure calc"d volume 204.9 gal curve Inw TcI static pressure 113.40 psi residual pressure 100.80 psi quantity flowing 1,520.0 GPM elevation from if 0.00 ft date & time of flow test 9-30-13 location of flow test ON SITE LOOP Supply I Demand C3rapn 112.02 psi available at Sprinkler Demand of 99.81 psi with Total System Flow of 459.5 GPM TT Mariin: +10.9% 140 120 60 40 20 0 0 75 150 225 300 Demand at sprinkler and interior hose flows © Copyright 2013 Sigma Development Group, Inc. 180 160 GGPM 375 450 525 Water Flow (GPM) Total System Demand including Hose Flows at Zero Page 1 of 5 PACIFIC RIDGE SCHOOL IqOO DashboaidHydiaul Supply Analysis IIDDLE SCHOOL SECOND FLOOR AREA #2 ks Sprinkler Flow: 359.5 GPM Additional Flows: None Hose Flow at Zero: 100.0 GPM Total System Flow: 459.5 GPM Maximum velocity in pipe 2-5 is 20.1 ft/sec Nodes Analysis Minimum Node Actual Node Elev Device KFactor Flow I Pressure Discharge Notes ft GPM psi GPM i4520.5 Sprinkler 5.60 18.20 28.36 29.82 c.I4 20.5 Sprinkler 5.60 17.50 28.79 30.05 C:14& 20.5 Sprinkler 5.60 18.00 29.82 30.58 1I2; 20.5 Sprinkler 5.60 22.50 31.88 31.62 44Q 20.5 Sprinkler 5.60 14.83 33.12 32.23 c1 2O.5 Sprinkler 8.10 26.00 23.54 39.30 th4 20.5 Sprinkler 8.10 40.00 24.39 40.00 4&7 20.5 Sprinkler 8.10 40.00 26.30 41.54 z:W"44 20.5 Sprinkler 8.10 26.00 27.06 42.13 Li1) 20.5 Sprinkler 8.10 33.00 27.15 42.20 0 0.0 Hose@Zero 99.81 100.0 © Copyright 2013 Sigma Development Group, Inc. Page 2 of 5 PACIFIC RIDGE SCHOOL Dash Pipe Information : SCHOOL SECOND FLOOR AREA #2 oard Hyd,aulks From EleVi ft Pipe ID Flows Added GPM Inside Diameter In Fittings Length ft l C Value Friction Loss psi/ft IT0thI (Pt) psi Notes Fitting ft Elev (Pe) psi To ft Elev2 Type Total Total ft Frict (Pf) psi 129 21.00 1" Dyna Thead 1.0800 T,E Len 0.5 Ftg 8.1 C= 120 0.40709 Pt 149) 24.387 Pe -0.217 N 3.487 149 - 20.50 AO 40.0 Total 8.6 128 21.00 1%- Dyna Flow 1.7280 0 Len 13.4 Ftg 0.0 C = 120 0.04127 Pt 129) 27.657 Pe 0.000 N 0.554 129 21.00 BN 40.0 Total 13.4 Total Pressure at Node 128) 28.211 psi 128 21.00 1" Dyna lhead 1.0800 T,E Len 4.3 Ftg 8.1 C= 120 0.39404 Pt 148) 23.543 Pe -0.217 N 4.885 148 20.50 AO 39.3 Total 12.4 125 - 21.00 1%" Dyna Flow 40.0 1.7280 0 Len 15.0 Ftg 0.0 C = 120 0.14638 Pt 128) 28.211 Pe 0.000 Pt 2.196 128 21.00 BN 79.3 Total 15.0 Total Pressure at Node 125) 30.407 psi 127 21.00 1" Dyna Thead 1.0800 T,E Len 2.3 Ftg 8.1 c = 120 0.43648 Pt 147) 26.295 Pe -0.217 N 4.538 147 20.50 AO 41.5 Total 10.4 126 21.00 1W' Dyne Flow 1.7280 0 Len 16.6 Ftg 0.0 C= 120 0.04425 Pt 127) 30.617 Pe 0.000 N 0.734 127 21.00 BN 41.5 Total 16.6 Total Pressure at Node 126) 31.351 psi 126 21.00 1 Dyna Thead 1.0800 T,E Len 3.5 Ftg 8.1 C= 120 0.23981 Pt 146) 28.793 Pe -0.217 N 2.774 146 20.50 AO 30.0 Total 11.6 123 21.00 1Y2" Dyna Flow 41.5 1.7280 0 Len 9.3 Ftg 0.0 C = 120 0.12113 Pt 126) 31.351 Pe 0.000 Pt 1.120 126 21.00 BN 71.6 Total 9.3 Total Pressure at Node 123) 32.471 psi 125 21.00 1" Dyna