Loading...
HomeMy WebLinkAboutSUP 96-10; RANCHO CARLSBAD; HYDROLOGIC AND HYDRAULIC STUDIES; 1998-06-30-• --• -... .. \, ... ' -f..: ... ; t: .· .. ~ · .. - .... .. .. --.. .. .. RANCHO CARLSBAD CHANNEL & BASIN PROJECT (Job Number 13182) June 30, 1998 Prepared for: G.it)' of.~irlsbad 207S Las Palmas Drive Carlsbad, California 92009-1576 Dennis . • • g, M.S. R.C.E. #32838 Exp. 6/02 Prepared By: Rick Engineering Company Water Resources Division 5620 Friars Road S'.:111 Di~go. California 921111-2596 ·,;19\ "91,.Ji'71'7 ,,.,, I -v, .. , ,. .. • .. ,,... Introduction .. .. .. .. .. -.. -- .. - .. ... .. .. .. .. .. .. .. - 'Ibis report bas been pzepared to summarize the hydrologic and hydraulic studies conducted by Rick Engineering Cnmpany for the City of Carlsbad as part of the ·Rancho Carlsbad CbanMI and Basin Project. Rancbc, Carlsbad Mobile Home Padt (RCMHP) is located north of El Camino Real midway betwan Collep Boulevard and Tamarack Avenue. See the Vicinity Map on tho m,xt paae. RCMHP contains portions of both Agua Hedionda and Calaveras~-Agua Hedionda Creek flows westaly tbmup tho soutbem portionofR.CMHP. Calawras Creek flows aouthwetterly along the northern property bom)dary. Calavaaa Creek conflumcea with Apa Hcdioocla Cmek within RCMHP app?mmately 300 feet upstn,am of Pl Camjno Hal. TbePedenl Pmeqpmcy Manapmmt . Agency (FBMA) Flood Insurance Rate Map (FIRM) shows that a large portion of R.CMHP is imJndatecf by 11M, JOO-year storm. Seo die FIRM in Map Pocbt 1. The purpose of tllll study is to provide recommendations for miraimizina the 100..year tloodiq in RCMHP. These recommmidationB include upsueam datmtion basins to decreue 11u, peak flow and OIHdte creek improvements to increase the meek capadtios. Rydrolopc Methodoloo Hydrologlc analyses were prepared to determine the 100-yearpeak discharge within RCMHP and to analyze proposed detention scenarios. Two hydrologic analyses using the U. S. Army Corpi of Engineers' HBC-I flood hydrograph program are .included in this report. The first analysi1 modeled the existing detention facilities and ultimate development Ultimate development was assumed in order to account for the rnexhn11111 anticipated discharge in the watershed. The results of the first analysis confirmed that the creeks in RCMHP are inadequate to convey the 100-year Prcpan:clBy: Rick EnatGCerina Company• Wab!r Raoutca Division 1 DCB:MDL:emn,Rcport/J-l31111.00l 07/0l/91 ... .. .. 111 • stonn. Therefore, additional analyses were performed in order to study detention scenarios. The ;J. ,. 11111 .. Ill ... Ill .. Ill .. .. .. (!. ... .. 111111 .. .. ... ... .. .. ,. .. -.. HEC-1 analysis containing the most desirable detention scenario is included in this report and is based on the existing and four proposed detention facilities and ultimate development within the entire watershed. The ffOC.1 input and methodology are discussed below. The HBC-I results are discussed in the following section. Prior to preparing the HBC-1 input, previous studies (listed in "Rcfemices'') for RCMHP were reviewr.d and site visits were performed. The site visit objectives were to verify the watershed boundm:y and major flow paths of both Aaua Hcdionda and Calaveras Creeks, detenninc existing detention locatlons, and review proposed ~tion locatiom. Prior to the site.viaits, the watenhed boundm:y and flow paths were delineat.ecl on the United States Geological Survey's (USGS) quadrangle maps. The watcrihed was divided into sub-basins in. order to obtain peak flows at existing and proposed detmtion facility locations and at locations listed in the currmt Flood Insurance· Study. The watershed boundmy, flow paths, and sub-basin boundaries were vsified during the site visits and adjusted appropriately. See Map Pocket 2 for the RCMHP watershed boundm:y map . During the site_ visits, existing detention facilities such as dams and road emhankmcnta were noted. Two dams exist within the RCMHP watershed: Calaveras and Squires. Of these two, only Calaveras dam provides significant detention. It is located within Calaveras Creek and detains the upstream creek flows. On the other band, Squires Dam is located at the upper end of a drainage basin and provides minimal detention. The plans for Calaveras Dam were obtained from the Division of Safety of Dams (DSOD) and the outlet works and storage capacity were modeled in the hydrologic analyses. Prcp~By: Rick Engineering Company • W~ Rcso11rces Division 3 DCB:MDL:cmn.'Rcpon/J•l3182.001 07/0li93 -.. • ·r• -llr, -1111 -• .. -... .. -.. -.. ·1• •: -... .. ... ... ... -~ -... ... ... ... Ill • .. .. ... ; .. Furthermore, the following road embankments were identified as potential existing detention facilities: Business Park Drive (south of Park Center Drive), Sycamore Avenue (north of Grand A venue), Shadowridge Drive (north of Antiqua Drive), Melrose Drive (north of Cannon Road). and Melrose Drive (south of Aspen Way). As-built plans for these road crossings were obtained ftom the appropriate agencies. The culverts and storage capacities of the Sycamore A venue, Sbadowridge Drive, and Melrose Drive (Cannon Road) facilities were modeled in the hydrologic analyses. The B.usiness Park l)rive and_~sc· Drive'(Aspen Way)·cn,~ werc.~tmodelcd becatssc ·tha culverts at these locations are large enough to convey most of the upstream flows with minimal detention. Two main criteria were considered in selecting potential proposed detention basin sites. First, the facilities listed in the Master Drainage Plan were considered. Second, existing or proposed road crossings were considered. Detention basin construction at road crossings provides several benefits. Road crossings create a natural location for detention. They are cost-etfective because the road embankment is used for detention. They do not create a significant increase in environmental impacts . The above-mentioned sub-basins and detention facilities were modeled in the HEC-1 program. The program parameters include sub-basin area, rainfall distribution, lag time, and curve number. These parameters were detenniDed as follows: The sub-basin area was obtained from the USGS watershed boundary map. The rainfall distribution was based on storm duration and frequency, as well as the sub-basin's geographic locatio~ The lag time was based on sub-basin characteristics such as topography, basin shape, vegetative cover, existing development, and stonn duration. Both rainfall distribution and lag time were generated by utilizing the criteria outlined in PrepllRd By: Rick Engineering C,1mpany • W:it.:r Resources Division 4 DCB:MDL:.:m111Report1J-l3182.O01 07/01,98 .. ,. 111 ,. the County of San Diego Hydrology Manual. Curve numbers are a function of land use and soil -Ill .. .. type. The land use coverages were obtained from the City of Carlsbad's Geographic Information System (GIS). The land use was revised slightly in three locations according to a December 12, 1997 exhibit from the City of Carlsbad. In open space areas, land use was based on vegetatlve cover estimates obtahied from the Soil Conservation Service's (SCS) San Diego County ~ll lnterpret~tl~n . ~ . Study Ground Cover maps, as well as field observatiODS. The soil type coverages are dtJI~ on , the SCS's 5'.oil Survey maps~ These ~g~ were. obtained from~ San .Jiiego Assoc~on· of • . . ~ ' . . . ' Oovc:mments (SANDAG) in digital format. Once the land use an4 soil~-~ established, the . :/·.~-:;_,:_:~ .. < ·:/ , curve numbers wen then calculated using the method o~ _bl &\~Diego County Hydrology Manual. ; -' .. ;· . The curve number, lag time, rainfall distn1rution, uid'erea.for each sub-basin wae gmezated . . .. and input into the HEC-1 program. The HBC-I program then computed tha ninoff hydrograph and peak discharge for each sub-basin. The ~ detention facilities were modeled in the first HBC-1 analysis, while both existing and proposed detention facilities were modeled in the second HEC-1 analysis. Hydrologlc Reaults The results of the two aforementioned HEC-1 analyses for RCMHP are discussed below. For the first HEC-1 analysis, which modeled the existing detention facilities and ultimate devel~ent, both six-and 24-hour, 100-year storms were simulated. The 24-bour storm resulted in higher peak flow discharges at RCMHP for both creeks, thus it was used in all subsequent analyses. pjqiarcd a,: Ride Eoslnoert111 Company • Wat.:r RW>un:es OiYisiM 5 DCB:MDL:"mn/Report/J-11182.001 07,'01/98 .. .. - •. Appendix 1 contains the 100-year, 24-hour HBC-1 analvsis for the RCMHP watershed with the •' 'I -.. .. .. .. .. .. .. -.. .. .. ... -... . ... ... ' .. ... ... 1111 -.. .. .. existing detention facilities and ultimate development The second HEC-1 analysis modeled both existing and proposed detention facilities and ultimate development. Several proposed detention scenarios were invcltigated and it was detcnnined that the most feasible scenario wu the combination of four detention basins. all located at proposed road crossings. Two of tho JB'OPOSecl &=ntion facni~ are listed in the 1994 Master Drainap Plan as Detention Basins BJB:-~ ~-.1-·faciliti~-~:(~ immediately upstream ofRCMHP in Calaveru Creek. Both of~-~~ 1-im ~-desiped u flow-by facilities . ' • ~-. '• • •. • . . ' .. . ; A flow-by famllty cJetains the higher~ flows, ~ ~k,~ lower flows to pass tbroup tho basin rdalively und&1alned. The otl,s..% ~ ~ .i-e';;,... llplll-. ill Ap HaliaDla ~-.• ... ;· . . . • . .; ' .. . . .. : . :. . Creek at tho proposed road extcmions of~ Driw (IOiith.of Aspen Way) and Faraday Avenue. • • 0 0: ~ ~ ,: •• I• • I o • ',: • o 0 Both of the Apa Hedionda detention~'.~ ft~•~: iyj,el wbcro all of the creek flow i1 . '. . . ·. . .... : . . .• ' . ·: :· •. • . . . dctainad. All pmpoaed detention fBilitlcs·were d•pd to 1;le outside DSOD'sjurisctictional limits, •, • . .: . . i.e., leas than SO acre-feet of storap vol~ and lesa ~ 25 feet hip. Appendix 2 contains the HEC-1 analysis of the 100-year, 24-bour stoma for the llCMHP watcrsbcd with both existing and proposed detention facilities and ultimate development Tablo I summarizes the results of both HEC-1 analyse•. The table shows that with the proposed detention basina. the peak discharge at RCMHP decreased by approximately 1 O to 15 percent. Preliminary design of the proposed detention facilities are discussed below. Prq,arc:d By: . . Rick Enpnccring Company • Wata ResoulCCS D1vaslon 6 OCB:MDL:emn.hport/J•lllll.001 07/01,'91 .. - -- .. .. .. .. -.. .. ... .. ... ?·~· •• .. -,.. ~ •• 7• ,~: • .. •f. ·, . ..... :..;_. ;,'. -~-- ... -_._ .. -1:. -.. "' a.•·. ~_..,; . ...... ' .(I. ~--'.~;:j~- . ,,'>;."-•·. ·,~~•:; .... :r:·1 ~-·\:; ... ;_ ,· . .. • I\:.· ... ,. . ~ , • ... r Table 1 . Comparison of 100-year, 24 .. hour Peak Plow DischUI• with Exlatin1 Detention FacWties and with Both Emtln.1 and Proposed Detentloa l'adlltles lJltimate Dneloplllent Rancho Carllbad Mtbtle Rome Park --fl! .,~ .:t(€_;~~ ·"7"~3"'~-njT'~'t,;it'": ~-"'~ ~,,,::1·,n·-;~tr.,..--t•'r4 ~~-,.,.~f>✓-\Jt,lj~-•~1 ~ ,;+,-.il'.fl'1 1~-, <~" (~ :~;\•'_;:':~f1{i1 r.•,;-: ~/~If.:,••:\ \"•~•>•i~~ ,✓=-.~ l <·,.:,,,:::"·'/;';t,'4't·t·,;~'"'"'··~,,--'·:,. __ •.•<•;_;, '».;.'. ~,,,,. ,•' -~.¥j·11 ,.r(.~ ,~ :;· 'I•~]~,•' ;~• ,·" :,❖t? '~ti1 ,~•;ir;, ~.~,._l •",: ~( 1 ,,,, ~ ~• 'ilf,...:¥, v· ' .. . ·•:»·,. tff', . , .. ,, , ,i;fL ·I -'1(··, ,., , , .:..J ··,:· ---•,,;,, ,, ' ; , • ,, ~ ~.. i;..,, .,, ;::.., .(; ¥. :., •... _,~ti+({'t'. ,;;. ~ ~'';. . w' ..... ·,,, . ♦ -:,· .. " ~.-::-;~-• $ ,.:-:~:£; • ./1 / • 1 ) I ; , .. ~ ~ / ~•r L~.;:~ ;A / ;'!,if..! j ~ ; I ;> •~ 1 t , i' ~ ; ' • • l J ~ /' • •• _.. t ' A , \< -~~-'IL;,;;. ·'·~"-'·· .-: ',:S:..,,1 •• ,, )it.:., itiM, lLJ&, • .,,,40,•,b~.:_,,_;,,~. . ,, ;-,,--,., .. ,~1_,._,Jitil CaJavaasCnck 1.910 1,550 Apa·~(upscieam·of ., 8;050 .. , ' ·1,600- conflumcc with CalavaasCreek) Apa Hedionda (downstream of 9,950 8,970 confluence with CalaverasCreet) • cti -cubic feet per second ... Pl'lplnll&y: 1 DCB:MDL:.mw'RcportlJ-13112.001 07/01/91 ·. , :_ . Rick Bnglaarina Company -Waler Resources Division .. .. --.. - .. -.. .. .. .. ... .. ... ,.. .... ... .... -' ... .. .. Preliminary designs were performed for each proposed detention facility to determine the outlet works required to achi_eve maximum detention, while maintaining the height and storage volume below DSOD jurisdictional limits. The preliminary design of each detention facility and the results for each detention facility design are described below. The most upstream proposed detention facility in Agua Hedionda Creek is at Melrose Drive . This mcility will be a flow-throup detention basin. Melrose Drive rum north-south and cuuently en,da just ~uth of Aspen Way ·near'~ ·Carlsbad Co~ bo~ .. Future ·pi.us call 'for the extension of Melrose Drive to Palomar Airport Road. An existing reinforced concrete box (RCB) culvert conveys flow under Melrose Drrve and is 10 feet wide by 7 feet high. The existing Melrose Drive mnbankment provides minima) detention because of the RCB 's large capacity. Hydrologic calculations show that a 36-inch diameter opetdng at this location will detain the peak ftow discharge from approximately 450 cubic feet per second (cfs) to 180 cfs. There are two alternatives for creating the 36-inch openina. One is to replace the existing culvert with a 36-inch RCP and the other is to construet a concrete burler at the inlet with a 36-inch diameter opening. The resultant storage volume and ponded water surface elevation (WSBL) with the new outlet works will be approximately 41 acre-feet and 329 feet, respectively. This will create an inundation area of approximately seven acres. The estimated outlet velocities for the first and second alternative will be 2S and 13 feet per second (fps), respectively. The velocity under the first alternative is greater than the maximum desired velocity of 20 fps. The velocity calculation assumed that the proposed 36-inch RCP was constructed at the slope of the existing culvert, which is one percent. If this alternative is selected, the final culvert design should analyze methods for reducing the outlet .. • velocity, such as placing the culvert at a flatter slope or using multiple small diameter culverts. A ... ... .. .. Pn:p~By: Rick En1inurin1 Company• Water R,sourc.:s Division 8 DCB:MDL:emntReponlJ•I J 112.00 I Cl7i01/98 .. ... .. • d.conceptual plan for the second alternative is included in Map Pocket 3. --.. .. .. .. -.. -... .. ... , The other detention facility proposed for Agua Hedionda Creek is the Faraday Avenue flow- through detention basin. Currently, Faraday Avenue nins east-west end ends at Orion Street. The extension of Faraday Avenue to Park Center Drive in the city of Vista is planned as part of Carlsbad Oaks North Business Park. The hydrologic calculations and preliminary design in this report were based on the proposed embankment and topographic information shown on the Tentative Map for c.Isbad'Qaks North B~ss Park.by O'l)ay Co11$11tants, da,ted ~ 6, 1998. ~ cal~ons • I • • '" show that a single 6-foot wide by 7-foot high RCB culvert will detain appr<OOrnately 49 acre feet of storage volume and will pond up to an elevation of 240 feet. The inundation area will be approximately seven acres. The 100-year peak discharge of 1,0S0 d's entering the detention basin • will be detained down to approximately 780 cfs. The apprcmmatc, ~a.lculated outlet velocity will be ,. . .._( • 19 fps. A conceptual plan for this detention facility is included in Map Pocket 4. ,. ... ... I ... ... ' ... .... ' ... ~ ... .. .. ,.. .. ... ~ .. .. • The two proposed detention facilities in Calaveras Creek are located just upstream of RCMHP and were designed as tlow-by basins. The first facility, Detention Basin BJB, is located north of RCMHP at the proposed College Road ex.tension and west of the proposed Cannon Road extension. College Boulevard currently ends at El Camino Real. North of RC:MHP, the proposed College Boulevard extension runs roughly east-west. Collep Boulevard intersects the proposed Cannon Road extension at the northeast comer of RCMHP. Cannon Road currently ends east of Interstate S at Paseo Del Norte. The proposed Cannon Road extension alignment will be parallel to Calaveras Creek and immediately north of RCMHP. The detention buin design consists of an earthen embankment, outlet works, and a small berm. The embankment will have a l 0-foot top width and a 76-foot crest elevation with 2:1 (borizontal:vertical) side slopes. The outlet works PreplRd By: . . . lllck En1lnecring Company • Water Rcsourcos Dms1on 9 DCB:r.,WL:11mn1Report/J-13l8l.001 07/0l/98 ,. .. .. • .,,. consist of a single 10-foot wide by 7-foot high RCB and a 48-inch RCP. The 48-inch RCP joins the .. ... ... ... ... .. ... ... .. .. "' ... ... ... ~-• .... (. ,.. ... ... I .. .... ..... ... ' ... ... .. ,.. .... ... l • .... .... ... .. - RCB downstream of the embankment The RCB then extends to Calaveras Creek. An emergency spillway is also provided. · The small berm will run parallel to the creek for approximately 1.~00 feet . The berm will have an approximate 74-foot crest elevation, 10-foot top width, 2:1 (horizontal:vertical) side: slopes, and a weir section. The weir section, locat.ed near the embankment, will allow flow to enter the buin at an approximate WSBL of 73 feet Hydrologic calc:ulations show that with the outlet wbdcs ~bed above. a storage v~lume of ~ly·49 acre feet will be • • ·, • • , • : • I • : • attahx:cl The resul1ant ponded WSEL will be approximately 75 feet end the inundation area will be app1oximately t 5 acres. The peak discharge of 1,570 cfs entering the basin will be detained down to 1,200 cls. Tbe approximate outlet velocity will be 19 fpl for the RCB. Sec Map Pocket S for a copy of the conceptual design of Detention Basin BJB. . The other Calavoras Creek detention facility, Detention Basin BJ, is located northeast of RCMHP at the proposed. College Boulevard extcmion and eaat of the proposed Cannon Road extension. The earthen embankment will have a crest elevation of approximately 81 feet. a top width of 10 feet, and 2: 1 side slopes. An emergency spillway will be provided. Appro10rnately 600 feet of channel improvements upstream of the proposed emb~ are necessary. 1be channel improvements include grading the creek as follows: Trapezoidal-shaped grass,-lined channel with a 3-foot bottom width, 4-foot depth, and 2: 1 side slopes. The hydrologic calculations showed that a 6-foot wide by 3-foot high RCS would detain the peak flow of 670 cfs down to approximately 3S0 cfs. The inundation area is approximately eight acres and the ponded WSBL is approximately 76 feet. The detention basin stores approximately 48 acre feet of water. The calculated outlet velocity will be approximately 19 fps. See Map Pocket 6 for the conceptual plans for Detention Basin BJ . Prcp~dBy: Rick Enainecring COC'Apimy • Wa1&r RcsourtCS Division 10 DCB:MDL:cma, Rq,ort/J •ll 182.001 07/01/98 .. Ila • .. ,-(). .. .. ... .. .. ... .. .. ... .. .. ... ... ... ,. ,. .. ,. .... .... ' ... ... .... ... .... ... ... ... ' ... ,.. ~. ,. ... ... .. As discussed above, with the addition of the proposed detention facilities, the peak disci.carge at RCMHP is decreased by approximately 10 to l S percent. All four of the proposed detention facilities were dmigned to fall below DSOD'sjurisdictional limits. Also, all the facilities are located at existing or proposed road crossings and at least one foot of freeboard is maintained at the road embankments. The resulu are summarized in Table 2, which contains results such as outlet works, velocity, peak flow discharge into and out of the basin (Q.. and Q.), storage vo~. ponded WSEL, al)d-surfacc area. Prepared By: Ric:k En1lnccrln& Compml)' • WGll:r Rcsourc:cs Division 11 DCB:MDL:cmn,Report/J• ll I S2.IJ01 07/01,98 I f I ,,--,-. r I Facility Niune Melrose (south of Aspen Way) Faraday BJB BJ Pr.:p.ircd By: I I I 1 f 1 f 1 ,-I ,. ~ r 1 1,1 ' 1 fl 1111 fl fl f It' I (&,ds 450 l,0S0 1,560 670 Tahle2 Summary of Pn,poaed Det.eation Jaeilitiet Rancho Carlabad ~••vi wlBuia Project 100-ycar, 24--laoar Storm Eveat :-q;;;;~;'.Ctl:/,('~,,,,,-110 •• 1!!!!!ffl!~:J'!/'•:Cr•s{,h,:S, >-•• -_ ,:\_:' __ _.:·/ '.-'.~~J_?; ~~.iilf~:·:~~~}~:~: ~: ~~:-~ktr;: ~--·:v.~IMYi'"-,:: 180 780 1,200 350 3611 RCP 6'x7'RCB 1-Uh7'RCB &48"RCP 6'x3'RCB 329 240 75 76 41 7 49 7 49 1S 48 8 13 (Alt. 2) 25 (Alt. I) 19 19 19 Rick 1:AgiDccring eompany-Wa1er lwoun:u DMsioa 12 DCB:~llll2JIOl 07AH'91 I I .. .. .. .. -• Hydraulics -... .. .. .. 111111 11111 11111 .. ... ... ... .. ... ... ,.. .... ,.. ... , ... .. .. ... 11wl Hydraulic analyses were perfonned to determine the amount of silt removal and re-grading requiied to minimize the 100-year flooding at RCMHP. In order to effectively analyu flood levels in both Agua Hedionda and Calaveras Creeks, the U.S. Anny Corps of Engineers HBC-2 Water Surface Profiles program w~ used. The program is intended for ~nlating WSELs for steady gradually varied flow in natural or man-made cbanuels. The effects of various obstructions such as bridges and culverts may be considered in ~e computations. Tho program also bu capabilities available for assessins the effects of channel improv~ts . The input parameters were based on channel and overbank roughnesses, 100-year dischar&e, downstJeam WSEL, and topography. The channel and overbank: ro1tghnesses wen, determined by field observations. The 100-year discharge was obtained from the HBC I analysis in Appendix 2 modeling both existing and proposed detention facilities. The downstream WSBL was estimated in the HEC-2 analysis by using the slope-area method. FEMA-approved HEC-2 CIOSl-sections for the area downstream of the site were included in the analysis. The 100-ycar discharge for the downstream area waa obtained using the split-flow analysis from the Flood Insurance Study. The existing topography was based on June, 199S topographic maps by Manitou Engineering. The topography was used to prepare cross-sections of both creeks, as well as tho overbank areas. Since prior studies showed that the creeks were undez.capacity, the original grading plans for RCMHP were obtained and modeled in the HEC-2 analysis by using the channel improvement option. The original grading plans were prepared October 15, 1969 and approved by the City on March 24, 1971. The original design consisted of a trapezoidal channel with an overall length of approximately 1.2 miles and included both Agua Hcdionda and Calaveras Creeks within Prcplll'Cd By: Rick Enginc:cring C.ompany • W111cr Resources Division 13 DCB:MDL:em111Rcport1J-1.3\82.UOI U7/0l,98 ... .. .. .. ,.,. RCMHP. The side slopes were 2:1 (horizontal:vertical) 4!1ld the approximate bed slopes were 0.1 s .. ... .. .. ... .. ... ... ... ... .. ... ... ... 111W ..... ... ... .. .. ... .. and 0.30 petCCDt in Agua Hedionda Creek and Calaveras Creek, respectively. The bottom width of Agua Hcdionda Creek varied from SB feet at the Bl Cam!oo Real bridge to 44 ~ upstream of the confluence. The approximate cbannel depth was 1 l.S feet. The bottom width and channel depth of Calaveras Creek were four feet and nine feet, rcspcctively . A HEC-2 amdysis was performed based on 1m oriainal design. The HEC-2 results showed that a large portion of RCMHP remained inundated by the 100-ycar flood. In order to increase r-JJaonel capacity, additional channel improvements were modeled in the HBC-2 analysis for the downstream sections of both crccb. At the Bl~ Real bridge. the bottom width was \Vldcmccl to 87 feet. Within tho next 1,400 feet upstream of the bridge, the bottom width tbm tapcnd down to the original design bottom width of 44 feot in Agua Hedionda Creek and four feet in Calaveras Creek. . . The results of the hydraulic study are cnntainecl bl Appendix 3. The xcsults are also depicted on the RCMBP 100-year Floodplain Map in Map Pock.et 7. The map show& that with the proposed detention facilities and chaDDcl improvements discwmed above, a majority of RCMHP will be outside of the 100-year floodplain. Maintenance Plaa This Maintmmce Plan contains maintenance requirements for Aqua Hcdiondaand Calaveras Creek within RCMHP. This plan also contains requiremems for the four upstream detention basins . It is vital that the creeks and detention basins be maintained on a regular basis to ensure an ._ .• acceptable level of flood protection for RCMHP. It is recommended that the maintenance described .. ... .. ... PrcpucdBy: Rldc Eql111SCring Compay -Water Re!OllrClU Division 14 DCB:MOL;emiilRqiortiJ-13 lli.001 01/01/fl. ... 1111 .. 1111 (. below be performed annually prior to the rainy season and after any storm event exceeding the 10--... 111111 year peak discharge . Aqua Hettionda and Calaveras Creek must be maintained to prevent adverse siltation in each creek. Siltation will reduce the flow capacity of the creeks and increase the likelihood of immdation .. within the mobile home park. The first step is to devise a system for monitoring the silt level in each ,,. creek. This can be done using metal posts with markinp placed six inches apart. The posts should Iii. ,,. .. ... ... ... ... ... ... ,.. .... .. ... .. 1111 .. .... 1111 - be placed vertically_ in each ~ • intervals not cxceediq SO~ feet. The po~ should· extend at ' . · . least two feet above the creek bed and must be embedded deep enough so that they will not be moved by large creek flows. A geotecbnical engineer should be consulted for tho required embedment depth. Once the posts are installed, the silt level can be easily monitored by maintenance personnel. As the silt level reaches one foot. the silt should be removed by maintenance crews to the design elevations. The topographic maps have been reviewed to demrmine the siltation that bas occum,d in both creeks over the past few yems. The design of the creeb within the mobile home park is shown on the grading plan for RCMHP approved March 24, 1971. The creek bed elevations on the grading plan served as the base elevations in determining the amount of siltation in each creek. A comparison of the il'adina plan with a June 1995 topographic map indicates that the silt in Aqua Hedionda and Calaveras Creek raised the creek beds as much as seven and five feet, respectively . lbereforc, siltation has occurred in Agua Hedionda and Calaveras Creek. at a rate of up to 0.3 and 0.2 feet per year. Using these rates and an acceptable silt level of one foot indicates that portions of the creeks could require maintenance approximately once every three to five years. It is important to point out that this is a rough approximation because the creek siltation will depend on the Pn:parcu By: Rick EnJinccriag Company • W:itcr Rcsour"s Division DCB:MDL:.:mn,'R,:purt/1-13182.001 07/Oli91 -.. .. .. . .. ... ... 11111. .... , ... , ... ... • ... \'' ... II'" ... •· Ill' Ill' Ill' 1111 frequency and magnitude of future stoml events. It is likely that future storm events will not mimic past events. Additionally, it is possible that maintenance has been performed on the creek between 1971 and 1995, which would affect the calculated siltation rates . Mabrtenanco ia also required at each of the four ddmtion basins. Main:tmanc,: will involve keeping the entrance to each of the detention basin outlet facilities free &om silt. Silt should be removed fi'om an entmo.ce once the silt level reaches six inches above the entrance's flowline ~. The amo• Of ~~OD, S~ be ~-.to determine ·smco ~ outlet facfflty is a • • I • • 0 • • • " known m.e. The silt should be removed • ctista~ of 10 feet upstream of the facilities entrance. This will bavfl urioirnal en.viroJlmmltal impacts an,1 will restore the capacity of the outlet facility. The maiataaance st.eps described above are essential for protection of RCMHP. The ,n~ must be pcdbrmed routinely by qualified personnel and a sufficient bw1pt should be established for the maintenance. If any questions arise d111iDg the maintenance, a professional enpneet spccia1mna in water resourcea should be contacted . Environmental llsuea The environmental issue, associated with the Rancho Carlsbad Channel & Basin Project have been addressed by the environmental consult.ant. RECON" and are MJtmarizcd below. In reprds to the on-site channel silt removal and improvemen~ it is likely that no environmental mitigation will be necessary. In regmds to the four proposed detention facilities, tho direct impacts, mitiption requirements, and potential indirect environmental impacts are listed by habitat type in Tables 3, 4, and S, respectively. Direct impacts are from embanlcment construction. As mentioned above, all of the embankments are within footprints of future roadways. Mitigation requirements ,;;;.;aay: JUck Bnglnccrin1 Company • Waw llcsourca Division 16 DCB :MDL:GIIIIIIRcporVJ• fl 112.001 07/01/91 .. .. .. .. . .. 11111 .... Ill"' ... ... ,... ... ... .. [illllll • ... .. .. =--------··--·-.. ·---·--· -----·--·--l'rtp;ircJ ll> • ·---·-··--------J)f_'H:.\-ll)I .:smi: Hi:p•'r'.-.1-131 ~::?.111;1 Rick F.n;inccrir.:.: ,;·,,,n;·,11:--\\ ·,1.:r ll.:~"•1r.:•!• llh bi,,n 11·_ 1)1, •J~ .. Ill -R.UNOPF SUNMAR.Y ,. PU>II IN CUBIC F'EET PBR SBOOND Ill TIMI IN KOURS, AREA IN SQUARE HILBS .. PV.Y. TIM£ OP .&.VEP.>.m: FI.Off FO:! M!'.l!:!HUM PER.IOD !!MW :-1AXU,'Ul4 Tittlil or .. Ol'DATIOlf STATJOli FLOtl PBU fHtO\Jlt Zt•BOUll 72-HOUlt AR.EA STMJK MAX S'l'AOB .. RYI>ROGRAPH AT BSHJICl .nu. 10.51 1'53. 598. s1,. 4.34 .. ROUTED TO RTBl:3 270. 10,58 USl, sn. 575. 4 . .t4 404.02 10.58 .. HYDROGIA1'II A.T BSNDC2 357, 10.00 1111 168. "· "· .ss 2 COMIIINKD AT BC1fr8C2 3043, 10.50 161', "'· f42. 4.81 111111 .. R0UT8D '1'0 a'l'aCJ :1028. 10.51 1'19. ""· ,,o. fi,H us.o, 10.H .. IMJR0CIRAIH AT IISJIIICl 1'9, 10.00 353. 145. uo. 1,18 ill .. t 2 c:0MIIDD AT JIOac:3 HIJ. 10,50 UH. 10,. 11,. '·°' Ill 1111?' ROtrrED 'l'O RTBC4 ,u,. 10.51 19'1. IOS. 1,,. • 1,07 3151,74 10,51 RVD110CJ11M1K A'r asac, 1H. 10.00 85. 35, 33. .31 .. -2 CCINll!DD AT BCJUC:4 J1'8, 10.50 2052. 140. lot. ,.u .. • IMJR00llUB AT Ml 1102. 10,17 181. 3'3, 349. 2.u .. D1St'ft'C 17H, 10.25 811. "-OU'1'aD TO 3'2. Ht. a.n 3'12.:12 L0.25 ... 2 CXINBJJIID A.T BCloNU ss2,. 10.50 2'31. 1202. 1158. ,.:n ... ;· ROUTED TO l!.TAH2 5235. 10.75 2ata. 1185. 11U. ,.21 JU.91 10.'75 ,.. > IM)IU)(aAPK AT Ml 511&, 10.00 243. 100. ,,. ,ll ... ~ !, ROUTED TO DB'TSIW)C) HO. 10,l"I 243. .... 100. "· ,83 351,95 10.17 ... IIOUTBD '1'0 RTAK2 157. 10.50 2-ll. 100. "· .13 321.H 10.50 .. HYD'IIOGRAPH AT AK.I 11'1. 10.00 367. 150. LU. 1.41 ... l COHBINBI> AT Nll-3'BC 6311. 10.58 3489. 14H. 1311. 11.45 !Ill ltOUT&D TO 1'H2·AH7 6191. 10.,1 3U2. 1426. 1374. U.45 ,88,01 10.6? .. l!Ylll\~PH AT AHoi i:O. to.co 1%. BO. 7?. .70 .. 11111 ;;.o:.mo TC AH4·11H5 -116. 10.00 1~,. ao. 77. .70 360.27 l•l.00 .. ~t"t::R•:,.;r.;~fn. ;.:t ;J,;S . , ,r.. ; C • •J•J ::~:c . :,·,. i, ••. .. ~-.. II • .............. ~-:: : . .-·~; h , : ',:.,, ,.',t .. . .•.•., _, .. , .... _,, .. _ , .. ... ., .. .. •. ·-:.~ ,:·~'." . .,· .. , .. · •:· . .. ... . , I ·• • ~ • .. .. • -2 COMlll~ AT COIGUII 1290. 10.01 liiH, 274, 264. 2.35 • .. ~~ Jl0UTBD '1'0 AB6-'1 126'. 10.25 Ht. 27:1. an. 2,SS 111,7' 10.:as HYmlOQRAPII AT AHi 17'1. 10.00 n. H. 33. .u • .. ll0IJftD '10 Alll-7 11', 10.00 u. 3'. ll. .u 110.2, 10,00 -llYIJRl0(DtAPII J.T All'J !12, 10.01 240. H. H. 1.12 ... 4 CXllaIIIBD AT CCMIDIS '19,S. 11.51 HSS. . 1131. 1'7'4. 15.2'3 11111 1111 IOlffllD TO All7-Allt 7163, 10.ll t4U. 1131. 17H. 11.u lDJ.tt 10,IJ • • JllmtQGIIAPIIA"t Nit 500. 10,0I 235, "· 92. 1.00 .. 2 CCMBIIIKD AT aJGID .,,.,. 11,71 ,,11, 1911, 114'. H,U ... 1IOU"1'ID 'J'O AIU-10 717'. 10.,2 "'"'· 1197, uu. u.n -AID.0 JJI, 10.00 1H. ""· u. . .. .. Ill 2 00N8111m A.'f CDNIIJIS ICl2S, 10,92 4115. 2060, 2002. .... ., IIOIIDD '1'0 AIU,O·IIOA 1025. 11,DO 4111. HSI, 1ff7. 1'.lt 41,72 11.00 .. ... amaoaauan .. "· u., • 21. 10 . 10. .u :c• 2 0CNBlDD AT ODNIID '"'· 11.00 1131, 2011. 2007. 17,0G llYDIOGIIANI AT C1 531, 10.00 24'. 102, "· .17 .. IGJnD 'l'O DlfflllNll& SH, 10.DO 21,. 102. H. . . ., us.ts 10.00 .. IIOU'l'SD 'l'O C1-C2 37:1, 10.67 u,. ,,. ,s. .17 2411.02 10,6'1 ... Ill,, IMBlOORU'II A'I' c:a 15'5, 10.25 761. 311. 100. 2.12 ... 2 marnD a.-r CXIN8DIII 11,0. 10,21 912. u1. H5. • l.19 .... JamlD 'l'O DCrCAIA 1H1, 11.00 '1U. HJ. 312. J.s, 211.12 11,00 ... ltOln'8D TO c:a-o 1l13, 11,17 .,.,. 291. 211. J.s, 100.25 11,17 1111111 HmROQIIAPII AT C3 ua. 10.00 20,. as. ea. .12 ,. 2 COMIIJ:IISD AT CDIBII• 1560. u.o, n,. 377. 163. 1.,n .. IM>ll0GJlM'JI AT Cl 667. 10.0, J15. 1:a,. 12', 1.2, 11111 .. 2 CONBINEI> AT coaura 1196. 10.U 1153. sos. '87. 5,65 ... IIOIJTID TO cu-ace: 117&. 11,08 1153. 503, 415, 5,65 46.U 11.01 .. • HYDROGltAPH AT RCC 7). 10.00 ll. 1,. u. .15 • 11111 2 COMBIJIEtl AT COMBINE 1906. u .oa 1183. 511, 491. 5.80 11111 2 t'OMBINID AT COMBINE 99411. 11.00 6011. 2585. 2505. 22.80 - • .. .. ... .. .. .. .. .. 1111 ... ... ,. I.. ... ... ... ... :,• ... a,,,. ... ... ... .... ... .. ... 1111 .. Ill .. .. • -1111111 .. .. Appendix 2 100-year, 24-hour HEC-1 Analysis for Rancho Carlsbad Mobile Home Park Ultimate Development with Exi1tin1 and Proposed Detention Basins (File Name: rccbpr.bcl) Prepared By: Rick Engineering Company • Water Resources Division DCB:MOL:cmn/Rcport/J-13182.001 07/01~8 .. ... JIY1'IDGIWllf AT AM su. 10.00 2'1, lGI. . 10,. .n .. -• 2 00MIDIID AT alNIWII 1052. 10.0I '°'· 2, •. H3. 2,J5 0. ll0UTIJ> TO Dn'llnlA .,,,. 10.13 ,o,. 273. 2153. 2.35 2,0.JJ 10.ll .. --------~---""'--····-... .aun:D 'l'O ... , "'· 11,00 '°'· 27J, HJ, :a.JS 1':L.OI 11.00 .. HDROGP._,.Ar Alli 1,,. 10.00 13, :H . 33, ,Jl ... IOU'l'D'lO AB1•7 u,. 10.,0 IJ. 1,. 33, .n 1H,H 11,ot .. ,., ,12. 10.e, 240, "· ,., 1.u 11111 • t CXINll__, A'f CDl9m 7521, 10.n HH. llJl, 17't. 11.:aJ ... ... IOUnD '1'D _,_..., 72H, ID.ti -,,:a. 11H, 1191, 11,:H 1DJ,H 10.,a ... lfflJIOGUIII A'f All 100, 10.0I 2J5, "· ,:a. l,Dt .. I CIIIIIIIID U aaua ,sa,. ,ll,U H11, 1911. 11'9, :&l.2J ,... I lm'fD 'ft) Alll•lO , .. ,. u.oo HU. ltM. 1NI, ·,u.a ... . .. ,,. DmOCIUIII U All10 JJI, H,00 151, , .. H, ·" r- I I CIIINlnaD A"I 00111DI 75H. 11,N ..,.,. 2110. 2001. H.11 ... er• ..,.ft Mll·llCA 7111, 11.QI nst. 2111. 11n. 11,H tl,13 11,ot nmocauR,., aCk !k, u.oe H, io. 11, .11 -2 OQNaXIIID A"I aaaa. HOJ, 11,IO t'712, IHI, 2007, 1'7.0t ... lffmlOmlU'II ,.., C1 531, 10,IO :au. 102. "· .. ., ... IIOftlD 'l'O Dll19IIII& !21. l0,00 2t9. 102. ... .. ., us.ts 10.ot ... .I lll0U'ftlD m C1•Cl2 312, 10.17 laJI. ••• 91. .17 2u.oa H,'7 ... ... imaocllANU 0 15'1, 1.0.as ,,1. Jll, JOO. 2,"12 ... 2 CCIIBIJIBD A'1' 00ll8Da 1191, 10.29 HI. '11. us. J,51 ... JIOVl'ID TO l)ll'IQU.A 1to1. u.eo , ... 2tJ, H2, J.s, :au.12 11.00 .. IIOU'1S 'l'O c:a-o 117>, 11.1, 141. :au. Hl, , . ., 100,H 11-17 .. JMJIOCaAJIIAT a .... 10.00 :aot. IS. aa . .12 ,.. .. 2 COMIUID AT CCNllNI 1510, 11,01 n,. .177. HJ. ,.u .. IOU'l'ID TO DltaJI 119'. 11.92 11,. 377. HJ. ,.u 7f,77 11.,a I .. • HYDIIOGIW'II AT Ct 6'7, 10.01 315. 12,. 12,. l.H .. ROUTIII 'l'0 Dn"IIC& 352. 11.00 211. 129. ia,. 1.2 .. 76,U u.oo .. 2 COIG:UIID AT CXIIIBDII l5l2, 11.u u,,. 505, tl7, 5,65 ... - -, ... / ., ~ ... .. (. ... .... ,.. Iii. ,.. 11111 .. - r-... ,.. ... ... ... .. • 1 ... : \, \ ,. ~ ,.. .... ... .... .... ... ,... .. -... ... .. ·• .. ... ... • RicI< ENGINEERING CDMD\NY San Dlfllo • klnnlde February 11, 2004 Mr. Olen Van Poaki GVP Consultanta 3764 Cavern Place Carllblld, California 92008-6585 Oranae • Phoeab • Tunon W11t,•r R,•w11rt·t•.r,; l)fridun SUBJECT: CHANOBS TO OUTLET STRUCTURES AT PROPOSED MBUlOSB AND FARADAY DBTBNTION BASINS (RICK BNOINBER.ING COMPANY JOB NUMBEl.13182--D) Dear Mr. Van Peal: Rick Bnglneerina Company bu completed reYiliom to tho bydrolopc analyai1 for tho watenhed tributary to Apa Hedioada Creek within the Rancho Clll1bld Mobile Home Pn in the City or Carland, CaUlbnda. Tbele nmtiom rosulted In c:hanp to the pomecry or the outlet 11n1etum at the pn,poNd Melrose and P•aday detention basina. Thli Jetter specifi• the reviac,d pamclry of each oud• atructure • Modiftcationa to the HEC-1 hydrologic model lncluclod the followiq: • Bain flcton were reevaluated and changed. appropriately bued on the impact of new envbmunental rep.latioaa 11114 their ratricdons on tho ullimate dcvolopment of the watenhcd. Lq times were recalcu1atm based on the modified basin .tston . • Manniaa~• JOU.._ coeftlclentl in tbe ltrNm roudn1 wen recwaluatocl and modified in 1he HEC•I where appropriato baaed on tho impact ora.w envlnmmental replatioa1 and their reatrictiona on tho ultimate devolopmcnc In the watenbecl. • no atoraae routing rating curve for tbe proposed Melrote dctcndon buin wa rcviacicl baaed on the gradina plans titled "Carlabad Racaway" Project No. C.T. 98-10, Drawing No. 409e I A, Sheet 4 or 14. dated September 2002 . • The 11orap routin& ratina curve for dlC proposed Puaday dclention bain wa revised buod on tho pading pl1111 titled "Carlabad ·Oab North El Puerte Street" Pnaject No. C.T. 97-13, Drawing No. XXX-XA, Sheet 3 of 7,. elated April 2003, and grading plant titled '"Carlsbad Oab North Faraday Avenue" Project No. C.T. 97-13, Drawin1 No . XXX-XA, Sbtots 9 and IO of 19. dated March 2003. ... . ... ; I ,. ~(. ,. I ... ,. ... .. .. ... ~ ,.. ... ... .... ,.. ... ,.. • i .... ,.. I. ... ... ... I illllt ,.. .. ,.. I .... .. .. .. ... • ... .. ... .. Mr. Glen Van Peski February 11, 2004 Page2 The &eomotrJ of tho Melrose outlet structure wu specified on the abov~mcntioned plana u a 36" reinforced concrete pipe (R.CP) placed within the exiadna 10'x7' reinforced concrete box (RCB). 'lbe RCP would mainlain the cxiltln1 flowllno elevation. and a concrete wall would bo constructed to block the void. The modified geometry conaiatl of an oriftce plate with a rectanplar openin1 of 5.61 wide by 4' tall in place of the 36" RCP. The cxistina Bowline elevation or 308 ft ii maintained. Thia opening allows approximately 489 c& out of tbo bum. The ponded wat• IUlface elevation within tho basin it 330.5 ft, which results in approximately 49.3 ac-ftoCstorage. On Ibo abcmt-mentioned gradiJII plana, the pomctry of the Faraday outlet atructuro WIS dellpated u a 6' by 7' RCB with a flowline elevadon of 221.14 ft. 1be modified aec,me1ry apc,cift• a 4.3' wide by 5.7' tall RCB in place of the 61 by 7' a.ca. 11le exittina t\owllne elcvadoa of221.84 ft·i• maintained. 1bia opening allow, approximately 642 ct. out of the buin. The ponded water M'fice etevatio■ within the buln ii 241.4 ft. which l'Cllllta in approxtmatoly 49.1 ac-a or-. . The hydraulics of the Olltlet structunl are 10 scnailive that even the lllahteat chanp in the dimemiODI rnulll in aipiticat ftuct1Jatioill in storage volume. If the ltnlctma are comlnacted widl atandardlml cHmcmiom (whole or half' foot iacremcnta) they will not ftmction properly. If the outlet i1 too lap It uncler-utllizes the available atarap and incl9IHI the ftow rate clownatream. If it la IOO small the bum will store too much and exceed the 50 ac-ft maximum volume limit p• the regulatiou of the Divilian of Safety of Dami ())SOD). Pla1e forwud dis information· to the appropriate coaaultantl eo the s;radin1 pt1111 can be m'0;4iffm to teflcct tho new outlot=111QdUtc plMtri• rr. you have any queitions rcgarding:\his-:fotter _p.lca:se -coil!act ·me ai (~19} 291 ..07(11 . Si.'ncctcl)'; RICK ENOJNEEIUNOi~~:IJT u w Denni, C. Bowlina. M-~~,__ ..... R.C.B. #32838, .Bxp. 06/06 Principal DCB:KH:jc.001 i : , \.." ... ~., --i- 'I :.• ·,: . OCU,N BOTTOM· -CONTOUIIS. DERIVED F.l!OM , 1'68 U.S.G.S. QV,,,O MA~S. i "I ' • " .< ·i ,. t' •• 6 . --,,□· -,· ·1 ')' • ~ ~ . : • ._ I '. 'i /';- 10 ·!'3 1 /· ,., II , .• e 0~8CALE;t•a.400' \ I Aerial Pho>lo Dale , Sopl· Od. 191111!-~ PholD Sea • 1 t/118DO ___ """"""'..,,,,_."'_· ....... llnll-;.,..., .. ~--_...,_,., _Cc>IIOOlli-Onh_C-..,_ sr,.mllAl>aa. Y __ CGnl!dlaBuo\fl'.Jnlllt 11121>MEA!iWIIEVaOII~ -~LS BAD. ~Qb.ks s No ~l#.~E" ,. 0 ~,---~-;g_ :.:._ •.. ! ~ .I % ... ,.··o ·O ' _.!. -.,,.· _:_s: -·o· •• '.•· .-4 •. ,O ·•g .-'O )> >_._" .. '~· ·. ;~. . --~--r- ;•~·!fr-; .. ·. •• :;.:~~r.,1: .• )1,,) .. ",:. _,.. - ,. ~ ·N. • . ' . • . ~ ' . t . . . }{·}',:~-•• -/}::,:_-·. ·.-r -~-;(f 11· _;=~. ·luj • : ''.:1:_ t ~.-~ .• l , l --~'.-:·111 -i: .,, .. ·;1 .··.•. !id • ··i i: g· ·.:- a-..---~-41 ,, ,_,. ~-. ·i --~ r' GI ··> ·jil f : ,. ·:1 .• · •' .. -~ ~F --·· ~-; \~ .. ~: .. , . ' ~ ~ i\-<. ~ )i, :,.· I • .. '!! .. -......... ~ . -"'t ·i· 1· -~ ... O · ·z ~--~- • !I ;I --~ ·t;.1 -:g -., ;!; 1 i ,~t_ •. -~ :Ii {& -~ -~ ~ 0, k ·- , I<• •';... ._•, ... . .. ~ ,. ... , .. -.. ·:,.;.:._.,j . • ·\,.•' I', :_;, !.: !I . l· ' ., . • Ii .' 1\)--'.I· ·•1 ~--. ,~, :? ~---·:·. ,;,_ };, .. -,/_:· TVbY I ___ 2.:.c~lt~£-r :.1 r . ~ ·, (i CHAD/NG NOTES (I# ADOITION TO TIE IIEOUI/IEJENTS OF r:HAl'TCR II! 1• tJF f>< CA/11..SMD -lt:IN.L ~. I /, Tiffi fl'IAJ/ flllDlt£1JCS ALL 0'/HDI /l'fANS /'ffEIII//U$J.r ~ I Y 111£ CITY //F tMLUM lll'IAIID/115 MMRIIM -OIi TlflJ SCT //F !'LUO. ~. -tlF Tlf/1 IUll tlOES IIIJT tDS£II WI a ti£ AW l'OfiT/0/I tJF TIIE ~-=,~~=Tl:~ L:ri:.,7~ ~:r f'E11TAIII 1ll 1WIS IWO.ICl:T. TIE Dltll/1/EDf Ill ll£!11'0NS/lltc IMfl« ~ -JSC rHESE IUMS IIE6 -·-IS 1/SIO'IDIEJ). ' ;J. t/11 -1111. 0, l'UltS tlOES IDT I/El.l8C 11E «IRQIU OI( Dlfll/EEll-1/F'- -,_ Jl£$1't/l/St•1urr f'DII 1¥ ~/Oil " 111t1t1n AMJ 11111u,_ 01"'11D/£D -I/IS CO#S17/lll:rtlllt. AU '1M IEYISIO/IS 6IMU • -r .,_/TfBI Tri 11tECl1Yalfl/EDff'(Jfl-. <I. • 11/Er-//F-MT f'PJIIT ,_ TIE C/Tr a,/1/Ea fl/LL 11£ /lffll/llD f'DII ..-, -Ill TIE -IC I/JI/HT //F ar. "11(111 Tri l'ERIIT I~. • 1:11/TIFll:A'fl: IIF I~ IIJST 1£ F/UJJ -/IS TIE '11Y fJF CMl-AS Alf M/OITll1/ML JWS/IIED OI( 11£ -ITTCE'S -ICY Iii 11tE II/Ill--fJF ll,000,11111,t/O l'OR r-Af//1 °"1lllfM:C OF LIUILITY. ffi[ IIIISUIMJJt:E UNJDM SJ:~I -iA¥'1t JtiJ·drn I . •us DIDl'TD1 ,r IBT/Oil MIi, ,,,a tJF TIE Ill/IF-tlt/lL/Jllf -· IKl'Allt/11 /IUI.S -11/C .. IV/I.IC IIIWIT tlF ar IICOIIIIIE 5V'-1r -ITS,_ 'IIE IIIIU1flll llDWf1IIEHT. •· Mt -~ IC -11/rr/L AU -117 NCIIC IEDI OIJTAIE -TIE t/TY -01'DI -/ATC Mat:11$. 7, -• //F MSC~ 11 DE tt1Y Dtll-/MIU /IOT All1H/IIII/E Ntr -1/R _,1111 TO IC l'D/Frac, llff/L 11£ IJIOIUrr -·s f'Ollll$S/f/lt 11115 Jl£B( OITA/11£1) AJID A l!lt/1 f/WJIIIS l'Dlllr HU IEDI IUl/l/J. •• 1111111:YISI-IRU IC I/IIIDC Tri 1HESE ..,_ 1'1110/T TliE MIT1E1/ ...,_ IF TIE CITY Dfll/11:B, •"11 l'ITHIII 1111: 1/EYISIOII aoor, 1111 111£ ,,,_IA'tr SIECT //F 'fHE l'UltS NtD 1IE Ttn.r IIIEC1. J. _,/6/IW. --IIIIU /IC~ 1IE -,Y //F M CITY -1£1~ ,,_ ff 11tE t/11' _,_. Ill, PE lllrlfl--• SHM.L /IE 119'I~ 11111£TlE'7 AS•IIIILT -/TIO/IS IY 111£ Ollll&1M/F__,,. l'tlldll Tri F/11111. ACal'TA/ir;E //F Tl/£_. IIY 111£ urr. 11.llf:a§-flitc_ona_tem:ta~ 11C •1.rr.1111DJ n, 1ltl: l'ltOJD:T SllC AT ALL T~ _, _ _,1111/eTIOII. II. --Air 'llfl1HII/ flTr eASll!llt/lTS, A SrJIU IID'Olfr -IJ/Ell f/F, /AJ ,_.,, !ll&T, IIJ -1'111111' -SIEE1$ _.. ft:/ -.iil:Tlfllt a#MS, -t IIC -,17E1 IY A l'WOFEJII-ae/l/EBI OF Tl/£ STA1C (IF CM.I-IA. ,,,,~11WL1.r 1111/1111 _,_ ,. 111£ FJa.o (IF A/PI./Dl IOILI IBllll/1"• 11/l IOltlt -T l'fU I£ _,rra, 11> 11E t:/Tr S,,.JIIRJl/1111 IIOIR1flll W/111/ll lllll -I/ti o.,r.r OF H -.U/011 OF hlll rnr1, II. A IOIU -.tt:rl• _,--"1#'1.IA/1/Z rERlht:ATIM/ I/DA8fNII tllllODtCE nl -Tl-OIITI.I-Ill 111£ lfillLI _., 1$ «I/II/Ra lflt• 111 111£ /~ Ir A MJ/LII., -,T. AU. _,,,,,,LG -IMS IHllJ. I£ IK/IIC -TIE PI-Tllllt IF A _,__ _,_ OF 'fHE S1X1E OF t:1/l.fF-IA lfllll&/'1M.LY --_,_ Ill 11E hao tlF -.,a IOILS IEf:MIIICS. ALL FIU fll FllrllltE FILL .MIE'AS IMU I£ t:f1NS71IOl:1D Ill -rm, TIE t:ITT,,. --,_ SKCIFICATldll/i -11/C • -,rcc/FICAT/t/111 • ATTMHIII 1P ff /lfE.UII-Y .si,11.) 11/tffTMATIOII. IMILY FID.IJ _,_ -r,u IC _,l"llll "' TIE. -T-l'l/lt. • 14. I WPSnqqttJlllfUUC MC E IEUJ Al M: lfP: MW PR ¥ lfltll(,., PC ww: ,c mccc w: ◄l'RIP12 tr er «-VfT4TIU El~'~ .. =mvaz.row :rf.i -111£ -,r tlU1fl( (WO Q#__,II AT UMT FIi/£ (Ill rtllllf/111 Al>S lfllt/11 n, ,TA/ITtl/6 O/llllf11NCT/tat. -_,IICS _,. I£ AIIHIAIU 111/fll TO IODIJ.11111, 1IE _,_ l'Ea/1' WIU 1/C -1/IIID ,t 111£ /ftOIErT /-AT 1'HE 11££Tfllll. 16. Ml l#1tSTJa« ffRU"I !WO PH Oil 'WfRICs:lN:Tt<W Mfl'T/W Mil IC MW IY WI tAI ff fl!IPIICM Nreo« l«sPB:Z«P IDHXT & I« Al llMI UI-MU 1111/Sl'JIJII «NtPI' MT «: lf'PftWR lfltlft ZI lcGP £tie. ~rn f.llR'~ ,_11_ "'" 1£ -,,.., 0 /SC. -Ml£ AF1Dt 1,00 "·"· .,,, 1/C ,_ r1111 7IO nu -OAYS tll19'. II. 'IIE----".llfT -1IE --_,.. _,nw =~=· ::t.T.t:,"'.:.:t-~~-:i=. 11111£ -,_ UFcrl --"' s-. LA/If __ ,,_, tr. IIE -cm, SIIIIU. --n, ,_ COO( S/BTIO/I R06 IY -/Tr/Ill AI/ETAILIUI/Tfl111£tl1Y-IIBR --Mtl(l;T SHIM'l/111 1fl£ IESl&II OF -I-, _,., ll.0,,111/1 OR fl1IID/ -/11"'1 1111£ 1111/E tlF -lfl01BTIIIII ,_ 1M' IMZN/0 tlF 0.1111111 -/111111/11 fNE Br:IIYIIT/Oil OF 111/!H 1lfE1DI lllt -OI /1/lfllll K I'll'£ t•TA£LAT-11D/Cllt. TNIS IUII 1111ST IC -f'DII AU 11lll1IOIEI Flt/£ ,ur /&•/ 1111 -lltll0'11I--I& W 11tE t/TY DIii-_,. - -/lit/OIi TO arA*~lt/11. ~CTifi ljjii(&t'.i . A _, tJF 1H£ -m=~. -IT OT 11£ -lr1111 1fl 11£ /I/S1ffrr,, Pft/1/11 TO II, • lllASTI• -.t IC -1/NT/l A IIIL/0 «ASTJIIII -IT MS llCl1I I/ITAi/& ,_ 1H£ f/Tf OF QllltSIIO. -Ir -.1eAT/Olf RM' II.AST/• "1111 T lltU /It Ml!!-OF M _,,. OF «A$TIIIS QIIEMT/1 II . £1'Z-:::J:m:.' ~"DWu1lle' -,rnz lflU lfOr/Fr 1IE CITf _,_. tll'ElfATIO/tS mu 1/tT IIL'ITMT -It 'nlr'-TIEE HU _.II& •1T1E1t AIIIHOHITf -H tlTI' ,_,_ 711IIOU. ltl, AU -TIMS -0/t 1PE I'/ Tr OIi Ml,IAt:EIIT 'f¥11£TO, lllt!l.1#11111 _,_ II'. IIDll.111, A/1/ffllAL. _. 1111 -TIM flF 1'1Nf:11$, _,_ ff/Ill-, -,l(llt B/III_, -An 0'11E11 Af#CIA1Fll -11111 Ef/1/lt'IEIIT IHIU. I£ llllf'IQ 1' 1H£ IEll/t» IC1mJI T,OII A.II. -llllffT E1IDI IMY, _, ,_ n,/0/IY -ltO u,,-1• flll _,_ -TIO/IS IIIIIU. II£ -1l11. -,,,, -I/Ill.I'S. IA LIST tlF "Tl' 11/Jt./lMl'S II JIWIILA«E AT 1M' tlfll.:rRl• lll1'MIIDff r:otl/l111f./ II. Pf.1&16~1~~-'J D , -T Mll'/'11/IM. SHIU. 11£ #TAIi& fWW. ,W, -IC amtlAI. IIIIIU. at IUOSl1BI AT, A Sl1C -II' 1H£ CIT'l' D/6/JltDt, 17< AWllN&IJP ~~'¥',.ff.CJ" S-+'TJ-~ !MIC IS. --1£-IOGaYrtl1Jll/l11£MD IIIIC-. l/0 lllfn/111£ 711 IE IIDINEII JllllDt ll'ffi/Ft~r 111)'19 (I// 1HC '1AJI. M . ALL NIPI ~ &£ -1' ,-111.-11111 -Tlltl Ill 1H£ -•• OF •In 1$ Jl#T ff111/rT£0. M.J. t:NmtDI ..US -IIITl:IE1J ~ 11,111£ A I/flt/MM OIE flfilJtD/T SI/II£. n . 1'DF l't.MS MC -BT 711 A SIIIIIO ANJ -IET OF ERMltlll -.,u,,s.--«llfTIIOL-LIICU--Al -llr 1W C/71' Cl/Ill-OIi AS ll/1£t:1EII Ir l'1C ~ 11/SPECTIIII. a . AU. Sl.010 111/lU 1/C ,.,_ TO A FIii/iN -Tri 1'iDllllr:£ A /If/,,_ --ACE ANJ atoU IEtTI0/1. T1E S/'tr MILL 1£ UTT /It A IEAT --1it r "116/ITIOII. ALL Slflllf'S, IIWTS I/Ir 011E1/ llatHI /SHIIU IC -.0 -0l1'0SDI OF AT A tl,C -IO tlF IT Tl/£ C/TI' EWIIIUJr. CARLSBAD OAKS NORTH PK TQ BE IJONf 'IIE -111111' SH/Ill QMST UT TIC Cf)NS11U'fUI DF JU. QIIS NltJ fl.Js, ,G!DII,'. Q9IIIM; IIIWa' ,'¥UQ UIQSIDI( -~ - I?. ALL Si.QIU WII..I. IE IIIIIICA'fa, STA6/LIZCII, "'-"'"D -IMlltOSCEJ1DJ '1T1i/ll mi f/0/ IMr.r OF 11fE TIIE rHJt.JMll_ Sil..01'£ 11-, TO MAN AS -Oil 'fNE -llll ~11111 IUJIS. ltl. ~St:Al'/116 -L IC A-ISl'D (WALL fLCl'U ,INf/ ltl/lS ,16 IIEOl/1/tff r, 1'HE Clrt .. --l,(»Sr;AN -., IHf' LAIIDSeN'/11/S l'IAIIJ Ft/II '11/S l'RWf:,:r, -11111 /IO. <I/fl.a -4111-111. -AS 1111/CNSJ r, 1'HE r,r, _,11£Dr,,,, ,,,,,,,.,. llllf:C'11111. n . 'fNE __ ,_T ~ II/SU/ti: THAT M.L Nrmr,m•-SMU _,Mrc rHE -//F 'l1rftC -1/ll l'UIIIS WITlf "'41 -OIi -TIE -AIIO 11111/IAT/tll l'lAI# A/II 11E _, 1INI$ AS /IEOllfllCI) Rlli THIS _.Ill-WIT/I 11E UIJI01eAl'C -L TUE -f~. 10. S,0. /11111/II I'll£ S/1/lLL 11£ IICI-t:atll£1E I'll'£ II/TN A 1111/IJIIM •-LOMI 1/F l ,//16o. lllll ,,,,_rr S7w. 111111111 """· fP ~ ,a· INC M Y IE VTILIZD -lf///0 I0'11t rs LESS 111111 ,a FUT UP IIACIIFILU, w,111 ~• IIOCI( '9 -I-~ m>c •,:• -I'll£ ~ ASnt STA!llff Iris. 111/t -!16 It/LID au /1/1'£. II. -Nt UI/Ir/M l'Jl'E LIii£ /$ TO .C -AS A lfESJLT OF nE -1/10 -TIOII, IT IHII.L 1£ -.0 rn1>1tlf ,_,., nEr IF lf/lU,IIIQ a, IIntEET ....-.U -IID'tN:Q 111111 -.r -AC1B' SIIIU, /II OTNDI lll£AS '/Ht ,i,r "1U • If.-1'11>1-»" _, -AS NfflOI/Ell •Y rHE Cl Tr ~IIEDf IIMVtllt 1NE ICOTEtHIICAI. DlllltC11/. Ill. -ff/11111/lCTIIII INILL WJrl" 11E L/Jt:ATlf/11 .. Al.I. 11t1sr,. FACILITIES IIIIO'IC -IJltl _,, -/ .,RI/If rHE -.,C,:r !l/1£ ff/fYIC/Dm.Y II/EM IF IIIAIJ/116 111 -,r 11/C /ICYISIOIJ OF 11£ -1116 l'tAlfS IF IT II ,_ THAT nE A&/1141. LOOfTIIIIIS MC /It Ct/llFI. ICT WUN TIIC l'IIOl'OSCP -· :U. 1IE ~ SIIIU /IOTIFY VTUTCII VTILITY Clllll'AIIIES IIEE IIEL•I AT t.CAST ,I 1IU lflllflrlllll Ml'r lfllOR n, STII/ITt• -1111 ICM 11EIII F"'IL I Tiff A/11 1/tV,L -1/IITC THC -lfl Tlf A _,, IIO'llffEl(1)fTl'IC. -!IE/f'llrl ALDT l--..flZ-41» 1111W IIIIO-.nu -IFIC EL (1111/1/--#IB A/JEU'lt/A -11:ATIOIIS INDJ~l."41 '1Tr flF ctl.saD /S111!n'S I ~ 0/IIIIKI /ZW/-.- f/Tr OF --/IDBf.•rP I 1/tr:IAIID •1l11I 1'601-•1721 ,_ SM/TAT/ti/I D/$11/tf:T l1Wl1JS-I-lit ta"H/ 14, _,r a.t'.IAAl:t _,.._, A. lf,fflp,-'fl, -=:· ::.:/l!W,,1!,fS ~~::. -~~ -AltP -,,,rJL ,.--Ill _,(ll./1./ll>A.6/ ---ICll'Al.Clllf', •· l&7 £fir "'5,,,;J T'fl. 1ffi'·a.o/Am~,r:r: -ST 1/S'RTflR (IS. t•. llrl A.10) _ _,, -,r:/l'M. COl/l', Ill · F/111/l. IIEl'f/RT Ar -IS/11:1 _,_ DIii-!ITAT/111 AU -/NI If "'11'UTE. AU E/fmfOII LllW7ll'dL, ll.lll'£ l'IMTUII -/111/IMT/tal MC lltS'fAUD ,. -rm, CITI' «IOC MID TIE -lllll l'SAlllt /0/ITAIN -C OF -,_/Allt:E lET1lilt -"" D1111e1r,., -,,·1111am. /,I/ AS.au/LT -I-l'UII. Ill _, ~ 11IE ff/LI D/1/I/IZII, _,,t:N HO.llf/CJ -$Oil _,_ -CITIC, A STAT11EJIT Ar 10 1H£ D//V/1$/PIE -.,rr IF IN!' tlf1IL. -_,a OF FIEU ---mrs. 1IE -IMLL 1/UD fCIII/£ A "A-"1 Tit S'O/U ,_,_ ll!IIIT rrE -II# ,as l/tJIE Ill -rt'/H TIE I/E//UIIIOE1IT'S -/IE-Tl-t/1/Tl,I-,,, 1IE '1fB.IIII-I' ,aru - -1111' ltl/l1U1IEIH$ 1lft'1fl. ff/ IUOltT r,,w Jll./111/LT -OIi~ f'U/1, IF /IE.OIi/-l'f' '11£ ~ITT. '3. IMS$$ A _,,/118 l'DIIIT 11111 '/NII 1flO.l«1 IS 1#1/U '1111111 1111£ fl/ -· AFTE1I 11/E tlTY -lttalt'S -• 11£St lUIIS •r 11£ -1-7111£ IICSl.8/IT'IO F(/11,,__, 1U/Ofll( 1HS r/U 1/C -lftEZJ l'P/1 ----· #. N IOILS IIEl'IJIIT TlnD) IIB/Jlf#M'Y «rlmnuM lltf'UM,fl(QI BIi K Ml!RSfP Cft-MM W:S: bit CMJ:IW gy 'fP"ffl 41m, .-c is. 1-, l'tl£NllO lr-CllllC --• AIIO -TE-IUL -TC 111'0 WAY AWi PZr ntt«l;f Mir, CT ll·tl MMM "4 tflllrlA. ~ =· ~::-: #" =::iu~tr IF 1/tlS -1/II IUIII. ALL -/Ill ...U I£ IIIIIIC /It -11'11'1 nE --Tl--'61Flt:ATIO/t$ Ill UII IOIU _,, l1(C/NfI8S NOTtS /, 11£11/S/tal OF 11ErE l'UJIS Mll'l' IC -I/ID IF 11/E -WIADII# -_ _,,,, ME /IOT (/(l//$r1f/lC18J ,.,. 111 1'HE' IKA/1/.IIE IIATE OF 111£ _,._,.. I. INF DflffPl:E 111111 L«ATIIJII or IIT/LITY 1'11111n111n -Fllt:IL/TIU - Oil 1H£ UIIITIIIJCT/1/M lf.A#S IIEIIC t/lTAIIIO l'l' II SEMr:11 ti, 11£ l.t/AILllll.r -· Armtrl0/1 IS QILUP 1' lliC IWS/llt£ Ull'l'lll« OF OT1DI IITIL/Tr FACILITIU • S17IUt:7lll£J lllr -• Ill A Lflt:Art(lf DIFJVIDtT fl/OIi TMT-• 1IE IUIII. INF -CTI/II IS -1/IO 1' TM£ 1W lf/EtAIITIOIM/tr l£AII//IE1 1' l'IIOIUT 'IWI: llr/Ll71U -1111 ,W f'IAIIS - Ml'r OTNOI a1sr1• FACILITIO • -.. , -· 8, 1Hf -CTM //MU I/EJIIFT 1IE Lllt:ATIO/t IF ct Df/STII# FM:ILITIU I---8/01 1'l11flN /'IE f'IIPBT IITF st/Fr/Clnm.Y -OF 111£ -fOII Ill l'O,r/T lliC 1/EYISU•S or 11E tt/11J'l1Nt:TIOII 1'IAIIS IF IT" ,rJIJIIO 1111,T TIE ACn. UICATIOIII M£ Ill -lf:T lfl1W INF l'IIOl'OSDI _., fMTIIWOHK OIIANTlTllS an: ~ fll: lll!Mltr ID#ltllt q qw --·.......IM!l!UI IIOD L H2'0UN/n£SNIEl'tll-lUll'tJ!ESI//I.Y. Nl/1-IO-ml'DMC/llf ID lllW>'11l #IS ~R1Fl,&ll(I( & ~CJDP //lfMl. stalT -MlmE A/IIWOll4t ,_ OTY RJ/1111111. IIDlllES-'/0 IW.Uttfl lillfT a, -MIISIMlS ID IJlf l1liM N" .fTE • IIICUl1E$ lllOIIO C'I 111(111 _, !ITC JJiIEll PHASE 1 C. T. 97-13 PliOJtCT lQCATTON 'IC ClllUIM4 ~If' la}( IT 1/IS l'M'JIXT lS IIJIII £~ SQIIRC£ ()f 'frJPOG&VJIY 1tJIIIJllWftr SNIJIIN tJII IEl!° lfNIS -.S -DIIT 111111M. --•r-~AIJl4L~fHIIA/ltl/H ,_ _,.,y -I/Eltlf1II QJ'#DillS It> MlDW. 11.#1' AQ'lll/At'Y -lifiAl DESCRJPT10N; A /lal'lltJI/ llF u,r .... tlF -ACIM ~ 11 /fl£ arr OF CKSIIA4 CfJIJ/f1I' tT SAJf .ami mur llF l:IILRR« NX/lR1#IC "'IW' 1NEIIE1TM1 GI IUJ)# fE()l'R{ZOF '/IE ctMfTr IIBDflDDI OF $/AII-Ct:llll'Tt ,_,, IC - fMSIS Of 1/W(NGS 1IE .IIUIS IT~ RIii 1ltlt SUIICf IS 'IC -t'IDIIIIIIIE S'fSIBl-i 1!JIE C 14B -'IEIRD IIE.lllll& if1fEIJ( 1'1, M:1 11 NltJ fll M:I 11 ASIEl:lllfG If ARl'll:I IT SIIIMYAO llVI, 1£ ,apnrE BIIP NOTE Ml. ~ IOII HS /IIIOB:T 1111£ ID IC IIIMUMIED II' '/IE tJt'6P'O IN1AJII MK OIIIEJIS •111 11£CJ/CVIIDN OF H OIi/ii MEr lll!ltR1$ •-FMAIMY AlllU' All/ ll. REIUE SRl't IHt:H 1111£ 1D ,c IIMfTMD er 1IE arr fF 04II.IW1 BUENA SANIT.4TION DISTRICT SEC .Sliter No. l FOR eso Nor£$ VICINITY MAP ll0.-C JIDEll 1IE r:Nll(JN flOl,D pUP ,S1,111Dt llll$f IE (ft,Dlnl4t19(117DISSll,WCC'r,Ntr~ f'f1/Jl1S.RJR i'Ms PIIOBT. .s.!IE Ill--· t BENCHMARK: SOll.,5 0((1INE£R'S CCRT/flt:ATf , Zfn.o::.-• e ,-e . A ,nmiu Oil l18D1I IJFIIE 1/FQ(RINI. IW,tll4jUIXJll&/llStEJSli '1E ~ fJF AlfW) 511IS ~ IDlJIY fZl/fn' 11111 A IWl't# Alll1 SIIIIIYOFTll:Jl!l(X)IIXl1(}ltflfE'tllilJ(f-111/iJIIEMS ~N,,OH um: llf Ill:. '1lJg' #~ .IMI/JaC: 1111 CfJIID (F 11£ StJU --ClfJll'I& -Ill$ .snm. -• ~ 11111' ; ~ 111£ tJl1ICC (F '/IE err, --·· -,1,1_,: #--,, p u 14: :('A'3 Ollli t'iw,& USt!E DIR10f lWE; ~~J.r DfCWATION Of li£SPONSIBlE CHAJH¥ 1-YIEDNCMTINIH'IJIQ//fl/tfT-Rll fl/$ -. "411/tlll£DEJIQSBl-owtre"8 1IE 1/DlQr IF 'IC l'flOBr AS IIIH& 11 BllPI' l/01 IT 11/E llB6S -~mlf;MSJIHIT'/KfD//1/NIS-7_,,, -~ I Cllll!llS£llil) INAT J£ oel' OF /ffOlr1' /IIIMIC$ NI) _,.. II' l/o£ art lTc:IIUIMII Dtr.s IIOT IBEtC .-; ASl1GeJl(/F tllllt tr61'~Rlf l'llrJ,BTI/Dlllll OIMr AM:tlllltl!; g JIMlflilllAIWE~ ff: KIi CMWSl44~--= (1lq) ISI-TlOO ~a~/ (MIIJ,,.1 .. 1~ IIIDIHY a C4Rll, .II. ~ lt.t:£ 1111 !J5JII DI'. 1,C/.11,;fl, OWNER'S CllTTflCATE rh/EJ JOEllT fD!lrr IN4TA -StJU SOE11t I/Ir dlltar'MS atsl (IIJ IIJ. IE/DMED10.1IR1ill!l'-.cl -~--aJTPCCllll'IICIIIV NltJ SPaHI' /IF INISSIIT. /W, ~;;;--,,J!""· l4J'1/Df:o,,,c JJIJII8 CC.111110Cll'-Af/i111llfS L/1. ~QID/l .. ..., ,IIRlil Oll"1NA I/If.II (Ill) aJ-11/1,J QWl QICINEill/lNI) ~ 11210" -~ I/IC. lllO ll//lflf AIPIC Et SUJE ltll -.-e1.-(1lq),S,-'10I ~~~~tr,~~~ ~a::-~ .RiR,I,_ ~-- 'IC -IDII" SHIil IE -,;tV1) liACQ2IIPl!a' SIN 11£ ~ DO/:t.lll1i1$, alRJITNTIIE-ITaHSTlil/Cl1/1ICMIIIG1EDW'IIE~/1aEElt. 1.ClMr.!IMII.-CQE: 1. tlf11/FOW..-- J 1/IS SfT (IF -4. lllSIJUlf1DN.051U-SalJXBAIOISTrt.Jmt. s. 11/E~~RJlt,UU:-(IOIIS1'1tK:1//(rlm/...,. .. mu~m,__.,......,_ a,v....,,,amtl41fD.uc"' - 1. .US llf1'fJll1S Nil «-ltMlf llf /11/lP(.,,,,,.,,,, IJf.lDJ IIE1BIIER JII ,._ I. 11£ $/IN /JB/IJ ~ .-IIIIIIICf ,1111 J/S Ml' IC -II 1IE all' OF DIILSIN7 -a _..,._ __ IJABNJ&US1'11,:J/fJfllllES.MlJNI. 111-fWJ/11DNQIWllll'.PINIISll'Fl'JM1NEIIIIYOlllYtfJll5U11W15 llllED DOOlllll .1111( -• I .J1clJtUM £ii flQaBI I( lDOI. ,,, -~ -ASSDClllllf JtllSOI/ ~ ---~ IIIJft!IIIW1f/lNWBU:MIO '/K~tiF~IIDWf1IBfTIIF-~ SIICIESTIMltDllliTM4Cas {II/P} WlJIJ.. JJIJ!E.· (l(.W{l1TES 111£ lfJfl IIOIUI',; llf.liPfJSES Qlt r. N:llN. (l{MNmES 1/11.Y HWY. $11J. D/ICS. ME SAN DEr» RET:IOIMI.. S1Ds. llllLSS NOTED Ol1EJifffS£ J.IfJ£ll8 fKS&llr110N l1JJJMJi,, Dll!,l J1IIJ/llfilDII._, ... ,,., ...... ' , .•...... ------ --(fl"--«YU/E, ····-·················· .-------INUl£S ... , .... , .. ,., .. , ..... , ... ,, •. ----- ES/Mf:t:IJIIIOIII ........ , ............•... ------ =~·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·. ::. ___ ~~ aJT / fll UE ........................... -"f:p.-::::6?.:.::::::::::::::::::::-~·,1-- u a, Ill. JUJf£ /ID. . ,. .. . .. . . . . . . .. . . .. :::y ~ MCI'. ---························-~ ------· ,,, ... ,, ...... , -I"'- --!/1fJT -.. ' •• ' • • • • • • • • • • • • "_Jll/f 111£(/FSIII/T •• ' ...••............• '.. -------~ --· ······· ... ,,.,, ........... ,' ---lfOf IIICI{ ••• , .•.. , ... , , .• .#-15 IIFE V .... , =>=>=> ,...,.,.., .. ,., .... , ...... -.., ... , .. . -1IPI£ r'OIDl-{IIIJ, IBISNl ~. ~1 ........ . -~·-·············~--······· ~ 1FC r OilOf -· . . . . .. . . .. _._,. . ....... . 181 --····· •• , ., ... >-JO.········. --4ft--........ '' . .11-,11 ••••• ' •• ' r\ ,rrr:,,--........... ....,, ....... ' 05 --- 11·0--...... ,., .. ....,, ......... , ---- lll'DS1111/11-....... ,, .. l>-e,. , .... , .... -.~- ,Z-IUll',L --~-OIISXW,) .. · · · .•. · -_...,_ -- t6'N»S. --~HO#/!Jlll'J .. -· . --e--- 11• IUll',r, S1D1111 -~ 11-11 OI BIA/J. , .,,,..,. , ----- •'IUll'LS1rl/fl-~II-O(llllllW,),. JMD •. -------····················-···· -·•-•• - fJIIIIC/IEICUJ(;, , ••..••.• ,, ••. J>-IJ. .. , ..... , I+= --·············#-10 ......... _ .IIRIMl'IDl.1-.. ,., ..... JJ$-.1{l:,IIIJIW!J • Ill/Ill& ,r tll1' (F(lll,MI - IJ/Ml/ll1L -u Ill t:r ,, (A 111. f Bl , SA JEii IIIIU IIOU MOU IOU ,OU #SU ft/U -IF llll au Tl IA DIDIID IY:....f.L_ llam..a..Jllll,l -n, LG. -I!, .&.111111,_ l'IIMCr IIGI.Ll.O.C,,_ -NO.l.Jl::IZ 1111 .... ~a.l IM~ -0,-..,._ ---= =-·-C£0T£CHNK:AJ, NOTE -=-~ -~ (-:!. ,/ Mm.-.;.1,'- 1•1m• 71) /ISll,IE£f/F. _,.,. flOWIT Ft/II n,,s /lltOJECr, .,, lftolTID --w a. ~ -._, :::::,~,~~~~':/~.::U:s:J. PUNNING DIPAR'l'IIINT APPROVAL "AS BUILT" PIMT/1£'1/EW. !M,iQ.e~llt...-!1/l/01° ~~~ ~ ~ ..,.,.,.,,,,....,-=,,...,.==.,,,,..,,,.,.==:=-----lm1,-~-~~~ ~~ DATE • er ~,/J;j°"' 6= -''l~t•c.1>,,.,,.,,=,-.,a,..v.-, ----------, lt•1-l•01 ·,11 ~ ~,A/14 ~/../._ DA1£ mm t111{! ~ :so...g ~fL v<4t • ~ illiiT 'J £ClDR DATE I I I I I I I 1uJICtTL~C~ADHlr] .... l1IIISIDII t:flll1llfJt IUJll 1111: -r-•-R-nllllR CARJ.SIW) GM.CS' NOlflH PHASC1 ",,_,, • .DIUS' 101£ 1/Sl]) (ll-5f1C Hit f!C Cf111m111C1l(JI/ (F FNMIIAY Al£ (10C,OIIO ~. Q RDf'IC SC fr,._ CT) EUC1RtNC M1:4 IUS NIE RR lit1l1iDla Oltr NIJ NE NOT TD IE (SI) RR NflllZl'.IITM. t11 lfRIJ0fl suncr aJll11tfZ. UllltTIOli: It IIEAX-JIIIC /IFIWIMNI MffRTII04A ltJORET /IEST(T --IIEtORD Flltlt A:4.1: C 111'I {PT. M2 11} r5'1~-'"~_.,, I i ' i • r~ '"'.' -·-·-= --~, II>\'! _.._ .. ,. -1=D ■:;.. II l'Rl:l.ll:Cf NO. I DRAWING NO ....,._.._ arr-.llVWII II';~ C.T. 17-IJ '15-IA !J..!llll,TlDN: ""4011.J:J.. WU\I; ---·-REVISION D£SCIIIPTION 1:\'lil!IIO!\tl!COAGll.j"I CCI IL 2Gt4 I~,... -~-·•"-~ ) i .-C",l ~~ ~u, ~ ~ \ ) DW G 4 1 5 - 9 A 2' 4 1 5 "" 4 - - + - + , - + - + - + - + - - + - - + - + - t " " " ! - I I I i § ti I l- l - + - 4 - - 1 - + - H - + - + + - H - t - 1 lll ~- - ·• I . I I - ... ... ... .... .. ... ... .... ,.. ,.. .... ,- .... .... Ill"" ... .... Ill"" ,.. .... ,.. ... 1111111' ... .. .. .. .. .. .. ATTACHMENT 2d .. Table of Contents .... .... .._ INTRODUCTION ... .... ... .... .... ... ,.. .... ,... .... ,.. ,.. ... ,.. ... ... ,.. 111111, .... ... ... ... .. .. Section I Section II Section Ill Section IV Section V Section VI Section VII Pre-and Post-Development Model Setup ............................................................................ 3 System Representation ........................................................................................................... 6 Continuous Simulation Options ............................................................................................. 9 Biofiltration As LID Control .................................................................................................... 10 Running the Simulation .......................................................................................................... 16 Result Analysis ......................................................................................................................... 16 Summary and Conclusion ....................................................................................................... 27 ATTACHEMENTS Attachment A SWMM Drainage Management Area Map Attachment B SWMM Statistics Analysis, Flow Duration Curve and Pass/Fail Table Attachment C SWMM Input Data Summary and Detail Attachment D SWMM Drawdown Calculations and Summary Attachment E SWMM Hydrologic Soil Classification Attachment of Web Soil Survey llPage ... .. ... .. ... ... .. ... ... ... ... ... ... ... .. ... ... ... .. ... ... ... INTRODUCTION This report provides Hydromodification and Water Quality design based on LID (Low Impact Development) principles for a proposed Industrial site development located adjacent at the corner of Faraday Avenue and EL Fuerte Street, Carlsbad Oaks Lot 2, Carlsbad, California . The Hydromodification and Water Quality calculations were performed utilizing continuous simulation analysis to size the storm water treatment and control facilities. Storm Water Management Model (SWMM) version 5.0 distributed by USEPA is the basis of all calculations within this report. SWMM generates peak flow recurrence frequencies and flow duration series statistics based on an assigned rain gauge for pre- development, unmitigated post-development flows and post-development mitigated flows to determine compliance with the State Water Resources Control Board Order No.R9-2015-001 and Hydromodification Management Plan {HMP) requirements . Total area is 5.78 acres for Lot 2 with a developed tributary area of approximately 5.78 for Lot 2. This tributary area includes DMA-1 and DMA-2 which make up the main development of the site. DMA-3 and DMA-4 are "self-mitigating" and is not taken into account for the tributary area of Lot 2. There is one point of compliance {POC) for each of the projects in the analysis; POC receives flows from basins and drains into an existing public storm drain at El Fuerte Street, Carlsbad, CA . The Hydromodification and Water Quality system proposed for this project consists of 2 biofiltration basins with one point of compliance located at the northeast corner of the project. This system detains storm water in the basin surface and also in the underdrain reservoir. Bio-filtration filters storm water through plant roots and a biologically active soil mix, and then releases it into the existing storm drain system which currently collects the sites storm flows. The resulting mitigated outflows are shown to be equal to or less than all continuously simulated storms based on the historical data collected from the Oceanside rain gage . Low Flow Threshold A downstream channel assessment has not been completed for this project and therefore the low flow ""' threshold utilized for the system analysis is 10% of 2-year storm event (0.1Q2). This will be used as the low 111o flow threshold to meet peak flow frequency and flow duration controls . .. .. ... .. .. ... -.. .. -.. .. 21Page -Ill -.. .. ... Ill ---.. 1111 ... 1111 ... 1111 ... 1111 ... ... ... ... .. ... ... ... ... ... .. .. -.. .. .. .. SECTION I. MODEL SETUP Pre-development Model Setup The SWMM model for this projects pre-development site is analyzed using historical rain gauge data. The Oceanside gauge is utilized for this project. That data provides continuous precipitation input to a sub- catchment with its outfall based on the contributing basins imperviousness. The imperviousness parameter in SWMM is the amount of effective or directly connected impervious area. The effective impervious area is the impervious area that drains directly to the Stormwater conveyance system. The pre-development condition is a vacant land with poor cover of grass and some shrubs with no trees. For the purpose of this study, the site is assumed to have 0% of impervious surface in the existing condition. The site is currently a mass graded pad being served by a Faraday Avenue and El Fuerte Street and also is served by utilities (sewer, water, recycled water, storm drain, and dry utilities) based on City of Carlsbad approved drawing numbers 415-9, 415-9A, 415-9J, and 415-91 (Carlsbad Oaks Phase 1 and Phase 2). Existing mass graded industrial pads sit to the west, east, and north. Drainage flows from southwest to northeast as sheet flow and is collected in one existing desiltation basin located at the northeast corner of the site (installed as part of the Carlsbad Oaks mass grading operations). Once collected in this desiltation basin, the runoff flows through an existing storm drainage pipe across the eastern property line into an existing storm drain structure located in El Fuerte Street where the mainline storm drain system runs northeasterly across El Fuerte Street, and into an existing storm drainage detention basin formed by the intersection of Faraday Avenue and El Fuerte Street (as referenced and designed in the Rancho Carlsbad Channel & Basin Project Hydrology Study, by Rick Engineering -circa 1985). Once released from the detention basin (installed and sized to detain the future Carlsbad Oaks Business Park 100-year flows as well as runoff from the construction of Faraday Avenue) the flows are discharged into Agua Hedionda Creek back to the north of Faraday Avenue and ultimately Agua Hedionda Lagoon and the Pacific Ocean. This represents the Carlsbad Hydrologic Unit, Aqua Hedionda HA, Los Monos HSA (904.31). For SWMM model illustration see figure 3, or Pre-development map in Attachment A of this SWMM report . Post-Development Model Setup Figure 3 illustrates each contributing basin discharging its overland flow directly into the biofiltration system . Each biofiltration layer section has a similar configuration as seen as in the detail drawing below. There is no actual elevation entered in the program. The bottom elevation of the biofiltration surface storage is assumed at Oft. Storm drain pipe is also utilized as a detention by having an orifice small flow restrictor at lower invert elevation of the downstream cleanout box and a bypass orifice/pipe to convey the bigger flow . The Carlsbad Oaks Lots 2 Industrial project layout proposes to construct a parking lot across the majority of the property, with drainage to be directed to the 2 biofiltration systems on the site. Once within the water quality treatment systems, the stormwater infiltrates through the treatment medium into underdrains that route the flows to the private on site storm drainage system. This system uses new piping to direct the flows to the existing storm drain stub installed as part of the Carlsbad Oaks Business Park project and ties into the existing storm drainage system within El Fuerete Street draining northeast toward its outfall location . 3IPage A90/,f" Al EIEVA ,..., At RE/IA A/JOI f/0/{Al AC/YA ro VATr:J/ 1.·1 IIHfll£ IIEclS NA~sal: ANaC rF NZ/llNCE LIN£fll()I( TCP(F CfWfl. LAID/ All SI/All. ltJ Figure-1. Typical Bio-filtration Section APA'CIV ft:lf EMJIGY 0/SS,PA TlR Ofl(JP fll()I( CI/T!1JAllll:I\' Nl/ENCC IWrF ml 41 Page ., , \ . \ I I ' I l N 0 ... . J Q) "O 0 ~ .. . . C: a, E a. 0 Q) > a, C I ti ; 0 a. . ~ ~ ~ V) I N 00 u: : : Cl/ (1 ) a. . Ll ' I ,, / / \ \ \ / • • I • ' I N .. , _g QJ "'C 0 ~ .. , C: QJ E a. 0 QJ ~ Cl ' ~ Cl . ~ ~ ;: Il l I l" I " ) tlO u:: : QJ tl. O ro Cl. \0 BMPID BMP -A BMP -B BIO-BASIN SUMMARY TABLE BOX RISER/ ORIFICES DIAMETER EFFECTIVE Al A2 A3 C D E OVERFLOW AREA (INCH) (INCH) (INCH) (INCH) (INCH) (FEET) STRUCTURE LOWER (SQFT) RISER TOP OF CLEAN MEDIA GRAVEL SIZE BASIN OUT (INCHES) (INCH) 8734.98 6 12.0 6.0 21.0 24 1.5 48x48 2.0 1354.12 6 12.0 6.0 21.0 24 1.5 36x36 1.0 Post-Development Dra inage Management Areas (DMAs) The DMAs provide an important framework for feasibility screening, BMP prioritization and storm water management system configuration. DMAs are defined based on drainage patterns of the site and the BMPs to which they drain. The Bio-Basin Summary Table above, references a gravel depth of 24" which does not include the 3" minimum of gravel below the perforated pipe (see Figure-1 Typical Biofiltration Basin). Implying that the total gravel depth for this project is 27" (24" + 3" minimum). This 27" value is used in the SWMM model calculations the as the total storage depth. In this project Lot 2 DMAs drain to BMPs A and B. The self-mitigating areas are bypassed to the POC designated for the project site (see hydromodification exhibit) to keep pre development flows OMA Table for Post-Development Lot 2. In the SWMM model and table below note that the total areas of each DMA are equal to the combination of the DMA area and its respective BMP area . For example, in this project the total area of DMA-1 = (DMA-1 Area)+ (BMP-A Area) OR 4.95ac = (4.75ac) + (0.20ac). [SUBCATCHMENTS] Name Outlet Area %1mperv Width %Slope DMA-1 BMP-A 4.75 82 214.3536 0.9 DMA-2 BMP-B 0.80 73 252.834 0.5 BMP-A POC-1 0.20 0 45.95 0 BMP-B POC-1 0.03 0 5.979 0 Total 5.78 OMA Table for Pre-Development Lot 2 DMAID DMA TOTAL %IMP TYPE (ACRE) DMA-1 Drains to POC 5.78 0% Total AREA 5.78 71 Page IMP LINER? YES YES SECTION II. SYSTEM REPRESENTATION SWMM is a distributed model, which means that a study area can be subdivided into any number of irregular sub-catchments to best capture the effect that spatial variability in topography, drainage pathways, land cover, and soil characteristics have on runoff generation. For modeling of Hydromodification calculations, there are four main system representations: Rain gage, Sub-catchment (contributing basin or LID area), Nodes and Links. l1me Series Oceanside 100,000 200,000 300·,000 400,000 500,000 Bapsed llrre (~) Fig. 2.1-Time series rain data, which corresponds to runoff estimates for each of the 508,080 time steps (each date and hour) of the 58-year simulation period. (Inches/hour vs. elapsed time) (*Note: Time series has a gap that occurs around 225,000; this gap is a part of the acquired data set and is a period of time when the decimial was changed from 2 decimals to 1) Rain Gauge The properties of a rain gauge describe the source and format of the precipitation data that are applied to the study area. In this project, the rainfall data consist of a long-term rainfall record stored in a user- defined Time Series labeled as "Oceanside" rain gauge station. The Oceanside rain station was chosen due to its data quality and its location to the project site. The rain gauge supplies precipitation data for one or more sub-catchment areas in a study region taken from the Project Clean Water website (www.projectcleanwater.org). This data file contains rainfall intensity, hourly-recorded time interval, and the dates of recorded precipitation each hour. The Oceanside rain data has approximately 58 years of hourly precipitation data from 8/28/1951 to 5/23/2008 and generates 58 years of hourly runoff estimates, which corresponds to runoff estimates for each of the 508,080 time steps (each date and hour) of the 58 year simulation period. See figure 2.1 for hourly precipitation intensity graph for 58 years in inches. Sub-catchment (contributing basin or LID area) A basin is modeled using a sub-catchment object, which contains some of the following properties: 8I Page ... .. .. .. .. -.. ... .. .. .. ... ... .. .. ... .. ... ,.. -- .. 1111 .. Ill The rate of stormwater runoff and volume depends directly on the precipitation magnitude and its spatial and temporal distribution over the catchment. Each sub-catchment in SWMM is linked to a rain gauge object that describes the format and source of the rainfall input for the sub-catchment. Area This area is bounded by the sub-catchment boundary. Its value is determined directly from maps or field surveys of the site or by using SWMM's Auto-length tool when the sub-catchment is drawn to scale on SWMM's study area map. This Project is divided into several sub-catchments based on its outfall. Width Width can be defined as the sub-catchment's area divided by the length of the longest overland flow path that water can travel. When there are several such paths, one would use an average of their lengths to compute a width. If overland flow is visualized as running down -slope off an idealized, rectangular catchment, then the width of the sub-catchment is the physical width of overland flow . DIRECTION OF FLO Figure-2-2 Irregular subcatchment shape for width calculations (DiGiano et al., 1977, p.165). MAIN DRAINAGE CHANNEL Figure-2-3 Idealized representation of a subcatchment. Source: STORM WATER MANAGEMENT MODEL REFERENCE MANUAL VOLUME 1-JANUARY 2016 The method of calculations used following Figure 2-2 involves an estimitation by Guo and Urbonas (2007). As stated in the Storm Water Management Model Reference Manual Vol. 1 A more fundamental approach to estimating both subcatchment width and slope has recently been developed by Guo and Urbonas (2007). The idea is to use "shape factors" to convert a natural watershed as pictured in Figure 2-2 into the idealized overland flow plane of Figure 2-3. A shape factor is an index that reflects how overland flows are collected in a watershed. The shape factor X for the actual watershed is defined as A/L 2 where A is the watershed area and Lis the length of the watershed's main drainage channel (not necessarily the length of overland flow). The shape factor Y for the idealized watershed is W/L. Requiring that the areas of the actual and idealized watersheds be the same and that the potential energy in terms of the vertical fall along the drainage channel be preserved, Guo and 9IPage .. .. -.. ,.. . ,,,. ... .,.. ... ... ... ' .. ... ... .... ... ... ... ... i ... .... -.. Ill .. .. 11111 ,. .. Urbonas (2007) derive the following expression for the shape factor Y of the idealized watershed: Y = 2X(l.5 -Z)(2K -X)/(2K -1) (3-12) where K is an upper limit on the watershed shape factor. Guo and Urbonas (2007) recommend that K be between 4 and 6 and note that a value of 4 is used by Denver's Urban Drainage and Flood Control District. Once Y is determined, the equivalent width W for the idealized watershed is computed as YL. Applying this approach: X =(A• 43,560 ft2/acre) / (L2) Z=Am/A Z = skew factor, 0.5 ::; Z ::; 1, Am= larger of the two areas on each side of the channel A= total area. This width value is considerably lower than those derived from direct estimates of either the longest flow path length or the drainage channel length. As a result, it would most likely produce a longer time to peak for the runoff hydrograph . Slope This is the slope of the land surface over which runoff flows and is the same for both the pervious and impervious surfaces. It is the slope of what one considers being the overland flow path or its area- weighted average if there are several paths in the sub-catchment . Imperviousness This is the percentage of sub-catchment area covered by impervious surfaces such as sidewalks and roadways or whatever surfaces that rainfall cannot infiltrate . Roughness Coefficient The roughness coefficient reflects the amount of resistance that overland flow encounters as it runs off of the sub-catchment surface. The value used for this project's predevelopment is a 0.12 as Shrubs and Bushes. This was based on the figures in 2-4 and 2-4a and assuming to be the most accurate to the predevelopment site before mass grading and the "pre-project" and conditions were created. The value for the post development is 0.05 for an average close gut grass, closely clipped sod. 10 I Page .. .. .. .. .. ,.. .... ,,. ... ... -... ... ... ,. ' ... ... .. .. ... 111111 ,.. .. Table 3-5 Estimates o( Manning's roughness coefficient for ,werland flow Source Ground Cover n Rane.c Smooth asphalt 0.01 Crawford and Linsley Asohalt of concrete navimz 0.014 (1966)" Packed clay 0.03 Li~httuTf 0.20 Dense turf 0.35 Dense shrubbery and forest I itter 0.4 Concrete or asohalt 0.011 0.010-0.013 Engman ( l 986l Bare sand 0.010 0.01-0.016 Graveled surface 0.02 0.012-0.03 Bare day-loam (eroded) 0.02 0.012-0.033 Ran2e ( natural) 0.13 0.01-0.32 Blue£raSS sod 0.45 0.39-0.63 Short llf8SS orairie 0.15 0.10-0.20 Bermuda grass 0.41 0.30-0.48 Yen (2001 )c Smooth asohalt oavement 0.012 0.010-0.01 S Smooth impervious surface 0.013 O.Oll-0.01S Tar and sand oavemcnt 0.014 0.012-0.016 Concrete navement 0.017 0.014-0.020 Rough impervious surface 0.019 0.015-0.023 Smooth bare oacked soil 0.021 0.017-0.025 Moderate bare packed soil 0.030 0.025-0.03S Rough bare packed soil 0.038 0.032-0.045 Gravel soil 0.032 0.025-0.045 Mowed poor £1"8SS 0.038 0.030-0.045 Avera~c 2rass closely cliooed sod 0.050 0.040-0.060 Pasture 0.055 0.040-0.070 Timberland 0.090 0.060..0.J 20 Dense 2tass 0.090 0.060-0.120 Shrubs and bushes 0.120 0.080-0.180 Business land use 0.022 0.014-0.035 Semi-business land use 0.035 0.022-0.050 Industrial land use 0.035 0.020-0.050 Dense residential land use 0.040 0.025-0.060 Suburban residential land use 0.055 0.030-0.080 Parks and lawns 0.075 0.040•0. t 20 8Qbtained by calibration of Stanford Watershed Model. hComputed by Engman ( 1986) by kinematic wave and storage analysis of measured rainfall-runoff data . (Compuled on basis of kinemalic wave analysis . Source: Storm Water Management Model Reference Manual Volume I -Hydrology (Revised) ~ January 2016 111Page Figure 2.4-Pre-Development site view with assumption of 0.12 mannings value Figure 2-48 : Pre-Project site view after mass grading of the site 12 I Page .. .. ... ... ... I ... ' ... .. ... I ... ,,. ... -... ... ... ... .... -.... ... ' .. .. ~ ... ... ... .. Infiltration Model The pre-development condition is primarily empty land with moderate vegetation cover. In the model, clay soil was used for the post-development condition and the pre-development condition for a conservative approach {yield to a higher runoff). Infiltration of rainfall from the pervious area of a sub- catchment into the unsaturated upper soil zone can be described using three different infiltration models: Horton, Green-Ampt, and Curve Number. There is no general agreement on which method of these three is the best . The Green-Ampt method was chosen to calculate the infiltration of the pervious areas based on the availability of data for this project. It is invoked when editing the infiltration property of a sub- catchment. The Hydrologic Soil Class identified for this project is a rating of D. This determination was from Web Soil Survey and is provided as Attachment E of this projects SWMM report . 