lhead 1.0800 T,E Len 1.5 Ftg 8.1 C= 120 0.23648 Pt 145) 28.361 Pe -0.217 Pt 2.262 145 20.50 AO 29.8 Total 9.6 14 21.00 1W Dyna Flow 79.3 1.7280 T Len 4.7 Ftg 11.3 C = 120 0.26422 Pt 125) 30.407 Pe 0.000 Pt 4.217 125 21.00 BN 109.1 Total 16.0 Total Pressure at Node 14) 34.624 psi 0 Copyright 2013 Sigma Development Group, Inc. Page 3 of 5 PACIFIC RIDGE SCHOOL @806 Da. Pipe Information SCHOOL SECOND FLOOR AREA #2 dHd,auII From Elevl ft Pipe ID Flows 1 Added I GPM I I Inside Diameter in Fittings Length ftl C Value LFriction Loss psi/ft Total (Pt) psi Notes Fitting ft Elev (Pe) psi To ft Elev2 Type Total Total ft Frict psi 124 21.00 1"DynaThead 1.0800 T,E Len 0.5 Ftg 8.1 c = 120 0.44816 Pt 144) 27.057 Pe -0.217 Pt 3.839 144 20.50 AO 42.1 Total 8.6 13 21.00 1"Dynalhead 1.0800 T Len 4.0 Ftg 5.8 C= 120 0.44816 Pt 124) 30.680 Pe 0.000 pf 4•375 124 21.00 BN 42.1 Total 9.8 Total Pressure at Node 13) 35.055 psi 123 21.00 1"DynaThead 1.0800 T,E Len 3.5 Ftg 8.1 C= 120 0.24772 Pt 143) 29.822 Pe -0.217 Pt 2.865 143 20.50 AO 30.6 Total 11.6 15 21.00 1%"DynaFlow 71.6 1.7280 1 Len 5.9 Ftg 11.3 C= 120 0.23390 Pt 123) 32.471 Pe 0.000 Pt 4.025 123 21.00 BN 102.2 Total 17.2 Total Pressure at Node 15) 36.496 psi 122 21.00 1"DynaThead 1.0800 T,E Len 1.5 Ftg 8.1 C= 120 0.26351 Pt 142) 31.882 Pe -0.217 Pt 2.521 142 20.50 AO 31.6 Total 9.6 14 21.00 lth"Dyna Flow 1.7280 __ T Len 5.1 Ftg 11.3 C= 120 0.02671 Pt 122) 34.187 Pe 0.000 Pt 0.437 122 21.00 BN r31,61 Total 16.4 Total Pressure at Node 14) 34.624 psi 121 21.00 1"Dynalhead 1.0800 0 Len 0.5 Ftg 0.0 C= 120 0.44957 Pt 141) 27.149 Pe -0.217 Pf 0.225 141 20.50 AO 42.2 Total 0.5 13 21.00 1"DynaThead 1.0800 T,E Len 9.5 Ftg 8.1 C= 120 0.44957 Pt 121) 27.157 Pe 0.000 Pt 7.897 121 21.00 BN 42.2 Total 17.6 Total Pressure at Node 13) 35.055 psi 120 21.00 1"DynaThead 1.0800 T,E Len 1.8 Ftg 8.1 C= 120 0.27293 Pt 140) 33.115 Pe -0.217 Pt 2.679 140 20.50 AO 32.2 Total 9.8 12 21.00 1'/2"Dyna Flow 1.7280 T Len 6.9 Ftg 11.3 = 120 0.02767 Pt 120) 35.578 Pe 0.000 pf 0.504 120 21.00 BN 32.2 Total 18.2 Total Pressure at Node 12) 36.082 psi © Copyright 2013 Sigma Development Group, Inc. Page 4 of 5 Pipe Information SCHOOL SECOND FLOOR AREA #2 13 PACIFIC RIDGE SCHOOL DasIibowdHydrauII From ft Elevi Pipe ID 1 I Flows Added GPM Inside Diameter in Fittings Length I C Value Friction Loss psi/ft I I Total (Pt) psi I Notes Frict (Pt) psij Fitting ft I I I Elev (Pe) psi To Elev2 Type I Total Total ft 13 21.00 2%"DynaFlow 2.7030 0 Len 9.0 Ftg 0.0 0=120 0.04788 Pt 14) 34.624 Pe 0.000 pf 0.431 14 21.00 FM 140.7 Total 9.0 12 21.00 2'/i"Dyna Flow 84.3 2.7030 0 Len 9.0 Ftg 0.0 0=120 0.11413 Pt 13) 35.055 Pe 0.000 pf 1.027 13 21.00 FM 225.1 Total 9.0 15 21.00 2'A"Dyna Flow 32.2 2.7030 Len 2.8 Ftg 0.0 0=120 0.14618 Pt 12) 36.082 Pe 0.000 pf 0.414 12 21.00 FM 257.3 Total 2.8 11 21.00 2%"Dyna Flow 102.2 2.7030 5E Len 64.0 Ftg 46.6 0=120 0.27136 Pt 15) 36.496 Pe 0.000 pf 30.020 15 21.00 FM 359.5 10 21.00 