13IPage • .. .. ... .. .... ... .... ,.. ... ' ) ... .. ... ,,. ... ... I i ... ... .... .. ,.. ' .... ... .. ... .. .. 11111' ... Table 1-Soil Infiltration Parameter SWMM Parameter Unit Range Use in San Diego Name Infiltration Method Suction Head Inches (Green-Ampt) Conductivity Inches per hour (Green-Ampt) Initial Deficit (Green-Ampt) Groundwater LID Controls Snow Pack Land Uses Initial Buildup Curb Length yes/no HORTON GREEN_AMPT CURVE NUMBER 1.93 -12.60 presented in Table A.2 of SWMM Manual 0.ot -4.74 presented in Table A.2 of SWMM Manual by soil texture class 0.00 -<;0.45 presen¢d in Table A.3 of SWMM Manual by hydrologic soil group The difference between soil porosity and initial moisture content. Based on the values provided in Table A.2 of SWMM Manual, the range for completely dry soil would be 0.097 to 0.375 yes/no GREEN_AMPT Hydrologic Soil Group A: 1.5 Hydrologic Soil Group B: 3.0 Hydrologic Soil Group C: 6.0 Hydrologic Soil Group D: 9.0 Hydrologic Soil Group A: 0.3 Hydrologic Soil Group B: 0.2 Hydtologic Soil Group C: 0.1 Hydtologic Soil Group D: 0.025 Note: reduce conductivity by 25%in the post-project condition when native soils will be compacted. For fill soils in post-project condition, see Section G.1.4.3 . Hydrologic Soil Group A: 0.30 Hydrologic Soil Group B: 0.31 Hydrologic Soil Group C: 0.32 Hydrologic Soil Group D: 0.33 Note: in long-term continuous simulation, this value is not important as the soil will reach equilibrium after a few storm events regardless of the initial moisture content specified. NO Project Specific Not applicable to hydromodification management studies Source: Model BMP Design Manual San Diego Region Appendices, February 26, 2016 14 I Page ... .. .. ... ... ... ... .. ,.. .. ... ... ,.. ... ,,. .... ,.. ... ! ... ... ... ... ,. .. -... .. ,. 1111 LID controls Utilizing LID controls within a SWMM project is a two-step process that: Creates a set of scale-independent LID controls that can be deployed throughout the study area, Assign any desired mix and sizing of these controls to designated sub-catchments . The LID control type that was selected was a biofiltration cell that contains vegetation grown in an engineered soil mixture placed above a gravel drainage bed. Biofiltration provides storage, infiltration (depending on the soil type) and evaporation of both direct rainfall and runoff captured from surrounding areas. For this project, we do not allow infiltration to the existing/filled soil. SECTION Ill. CONTINUED SIMULATION OPTIONS Simulation Dates These dates determine the starting and ending dates/times of a simulation and are chosen based on the rain data availability . Start analysis on 01/03/1951 Start Reporting on 01/03/1951 End Analysis on 05/23/2008 Time Steps The Time Steps establish the length of the time steps used for runoff computation, routing computation and results reporting. Time steps are specified in days and hours: minutes: seconds except for flow routing which is entered as decimal seconds . Climatology -Evaporation Data The available evaporation data for San Diego County that is similar to the Lot 2 project conditions is taken Table G.1-1: Monthly Average Reference Evapotranspiration by ETo Zone for use in SWMM Models for Hydromodification Management Studies in San Diego County CIMIS Zone 4 (in/day) . January February March April May June 0.060 0.080 0.110 0.150 0.170 0.190 July August September October November December 0.190 0.180 0.150 0.110 0.080 0.060 15 I Page -.. ... ... ,.. ... .... .... .... .. ... ... ... JI"' ... ,.. ... ... I ... ... .... ... ... ... ,. .. .. .. .. .. ' ... SECTION IV. BIOFILTRATION AS LID CONTROL LID controls are represented by a combination of vertical layers whose properties are defined on a per- unit-area basis. This allows an LID of the same design but differing coverage area to easily be placed within different sub-catchments of a study area. During a simulation, SWMM performs a moisture balance that keeps track of how much water moves between and is stored within each LID layer. If the biofiltration basin is full and water is leaving the upper weir, the flow is divided in two flows: the lower flow discharging from the bottom orifice directly draining to the point of compliance and the upper flow is routed at the top of the biofiltration basin and after routing, discharged to the point of compliance. In this project, we used 100% of the area of this specific sub-catchment for biofiltration. 1.. Surface Storage Depth When confining walls or berms are present, this is the maximum depth to which water can pond above the surface of the unit before overflow occurs (in inches). In this project, storage depths vary. Table 3 shows depths of surface ponding . Vegetation Volume Fraction It is the fraction of the volume within the storage depth that is filled with vegetation. This is the volume occupied by stems and leaves, not their surface area coverage. Normally this volume can be ignored, but may be as high as 0.1 to 0.2 for very dense vegetative growth. Based on our visual observation in the field, the average type of vegetation for this site is a low-density vegetation type. Therefore, we used 0.1 for the vegetation volume fraction assuming type of vegetation used is a low-density type . Surface Roughness Manning's n value for overland flow over a vegetative surface. Surface Slope Slope of porous pavement surface or vegetative swale (percent) . 2.Soil Thickness The thickness of the soil layer in inches. We used a typical value of 21 inches soil thickness for a biofiltration. This includes the 3" of mulch layer per Worksheet B.5-1 in the Carlsbad BMP Manual. The volume of pore space relative to total volume of soil (as a fraction). We designed it with a soil mix porosity of 0.40 maximum for a good percolation rate {Countywide Model SUSMP Table Bl -Soil Porosity Appendix A: Assumed Water Movement Hydraulics for Modeling BMPs). Field Capacity Volume of pore water relative to total volume after the soil has been allowed to drain fully (as a fraction). We used 0.2 for this soil. Below this level, vertical drainage of water through the soil layer does not occur. (See Table 1-Soil Infiltration Parameter) . 16 I Page ... ... ... ... ... .. ... ... ... ... ... I ... ... Ill"' ... I ... ,... ,.. ... ... .... ... ... ... ... 11111' 1111111 Wilting Point Volume of pore water relative to total volume for a well-dried soil where only bound water remains (as a fraction). The moisture content of the soil cannot fall below this limit . We assumed the minimum moisture content within this biofiltration soil is 0.1. Conductivity Hydraulic conductivity for the fully saturated soil is 5 inches/hour. This is a design minimum value for percolation rate . Conductivity Slope Slope of the curve of log (conductivity) versus soil moisture content (dimensionless). Typical values range from 5 for sands to 15 for silty clay. We designed this soil to have a very good percolation rate therefore the conductivity slope is 5 . Suction Head The average value of soil capillary suction along the wetting front (inches). This is the same parameter as used in the Green-Am pt infiltration model. Table 1 was utilized to determine the capillary of the soil mix top layer of a biofiltration system. The suction head will be 1.5 inches. 3. Storage Layer The Storage Layer page of the LID Control Editor describes the properties of the crushed stone or gravel layer used in biofiltration cells as a bottom storage/drainage layer. The following data fields are displayed: Height this is the thickness of a gravel layer (inches). Crushed stone and gravel layers are vary ranging from 12 to 36 inches thick. A table is provided to summarized the BMP configurations. Void Ratio The volume of void space relative to the volume of solids in the layer. Typical values range from 0.5 to 0.75 for gravel beds. Note that porosity= void ratio/ (1 + void ratio). We designed this void ratio to have a value of 0.67 . Seepage Rate The rate at which water infiltrates into the native soil below the layer (in inches/hour). This would typically be the Saturated Hydraulic Conductivity of the surrounding sub-catchment if Green-Am pt infiltration is used. Since the liner beneath the gravel layer is proposed, the seepage rate is assumed to be O in/hr. Clogging Factor Total volume of treated runoff it takes to completely clog the bottom of the layer divided by the void volume of the layer. For south east biofiltration, a value of O was used to ignore clogging since the system does NOT consider infiltration to the native soils. Clogging progressively reduces the Infiltration 17 I Page .... ... ... ... ,.. ... ,,,,,. ... ,.. ... 1111111 1111111 Ill'" ... 1111111 .. .. ... 1111111 ... .... Rate in direct proportion to the cumulative volume of runoff treated and may only be of concern for infiltration trenches with permeable bottoms and no under drains. We assumed zero for the clogging factor since the infiltration rate is not considered. 4. Underdrain Layer LID storage layers can contain an optional underdrain system that collects stored water from the bottom of the layer and conveys it to a conventional storm drain. The Underdrain page of the LID Control Editor describes the properties of this system. It contains the following data entry fields: Drain Coefficient and Drain Exponent Coefficient C and exponent n that determines the rate of flow through the underdrain as a function of height of stored water above the drain height. The following equation is used to compute this flow rate (per unit area of the LID unit): q = C(h-Hdr where q is the outflow (in/hr), h is the height of stored water (inches), and Hd is the drain height. A typical value for n would be 0.5 (making the drain act like an orifice. Drain Offset Height Height of any underdrain piping above the bottom of a storage layer (inches). In this project, this value was set to 3" as the underdrain piping is at the bottom of the 24" of the live gravel storage layer but above the 3" of dead gravel storage. Table 3 -Summary of LID Drain/flow coefficient JMP. NAME ,,1VE •. Jsitm BMP-A 8735.0 BMP-B 1354.1 Note: q = C(h-Hdr C= C0 A0 ,fig X 12°·5 X 3600 A bR1F1ce •. ::j,N):r; 2.0 1.0 UD 6 21 27 6 21 27 UNQERDRAIN (>Ffs,JT •• (IN). .. . ·. 3 3 0.1469 0.2466 18 I Page -• .. 1111 ... ... ... ... ~ ... ,,,. ... ,.. .... ... ,.. ,. ... ,... .... ... .... ,... .. ... ... ... SECTION V. RUNNING THE SIMULATION In general, the Run time will depend on the complexity of the watershed being modeled, the routing method used, and the size of the routing time step used. The larger the time steps, the faster the simulation, but the less detailed the results . Model Results SWMM's Status Report summarizes overall results for the 58-yr simulation. The runoff continuity error is -6.23% and the flow routing continuity error is 0.00%. When a run completes successfully, the mass continuity errors for runoff, flow routing, and pollutant routing will be displayed in the Run Status window. These errors represent the percent difference between initial storage+ total inflow and final storage+ total outflow for the entire drainage system. If they exceed some reasonable level, such as 10 percent, then the validity of the analysis results must be questioned. The most common reasons for an excessive continuity error are computational time steps that are too long or conduits that are too short . In addition to the system continuity error, the Status Report produced by a run will list those nodes of the drainage network that have the largest flow continuity errors. If the error for a node is excessive, then one should first consider if the node in question is of importance to the purpose of the simulation. If it is, then further study is warranted to determine how the error might be reduced. The SWMM program ranks the partial duration series, the exceedance frequency and the return period. They are computed using the Weibull formula for plotting position. See the flow duration curve and peak flow frequency on the following pages. SECTION VI. RESULT ANALYSIS Development of the Flow Duration Statistics The flow duration statistics are also developed directly from the SWMM binary output file. It should be noted right from the start that the "durations" that we are talking about in this section have nothing to do with the "storm durations" presented in the peak flow statistics section. Other than using the same sequence of letters for the word, the two concepts have nothing to do with each other and the reader is cautioned not to confuse the two. The goal of the flow duration statistics is to determine, for the flow rates that fall within the hydromorphologicaly significant range, the length of time that each of those flow rates occur. Since the amount of sediment transported by a river or stream is proportional to the velocity of the water flowing and the length of time that velocity of flow acts on the sediment, knowing the velocity and length of time for each flow rate is very useful. Methodology The methodology for determining the flow duration curves comes from a document developed by the U.S. Geological Survey (USGS). The first stop on the journey to find this document was a link to the USGS water site (http://www.usgs.gov/water/). This link is found in Appendix E (SDHMP Continuous 19 I Page .. • .. -.. ... Ill" ... ... ... ... ... ... ... ... ... Ill" ... Ill" ... ... ... Ill" ... ... ... .. ... ... ... ... ... ... ... ... ... Simulation Modeling Primer), found in the County Hydromodification Management Plan1. On this web site a search for "Flow Duration Curves" leads to USGS Publication 1542-A, Flow-duration curves, by James K. Searcy 1959 {http://pubs.er.usgs.gov/publication/wspl542A). In this publication the development of the flow duration curves is discussed in detail. In Pub 1542-A, beginning on page 7 an example problem is used to illustrate the compilation of data used to create the flow duration plots. A completed form 9-217-c form shows the monthly tabulation of flow rates for Bowie Creek near Hattiesburg, Miss. For each flow range the number of readings is tabulated and then the total number of each flow rate is totaled for the year. It should be noted that while this example is for a stream with a minimum flow rate of l00cfs, for the purposes of run-off studies in Southern California the minimum flow rate of zero (0) cfs is the common low flow value. Once each of the year's data has been compiled the summary numbers from each year are transferred to form 9-217-d. On this form the total number of each flow rate is again totaled and the percentage of time exceeded calculated (as will be explained later under the discussion of our calculations). Once the data has been compiled a graph of Discharge Rate vs. Percent Time Exceeded is developed. As will be explained in the next section, the use of these curves leads to the amount of time each particular flow can be expected to occur (based on historical data) . How to Read the Graphs2 Figure 6-1 shows a flow duration curve for a hypothetical development. The three curves show what percentage of the time a range of flow rates are exceeded for three different conditions: pre-project, post-project and post-project with storm water mitigation. Under pre-project conditions the minimum geomorphically significant flow rate is 0.l0cfs (assumed) and as read from the graph, flows would equal or exceed this value about 0.14% of the time (or about 12 hours per year) (0.0014 x 365days x 24 hour/day). For post-project conditions, this flow rate would occur more often -about 0.38% of the time (or about 33 hours per year) (0.0038 x 365days x 24 hour/day). This increase in the duration of the geomorphically significant flow after development illustrates why duration control is closely linked to 1 FINAL HYDROMODIFICATION MANAGEMENT PLAN, Prepared for County of San Diego, California, March 2011, by Brown and Caldwell Engineering of San Diego. (http://www.projectcleanwater.org/images/stories/Docs/LDS/HMP/0311 SD HMP wAppendices.pdf) 2 The graph and the explanation were taken directly from Appendix E of the Hydromodification Plan 20 I Page protecting creeks from accelerated erosion. 0.60 ..-------,------,---------,--.--_-_-_-_-~,-_-_---:--_-....,~-_-....,--: ....,--: ....,-_---,---_-_-_---,--, ---+-lml)er\10U$ Flow (cfs) ---Pre-Project Flow (cfs) o.7o ----+-----11------i----1--1 --Post.Project Mitigated Flow (cfs) 'lf l 0.40 !J .II .... Cl.20 0.10 --Pre-Project 0.205 --Pre-Project 010 0.00 +-----+-----11-----+-----+---+-----+-----+------i 0.00 0.05 0.10 0.1!5 0.2D 0.25 0.30 0.35 0.40 ~ Tiru Excud~d Figure 6-1. Flow Duration Series Statistics for a Hypothetical Development Scenario Development of Flow Duration Curves The first step in developing the flow duration curves is to count the number of occurrences of each flow rate. This is done by first rounding every non-zero flow value to an appropriate number of decimal places (say two places). This in effect groups each flow into closely related values or "bins" as they are referred to in publication 9-217d. Then the entire runoff record is queried for each value and the number of each value counted. The next step is to enter the results of the query into a grid patterned after form 9-217d. The data is entered in ascending order starting with the lowest flow first. The grid is composed of four columns. They are (from left to right) Discharge Rate, Number of Periods (count), Total Periods Exceeding (the total number of periods equal to or exceeding this value), and Percent Time Exceeded. Starting at the top row (row 1), the flow rate (which is often times zero) is entered with the corresponding number of times that value was found. The next column is the total number of values greater than or equal to that flow rate. For the first flow rate point, by definition all flow rate values are greater than or equal to this value, therefore the total number of runoff records of the rainfall record is entered here. The final column which is the percent of time exceeded is calculated by dividing the total periods exceeded by the total number of periods in the study. For the first row this number should be 100% For the next row (row 2), the flow rate, and the flow rate count are entered. The total number of periods exceeding for row 2 is calculated by subtracting Number of Periods of row 1 from the Total Periods Exceeding of line 1. This result is entered in the Total Periods Exceeding on row 2. As was the case for line 1, the final column is calculated by dividing the total periods exceeded by the total number of periods in the study. For the second row this number should be something less than 100% and 21 I P age ----.. .. .. ---.. .. 1111 .. ... .. .. .. Ill ... .. .. ... ... ... ... ""' ... ... ... ... ... ... 111111 .. 1111 continually decrease as we move down the chart. If all the calculations are correct, then everything should zero out on the last line of the calculations . The final step in developing the flow duration curves is to make a plot of the Discharge Rate vs. the Percent Time Exceeded. For the purposes of this report, the first value corresponding to the zero flow rate is not plotted allowing the graph to be focused on the actual flow rate values . The Flow Duration Analysis The Peak Flow Statistics analysis is composed of the following series of files: l. The Flow Duration Plot 2. Comparison of the Un-Mitigated Flow Duration Curve to the Pre-Development Curve (Pass/Fail) 3. Comparison of the Mitigated Flow Duration Curve to the Pre-Development Curve (Pass/Fail) 4. The calculations for the Pre-Development flow duration curve development (USGS9217d) 5. The calculations for the Post-Development flow duration curve development (USGS9217d) 6. The calculations for the Mitigated flow duration curve development (USGS9217d) The Flow Duration Plot The Flow Duration Curves Plot is the plotting of all three (pre, un-mitigated and mitigated) sets of Discharge Rate vs. the Percent Time Exceeded data point pair lists. In addition to these curves horizontal lines are plotted corresponding to the Q10 and Clit (low flow threshold) values. Within the geomorphically significant range (Q10 -Clit) one can see a visual representation of the relative positions of the flow duration curves. The flow duration curves are compared in an East/West (horizontal) direction to compare post development Discharge Rates to pre-development Discharge Rates. The pre- development curve is plotted in blue and the mitigated curve is plotted in green. As long as the post development curve lies to the left of the pre-development curve (mostly3), the project meets the peak flow hydromodification requirements . Pass/Fail comparison of the curves The next two sets of data are the point by point comparison of the post-development curve(s) and the pre-development curve. The Pass/Fail table is helpful in determining compliance since the plotted lines can be difficult to see at the scales suitable for use in a report. Each point on the post-development curve has a corresponding "Y" value (Flow Rate), and "X" value(% Time Exceeded). For each point on the post development curve, the "Y" value is used to interpolate the corresponding Percent Time Exceeded (X) value from the pre-development curve. Then the Post-development Percent Time Exceeded value is compared to the pre-development Percent Time Exceeded value. Based on the relative values of each point, pass/fail criteria are determined point by point . For each set of data, the upper right hand header value shows the name of the file being displayed (ex . flowDurationPassFailMitigated.TXT). The first line of the file shows the name of the SWMM output file (* .out). The next line shows the time stamp of the SWMM file that is being analyzed. The time stamps of all of the report files should be within a minute or two of each other, otherwise there may have been 3 See hydromodification limits for exceedance of pre-development values 22 I Page .. .. -.. .. ... ... .. -.. ... ... ... ... ... ... ... .. ... .. ... ... ... - .. .. .. .. --.. .. ... tampering with the files. Each report run creates and prints all of the files and reports at one time so all the time stamps should be very close . The first column is the zero based number of the point. The next two columns show the post development "X" and "Y" values. The next column shows the value interpolated between the two bounding points on the pre-development curve. The next three columns show the true or false values of the comparison of the two "X" values. The last column shows the resultant pass or fail status of the point. There are three ways a point can pass. They are: 1. Qpost being outside of the geomorphically significant range Q1r to Q 1 o 2. Qpost being less than Q pre 3. Qpost being less than 110% of the value ofQpre if the point is between Q1rand Q10 There are two ways that a point can fail. They are: 1. Qpost being greater than 110% of Qpre if the point is between Q1r and Q 1 o 2. If more than 10% of the points are between 100% and 110% of Qpre for the points between Q1r and Q10 A quick scan down the last column will quickly tell if there are any points that fail. At the bottom of each set of data are the date stamp of the report to the left, and to the right is the page number/number of pages for the specific set of data (not the pages of the report!). Each new set of data has its own page numbering. Between the file name in the header row and the page numbering in the footer row, the engineer can readily scan the document for the data of interest . Plan Check Suggestions As was described under the peak flow section, is the responsibility of the reviewing agency to confirm that the data sets presented are valid results from consistent calculations, and that any and all results can be duplicated by manual methods and achieve the same results. In light of these goals, the plan checker is invited to consider the following tasks as part of the plan check process . Compare the Data Stamps for Each of the Statistics Files Used In This Analysis . As was described in the Peak Flows section, all report files should have time stamps that are nearly identical. If the time values are more than a few minutes apart then the potential for inconsistent results files should be investigated . Verify the Flow Rate Counts For each of the pre, and mitigated flow duration tables, a few randomly selected flow value counts should be checked against the values taken directly from the SWMM file. This can be done by opening the corresponding SWMM file, selecting the outfall node, selecting Report>Table>By Object, Setting the time format to Date/Time, selecting the appropriate node value, and clicking the OK button to generate a table of the date/time/Total Inflow values. Next step is to click in the left most header row of the SWMM table which will select the entire table. Now from the main menu select Edit>Copy To>Clipboard. Now open a new blank sheet in MS Excel (or suitable spread sheet program) select cell 23 I Page .. .. .. .. .. --... .. -.. .. .. ... -... -.. ... .. ... ... -• -.... .. .. .. -• -.. .. Al and paste the results from the clipboard into the spread sheet. Now sort the values based on the Total Inflow column. This will group all the flow values together enabling the number of occurrences of each value to be counted. At this point the a few (or all) of the counts on the various USGS9217d.txt files can be verified. Manually Verify That the Percent Exceeded Values (form USGS9217d) are Correctly Calculated The discharge rates and counts are confirmed as was described above. The top row should be the smallest runoff value (0.00cfs usually). Total Periods Exceeding of the first line should be the total number of rainfall records in the study. The percentage of Time Exceeding should be the total periods Exceeding divided by the total number of rainfall records in the study (100% for the first line). For each successive discharge rate, the total periods exceeding for the current line should be the total periods exceeding from the line above minus the number of periods from the line above. The number of periods and the number of periods exceeding should zero out at the last line. Compare Plotted Curves to Table Data Randomly check a few of the plotted points against the values verified above. Verify by Observation that the plotted values of U1oand Uit are reasonable . Verify that the correct values for each of these return periods are plotted correctly on the graph . Development of the Peak Flow Statistics The peak flow statistics are developed directly from the binary output file produced by the SWMM program. The site is modeled three ways, Pre-Development, Post-Development-Unmitigated, and Post- Development-Mitigated. For each of these files a specific time period differentiating distinct storms is chosen. The SWMM results are extracted and each flow value is queried. The majority of the values for Southern California sites are zero flow. As each successive record is read, as soon as a non-zero value is read the time and flow value of that record are recorded as the beginning of an event. The first record is automatically recorded as the "tentative" peak value. As each successive non-zero value is read and the successive flow value is compared to the peak value and the greater value is retained as the peak value of the storm. As soon as a successive number of zero values equal to the predetermined storm separation value, then the time value of the last non-zero value is recorded as the end of the storm, the duration of the storm is the difference between the end time and the start time, and the peak value is recorded as the highest flow value between the start and end times . Once the entire SWMM output file is read all of the distinct storm events will have been recorded in a special list. The storms will be in the order of their occurrence. To develop the peak flow statistics table the first step is to sort the storms in descending order of the peak flow value. Once the list is sorted then the relative rank of each storm is assigned with the highest ranking storm being the storm with the highest peak flow. There are several methods that can be used to determine which storm should be ranked above another equally valued storm. For the purposes of these studies an Ordinal ranking is used so that each storm has a unique rank number. Where two or more storms have equal flow values, the earlier storm is assigned the higher rank. This is done consistently throughout the storm record. Since we are only looking at peak flow statistics, it is assumed that the relative ranking of individual (but equal) storms is irrelevant to the calculations. 24 I Page .. .. ,.. .. .. ,.. ... ... ... ,.. .. ,.. - .. -... ... .. .. -.. -... .. ... -... ,. .. .. -,. .. The exceedance frequency and return period are both computed using the Weibull formula for plotting position. Therefore, for a specific event the exceedance frequency F and the return period in years Tare calculated using the following equations4: and T=n+l/m where m is the event's rank, nR is the total number of events and n is the number of years under analysis. Once the Peak flow statistics table is complete, a plot of Return Frequency vs. peak flow is created. All three conditions (pre, post and mitigated) are plotted on the same plot. The Peak Flow Statistics Analysis The Peak Flow Statistics analysis is composed of the following series of files: 1. The Peak Flow Frequency Plot 2. The Comparison of the Un-Mitigated Peak Flow Curve to the Pre-Development Curve (Pass/Fail) 3. The Comparison of the Mitigated Conditions Curve to the Pre-Development Curve (Pass/Fail) 4. The Peak Flow Statistics Calculation for the Pre-Development Curve. 5. The Peak Flow Statistics Calculation for the Un-Mitigated Curve. 6. The Peak Flow Statistics Calculation for the Mitigated Curve. The Peak Flow Frequency Plot The Peak Flow Frequency Curves are the plotting of all three (Pre, Un-Mitigated and Mitigated) sets of return Period vs peak flow data point pair lists. In addition to these curves horizontal lines are plotted corresponding to the 010, Os, Qi and Oit (low flow threshold) values. Within the geomorphically significant range (Clio -Oit) one can see a visual representation of the relative positions of the peak flow curves. The peak flow curves are compared in a North/South (vertical) direction to compare post development peak flows to pre-development flows. The Pre-Development curve is plotted in blue, the unmitigated curve is plotted in red, and the mitigated curve is plotted in green. As long as the post development curve lies below the pre-development curve (mostly5), the project meets the peak flow hydromodification requirements . Pass/Fail comparison of the curves The next two sets of data are the point by point comparison of the post-development curve(s) and the pre-development curve. The Pass/Fail table is helpful in determining compliance since the plotted lines can be difficult to see at the scales suitable for use in a report. Each point on the post-development curve has a corresponding "X" value (Recurrence Interval), and "Y" value (Peak Flow). For each point on the post development curve, the "X" value is used to interpolate the corresponding peak flow value from the pre-development curve. Then the Post-development peak flow value is compared to the pre- development peak flow value. Based on the relative values of each point, pass/fail criteria are determined point by point . 4 Pg 169-170 STORM WATER MANAGEMENT MODEL APPLICATIONS MANUAL, EPA/600/R-09/000 July 2009 5 See hydromodification limits for exceedance of pre-development values 25 I Page --- 11111 ---.. --.. .. .,.. .. .. .. .. .. ... ... ... ... .. ... .. -• -.. -.. 111111 For each set of data, the upper right hand header value shows the name of the file being displayed (ex. peakFlowPassFailMitigated.TXT). The first line of the file also shows this value. The next line shows the time stamp of the file that is being analyzed. The time stamps of all of the report files should be within a minute or two of each other, otherwise there may have been tampering with the files. Each report run creates and prints all of the files and reports at one time so all the time stamps should be very close. It should be noted that the SWMM.out files will not have related time stamps since each file is developed independently . The first column is the zero based number of the point. The next two columns show the post development "X" and "Y" values. The next column shows the value interpolated between the two bounding points on the pre-development curve. The next three columns show the true or false values of the comparison of the two "Y" values. The last column shows the resultant pass or fail status of the point. There are three ways a point can pass. They are: 1. Point is outside of the geomorphically significant range 010 -Oit 2. Oiiost being less than O pre 3. Oiiost being less than 110% of the value of Oiire if the point is between Os and 0106 There are four ways that a point can fail. They are: 1. Oiiost being greater than Oiire if the point is between Oit and Os 2. Oiiost being greater than 110% of Oiire if the point is between Oit and 010 3. If more than 10% of the points are between 100% and 110% of Opre for the points between Os and 010 4. If the frequency interval for points > 100% of Oiire is greater than 1 year for the points between Os and 010 A quick scan down the last column will quickly tell if there are any points that fail. At the bottom of each set of data are the date stamp of the report to the left, and to the right is the page number/number of pages for the specific set of data (not the pages of the report!). Each new set of data has its own page numbering. Between the file name in the header row and the page numbering in the footer row, the engineer can readily scan the document for the data of interest . The Peak Flow Statistics Calculations There are three sets of data for the Peak Flow Statistics calculations (Pre-Development, Un-Mitigated, and Mitigated). As was the case for the pass/fail data, the upper right hand corner of each sheet has the file name. The first row of the data is the SWMM file name. The second row is the SWMM file time stamp of the file being analyzed. The 4th, 5th, and 6th rows are the calculated values for 0 10, Os, and Qi. These values are derived by linear interpolation between the nearest bounding points in the listing. While the relationship between the points in the peak flow analysis is not technically a linear relationship, the error introduced in using linear interpolation between such relatively close data points is assumed to be irrelevant. Finally, the footer row shows the report time and the page/number of pages of the data set. 6 See section on how a point can fail point number 3 hereon 26 I Page ... .. .. .. ---- .. -.. ,. ... ... ... ... ... ... ... .. ... .. .. .. .. .. ---.. -- As was previously discussed, each storm listed was determined by reading the flow values directly from the binary output file from the SWMM program. The storms were then sorted in descending order of peak flow values. Then each storm was assigned a unique rank, then the Frequency and Return Period were calculated using Weibull formulas. Every discharge value for the entire rainfall record is listed in each of these lists. It should be noted that the derivation of these peak flow statistics values use full precision (i.e. no rounding off) of the SWMM output values. Since the precision of the calculations may not be the same as the SWMM program uses, and also the assignment of rank to values of equal peak flow value may differ slightly from the way SWMM calculates the tables, minor variances in the data values and/or the order of storms can be expected. Finally, as was previously stated, the values of the Return Period were plotted vs. the peak flow values to develop the peak flow frequency curves. Plan Check Suggestions As is the responsibility of the reviewing agency, any and all methods should be considered to verify that the SWMM analysis adequately models the site as far as hydrologic discharge is concerned, and that the data sets presented are valid results from consistent calculations, and that any and all results can be duplicated by manual methods and achieve the same results. In light of these goals, the plan checker is invited to consider the following tasks as part of the plan check process . Compare the Data Stamps for Each of the Statistics Files Used In This Analysis. For each set of calculations and report files, the first step of the process is to list out all the files in the report folder and delete those files. The very first step leaves the reports folder completely empty . Then as each successive step is performed, the results file is placed in the reports folder. Once all of the results files are complete, then the report file is compiled using the data directly from the files placed in the results folder. This means that the time stamps on each of the report files in the report should be within a minute or two depending on the speed of the computer. If the time values are more than a few minutes apart then the potential for inconsistent results files should be investigated . Verify A Few Random Storm Statistics For each of the Pre, Un-mitigate and Mitigated peak flow statics tables, a few randomly selected storms should be checked against the values taken directly from the SWMM file. This can be done by opening the corresponding SWMM file, selecting the outfall node, selecting Report>Table>By Object, Setting the time format to Date/Time, selecting the appropriate node value, and clicking the OK button to generate a table of the date/time/Total Inflow values. Now scroll down the list to the start date and time of the randomly selected storm. Verify that the start date, end date, and the highest flow value between the start and end date correspond to the values shown in the statistics table. Do this for a few storm to verify that the data corresponds to the SWMM output file. Verify by hand a few of the frequency and return period values . Compare Plotted Curves to Table Data Randomly check a few of the plotted points against the values found in the Peak Flow Frequency Tables. 27 I Page .. --.. -.. .. ... --.. ... -.. .. .. .. .. -... .. --.. -• -.. .. ... -.. Verify by Observation that the values ofQ10, Qs, Q2 and Q1rare reasonable . For each value shown on the reports, verify that the value shown for say Ql0 is in between the next higher return period and the next lower period. Also verify that the correct values for each of these return periods are plotted correctly on the peak flow frequency graph. Manually Verify That the Pass Fail Table Is Correctly Calculated Select at random several points on each of the pass/fail tables to verify that the values for post X/Y and interpolated Y look reasonable. Also check that the various test results are shown accurately in the chart and also the final pass/fail result looks accurate . Drawdown Time of Bio-filtration Surface Ponding The drawdown time for hydromodification flow control facilities was calculated by assuming a starting water surface elevation coincident with the peak operating level in the bio-filtration facility such as the elevation at the weir or the emergency spillway overflow . The instruction from the county of San Diego Department of Environmental Health (DEH) limits the drawdown time hydromodification flow control facilities to 96 hours. This restriction was implemented as mitigation to potential vector breeding issues and the subsequent risk to human health. See Attachment C for Drawdown time of each pond and derivations of drawdown times for BMPs. Drawdown time and Calculations are included as Attachment D of this SWMM report . VII. SUMMARY AND CONCLUSION Hydromodification calculations were performed utilizing continuous simulation to size storm water control facilities. SWMM (Storm Water Management Model) version 5.0 distributed by USEPA was used to generate computed peak flow recurrence and flow duration series statistics . There are several tributary areas planned as industrial use treated by 2 biofiltration basins (labeled as BMP-# (Best Management Practices) with a total tributary area of approximately 5.78 acres. The areas were grouped based on its outfall and were analyzed for pre-development and post-development conditions; Whole Basin A and Basin B drains to one point of compliance {POC) . The analyzed SWMM runs attached show that the proposed biofiltration facilities provided with variety of orifice flow control at the base of the gravel storage configured as shown in Figure 6-1 is in compliance with the HMP and BMP Manual. Lot 2 On POC, The flow duration curve on the following page shows the existing condition 17.5 hours (0.200x365daysx24 hour/day= 17.5 hours) . With the proposed square footage of LID areas and orifices acting as the low flow restrictor configured as shown in Figure 1 the duration of the flow is 17.6 hours {0.201x365daysx24 hour/day =17.6 hours) . This flow duration is higher than the existing but within the allowed 10% to meet compliance . 28 I Page Therefore, this study has demonstrated that the proposed optimized biofiltration basin is sufficient to meet the current HMP and BMP criteria (See Table 7-1). Excel Engineering Flow Duration Curves 2.5 -Pre Development -Post Development Mlligaled -,IE-Q10 (2.348cia) -,IE-Qlf (0.1799cf1) 2.0 -1.5 , . .t! u -.! ftl « 1.0 ~ 0 ii: 0.5 0.0 -0.5 . . .Flow Ourilion Pro0eve~nt~365(days)x24(tvldiy)x(l.2i7('1,),'19.0(hours/ye~) • Flow Duration Mitigated Post Oeveloprnent•365(dayS)x2◄(hllday)l<0.20-4(%)•17,9(houts/year) 0.00 0.05 0.10 0.15 0.20 (%) Percent Time Exceedance Table 7-1 29 I P age STATISTICS ANALYSIS OF THE SWMM FILES FOR: ANALYSIS DETAILS Statistics Selection: Nodes/Total Inflow Stream Susceptibility to Channel Erosion: High (Qlf = (0.1)Q2) Assumed time between storms (hours): 24 PRE-DEVELOPMENT SWMM FILE SWMM file name: V:\19\19079\Engineering\SDP\Storm-SDP\SWMM\19-079-PRE DEV.out SWMM file time stamp: 2/17/2020 4:21:51 PM Selected Node to Analyze: POC-1 POST-DEVELOPMENT MITIGATED SWMM FILE SWMM file name: V:\19\19079\Engineering\SDP\Storm-5DP\SWMM\19-079-POST DEV.out SWMM file time stamp: 3/18/2020 6:23:13 PM Selected Node to Analyze: POC-1 MITIGATED CONDITIONS RESULTS For the Mitigated Conditions: Peak Flow Conditions PASS Flow Duration Conditions PASS The Mitigated Conditions peak flow frequency curve is composed of 766 points. Of the points, 1 point(s) are above the flow control upper limit (Ql0), 547 point(s) are below the low flow threshold value (Qlf). Of the points within the flow control range (Qlf to Ql0), 218 point(s) have a lower peak flow rate than pre-development conditions. These points all pass. There are no points that failed, therefore the unmitigated conditions peak flow requirements have been met. The Mitigated Conditions flow duration curve is composed of 100 flow bins (points) between the upper flow threshold (cfs) and lower flow threshold (cfs). Each point represents the number of hours where the discharge was equal to or greater than the discharge value, but less than the next greater flow value. Comparing the post- development flow duration curve to the pre-development curve, 99 point(s) have a lower duration than pre- development conditions. These points all pass. There are no points that failed, therefore the unmitigated conditions flow duration requirements have been met. V:\19\19079\Engineering\SDP\Storm-SDP\SWMM\report parts\Statistics Reports\POC-1\Statistics Results-POC-1.pdf 3/18/2020 6:29 :28 PM software version : 1.0.6785.31877 Excel Engineering 8 7 6 -~ 5 -3 .2 4 LL .lll: m 3 0.. 2 1 Peak Flow Frequency Curves • • • • • • • • • • • • • •••••••••••• ,I ••••••••••••• '............. • • • • • • • • • • • • • •••••••••••• , ••••• . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...... . -. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ~ -Hit---t----7------------------------------4· ... · · · · . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... .,. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... • • • • • • • • • • • • ·: • • • • • • • • • • • • • • :· • • • • • • • • • • • • • '. • • I -Pre Development -Post Development Mitigated I +f r~-010 (5.417cfs) ~ os (5.210cfs) I 0 j j j ~ 02 (3.995cfs) ~ Olf (0.3995cfs) I I I I I I I I I I I I I ' I I 0 10 20 30 40 50 60 Return Period (Years) f I f -, r· I f -1 ,-1 f -1 f 1 r I f -1 r , r 1 f ·1 f 1 ,-1 f ·1 f. 1 r· ·-. I I r I Excel Engineering peakFlowPassFailMitigated.TXT Compare Post-Development Curve to Pre-Development Curve post-development SWMM file: V:\19\19079\Engineering\SDP\Storm-SDP\SWMM\19-079-POST DEV.out post-development time stamp: 3/18/2020 6:23:13 PM Compared to: pre-development SWMM file: V:\19\19079\Engineering\SDP\Storm-SDP\SWMM\19-079-PRE DEV.out pre-development time stamp: 2/17/2020 4:21 :51 PM -- ' I 1,.0 ,;;, 0 1,.0 I 1,.0 0~ :<-'ii< 0 i ~ 0~ 0-:i. 0-:i. ~ ~ o\o .,,,_q_ .,,,_<:::J .,,,_t.-i .,,,_-, ..._(:5 i-q_<: <:::j I " q_O<-,; ~~ q_O<-,; q_'-0 r:,<-,; I r:,<-,; .,,,_-, <J.~ ~ : o(l o<l I 0 58.00 6.16 7.46 FALSE FALSE FALSE Pass-Qpost Above Flow Control Upper Limit 1 29.00 4.70 6.19 TRUE FALSE FALSE Pass-Qpost < Qpre 2 19.33 4.51 5.92 TRUE FALSE FALSE Pass-Qpost < Qpre 3 14.50 ' 4.28 I 5.85 TRUE FALSE FALSE Pass-Qoost < Qore 4 11.60 I 4.27 5.51 TRUE FALSE FALSE Pass-Qpost < Qpre 5 9.67 I 4.15 i 5.40 TRUE FALSE FALSE Pass-Qpost < Qore 6 8.29 3.90 I 5.36 TRUE FALSE FALSE Pass-Qoost < Qore 7 7.25 3.64 i 5.30 i TRUE --~-FALSE FALSE Pass-Qpost < Qpre 8 6.44 ! 3.50 I 5.30 I TRUE FALSE FALSE Pass-Qpost < Qpre ----9 5.80 3.33 5.24 TRUE FALSE FALSE Pass-Qpost < Qpre 10 5.27 ! 3.21 5.24 i TRUE FALSE FALSE Pass-Ooost < Qore 11 4.83 I 3.19 5.19 I TRUE FALSE FALSE Pass-Ooost < Qpre 12 4.46 ! 3.18 5.07 i TRUE FALSE FALSE Pass-Qpost < Qpre 13 4.14 3.02 4.98 TRUE FALSE FALSE Pass-Qpost < Qpre 14 3.87 2.90 4.93 TRUE FALSE FALSE Pass-Ooost < Qpre ~ 15 ! 3.63 2.72 4.82 TRUE FALSE FALSE Pass-Qpost < Qpre ! 16 3.41 2.68 4.60 TRUE FALSE FALSE Pass-Qpost < Qpre 17 ! 3.22 2.57 4.56 ! TRUE FALSE FALSE Pass-Qpost < Qpre 18 I 3.05 2.57 4.52 TRUE FALSE FALSE Pass-Qpost < Qpre t------- 19 i 2.90 2.55 4.51 TRUE FALSE FALSE Pass-Qpost < Qpre 20 I 2.76 2.51 4.46 I TRUE FALSE FALSE Pass-Qpost < Qore I 21 2.64 2.49 4.46 TRUE FALSE FALSE Pass-Qpost < Qore 22 2.52 2.43 4.36 TRUE FALSE I FALSE Pass-Qpost < Qpre 23 2.42 2.41 4.27 TRUE FALSE FALSE Pass-Qpost < Qpre 24 2.32 2.40 4.15 TRUE FALSE FALSE Pass-Qpost < Qpre 25 2.23 2.29 4.08 TRUE ' FALSE FALSE Pass-Qoost < Qore 26 2.15 2.27 4.06 TRUE : FALSE FALSE Pass-Ooost < Qpre 27 2.07 2.27 4.00 TRUE I FALSE FALSE Pass-Qoost < Qpre 28 2.00 2.24 3.99 TRUE ' FALSE FALSE Pass-Qpost < Qpre -29 1.93 2.22 3.93 TRUE ' FALSE FALSE Pass-Qoost < Qpre 30 1.87 2.12 3.85 TRUE i FALSE FALSE Pass-Qoost < Qore 31 1.81 2.10 3.80 TRUE i FALSE FALSE Pass-Qoost < Oore 32 1.76 2.10 3.74 TRUE i FALSE FALSE Pass-Qoost < Qore 33 1.71 2.08 3.69 TRUE ' FALSE FALSE Pass-Qoost < Oore 3/18/2020 6:29 PM 1/19 ,-I r, r 1 r ·· 1 ,-1 ,-1 ,-1 ,---, ,-1 r 1 r , r , r 1 r 1 r , r 1 I I t I f I Excel Engineering peakFlowPassFailMitigated.TXT &e /...;;;.. 0 &e &e I ~ ~'It< 0\:5 fl,..), ~o ~ ~ o\o ~ ~q ~<J ()e ~I, ~,,, .__<::S j q<: " qo~ ~~ qo~ q<..e o<f~ 0~ I ~,,, q~ ~ 0~ I ~ 34 I 1.66 2.08 ' 3.59 TRUE FALSE FALSE Pass-Qpost < Qpre 35 I 1.61 2.08 i 3.57 TRUE FALSE FALSE Pass-Qpost < Qpre I--·--36 ! 1.57 2.05 I 3.55 TRUE FALSE FALSE Pass-Qpost < Qpre 37 ' I 1.53 I 2.02 3.53 TRUE FALSE FALSE Pass-Qpost < Qpre 38 I 1.49 2.00 i 3.50 TRUE FALSE : FALSE Pass-Qpost < Qpre ' 39 . 1.45 : 1.98 : 3.46 TRUE FALSE FALSE Pass-Qpost < Qpre 40 1.42 ' 1.95 3.43 TRUE FALSE ' FALSE Pass-Qpost < Qpre ·-~--41 I 1.38 1.81 3.43 TRUE FALSE FALSE Pass-Qpost < Qpre I I ~42~-i 1.35 I 1.81 3.38 TRUE FALSE FALSE Pass-Qpost < Qpre 43 r-1.32 I 1.75 3.35 TRUE FALSE FALSE Pass-Qpost < Qpre i I 44 I 1.29 i 1.73 3.33 TRUE FALSE FALSE Pass-Qpost < Qpre ~ 45 -----+-· __ 1.26 _[ 1.69 I 3.30 TRUE FALSE FALSE Pass-Qpost < Qpre 1.69 .. 3.26 TRUE FALSE FALSE Pass-Qpost < Qpre 46 1.23 • 47 1.21 1.67 3.26 -TRUE FALSE FALSE Pass-Qpost < Qpre 48 1.18 1.62 3.25 TRUE FALSE FALSE Pass-Qpost < Qpre 49 1.16 1.60 3.14 TRUE FALSE FALSE Pass-Qpost < Qpre 50 1.14 1.60 3.14 TRUE FALSE FALSE Pass-Qpost < Qpre -51 1.12 1.60 3.01 TRUE FALSE ' FALSE Pass-Qpost < Qpre 52 1.09 1.59 I 2.94 TRUE FALSE I FALSE Pass-Qpost < Qpre -+--53 1.07 1.59 2.94 TRUE FALSE FALSE Pass-Qpost < Qpre 54 1.06 1.57 2.91 TRUE FALSE I FALSE Pass-Qpost < Qpre 55 1.04 i 1.54 2.89 TRUE FALSE FALSE Pass-Qpost < Qpre 56 1.02 1.52 2.88 TRUE FALSE ' FALSE Pass-Qpost < Qpre f--------------· 57 ----1.00 1.51 2.87 TRUE FALSE FALSE Pass-Qpost < Qpre 58 0.98 1.47 2.85 TRUE FALSE I FALSE Pass-Qpost < Qore 59 0.97 1.46 2.82 TRUE FALSE ' FALSE Pass-Qpost < Qpre ~ 60 0.95 1.44 2.82 TRUE FALSE i FALSE Pass-Qpost < Qpre 61 0.94 1.42 2.80 TRUE FALSE I FALSE Pass-Qpost < Qpre 62 0.92 1.41 2.80 TRUE FALSE FALSE Pass-Qpost < Qpre 63 0.91 1.37 2.79 TRUE FALSE I FALSE Pass-Qpost < Qpre 64 0.89 1.35 2.78 TRUE FALSE FALSE Pass-Qpost < Qpre 65 0.88 1.35 2.77 TRUE FALSE I FALSE Pass-Qpost < Qpre 66 0.87 1.33 2.77 TRUE FALSE ! FALSE Pass-Qpost < Qpre ~-67 0.85 I 1.29 2.73 TRUE FALSE i FALSE Pass-Qpost < Qpre 68 0.84 1.26 2.71 TRUE ~ FALSE FALSE Pass-Qpost < Qpre I 69 0.83 1.25 2.69 TRUE FALSE FALSE Pass-Qpost < Qpre f--------------70 0.82 1.25 2.69 TRUE FALSE FALSE Pass-Qpost < Qpre ~-71 I 0.81 1.24 2.69 i TRUE I FALSE FALSE Pass-Qpost < Qpre 72 0.80 1.24 2.69 I TRUE I FALSE FALSE Pass-Qpost < Qpre 73 0.78 1.22 2.67 TRUE : FALSE FALSE Pass-Qpost < Qpre 74 0.77 1.22 2.64 i TRUE I FALSE FALSE Pass-Qpost < Qpre 75 0.76 1.22 2.63 ! TRUE FALSE FALSE Pass-Qpost < Qpre 3/18/2020 6:29 PM 2/19 f I r 1 r 1 f I r-1 ,-1 ,-1 ' 1 ,. 1 f 1 r 1 r 1 r 1 ' 1 r 1 ' 1 r 1 f I I I Excel Engineering pea kFlowPassFa i IM itigated. TXT ' ~0 ; ~'l!< /.,.;;.. 0 ~o ~0 ~0 cfo I <>'-5 0.:.. cfo cfo o\o I ~ ~q_ ~<::j <::)0 ~/., ~~ ! .... ~ ' ~ q_'-" I c,,<-:i q_O<-:i ~<::-q_Oe, q_'-0 o<l 0<-:i ~~ i q_'l>' ' cfo o<f<-:i I ! ----76. 0.75 i 1.21 I 2.61 TRUE FALSE : FALSE Pass-Qpost < Qpre ··~ 77 0.74 I 1.20 2.59 TRUE FALSE FALSE Pass-Qpost < Qpre 78 0.73 1.20 2.57 TRUE FALSE FALSE Pass-Qpost < Qpre 79 0.73 1.19 2.57 TRUE FALSE FALSE Pass-Qoost < Qpre 80 0.72 1.18 2.57 TRUE FALSE FALSE Pass-Qoost < Qpre 81 0.71 1.18 2.51 TRUE FALSE FALSE Pass-Qpost < Qpre 82 0.70 1.17 I 2.48 TRUE FALSE FALSE Pass-Qpost < Qpre ·--------· ------------·· 83 0.69 1.16 I 2.48 TRUE FALSE FALSE Pass-Qoost < Qpre 84 0.68 1.16 2.45 TRUE FALSE FALSE Pass-Qoost < Qpre 85 0.67 1.15 2.45 TRUE I FALSE FALSE Pass-Qoost < Qpre 86 0.67 1.14 I 2.38 TRUE I FALSE FALSE Pass-Qpost < Qpre I 87 0.66 1.13 2.38 TRUE FALSE FALSE Pass-Qpost < Qpre 88 0.65 1.13 2.36 i TRUE FALSE FALSE Pass-Qpost < Qpre 89 ' 0.64 1.10 2.34 I TRUE FALSE FALSE Pass-Qoost < Qpre 90 i 0.64 1.09 2.32 I TRUE FALSE FALSE Pass-Qoost < Qpre 91 I 0.63 1.08 2.31 TRUE I FALSE FALSE Pass-Qoost < Qpre 92 0.62 1.06 2.30 TRUE FALSE FALSE Pass-Qoost < Qpre --93 , 0.62 1.03 2.29 TRUE FALSE FALSE Pass-Qpost < Qpre -·--M--~ 0.61 1.03 2.27 TRUE FALSE FALSE Pass-Qoost < Qpre 95 0.60 1.02 2.27 TRUE FALSE FALSE Pass-Qoost < Qore 96 i 0.60 0.99 2.25 TRUE FALSE FALSE Pass-Qoost < Qpre 97 0.59 0.99 2.24 TRUE FALSE FALSE Pass-Qpost < Qpre 98 0.59 0.99 2.21 TRUE FALSE i FALSE Pass-Qoost < Qore 99 I 0.58 -+ 0.99 2.21 TRUE FALSE I FALSE Pass-Qpost < Qpre 100 I 0.57 0.95 2.17 TRUE FALSE I FALSE Pass-Qpost < Qpre 101 I 0.57 ! 0.93 2.16 TRUE FALSE I FALSE Pass-Qpost < Qpre 102 0.56 I 0.91 2.16 TRUE FALSE I FALSE Pass-Qpost < Qpre 103 0.56 0.88 2.15 TRUE FALSE FALSE Pass-Qpost < Qpre 104 0.55 0.86 2.13 TRUE FALSE i FALSE Pass-Qpost < Qpre 105 0.55 ' 0.86 2.13 TRUE I FALSE i FALSE Pass-Qpost < Qpre 106 0.54 0.86 2.12 TRUE I FALSE FALSE Pass-Qpost < Qpre 107 0.54 I 0.85 2.12 TRUE I FALSE FALSE Pass-Qpost < Qpre 108 0.53 0.85 I 2.11 TRUE FALSE FALSE Pass-Qpost < Qpre 109 0.53 0.84 2.09 ' TRUE FALSE FALSE Pass-Qpost < Qpre I 110 0.52 0.84 2.08 TRUE FALSE FALSE Pass-Qpost < Qpre -~~- 111 0.52 0.83 2.07 TRUE FALSE FALSE Pass-Qpost < Qpre -· 112 I 0.51 0.83 2.04 TRUE FALSE FALSE Pass-Qpost < Qpre ' ----·+--0.82 2.04 TRUE FALSE FALSE Pass-Qpost < Qpre 113 ' 0.51 i I 114 0.50 0.80 2.04 TRUE FALSE FALSE Pass-Qpost < Qpre 115 0.50 0.80 2.03 TRUE FALSE FALSE Pass-Qpost < Qpre 116 0.50 0.80 2.03 TRUE FALSE I FALSE Pass-Qpost < Qpre -· 117 0.49 0.80 2.01 TRUE FALSE ! FALSE Pass-Qoost < Qore 3/18/2020 6:29 PM 3/19 r 1 r 1 r 1 ' 1 r 1 r 1 r ' ' 1 r I r 1 ' 1 f 1 f 1 r 1 r 1 f 1 r 1 r 1 r 1 Excel Engineering pea kFlowPassFa ii Mitigated. TXT i &0 I :<,.i /..,;;.. 0 0 &0 &0 cfo I -~ 0'"5 0" 0" cfo cfo o\o I ~lb) .,,_q_ ,,_<::J (J ,,_I-.,,_-, ..._<:> I J q_<: " q_Or.,; I q_Or.,; q_'-0 or.,; o<fr.,; .,,_-, I ~r.,; ~~ I oq_ I q_ I i o<fr.,; I 118 0.49 0.79 I 2.01 TRUE I FALSE FALSE Pass-Qpost < Qpre 119 0.48 0.79 2.01 TRUE FALSE FALSE Pass-Ooost < Qpre 120 0.48 0.78 I 2.01 TRUE FALSE FALSE Pass-Qpost < Qpre 121 0.48 0.77 2.01 I TRUE FALSE FALSE Pass-Qoost < Qore 122 0.47 0.75 2.00 I TRUE FALSE FALSE Pass-Qoost < Qore 123 i 0.47 0.75 I 1.98 I TRUE FALSE FALSE Pass-Qpost < Qpre 124 I 0.46 0.75 1.95 I TRUE FALSE FALSE Pass-Qpost < Qore 125 I 0.46 0.75 ! 1.93 TRUE FALSE FALSE Pass-Qpost < Qpre 126 i 0.46 0.73 1.93 TRUE FALSE FALSE Pass-Qpost < Qpre 127 0.45 0.73 1.91 TRUE FALSE FALSE Pass-Qpost < Qpre 128 I 0.45 0.72 1.91 TRUE FALSE FALSE Pass-Qpost < Qpre -FALSE FALSE Pass-Qpost < Qpre 1.....--...-___ 129 0.45 ' 0.72 1.91 TRUE 130 r-----o.44 0.71 1.87 ! TRUE FALSE FALSE Pass-Qnnst < Qpre 131 I 0.44 0.69 1.86 TRUE FALSE FALSE Pass-Qpost < Qore 132 ! 0.44 0.68 1.86 TRUE FALSE FALSE Pass-Qoost < Qore 133 0.43 0.67 1.85 TRUE FALSE 1 FALSE Pass-Qpost < Qore 134 0.43 i 0.64 1.85 TRUE --FALSE I FALSE Pass-Qpost < Qpre -~ 135 0.43 l 0.64 1.84 TRUE FALSE FALSE Pass-Qpost < Qpre 136 I 0.42 0.64 1.84 TRUE FALSE l FALSE Pass-Qpost < Qore 137 I 0.42 0.63 1.83 TRUE FALSE FALSE Pass-Qpost < Oore 138 0.42 0.63 1.83 TRUE FALSE FALSE Pass-Qpost < Qpre 139 0.41 0.63 1.82 TRUE FALSE FALSE Pass-Qpost < Qore -~~-~ ~ 140 0.41 i 0.63 1.80 TRUE FALSE FALSE 1 Pass-Qpost < Qpre 141 0.41 I 0.63 1.79 TRUE FALSE FALSE I Pass-Qpost < Qpre 142 0.41 0.62 1.79 TRUE FALSE 1 FALSE Pass-Ooost < Qpre 143 0.40 0.61 1.77 TRUE I FALSE FALSE Pass-Qpost < Qpre 144 0.40 0.61 1.76 TRUE FALSE i FALSE Pass-Qpost < Qore 145 0.40 0.60 1.76 TRUE FALSE ' FALSE Pass-Qoost < Qpre 146 0.40 0.60 1.74 TRUE I FALSE FALSE Pass-Qoost < Qore ~ 147 0.39 0.60 1.74 TRUE FALSE I FALSE Pass-Qpost < Qpre 148 0.39 0.59 1.73 TRUE FALSE i FALSE Pass-Qoost < Qpre 149 I 0.39 0.58 i 1.73 TRUE FALSE FALSE Pass-Qpost < Qpre 150 I 0.38 0.58 1.72 TRUE FALSE FALSE Pass-Qpost < Qpre 151 0.38 0.58 1.71 TRUE FALSE FALSE Pass-Qpost < Qpre 152 0.38 0.58 1.70 I TRUE FALSE FALSE Pass-Qnnst < Qpre 153 i 0.38 I 0.57 1.70 I TRUE FALSE FALSE Pass-Qpost < Qpre 154 0.37 0.57 1.70 TRUE FALSE FALSE Pass-Qpost < Qpre .__ 0.57 1.66 I TRUE FALSE FALSE Pass-Qpost < Qpre 155 ' 0.37 : 156 0.37 ' 0.56 I 1.66 ! TRUE FALSE FALSE Pass-Qpost < Qore '~ 157 0.37 I 0.56 1.64 TRUE FALSE FALSE Pass-Qpost < Qpre 158 0.37 0.56 1.64 1 TRUE FALSE FALSE Pass-Qpost < Qpre 159 l 0.36 0.56 1.62 TRUE FALSE FALSE Pass-Qnnst < Qore 3/18/2020 6:29 PM 4/19 f' 1 f I I' 1 r 1 ,. 1 r 1 ,-1 r 1 r 1 r 1 r 1 r 1 r 1 ,-1 r·1 ,--, r , r· 1 r· 1 Excel Engineering pea kFlowPassFai IM itigated. TXT T I 1..0 ~i .._;;;.. 0 ,:i,.o 1..0 1..0 cfo ~ 0~ 0~ cfo cfo o\o ,.._<l. ,.._<::J ()0 ,..,.1-.... '1 "(:) i q<: " <l.,tP qO<,; ~~ qO<,; <l.'-0 o<fc,; or:,; .... '1 cfo o<fc,; C--- ~ 160 0.36 0.55 i 1.61 TRUE FALSE FALSE Pass-Qoost < Qpre 161 0.36 0.54 I 1.61 TRUE FALSE FALSE Pass-Qnnst < Qpre ~ -162 0.36 0.54 ! 1.60 TRUE FALSE FALSE Pass-Qoost < Qore 163 0.35 0.53 I 1.59 TRUE FALSE FALSE Pass-Qpost < Qpre 164 0.35 0.52 ! 1.59 TRUE FALSE FALSE Pass-Qoost < Qpre 165 0.35 0.51 1.59 TRUE FALSE FALSE Pass-Qpost < Qpre --166 0.35 0.51 i 1.56 TRUE FALSE FALSE Pass-Qpost < Qpre 167 0.35 0.51 I 1.54 I TRUE FALSE FALSE Pass-Qoost < Qpre i 168 0.34 0.51 1.54 TRUE FALSE FALSE Pass-Qoost < Qore 169 0.34 0.50 1.54 I TRUE FALSE FALSE Pass-Qpost < Qore 170 0.34 0.50 1.53 i TRUE FALSE i FALSE Pass-Qoost < Oore 171 0.34 -+-0.50 1.52 i TRUE FALSE FALSE Pass-Qpost < Qpre L__~·- 172 0.34 0.50 1.51 TRUE I FALSE I FALSE Pass-Qpost < Qpre 173 0.33 0.49 1.50 TRUE i FALSE ! FALSE Pass-Qnnst < Qore 174 0.33 I 0.49 1.50 TRUE I FALSE FALSE Pass-Qpost < Qpre 175 0.33 0.48 1.49 TRUE i FALSE FALSE Pass-Qoost < Qpre 176 0.33 0.48 1.49 TRUE FALSE FALSE Pass-Qpost < Qpre 177 0.33 ! 0.48 1.49 TRUE FALSE FALSE Pass-Qpost < Qpre 178 0.32 0.48 1.49 TRUE FALSE FALSE Pass-Qpost < Qore 179 0.32 ! 0.48 1.48 TRUE FALSE FALSE Pass-Qoost < Qpre 180 0.32 0.47 1.48 TRUE FALSE FALSE Pass-Qpost < Qpre 181 0.32 0.47 1.47 TRUE FALSE FALSE Pass-Qpost < Qpre ---------182 0.32 0.47 1.44 TRUE FALSE FALSE Pass-Qpost < Qpre 183 0.32 0.47 1.43 TRUE FALSE FALSE Pass-Qoost < Qore --184 0.31 0.46 1.41 TRUE FALSE FALSE Pass-Qpost < Qpre 185 I 0.31 0.46 1.39 TRUE FALSE FALSE Pass-Qpost < Qpre 186 0.31 -T 0.46 1.38 TRUE FALSE FALSE Pass-Qoost < Qore 187 0.31 0.46 1.38 TRUE FALSE FALSE Pass-Qpost < Qpre 188 I 0.31 i 0.45 1.37 TRUE FALSE FALSE Pass-Ooost < Qore 189 0.31 0.45 1.36 TRUE FALSE FALSE Pass-Qpost < Qore 190 ! 0.30 0.45 1.34 TRUE FALSE FALSE Pass-Qpost < Qore 191 ' 0.30 0.45 1.33 TRUE FALSE FALSE Pass-Qpost < Qpre 192 0.30 0.45 1.32 ' TRUE FALSE FALSE Pass-Qpost < Qpre I 193 0.30 0.45 1.32 TRUE FALSE FALSE Pass-Qpost < Qpre 194 0.30 0.45 1.32 TRUE FALSE FALSE Pass-Qoost < Qore 195 0.30 -~ ~--0.44 1.31 TRUE i FALSE FALSE Pass-Qpost < Qpre '---------· 196 0.29 0.44 I 1.29 TRUE FALSE FALSE Pass-Qpost < Oore C---197 0.29 I 0.43 I 1.29 TRUE I FALSE I FALSE Pass-Qoost < Oore 198 0.29 0.43 1.28 TRUE FALSE FALSE Pass-Qoost < Qore 199 0.29 0.43 1.27 TRUE FALSE FALSE Pass-Qpost < Oore 200 I 0.29 0.42 1.26 TRUE FALSE FALSE Pass-Qoost < Oore 201 0.29 0.42 1.25 TRUE FALSE FALSE Pass-Qoost < Qore 3/18/2020 6:29 PM 5/19 f '1 r 1 ,. 1 r 1 , .. 1 r 1 r 1 r 1 f 1 ' 1 r 1 r 1 r 1 ' 1 r-· ' ,-1 r 1 ,. 1 r I Excel Engineering peakFlowPassFa ii Mitigated. TXT &0 ~~ 1-.o/-0 0 &0 &0 o<;j ~ 0-.;;5 0-:!,, 0-:!,, cfo cfo o\o ,.,_q_ ,.,_<:J ,.,_t-,.,_-r .._G i-q_<: <:J "' q_Or.,; ~~ I q_Or.,; q_<..0 or.,; or.,; ,.,_-r q_~ 0~ cfo i o<fr.,; I I 202 0.29 i 0.42 i 1.25 TRUE FALSE I FALSE Pass-Opost < Qpre 203 0.28 0.42 I 1.24 TRUE FALSE FALSE Pass-Qpost < Qpre 204 0.28 0.42 i 1.24 TRUE FALSE FALSE Pass-Qpost < Qpre 205 0.28 0.41 I 1.22 TRUE FALSE FALSE Pass-Qpost < Qpre 206 I 0.28 0.41 1.21 TRUE FALSE FALSE Pass-Qpost < Qpre 207 : 0.28 0.41 I 1.21 TRUE FALSE FALSE Pass-Opost < Qpre 208 '. 0.28 0.41 1.19 TRUE I FALSE FALSE Pass-Qpost < Qpre ----. 209 -.. ~ 0.28 0.41 I 1.17 TRUE FALSE FALSE Pass-Qpost < Qpre 210 : 0.28 0.41 1.16 TRUE FALSE FALSE Pass-Qpost < Qpre 211 0.27 0.41 1.16 TRUE i FALSE FALSE Pass-Qpost < Qpre 212 0.27 0.41 1.14 TRUE FALSE FALSE Pass-Qpost < Qpre 213 0.27 0.40 1.14 TRUE FALSE FALSE Pass-Qpost < Qpre --~ --214 0.27 0.40 1.13 TRUE FALSE FALSE Pass-Qpost < Qpre -~ 215 0.27 0.40 1.12 TRUE FALSE FALSE Pass-Qpost < Qpre 216 0.27 0.40 1.12 TRUE FALSE FALSE Pass-Qpost < Qpre 217 0.27 0.40 1.11 I TRUE FALSE FALSE Pass-Opost < Qpre 218 0.27 0.40 I 1.11 TRUE FALSE FALSE Pass-Opost < Qpre 219 0.26 0.40 I 1.10 FALSE FALSE FALSE Pass-Ooost Below Flow Control Threshold ·~ 220 I 0.26 0.39 I 1.10 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 221 0.26 0.39 1.09 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 222 0.26 0.39 1.09 FALSE ! FALSE FALSE Pass-Qpost Below Flow Control Threshold 223 0.26 0.38 1.08 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold ·-224 I 0.26 0.38 1.07 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 225 0.26 0.38 1.04 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 226 0.26 0.37 1.04 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 227 0.25 0.37 1.02 FALSE ', FALSE FALSE Pass-Qpost Below Flow Control Threshold 228 0.25 0.37 1.02 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 229 0.25 0.37 1.01 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 230 0.25 0.37 1.01 FALSE FALSE : FALSE Pass-Qpost Below Flow Control Threshold 231 0.25 I 0.36 1.01 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 232 0.25 0.36 1.01 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 233 ! 0.25 0.36 1.01 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 234 I 0.25 0.36 1.00 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 235 0.25 0.36 I 1.00 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 236 i 0.25 0.35 1.00 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 237 ! 0.24 0.35 1.00 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 238 I 0.24 0.35 0.99 FALSE FALSE FALSE Pass-Ooost Below Flow Control Threshold 239 0.24 0.35 0.99 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold -----240 0.24 0.34 0.99 FALSE FALSE I FALSE Pass-Ooost Below Flow Control Threshold 241 0.24 I 0.34 0.98 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 242 0.24 0.34 0.98 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold -243 0.24 I 0.34 0.97 I FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 3/18/2020 6:29 PM 6/19 f 1 f 1 r-1 r 1 ,... 1 ,-1 r· 1 r 1 r 1 r 1 r·1 ' ' r•·•1 ,. 1 r ' ' 1 r ' r· 1 f ' Excel Engineering peakFlowPassFailMitigated.TXT 1 i I &0 I I oq 1,.o/-0 &0 &0 f,..~ o'-5 0~ ~o cfo cfo o\o ~ ~q_ ~(J ()0 ~/,, ~"1 ,,_<:) i-q_<: I ! " q_O<,; q;f I q_O<,; q_<..0 o'<i o'<i ! ~"1 q_~ I ' cfo o<:1 o<fe,; I i I 244 0.24 0.33 I 0.96 FALSE FALSE ' FALSE Pass-Qpost Below Flow Control Threshold 245 0.24 0.33 I 0.96 FALSE FALSE -, FALSE Pass-Qpost Below Flow Control Threshold I 246 I 0.24 0.33 0.94 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 247 0.23 I 0.33 i 0.94 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 248 I 0.23 i 0.33 0.93 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 249 i 0.23 ' 0.33 0.93 FALSE FALSE ----FALSE Pass-Qpost Below Flow Control Threshold 250 I 0.23 0.32 0.93 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold I 251 _,.._ 0.23 ~ 0.32 0.93 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 252 0.23 ; 0.32 0.92 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 253 ' 0.23 0.32 0.92 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 254 0.23 0.32 0.91 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 255 0.23 0.32 0.91 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 256 0.23 0.32 0.90 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 257 0.23 0.32 0.90 FALSE FALSE FALSE Pass-Qpost Bel.ow Flow Control Threshold 258 0.22 I 0.32 0.90 FALSE FALSE FALSE 1 Pass-Qpost Below Flow Control Threshold 259 0.22 0.31 ' 0.90 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 260 0.22 0.31 0.90 FALSE ! FALSE ; FALSE Pass-Qpost Below Flow Control Threshold 261 0.22 0.31 0.89 FALSE : FALSE FALSE Pass-Qpost Below Flow Control Threshold 262 0.22 0.31 0.89 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 263 0.22 0.31 0.89 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 264 0.22 0.31 I 0.89 FALSE i FALSE i FALSE Pass-Qpost Below Flow Control Threshold 265 0.22 0.30 0.89 FALSE I FALSE -+-- FALSE Pass-Qpost Below Flow Control Threshold 266 0.22 0.30 ' 0.86 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold e---------267 0.22 I FALSE FALSE FALSE 0.30 0.85 I Pass-Qpost Below Flow Control Threshold 268 0.22 0.30 0.85 FALSE ' FALSE FALSE Pass-Qpost Below Flow Control Threshold 269 0.22 0.30 I 0.84 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 270 0.21 0.29 0.84 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 271 0.21 0.29 I 0.84 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 272 0.21 0.29 I 0.84 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 273 0.21 0.29 i 0.84 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~-274 0.21 0.29 0.81 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 275 0.21 0.28 0.80 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 276 ; 0.21 0.28 0.79 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 277 I 0.21 0.28 0.79 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 278 0.21 0.28 0.78 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 279 0.21 0.28 0.76 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ------280 0.21 0.28 0.76 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ---~1-I 0.21 0.27 0.76 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold ~- 282 0.21 0.27 0.75 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 283 0.20 0.27 0.74 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 284 0.20 0.27 0.74 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 285 0.20 0.27 I 0.72 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 3/18/2020 6:29 PM 7/19 I 1 r 1 r I ' 1 r I f I ' 1 f 1 ' 1 ' 1 r 1 ' ' ' 1 ' 1 ' 1 r I r ' r I r r Excel Engineering pea kFlowPassFa ii Mitigated. TXT I ! I I I 1..0 I ._r;.. I &'l, 1..0 O'l :<,..i 0 I ~o i tl 0-.:5 'l,.:.. I o'l cfo o\o .,.,._<l. .,.,._(J ! ()fl, I .,.,._1., .,.,._-, .... ~ <l.~ I " ' <S?Cj q_OCj <J!? q_OCj I <l.'-0 OCj OCj ,,,_ '1 <l. I cfo 0~ o'l I I : 286 I 0.20 0.27 I 0.71 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 287 I 0.20 0.26 0.70 i FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 288 ' 0.20 I 0.26 0.70 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 289 0.20 0.26 0.67 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 290 ' 0.20 0.26 0.67 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 291 I 0.20 0.26 0.67 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 292 0.20 0.26 0.66 I FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 293 I 0.20 0.26 0.66 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 294 0.20 0.25 0.66 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 295 i 0.20 0.25 0.65 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 296 i 0.20 0.25 0.63 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 297 0.20 0.25 0.63 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 298 i 0.19 0.25 0.63 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 299 0.19 0.25 0.62 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 300 I 0.19 0.25 0.62 ' FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 301 0.19 0.25 0.61 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 302 0.19 0.25 0.60 i FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 303 0.19 0.25 ' 0.60 I FALSE FALSE ' FALSE Pass-Qpost Below Flow Control Threshold 304 0.19 1 0.25 I 0.60 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 305 0.19 0.25 0.60 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 306 0.19 I 0.24 0.59 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold I 307 0.19 I 0.24 0.58 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 308 0.19 I 0.24 0.58 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 309 0.19 I 0.24 0.57 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 310 0.19 0.24 0.57 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 311 I 0.19 0.23 0.57 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 312 ' 0.19 I 0.23 0.56 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 313 I 0.19 I 0.23 0.56 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 314 I 0.18 -i 0.23 0.55 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 315 0.18 0.22 0.55 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 316 0.18 i 0.22 0.53 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 317 0.18 0.22 0.53 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 318 0.18 I 0.22 0.53 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 319 0.18 0.22 0.53 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 320 0.18 0.22 0.53 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 321 0.18 ' 0.22 0.51 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 322 I 0.18 ' 0.22 I 0.51 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ,_,_ 323 0.18 0.21 0.50 I FALSE ' FALSE FALSE Pass-Qoost Below Flow Control Threshold ~-324 0.18 ' 0.21 0.50 i FALSE I FALSE FALSE Pass-Qoost Below Flow Control Threshold 325 0.18 I 0.21 0.50 I FALSE FALSE ' FALSE Pass-Qoost Below Flow Control Threshold 326 0.18 I 0.21 i 0.50 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold -~-327 0.18 : 0.21 0.50 FALSE I FALSE FALSE Pass-Qoost Below Flow Control Threshold 3/18/2020 6:29 PM 8/19 f I r I r ' f I ' 1 ' 1 r I r 1 r 1 r 1 ' 1 r 1 r 1 J I r I f I f I I I f I Excel Engineering peakFlowPassFailMitigated.TXT I i I !..0 "1l!< !..~ 0 0 ! !..0 !..0 cfo ~ 0-..;5 0.:;. 0.:;. i cfo cfo o\o ..._<:S i ~q_ q_<: ~(J (J I ~/,, ~-, " q_O<,; <tf q_o" q_,0 I oc,; oc,; 'I',.-, q_~ I 0~ 0~ oc,; i : cfo 328 0.18 0.21 0.49 : FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold _ _32!!__ __ 0.18 0.21 0.49 I FALSE -r-FALSE FALSE Pass-Qpost Below Flow Control Threshold I 330 --0.18 -----0.21 0.48 ! FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 331 0.18 0.21 0.48 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 332 0.17 0.21 0.47 i FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 333 0.17 0.21 0.47 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 334 0.17 0.21 I 0.47 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold --335 0.17 0.21 I 0.47 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 336 0.17 0.20 0.46 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 337 0.17 0.20 0.46 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 338 I 0.17 0.20 I 0.45 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 339 ' 0.17 0.20 0.45 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 0.44 FALSE -I-FALSE FALSE Pass-Qpost Below Flow Control Threshold 340 0.17 0.20 ~ 341 i 0.17 0.20 0.44 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 342 i 0.17 0.20 0.44 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 343 0.17 0.20 0.44 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 344 0.17 0.19 0.42 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 345 0.17 I 0.19 0.42 FALSE FALSE ! FALSE Pass-Qoost Below Flow Control Threshold 346 0.17 I 0.19 0.42 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 347 0.17 I 0.19 0.42 FALSE i FALSE I FALSE Pass-Qpost Below Flow Control Threshold 348 0.17 I 0.19 0.40 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold ~ __ 349 ---0.17 I 0.18 0.40 FALSE ; FALSE I FALSE Pass-Qpost Below Flow Control Threshold ----+ -~ 350 0.17 i 0.18 0.40 FALSE i FALSE FALSE Pass-Qpost Below Flow Control Threshold 351 0.17 ! 0.18 0.40 FALSE i FALSE FALSE Pass-Qoost Below Flow Control Threshold 352 0.16 0.18 0.38 FALSE FALSE ! FALSE Pass-Qpost Below Flow Control Threshold 353 0.16 0.18 0.38 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 354 0.16 0.18 0.38 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 355 0.16 0.18 0.38 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 356 I 0.16 I 0.18 0.37 FALSE FALSE I FALSE Pass-Qoost Below Flow Control Threshold 357 0.16 0.17 0.37 FALSE i FALSE FALSE Pass-Qoost Below Flow Control Threshold 358 ', 0.16 0.17 0.37 I FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 359 I 0.16 0.17 0.33 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 360 0.16 0.16 i 0.33 I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 361 7 0.16 0.16 0.33 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 362 I 0.16 0.16 I 0.33 I FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 363 i 0.16 0.16 0.32 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 364 7 0.16 0.16 0.32 I FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 365 0.16 0.16 0.32 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold --366 0.16 0.16 0.32 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold ~ 367 0.16 0.16 0.32 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 368 I 0.16 0.16 0.29 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 369 0.16 0.16 0.29 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 3/18/2020 6:29 PM 9/19 , 1 r 1 I I ' ' J I J I f I J ' J I r 1 r 1 ' 1 I I r ' r 1 r 1 r 1 I I I I Excel Engineering pea kFlowPassFa i IM itigated. TXT T I &0 :<..~ 1,.o/, ~o 0 &0 &0 0~ ~ I cfo cfo o\o 0"5 I 0.:.. ._G i-~<J. <J.~ ()0 (;j ~t-~-, ' q_O<-j I ~ q_'-0 o<l o<-j ~-, q_<S' 1 ~~ I q_O o<:l o<l 370 I 0.16 0.16 0.28 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 371 0.16 r 0.16 0.28 FALSE FALSE -----FALSE Pass-Qpost Below Flow Control Threshold 372 I 0.16 0.16 0.28 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 373 0.16 0.16 0.28 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 374 0.16 0.16 0.28 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 375 0.15 0.16 0.26 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 376 ! 0.15 0.16 0.26 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 377 0.15 ~. 0.16 0.23 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 378 0.15 0.16 0.23 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 379 ' 0.15 0.15 0.23 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 380 I 0.15 0.15 ~ 0.21 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 381 0.15 0.15 0.21 ----382 0.15 0.15 0.20 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 383 0.15 0.15 0.20 FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 384 0.15 0.15 0.20 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold --385 0.15 0.15 I 0.19 FALSE ' FALSE FALSE Pass-Qpost Below Flow Control Threshold 386 0.15 0.15 0.19 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 387 0.15 0.15 0.18 I FALSE FALSE FALSE Pass-Qnnst Below Flow Control Threshold 388 0.15 0.15 0.18 FALSE : FALSE FALSE Pass-Qnnst Below Flow Control Threshold 389 0.15 0.15 0.18 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 390 0.15 0.15 0.17 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 391 0.15 0.15 0.17 FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold ----... 392 i 0.15 0.15 0.17 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 393 . ..,. 0.15 0.15 0.16 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 394 0.15 I 0.15 0.16 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 395 ' 0.15 0.15 0.15 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 396 0.15 ! 0.15 0.15 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 397 I 0.15 0.15 0.15 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold ----· 398 I 0.15 i 0.14 0.14 FALSE FALSE FALSE Pass-Qnnst Below Flow Control Threshold 399 0.15 0.14 0.14 FALSE FALSE FALSE Pass-Qnnst Below Flow Control Threshold 400 0.15 I 0.14 0.14 FALSE FALSE FALSE Pass-Qnnst Below Flow Control Threshold 401 0.14 0.14 0.12 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 402 0.14 0.14 0.12 FALSE FALSE FALSE Pass-Qnnst Below Flow Control Threshold 403 0.14 0.14 0.12 FALSE FALSE FALSE Pass-Qnnst Below Flow Control Threshold 404 0.14 0.14 0.12 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 405 0.14 0.14 I 0.12 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 406 0.14 0.14 i 0.12 i FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 407 0.14 0.14 I 0.11 i FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 408 0.14 0.14 I 0.11 I FALSE I FALSE FALSE Pass-Qnnst Below Flow Control Threshold 409 0.14 0.14 I 0.09 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 410 I 0.14 0.14 0.09 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 411 0.14 0.14 0.09 FALSE FALSE FALSE Pass-Qnnst Below Flow Control Threshold 3/18/2020 6:29 PM 10/19 r ·, r ·1 ' 1 r 1 r 1 r 1 r I r 1 ,·1 r 1 r 1 ,-1 ' 1 r 1 r 1 1· I r· I r I r 1 Excel Engineering peakFlowPassFailMitigated.TXT I I I I I i I i &0 :<-1!!