2%"Dyna Flow 2.7030 0 Len 17.3 Ftg 0.0 0=120 0.27136 Pt 11) 66.516 Pe 0.000 pf 4.703 11 21.00 FM 359.5 Total 17.3 6 21.00 2'R'Dyna Row 2.7030 E Len 6.5 Ftg 9.3 0=120 0.27136 Pt 10) 71.219 Pe 0.000 N 4.294 10 21.00 FM 359.5 Total 15.8 5 9.00 2Y2"DynaFlow 2.7030 0 Len 12.0 Ftg 0.0 0=120 0.27136 Pt 6) 75.513 Pe 5.196 pf 3.256 6 21.00 FR 359.5 Total 12.0 2 0.00 2'/2" Dyna Flow 2.7030 2E Len 13.0 Ftg 18.7 C = 120 0.27136 Pt 5) 83.965 Pe 3.897 Pf 8.589 5 9.00 FR 359.5 Total 31.7 1 0.00 6" PVC ciioo 5.8600 EE,E Len 75.0 Ftg 26.8 c = 150 0.00415 Pt 2) 96.451 Pe 0.000 N 0.422 2 0.00 UN 359.5 Total 101.8 0 0.00 6" pvc cioo 5.8600 _______ DDC,E Len 35.0 Ftg 17.9 C = 150 0.00415 Pt 1) 96.873 Pe 0.000 pf 0.219 DbC WILKINS 350 DA DOUBLE DETECTOR CHECK 6' WILKINS DOUBLE DEl. CHECK Loss =2.72 1 _____ 0.00 UN ____________ 359,5 ______ Total 52.9 Total Pressure at Node 0) 99.812 psi © Copyright 2013 Sigma Development Group, Inc. Page 5 of 5 C Contractor's Material and Test Certificate for Above PROCEDURE Upon completion of work, inspection and tests shall be made by the contractor's rePros=taj~vq~d d n o r'mQreatAU defects shall be corrected and system left in service before contractor's personnel fin and Acertiflcate. Shall be fifed Out andslgned by both representatives. Copies shall be ty mateAai, poor contractor. ttlsunderstood the owner's representative's signature in no way prejudices ntra workmanship, or failure to comply with approving authority's requirements or local ordinances. Property name Date Property address Accepted by approving authorities (names) Address Plans Installation conforms to accepted plans 01 Yes EJ No • Equiptnent used is approved Yes E No It no, explain deviations Has person in charge of fire equipment been instructed as CR Yes E No to location of control valves and care and maintenance of this new equipment? It no, explain? Instructions Have copies of the following been left on the premises? K2 Yes E No 1. System components Instructions Yes ED No f tJ 2. Care and maintenance instructions Yea ENb 3. NFPA 25 Yes No •tecatlon f System Supplies buIldings. Year of Orifice Temperature Make Model manufacture size Quantity rating g7L "em _________ r _ li 7J5 _______________ L4oi c3 Sprinklers Pipe and Type of pipe fittings Type of fittings Alarm Valve or floe indicator Alarm device Maximum time to operate through test connection Type Make I Model Minutes Seconds R—&.. I ry valve D Make Model Serial no Make Modejltiialno. Dry;pipe operating test iim;Iirip_ through test connection1 War pressura Air pressure nt Time water reached test outlet1 Alarm opOrated properly - Minutes Seconds psi '$l psi Minutes I Seconds Yes No Without Wit Operation E Pneumatic Electric E Hydraulics .EJ5 supeMsed J Yes El No Detecting media supervised 0 No Deluge and preaction Does valve-4perate from the manual trip, remote, or both Yes No controlstiation Is there an. accessible fa-clwP4.each circuit. for tea