< ... ~ ,4.0 I 0 &0 &0 0~ ~ 0"5 I 0~ cfo cfo o\o ,.,_<l. ()0 ,.,..1-! ,.,_-, ..._~ j-q_<: <J " q_Or.,; i ~ <l.'0 o<fr.,; o<l ,.,_-, q_t§i i ~~ q_O i I I I or.,; I 0~ I 412 I 0.14 0.14 0.08 FALSE I FALSE FALSE Pass-Qoost Below Flow Control Threshold 413 I 0.14 0.14 0.08 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold f----------414 0.14 0.14 0.08 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold i ~--415 0.14 0.14 0.06 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 416 0.14 0.14 0.06 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 417 0.14 0.14 0.06 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold f-418 0.14 0.14 0.06 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 419 0.14 0.14 0.06 FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 420 0.14 0.14 0.06 FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 421 0.14 0.14 int I FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 422 0.14 I 0.14 int FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 423 I 0.14 I 0.14 I n FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold --· 424 ----; 0.14 I 0.14 n FALSE i FALSE FALSE Pass-Qpost Below Flow Control Threshold 425 0.14 0.14 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 426 0.14 0.14 n FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 427 0.14 0.14 a·z FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 428 0.14 0.14 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ·-·-429 0.14 0.14 n I FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 430 0.14 I 0.14 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 431 0.13 0.14 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 432 I 0.13 0.13 n FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 433 ; 0.13 : 0.13 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~-.. 434 0.13 i 0.13 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 435 r 0.13 I 0.13 n FALSE ' FALSE FALSE Pass-Qpost Below Flow Control Threshold 436 0.13 0.13 I n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 437 0.13 0.13 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 438 0.13 0.13 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 439 0.13 0.13 a·z FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold ·-440 0.13 0.13 n FALSE FALSE i FALSE Pass-Qpost Below Flow Control Threshold 441 0.13 0.13 n FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 442 0.13 0.13 n FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 443 I 0.13 0.13 n i FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 444 0.13 0.13 n FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 445 0.13 I 0.13 n FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 446 0.13 I 0.13 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 447 0.13 0.13 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold --448 0.13 0.13 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 449 0.13 0.13 a·z FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 450 I 0.13 0.13 n FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 451 0.13 0.13 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 452 0.13 0.12 n FALSE FALSE i FALSE Pass-Qpost Below Flow Control Threshold 453 0.13 0.12 n FALSE FALSE I FALSE Pass-Qoost Below Flow Control Threshold 3/18/2020 6:29 PM 11/19 f ·1 r 1 r 1 r -, r I ,-, ' 1 ' 1 ' ' r I r 1 I I I I I I ,, 1 r I r I I I I I Excel Engineering pea kFlowPassFa i IM itigated .TXT i I &0 f..~ i ... ;;;.. 0 0 &0 &0 cP ~ 0~ 0~ 0~ cP 0~ o\o -,,,..<J.. ..__~ t-q_<: -,,,..<:::J <:::j '1-..t, 'I-..,, "' q_O<,; ~~ q_O<,; <J.."0 o<:i oc,; 'I-..,, q_'l><:i cP cP I o<:i i I cP 454 0.13 I 0.12 fi FALSE I FALSE I FALSE Pass-Qpost Below Flow Control Threshold 455 0.13 0.12 fi FALSE i FALSE FALSE Pass-Qpost Below Flow Control Threshold 456 0.13 0.12 ' n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 457 0.13 0.12 I n FALSE i FALSE FALSE Pass-Qpost Below Flow Control Threshold 458 i 0.13 0.12 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 459 I 0.13 0.12 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 460 0.13 0.12 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ---461 I 0.13 0.12 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 462 0.13 0.12 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 463 0.13 0.12 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 464 0.13 0.12 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 465 0.12 ' 0.12 fi FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 466 0.12 0.12 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 467 0.12 0.12 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 468 0.12 0.12 fi I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 469 ' 0.12 0.12 I fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 470 I 0.12 0.12 I fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 471 0.12 0.12 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 472 0.12 0.12 fi FALSE FALSE ' FALSE Pass-Qpost Below Flow Control Threshold 473 0.12 0.12 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 474 0.12 0.12 fi FALSE i FALSE FALSE Pass-Qpost Below Flow Control Threshold 475 0.12 0.12 fi FALSE i FALSE FALSE Pass-Qpost Below Flow Control Threshold 476 0.12 0.12 I fi ~ : FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 477 0.12 0.12 I fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 478 0.12 0.12 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 479 0.12 0.12 n I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 480 I 0.12 0.12 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 481 0.12 0.12 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 482 0.12 0.12 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 483 0.12 0.11 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 484 0.12 0.11 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~-0.11 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~ _ 485 -----+~~ 0.12 _J ' 0.11 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ----~-486 I 0.12 ! 487 0.12 0.11 I fi i FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold : 488 0.12 0.11 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold -489 0.12 0.11 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 490 0.12 0.11 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~-491 0.12 0.11 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 492 0.12 0.11 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 493 0.12 0.11 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 494 0.12 0.11 n I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 495 I 0.12 0.11 n I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 3/18/2020 6:29 PM 12/19 I 1 r -1 ' 1 ' . ' 1 f I ' 1 I I ' -1 ' 1 f 1 ' 1 r 1 r I r· I ,-1 ,·1 I I I I Excel Engineering pea kFlowPassFai IM itigated. TXT I &0 ~'!!< 1-..o/-0 ~o &0 &0 cfo ~ 0-.;:5 0~ cfo cfo o\o 'l<..<l. 'I<..<:) ()0 'l<..t-'I<....., ... ~ $- i <l.~ i " <l.o,,; ' <l.o,,; <l.'0 o<l o'<i 'I<....., <l.'8' I ~~ I cfo r:,'<i I oq I 496 0.12 ' 0.11 n I FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 497 0.12 I 0.11 n ' FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 498 0.12 0.11 I n I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold : i 499 0.12 0.11 fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 500 0.12 0.11 I fi FALSE FALSE FALSE Pass-Qnnst Below Flow Control Threshold 501 0.12 0.11 I fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 502 0.12 0.11 I fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold --503 0.12 0.11 ' fi FALSE FALSE FALSE Pass-Qnnst Below Flow Control Threshold 504 0.12 0.11 fi FALSE FALSE FALSE Pass-Qnnst Below Flow Control Threshold 505 0.11 0.11 fi FALSE FALSE FALSE Pass-Qnnst Below Flow Control Threshold 506 0.11 0.11 n FALSE FALSE FALSE Pass-Qnnst Below Flow Control Threshold 507 0.11 0.11 n FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold -----------508 0.11 0.11 fi FALSE FALSE FALSE Pass-Qnnst Below Flow Control Threshold 509 0.11 0.11 fi FALSE FALSE FALSE Pass-Qnnst Below Flow Control Threshold 510 ' 0.11 0.11 in FALSE FALSE FALSE Pass-Qnnst Below Flow Control Threshold 511 0.11 0.11 a·z FALSE FALSE ' FALSE Pass-Qnost Below Flow Control Threshold 512 0.11 0.10 n FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold ~ 513 I -0.11 0.10 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~---~-----j 0.11 --0.10 fi FALSE FALSE FALSE Pass-Qnost Below Flow Control Threshold 514 , 515 i 0.11 0.10 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 516 I 0.11 : 0.10 fi I FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 517 0.11 i 0.10 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 518 0.11 0.10 n ! FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 519 0.11 0.10 fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 520 0.11 0.10 I fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 521 0.11 0.10 fi : FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 522 0.11 I 0.10 fi ! FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 523 0.11 0.10 I fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 524 0.11 0.10 I fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 525 0.11 0.10 i fi FALSE FALSE FALSE Pass-Qnnst Below Flow Control Threshold 526 0.11 0.10 ' fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 527 0.11 0.10 fi FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold -~ 528 0.11 0.10 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 529 I 0.11 0.10 n FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 530 I 0.11 0.10 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 531 ' 0.11 0.10 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ' ' 532 0.11 0.10 fi ! FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 533 ' 0.11 I 0.10 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold + 534 I 0.11 0.10 n i FALSE i FALSE FALSE Pass-Qpost Below Flow Control Threshold 535 0.11 0.10 n ' FALSE I FALSE FALSE Pass-Qoost Below Flow Control Threshold 536 I 0.11 ; 0.10 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 537 0.11 I 0.10 n FALSE I FALSE FALSE Pass-Qnost Below Flow Control Threshold 3/18/2020 6:29 PM 13/19 f I ,-, r1 W I I I , . I I r 1 r · 1 r 1 ,-1 , 1 ' 1 r I r 1 1· I f I I I Excel Engineering peakFlowPassFailMitigated.TXT 1,0 j ' ~ 0 0 1,0 1,0 (fo :<,. ~ ~ ~ ~ cfo cfo r;:;\0 ~q_ ~,o <>0 <::>0 ~'-~-, "'" 0~ ' ~ 0 ~ ~ -q_ 1'S' nO q_'-,..o ,..o ~, ~ ' 0"' 0"' <:floe,; '--------- T ~~ ~q, q_'b' 538 I 0.11 0.1 0 a·z FALSE FALSE FALSE Pass-Q st Below Flow Control Threshold 539 0.11 0.10 a·z FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 540 0.11 0.10 a·z FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold 541 0.11 0.10 ' a·z FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold 542 0.11 0.10 a·z FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold 543 0.11 0.10 a·z FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold 544 1 0.11 0.10 a·z FALSE FALSE FALSE Pass-Q st Below Flow Control Threshold L 545 r-0.11 ~-0.10 a·z FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 546 0.11 • 0.09 a·z FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 547 0.11 0.09 a·z FALSE 7 FALSE FALSE I Pass-Qpost Below Flow Control Threshold 548 0.11 0.09 a·z FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold 549 0.11 0.09 a·z FALSE FALSE FALSE Pass-Q-st Below Flow Control Threshold 550-0.11 0.09 a·z FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 551 0.11 0.09 a·z FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 552 0.11 0.09 a·z FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold 553 0.11 0.09 a·z FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold 554 0.10 0.09 a·z FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold 555 0.10 0.09 a·z FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold 556 0.10 0.09 a·z FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold 557 0.10 0.09 a:z FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold 558 0.10 0.09 a·z FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold 559 0.10 0.09 a·z FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold 560 0.10 0.09 a·z FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~ 0.10 0.09 a·z FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 562 0.10 0.09 a·z FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 563 0.10 0.09 a·z FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold 564 0.10 0.09 a·z FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 565 0.10 0.09 a·z FALSE FALSE • FALSE Pass-OQost Below Flow Control Threshold 566 0.10 0.09 a·z FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold 567 I 0.10 0.09 : a·z FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 568 0.10 0.09 a·z FALSE i FALSE FALSE Pass-Qpost Below Flow Control Threshold E 569 • .c-0.10 0.09 a·z FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold I 570 0.10 0.08 : a·z FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold I 571 0.10 , 0.08 I a·z FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 572 0.10 0.08 a·z FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold 573 0.10 0.08 a·z : FALSE FALSE FALSE I Pass-Qpost Below Flow Control Threshold 574 0.10 0.08 a·z FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 575 0.10 0.08 a·z FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 576 ' 0.10 I 0.08 a·z I FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 1 1--577 , 0.10 I 0.08 a·z I FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 578 0.10 1 0.08 a·z I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 579 1 0.1 0 I 0.08 a·z I FALSE FALSE -r FALSE Pass-Qpost Below Flow Control Threshold 3/18/2020 6:29 PM 14/19 I 1 f I f. I f I f I r 1 r 1 ' 1 ' 1 ' 1 r 1 ,-1 f I f I r I ,. 1 ,. 1 ' 1 I I I I Excel Engineering peakFlowPassFa ii Mitigated. TXT &0 ! :<..~ 1,.o/< 0 N,o &0 &0 cfo ~ 0-.:5 0~ cfo cfo o\o .,.,_<l. ..._<:s {< ' q_<: l .,.,_<:::J <::)0 .,.,_I-I .,.,_-, " ~<,; q_O<,; i ~~ q_O<,; q_'-0 "<,; ' "<,; .,.,_-, q_'I>' cfo ' oq "<,; ~ ---~---·...l ____ oq ; 580 I 0.10 I 0.08 I n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold I ~ 581 ___ + 0.10 0.08 I n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 0.10 0.08 n FALSE --FALSE FALSE Pass-Qpost Below Flow Control Threshold 582 • 583 I 0.10 0.08 I n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 584 I 0.10 0.08 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 585 0.10 0.08 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ----586 0.10 0.08 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold -------587 0.10 0.08 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 588 0.10 0.08 n I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 589 0.10 0.08 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 590 0.10 0.08 n FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 591 0.10 0.08 n I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ' 592 ·, 0.10 0.08 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~ 593 0.10 0.08 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 594 0.10 0.08 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 595 0.10 0.07 I n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 596 r--0.10 L 0.07 I n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 597 0.10 I 0.07 I n FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 598 0.10 0.07 i n FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 599 0.10 0.07 ' n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 600 0.10 0.07 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold -601 0.10 I 0.07 I n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ·-602 0.10 0.07 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 603 0.10 0.07 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 604 0.10 0.07 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold -605 0.10 0.07 i n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 606 0.10 0.07 I n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 607 0.09 0.07 a:z FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 608 0.09 0.07 n i FALSE I FALSE ' FALSE Pass-Qpost Below Flow Control Threshold 609 ' 0.09 0.07 n I FALSE FALSE i FALSE Pass-Qpost Below Flow Control Threshold 610 0.09 0.07 n I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 611 0.09 0.07 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~--612 0.09 I 0.07 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ---613 0.09 i 0.07 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 614 0.09 ' 0.07 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 615 0.09 0.07 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 616 0.09 0.07 ! n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold -617 0.09 i 0.07 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 618 0.09 0.07 n FALSE : FALSE i FALSE Pass-Qoost Below Flow Control Threshold 619 0.09 I 0.07 n FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 620 0.09 0.07 n FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 621 i 0.09 0.07 n FALSE FALSE I FALSE Pass-Qoost Below Flow Control Threshold 3/18/2020 6:29 PM 15/19 r 1 ,-, ,-I ,-1 ,-1 f 1 r ' r 1 f -, ' 1 r I , 1 ' 1 r I f I ,-I ' 1 f I , 1 Excel Engineering pea kFlowPassFa i IM itigated. TXT 1..0 ~~ ,o/o ~o ~o 1..0 1..0 cfo ~ 0~ cfo cfo o\o '/'.,.q_ ()0 ()0 '/'.,.I-'I'.,.-, ..._G j q_<: " q_Oc,; ~ q_,0 oc,; oc,; 'I'.,.-, <l~ Q!? I q_O 0~ 0~ o<l I ~- ~-622 I 0.09 i 0.07 ' in FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 623 0.09 0.07 I in FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 624 0.09 0.07 in FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 625 0.09 0.07 • in FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 626 0.09 I 0.07 I in FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 627 0.09 I 0.07 in FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 628 0.09 i 0.07 i fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 629 0.09 0.07 I fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 630 0.09 I 0.07 fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 631 0.09 0.07 in FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 632 0.09 ! 0.07 in FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 633 ! ~-0.09 0.07 fi FALSE FALSE i FALSE Pass-Qpost Below Flow Control Threshold 634 0.09 0.07 a:z FALSE ! FALSE FALSE Pass-Qpost Below Flow Control Threshold 635 0.09 0.07 fi FALSE I FALSE ! FALSE Pass-Qoost Below Flow Control Threshold 636 0.09 0.07 fi FALSE I FALSE FALSE Pass-Qoost Below Flow Control Threshold I 637 0.09 0.07 I fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 638 0.09 0.06 . fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 639 0.09 0.06 fi : FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 640 0.09 0.06 in i FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 641 0.09 0.06 I in FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 642 0.09 0.06 fi I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 643 0.09 0.06 fi ; FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 644 0.09 0.06 in FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 645 0.09 0.06 I fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~ 646 0.09 ! 0.06 I in FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 647 I 0.09 0.06 fi I FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 648 0.09 I 0.06 -, in ; FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold --649 0.09 0.06 fi I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold I 650 ---0.09 ! 0.06 ! fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 651 0.09 0.06 fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 652 0.09 0.06 fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 653 ' 0.09 0.06 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 654 0.09 0.06 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 655 i 0.09 0.06 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold -~-· 656 0.09 0.06 fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 657 0.09 0.06 in FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold ' ---658 I 0.09 0.06 fi FALSE ; FALSE ' FALSE Pass-Qpost Below Flow Control Threshold ' ' 659 0.09 0.06 fi FALSE i FALSE I FALSE Pass-Qpost Below Flow Control Threshold 660 0.09 0.06 fi FALSE ! FALSE ' FALSE Pass-Qpost Below Flow Control Threshold 661 0.09 0.06 in FALSE I FALSE I FALSE Pass-Qpost Below Flow Control Threshold 662 I 0.09 0.06 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 663 0.09 0.06 fi I FALSE FALSE ! FALSE Pass-Qoost Below Flow Control Threshold 3/18/2020 6:29 PM 16/19 ,. 1 r-· 1 ,-1 ,. 1 ,. 1 f 1 ,. 1 r 1 r, r 1 ,--, ,. 1 r 1 J I ,. 1 ,. 1 r·· 1 I I r·1 Excel Engineering pea kFlowPassFai IM itigated. TXT i 1,.0 ~>I!< ~o/1 ~o ~o 1,.0 1,.0 cfo ~ 0"5 cfo cfo o\o .,,.~ I <::)0 <::)0 .,,_t-.,,.~ .... ~ i ~~ " ~OCj r}-~.._0 OCj OCj .,,.~ ~~Cj I ~~ ~o cfo : cfo OCj ' ' 0~ 664 : 0.09 I 0.06 I .n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 665 0.09 I 0.06 .n FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 666 0.09 I 0.06 .n FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 667 : 0.09 I 0.06 I .n FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 668 I 0.09 ' 0.06 i ' .n FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 669 ' 0.09 0.06 ' .n FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 670 0.09 -+-0.06 .n I FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold .. 671 0.09 0.06 irz I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 672 0.09 0.06 .n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 673 0.09 0.06 a:z FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 674 0.09 0.06 .n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 675 I 0.09 0.06 .n FALSE I FALSE ' FALSE Pass-Qpost Below Flow Control Threshold 676 0.09 0.06 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 677 : 0.09 ' 0.06 I .n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 678 0.08 0.06 .n I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 679 0.08 I 0.06 .n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 680 0.08 0.06 I .n FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold f------------·· 681 0.08 0.06 .n FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 682 0.08 0.06 .n FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 683 0.08 0.06 fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold -684 0.08 0.06 .n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold i ~-685-· I 0.08 0.06 .n FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold 686 0.08 0.06 .n FALSE ' FALSE FALSE Pass-Qpost Below Flow Control Threshold -687 0.08 0.06 .n FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold ! ---1-688 i 0.08 0.06 i .n FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 689 ', 0.08 0.06 I fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 690 I 0.08 I 0.06 I .n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 691 0.08 0.06 .n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 692 0.08 i 0.06 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 693 0.08 0.06 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 694 0.08 I 0.06 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 695 0.08 0.06 fi I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 696 I 0.08 0.05 .n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 697 0.08 0.05 fi FALSE ' FALSE I FALSE Pass-Qpost Below Flow Control Threshold I 698 ' 0.08 0.05 fi FALSE ' FALSE FALSE Pass-Qpost Below Flow Control Threshold 699 0.08 0.05 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 700 0.08 I 0.05 fi I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 701 0.08 0.05 fi : FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 702 0.08 0.05 fi I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 703 0.08 ' 0.05 fi I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 704 0.08 0.05 fi FALSE FALSE FALSE Pass-Ooost Below Flow Control Threshold 705 I 0.08 0.05 fi FALSE I FALSE FALSE Pass-Qoost Below Flow Control Threshold 3/18/2020 6:29 PM 17/19 '., r 1 ,-1 ,-1 , ·1 r 1 r 1 , .. 1 r -, f ··1 ,-1 ,-1 r . ., , 1 ' 1 r· I r 1 r I r 1 Excel Engineering peakFlowPassFailMitigated.TXT ' I I 1,.0 I ~>ilt /...,;;-~o ~o 1,.0 1,.0 0~ ~ 0"5 ~ ~ o\o ~q_ <>0 <>0 ~/,, ~-1 ' ,~ J-q_<;: " q_O":J ~ I q_'-0 0":J o~":J ~-1 q_tSP ~~ q_O 0~ I r:,":J ' ~ I 706 i 0.08 i 0.05 fi FALSE i FALSE FALSE Pass-Qpost Below Flow Control Threshold 707 0.08 0.05 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 708 0.08 0.05 fi FALSE ~ FALSE FALSE Pass-Qoost Below Flow Control Threshold 709 0.08 0.05 fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 710 0.08 0.05 fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 711 0.08 0.05 fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 712 0.08 0.05 fi FALSE FALSE I FALSE Pass-Qoost Below Flow Control Threshold 713 0.08 0.05 fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 714 0.08 0.05 fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 715 ! 0.08 I 0.05 I fi FALSE : FALSE FALSE Pass-Qoost Below Flow Control Threshold 716 0.08 0.05 fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 717 0.08 0.05 fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 718 0.08 0.05 fi ' FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 719 0.08 0.05 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 720 ' 0.08 0.05 I in FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 721 ' 0.08 0.05 fi FALSE ' FALSE FALSE Pass-Qpost Below Flow Control Threshold -722 0.08 ' 0.05 a:z FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 723 0.08 0.05 fi FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold 724 0.08 0.05 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 725 0.08 0.05 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 726 I 0.08 0.05 ' fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 727 0.08 0.05 fi FALSE : FALSE FALSE Pass-Qoost Below Flow Control Threshold 728 I 0.08 0.05 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 729 i 0.08 i 0.05 in FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold I---· 730 0.08 0.05 fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 731 0.08 0.05 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 732 0.08 0.05 fi I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~ 0.05 fi ! FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 733 0.08 i 734 0.08 0.05 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 735 : 0.08 0.05 fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 736 0.08 I 0.05 i fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 737 0.08 0.05 ! in FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 738 0.08 0.05 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 739 0.08 0.05 fi FALSE FALSE i FALSE Pass-Qpost Below Flow Control Threshold 740 0.08 0.05 fi FALSE FALSE I FALSE Pass-Qoost Below Flow Control Threshold 741 0.08 0.05 fi FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 742 0.08 0.05 fi FALSE : FALSE FALSE Pass-Qpost Below Flow Control Threshold 743 I 0.08 0.05 fi FALSE i FALSE FALSE Pass-Qpost Below Flow Control Threshold ' 744. 0.08 I 0.05 ' fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 745 0.08 ' 0.05 fi I FALSE FALSE I FALSE Pass-Qoost Below Flow Control Threshold ----746 0.08 I 0.05 fi i FALSE FALSE ! FALSE Pass-Qpost Below Flow Control Threshold -~ 747 : 0.08 0.05 fi FALSE FALSE FALSE Pass-Qoost Below Flow Control Threshold 3/18/2020 6:29 PM 18/19 f I ' -1 ,-' ,-1 r 1 r, r 1 r 1 r ·1 ,-, r1 ,--, r 1 ,-1 r -, r· 1 r· 1 r 1 ' 1 Excel Engineering peakFlowPassFailMitigated.TXT I &0 ! :<..'!!< ,;;;.. I ~o 0 &0 &0 cfo ~ 0\:5 ' 0.:;. cfo cfo o\o I <::)0 .... ~ {< .,,,._q_ <t ; <J .,,,._~ .,,,._-, " ~<,; q_Oc,; ~ q_,0 oc,; oc,; '!<..-, q_'I>' ~(:, q_O oq oq oc,; i oq ~. 748 0.08 I 0.05 in FALSE I FALSE FALSE Pass-Qpost Below Flow Control Threshold i 749 0.08 0.04 in I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 750 0.08 I 0.04 in FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 751 0.08 0.04 in FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 752 0.08 0.04 in FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 753 0.08 0.04 in I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 754 0.08 0.04 in ! FALSE FALSE I FALSE Pass-Qpost Below Flow Control Threshold ~---+---755 0.08 0.04 in I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 756 -----t·--0.08 0.04 in i FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 757 ' 0.08 0.04 in FALSE FALSE : FALSE Pass-Qpost Below Flow Control Threshold 758 0.08 0.04 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 759 0.08 0.04 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 760 ,, 0.08 0.04 n FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 761 0.08 ; 0.04 in FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold ~-762 0.08 0.04 in FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 763 0.08 0.04 in FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 764 0.08 0.04 in I FALSE FALSE FALSE Pass-Qpost Below Flow Control Threshold 765 I 0.08 0.04 in FALSE FALSE 1 FALSE Pass-Qnnst Below Flow Control Threshold 3/18/2020 6:29 PM 19/19 r -1 r I r 1 ,-1 r 1 ,, 1 r· 1 r 1 , 1 r 1 r 1 r 1 r 1 ,-1 r 1 r , r 1 1 1 r , Excel Engineering peakFlowStatisticsPre.csv SWMM.out file name: V:\19\19079\Engineering\SDP\Storm-SDP\SWMM\19-079-PRE DEV.out ----"""------SWMM.out time stamp: 2/17/2020 4:21 :51 PM -----~--010: 5.417 -05: 5.210 02: 3.995 Peak Flow Statistics Table Values Rank Start Date ! End Date I Duration Peak I Frequency Return Period I I 1 I 1995/01/04 16:00:00 1995/01/04 23:00:00 8 7.463 0.24% 58 2 I 2003/02/25 15:00:00 2003/02/25 23:00:00 9 6.187 0.48% 29 3 1958/02/03 05:00:00 I 1958/02/04 15:00:00 35 5.918 I 0.71% •19.33 4 1969/02/24 00:00:00 ' 1969/02/25 21 :00:00 46 5.848 0.95% 14.5 -------5 2004/10/27 03:00:00 i 2004/10/27 16:00:00 14 5.515 I 1.19% 11.6 6 2005/02/18 06:00:00 ! 2005/02/19 01 :00:00 20 5.397 1.43% 9.67 -7 1980/02/19 08:00:00 1980/02/21 07:00:00 48 5.359 ! 1.66% 8.29 I 8 2000/10/29 23:00:00 I 2000/10/30 01 :00:00 3 5.298 1.90% 7.25 9 1993/01/13 21 :00:00 I 1993/01/14 07:00:00 11 5.296 2.14% 16.44 10 1952/01/16 08:00:00 1952/01/16 17:00:00 10 5.242 2.38% _5.8 11 1978/02/28 02:00:00 1978/03/01 10:00:00 33 5.237 2.61% 5.27 12 1982/03/17 12:00:00 1982/03/18 05:00:00 18 5.194 2.85% 4.83 13 I 1978/01/04 17:00:00 1978/01/04 19:00:00 3 5.074 3.09% 4.46 14 1958/04/01 13:00:00 1958/04/01 22:00:00 I 10 4.982 3.33% 4.14 ---- 15 1979/01/15 14:00:00 1979/01/15 17:00:00 ! 4 4.933 3.56% 3.87 16 1980/03/02 21 :00:00 1980/03/03 11 :00:00 I 15 4.817 3.80% 3.63 17 1978/02/10 03:00:00 1978/02/10 07:00:00 --~ 5 4.597 4.04% 3.41 -18 1985/11/11 10:00:00 1985/11/12 06:00:00 21 4.564 4.28% 3.22 19 1998/02/03 15:00:00 1998/02/04 00 :00:00 10 4.519 4.51% 3.05 20 I 1991/12/29 16:00:00 I 1991/12/30 04:00:00 13 4.509 4.75% 2.9 21 I 1970/12/19 03:00:00 I 1970/12/19 23:00:00 21 4.462 4.99% 2.76 22 I 1965/11/22 09:00:00 ! 1965/11/23 06:00:00 22 4.459 5.23% 2.64 23 1983/01/29 01 :00:00 1983/01/29 04:00:00 4 4.36 5.46% 2.52 24 1998/02/22 14:00:00 ___j_ 1998/02/24 01 :00:00 36 4.27 5.70% 2.42 ·-------25 2008/01/27 01 :00:00 2008/01/27 23:00:00 23 4.15 ' 5.94% 2.32 26 1980/02/16 19:00:00 1980/02/16 21 :00:00 3 4.084 ! 6.18% 2.23 27 1983/02/27 17:00:00 1983/02/27 20:00:00 4 4.059 ! 6.41% 2.15 28 1998/02/16 18:00:00 1998/02/18 00:00:00 31 4 6.65% 2.07 29 1952/11/15 14:00:00 1952/11/1515:00:00 2 3.995 6.89% 2 30 I 2004/10/20 10:00:00 2004/10/20 16:00:00 ; 7 I 3.927 7.13% .1.93 31 1980/01/28 19:00:00 1980/01/30 17:00:00 I 47 I 3.846 7.36% 11.87 32 1978/01/16 18:00:00 1978/01/17 03:00:00 I 10 3.803 7.60% 11.81 33 1993/02/18 13:00:00 1993/02/18 13:00:00 1 3.741 7.84% 11.76 34 1994/02/04 00:00:00 1994/02/04 12:00:00 13 3.691 8.08% i 1.71 ------ 35 2008/01/05 06:00:00 2008/01/07 02:00:00 45 3.593 8.31% •1.66 -- 36 1961/12/02 02:00:00 I 1961/12/02 15:00:00 14 3.57 8.55% 1.61 37 1993/01/18 10:00:00 1993/01/18 16:00:00 7 3.548 8.79% 1.57 38 1986/02/15 00:00:00 1986/02/15 10:00:00 11 3.534 9.03% 1.53 39 1963/03/17 01 :00:00 I 1963/03/17 03:00:00 3 3.503 9.26% 1.49 3/18/2020 6:29 PM 1/10 r 1 r ·· 1 r 1 ,-1 r , r , r , r 1 r • 1 r 1 r 1 r , r 1 r -1 r • 1 ,-• 1 r • 1 r 1 r 1 Excel Engineering peakFlowStatisticsPre.csv Rank Start Date i End Date Duration Peak Frequency I Return Period 40 1972/01/16 21 :00:00 1972/01/17 00:00:00 4 3.459 9.50% i1.45 41 2008/02/22 03:00:00 2008/02/22 10:00:00 8 3.433 9.74% 11.42 42 1995/03/11 03:00:00 1995/03/12 01 :00:00 23 3.429 9.98% :1.38 43 ! 1986/03/15 23:00:00 1986/03/16 20:00:00 22 3.377 I 10.21% 11.35 44 I 1960/04/27 08:00:00 1960/04/27 12:00:00 5 3.352 10.45% !1.32 45 1993/02/08 00:00:00 1993/02/08 11 :00:00 12 3.326 10.69% 11.29 46 1998/02/14 17:00:00 1998/02/14 21 :00:00 5 3.303 10.93% 11.26 47 1981/03/19 20:00:00 1981/03/19 22:00:00 3 3.262 11.16% i 1.23 48 1992/02/12 18:00:00 1992/02/13 08:00:00 15 3.259 11.40% 11.21 49 1977/08/17 02:00:00 1977/08/1711:00:00 10 3.246 11.64% 1.18 50 1982/12/23 00:00:00 1982/12/23 00:00:00 1 3.141 I 11.88% 1.16 51 1991/02/27 19:00:00 1991/03/01 12:00:00 42 I 3.138 12.11% 1.14 52 2005/01/11 01 :00:00 2005/01/11 09:00:00 9 3.013 12.35% 1.12 53 2005/02/21 04:00:00 2005/02/23 08:00:00 53 I 2.942 12.59% i 1.09 54 1969/02/06 09:00:00 1969/02/06 18:00:00 10 I 2.939 12.83% 1.07 55 1980/01/11 00:00:00 1980/01/12 13:00:00 : 38 2.911 13.06% 1.06 56 1980/02/17 22:00:00 I 1980/02/18 08:00:00 I 11 2.89 13.30% 1.04 ~-------c-----1988/12/24 22:00:00 1988/12/25 01 :00:00 2.875 13.54% 1.02 57 i 4 I 58 1978/01/14 17:00:00 I 1978/01/15 06:00:00 14 2.865 13.78% 1 I I 59 2004/12/31 15:00:00 ! 2004/12/31 16:00:00 2 I 2.851 14.01% 0.98 _J_ 60 1979/01/05 08:00:00 1979/01/06 08:00:00 ' 25 I 2.818 14.25% 0.97 61 I 1963/09/18 19:00:00 1963/09/18 23:00:00 5 2.817 14.49% 0.95 62 ' 1983/03/01 14:00:00 1983/03/04 06:00:00 65 2.801 14.73% 0.94 63 . 1997/01/12 17:00:00 1997/01/13 08:00:00 16 2.797 14.96% 0.92 64 2001/01/26 17:00:00 2001/01/27 01 :00:00 9 2.79 15.20% 0.91 65 1958/02/19 13:00:00 1958/02/19 16:00:00 4 2.782 15.44% 0.89 66 1983/12/24 19:00:00 1983/12/25 12:00:00 18 2.77 15.68% 0.88 --· -- 67 2003/02/12 18:00:00 2003/02/12 20:00:00 3 2.769 15.91% 0.87 68 1971/12/24 08:00:00 1971/12/25 00:00:00 17 2.733 16.15% 0.85 69 1991/03/25 07:00:00 1991/03/27 07:00:00 49 2.708 16.39% 0.84 70 1968/12/25 20:00:00 1968/12/25 22:00:00 3 2.693 16.63% 0.83 71 1968/03/08 06:00:00 1968/03/08 13:00:00 8 2.69 16.86% 0.82 --72 2005/04/28 09:00:00 2005/04/28 10:00:00 2 2.688 I 17.10% 0.81 73 1962/01/20 14:00:00 1962/01/20 21 :00:00 8 2.686 I 17.34% 0.8 74 2005/01/09 05:00:00 2005/01/09 23:00:00 19 2.671 ' 17.58% 0.78 i I 75 2001/02/13 18:00:00 2001/02/14 21 :00:00 ' 28 2.638 ' 17.81% 10.77 I ~ 76 1993/01/15 13:00:00 ' 1993/01/1710:00:00 ' 46 I 2.633 18.05% 0.76 I ~--77--1983/11/24 23:00:00 i 1983/11/25 02:00:00 I 4 I 2.613 18.29% 0.75 78 1988/11/25 09:00:00 I 1988/11/25 11 :00 :00 3 2.587 18.53% I0.74 79 1980/01/09 05:00:00 I 1980/01/09 19:00:00 15 2.574 18.76% 0.73 80 1967/12/18 18:00:00 1967/12/19 13:00:00 20 2.568 19.00% 0.73 ~--81 ' 1983/01/27 09:00:00 1983/01/27 14:00:00 6 2.567 19.24% 0.72 82 I 1992/02/15 13:00:00 1992/02/15 17:00:00 5 2.512 19.48% 0.71 83 1965/12/10 07:00:00 1965/12/10 10:00:00 4 2.483 19.71% 0.7 84 1977/12/28 20:00:00 1977/12/30 03:00:00 32 2.475 19.95% 0.69 85 1983/10/01 02:00:00 1983/10/01 04:00:00 3 2.45 20.19% 0.68 86 I 2007/01/31 00:00:00 2007/01/31 00:00:00 1 2.448 20.43% 0.67 3/18/2020 6:29 PM 2/10 r 1 r -1 ,.--, r-1 r 1 r 1 ,-, r , r • 1 r 1 ,-1 r -1 r 1 r • 1 ,-1 r 1 r-1 r 1 r 1 Excel Engineering peakFlowStatisticsPre.csv Rank Start Date I End Date Duration Peak Frequency Return Period 87 1975/04/08 09:00:00 I 1975/04/09 01 :00:00 17 I 2.382 I 20.67% ,0.67 88 1994/03/24 23:00:00 1994/03/25 02:00 :00 4 I 2.378 i 20.90% 0.66 89 ·-1978/09/05 19:00:00 1978/09/05 20:00:00 2 2.365 21.14% 10.65 90 1990/02/17 17:00:00 1990/02/17 20:00:00 4 ! 2.34 21.38% 0.64 91 2004/02/22 08:00:00 2004/02/23 08:00:00 ' 25 2.318 21.62% 0.64 92 1952/03/15 21 :00:00 1952/03/16 19:00:00 I 23 2.315 21.85% 0.63 93 I 1960/02/01 23:00:00 1960/02/02 02:00:00 4 2.301 22.09% 0.62 94 2005/01/03 09:00:00 2005/01/04 12:00:00 28 2.291 22.33% 0.62 95 2004/02/26 05:00:00 I 2004/02/26 10:00:00 6 2.272 22.57% 0.61 96 1986/11/18 04:00:00 1986/11/18 08:00:00 5 2.266 22.80% 0.6 97 2007/11/30 09:00:00 2007/11/30 22:00:00 14 2.254 23.04% 0.6 98 1957/01/13 05:00:00 1957/01/13 10:00:00 6 2.243 23.28% 0.59 ---99 1993/02/19 20:00:00 1993/02/20 00:00:00 5 2.212 23.52% 0.59 100 2004/12/28 10:00:00 2004/12/29 10:00:00 25 2.211 23.75% 0.58 101 1995/03/05 08:00:00 1995/03/06 00:00:00 17 2.173 23.99% 0.57 102 1988/01/17 11 :00:00 1988/01/17 13:00:00 3 I 2.161 I 24.23% 0.57 103 1954/01/19 00:00:00 I 1954/01/19 23:00:00 24 2.156 24.47% 0.56 104 2001/01/11 06:00:00 2001/01/12 12:00:00 31 2.153 24.70% 0.56 105 1999/01/26 23:00:00 1999/01/27 00:00:00 2 2.13 24.94% 0.55 106 1966/12/05 03:00:00 1966/12/0514:00:00 12 2.126 25.18% 0.55 107 1960/01/12 04:00:00 1960/01/12 08:00:00 5 2.125 25.42% 0.54 108 1992/03/20 23:00:00 1992/03/21 00:00:00 2 2.116 25.65% 0.54 109 I 1995/01/10 20:00:00 1995/01/12 16:00:00 I 45 j 2.111 25.89% 0.53 -110 1963/11/20 03:00:00 1963/11/21 07:00:00 I 29 I 2.092 26.13% 0.53 111 1958/03/15 20:00:00 I 1958/03/16 13:00:00 I 18 2.082 26.37% 0.52 112 1959/02/11 10:00:00 1959/02/11 13:00:00 4 I 2.074 26.60% 0.52 113 I 2002/11/08 18:00:00 I 2002/11/08 19:00:00 2 2.042 ' 26.84% 10.51 ' --114 1988/04/20 08:00:00 1988/04/21 08:00:00 25 I 2.042 ' 27.08% ,o.51 115 1979/11/07 19:00:00 1979/11/07 20:00:00 2 2.042 27.32% 0.5 116 1959/12/24 13:00:00 1959/12/24 15:00:00 3 2.032 27.55% 10.5 117 1987/12/16 16:00:00 1987/12/17 10:00:00 19 2.03 27.79% 10.5 118 1985/11/29 07:00:00 1985/11/29 15:00:00 9 2.013 28.03% 10.49 ~- 119 2001/02/25 17:00:00 2001/02/2719:00:00 I 51 2.012 28.27% 0.49 I 120 2002/12/20 17:00:00 2002/12/20 22:00:00 6 I 2.012 28.50% 0.48 121 1988/12/21 04:00:00 1988/12/21 08:00:00 5 2.01 28.74% 0.48 122 2003/03/15 18:00:00 2003/03/16 18:00:00 25 2.007 28.98% 0.48 123 1996/11/21 17:00:00 1996/11/22 04:00:00 12 1.997 29.22% 0.47 124 1966/02/07 23:00:00 1966/02/08 01 :00:00 3 1.978 29.45% 0.47 125 1980/02/14 01 :00:00 1980/02/15 02:00:00 26 1.954 29.69% 0.46 126 i 1952/12/02 02:00:00 1952/12/02 03:00:00 ' 2 I 1.93 29.93% 0.46 127 1977/01/03 04:00:00 1977/01/03 06:00:00 3 1 1.929 30.17% 0.46 ·-128 1954/02/13 20:00:00 1954/02/13 23:00:00 4 1.914 30.40% 0.45 129 1958/03/20 23:00:00 1958/03/22 07:00:00 33 1.911 30.64% 0.45 130 1983/04/20 04:00:00 1983/04/20 06:00:00 3 1.909 30.88% 0.45 131 1983/03/24 04:00:00 1983/03/24 06:00:00 3 1.87 ' 31.12% 0.44 132 1976/09/10 06:00:00 1976/09/11 00:00:00 19 1.865 31.35% 0.44 133 2005/01/07 14:00:00 2005/01/07 21 :00:00 8 1.859 31.59% !0.44 3/18/2020 6:29 PM 3/10 r 1 r· 1 r · 1 r 1 r 1 r 1 r -, r -1 r -, r-1 r-· "1 r ·1 r --1 ,-• 1 r 1 r 1 r 1 r 1 r • 1 Excel Engineering peakFlowStatisticsPre.csv Rank Start Date End Date Duration Peak I Frequency Return Period 134 I 1973/11/23 00:00:00 1973/11/23 02:00:00 ! 3 1.854 31.83% I0.43 --135 1956/01/26 20:00:00 1956/01/27 09:00:00 14 1.849 32.07% 0.43 -· 136 1965/11/16 14:00:00 1965/11/16 19:00:00 6 1.838 32.30% 10.43 137 I 2003/04/14 15:00:00 2003/04/15 00:00:00 I 10 1.835 32.54% 0.42 138 I 1965/04/08 15:00:00 1965/04/10 00:00:00 34 1.835 32.78% 0.42 139 ' 1969/01/24 10:00:00 1969/01/26 21 :00:00 I 60 1.825 33.02% 0.42 140 ' 1981/11/28 04:00:00 1981/11/28 22:00:00 19 1.824 33.25% 0.41 141 I 1957/01/28 04:00:00 I 1957/01/29 20:00:00 41 I 1.799 33.49% !0.41 142 1972/11/16 12:00:00 I 1972/11/1712:00:00 25 ' 1.794 33.73% 0.41 143 1978/02/12 18:00:00 1978/02/14 01 :00:00 32 1.79 33.97% 0.41 144 1998/02/07 17:00:00 1998/02/08 22:00:00 30 1.771 34.20% 0.4 -----~ 145 1992/12/07 11 :00:00 1992/12/07 17:00:00 7 1.759 34.44% 0.4 146 2006/10/14 02:00:00 2006/10/14 02:00:00 1 1.756 34.68% 0.4 147 1967/11/30 17:00:00 1967/11/30 17:00:00 1 1.737 34.92% 0.4 148 1967/03/13 12:00:00 1967/03/13 22:00:00 11 1.735 35.15% 0.39 149 1995/01/25 09:00:00 1995/01/26 11 :00:00 27 1.733 35.39% 0.39 -150 1967/01/22 18:00:00 1967/01/23 01 :00:00 I 8 1.731 35.63% 0.39 .~ 151 I 1982/01/01 09:00:00 1982/01/01 11 :00:00 ' 3 1.719 ! 35.87% 0.38 152 : 1997/01/15 17:00:00 1997/01/15 20:00:00 4 1.708 36.10% 0.38 153 ' 1987/10/1211:00:00 I 1987/10/12 18:00:00 8 ! 1.7 36.34% 0.38 154 1952/11/30 02:00:00 ! 1952/11/30 05:00:00 4 1.699 36.58% 0.38 155 1964/11/17 17:00:00 ' 1964/11/17 20:00:00 4 1.698 36.82% 0.37 --··-- ! -------156 1958/04/06 18:00:00 1958/04/07 16:00:00 23 I 1.662 37.05% 0.37 _ _ _ 157 --_ 1985/11/25 02:00:00 1985/11/25 06:00:00 5 1.662 37.29% 0.37 158 1955/01/18 16:00:00 1955/01/18 20:00:00 5 1.642 37.53% 0.37 159 1957/05/11 02:00:00 1957/05/11 04:00:00 3 1.641 37.77% 0.37 160 1960/01/14 18:00:00 1960/01/14 22:00:00 5 1.623 38.00% 0.36 --~~-161 1967/11/19 09:00:00 1967/11/19 18:00:00 10 1.611 38.24% 0.36 162 2006/03/11 08:00:00 2006/03/11 09:00:00 2 1.606 38.48% 0.36 163 1982/12/07 23:00:00 1982/12/08 01 :00:00 3 1.599 38.72% 0.36 164 1978/03/30 16:00:00 1978/03/31 06:00:00 : 15 1.592 38.95% 0.35 165 1993/01/06 04:00:00 1993/01/08 01 :00:00 46 1.591 39.19% 0.35 ---- 166 1958/04/03 10:00:00 1958/04/03 13:00:00 4 1.586 39.43% 0.35 -167 1956/04/13 00:00:00 1956/04/13 18:00:00 19 1.556 39.67% 0.35 168 ! 2000/03/05 17:00:00 2000/03/05 21 :00:00 5 1.539 39.90% 0.35 169 2001/12/09 17:00:00 2001/12/09 21 :00:00 5 1.539 ' 40.14% 0.34 170 1978/01/09 17:00:00 I 1978/01/11 00:00:00 32 I 1.535 40.38% 0.34 I -171 1998/01/29 18:00:00 1998/01/29 20:00:00 3 1.53 40.62% 0.34 172 1980/03/06 00:00:00 1980/03/06 13:00:00 I 14 1.525 40.86% 0.34 173 ! 1981/01/29 19:00:00 1981/01/29 20:00:00 : 2 1.51 41.09% 0.34 174 I 1960/02/29 07:00:00 1960/03/01 07:00:00 25 1.498 41.33% 0.33 175 1973/03/20 09:00:00 1973/03/20 12:00:00 4 1.498 41.57% 0.33 176 I 1955/01/10 11 :00:00 1955/01/10 12:00:00 2 1.494 41.81% 0.33 --- 177 I 1958/01/25 05:00:00 1958/01/25 06:00:00 2 1.493 42.04% 0.33 178 ! 1973/02/13 01 :00:00 i 1973/02/13 05:00:00 5 1.492 42.28% 0.33 179 I 1993/11/30 05:00:00 I 1993/11/30 05:00:00 1 1.489 ! 42.52% 0.32 -· 180 1991/03/20 08:00:00 I 1991/03/21 10:00:00 27 1.484 42.76% 0.32 3/18/2020 6:29 PM 4/10 r · 1 r 1 r · 1 ,... 1 r 1 r· 1 r 1 r 1 ,--, , .. ·1 r· 1 r· -1 r -, r ·1 r 1 r· 1 r· 1 r 1 r 1 Excel Engineering peakFlowStatisticsPre.csv Rank I Start Date I End Date Duration Peak Frequency Return Period i 181 1952/01/17 22:00:00 1952/01/18 09:00:00 12 1.477 42.99% 0.32 182 1991/03/19 01 :00:00 1991/03/19 05:00:00 5 1.466 43.23% 0.32 183 1957/03/01 00:00:00 1957/03/01 12:00:00 13 1.443 43.47% 0.32 184 1967/04/11 09:00:00 ' 1967/04/11 11 :00:00 3 1.433 43.71% 0.32 185 1992/01/07 20:00:00 1992/01/08 00:00:00 5 1.409 43.94% 0.31 186 i 1986/09/25 03:00:00 1986/09/25 06:00:00 4 1.392 44.18% 0.31 187 : 1972/11/14 15:00:00 1972/11/1417:00:00 3 1.384 44.42% 0.31 188 1979/03/19 04:00:00 1979/03/20 05:00:00 26 1.38 44.66% 0.31 189 1970/02/28 17:00:00 1970/03/02 04:00:00 36 1.372 44.89% 0.31 190 2004/10/18 08:00:00 2004/10/18 08:00:00 1 1.362 45.13% 0.31 191 1977/01/05 20:00:00 1977/01/07 07:00:00 i 36 1.341 45.37% 0.3 192 1979/03/17 06:00:00 I 1979/03/17 06:00:00 1 1.325 45.61% 0.3 193 1985/12/11 05:00:00 : 1985/12/11 07:00:00 3 1.322 45.84% 0.3 194 I 1992/01/05 10:00:00 : 1992/01/06 05:00:00 20 I 1.319 46.08% 0.3 195 I 1981/03/01 12:00:00 1981/03/02 14:00:00 27 ' 1.318 46.32% i0.3 196 1965/04/03 06:00:00 1965/04/03 07:00:00 2 1.309 46.56% 0.3 197 1952/03/07 15:00:00 1952/03/08 10:00:00 20 1.286 46.79% 0.29 198 1951/12/30 00:00:00 1951/12/30 15:00:00 ' 16 1.285 47.03% 0.29 I 199 1967/11/2113:00:00 1967/11/21 15:00:00 3 1.282 47.27% 0.29 200 1997/01/25 23:00:00 ! 1997/01/26 08:00:00 10 1.267 47.51% 0.29 201 1976/07/22 11 :00 :00 I 1976/07/22 14:00:00 4 1.263 47.74% 0.29 202 I 1975/03/08 10 :00 :00 I 1975/03/08 10:00:00 1 1.253 47.98% 0.29 -203 i 1964/01/21 08:00:00 1964/01/22 10:00:00 27 1.253 48.22% 0.29 204 1986/03/10 08:00:00 1986/03/10 20:00:00 13 1.243 48.46% 0.28 -l-- 205 1990/01/17 01 :00:00 1990/01/17 03:00:00 3 ' 1.24 48.69% 0.28 206 1994/02/17 12:00:00 1994/02/17 13:00:00 2 ! 1.223 48.93% 0.28 207 1998/05/12 18:00:00 1998/05/12 21 :00:00 I 4 1.209 49.17% 0.28 208 1970/12/21 09:00:00 1970/12/21 10:00:00 : 2 1.208 49.41% 0.28 209 1984/12/27 03:00:00 1984/12/27 21 :00:00 19 1.19 49.64% 0.28 210 1973/03/08 13:00:00 1973/03/08 16:00:00 4 1.167 49.88% 10.28 211 1978/03/11 22:00:00 1978/03/12 12:00:00 15 1.159 50.12% 0.28 212 1951/11/23 06:00:00 1951/11/23 07:00:00 2 1.159 50.36% 0.27 213 i 1954/11/11 03 :00 :00 I 1954/11/11 11 :00:00 9 1.142 50.59% 10.27 214 1995/01/07 19:00:00 1995/01/08 07:00:00 13 1.136 50.83% 0.27 215 1958/01/26 10:00:00 1958/01/26 11 :00:00 2 1.133 51.07% 0.27 216 2003/12/25 19:00:00 2003/12/25 19:00:00 1 i 1.121 51.31% 0.27 217 1977/03/24 23:00:00 1977/03/25 04:00:00 6 1.118 51.54% 0.27 -218 1965/12/29 20:00:00 1965/12/29 21 :00:00 2 1.109 51.78% 0.27 219 1966/12/06 20:00:00 1966/12/06 22:00:00 3 1.107 52.02% 0.27 220 1982/01/05 09:00:00 I 1982/01/05 17:00:00 9 1.105 52.26% 0.26 ~ 221 1974/12/04 10:00:00 1974/12/04 10:00:00 1 1.105 52.49% 0.26 -222 1957/01/07 14:00:00 1957/01/07 21 :00:00 8 1.088 52.73% 0.26 -·· 223 1976/07/15 15:00:00 1976/07/15 17:00:00 3 1.088 I 52.97% 0.26 224 1976/02/06 05:00:00 1976/02/06 07:00:00 i 3 1.079 53.21% 10.26 225 1970/03/04 23:00:00 1970/03/05 02:00:00 4 1.07 53.44% 0.26 226 i 1973/03/11 13:00:00 1973/03/12 10:00:00 22 ! 1.04 53.68% 10.26 227 1962/03/18 19:00:00 ' 1962/03/19 03:00:00 9 1.038 53.92% 0.26 3/18/2020 6:29 PM 5/10 r 1 r 1 ,-1 r· 1 r 1 r 1 r 1 , 1 r 1 r 1 r • 1 r 1 r ·1 r 1 r 1 r 1 r 1 r 1 r 1 Excel Engineering peakFlowStatisticsPre.csv Rank Start Date End Date I i Duration I Peak Frequency Return Period 228 1976/07/08 14:00:00 1976/07/08 15:00:00 I 2 I 1.022 I I 54.16% 10.25 229 1960/11/05 21 :00:00 1960/11/06 12:00:00 16 1.019 54.39% 0.25 .. 230 1988/11/14 07:00:00 1988/11/14 09:00:00 3 1.014 54.63% 0.25 231 1993/06/0514:00:00 1993/06/05 17:00:00 I 4 1.012 54.87% 0.25 232 1978/02/08 21 :00:00 1978/02/09 02:00:00 6 1.012 55.11% 0.25 233 1957/10/14 05:00:00 1957/10/14 07:00:00 3 1.011 55.34% 0.25 234 2000/02/20 18:00:00 2000/02/21 21 :00:00 28 1.01 55.58% 0.25 235 1987/02/25 02:00:00 1987/02/25 03:00:00 i 2 1.005 55.82% 0.25 236 I 1957/04/20 16:00:00 1957/04/20 19:00:00 4 1.001 56.06% 0.25 237 I 1984/11/2418:00:00 1984/11/24 22:00:00 ! 5 0.999 56.29% 0.25 238 1985/02/09 11 :00:00 1985/02/09 13:00:00 3 0.995 56.53% 0.24 239 1993/01/31 01 :00:00 1993/01/31 01 :00:00 1 0.994 56.77% 0.24 240 1969/02/20 05:00:00 i 1969/02/20 06:00:00 2 0.994 57.01% 0.24 241 I 1969/02/22 03:00:00 1969/02/22 12:00:00 10 0.992 57.24% 0.24 242 1982/04/01 10:00:00 1982/04/01 13:00:00 4 0.979 57.48% 0.24 ~--~---243 1979/03/28 01 :00:00 I 1979/03/28 11 :00 :00 11 I 0.978 57.72% 0.24 244 1978/02/07 18:00:00 1978/02/07 21 :00 :00 4 0.973 57.96% 0.24 245 2005/02/11 12:00:00 2005/02/12 07:00:00 20 0.959 58.19% 0.24 '---· 246 1978/02/05 12:00:00 1978/02/06 12:00:00 25 0.957 58.43% 10.24 247 1966/01/30 08:00:00 1966/01/30 21 :00:00 I 14 0.941 58.67% !0.24 248 1981/02/08 22:00:00 1981/02/09 07:00:00 i 10 0.938 58.91% 0.23 1-----249 I 1974/03/08 01 :00:00 1974/03/08 11 :00:00 11 0.935 59.14% 0.23 ----·-·~ 250 2001/11/24 18:00:00 2001/11/24 20:00:00 3 0.933 59.38% i0.23 251 2003/02/11 18:00:00 I 2003/02/11 18:00:00 1 0.928 59.62% 0.23 252 1995/04/18 11 :00:00 1995/04/18 13:00:00 3 I 0.925 59.86% 0.23 253 ' 1959/02/21 11 :00:00 1959/02/21 18:00:00 8 0.922 60.10% 0.23 254 I 1970/11/30 15:00:00 1970/12/01 00:00:00 10 0.922 60.33% 0.23 255 ' 1966/12/03 08:00:00 1966/12/03 18:00:00 11 0.91 60.57% 0.23 I 256 1984/12/18 23:00:00 I 1984/12/20 04:00:00 30 0.907 60.81% 0.23 257 2006/04/04 19:00:00 I 2006/04/04 23:00:00 5 0.904 61.05% 10.23 258 1962/02/08 11 :00:00 1962/02/08 19:00:00 9 0.902 61.28% 10.23 259 1952/01/13 05:00:00 ! 1952/01/13 14:00:00 10 0.901 61.52% 10.22 260 1954/03/22 13:00:00 1954/03/23 17:00:00 29 0.899 61.76% !0.22 261 1973/02/15 12:00:00 1973/02/15 13:00:00 2 I 0.898 62.00% 0.22 262 2007/04/20 16:00:00 2007/04/20 16:00:00 1 0.894 62.23% 0.22 263 1998/01/09 18:00:00 1998/01/10 18:00:00 25 0.89 62.47% 0.22 264 1996/12/11 09:00:00 1996/12/11 19:00:00 11 0.889 62.71% 0.22 265 ! 1982/01/20 07:00:00 1982/01/21 02:00:00 20 0.888 62.95% 0.22 266 1981/03/05 03:00:00 1981/03/05 09:00:00 7 0.887 63.18% 0.22 267 1958/02/25 09:00:00 I 1958/02/25 10:00:00 2 0.863 63.42% 0.22 268 I 1991/01/09 15:00:00 I 1991/01/09 16:00:00 2 0.851 63.66% 0.22 269 I 1969/02/18 09:00:00 I 1969/02/18 16:00:00 8 0.849 63.90% 0.22 270 1966/02/06 14:00:00 1966/02/06 17:00:00 4 0.843 64.13% 0.22 271 1983/11/12 18:00:00 1983/11/12 20:00:00 3 0.842 64.37% 0.21 272 1978/03/04 15:00:00 1978/03/04 16:00:00 2 I 0.842 64.61% 0.21 ~-273 1993/03/28 03:00:00 1993/03/28 04:00:00 2 I 0.841 64.85% 0.21 .. -1 274 1963/02/09 20:00:00 1963/02/11 01 :00:00 30 I 0.818 65.08% 0.21 3/18/2020 6:29 PM 6/10 r 1 r 1 , • 1 r 1 , 1 r 1 ,. 1 r 1 r , r , r 1 r , r 1 , 1 r 1 r I r 1 r , r 1 Excel Engineering peakFlowStatisticsPre.csv Rank Start Date End Date I Duration Peak Frequency Return Period 275 1955/02/27 21 :00:00 : 1955/02/27 21 :00:00 I 1 0.805 65.32% 10.21 276 1974/01/07 18:00:00 : 1974/01/08 06:00:00 13 0.8 65.56% 0.21 -----~- 277 1977/05/08 20:00:00 1977/05/09 05:00:00 10 0.791 65.80% 0.21 -----278 1965/12/16 04:00:00 i 1965/12/16 09:00:00 6 0.784 66.03% 0.21 279 1987/12/04 22:00:00 ! 1987/12/04 22:00:00 1 0.777 66.27% 0.21 280 1998/03/25 18:00:00 ! 1998/03/26 19:00:00 26 0.762 66.51% 0.21 281 1998/03/31 18:00:00 1998/03/31 20:00:00 3 0.762 66.75% 0.21 282 1996/02/27 22:00:00 1996/02/27 22:00:00 1 0.758 66.98% ,0.21 283 1965/02/06 22:00:00 1965/02/06 23:00:00 2 0.751 67.22% 0.21 284 1994/03/07 02:00:00 1994/03/07 07:00:00 6 0.741 67.46% 0.2 285 ! 2006/02/28 07:00:00 2006/02/28 07:00:00 1 0.725 67.70% 0.2 286 1978/01/19 09:00:00 1978/01/19 12:00:00 4 0.717 67.93% 0.2 287 I 1982/03/14 23:00:00 1982/03/15 00:00:00 2 0.708 68.17% 0.2 288 I 1998/11/08 09:00:00 1998/11/08 09:00 :00 1 0.705 68.41% 10.2 289 1953/03/01 23:00:00 1953/03/01 23:00:00 1 0.673 68.65% 0.2 290 1982/02/10 15:00:00 1982/02/10 20:00:00 6 0.672 68.88% 0.2 291 1959/02/16 04:00:00 1959/02/16 21 :00:00 18 0.668 69.12% 10.2 292 1983/03/06 06:00:00 I 1983/03/06 06:00:00 1 ' 0.667 69.36% 0.2 293 1971/04/14 12:00:00 ' 1971/04/14 12:00:00 1 ! 0.664 69.60% 0.2 294 1995/01/24 01 :00:00 1995/01/24 01 :00:00 1 --r---0.664 69.83% 0.2 295 i 1954/03/16 23:00:00 1954/03/16 23:00:00 1 0.654 70.07% 0.2 296 1973/02/11 08:00:00 1973/02/11 15:00:00 8 0.651 70.31% 0.2 ------I--· 297 1983/02/08 07:00:00 1983/02/08 07:00:00 1 0.634 70.55% 0.2 298 1969/03/21 14:00:00 1969/03/21 14:00:00 1 0.629 70.78% 0.2 --299 1994/02/07 15:00:00 1994/02/07 16:00:00 2 0.626 71.02% 0.19 300 1954/03/30 05:00:00 1954/03/30 05:00:00 1 0.621 71.26% 0.19 301 1976/03/01 17:00:00 1976/03/01 19:00:00 3 0.619 71.50% 0.19 --302 1988/12/15 21 :00:00 1988/12/16 15:00:00 19 0.611 71.73% 0.19 303 1994/03/19 06:00:00 1994/03/20 07:00:00 26 0.604 71.97% 0.19 304 1966/11/0716:00:00 1966/11/0717:00:00 2 0.602 72.21% 0.19 305 1975/03/10 12:00:00 I 1975/03/11 01 :00:00 14 0.601 72.45% 0.19 306 1983/03/18 07:00:00 1983/03/18 19:00:00 13 0.593 72.68% 0.19 307 1972/01/18 23:00:00 : 1972/01/19 04:00:00 6 0.593 72.92% 0.19 308 1960/11/2618:00:00 I 1960/11/26 21 :00:00 4 0.582 73.16% 0.19 309 l 1999/04/12 02:00:00 i 1999/04/12 04:00:00 3 0.571 73.40% 0.19 310 ! 1954/03/24 20:00:00 1954/03/25 05:00:00 10 I 0.57 73.63% 0.19 311 ' 1976/02/10 08:00:00 1976/02/10 09:00:00 i 2 ! 0.569 73.87% 0.19 312 1996/02/26 14:00:00 1996/02/26 14:00:00 1 I 0.568 74.11% 0.19 313 2001/04/07 18:00:00 2001/04/07 18:00:00 1 0.562 74.35% 0.19 314 1984/12/08 01 :00:00 1984/12/08 02:00:00 2 0.559 i 74.58% 0.19 315 1978/12/17 02:00:00 1978/12/17 02:00:00 1 0.554 74.82% ,0.18 316 1956/01/31 10:00:00 1956/01/31 12:00:00 3 0.541 75.06% 10.18 -~------ 317 1980/01/18 04:00:00 I 1980/01/18 05:00:00 2 0.532 75.30% 0.18 318 1969/11/07 10:00:00 I 1969/11/0710:00:00 1 0.529 75.53% 0.18 319 I 1963/09/17 18:00:00 : 1963/09/17 18:00:00 1 0.526 75.77% 0.18 320 1958/03/06 11 :00:00 1958/03/06 15:00:00 5 0.526 76.01% 0.18 ---321 I 1979/01/31 09:00:00 1979/01/31 10:00:00 2 i 0.52 76.25% 0.18 3/18/2020 6:29 PM 7/10 f 1 f I f I f I I 1 I I I I ' 1 ' 1 f I r 1 f I f I f 1 f I f I I 1 I I f I Excel Engineering peakFlowStatisticsPre.csv Rank Start Date : End Date Duration Peak Frequency l Return Period 322 1957/03/16 10:00:00 i 1957/03/1611:00:00 2 0.511 76.48% 10.18 323 1969/04/05 22:00:00 I 1969/04/05 22:00:00 1 0.507 76.72% 0.18 324 1992/03/22 17:00:00 I 1992/03/23 04:00:00 12 0.501 76.96% 0.18 325 1980/03/26 00:00:00 1980/03/26 01 :00:00 2 0.498 77.20% ,0.18 326 1987/04/04 16:00:00 1987/04/04 17:00:00 2 0.498 77.43% 0.18 327 1980/03/10 17:00:00 1980/03/10 17:00:00 1 0.497 77.67% 0.18 ----- 328 1965/03/31 15:00:00 1965/03/31 18:00:00 4 i 0.496 77.91% 0.18 329 1970/02/10 04:00:00 1970/02/11 04:00:00 25 I 0.493 78.15% 0.18 330 1954/12/10 00:00:00 1954/12/10 00:00:00 1 0.491 78.38% 0.18 331 1983/03/21 05:00:00 1983/03/21 05:00:00 1 i 0.477 78.62% 0.18 332 1998/04/11 18:00:00 1998/04/11 19:00 :00 2 : 0.476 78.86% 0.18 333 1983/04/18 09:00:00 1983/04/18 09:00:00 1 0.475 79.10% 0.17 334 1980/12/07 12:00:00 1980/12/07 13:00:00 : 2 0.473 79.33% 0.17 335 : 1978/03/09 17:00:00 1978/03/09 18:00:00 2 0.468 79.57% 0.17 336 1973/02/07 05:00:00 I 1973/02/07 05:00:00 1 0.467 79.81% 0.17 337 1988/02/02 03:00:00 1988/02/02 17:00:00 15 0.464 80.05% 0.17 338 1960/11/13 00:00:00 1960/11/13 01 :00:00 2 0.458 I 80.29% 0.17 339 1976/02/08 19:00:00 1976/02/09 00:00:00 6 0.455 80.52% 0.17 340 1967/01/24 20:00:00 1967/01/24 23:00:00 4 0.447 80.76% 0.17 341 1996/01/31 07:00:00 1996/02/01 09:00:00 27 0.442 81.00% 0.17 342 1983/03/17 03:00:00 1983/03/17 06:00:00 4 0.439 81.24% 0.17 343 ! 1976/04/15 19:00:00 1976/04/15 19:00:00 1 i 0.435 81.47% 0.17 344 1970/01/16 18:00:00 ! 1970/01/16 20:00:00 3 0.418 81.71% 0.17 345 1962/02/21 06:00:00 1962/02/21 08:00:00 3 0.417 81.95% 0.17 346 1977/12/26 06:00:00 1977/12/26 13:00:00 8 0.416 82.19% 10.17 347 1983/02/02 16:00:00 1983/02/02 19:00:00 4 0.416 82.42% 0.17 348 1952/12/30 20:00:00 1952/12/31 00:00:00 5 0.415 82.66% 10.17 ~--349 1965/01/24 08:00:00 1965/01/24 08:00:00 1 0.402 82.90% 10.17 350 1998/02/19 18:00:00 1998/02/19 19:00:00 2 0.402 83.14% 10.17 351 2001/03/06 18:00:00 2001/03/06 19:00:00 2 0.399 83.37% 0.17 352 1955/04/30 21 :00:00 1955/05/01 03:00:00 7 0.392 I 83.61% 0.17 353 I 1988/04/14 23:00:00 1988/04/15 01 :00:00 3 0.383 I 83.85% 0.16 ~354 I 1951/12/12 00:00:00 1951/12/12 04:00:00 5 ! 0.381 84.09% 0.16 355 : 1965/12/14 17:00:00 1965/12/14 18:00:00 2 0.376 84.32% 0.16 356 1963/04/17 06:00:00 1963/04/17 08:00:00 3 0.373 84.56% 0.16 357 2002/12/16 18:00:00 I 2002/12/16 18:00:00 1 0.373 84.80% 0.16 358 1952/12/20 12:00:00 1952/12/20 14:00:00 3 0.366 85.04% 0.16 -- 359 1999/02/04 18:00:00 1999/02/04 19:00:00 2 0.341 85.27% 0.16 360 1952/04/10 17:00:00 1952/04/10 20:00:00 4 0.33 85.51% 0.16 --- 361 1957/12/17 06:00:00 1957/12/17 06:00:00 1 0.328 85.75% 0.16 362 I 1983/04/29 09:00:00 1983/04/29 10:00:00 2 0.327 85.99% 10.16 363 I 1962/03/06 21 :00:00 1962/03/06 21 :00:00 1 0.323 i 86.22% 0.16 2004/04/01 22:00:00 -~-2004/04/01 23:00:00 I 2 0.318 86.46% 10.16 364 I i 365 1998/12/06 07:00:00 i 1998/12/06 07:00:00 I 1 0.316 86.70% 0.16 366 -+-2008/02/24 10:00:00 I 2008/02/24 10:00:00 1 0.315 86.94% ,0.16 367 i 1983/02/26 14:00:00 I 1983/02/26 14:00:00 I 1 0.297 87.17% 10.16 368 1979/03/01 11 :00:00 1979/03/01 13:00:00 3 0.294 87.41% 0.16 3/18/2020 6:29 PM 8/10 f 1 ,. 1 r 1 r 1 I 1 I I ' 1 ' 1 f 1 I 1 f 1 ' 1 f I r 1 J 1 f I I I I I I I Excel Engineering peakFlowStatisticsPre.csv Rank I Start Date End Date Duration Peak Frequency Return Period 369 I 1978/12/1814:00:00 1978/12/1814:00:00 1 0.293 I 87.65% 0.16 370 I 1985/01/08 02:00:00 1985/01/08 03:00:00 2 0.292 87.89% 0.16 371 1 2008/02/03 09:00:00 2008/02/03 12:00:00 4 0.283 • 88.12% 0.16 372 i 1957/01/26 08:00:00 1957/01/26 08:00:00 • • -1 0.283 88.36% 0.16 373 1978/03/02 12:00:00 1978/03/02 14:00:00 3 0.279 88.60% 0.16 374 1986/03/13 23:0o:oo 1986/03/13 23:0o:oo I 1 0.277 : 88.84% -+-o_.1_6 __________ __, 375 1954/01/2412:00:00 1954/01/2414:00:00 3 0.265 89.07% 0.16 376 1984/12/16 04:00:00 1984/12/16 04:00:00 ! 1 0.263 1 89.31% 0.15 377 1997/12/0618:00:00 1997/12/0618:00:00 1 0.241 89.55% 0.15 378 1952/01/25 09:00:00 1952/01/25 09:00:00 1 0.232 89.79% 0.15 379 1996/02/21 10:00:00 1996/02/21 10:00:00 1 0.226 90.02% 0.15 380 1963/04/26 03:00:00 1963/04/26 03:00:00 1 0.212 90.26% 0.15 1-------3~8~1--1988/04/2311:00:00 1988/04/2311:00:00 I 1 0.208 ! 90.50% 0.15 382 2000/02/1318:00:00 2000/02/1318:00:00 ! 1 0.203 90.74% 0.15 383 1994/01/2715:00:00 1994/01/2715:00:00 I 1 0.203 90.97% 0.15 384 1986/04/06 11 :00:00 1986/04/06 11 :00:00 ; 1 0.201 91.21 % 0.15 -· 385 1996/01/22 07:00:00 1996/01/22 07:00:00 1 0.194 91.45% 0.15 386 1971/02/1711:00:00 1971/02/1711:00:00 1 0.192 91.69% 0.15 387 1993/01/1014:00:00 1993/01/1014:00:00 1 0.185 91.92% 0.15 388 1985/12/03 00:00:00 1985/12/03 00:00:00 1 , 0.179 92.16% 0.15 389 1969/01/2818:00:00 1969/01/28 20:00:00 3 I 0.176 92.40% 0.15 390 1971/12/2813:00:00 1971/12/2815:00:00 3 I 0.173 92.64% 0.15 391 I 1969/01/20 10:00:00 1969/01/20 10:00:00 1 0.171 92.87% 10.15 392 , 1961/01/2612:00:00 1961/01/2612:00:00 1 0.166 93.11% 0.15 393 1979/02/21 06:00:00 1979/02/21 07:00:00 2 0.164 93.35% 0.15 394 I 2006/03/28 23:00:00 , 2006/03/28 23:00:00 1 0.163 93.59% 0.15 395 1987/01/0706:00:00 I 1987/01/0706:00:00 1 0.158 93.82% 0.15 396 1959/12/21 08:00:00 1959/12/21 09:00:00 2 0.149 94.06% 0.15 ~-397-. ! 2001/03/10 18:00:00 2001/03/1018:00:00 I 1 0.143 94.30% 0.15 398 I 1996/12/0919:00:00 : 1996/12/0919:00:00 1 0.141 94.54% 0.15 399 i 1962/02/1912:00:00 ! 1962/02/1912:00:00 1 0.136 94.77% 0.15 400 -1 1960/01/25 21:00:00 1960/01/25 21:00:00 1 0.127 95.01% 0.15 401 1983/03/22 21 :00:00 1983/03/22 21 :00:00 I 1 0.123 95.25% 0.15 402 1967/04/2200:00:00 1967/04/2200:00:00 I 1 0.122 95.49% 0.14 403 1967/04/1919:00:00 1967/04/1919:00:00 1 0.121 95.72% 0.14 404 1960/02/10 08:00:00 1960/02/10 08:00:00 1 0.116 95.96% 0.14 405 1962/02/1612:00:00 1962/02/1612:00:00 1 0.115 96.20% 0.14 ·-·-------------i 406 I 1973/03/05 09:00:00 1973/03/05 09:00:00 1 0.115 96.44% 0.14 407 I 1986/01/3119:00:00 1986/01/3119:00:00 1 0.115 96.67% 0.14 408 1995/01/1611:00:00 1995/01/1611:00:00 1 0.111 96.91% 0.14 409 1982/01/2901:00:00 1982/01/2901:00:00 1 I 0.094 97.15% 0.14 410 1975/04/17 09:00:00 1975/04/17 09:00:00 1 0.088 97.39% 0.14 ••• 411 1983/12/0318:00:00 I 1983/12/0318:00:00 1 0.083 97.62% 0.14 412 • 1959/12/10 04:00:00 1 1959/12/10 04:00:00 1 0.081 97.86% 0.14 t----41~3-1961/11/2519:00:00 I 1961/11/25 21:00:00 3 0.081 98.10% 10.14 414 1986/01/30 06:00:00 I 1986/01/30 06:00:00 1 0.079 98.34% i0.14 415 1997/01/03 07:00:00 1997/01/03 07:00:00 I 1 0.073 98.57% ,0.14 3/18/2020 6:29 PM 9/10 r ... ,-'1 r -, r 1 r 1 r 1 r 1 r • 1 r 1 r 1 r • 1 r • 1 r 1 , 1 r 1 ,-·-1 r 1 r 1 r 1 Excel Engineering peakFlowStatisticsPre.csv Rank Start Date End Date ! Duration Peak Frequency Return Period 416 I 1992/02/06 19:00:00 1992/02/06 20:00:00 ' 2 0.065 I 98.81% 0.14 ~- 417 1965/11/15 00:00:00 1965/11/15 02:00:00 3 0.061 99.05% 0.14 ----418 1983/02/07 06:00:00 1983/02/07 06:00:00 1 0.06 99.29% 0.14 . ------419 1995/02/14 06:00:00 1995/02/14 06:00:00 1 0.058 99.52% 0.14 420 1983/12/27 09:00:00 1983/12/27 09:00:00 1 0.054 99.76% 0.14 -End of Data----------------- 3/18/2020 6:29 PM 10/10 ,. ··1 r-1 r-1 r 1 ' 1 ' ., ,., ' -1 ' 1 r 1 r 1 ,. 1 r 1 r· 1 ,. 1 r ~ 1 I' I f I Excel Engineering peakFlowStatisticsPostMitigated.csv SWMM.out file name: V:\19\19079\Engineering\SDP\Storm-SDP\SWMM\19-079-POST DEV.out SWMM.out time stamp: 3/18/2020 6:23:13 PM 010:0.000 -------------·-· • -••• 05: 0.000 02: 0.000 Peak Flow Statistics Table Values Rank Start Date End Date Duration Peak Frequency Return Period 1 1995/01/0310:00:00 1995/01/06 05:00:00 68 I 6.156 0.13% 58 2 2003/02/25 08:00:00 2003/02/28 12:00:00 77 I 4.698 0.26% 29 3 1959102122 03:00:00 195910212102:00:00 120 i 4.511 I --~o-~39~o;._o_----+~19~·~33 _________ ~--1 4 1958/02/03 05:00:00 1958/02/05 20:00:00 64 1 4.279 I 0.52% 14.5 5 1978/02/27 09:00:00 1978/03/05 22:00:00 158 4.273 0.65% 11.6 6 I 1952/01/16 08:00:00 1952/01/1915:00:00 80 4.149 0.77% 9.67 7 2004/10/27 03:00:00 I 2004/10/29 06:00:00 52 3.896 0.90% 8.29 8 I 1965/11/22 08:00:00 I 1965/11/2411:00:00 52 3.635 1.03% 7.25 9 1982/03/1707:00:00 1982/03/1916:00:00 58 3.497 1.16% 6.44 10 2008/02/22 03:00:00 2008/02/25 05:00:00 75 3.326 1.29% 5.8 11 1980/01/2802:00:00 1980/01/3114:00:00 85 3.212 1.42% 5.27 12 1991/12/28 05:00:00 1991/12/31 09:00:00 77 3.189 1.55% 14.83 ·--· 13 I 1980/02/1315:00:00 1980/02/2212:00:00 214 3.176 1.68% 4.46 14 1998/02/2210:00:00 1998/02/2518:00:00 ' 81 3.018 1.81% 4.14 15 •• • 1978/01/1416:00:00 I 1978/01/18 08:00:00 89 2.903 1.94% 3.87 16 1968/03/08 02:00:00 1968/03/09 19:00:00 42 I 2.718 2.06% 3.63 17 1962/01/20 14:00:00 1962/01/2313:00:00 72 I 2.675 2.19% 3.41 18 1978/02/05 12:00:00 1978/02/15 01 :00:00 230 2.57 2.32% 3.22 19 1986/02/13 11 :00:00 1986/02/17 13:00:00 99 2.568 I 2.45% 3.05 20 1998/02/03 08:00:00 1998/02/05 09:00:00 50 I 2.547 2.58% 2.9 ·- 21 I 1980/03/02 21 :00:00 1980/03/04 19:00:00 i 47 2.506 2.71% 12,76 22 I 2005/02/18 06:00:00 1 2005/02/2412:00:00 151 2.488 2.84% 2.64 23 1983/12/2412:00:00 1983/12/27 22:00:00 83 2.428 2.97% 2.52 24 1980/01/0905:00:00 1980/01/1408:00:00 124 2.413 3.10% 2.42 25 1979/01/05 08:00:00 1979/01/07 16:00:00 57 2.4 3.23% 2.32 26 2005/01/07 10:00:00 2005/01/12 15:00:00 126 2.289 3.35% 2.23 27 I 1972/01/1621:00:00 1972/01/2006:00:00 82 2.27 3.48% 2.15 28 ! 1977/08/16 23:00:00 : 1977/08/19 02:00:00 I 52 2.266 3.61% 12.07 29 1996/11/2117:00:00 1996/11/2310:00:00 I 42 2.241 3.74% 12 --30· 1966/12/03 08:00:00 1966/12/08 00:00:00 113 2.221 3.87% 1.93 31 2003/04/14 09:00:00 2003/04/16 09:00:00 49 , 2.119 4.00% 1.87 32 2004/02/26 03:00:00 2004/02/2716:00:00 38 2.102 4.13% 1.81 33 : 1997/01/1217:00:00 1997/01/17 01:00:00 105 2.098 4.26% 1.76 ,____ __ 3_4_ .... 1 1993/01/1218:00:00 1993/01/19 22:00:00 1 173 2.083 4.39% 1.71 ,____ __ 3_5 1991/02/2719:00:00 1991/03/0217:00:00 I 71 2.076 ' 4.52% 1.66 36 I 2000/10/29 23:00:00 2000/10/31 12:00:00 38 2.075 4.65% 1.61 37 1960/02/01 23:00:00 1960/02/03 08:00:00 34 2.048 4. 77% I 1.57 38 1998/02/1410:00:00 1998/02/2013:00:00 148 i 2.022 4.90% i1.53 39 2007/11/30 09:00:00 2007/12/02 05:00:00 45 1.997 5.03% 1.49 3/18/2020 6:29 PM 1/17 f I I 1 r 1 r 1 r 1 r 1 r 1 r 1 r 1 , 1 r 1 r 1 r· I ,. 1 J I ,-1 ,-1 r 1 f 1 ' 1 Excel Engineering peakFlowStatisticsPostMitigated.csv Rank Start Date End Date Duration Peak Frequency Return Period 40 1992/02/12 15:00:00 1992/02/14 13:00:00 47 I 1.985 5.16% 1.45 41 1995/03/11 03:00:00 1995/03/13 06:00:00 52 ' 1.946 5.29% 1.42 --42 1995/03/05 06:00:00 1995/03/07 09:00:00 52 I 1.806 ' 5.42% 1.38 43 1958/04/01 11 :00:00 1958/04/04 23:00:00 85 I 1.805 5.55% 1.35 44 1978/01/03 21 :00:00 1978/01/07 05:00:00 81 I 1.748 5.68% 1.32 45 1954/02/13 19:00:00 I 1954/02/15 10:00:00 40 1.734 5.81% 1.29 46 1960/04/27 07:00:00 1 1960/04/28 17:00:00 35 1.692 5.94% 1.26 47 1970/12/17 02:00:00 1970/12/22 14:00:00 133 1.691 6.06% 1.23 48 1985/11/11 08:00:00 1985/11/13 10:00:00 51 1.667 6.19% · 1.21 49 1979/01/14 22:00:00 ! 1979/01/1913:00:00 I 112 1.621 6.32% 1.18 50 I 1971/12/22 10:00:00 1971/12/26 14:00:00 ! 101 1.601 6.45% 1.16 51 +-1969/01/24 10:00:00 I 1969/01/2910:00:00 121 1.596 6.58% 11.14 52 1957/01/13 05:00:00 I 1957/01/1416:00:00 36 1.596 6.71% I 1.12 53 1965/11/14 22:00:00 1965/11/19 01 :00:00 100 1.589 6.84% 11.09 54 1969/02/06 09:00:00 1969/02/08 00:00:00 40 1.586 6.97% 1.07 55 1967/01/22 18:00:00 1967/01/26 00:00:00 79 1.571 7.10% 1.06 56 2004/10/17 11 :00:00 2004/10/21 22:00 :00 108 1.541 7.23% 1.04 57 1987/12/16 15:00:00 1987/12/18 16:00:00 50 1.515 7.35% 1.02 58 1963/03/17 01 :00:00 1963/03/18 12:00:00 36 I 1.515 7.48% 1 --·-gg ____ ---1986/11/17 21 :00:00 1986/11/19 14:00:00 42 ' 1.467 7.61% 0.98 60 1954/01/18 17:00:00 i 1954/01/21 08:00:00 64 1.457 7.74% 0.97 61 I 1985/11/29 07:00:00 1985/11/30 20:00:00 38 i 1.442 7.87% 0.95 -62 1993/02/18 13:00:00 1993/02/21 09:00:00 69 : 1.422 8.00% 0.94 I I 63 I 1958/03/20 21 :00:00 1958/03/23 14:00:00 I 66 1.411 8.13% 0.92 64 2004/12/28 10:00:00 2005/01/01 23:00:00 I 110 1.374 ' 8.26% 0.91 65 2003/02/11 13:00:00 2003/02/14 17:00:00 77 1.353 8.39% 0.89 66 1983/01/27 09:00:00 1983/01/30 11 :00:00 i 75 1.351 8.52% 0.88 67 1952/11/1418:00:00 1952/11/1710:00:00 65 1.333 8.65% 10.87 68 1963/11/20 03:00:00 1963/11/2213:00:00 I 59 1.289 8.77% 0.85 -~-------·-69 1993/02/08 00:00:00 1993/02/10 00:00:00 49 1.265 8.90% 0.84 70 1952/03/15 21 :00 :00 1952/03/17 20:00:00 ' 48 1.254 9.03% 0.83 71 1967/03/13 12:00:00 1967/03/15 05:00:00 42 1.248 9.16% 0.82 72 + 1952/03/07 11 :00:00 1952/03/09 11 :00:00 49 1.242 9.29% 0.81 73 1951/12/29 07:00:00 1951/12/31 20:00:00 62 1.241 9.42% 10.8 74 1961/12/01 23:00:00 1961/12/04 00:00:00 50 1.219 9.55% 0.78 75 i 1958/04/06 18:00:00 1958/04/08 21 :00:00 52 1.217 9.68% 0.77 76 2005/04/28 09:00:00 I 2005/04/29 09:00:00 25 j 1.217 9.81% 0.76 77 1957/01/28 04:00:00 1957/01/30 22:00:00 67 I 1.208 9.94% 0.75 78 1958/03/15 18:00:00 1958/03/17 18:00:00 49 1.202 10.06% 0.74 79 1983/02/24 03:00:00 1983/03/07 04:00:00 266 1.201 10.19% 0.73 80 1987/10/11 19:00 :00 1987/10/14 02:00:00 56 1.188 I 10.32% 0.73 81 1956/04/13 00:00:00 1956/04/14 23:00:00 48 1.182 10.45% 0.72 ·~ 82 1967/12/18 18:00:00 1967/12/20 21 :00:00 52 1.177 10.58% 0.71 83 I 1965/04/07 07:00:00 1965/04/10 19:00:00 85 1.173 10.71% 0.7 84 I 1977/01/0517:00:00 1977/01/08 11 :00:00 67 1.165 10.84% 0.69 85 i 2008/01/05 06:00:00 I 2008/01/08 11 :00:00 78 1.156 10.97% ,0.68 86 1975/04/08 09:00:00 1975/04/10 11 :00:00 51 1.153 11.10% 0.67 3/18/2020 6:29 PM 2/17 ,. 1 ,-, r ·1 r 1 r I w· 1 r 1 r , r ·1 ,. ·1 f 1 J 1 I I r I r 1 • 1 r 1 I 1 r I Excel Engineering peakFlowStatisticsPostMitigated.csv Rank Start Date End Date Duration Peak Frequency ! Return Period 87 1994/02/04 00:00:00 1994/02/05 17:00:00 42 I 1.145 11.23% i0.67 ·-·----88 2008/01/27 01 :00:00 2008/01/29 09:00:00 57 1.128 11.35% 0.66 -· ------·----------~ 89 1956/01/25 19:00:00 1956/01/2815:00:00 69 1.125 11.48% 0.65 f---90 1962/02/07 23:00:00 1962/02/10 08:00:00 58 1.097 I 11.61% 0.64 91 1958/02/19 11 :00:00 1958/02/20 22:00:00 i 36 1.09 i 11.74% 0.64 92 1994/03/24 23:00:00 1994/03/2614:00:00 40 1.08 11.87% 0.63 93 1988/12/24 22:00:00 1988/12/26 06:00:00 I 33 1.062 12.00% 0.62 94 1963/09/17 09:00:00 1963/09/20 03:00:00 I 67 1.034 12.13% 0.62 95 1982/12/22 12:00:00 1982/12/24 04:00:00 ; 41 I 1.03 12.26% 0.61 96 1960/01/10 14:00:00 1960/01/13 14:00:00 73 ' 1.019 12.39% 0.6 97 1967/11/19 09:00:00 I 1967/11/2213:00:00 I 77 0.992 12.52% 0.6 98 1977/05/08 01 :00:00 1977/05/10 13:00:00 61 I 0.989 12.65% 0.59 f-----· 99 1992/01/03 12:00:00 1992/01/09 07:00:00 140 I 0.987 12.77% 0.59 100 -t 2007/01/30 17:00:00 2007/02/01 02:00:00 34 I 0.986 12.90% 0.58 101 1978/09/05 19:00:00 1978/09/07 12:00:00 42 I 0.951 13.03% 0.57 102 1993/01/06 04:00:00 1993/01/0911:00:00 80 0.927 13.16% 0.57 103 I 1997/01/25 22:00:00 1997/01/27 19:00:00 46 0.912 13.29% 0.56 104 1952/11/30 02:00:00 1952/12/03 01 :00:00 72 0.884 13.42% 0.56 105 I 2001/01/26 15:00:00 2001/01/2813:00:00 47 0.865 13.55% 0.55 106 1970/11/29 01 :00:00 1970/12/02 06:00:00 78 0.861 13.68% 0.55 107 1970/02/28 17:00:00 1970/03/03 04:00:00 I 60 0.856 13.81% 0.54 108 2005/01/03 09:00:00 I 2005/01/05 17:00:00 I 57 0.851 13.94% 0.54 109 1957/05/11 02:00:00 1957/05/1212:00:00 I 35 0.846 14.06% 0.53 110 1986/09/24 01 :00:00 ! 1986/09/26 12:00:00 ! 60 0.838 14.19% 0.53 111 2001/02/13 12:00:00 2001/02/16 05:00:00 ' 66 0.838 14.32% 0.52 112 1986/03/15 23:00:00 ~-i 1986/03/17 20:00:00 46 0.827 i 14.45% 0.52 113 1974/03/08 01 :00:00 1974/03/09 18:00:00 42 0.826 ' 14.58% 0.51 114 2005/02/11 05:00:00 2005/02/13 20:00:00 64 0.824 14.71% 0.51 115 1992/12/07 11 :00:00 1992/12/09 00:00:00 38 i 0.804 14.84% 0.5 116 1995/01/07 15:00:00 1995/01/09 14:00:00 48 0.802 14.97% 0.5 117 i 1981/03/18 20:00:00 1981/03/21 04:00:00 57 I 0.8 15.10% 0.5 118 1963/02/09 20 :00:00 1963/02/12 08:00:00 61 I 0.796 15.23% 0.49 119 1991/03/25 06:00:00 1991/03/28 11 :00 :00 78 0.795 15.35% 0.49 120 I 1977/12/25 20:00:00 1977/12/30 22:00:00 123 0.792 15.48% 0.48 -121 1954/11/11 03:00:00 1954/11/12 20 :00 :00 42 0.784 15.61% 0.48 122 1990/02/17 12:00:00 1990/02/19 12:00:00 49 0.771 15.74% 0.48 123 1983/11/24 23:00:00 1983/11/26 08:00:00 34 0.753 15.87% 0.47 124 1968/12/25 20:00:00 1968/12/27 05:00:00 34 0.75 16.00% 0.47 125 1965/12/09 11 :00:00 I 1965/12/11 16:00:00 54 0.747 16.13% 0.46 126 1988/11/24 03:00:00 ' 1988/11/26 17:00:00 63 0.746 16.26% 0.46 I 127 ; 1995/01/10 17:00:00 1995/01/13 21 :00:00 77 0.727 16.39% 0.46 ~12a· 1988/01/17 07:00:00 1988/01/19 03:00:00 45 0.726 + 16.52% 0.45 ~--129 1999/01/25 08:00:00 1999/01/28 03:00:00 68 0.719 16.65% 0.45 130 ' 2002/11/08 14:00:00 2002/11/10 08:00:00 43 0.716 I 16.77% 0.45 131 I 1978/01/09 17:00:00 1978/01/12 04:00:00 60 0.712 I 16.90% 0.44 -132 ! 2003/03/15 12:00:00 2003/03/17 20:00:00 57 0.691 I 17.03% 0.44 133 I 1985/11/2418:00:00 I 1985/11/26 14:00:00 45 : 0.677 17.16% 0.44 3/18/2020 6:29 PM 3/17 ,-1 r -1 r • 1 r 1 r 1 r 1 r 1 r 1 r· 1 r ·, r 1 r 1 r 1 r 1 r 1 ,. 1 r I I I f I Excel Engineering peakFlowStatisticsPostMitigated.csv Rank Start Date End Date Duration Peak Frequency Return Period 134 1992/03/20 23:00:00 1992/03/24 06:00:00 80 I 0.673 17.29% 0.43 >----~---~~-2001/01/10 23:00:00 2001/01/13 12:00:00 62 0.644 17.42% 0.43 136 I 1980/03/06 00:00:00 i 1980/03/07 15:00:00 40 I 0.641 17.55% 0.43 137 1988/04/20 03 :00:00 1988/04/23 22:00:00 ' 92 0.635 17.68% 0.42 138 1992/02/1514:00:00 1992/02/17 02:00:00 I 37 I 0.635 17.81% 0.42 -139 1959/12/2412:00:00 1959/12/25 18:00:00 31 : 0.635 i0.42 i 17.94% 140 1976/09/10 04:00:00 1976/09/12 08:00:00 : 53 0.635 18.06% 0.41 141 2004/02/22 08:00:00 2004/02/24 13:00:00 54 0.631 18.19% 0.41 142 1981/11/27 01 :00:00 1981/11/30 05:00:00 77 I 0.63 18.32% 0.41 143 1972/11/14 15:00:00 1972/11/18 10:00:00 92 0.616 18.45% 0.41 144 I 1977/01/03 01 :00:00 1977/01/04 08:00:00 32 0.613 18.58% 0.4 145 1988/12/21 02:00:00 1988/12/23 12:00:00 59 0.608 18.71% 0.4 146 1979/11/0719:00:00 1979/11/09 00:00:00 30 0.604 i 18.84% 0.4 147 2006/03/10 19:00:00 2006/03/12 11 :00 :00 41 0.599 18.97% 0.4 148 1964/11/17 16:00:00 1964/11/18 21 :00:00 30 0.597 19.10% 0.39 149 1957/02/28 21 :00:00 1957/03/02 13:00:00 41 0.591 19.23% 0.39 150 1995/01/24 01 :00:00 1995/01/27 06:00:00 I 78 I 0.585 19.35% 0.39 ~-151 2001/02/25 12:00:00 2001/03/01 05:00:00 ! 90 0.583 19.48% 0.38 152 I 2002/12/20 12:00:00 2002/12/22 12:00:00 49 0.583 19.61% 0.38 -- 153 ' 1960/02/28 22:00:00 1960/03/02 06:00:00 57 0.577 19.74% 0.38 154 ' 1982/12/07 23:00:00 1982/12/09 07:00:00 33 0.574 19.87% 0.38 155 I 1973/11/23 00:00:00 1973/11/24 06:00:00 31 0.573 20.00% 0.37 -~-156 1960/01/1418:00:00 1960/01/16 06:00:00 37 0.566 20.13% 0.37 157 1998/02/06 18:00:00 I 1998/02/10 00:00:00 I 79 0.56 20.26% 0.37 --158 1959/02/11 10:00:00 ' 1959/02/13 01 :00:00 40 0.559 20.39% 0.37 159 2006/10/14 02:00:00 I 2006/10/15 01 :00:00 24 0.558 20.52% 0.37 160 1981/12/30 10:00:00 1982/01/03 05:00:00 92 0.557 20.65% 0.36 -161 1978/03/30 14:00:00 I 1978/04/01 14:00:00 i 49 0.553 20.77% 0.36 162 1967/11/3017:00:00 I 1967/12/0116:00:00 I 24 0.54 20.90% 0.36 163 1991/03/19 01 :00:00 I 1991/03/22 10:00:00 I 82 I 0.536 21.03% 0.36 164 1998/01/29 13:00:00 1998/01/30 22:00:00 34 0.528 21.16% 0.35 165 1958/01/25 05:00:00 1958/01/27 19:00:00 63 0.523 21.29% 0.35 166 1979/03/17 06:00:00 1979/03/21 14:00:00 105 0.514 21.42% 0.35 167 1978/03/09 17:00:00 1978/03/10 14:00:00 22 I 0.513 21.55% 10.35 -168 1966/02/06 14:00:00 1966/02/09 00:00:00 59 0.513 I 21.68% 0.35 169 1983/03/21 05:00:00 1983/03/25 16:00:00 108 0.506 21.81% 0.34 170 1955/01/10 07:00:00 I 1955/01/11 14:00:00 32 0.502 21.94% 0.34 171 1986/03/08 19:00:00 1986/03/14 19:00:00 ' 145 0.499 22.06% 0.34 172 ! 2003/12/25 04:00:00 2003/12/26 18:00:00 I 39 0.497 22.19% 0.34 173 I 1969/02/18 09:00:00 1969/02/20 23:00:00 63 0.496 22.32% 0.34 174 i 1973/03/20 09:00:00 1973/03/21 15:00:00 31 0.49 22.45% 0.33 ~ 175 1993/11/30 05:00:00 1993/12/01 05:00:00 25 I 0.488 22.58% i0.33 ----·--~ 176 1966/01/30 08:00:00 ' 1966/01/31 19:00:00 36 0.484 22.71% 0.33 177 2000/03/04 21 :00:00 2000/03/07 02:00:00 54 0.483 22.84% 0.33 178 2006/02/27 23:00:00 2006/03/01 11 :00:00 37 0.48 22.97% 0.33 179 2001/12/09 14:00:00 ! 2001/12/10 20:00:00 I 31 0.48 23.10% 0.32 ----180 1962/03/18 21 :00:00 1962/03/20 05:00:00 33 0.476 23.23% 0.32 3/18/2020 6:29 PM 4/17 •"" ... I I .... ~ ,. .,. .. . .. ., -11 JI 11 ■• -. a I ... ,. I I ----•• -I' • I I ... -f I ... ----. I I I I • • II""' W ... • I ~ I ■ I W r1 f I f I I I Excel Engineering pea kFlowStatisticsPostM itigated .csv Rank Start Date End Date : Duration Peak Frequency Return Period ! : 181 ! 1984/12/26 17:00:00 I 1984/12/29 03:00:00 I 59 0.475 23.35% 0.32 182 1981/02/08 20:00:00 I 1981/02/10 11 :00:00 40 0.473 23.48% 0.32 183 I 1983/09/29 14:00:00 1983/10/02 11 :00:00 ! 70 0.47 23.61% 0.32 184 1960/01/25 21 :00:00 1960/01/26 21 :00:00 ;------- 25 ----0.466 ~ 0.32 I 23.74% 185 1 1984/11/2418:00:00 1984/11/25 21 :00 :00 28 0.463 23.87% 0.31 ~-186 1988/04/14 22:00:00 1988/04/16 06:00:00 33 0.459 24.00% 0.31 r----· 187 1983/04/18 05:00:00 1983/04/22 00 :00 :00 92 0.459 24.13% 0.31 188 1952/01/13 05:00:00 1952/01/14 19:00:00 39 0.458 24.26% 0.31 189 1964/01/21 08:00:00 1964/01/23 10:00:00 51 0.455 24.39% 0.31 190 1978/03/11 21 :00:00 I 1978/03/13 11 :00:00 39 0.454 24.52% 0.31 191 1965/03/31 15:00:00 ! 1965/04/05 10:00:00 116 0.449 24.65% :o.3 192 1965/02/06 03:00:00 1965/02/08 01 :00:00 47 0.449 24.77% 0.3 193 1973/03/11 09:00:00 1973/03/13 04:00:00 44 I 0.448 24.90% 0.3 194 1981/01/28 09:00:00 1981/01/31 06:00:00 70 0.446 25.03% 0.3 195 1988/12/15 17:00:00 1988/12/1910:00:00 90 : 0.446 25.16% 0.3 196 1977/03/24 23:00:00 1977/03/26 11 :00 :00 37 0.444 25.29% 0.3 197 1981/03/05 03:00:00 : 1981/03/06 13:00:00 35 0.44 25.42% 0.29 198 1974/01/07 18:00:00 1974/01/09 21 :00:00 52 0.434 I 25.55% 0.29 199 : 1990/01/17 01:00:00 1990/01/18 21 :00:00 45 0.433 25.68% 0.29 --200 : 1979/03/27 07:00:00 1979/03/29 10:00:00 52 0.43 25.81% 10.29 201 ! 1994/03/07 02:00:00 1994/03/08 13:00:00 I 36 0.423 25.94% 10.29 202 1973/02/11 08:00:00 1973/02/14 03:00:00 68 I 0.422 26.06% 0.29 203 1994/03/19 06:00:00 1994/03/21 05:00:00 48 0.422 26.19% 0.29 204 1998/05/12 15:00:00 1998/05/13 18:00:00 28 0.416 26.32% 0.28 205 1982/01/20 06:00:00 1982/01/22 11 :00:00 54 0.416 26.45% 0.28 -206 1984/12/18 10:00:00 1984/12/21 00:00:00 63 0.414 26.58% 0.28 -~ 207 1955/01/18 16:00:00 1955/01/20 03:00:00 36 0.413 26.71% 0.28 208 1983/03/17 03:00:00 1983/03/19 22:00:00 68 0.413 I 26.84% 0.28 209 ' 2001/11/24 15:00:00 2001/11/2519:00:00 29 0.412 I 26.97% 0.28 210 : 1951/11/23 03:00:00 1951/11/24 01 :00:00 23 0.41 27.10% 0.28 211 I 1979/01/30 21 :00:00 1979/02/03 07:00:00 83 0.409 I 27.23% 0.28 212 2000/02/20 15:00:00 2000/02/22 19:00:00 53 0.407 27.35% 0.27 213 1976/02/04 12:00:00 1976/02/11 08:00:00 165 0.407 27.48% 0.27 214 1967/04/11 09:00:00 1967/04/12 19:00:00 i 35 0.405 27.61% 10.27 215 1981/02/2815:00:00 I 1981/03/03 18:00:00 76 0.404 27.74% '0,27 216 1985/02/09 08:00:00 I 1985/02/10 15:00:00 32 I 0.403 27.87% 0.27 217 I 1982/01/05 08:00:00 1982/01/06 18:00:00 35 0.403 28.00% 0.27 218 1974/12/04 10:00:00 1974/12/05 16:00:00 31 0.4 28.13% 0.27 219 1976/07/22 12:00:00 1976/07/23 19:00:00 32 0.4 28.26% 0.27 220 1985/12/11 05:00:00 1985/12/12 15:00:00 I 35 0.398 28.39% 0.26 221 1982/03/14 16:00:00 I 1982/03/16 04:00:00 37 0.389 28.52% 0.26 -------222 1960/11/05 21 :00:00 1960/11/07 05:00:00 33 I 0.388 28.65% 0.26 --223 1975/03/08 10:00:00 I 1975/03/12 07:00:00 94 0.386 28.77% 0.26 I 224 1976/07/15 15:00:00 1976/07/16 22:00:00 32 0.384 28.90% 0.26 225 2006/04/04 19:00:00 2006/04/06 06:00:00 36 0.382 29.03% 0.26 226 1965/12/29 20:00:00 1965/12/30 19:00:00 24 0.381 29.16% 0.26 227 1987/01/06 22:00:00 1987/01/08 07:00:00 34 0.374 I 29.29% 0.26 3/18/2020 6:29 PM 5/17 r ·1 ---.. .,..-.. .. .. • • • • • • .. . • • Excel Engineering Rank Start Date 228 i 1987/02/23 21:00:00 229 1995/04/16 10:00:00 230 1973/03/08 13:00:00 231 I 1969/11/06 23:00:00 232 2007/04/20 16:00:00 233 I 1970/02/10 04:00:00 234 I 1994/02/07 06:00:00 235 1970/03/04 23:00:00 236 1998/01/09 15:00:00 237 1991/01/09 15:00:00 238 1954/03/20 13:00:00 239 2001/04/07 17:00:00 240 I 1959/02/21 11 :00:00 241 1959/02/16 04:00:00 242 I 1996/01/31 07:00:00 243 1978/01/19 09:00:00 244 1987/12/04 22:00:00 245 1998/03/31 16:00:00 246 i 1965/12/12 22:00:00 247 i 1998/03/25 17:00:00 248 1994/02/17 12:00:00 ~- 249 1982/02/09 22:00:00 ~250 1996/12/09 19:00:00 251 1957/01/07 14:00:00 252 1957/10/14 03:00:00 253 I 1983/11/12 00:00:00 254 I 1998/11/08 09:00:00 255 1976/04/1518:00:00 256 ' 1988/11/14 07:00:00 257 2002/12/16 15:00:00 258 1982/01/10 20:00:00 259 1993/03/26 03:00:00 ~. 