In ? I explain Make Model Does each circui ra supervisi a alarm? Does each circuit operate valve release? Maximum time to operate release No No Minutes Seconds Pressure Location a r aké and model Setting Static pressure Resi 91-pesure flowing)... Flow rate reducing ___— yal Inlet (psi) Outlet (psi) inlet (sl) Outlet. (psi) w. (gpm) Testopen Hydrostatic: Hydrostatic tests shall be made at not lessthan 200 psi (1.6 bar) for 2. hours or 50 psi(3.4 bar) above static pressure In excess 01150 psi (10.2 bar) for 2 hours. Differential dry-pipe valve clappers shall be left during the test to prevent damage All aboveground piping leakage shall be stopped. C18300011 Pneumatic: Establish 40 psi (2,7 bar) air pressure and measure drop, which shall not exceed 1½ psi (0.1. bar). In 24 hours. Test pressure tanks at normal water level and air pressure and measure air pressure drop, which shah notexceed 1½ psi (0.1 bar) in 24 hours. All piping hydrostatically tested at' 0psI (_. bar) for hours Dry piping pneumatically tested E Yes EJ No Equipment operates properly j- Yes M No if ..no state reason , Do you certify ai the sprinkle contractor that additives and corrosive chemicals, sodium silicate or derivatives of sodium silicate, brine, or other corrosive chemicals were not used for testing systems or stopping leaks? Yes .D No Tests Drain test Reading of gauge located near water supply test connection: VZ.c psi (_bar) Residual pressure with valve in test connection open wide: ±D psi (...., bar) Underground mains and lead In connections to system risers flushed before connection made to sprinkiér piping I Verified by copy of the U Form No. 85B. NJ A E Yes E No Other Explain flushêdby installer of underground sprinkler piping E Yes No If powder-driven fasteners are used in concrete, has Yes No If no, explain representative sample testing be satisfactorily completed? Blank testing Number use Locations Number removed gaskets Welding piping Yes ED No If yes... Do you certify as the sprinkler contractor that welding procedures comply Yes El No with the requirements of at least AWS B2.1? . Welling Do you certify that the welding, was performed, by. welders qualified in Yes El No compliance with the requirements of at least AWS 92.1? Do you certify that the welding was carried out In compliance with a documented Yes E No quality control procedure to ensure that all discs are retrieved, that openings In piping are smooth, that slag and other welding residue are removed, and that the Internal diameteis of piping are not penetrated? Cutouts (discs) Do you certify that you have a control feature to ensure that Yes C] No all cutouts (discs) are retrieved? Hydraulic Nameplate provided If no, explain data nameplate Yes ED No - Dale left in service with all control valves open Remarks nc Name of of sprinkler contractor Signatures r For Additional expianatiobs and notes Tests witnessed by Title Pze Title r7 4 Date 1- Pate 12-