260 1953/03/01 23:00:00 ~ 261 1988/02/02 04:00:00 262 i 1971/04/14 12:00:00 263 1954/03/16 23:00:00 264 1973/02/15 12:00:00 265 1976/07/08 14:00:00 266 1983/02/06 15:00:00 267 1982/04/01 10:00:00 268 1954/03/30 05:00:00 269 ' 1955/04/30 21 :00:00 ~-270 1993/01/31 01 :00:00 ~ 271 1976/03/01 17:00:00 272 1999/04/11 23:00:00 273 1996/02/25 12:00:00 274 1951/12/12 00:00:00 3/18/2020 6:29 PM ... --• I I I I I I I \ I - i ; •"" .. • • ... ,,, .. . ..... • ■ I I End Date 1987/02/26 07:00:00 1995/04/19 17:00:00 1973/03/09 13:00:00 1969/11/08 08:00:00 2007/04/21 16:00:00 1970/02/12 03:00:00 I 1994/02/08 22:00:00 I 1970/03/06 01 :00:00 ! 1998/01/11 13:00:00 1991/01/10 17:00:00 1954/03/25 23:00:00 2001/04/08 21 :00:00 1959/02/22 22:00:00 1959/02/17 20:00:00 1996/02/02 04:00:00 1978/01/20 05:00:00 ' 1987/12/06 00:00:00 1998/04/02 01 :00:00 1965/12/17 09:00:00 1998/03/30 00 :00 :00 1994/02/18 18:00:00 1982/02/11 22:00:00 1996/12/12 23:00:00 1957/01/08 23:00:00 1957/10/15 07:00:00 1983/11/14 00:00:00 1998/11/0912:00:00 1976/04/16 19:00:00 1988/11/15 10:00:00 2002/12/17 23:00:00 I 1982/01/11 20:00:00 1993/03/29 01 :00:00 1953/03/02 19:00:00 1988/02/03 23:00:00 1971/04/1513:00:00 1954/03/18 04:00:00 1973/02/16 07:00:00 1976/07/09 20:00:00 1983/02/08 21 :00:00 1982/04/02 16:00:00 1954/03/31 00:00:00 1955/05/02 15:00:00 1993/02/01 03:00:00 1976/03/03 14:00:00 1999/04/13 04:00:00 1996/02/28 14:00:00 i 1951/12/13 07:00:00 .... I I Duration 59 80 25 34 25 48 41 27 47 27 131 29 36 41 46 21 27 34 108 104 31 49 77 34 29 49 28 26 28 33 25 71 21 44 26 30 20 31 55 31 20 43 27 46 30 75 32 I I - I I I i i I i I .,. . -. . I • • I Peak 0.372 0.368 0.367 0.366 0.361 0.361 --· 0.359 0.358 0.357 0.352 0.351 0.347 0.346 0.344 0.339 0.337 0.336 0.335 0.334 0.331 0.33 0.328 0.327 0.323 0.323 0.321 0.32 0.317 0.316 0.316 0.315 0.315 0.313 0.313 0.31 0.309 0.308 0.308 0.304 0.303 0.301 0.299 0.296 0.295 0.292 0.29 0.289 I ' I I • • •· .,. r --. • • • • • • .... • • .,~ 1ll 1r • r w I I' ■ Ill ■ ■ peakFlowStatisticsPostMitigated.csv Frequency I Return Period 29.42% 0.25 29.55% 0.25 29.68% 0.25 29.81% 0.25 29.94% 0.25 30.06% 0.25 30.19% 0.25 30.32% 0.25 30.45% 0.25 30.58% 0.25 30.71% 0.24 30.84% 0.24 30.97% 0.24 31.10% 0.24 31.23% 0.24 31.35% 0.24 31.48% 0.24 31.61% 10.24 31.74% 0.24 31.87% 0.24 32.00% 0.23 32.13% 0.23 32.26% 0.23 32.39% 0.23 32.52% 0.23 32.65% 0.23 32.77% 10.23 32.90% 10.23 33.03% 0.23 33.16% 0.23 33.29% 0.23 33.42% 0.22 33.55% 0.22 33.68% 0.22 33.81% 0.22 33.94% 0.22 34.06% 0.22 34.19% 10.22 34.32% 0.22 34.45% 0.22 34.58% 0.22 34.71% 0.22 34.84% 0.22 34.97% ,0.21 35.10% 10.21 35.23% 0.21 35.35% 0.21 6/17 --_.....,---.. ---I I I I I I r-i ____ ,,.,,. .. ""'Ill l I I I -~~ ,, ... I I ----•,a I I --~-I I Excel Engineering Rank i Start Date End Date 275 1980/01/17 22:00:00 1980/01/1917:00:00 I 276 1952/04/10 14:00:00 1952/04/11 18:00:00 ! 277 1962/02/19 12:00:00 1962/02/22 01 :00:00 278 1969/03/21 14:00:00 ! 1969/03/22 19:00 :00 279 I 1958/02/25 09:00:00 I 1958/02/26 09:00 :00 280 1969/04/05 22:00:00 1969/04/06 14:00:00 281 1955/02/26 14:00:00 1955/02/28 18:00:00 282 1998/04/11 17:00:00 1998/04/12 13:00:00 283 1987/04/04 09:00:00 1987/04/05 14:00:00 284 1954/12/10 00:00:00 1954/12/1100:00:00 285 1983/04/29 09:00:00 1983/05/02 15:00:00 ! 286 1957/12/15 13:00:00 I 1957/12/17 20:00:00 I 287 1973/02/06 07:00:00 1973/02/07 18:00:00 288 1993/06/05 14:00:00 1993/06/06 16:00:00 289 1996/02/21 05:00:00 1996/02/22 13:00:00 290 1980/12/07 12:00:00 1980/12/08 09:00:00 291 1952/12/30 20:00:00 1952/12/31 23:00:00 292 1956/01/31 10:00:00 1956/02/01 04:00:00 293 1966/11/0716:00:00 1966/11/09 03:00:00 294 2001/03/06 17:00:00 2001/03/08 07:00:00 295 1997/12/06 18:00:00 1997/12/08 06:00:00 296 : 1980/03/26 00 :00:00 1980/03/26 23:00:00 297 1980/03/10 17:00:00 1980/03/11 12:00:00 298 1958/03/06 11 :00:00 1958/03/07 21 :00:00 299 1996/01/21 22:00:00 1996/01/22 23:00:00 300 1952/01/25 07:00:00 ! 1952/01/26 11 :00:00 301 I 1978/12/17 02:00:00 1978/12/20 05:00:00 302 1979/02/21 04:00:00 I 1979/02/22 03:00:00 ! 303 2000/02/11 19:00:00 2000/02/15 01 :00:00 304 1961/01/26 12:00:00 1961/01/27 19:00:00 305 1957/04/20 16:00:00 1957/04/22 22:00:00 306 1992/02/06 13:00:00 1992/02/08 11 :00:00 307 1959/12/21 03:00:00 ' 1959/12/22 08:00:00 308 1996/10/30 17:00:00 1996/10/31 18:00:00 309 1990/04/04 11 :00:00 1990/04/0513:00:00 I 310 1989/03/25 15:00:00 1989/03/26 23:00 :00 311 1962/03/06 10:00:00 1962/03/07 15:00:00 312 1957/01/26 08:00:00 1957/01/27 02:00:00 313 1969/01/19 01 :00:00 1969/01/22 13:00:00 314 1992/03/02 09:00:00 1992/03/03 21 :00:00 ! 315 1951/08/28 12:00:00 1951/08/2916:00:00 316 1984/12/08 01 :00:00 1984/12/09 01 :00:00 317 I 1958/05/11 10:00:00 1958/05/11 21 :00:00 318 1971/02/17 08:00:00 1971/02/18 11 :00:00 319 1986/04/06 04:00:00 1986/04/0710:00:00 320 1979/03/01 11 :00:00 1979/03/02 15:00:00 ~ 321 1982/11/0919:00:00 1982/11/11 11 :00:00 i 3/18/2020 6:29 PM ----1 I Duration I I 44 I 29 62 30 25 17 53 21 ! 30 25 79 56 36 I 27 33 22 28 19 36 39 37 24 20 35 I 26 I 29 76 24 79 32 I 55 47 30 26 27 33 30 19 85 37 29 25 12 ' 28 31 29 41 r ... , • 'II I I 1 I Peak 0.288 0.284 0.278 0.277 0.277 0.276 0.276 0.275 0.274 0.272 0.271 0.27 0.267 0.264 0.263 0.259 0.258 0.258 0.257 0.256 0.254 0.253 0.252 0.252 0.251 0.251 0.25 0.25 0.25 0.249 0.249 0.247 0.244 0.244 0.242 0.236 0.236 0.232 0.231 0.228 0.227 0.224 0.223 0.223 0.223 0.221 0.22 I I ! ' I ·-. I 1 r -•· "-. •-• r • ir • r • I I I I I I I • • I • • peakFlowStatisticsPostMitigated.csv Frequency Return Period 35.48% 10.21 35.61% i0.21 35.74% ,0.21 35.87% 0.21 36.00% 0.21 36.13% 0.21 36.26% 0.21 36.39% 0.21 36.52% 0.21 36.65% 0.2 36.77% 0.2 36.90% 0.2 37.03% 0.2 37.16% 0.2 37.29% 0.2 37.42% 0.2 37.55% '0.2 37.68% 0.2 37.81% 0.2 37.94% 0.2 38.06% 0.2 38.19% 0.2 38.32% 0.2 38.45% 0.2 38.58% 0.19 38.71% 0.19 38.84% 10.19 38.97% 10.19 39.10% 0.19 39.23% 0.19 39.35% 0.19 39.48% 0.19 39.61% 0.19 39.74% 0.19 39.87% 0.19 40.00% 0.19 40.13% 0.19 40.26% 0.19 40.39% 0.19 40.52% 0.19 40.65% 0.18 40.77% '0.18 40.90% 0.18 41.03% 0.18 41.16% 0.18 41.29% 0.18 41.42% 0.18 7/17 ... --·-I I i. l ·-· ~ --1 I ---1 I ,-1 .,. .. I I .,,_ ... I I ·--1 I ... , .. I I Excel Engineering Rank Start Date End Date ' 322 1960/09/11 07:00:00 1960/09/12 07:00:00 I 323 I 1957/03/16 10:00:00 1957/03/17 10:00:00 324 1984/12/16 04:00:00 1984/12/16 21 :00:00 325 1981/02/25 23:00:00 1981/02/26 23:00:00 326 ! 1992/12/27 23:00:00 1992/12/30 03:00:00 327 I 1969/01/14 03:00:00 1969/01/15 12:00:00 I 328 1967/04/22 00:00:00 1967/04/22 18:00:00 329 1976/12/30 18:00:00 1977/01/01 04:00:00 I 330 1962/02/15 22:00:00 1962/02/17 08:00:00 ' 331 1974/10/28 14:00:00 1974/10/30 10:00:00 332 1959/04/26 09:00:00 1959/04/27 06:00:00 333 1952/12/20 12:00:00 i 1952/12/21 12:00:00 334 1994/01/25 02:00:00 ! 1994/01/28 05:00:00 335 1957/12/05 06:00:00 1957/12/06 10:00:00 336 1963/04/17 06:00:00 1963/04/18 05:00:00 337 1985/12/02 14:00:00 1985/12/03 18:00:00 i 338 i 1979/10/20 06:00:00 1979/10/21 14:00:00 339 I 1959/12/10 03:00:00 1959/12/11 00:00:00 340 1983/12/03 18:00:00 1983/12/04 19:00:00 341 1976/08/30 14:00:00 1976/08/31 11 :00:00 342 2001/03/10 18:00:00 2001/03/11 12:00:00 343 1986/01/30 07:00:00 ! 1986/02/01 14:00:00 ~- 344 j 1963/04/26 03:00:00 I 1963/04/26 22:00:00 345 : 2004/04/01 22:00:00 2004/04/02 22:00:00 346 1986/10/09 23:00:00 1986/10/11 15:00:00 347 1972/12/04 17:00:00 1972/12/0516:00:00 348 1964/12/27 11 :00:00 1964/12/29 01 :00:00 349 1963/11/15 20:00:00 1963/11/16 16:00:00 350 1986/02/08 01 :00:00 I 1986/02/09 11 :00:00 351 1999/03/25 17:00:00 1999/03/26 16:00:00 352 I 2004/12/05 15:00:00 2004/12/06 14:00:00 353 1999/02/04 12:00:00 1999/02/05 19:00:00 354 1960/11/26 20:00:00 1960/11/2717:00:00 355 1965/01/24 08:00:00 1965/01/25 05:00:00 356 i 1986/12/06 11 :00:00 1986/12/07 23:00:00 ' 357 1955/01/16 12:00:00 1955/01/17 13:00:00 358 1954/01/24 12:00:00 1954/01/26 02:00:00 359 2004/02/03 03:00:00 2004/02/04 09:00:00 360 1980/10/16 08:00:00 1980/10/17 02:00 :00 361 1995/02/14 05:00:00 1995/02/15 14:00:00 362 I 1955/02/16 23:00:00 1955/02/18 06:00:00 : 363 1980/04/22 14:00:00 i 1980/04/24 01 :00:00 364 I 2006/03/28 23:00:00 2006/03/30 01 :00:00 365 1984/10/17 10:00:00 1984/10/18 03:00:00 366 1982/11/2914:00:00 1982/12/01 10:00:00 367 1979/02/14 07:00:00 1979/02/15 01 :00:00 368 1968/02/13 07:00:00 1968/02/14 03:00:00 3/18/2020 6:29 PM ---I I Duration I I 25 ' 25 I 18 25 53 34 19 35 35 i 45 22 25 76 29 24 29 33 22 I 26 22 19 i 56 20 ' 25 41 24 39 21 35 24 24 32 22 22 37 26 I 39 31 19 34 32 i 36 I 27 18 45 19 21 ---. I I Peak • • I I 0.219 0.219 0.214 0.214 0.213 0.212 0.212 0.212 0.211 0.211 0.211 0.21 0.21 0.207 0.205 0.205 0.202 0.201 0.199 0.199 0.197 0.197 0.195 0.195 0.192 0.191 0.19 0.188 0.184 0.183 0.18 0.18 0.179 0.176 0.176 0.175 0.172 0.17 0.165 0.165 0.163 0.162 0.161 0.161 0.161 0.16 0.16 I •• • • _. "W • • .... • • r·w W I r ' peakFlowStatisticsPostMitigated.csv Frequency Return Period 41.55% 0.18 -~ 41.68% 0.18 41.81% 0.18 41.94% 0.18 42.06% 0.18 42.19% 0.18 42.32% 0.18 42.45% 0.18 42.58% 0.18 42.71% 0.18 42.84% 0.18 42.97% 0.17 43.10% 0.17 43.23% 0.17 43.35% 0.17 43.48% 0.17 43.61% 0.17 43.74% 0.17 43.87% 0.17 44.00% 0.17 44.13% 0.17 44.26% 0.17 ~-~--- 44.39% 0.17 44.52% 0.17 44.65% 0.17 44.77% 0.17 44.90% 0.17 45.03% 0.17 45.16% 0.17 45.29% 0.17 45.42% 0.17 45.55% 0.16 45.68% 0.16 45.81% 0.16 45.94% 0.16 46.06% 0.16 46.19% 0.16 46.32% 0.16 46.45% 0.16 46.58% 0.16 46.71% 0.16 46.84% 0.16 46.97% 0.16 47.10% 0.16 47.23% 0.16 47.35% 0.16 47.48% 0.16 8/17 • • • • i1 r-···1 f''I Excel Engineering Rank 369 370 371 372 373 374 ~ 375 i 376 I 377 378 I 379 380 -· 381 382 383 384 385 386 387 I 388 389 390 391 392 393 394 395 396 397 I 398 399 400 ! ~. 401 402 403 404 405 ! 406 ! 407 ! 408 409 410 411 412 413 414 415 •" .. • • r 1 Start Date 2000/10/26 15:00:00 1990/05/28 11 :00:00 1983/02/02 18:00:00 2006/05/22 08:00:00 1957/01/05 13:00:00 2007/12/07 08:00:00 1952/03/01 01 :00:00 1988/01/05 17:00:00 1980/12/04 16:00:00 1982/01/28 20:00:00 1982/09/26 07:00:00 1975/02/03 11 :00:00 1972/11/11 12:00:00 2006/12/10 04:00:00 2007/08/26 14:00:00 1974/03/02 13:00:00 1968/04/02 00:00:00 1958/09/24 08:00:00 1973/02/28 05:00:00 1970/01/16 11 :00:00 1961/11/25 05:00:00 1995/03/21 15:00:00 1993/02/23 21 :00:00 1974/12/2811:00:00 1971/12/27 18:00:00 1964/03/23 03 :00 :00 1961/11/20 20:00:00 2008/02/03 10:00:00 1957/10/31 04:00:00 2000/04/17 21 :00:00 1975/04/17 09:00:00 1953/01/06 20:00:00 1990/01/31 04:00:00 1967/04/18 23:00:00 1973/11/17 10:00:00 1985/01/07 14:00:00 2006/02/19 07:00:00 2007/12/19 03:00:00 1996/12/27 19:00:00 1996/03/12 23:00:00 1953/04/27 23:00:00 1955/03/11 05:00:00 1998/12/06 07:00:00 1977/12/18 09:00:00 1959/01/06 12:00:00 1955/04/22 08:00:00 1983/04/12 13:00:00 3/18/2020 6:29 PM . .,. • I ..... • • r1 I' 1 r 1 I End Date Duration 2000/10/28 04:00:00 38 1990/05/29 09:00:00 I 23 1983/02/04 00:00:00 31 2006/05/23 02:00:00 I 19 I 1957/01/06 08:00:00 : 20 2007/12/09 11 :00:00 52 1952/03/02 06:00:00 30 1988/01/06 12:00:00 20 1980/12/06 01 :00:00 34 I 1982/01/2919:00:00 24 1982/09/27 09:00:00 27 I 1975/02/04 23 :00 :00 37 I 1972/11/12 05:00:00 18 2006/12/11 06:00:00 27 2007/08/27 06:00:00 I 17 1974/03/03 15:00:00 I 27 1968/04/02 18:00:00 19 1958/09/24 23:00:00 16 1973/03/01 01 :00:00 21 1970/01/17 15:00:00 29 1961/11/26 15:00:00 35 1995/03/22 10:00:00 20 1993/02/24 19:00:00 23 1974/12/30 04:00:00 42 1971/12/29 05:00:00 36 1964/03/24 14:00:00 36 1961/11/21 12:00:00 17 2008/02/04 12:00:00 27 1957/10/31 21 :00:00 18 2000/04/18 22:00:00 26 ! 1975/04/18 01 :00:00 17 i 1953/01/0819:00:00 48 I 1990/01/31 18:00:00 15 1967/04/20 14:00:00 40 1973/11/1913:00:00 I 52 1985/01/08 19:00:00 30 2006/02/20 04:00:00 22 2007/12/20 04:00:00 26 1996/12/28 23:00:00 29 ' 1996/03/14 04:00:00 30 1953/04/28 17:00:00 19 1955/03/11 20:00:00 16 I 1998/12/06 22:00:00 16 1977/12/18 23:00:00 I 15 1959/01/07 01 :00:00 14 1955/04/23 01 :00:00 I 18 1983/04/13 21 :00:00 33 I i I ! : I I I .. ,. • • • • • • Peak 0.16 0.16 0.16 0.159 0.158 0.158 0.157 0.157 0.156 0.155 0.155 0.155 0.154 0.153 0.152 0.152 0.151 0.151 0.151 0.151 0.151 0.15 0.149 0.149 0.148 0.147 0.147 0.146 0.145 0.145 0.145 0.145 0.144 0.144 0.144 0.143 0.143 0.142 0.142 0.142 0.141 0.141 0.141 0.14 0.14 0.14 0.14 r 1 Frequency 47.61% 47.74% 47.87% 48.00% 48.13% 48.26% 48.39% 48.52% 48.65% 48.77% 48.90% 49.03% 49.16% 49.29% 49.42% 49.55% 49.68% 49.81% 49.94% 50.06% 50.19% 50.32% 50.45% 50.58% 50.71% I 50.84% 50.97% 51.10% I 51.23% I 51.35% 51.48% 51.61% 51.74% 51.87% 52.00% 52.13% 52.26% 52.39% : 52.52% 52.65% 52.77% 52.90% 53.03% 53.16% 53.29% 53.42% 53.55% • • • • r " r • er I • • • • • • • • peakFlowStatisticsPostMitigated.csv Return Period 0.16 0.16 ,0.16 ;0.16 10.16 :0.16 0.16 0.15 0.15 0.15 0.15 0.15 --0.15 0.15 0.15 0.15 :0.15 10.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 ---~ 0.15 0.15 10.15 --0.15 0.15 0.15 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 :0.14 '0.14 9/17 i i i i r i i i -----,. I I 1 I .,, ... I I •• a W"" W • • • • -. I I Excel Engineering Rank Start Date End Date I Duration I 416 I 1990/04/17 11 :00:00 1990/04/18 06:00:00 I 20 417 I 1965/03/12 18:00:00 I 1965/03/14 08:00:00 39 418 I 1982/03/26 00:00:00 I 1982/03/26 21 :00:00 22 -· 419 1973/03/05 09:00:00 I 1973/03/07 13:00:00 53 420 I 1958/03/27 17:00:00 1958/03/28 07:00:00 15 ----421 ~ i 1967/03/31 14:00:00 I 1967/04/01 05:00:00 16 422 1975/02/09 09:00:00 1975/02/10 17:00:00 33 423 1982/12/29 22:00:00 1982/12/30 13:00:00 16 424 1953/11/1419:00:00 1953/11/15 22:00:00 28 425 1978/11/21 20:00:00 1978/11/2215:00:00 20 426 1979/01/09 14:00:00 1979/01/10 05:00:00 16 .. 427 1957/01/10 03:00:00 1957/01/11 02:00:00 I 24 428 1983/11/20 11 :00:00 1983/11/21 08:00:00 I 22 429 2005/03/22 23:00:00 I 2005/03/23 14:00:00 I 16 430 1997/01/23 10:00:00 1997/01/24 10:00:00 25 431 1995/01/16 11 :00:00 1995/01/17 02:00:00 16 432 1963/09/04 11 :00:00 1963/09/05 05:00:00 19 433 1952/11/23 04:00:00 1952/11/24 00:00:00 21 434 1987/03/22 04:00:00 1987/03/22 18:00:00 15 435 1952/03/13 01 :00:00 1952/03/14 00:00:00 24 436 1990/06/09 18:00:00 1990/06/11 06:00:00 37 437 2005/12/31 21 :00 :00 2006/01/03 16:00:00 I 68 ---438 1995/01/21 06:00:00 1995/01/21 20:00:00 15 i 439 I 1982/11/19 03:00:00 1982/11/20 17:00:00 39 440 1990/02/04 14:00:00 1990/02/05 05:00:00 16 441 I 1976/04/13 08:00:00 I 1976/04/14 03:00:00 20 442 1978/11/24 12:00:00 ! 1978/11/25 04:00:00 17 L..___ _______ 443 1954/01/12 13:00:00 ! 1954/01/13 14:00:00 26 444 I 1959/02/08 07:00:00 1959/02/09 14:00:00 32 445 1955/11/14 11 :00:00 1955/11/14 23:00:00 13 446 1960/02/09 02:00:00 1960/02/10 21 :00:00 44 ~-447 1975/11/27 21 :00:00 1975/11/29 11 :00:00 39 448 1995/03/23 13:00:00 1995/03/24 08:00:00 20 449 1957/06/10 06:00:00 1957/06/10 19:00:00 14 450 1974/03/27 11 :00:00 1974/03/27 23:00:00 13 451 1978/01/30 14:00:00 1978/01/31 14:00:00 I 25 452 1995/03/03 14:00:00 I 1995/03/04 03 :00 :00 I 14 ------453 I 1987/10/31 09:00:00 1987/11/0212:00:00 52 --454 2007/02/11 15:00:00 2007/02/12 03:00:00 13 455 1957/02/23 09:00:00 1957/02/24 01 :00:00 17 456 1966/10/10 17:00:00 1966/10/11 05:00:00 13 457 1971/10/16 23:00:00 1971/10/17 19:00:00 21 458 1987/02/14 00:00:00 1987/02/14 14:00:00 15 459 1975/12/20 18:00:00 1975/12/21 09:00:00 16 460 ! 2007/02/28 08:00:00 2007/03/01 06:00:00 I 23 461 1998/12/01 20:00:00 : 1998/12/02 09:00:00 14 462 I 1985/01/28 18:00:00 1985/01/29 15:00:00 22 3/18/2020 6:29 PM i I i I I i I I I .. ,. -• • I I I I Peak 0.14 0.14 0.139 0.139 0.139 0.139 0.138 0.138 0.137 0.137 0.137 0.136 0.136 0.136 0.135 0.135 0.135 0.135 0.134 0.133 0.133 0.132 0.132 0.132 0.132 0.13 0.13 ----0.13 0.129 0.129 0.129 0.128 .. 0.128 0.126 0.126 0.126 0.125 .. 0.125 0.125 0.125 0.124 0.124 0.124 0.124 0.123 0.123 0.123 I I I I • • I I Frequency 53.68% 53.81% 53.94% 54.06% 54.19% 54.32% 54.45% 54.58% 54.71% 54.84% 54.97% 55.10% 55.23% 55.35% 55.48% 55.61% 55.74% 55.87% 56.00% 56.13% 56.26% 56.39% 56.52% 56.65% 56.77% 56.90% 57.03% 57.16% 57.29% 57.42% 57.55% 57.68% 57.81% 57.94% 58.06% 58.19% 58.32% 58.45% 58.58% 58.71% 58.84% 58.97% 59.10% 59.23% 59.35% 59.48% 59.61% .. --.. I I •. ,. I II .,. ,. I • f 1 . . .. ... • • • • peakFlowStatisticsPostMitigated.csv Return Period i0.14 10.14 10.14 10.14 ·-10.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 -~ 0.14 0.14 0.14 0.14 0.13 0.13 0.13 10.13 10.13 0.13 ---0.13 0.13 0.13 0.13 0.13 ----0.13 0.13 ·-0.13 0.13 0.13 0.13 10.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 10.13 10.13 0.13 10/17 i i i i --W I --• I i i i i i .. I 1 i --• • Excel Engineering Rank Start Date I End Date 463 1960/11/13 03:00:00 I 1960/11/13 14:00:00 464 1971/01/12 23:00:00 I 1971/01/13 15:00:00 465 1997/01/02 08:00:00 1997/01/04 01 :00:00 466 2005/10/16 22:00:00 2005/10/19 00:00:00 467 1971/02/23 08:00:00 1971/02/23 19:00:00 ' 468 : 2004/03/02 03:00:00 2004/03/0218:00:00 469 I 1993/12/11 20:00:00 1993/12/12 15:00:00 I ' I 470 I 1987/11/04 22:00:00 1987/11/05 23:00:00 I 471 1951/12/19 11 :00:00 1951/12/20 01 :00:00 472 I 1953/02/23 13:00:00 1953/02/24 08:00:00 473 I 1993/01/02 11 :00:00 1993/01/03 03:00:00 I 474 1996/12/06 03:00:00 1996/12/06 22:00:00 1----------------475 1968/11/14 21 :00:00 1968/11/15 15:00:00 476 1990/01/13 14:00:00 : 1990/01/15 00:00:00 477 1985/02/02 06:00:00 1985/02/03 01 :00:00 478 ' 1957/05/21 08:00:00 1957/05/21 21 :00:00 479 ! 1984/12/10 23:00:00 1984/12/11 19:00:00 ---480 1957/10/21 07:00:00 1957/10/21 18:00:00 481 I 1983/12/09 20:00:00 1983/12/10 06:00:00 -482 ' 1992/03/08 05:00:00 1992/03/08 22:00:00 483 1992/03/27 09:00:00 1992/03/27 19:00:00 ' 484 2006/03/21 05:00:00 ! 2006/03/21 17:00:00 485 1984/11/13 12:00:00 1984/11/13 22:00:00 486 1965/01/01 01 :00:00 ' 1965/01/01 11 :00:00 487 1970/01/10 03:00:00 1970/01/12 11 :00:00 488 1993/01/10 14:00:00 ; 1993/01/11 02:00:00 489 1989/01/07 19:00:00 I 1989/01/08 05:00:00 490 1952/03/10 22:00:00 1952/03/11 17:00:00 491 1989/05/14 13:00:00 1989/05/1519:00:00 492 1952/12/28 11 :00:00 1952/12/29 02:00:00 493 I 1977/01/29 05:00:00 1977/01/2915:00:00 .. 494 I 1991/03/15 17:00:00 1991/03/16 03:00:00 I 495 1963/03/28 14:00:00 1963/03/29 02:00:00 ! 496 1988/08/24 08:00:00 1988/08/25 00 :00 :00 497. 1978/11/11 12:00:00 1978/11/12 19:00:00 498 2004/11/21 10:00:00 2004/11/21 20:00:00 499 1984/04/28 01 :00:00 I 1984/04/28 10:00:00 500 1980/03/21 13:00:00 I 1980/03/22 11 :00:00 501 1969/11/10 06:00:00 1969/11/10 18:00:00 502 i 1964/11/09 17:00:00 1964/11/11 06:00:00 503 1989/02/04 01 :00:00 1989/02/05 05:00:00 504 ! 2008/01/23 23:00:00 2008/01/24 23:00:00 : 505 1977/05/24 08:00:00 1977/05/24 21 :00:00 506 ' 1958/03/11 05:00:00 1958/03/12 12:00:00 507 1991/10/27 03:00:00 1991/10/27 21:00:00 508 1989/03/02 19:00:00 1989/03/03 07:00:00 509 1989/02/09 18:00:00 I 1989/02/10 17:00:00 3/18/2020 6:29 PM ., . -~ ~ .. . -I I I I I I Duration ! Peak 12 0.123 17 0.123 42 I 0.121 51 0.12 12 0.12 16 0.12 20 I 0.12 26 0.118 15 0.118 20 0.117 17 0.117 20 0.117 19 0.117 35 0.117 20 0.117 14 I 0.116 21 0.116 12 0.115 11 0.115 18 0.115 11 0.115 I 13 0.115 11 0.115 11 0.115 57 0.114 13 0.114 11 0.114 20 0.114 31 0.114 16 0.114 11 ' 0.113 11 0.113 13 0.113 17 0.113 32 0.113 I 11 0.112 : 10 0.112 23 0.111 13 ' 0.111 38 ! 0.111 29 0.11 25 0.11 14 0.108 32 0.108 19 0.108 13 0.107 24 0.107 . .. I I Frequency 59.74% 59.87% 60.00% 60.13% 60.26% 60.39% 60.52% 60.65% 60.77% 60.90% 61.03% 61.16% 61.29% 61.42% 61.55% 61.68% 61.81% 61.94% 62.06% 62.19% 62.32% 62.45% 62.58% 62.71% 62.84% 62.97% 63.10% 63.23% 63.35% 63.48% 63.61% 63.74% 63.87% 64.00% 64.13% 64.26% 64.39% 64.52% 64.65% 64.77% 64.90% 65.03% 65.16% 65.29% 65.42% 65.55% 65.68% -,. I I r· ,. I I .. -., -.. I I r 1 • • • • pea kFlowStatisticsPostM itigated .csv Return Period 0.13 0.13 -~ 0.13 ----~-0.12 0.12 0.12 0.12 0.12 ,0.12 0.12 10.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 10.12 10.12 0.12 0.12 0.12 0.12 0.12 10.12 0.12 '0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 10.12 10.12 0.12 0.12 0.12 0.11 0.11 0.11 11/17 .. I .. • ~ --..... ..... .. --.... ---.. ... ~ 'W ---,,. -----.,.~ ... I J I J 'I I I I I I I I I I , I I I --.-~----· -,.. __ , .. .. ... ------. ..--.,. ...-...... ...... ~-.... .,, ,.. ... . 11 11 II II 11 11 11 11 11 I l Excel Engineering peakFlowStatisticsPostMitigated.csv Rank Start Date End Date Duration I Peak Frequency I Return Period 510 I 1997/12/18 18:00:00 1997/12/19 10:00:00 17 0.107 65.81% 10.11 511 2006/12/27 11 :00:00 2006/12/27 19:00:00 9 0.106 65.94% :0.11 512 1976/07/27 03:00:00 1976/07/27 12:00:00 10 0.106 66.06% 10.11 -513 I 1955/01/31 02:00:00 1955/01/31 19:00:00 18 0.105 66.19% 0.11 514 1992/12/18 05:00:00 1992/12/1813:00:00 9 0.105 66.32% 0.11 515 1955/11/17 15:00:00 1955/11/18 06:00:00 16 0.105 66.45% 0.11 516 I 1994/12/25 04:00:00 1994/12/25 16:00:00 13 I 0.104 66.58% 0.11 I 517 I 1979/02/23 05:00:00 I 1979/02/23 16:00:00 12 I 0.104 66.71% 0.11 518 ! 1981/04/19 06:00:00 I 1981/04/1917:00:00 12 0.104 66.84% 0.11 519 1989/02/02 10:00:00 I 1989/02/02 20:00:00 11 0.104 66.97% 0.11 520 I 1975/03/22 12:00:00 1975/03/22 22:00:00 11 0.104 67.10% 0.11 -521 1984/12/03 11 :00:00 1984/12/03 21 :00:00 11 0.104 I 67.23% 0.11 522 I 1962/01/13 04:00:00 1962/01/13 13:00:00 10 0.103 67.35% 0.11 523 1996/01/16 23:00:00 1996/01/1710:00:00 12 0.103 ! 67.48% 0.11 524 1998/03/13 20:00:00 1998/03/15 08:00:00 I 37 0.103 67.61% 0.11 525 2008/02/20 13:00:00 2008/02/21 00:00:00 i 12 0.102 67.74% 0.11 526 I 1987/03/1512:00:00 1987/03/15 20:00:00 ' 9 0.102 67.87% i0.11 527 1989/01/23 23:00:00 1989/01/24 08:00:00 10 0.102 68.00% '0.11 528 ' 2001/02/20 19:00:00 ' 2001/02/21 09:00:00 15 0.102 68.13% 0.11 529 I 1972/10/20 04:00:00 ! 1972/10/20 12:00:00 9 I 0.102 68.26% 0.11 530 I 1985/10/22 03:00:00 1985/10/22 10:00:00 8 0.102 68.39% 0.11 531 1956/02/23 23:00:00 1956/02/24 23:00:00 25 0.101 68.52% 0.11 --532 1978/04/15 23:00:00 1978/04/16 07:00:00 9 I 0.101 68.65% 0.11 533 1957/05/1911:00:00 1957/05/19 20:00:00 10 0.1 68.77% 0.11 534 1951/12/05 04:00:00 1951/12/05 18:00:00 15 0.1 68.90% 0.11 535 1967/11/26 22:00:00 1967/11/27 05:00:00 : 8 0.1 69.03% 0.11 536 1982/09/16 14:00:00 1982/09/17 23:00:00 ' 34 0.1 69.16% 0.11 537 1963/02/14 13:00:00 1963/02/14 22:00:00 10 0.1 69.29% i0.11 538 2007/02/19 10:00:00 2007/02/1919:00:00 I 10 0.098 69.42% !0.11 539 1976/11/12 06:00:00 1976/11/12 16:00:00 11 0.098 69.55% 10.11 540 1987/03/05 23:00:00 1987/03/07 01 :00:00 27 0.098 69.68% 0.11 541 1996/03/05 01 :00:00 1996/03/05 10:00:00 10 0.097 69.81% 0.11 ~-542 I 1955/01/02 02:00:00 1955/01/02 15:00:00 14 0.097 69.94% 0.11 543 2001/02/23 19:00:00 2001/02/24 08:00:00 14 0.097 70.06% 0.11 544 2001/11/29 20:00:00 2001/11/30 07:00:00 12 0.096 70.19% 0.11 545 1960/11/03 23:00:00 : 1960/11/04 06:00:00 8 0.096 70.32% 0.11 ~546 ____ ~-1999/06/04 03:00:00 1999/06/04 11 :00:00 9 0.096 70.45% 0.11 ---547 1998/01/03 20:00:00 1998/01/05 01 :00:00 30 0.095 70.58% 0.11 548 1957/01/20 21:00:00 1957/01/21 05:00:00 9 0.093 70.71% 0.11 549 I 1971/12/04 06:00:00 1971/12/0412:00:00 I 7 0.093 70.84% 0.11 550 : 1995/12/23 13:00:00 1995/12/23 21 :00:00 9 0.093 70.97% 0.11 551 -i---2007/02/23 01 :00:00 2007/02/23 07:00:00 7 0.093 71.10% i0.11 552 1979/12/21 10:00:00 1979/12/21 22:00:00 13 0.093 71.23% i0.11 553 1992/02/10 04:00:00 1992/02/10 16:00:00 13 0.093 71.35% 0.11 554 1978/04/08 15:00:00 ' 1978/04/09 03:00:00 13 0.091 I 71.48% 0.11 -- 555 2003/11/12 10:00:00 : 2003/11/1217:00:00 8 0.089 71.61% 0.11 556 1973/01/10 04:00:00 I 1973/01/10 10:00:00 7 0.089 71.74% 0.1 3/18/2020 6:29 PM 12/17 r·-, ,-' r·, i i r·, i j i i i j .-, . I f Excel Engineering Rank Start Date End Date i 557 1982/03/28 23:00:00 1982/03/29 11 :00:00 ' 558 i 1956/12/06 08:00:00 1956/12/06 13:00:00 -559 2000/02/23 20:00:00 2000/02/24 06:00:00 -· 560 1994/11/10 15:00:00 1994/11/10 22:00:00 561 1953/10/22 10:00:00 1953/10/22 19:00:00 562 1975/12/12 20:00:00 1975/12/13 03:00:00 563 1973/02/04 00:00:00 ! 1973/02/04 07:00:00 564 : 1977/03/16 17:00:00 1977/03/22 20:00:00 565 I 1996/01/25 17:00:00 1996/01/26 00:00:00 566 I 1999/01/31 14:00:00 1999/01/31 19:00:00 567 2007/04/23 03:00:00 2007/04/23 09:00:00 568 1974/01/01 10:00:00 1974/01/01 16:00:00 569 1983/01/22 18:00:00 I 1983/01/23 22:00:00 570 1964/03/02 16:00:00 1964/03/02 22:00:00 571 1977/02/24 18:00:00 1977/02/25 08:00:00 572 1962/02/25 01 :00:00 1962/02/25 09:00:00 573 1997/02/11 00:00:00 1997/02/11 08:00:00 574 2000/11/30 12:00:00 2000/11/30 17:00:00 575 I 1977/02/22 08:00:00 1977/02/22 13:00:00 ! --576 -r----1990/01/02 13:00:00 1990/01/02 18:00:00 577 1972/12/07 11 :00:00 1972/12/08 22:00:00 578 1987/03/25 01 :00:00 1987/03/26 04:00:00 .,--579 1981/04/02 13:00:00 1981/04/02 18:00:00 580 1958/02/13 06:00:00 1958/02/13 16:00:00 ---~----~ 581 1964/10/15 15:00:00 1964/10/15 20:00:00 582 I 1985/03/27 12:00:00 1985/03/28 19:00:00 : 583 1951/10/11 03:00:00 I 1951/10/11 08:00:00 584 I 1988/12/28 02:00:00 1988/12/28 19:00:00 585 I 1978/03/22 18:00:00 1978/03/23 21 :00:00 586 ' 1966/01/01 03:00:00 1966/01/01 09:00:00 587 1984/01/15 20:00:00 1984/01/16 16:00:00 588 1954/12/04 02:00:00 1954/12/04 08:00 :00 589 1987/12/29 15:00:00 i 1987/12/30 13:00:00 590 ' 1971/03/13 11 :00:00 1971/03/13 15:00:00 591 2001/12/04 20:00:00 2001/12/05 05:00:00 592 2002/02/17 21 :00:00 2002/02/18 05:00:00 593 1955/04/26 14:00:00 1955/04/26 20:00:00 594 2002/03/18 02:00:00 2002/03/18 11 :00 :00 595 1957/04/18 06:00:00 1957/04/1814:00:00 596 I 2001/04/10 20:00:00 I 2001/04/11 06:00:00 597 1961/03/28 10:00:00 1961/03/29 00:00:00 598 1965/09/17 05:00:00 1965/09/17 19:00:00 -599 1965/12/22 05:00:00 1965/12/22 16:00:00 600 1983/01/24 22:00:00 1983/01/26 00:00:00 601 1995/06/16 01 :00:00 1995/06/17 04:00:00 602 1960/03/28 06:00:00 I 1960/03/28 14:00:00 I 603 1962/03/23 03:00:00 1962/03/23 08:00:00 3/18/2020 6:29 PM i .. I -I ,. J • • I i Duration i Peak 13 0.089 6 0.088 11 0.088 8 0.088 10 0.088 8 0.088 8 0.088 148 I 0.087 8 0.087 6 0.086 7 0.086 7 0.086 29 0.086 7 : 0.085 15 0.085 9 0.085 9 0.084 6 0.084 6 0.084 6 0.084 36 0.083 28 0.083 6 0.083 11 0.082 6 0.082 32 0.081 6 0.081 18 0.081 28 I 0.081 7 0.08 21 0.08 7 0.079 23 0.079 5 0.078 10 I 0.078 9 0.077 7 0.077 10 0.076 9 0.076 11 0.075 15 i 0.075 15 I 0.074 12 0.074 27 0.074 28 0.073 9 0.073 6 0.072 ! I I ' ' ., .• I I • w I I ... I I" ---,. I I . ,. I W • • I • peakFlowStatisticsPostMitigated.csv Frequency Return Period 71.87% 0.1 72.00% 0.1 72.13% 0.1 72.26% 0.1 72.39% 0.1 72.52% '0.1 72.65% 0.1 72.77% 0.1 72.90% 0.1 73.03% 0.1 73.16% 0.1 -~ 73.29% 10.1 73.42% 0.1 73.55% 0.1 73.68% 0.1 73.81% 0.1 73.94% 0.1 74.06% 10.1 74.19% 0.1 74.32% 0.1 74.45% 0.1 74.58% 0.1 74.71% 0.1 74.84% 0.1 74.97% 0.1 75.10% 0.1 75.23% 0.1 75.35% 0.1 75.48% 0.1 75.61% 0.1 75.74% 0.1 75.87% 0.1 76.00% 0.1 76.13% 0.1 76.26% 0.1 76.39% 0.1 76.52% 0.1 76.65% ,0.1 76.77% '0.1 76.90% 0.1 77.03% 0.1 77.16% 0.1 77.29% 0.1 77.42% 10.1 77.55% 0.1 77.68% 0.1 77.81% 0.1 13/17 . , I , -'" ■ I r-... ...,. I I .. .. ■ • Excel Engineering Rank 604 605 606 607 608 609 610 611 612 613 i 614 615 616 617 f--618 f-----· 619 620 621 I-----622 623 624 625 626 627 628 629 ' 630 631 I 632 i 633 634 635 ~-636 637 638 639 ' 640 i 641 642 643 644 --645 I -646 647 648 649 650 • 1111 r 'II _.-.. ,. I I I I I I Start Date I 1983/01/1814:00:00 2006/12/17 00:00:00 2005/03/04 14:00:00 1951/10/15 13:00:00 1980/04/28 19:00:00 1981/01/12 14:00:00 1983/10/07 12:00:00 1984/12/13 00:00:00 1985/02/04 01 :00:00 I 1991/12/19 14:00:00 1998/11/28 10:00:00 i 1978/11/14 00:00:00 1978/11/1513:00:00 1975/04/25 11 :00:00 1993/12/14 21 :00:00 1952/12/17 13:00:00 1969/12/09 03:00:00 1987/12/19 22:00:00 1999/01/20 18:00:00 1964/02/29 09:00:00 1987/02/05 15:00:00 1980/05/09 16:00:00 1969/04/03 09:00:00 1951/11/21 00:00:00 -2003/05/03 21 :00:00 1965/11/2514:00:00 1996/02/03 15:00:00 1969/03/13 05:00:00 2005/09/20 09:00:00 1992/03/31 18:00:00 1966/01/27 09:00:00 1952/12/06 08:00:00 1953/11/05 13:00:00 1990/01/22 14:00:00 1985/10/07 13:00:00 1995/12/13 10:00:00 1957/11/14 20:00:00 1979/12/25 13:00:00 1983/12/19 18:00:00 1992/03/29 16:00:00 1978/04/02 22:00:00 1984/11/16 18:00:00 2000/11/11 03:00:00 ! 1953/12/04 13:00:00 1971/05/07 23:00:00 1967/12/08 03:00:00 1991/03/13 23:00:00 3/18/2020 6:29 PM -.,. I I ...... I I End Date 1983/01/19 17:00:00 2006/12/17 12:00:00 2005/03/05 11 :00:00 1951/10/15 17:00:00 1980/04/29 16:00:00 1981/01/12 18:00:00 1983/10/08 10:00:00 1984/12/13 04:00:00 1985/02/04 05:00:00 1991/12/19 18:00:00 1998/11/29 09:00:00 1978/11/14 04:00:00 1978/11/15 17:00:00 1975/04/25 16:00:00 1993/12/15 04:00:00 1952/12/17 23:00:00 1969/12/09 10:00:00 1987/12/20 02:00:00 1999/01/21 01 :00:00 1964/02/29 13:00:00 1987/02/05 19:00:00 1980/05/10 20:00:00 1969/04/03 16:00:00 1951/11/21 05:00:00 2003/05/04 05:00:00 1965/11/25 20:00:00 1996/02/03 20:00:00 1969/03/13 13:00:00 2005/09/20 11 :00:00 1992/03/31 22:00:00 1966/01/27 19:00:00 1952/12/06 13:00:00 1953/11/0518:00:00 1990/01/22 18:00:00 1985/10/07 16:00:00 1995/12/13 17:00:00 1957/11/15 02:00:00 1979/12/25 17:00:00 1983/12/19 22:00:00 1992/03/29 20:00:00 1978/04/03 01 :00:00 1984/11/16 22:00:00 2000/11/11 09:00:00 1953/12/04 18:00:00 1971/05/08 05:00:00 1967/12/08 15:00:00 1991/03/14 02:00:00 ..... I I I I ' ! I ! I i .. .. I I Duration 28 13 22 5 22 5 23 5 5 5 24 5 5 6 8 11 8 5 8 5 5 29 8 6 9 7 6 9 3 5 11 6 6 5 4 8 7 5 5 5 4 5 7 6 7 13 4 .. ... .. 'ti I I I I Peak I 0.072 0.072 I 0.072 0.072 I 0.072 0.072 0.072 0.072 0.072 0.072 0.072 I 0.072 ! 0.071 0.071 0.071 0.071 0.071 0.071 I 0.07 0.07 I 0.07 0.07 0.069 0.068 0.068 0.067 0.067 0.067 0.067 I 0.066 i 0.066 0.066 0.066 0.066 0.066 I 0.066 ! 0.066 ! 0.066 0.065 0.065 0.065 0.065 0.064 0.064 0.064 0.063 0.063 I .. --'ti I I r '■ I ■ .. . • ■ .. . • ■ .. 11 • • .. . . . peakFlowStatisticsPostMitigated.csv Frequency Return Period 77.94% 10.1 78.06% 0.1 78.19% 0.1 78.32% 0.1 78.45% 0.1 78.58% 0.1 78.71% 0.1 78.84% 0.1 78.97% 0.1 79.10% 0.1 79.23% 0.09 79.35% 0.09 79.48% 10.09 79.61% 0.09 79.74% 0.09 79.87% 0.09 80.00% 0.09 80.13% 0.09 80.26% 0.09 --~---80.39% 10.09 80.52% 0.09 80.65% 0.09 80.77% 0.09 80.90% 0.09 81.03% 0.09 81.16% 0.09 81.29% 0.09 81.42% 0.09 81.55% 0.09 81.68% 0.09 81.81% 0.09 81.94% 0.09 82.06% 0.09 82.19% 10.09 82.32% 0.09 82.45% 0.09 82.58% 0.09 82.71% 0.09 82.84% 0.09 82.97% 0.09 83.10% 0.09 83.23% '0.09 83.35% 0.09 83.48% 0.09 83.61% 0.09 83.74% 0.09 83.87% 0.09 14/17 .... . . .... I a ... I a ., . • • Excel Engineering Rank I I 651 652 653 654 655 656 657 658 659 660 661 662 I 663 -~ ~-664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 --···· 679 ' 680 681 682 683 684 ' 685 686 687 688 689 ~-690 691 i 692 ------~ 693 ~~-694 I 695 696 I f--~·---697 -. • • .. 11 r 11 ■ I I ■ Start Date 1977/12/23 07:00:00 ---- 1999/04/01 23:00:00 2006/03/03 18:00:00 1985/09/18 16:00:00 1987/11/18 01 :00:00 1983/08/18 14:00:00 I 1997/01/22 05:00:00 ! 1975/03/14 06:00:00 I 2000/03/08 21 :00:00 ' 1987/07/17 15:00:00 1983/03/28 11 :00:00 1979/11/12 15:00:00 1975/01/30 19:00:00 1983/12/1517:00:00 1987/12/11 09:00:00 1999/04/07 14:00:00 1960/03/13 08:00:00 I 1977/07/22 15:00:00 1969/03/10 13:00:00 1983/11/18 03:00:00 1979/01/25 18:00:00 1982/04/04 15:00:00 1983/01/05 12:00:00 1988/04/18 08:00:00 1981/03/14 16:00:00 1987/02/03 16:00:00 1996/01/28 09:00:00 1977/05/12 13:00:00 2006/04/14 17:00:00 I 1980/05/02 14:00:00 1982/02/17 05:00:00 1986/02/23 10 :00:00 I 1986/03/01 11 :00:00 I 1984/01/04 19:00:00 1989/01/05 22:00:00 1955/12/04 13:00:00 1987/10/28 04:00:00 1984/11/23 09:00:00 2006/03/07 04:00:00 1981/03/10 21 :00:00 1962/02/11 08:00:00 1965/01/07 13:00:00 1978/12/01 22:00:00 1951/10/0811:00:00 1999/03/11 18:00:00 1967/01/31 06:00:00 1995/01/15 05:00:00 3/18/2020 6:29 PM .. . • • .. 11 • • End Date 1977/12/2311:00:00 1999/04/02 02:00:00 2006/03/03 22:00:00 1985/09/18 18:00:00 1987/11/18 04:00:00 1983/08/18 15:00:00 1997/01/22 09:00:00 1975/03/14 10:00:00 2000/03/09 02:00:00 1987/07/17 16:00:00 1983/03/28 14:00:00 1979/11/1218:00:00 1975/01/31 00:00:00 1983/12/15 20:00:00 1987/12/1112:00:00 1999/04/07 17:00:00 1960/03/13 11 :00:00 1977/07/2218:00:00 1969/03/11 01 :00:00 1983/11/18 06:00:00 1979/01/25 21 :00:00 1982/04/04 18:00:00 1983/01/05 15:00:00 1988/04/18 11 :00:00 1981/03/14 19:00:00 1987/02/03 19:00:00 1996/01/28 13:00:00 1977/05/1216:00:00 2006/04/1513:00:00 1980/05/02 17:00:00 1982/02/17 08:00:00 1986/02/23 13:00:00 1986/03/01 14:00:00 1984/01/04 22:00:00 1989/01/06 01 :00:00 1955/12/04 17:00:00 1987/10/28 07:00:00 1984/11/23 12:00:00 2006/03/07 08:00:00 1981/03/11 00:00:00 1962/02/11 12:00:00 1965/01/07 17:00:00 1978/12/02 01 :00:00 1951/10/08 11 :00:00 1999/03/11 20:00:00 1967/01/31 11 :00:00 1995/01/15 09:00:00 .. 11 • • i I I i I I i I I I I I .. 11 .. "II .. 11 ■ I ■ • • • Duration Peak 5 0.063 4 0.063 5 0.063 3 0.062 4 0.062 2 0.062 5 i 0.062 5 I 0.062 6 0.062 2 0.062 4 0.062 4 0.061 6 0.061 4 0.061 4 0.061 4 0.061 4 0.06 4 0.06 13 ' 0.06 4 0.06 4 I 0.06 4 0.06 4 0.06 4 0.06 4 0.06 4 0.06 5 0.059 4 0.059 21 0.059 4 0.059 4 0.058 4 0.058 4 I 0.058 4 0.058 4 I 0.058 5 0.058 4 0.058 -4 0.058 5 0.058 4 0.058 5 0.057 5 0.057 4 0.057 1 0.057 3 ' 0.057 6 I 0.056 5 0.056 .. 111 • • Frequency 84.00% 84.13% 84.26% 84.39% 84.52% 84.65% 84.77% 84.90% 85.03% I 85.16% 85.29% 85.42% 85.55% 85.68% 85.81% 85.94% 86.06% 86.19% I 86.32% I 86.45% 86.58% 86.71% 86.84% 86.97% 87.10% 87.23% 87.35% 87.48% 87.61% 87.74% 87.87% 88.00% 88.13% 88.26% 88.39% 88.52% 88.65% 88.77% 88.90% 89.03% 89.16% 89.29% 89.42% 89.55% 89.68% i 89.81% 89.94% I' 11 • • I'. • • II If 11 • • .. 11 r • . . . - peakFlowStatisticsPostMitigated.csv Return Period 0.09 0.09 10.09 10.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 10.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.08 0.08 0.08 0.08 0.08 10.08 10.08 10.08 i0.08 10.08 0.08 15/17 ' ! • • 1 r 1 ., . • • Excel Engineering Rank 698 699 700 +--I 701 I 702 703 704 705 706 707 708 709 I 710 I 711 I ~-- 712 713 714 715 716 717 718 719 720 721 ~-722 723 724 I 725 726 727 728 729 ~-730 731 I 732 733 734 735 736 737 738 i 739 740 741 I 742 743 ~ 744 • 'II ., 'II • • • • Start Date 1993/02/26 22:00:00 1975/04/06 03:00:00 1959/10/01 10:00:00 1996/02/12 17:00:00 1978/04/07 05:00:00 1960/12/03 07:00:00 1973/12/01 22:00:00 1983/05/06 12:00:00 2004/12/08 10:00:00 1998/12/19 23:00:00 2004/01/03 01 :00:00 1987/11/14 05:00:00 1971/12/07 06:00:00 1962/05/27 16:00:00 1972/01/09 12:00:00 1981/05/01 15:00:00 1983/01/17 09:00:00 1999/06/02 07:00:00 1980/04/01 19:00:00 1971/12/13 10:00:00 2008/01/22 09:00:00 1998/05/06 21 :00:00 2008/02/14 18:00:00 1980/01/07 11 :00:00 1982/02/08 16:00:00 2007/02/14 01 :00:00 2001/12/21 21 :00:00 1973/03/26 10:00:00 2001/04/21 13:00:00 1952/04/08 05:00:00 1953/01/14 01 :00:00 1963/12/10 03:00:00 1980/03/18 20:00:00 1985/02/20 23:00:00 1956/05/10 03:00:00 1969/03/09 06:00:00 1977/07/20 13:00:00 1960/03/23 13:00:00 1998/04/15 21 :00 :00 1964/02/15 12:00:00 1977/07/27 16:00:00 1958/01/30 17:00:00 1988/11/11 12:00:00 2004/02/18 21 :00:00 1965/04/13 04:00:00 1980/05/08 14:00:00 2005/03/19 16:00:00 3/18/2020 6:29 PM .. 'II I I ' I I --: I : I I i . ,. • • • • End Date • • 1993/02/27 03:00:00 1975/04/06 21 :00:00 1959/10/01 11 :00:00 1996/02/12 19:00:00 1978/04/07 07:00:00 1960/12/03 10:00:00 1973/12/02 00:00:00 1983/05/06 14:00:00 2004/12/0814:00:00 1998/12/20 01 :00:00 2004/01/03 03:00:00 1987/11/14 07:00:00 1971/12/07 08:00:00 1962/05/27 19:00:00 1972/01/09 14:00:00 1981/05/01 17:00:00 1983/01/17 11 :00:00 1999/06/02 12:00:00 1980/04/01 21 :00:00 1971/12/13 12:00:00 2008/01/22 11 :00:00 1998/05/07 02:00:00 2008/02/14 20:00:00 1980/01/0713:00:00 1982/02/08 18:00:00 2007/02/14 03:00:00 2001/12/22 00:00:00 1973/03/26 12:00:00 2001/04/21 17:00:00 1952/04/08 11 :00:00 1953/01/14 03:00:00 1963/12/10 05:00:00 1980/03/18 22:00:00 1985/02/21 01 :00:00 1956/05/10 05:00:00 1969/03/09 08:00:00 1977/07/20 14:00:00 1960/03/23 14:00:00 1998/04/16 00:00:00 1964/02/15 15:00:00 1977/07/27 17:00:00 1958/01/30 18:00:00 1988/11/11 12:00:00 2004/02/18 22:00:00 1965/04/13 05:00:00 1980/05/0815:00:00 2005/03/19 21 :00:00 II' If I I 1 I I I i i - ,. I .,. 'II I I Duration 6 19 2 3 3 4 3 3 5 3 3 3 3 4 3 3 3 6 3 3 3 6 3 3 3 3 4 3 5 7 3 3 3 3 3 3 2 2 4 4 2 2 1 2 2 2 6 : i I • I 'II • .. I Peak 0.056 0.056 0.056 0.056 0.056 0.055 0.055 0.055 0.055 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.054 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.052 0.052 0.052 0.052 0.052 0.051 0.051 0.051 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.049 0.049 0.049 0.048 0.048 0.048 0.048 'II • I I l i ' I ; • I ,. I r • I ■ .. I 1 .. • .. • • • .. . • • . - peakFlowStatisticsPostMitigated.csv Frequency Return Period 90.06% 0.08 90.19% 0.08 90.32% 0.08 90.45% 0.08 90.58% 0.08 90.71% 0.08 90.84% ·0.08 90.97% 0.08 91.10% 0.08 91.23% 0.08 91.35% 0.08 91.48% 0.08 91.61% 0.08 91.74% 0.08 91.87% 0.08 92.00% 0.08 92.13% 0.08 92.26% 0.08 92.39% 0.08 92.52% 0.08 92.65% 0.08 92.77% i0.08 -·--92.90% 0.08 93.03% 0.08 93.16% 0.08 93.29% 0.08 93.42% 0.08 93.55% 0.08 93.68% 0.08 93.81% 0.08 93.94% 0.08 94.06% :0.08 94.19% 10.08 94.32% 0.08 94.45% 0.08 94.58% 0.08 94.71% 0.08 94.84% 0.08 94.97% 0.08 95.10% 0.08 95.23% 0.08 95.35% 0.08 95.48% 0.08 95.61% 0.08 95.74% 0.08 95.87% 0.08 96.00% 10.08 16/17 ■ • -.. --I I --• • r 1 r 1 r 1 .... I I .. . I ■ • • • • r 1 • • 1 r-,. • • • I 1 . .. • • • • " . • 11 • • .,-.. • • r 'II r 11 ._ . . . Excel Engineering peakFlowStatisticsPostMitigated.csv Rank i Start Date End Date ' Duration i Peak Frequency i Return Period ~ i1~ : ~~~~~;~~~ ~~:~~:~~ I ~~~~~;~g ~~:~~:~~ 1 ; 1 ~:~:i 1 ~::~~~ !~:~: >--------------747--~ 2006/12/22 14:00:00 2006/12/22 15:00:00 2 0.047 96.39% 0.08 748 I 2002/12/29 21 :00:00 2002/12/30 00:00:00 ! 4 0.047 ! 96.52% 0.08 749 1955/11/21 20:00:00 I 1955/11/21 21:00:00 2 0.047 96.65% 0.08 --750 1957/11/04 09:00:00 1 1957/11/0411:00:00 3 0.047 1 96.77% 0.08 751 1 1971/04/26 09:00:00 1971/04/2610:00:00 2 0.046 I 96.90% 0.08 -· 752 1982/04/11 23:00:00 1982/04/12 00:00:00 2 0.046 97.03% 0.08 753 1963/11/06 20:00:00 : 1963/11/06 20:00:00 1 0.045 I 97.16% 10.08 754 198711012310:00:oo 1 198711012311:00:oo 2 0.045 I 97.29% 0.08 1---__ 7_55_ ! 1957/01/24 13:00:00 ! 1957/01/24 14:00:00 2 0.045 I 97.42% 0.08 756 1977/01/26 04:00:00 1977/01/26 05:00:00 2 0.045 97.55% 0.08 757 1981/04/26 21 :00:00 1981/04/26 21 :00:00 1 0.045 97.68% 0.08 758 1999/03/1514:00:00 I 1999/03/1514:00:00 1 0.045 97.81% 0.08 759 1962/05/15 07:00:00 1962/05/15 07:00:00 1 ! 0.045 97.94% 0.08 760 2003/03/22 22:00:00 2003/03/22 23:00:00 2 0.045 98.06% 0.08 761 1966/01/20 03:00:00 1966/01/20 04:00:00 2 . 0.044 98.19% 0.08 ~---76T-1964/04/0113:oo:oo 1964/04/0113:oo:oo ! 1 I o.044 ----+-~9~8~.3~2~%--r=o~.0~8--------------; 763 1955/12/07 06:00:00 1955/12/07 06:00:00 1 0.044 98.45% 0.08 764 1968/01/28 04:00:00 I 1968/01/28 04:00:00 1 0.044 98.58% 0.08 765 1956/04/27 12:00:00 I 1956/04/27 12:00:00 1 0.044 98.71% 0.08 766 __ 1963/04/08 12:00:00 1963/04/08 12:00:00 1 __ 0.043 I 98.84% 0.08 767 1999/02/10 00:00:00 1 1999/02/10 00:00:00 1 0.043 I 98.97% 0.08 768 1976/11/2714:00:00 1976/11/2714:00:00 1 0.043 99.10% 0.08 769 1957/11/17 02:00:00 1957/11/17 02:00:00 1 I 0.042 99.23% 10.08 770 1975102114 10:00:00 1915102114 10:00:00 1 0.042 99.35% :o.08 771 2003/11/16 05:00:00 2003/11/16 05:00:00 1 -~ 0.042 99.48% 10.08 772 I 1987/01/2811:00:00 1987/01/2811:00:00 1 1 0.041 99.61% j0.08 773 2001/01/08 21 :00:00 2001/01/08 21 :00:00 1 I 0.041 99.74% 0.08 774 1994/02/20 17:00:00 1994/02/20 17:00:00 1 0.041 99.87% i 0.08 -End of Data-----------------, 1 3/18/2020 6:29 PM 17/17 r ,. . . Excel Engineering Flow Duration Curves --Pre Development -Post Development Mitigated 5 'fi: I~ 010 (5.417cfs) ~ Qlf(0.3995cfs) I ••• I • I• ••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • . • . . • . • • . . • . • • • • • • . . • • • • . • . . . . . . • . . ..••••.•.••••... 4 • l• •••••••••••••••••••.•............. "' ................. I ••••••••••••••••• , ••••••••••••••••• -J!? 3 . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . u -Cl) -ns ~ 2 . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . ' ....................................... . ~ .2 1 • • • • • • • •••••••I•••••••••••••••••"••••••••••••••••• u.. 0 g .... 0 ~ 0 -1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................................................. . : Flow Duration PreDevelopment=365(days)x24(hr/day)x0.241 (%)=21 .1 (hours/year) : Flow Duration Mitigated Post Development=365(days)x24(hr/day)x0.190(%)=16.6(hourslyear) -2 • • • I• • • .,, • • • .-• • •, • • • 1 • • • I• • • •• • • • • • • • . • • • , • • • • • • • • ~ • • • .• , • •• • • • I , , , , , , • 0.00 0.05 0.10 0.15 0.20 0.25 (%) Percent Time Exceedance r • • • ---.... ■ I .... " . ... • • • • • • ---... I I ...---11 I I .. ,. I I ... ,. I I .. ,. I I ,r· • I I Excel Engineering Compare Post-Development Curve to Pre-Development Curve post-development SWMM file: V:\ 19\ 19079\Engineering\SDP\Storm-SDP\SWMM\ 19-079-POST DEV.out post-development time stamp: 3/18/2020 6:23:13 PM Compared to: pre-development SWMM file: V:\ 19\ 19079\Engineering\SDP\Storm-SDP\SWMM\ 1 !f-°079-PRE DEV.out pre-development time stamp: 2/17/2020 4:21 :51 PM I I fl,0 J; 1,.0 1,.0 ~'!!< ~ i <v+~ <v4,fli ~+~ ~+~ o\o o\o "'-q_ Q:-'b' o\o 0\o I "'-I,, I "'-'1 ,.i-~<i~ I <::>0~ q,o"' I «'o o"' o"' ~+~ ~+~ I q_0":;j I q_<..0 o\o o\o 0 0.40 0.19 0.24 TRUE FALSE 1 0.45 0.17 0.22 TRUE FALSE 2 0.50 0.15 I 0.21 TRUE FALSE 3 0.55 0.13 0.19 TRUE FALSE 4 0.60 0.11 0.18 TRUE FALSE 5 0.65 0.10 0.16 TRUE FALSE 6 0.70 0.09 0.15 TRUE FALSE 7 0.75 0.08 0.14 TRUE FALSE ~ 8 0.81 0.07 0.13 TRUE : FALSE 9 0.86 I 0.07 0.12 TRUE FALSE 10 0.91 0.06 0.12 TRUE FALSE 11 0.96 0.06 0.11 I TRUE FALSE 12 I 1.01 0.05 0.10 TRUE FALSE ·-· 13 1.06 0.05 0.10 TRUE FALSE I 14 I 1.11 0.04 0.09 TRUE FALSE 15 1.16 0.04 0.09 TRUE FALSE 16 1.21 0.04 0.08 TRUE I FALSE -17 1.26 I 0.03 0.08 TRUE FALSE 18 1.31 0.03 0.07 TRUE FALSE 19 1.36 0.03 0.07 TRUE FALSE 20 1.41 0.03 0.06 TRUE FALSE 21 1.46 0.03 I 0.06 TRUE FALSE 22 __j_ 1.51 0.02 0.06 TRUE FALSE 1.57 0.02 0.05 TRUE FALSE 23 ----+---: 24 I 1.62 0.02 0.05 TRUE FALSE 25 1.67 0.02 0.05 TRUE I FALSE 26 1.72 I 0.02 I 0.05 TRUE ! FALSE 27 1.77 I 0.02 0.04 TRUE FALSE 28 1.82 0.01 0.04 : TRUE FALSE 29 1.87 0.01 0.04 TRUE FALSE 30 1.92 0.01 0.04 TRUE FALSE 31 1.97 0.01 0.04 TRUE FALSE 3/18/2020 6:29 PM I I I I ' I II' • I I .... I I 1,.0 ~+~ o\o o\o .... ~ " ~'1 o"' ~+~ o\o FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE r· 1111 • I r· 1111 I ■ r·· 11 I I ... 11 • • • • • • flowDurationPassFailMitigated.TXT ----- ~ ~ ~"' q_'I>' Pass-Qpost Below Flow Control Threshold Pass: Post Duration< Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration< Pre Duration Pass: Post Duration< Pre Duration Pass: Post Duration < Pre Duration --Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration< Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration< Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration 1/3 ,, 11 • • _.,y ... I I --• I .. ,. I I r·1 Excel Engineering :<..~ ,;;.0 I ~q_ ~~ I q_o"' «.'o I I 32 2.02 33 2.07 34 2.12 35 2.17 36 2.22 37 2.28 38 2.33 39 2.38 40 2.43 41 2.48 42 I 2.53 43 I 2.58 44 2.63 45 2.68 46 2.73 47 2.78 48 2.83 49 2.88 50 2.93 51 2.98 52 3.04 53 3.09 54 I 3.14 55 3.19 56 i 3.24 57 I 3.29 58 3.34 59 3.39 60 3.44 61 3.49 62 3.54 63 • 3.59 64 3.64 65 3.69 66 3.75 67 3.80 68 3.85 --69 3.90 70 3.95 71 4.00 3/18/2020 6:29 PM .. ,. I I --,. I I -· .. I I I I o c,0/lj r!l'J> I <v..,,. <v..,,. o\o 0\o ~ ~ , ~()0 ()0 I q_O<,; q_<..0 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.03 0.01 I 0.03 0.01 0.02 0.01 I 0.02 0.01 0.02 0.01 0.02 0.01 0.02 I 0.01 0.02 0.01 0.02 0.01 0.02 0.00 0.02 0.00 0.02 I 0.00 0.02 0.00 ! 0.01 0.00 0.01 0.00 ' 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 I 0.01 0.00 0.01 0.00 0.01 0.00 0.01 : 0.00 0.01 0.00 0.01 0.00 I 0.01 0.00 0.01 0.00 0.01 0.00 0.01 ; 0.00 0.01 0.00 0.01 0.00 I 0.01 0.00 0.01 0.00 0.01 I I I ' I I ---,. I I .. ,. I I &0 ~+q o\o ~t- o"' +q o\~ TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE I I I I ' I I I .,, ,. I I . .. I I &0 ~+q o\o ~..., o"' ~+q o\o FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE ---FALSE r ,. I I .. ' I I &0 I I +q I o\~ I o\o ... ~ " i ~..., I ,s' ~+q o\o FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE ! FALSE FALSE FALSE FALSE I FALSE I FALSE FALSE FALSE FALSE FALSE FALSE I FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE ---· FALSE r ,. I I r--,. • • .. -. • • .. . • • r' flowDurationPassFailMitigated.TXT ~ {< ,,,,,, q_'?>' Pass: Post Duration< Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration -~ Pass: Post Duration< Pre Duration Pass: Post Duration< Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration< Pre Duration Pass: Post Duration< Pre Duration Pass: Post Duration< Pre Duration Pass: Post Duration< Pre Duration --~~--Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration< Pre Duration Pass: Post Duration< Pre Duration Pass: Post Duration< Pre Duration Pass: Post Duration< Pre Duration Pass: Post Duration < Pre Duration -~ Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration< Pre Duration Pass: Post Duration< Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration< Pre Duration Pass: Post Duration< Pre Duration Pass: Post Duration< Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration< Pre Duration 2/3 • • -. -,. I I -. I I .. . I I Excel Engineering I ~'l< I r,..q_ q_O<,; '1 72 ~-73 74 75 76 -: 77 I 78 79 80 81 82 83 ·-84 85 86 ' -87 88 -· 89 90 91 I 92 -93 94 I 95 I 96 -· 97 98 99 .. . I I :\.0 <;;-'rf ~ «'o 4.05 4.10 4.15 4.20 4.25 4.30 4.35 4.40 4.45 4.51 4.56 4.61 4.66 4.71 4.76 4.81 4.86 4.91 4.96 5.01 5.06 5.11 5.16 5.21 5.27 5.32 5.37 5.42 3/18/2020 6:29 PM .. . I I ... 1111 I I ... . I I I 00 ,t> I ;:vfli Vfli : «;i v.,,;: ; ,.,o\o 0\o I ()0 <J0.:;, • "- q_O<,; q_<..0 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 I 0.00 0.01 0.00 i 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 I 0.00 ' 0.00 I I 0.00 0.00 ----0.00 0.00 0.00 0.00 I 0.00 0.00 i 0.00 I 0.00 I 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 I .. ,. I I .. . I I &0 <y+~ o\o "-" oe,; <y+q o\o TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE I I I I I ! .. . I I II' • I I &0 <y+~ o\o "-'1 oe,; q o\fp FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE -FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE i I I I ' r • I I r • I I &0 +~ o\<j) o\o "<:s " "'--1 oe,; <y+q o\o FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE .. . • • r ,. • • .. . • • • • • • • • .. . flowDurationPassFailMitigated.TXT ~ j- q_~ Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration< Pre Duration Pass: Post Duration< Pre Duration Pass: Post Duration< Pre Duration Pass: Post Duration< Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration< Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration< Pre Duration Pass: Post Duration< Pre Duration --Pass: Post Duration < Pre Duration -Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration Pass: Post Duration < Pre Duration 3/3 • • • • •• •• •• •• ... .... .... ... Ill• •• ... ·- , .. ... ,. ' ... ,. •• ,. •• •• ... ,. Excel Engineering USGS9217dPre.csv Duration Table Summary at Project Discharge Point ----·-·-------- file name: V:\19\19079\Engineering\SDP\Storm-SDP\SWMM\19-079-PRE DE'(~~t __ ---·--------- ------time stamp: 2{1?/2020 4:21 :51 PM -----------·--------- ----------------·---------------~ DISCHARGE Number of periods when discharge was equal to or greater than DISCHARGE column but less than that shown on the next line ----------. ------ b"3 &<::-°-' bJ> t--.0 0(lj 0(lj ~ <;;-'lf 1,.fl «l' «l' ~ ~0 ~§ 0 l:1, cl' /...'J>"3 0 0' ~~ <b,$' -~o' ~ ~0 ~ <S" ~v~ ~ 1-.fli --------------- ,,.,.~ ·----~- ~(lj --1 0.40 105 1200 0.241 ---·---------------------2 0.45 77 1095 0.220 ---------------3 0.50 73 1018 0.205 -----4 0.55 77 945 0.190 -----··---5 0.60 74 868 0.175 ~---- 6 0.65 64 794 0.160 ---· --------7 0.70 42 730 0.147 I------------------ 8 0.75 40 688 0.138 ---------------9 0.80 38 648 0.130 -------,_ ______ ·-· ----10 0.86 36 610 0.123 i--------------------_ _. - 11 0.91 36 574 0.115 --·---12 0.96 36 538 0.108 ------13 1.01 31 502 0.101 i-----------. -------------14 1.06 31 471 0.095 -------·--. 15 1.11 19 440 0.088 -. I-------. 16 1.16 -20 421 0.085 --· -----------17 1.21 23 401 0.081 --------- 18 1.26 21 378 0.076 -----19 1.31 19 357 0.072 ------20 1.36 23 338 0.068 --------------·----21 1.41 19 315 0.063 --22 1.46 21 296 0.060 --23 1.51 18 275 0.055 r------r ·--24 1.57 17 257 0.052 ~ 25 1.62 10 240 0.048 -----~ e------------26 ··--1.67 7 230 0.046 27 1.72 13 223 0.045 ---28 1.77 7 210 0.042 ------29 1.82 12 203 0.041 30 1.87 5 191 0.038 --31 1.92 9 186 0.037 ---32 1.97 13 177 0.036 -----33 2.02 12 164 0.033 . ·-------34 2.07 10 152 0.031 -----~ 2.12 14 142 0.029 -----------36 2.17 6 128 0.026 ~---37 2.22 5 122 0.025 ----38 2.27 5 117 f---0.024 39 2.33 4 112 0.023 ----40 2.38 3 108 0.022 ------------------41 2.43 3 105 0.021 -----· 42 2.48 5 102 0.021 ---· --------43 2.53 4 97 0.020 44 2.58 2 93 0.019 45 2.63 3 91 0.018 46 2.68 6 88 0.018 47 2.73 3 82 0.016 --------·-48 2.78 8 79 0.016 ~------------49 2.83 5 71 0.014 I-------·---··-50 2.88 4 66 0.013 ---·--~ 51 2.93 2 62 0.012 3/18/2020 6:29 PM 1/2 .... ... ... ... ... ... •• •• •• •• , .. .. Excel Engineering ~0 rz,"-~ ~f/j ~"~ 0 I i:$ <b~ •1'<,o' <:S' ---------52 2.98 ---- 53 3.03 -----_, ___ 54 3.09 -----·---55 3.14 --l------56 3.19 ---------57 3.24 58 3.29 59 3.34 ----60 3.39 ------61 3.44 ---------62 3.49 ----------63 3.54 64 3.59 -------65 3.64 ---- 66 3.69 67 3.74 I----------68 3.80 -69 3.85 -----70 3.90 ---71 3.95 ~------·---72 4.00 i--------------73 e------4.05 74 4.10 -75 4.15 76 4.20 ~----77 4.25 ~--78 4.30 ----79 4.35 --80 4.40 ~ --81 4.45 -----82 4.50 ----------83 4.56 ~---84 4.61 --85 4.66 I------ 86 4.71 87 4.76 88 4.81 ~--89 4.86 ~ 90 4.91 ---91 4.96 f-------------92 5.01 -93 5.06 -94 5.11 ---95 5.16 ------96 5.21 ----97 5.26 --------98 5.32 99 5.37 -----100 5.42 --------End of Data----------------- 3/18/2020 6:29 PM -- -- ---- ------ - --- --- - I -. -- ---- -- USGS9217dPre.csv b~ '&-~~ J>J> ;_,o 0flj flj ~0 ~+o ~+o I ~ ;.J>~ 0 ~ I "~ ;,g ~0 ~ ~.§ ~ c,0 ""~ 1 ~0" - 3 60 0.012 -------0 57 0.011 ------ 0 57 0.011 ----------3 57 0.011 1 54 0.011 ---·----------3 53 0.011 -- -+--50 -------2 0.010 --2 48 0.010 2 46 0.009 -----------1----· ----------1 44 0.009 -----3 43 0.009 ----3 40 0.008 ------1 37 0.007 -----------1 36 0.007 --- 1 35 0.007 . ---0 34 0.007 -------1 34 0.007 -----1 33 0.007 --1 32 0.006 -----1 31 0.006 ----·----1 30 0.006 ------------------2 29 0.006 --1 27 0.005 --0 26 0.005 ---------0 26 0.005 -----·--1 26 0.005 -------0 25 0.005 ------·-1 25 0.005 ---------0 24 0.005 ----3 24 0.005 -·--------2 21 0.004 ---2 19 0.004 --------0 17 0.003 -----0 17 0.003 -------0 17 0.003 0 17 0.003 1 17 0.003 ----0 16 0.003 1 16 0.003 -·-·-1 15 0.003 --------0 14 0.003 ----1 14 0.003 ----0 13 0.003 1 13 0.003 ----2 12 0.002 --2 10 0.002 -1 8 0.002 --· 1 7 0.001 ------------·---0 6 0.001 2/2 ... ... •• •• ... ... ... ... ... ,. ... ... ... ,. ,. Excel Engineering USGS9217dPostMitigated.csv Duration Table Summary at Project Discharge Point -·-. ---· - . --------file name: V:\ 19\ 19079\Engineering\SDP\Storm-SDP\SWMM\ 19-079-POST DEV.out time stamp: 3/18/2020 6:23:13 PM ·----- --. ------·------------- -------· . --------------------·------ DISCHARGE Number of periods when discharge was equal to or greater than DISCHARGE column but less than that shown on the next line 1----------------·-------- b"' ~~o., bJ> fly°ll, IZi ll,flj rt;. 11:-0 <v+<:? <v+o ~ ll,Q;I q0 ~v~ ~Cf, ~ i..J>"' 0 0' ,(~ <if' o' ~ qe ~ <;){a ~v~ ~ c,0 ,,.,.~ qe" ·----------. 1 0.40 119 946 0.190 ------2 0.45 96 827 0.166 -------• ------- 3 0.50 106 731 0.147 ----··----· -.-- 4 0.55 66 625 0.126 ----·-· _, •-ss••• --5 0.60 61 559 0.112 -· -------· 6 0.65 55 498 0.100 7 0.70 51 443 0.089 ---------8 0.75 35 392 0.079 >----·· 9 0.80 34 357 0.072 --------·-· ------10 0.86 30 323 0.065 --· ----··-·-- 11 0.91 16 293 0.059 --·--· 12 0.96 20 277 0.056 --------------------·-13 1.01 14 257 0.052 . --14 1.06 24 243 0.049 ------------15 1.11 22 219 0.044 ---16 1.16 16 197 0.040 -· -----~ -----17 1.21 13 181 0.036 --·--·--· --18 1.26 13 168 0.034 ---· 19 1.31 10 155 0.031 -----20 1.36 10 145 0.029 -· -----· ---21 1.41 6 135 0.027 -------· --· -22 1.46 13 129 0.026 ------------------ 23 1.51 7 116 0.023 ------·--·-24 1.57 12 109 0.022 --~----· 25 1.62 5 97 0.020 ~------26 1.67 5 92 0.018 -------27 1.72 8 87 0.017 28 1.77 7 79 0.016 --------· ------·--29 1.82 3 72 0.014 30 1.87 4 69 0.014 >-------31 1.92 2 65 0.013 -· --------32 1.97 3 63 0.013 ~--33 2.02 4 60 0.012 34 2.07 8 56 0.011 ~---- 35 2.12--2 48 0.010 I-----------------------36 2.17 5 46 0.009 --. ·----------37 2.22 4 41 0.008 ---.. ·-. -- 38 2.27 1 37 0.007 --· ------~ 39 2.33 f-3 36 0.007 40 2.38 3 33 0.007 ~-------41 2.43 2 30 0.006 --- 42 2.48 2 28 0.006 -----43 2.53 3 26 0.005 44 2.58 0 23 0.005 45 2.63 1 23 0.005 46 2.68 1 22 0.004 ---------· ·----47 2.73 0 21 0.004 --~ --·-· 48 2.78 0 21 0.004 ------49 2.83 1 21 0.004 --------50 2.88 1 20 0.004 -· ------· -~----51 2.93 1 19 0.004 3/18/2020 6:30 PM 1/2 .... ... ... ... ... .... ... ,. .. ... ... 11-.i .... ,. , . .... Excel Engineering USGS9217dPostMitigated.csv o"' ,fr~O:, be~ rz,'-1\.0 i._,o 0 'l,flj ~ ~'lf q_0 «l, «l, ~v~ 0 L__:I • .,o:-~<:$ ~ .,J>"' 0 rt-,<_~ <b~ ~ e,<:. ~ <>" ~v~ ~q_ i:,0 ----~------ "'-o''lf -- q_0<;, ------52 2.98 2 18 0.004 --------53 3.03 0 16 0.003 ------· --------·----- 54 3.09 0 16 0.003 ---------55 3.14 1 16 0.003 -------·----------------~ 56 3.19 2 15 0.003 ----------------57 3.24 0 13 0.003 ------------------------·-·-58 3.29 1 13 0.003 ----· ----------59 3.34 0 12 0.002 ------60 3.39 0 12 0.002 --------------·-----61 3.44 0 12 0.002 -----------62 3.49 1 12 0.002 ---· -------63 3.54 1 11 0.002 ---------64 3.59 1 10 0.002 --·-f------65 3.64 0 9 0.002 --------r-----------~-66 3.69 0 9 0.002 ----_ _._ 67 3.74 0 9 0.002 --~-----~ 68 3.80 0 9 0.002 --69 3.85 1 9 0.002 -----~ 70 3.90 0 8 0.002 ------------71 3.95 0 8 0.002 72 -4.00 -+-0 8 0.002 -------------73 4.05 0 8 0.002 ----------74 4.10 1 8 0.002 ----------~ 75 4.15 1 7 0.001 ---·-·-------------~ 76 4.20 0 6 0.001 -----------77 4.25 2 6 0.001 ----~------~ 78 4.30 0 4 0.001 ---79 4.35 0 4 0.001 ----- -----80 ----4.40 ~ 0 4 0.001 -~ ----------81 4.45 0 4 0.001 -----82 4.50 1 4 0.001 -------------83 4.56 0 3 0.001 --84 4.61 0 3 0.001 -f---------------~ 85 4.66 1 3 0.001 ---86 4.71 0 2 0.000 ---------·----87 4.76 0 2 0.000 ------88 4.81 0 2 0.000 --89 4.86 0 2 0.000 90 4.91 0 2 0.000 -91 4.96 0 2 0.000 92 5.01 0 2 0.000 -----------93 5.06 0 2 0.000 94 5.11 0 2 0.000 -95 5.16 0 2 0.000 -------------96 5.21 0 2 0.000 ~-----------97 5.26 0 2 0.000 ---------98 5.32 1 2 0.000 ~-------99 5.37 ~-----0 1 0.000 ---100 5.42 0 1 0.000 -------------End of Data----------------- 3/18/2020 6:30 PM 2/2 .... ... ... ... ... ... ... •• ... II• •• ... , . •• ... ... , .. Excel Engineering END OF STATISTICS ANALYSIS r 1 r I W"l ' 1 r 1 r 1 ' 1 r 1 r 1 r 1 r 1 r 1 ' 1 r I r 1 I I ! ' • • -- Excel Engineering Underdrain and Drawdown Results The following table summarizes the underdrain coefficients used for each of the BMP units and translates the C factor coefficient to an equivalent round orifice diameter based on l/16th inch increments. The drawdown equations are based on standard falling head drawdown theory. The primary drawdown number of interest is the surface drawdown based on vector concerns. The various soil and gravel storage layer calculations consider the void ratio and porosity of the respective layer. It should be noted that these drawdown calculations only consider the volume of water within the bioretention units. If the bioretention unit utilizes any storage above the berm height, then that storage drawdown is in addition to the values shown in the table below. Those calculations, if present, are shown elsewhere in the report. The derivation and explanation of the equations used to determine the values displayed in the chart are discussed in the following two sections of this portion of the report. .. "i:; a .. QJ .. "' rl C C >< C C ..C: .µ ., Q) V C .. Q) k :i: Q) :i: ..c: :i: Q) :i: -"' ., k u ..... k .... ...... k ..... 0 0 U 0 -0 t,, 0 u .. Q) ..: .. ..... '° 0 k -I< ..... .. 0 .. 0 .µ -0 <ti -0 -0 <ti -0 ...... Q) u .......... u .µ ::> -0 -.µ -., ., :i: .... -:i: ...... 3: k -:i: <ti ..o e Cl 0 Cl _... ..... ' u rn C OJ C OJ C --Ill k k "' ..... Ill O k "' .µ ::> "' H k H fJl k .-i a"' ..... ..... ..... k ::> ..C: k 0 .. .µ ..c: k 0 Cl) z ..:Ill< ..:1-o-::, .... E--<-E--< -E--< -C Q) a ., -a Cl) Cl Cl) -a +-' BMP-A BMP-A 8735.0 32 0.14699 6 21 24 0.4 0.67 6.1 10.3 25.0 41. 4 BMP-B BMP-B 1354.1 16 0.24657 6 21 24 0.4 0.67 3.6 6.2 14.9 24.7 The character* in the column heading indicates that the values was read directly from the SWMM inp file. Assume: orifice coefficient Co= 0.61, void ratio for surface= 1.0, centroid of underdrain orifice is located at h=O SWMM C Factor and Drawdown Results !" I .. .. -.. --.. .. ... .. ... .. ... ... ... .. ... ... ... JIIII ... JIIII JIIII ... .... ... ... ... i... ,.. ... ... .. ... 11111 Excel Engineering Underdrain C Factor Equations Based on the slotted drain example in the SWMM Drain Advisor (EPA SWMM 5.1 Help/Contents/Reference/Special Dialog Forms/LID Editors/LID Control Editor/LID Drain System/Drain Advisor) the underdrain coefficient C is the ratio of the orifice area (total slot area) to the LID area times a constant (60,000) . SWMM Ex: If the drain consists of slotted pipes where the slots act as orifices, then the drain exponent would be 0.5 and the drain coefficient would be 60,000 times the ratio of total slot area to LID area. For example, drain pipe with five 1/4" diameter holes per foot spaced 50 feet apart would have an area ratio of 0.000035 and a drain coefficient of 2 . The 60,000 constant in the above example corresponds to the combined constants in the standard orifice equation: (Standard Orifice Equation) q=CoA<>/fg {Ti, (els) and (SWMM Underdrain Equation (per unit area)) q=q/Auo or q=CoAo;Auo/fg {Ti, refs/sf} With a Co=0.6 and converting .fin to units of inches and hours the constant becomes 60,046 . So the underdrain C factor per unit area of the LID becomes: C=60,046 Ao/Aun (in"112/hr) and q=C*ht/2 inp File Listing .. .. .. .. .. .. JIii ... ,.. ... ... ... ... .. ... ... ... ... ... .... ... ... ,.. ... ,.. ... ... JIii ... .. JIii .. Excel Engineering Drawdown Equations The drawdown equations presented in the chart are the drawdown times for the respective layers within the bioretention unit {only). If the bioretention unit includes storage ponding above the berm height, then the drawdown time for the storage portion is in addition to the values shown in the chart. Those calculations {if present) are shown elsewhere in the report. For most cases the storage drawdown time will be comparatively short as compared to the bioretention drawdown times. To derive a general formula that relates drawdown time for each layer of the bioretention unit in terms of the SWMM C factor, we set the change in water volume with respect to time equal to the standard orifice equation {found in the County Hydraulics manual): dh q = dt nAp = CoAo✓2gh Where n = porosity of the layer, Ap = area of the BMP unit, Co= orifice coefficient, Ao= area of the orifice, and g = gravity constant. The porosity n for the surface layer is 1.0, and the values for the soil and storage layers read from the SWMM LID definitions . Solving the definite integral from hl to h2 Solving for T: ih=h2 1t=T CoAo.fig h-0•5dh = ---dt h=h1 t=o nAp CoAo.fig 2(ill -ill) = ---(T) nAp Or 2n( ill -./hi) = C (T) where: C = CoAo..fig {in"1/2/hr} Ap T = 2n(./ii2-../hi) {hr} C Where h2{in) is the total beginning head above the underdrain orifice at t=O and hl{in) is the total ending head above the orifice at t=T. Ex: h2 for surface= depth of gravel storage plus depth of soil layer plus berm height, and hl for surface= depth of gravel storage plus depth of soil layer. inp File Listing ... ... ... ,.. Illa a.. ,.. ... ,.. ... ,.. ... ,.. ... ... ... ... ; ... !II" ,.. ,.. I iii. .... ,.. a.. .. ... ... .. .. ATTACHMENT 3 Structural BMP Maintenance Information Use this checklist to ensure the required information has been included in the Structural BMP Maintenance Information Attachment: Preliminary DesignlPlanninglCEQA level submittal: Attachment 3 must identify: Typical maintenance indicators and actions for proposed structural BMP(s) based on Section 7. 7 of the BMP Design Manual Final Design level submittal: Attachment 3 must identify: J .,I Specific maintenance indicators and actions for proposed structural BMP(s). This shall be based on Section 7.7 of the BMP Design Manual and enhanced to reflect actual proposed components of the structural BMP(s) J .,I How to access the structural BMP(s) to inspect and perform maintenance J .,I Features that are provided to facilitate inspection (e.g., observation ports, cleanouts, silt posts, or other features that allow the inspector to view necessary components of the structural BMP and compare to maintenance thresholds) J .,I Manufacturer and part number for proprietary parts of structural BMP(s) when applicable J .,I Maintenance thresholds for BMPs subject to siltation or heavy trash(e.g., silt level posts or other markings shall be included in all BMP components that will trap and store sediment, trash, and/or debris, so that the inspector may determine how full the BMP is, and the maintenance personnel may determine where the bottom of the BMP is . If required, posts or other markings shall be indicated and described on structural BMP plans.) J .,I Recommended equipment to perform maintenance J .,I When applicable, necessary special training or certification requirements for inspection and maintenance personnel such as confined space entry or hazardous waste management .. -111111 .. 1111 .. ... ,.. .. ,.. .... ,,. .... ,.. ... ... ... ,.. .. ... ,.. .... ,.. ' ... ,.. ,,. i ... ... ... OPERATION & MAINTENANCE (O&M) PLAN .. Ill -Ill .. ... ,.. ,.. ,... ... ... ... .... ,. .. Contents 1. PROJECT DESCRIPTION ................................................................................................... 1 2. OPERATION & MAINTENANCE PLAN .......................................................................... 1 3. Operation & Maintenance of BMP'S ................................................................................... 1 A. Training ................................................................................................................ 2 B. Landscaping ........................................................................................................ 2 C. Irrigation System .................................................................................................. 5 D. Trash Storage Areas ........................................................................................... 5 E. Storm Water Conveyance System Stenciling and Signing .................................. 5 F. Biofiltration ........................................................................................................... 6 G. Outlet Structures .................................................................................................. 8 H. Vector Management Control Requirements ...................................................... 10 ,. ATTACHMENTS .... ,.. .... ,.. ,.. ' ,. .... ,.. ,.. ... .. A. O&M Exhibit Al. Inspection & Maintenance Schedule Bl. Cost Estimate Cl. BMP Training Log Dl. Inspection & Maintenance Log El. Maintenance Indicators (Table 7-2) -i- .. .. -.. ... ... .. .. .. .. ... .. .. .. .. ... ... .. ... .. ""' ... ... ... ... .. .. ... .. ... ... 1. PROJECT DESCRIPTION The purpose of the project is to build a parking lot with landscaping and several bioretention facilities (Biofiltration) . 2. OPERATION & MAINTENANCE PLAN The Operation and Maintenance Plan (O&M) needs to address construction and post-construction concerns as shown in the Storm Water Mitigation Plan . 3. Operation & Maintenance of BMP'S It shall be the responsibility of the owner to train all employees for the maintenance and operation of all BMPs, to achieve the maximum pollutant reduction, as addressed in the approved Project's SWQMP. The following schedule of (O&M's) must be followed to satisfy the Conditions of Concern and the Pollutants of Concern as addressed in the approved Project's SWQMP and the City's BMP manual. This schedule shall include periodic inspections of all Source Control and Treatment Control BMP's. All maintenance records for training, inspection and maintenance shall be retained and provided to the city upon request. All BMPs shall be inspected 30 days prior to October 1st each year and certified to the City Engineering Department as to their readiness to receive runoff from the annual rainfall season . The owner will also provide to the City, as part of the maintenance and operation agreement, an executed maintenance and access easement that shall be binding on the land throughout the life of the project. 1 ... ... -... ... ... ... ... ... ... JIii"' ... ... ... ... ... ... ... JIii"' .... ... .. .... ,... ... ... II,. ,.. ,. ... ,.. ... ... ... Responsible Party for O&M and For Training-Property Owner Carlsbad Oaks Lot 2 A. Training Training of Operation and Maintenance personnel is of primary importance to provide knowledge of the operation and maintenance ofBMPs. Proper training shall provide information that will enable employees to have in place an effective preventive maintenance program as described in this O & M manual. The responsible party mentioned above should read the course provided by the San Diego BMP Manual, to be trained in the purpose and use of BMPs and the maintenance thereof. Proper preventive maintenance will prevent environmental incidents that may be a health and safety hazard . New employees should be trained as to the purpose and proper maintenance within the first week of their employment. Employee training shall include receiving a copy of this O & M manual; a discussion on the location and purpose of site specific BMPs, such as Source Control and Treatment Control BMPs; training on how to inspect and report maintenance problems and to whom they report to; They shall be trained in site specific Pollutants of Concern so that they can evaluate the functioning of all on-site BMPs . These Pollutants are identified in section 2 of this report . A log of all training and reported inspections and maintenance problems along with what was done to correct the problem shall be kept on the premises at all times. Employees shall be periodically trained, at a minimum of once a year, to refresh their abilities to Operate and Maintain all on-site BMPs . B. Landscaping Operational and maintenance needs include: ■ Vegetation management to maintain adequate hydraulic functioning and to limit habitat for disease-carrying animals. ■ Animal and vector control. ■ Periodic sediment removal to optimize performance. ■ Trash, debris, grass trimmings, tree pruning, dead vegetation collection and removal. ■ Removal of standing water, which may contribute to the development of aquatic plant communities or mosquito breeding areas. ■ Erosion and structural maintenance to prevent the loss of soil and maintain the performance of all landscaping. 2 ... ... ... ... ... ... .. ... Ill"' ... ... ... ,.. ... .... ... ' ... ... .. ,... ... ... .... ... ,.. ... Inspection Frequency The facility will be inspected and inspection visits will be completely documented: • Once a month at a minimum . • After every large storm (after every storm monitored or these storms with more than 0.50 inch of precipitation.) • On a weekly basis during extended periods of wet weather . Inspect for proper irrigation and fertilizer use, and ensure that all landscaped areas have minimum of 80% coverage . Aesthetic Maintenance The following activities will be included in the aesthetic maintenance program: Grass Trimming: Trimming of grass will be done on all landscaped areas, around fences, at the inlet and outlet structures, and sampling structures. Weed Control. Weeds will be removed through mechanical means. Herbicide will not be used because these chemicals may impact the water quality monitoring . Functional Maintenance Functional maintenance has two components: • Preventive maintenance • Corrective maintenance Preventive Maintenance Preventive maintenance activities to be instituted for landscaped areas are: • Grass Mowing: Vegetation seed, mix within the landscaped areas, are to be designed to be kept short to maintain adequate hydraulic functioning and to limit the development of faunal habitats . • Trash and Debris: During each inspection and maintenance visit to the site, debris and trash removal will be conducted to reduce the potential for inlet and outlet structures and other components from becoming clogged and inoperable during storm events . • Sediment Removal: Sediment accumulation, as part of the operation and maintenance program at of landscaped areas, will be monitored once a month during the dry season, after every large storm (0.50 inch), and monthly during the wet season. Specifically, if sediment reaches a level at or near plant height, or could interfere with flow or operation, the sediment shall be removed. If accumulation of debris or sediment is determined to be the cause of decline in design performance, prompt action (i.e., within ten working days) will be taken to restore the landscaped areas to design performance standards. Actions will include using additional vegetation and/or removing accumulated sediment to correct channeling or ponding. Characterization and Appropriate disposal of sediment will comply with applicable local, county, state, or federal requirements . ■ Landscaped areas will be re-graded, if the flow gradient has been altered. This should be a sign that the BMP is failing and the soil matrix may need to be replaced. 3 ... .. ... ... ... ,.. ... ,.. ... ,.. .... ... ,.. ... ,.. I ... - ,.. ... .. ,. ... • Removal of Standing Water: Standing water must be removed if it contributes to the development of aquatic plant communities or mosquito breeding areas. • Fertilization and Irrigation: fertilization and irrigation is to be keep at a minimum. • Elimination of Mosquito Breeding Habitats. The most effective mosquito control program is one that eliminates standing water over a period less than 96 hours . Corrective Maintenance Corrective maintenance is required on an emergency or non-routine basis to correct problems and to restore the intended operation and safe function of all landscaped areas . Corrective maintenance activities include: • Removal of Debris and Sediment: Sediment, debris, and trash, which impede the hydraulic functioning of landscaping and prevent vegetative growth, will be removed and properly disposed. Temporary arrangements will be made for handling the sediments until a permanent arrangement is made. Vegetation will be re-established after sediment removal. • Structural Repairs: Once deemed necessary, repairs to structural components of landscaping will be done within 10 working days. Qualified individuals (i.e., the designers or contractors) will conduct repairs where structural damage has occurred . • Embankment and Slope Repairs: Once deemed necessary, damage to the embankments and slopes of landscaped areas will be repaired within IO working days. ■ Erosion Repair: Where a reseeding program has been ineffective, or where other factors have created erosive conditions (i.e., pedestrian traffic, concentrated flow, etc.), corrective steps will be taken to prevent loss of soil and any subsequent danger to the performance and use of landscaped areas as BMPs. There are a number of corrective actions than can be taken. • These include erosion control blankets, riprap, or reducing flow velocity. • Consult with an engineer and contractor to address frequently occurring erosion problems. ■ Elimination of Animal Burrows: animal burrows will be filled and steps taken to remove the animals if burrowing problems continue to occur (filling and compacting). If the problem persists, vector control specialists will be consulted regarding removal steps. This consulting is necessary as the threat of rabies in some areas may necessitate the animals being destroyed rather than relocated. If the BMP performance is affected, abatement will begin. Otherwise, abatement will be performed annually in September. ■ General Facility Maintenance: In addition to the above elements of corrective maintenance, general corrective maintenance will address the overall facility and its associated components. If corrective maintenance is being done to one component, other components will be inspected to see if maintenance is needed. Maintenance Frequency The maintenance indicators for selected BMPs are included in Attachment Al. 4 .. ... ... ... ... .... ,... ,... .... ,... ... .... .... .... 11111" ... 11111" .... ,.. ,... .... ,.. .... ,.. .... ,.. ... ... ,.. ... Debris and Sediment Disposal Waste generated onsite is ultimately the responsibility of the Owner. Disposal of sediments, debris, and trash will comply with applicable local, county, state, and federal waste control programs . Hazardous Waste Suspected hazardous wastes will be analyzed to determine disposal options. Hazardous wastes generated onsite will be handled and disposed of according to applicable local, state, and federal regulations. A solid or liquid waste is considered a hazardous waste if it exceeds the criteria listed in the CCR, Title 22, Article 11. C. Irrigation System Inspection Frequency and Procedure The Irrigation system shall be checked each week as a minimum. The following items shall be checked to insure that they are functioning properly: ■ Shut-off devices . ■ All piping and sprinkler heads to insure there are no leaks and that proper water spread is maintained . ■ All flow reducers. ■ Check for overspray/runoff D. Trash Storage Areas ■ All trash storage areas shall be inspected daily to insure that they are clean from trash. Also the following shall be inspected annually 30 days prior to October 1st of each year . ■ Pavement is in good repair. ■ Drainage will not run-off onto adjacent areas. ■ That they remain screened or walled to prevent off-site transport of trash . ■ That all lids are closed and/or awnings are in good repair to minimize direct precipitation. ■ Signs posted on or near dumpsters with the words "Do not dump hazardous materials here" or similar. E. Storm Water Conveyance System Stenciling and Signing ■ Signage/stenciling are to be inspected for legibility and visual obstruction and shall be Repaired and cleared of any obstruction within 5 working day of inspection . 5 .. .. .. .. .. .. .. 111111 ... 111111 .. ... ,. .... ... ... ,.. .... .. ... ,. ... ■ Inspection Frequency: Semi-annually, 30 days prior to October 1st each year, and monthly during rainy season . F. Biofdtration Operational and maintenance needs include: ■ Vegetation management to maintain adequate hydraulic functioning and to limit habitat for disease-carrying animals. ■ Animal and vector control. ■ Periodic sediment removal to optimize performance. ■ Trash, debris, grass trimmings, tree pruning, dead vegetation collection and removal. ■ Removal of standing water, which may contribute to the development of aquatic plant communities or mosquito breeding areas. ■ Erosion and structural maintenance to prevent the loss of soil and maintain the performance of all landscaping. ■ Outlet maintenance: maintain trash free; remove silt; clear clogged outlets and standing Water after 96 hours. ■ Signs Posted at each bmp that state the following words " PERMANENT WATER QUALITY TREATMENT FACILITY" "KEEPING OUR WATERWAYS CLEAN"" MAINTAIN WITH CARE -NO MODIFICATIONS WITHOUT AGENCY APPROVAL" G. Outlet Structures All outlet structures shall be kept functional at all times. Routine inspection and corrective maintenance shall include removal of trash sediment and debris and repair of any structural damage or clogging of orifice outlets. The minimum maintenance frequency shall be 30 days prior to October 1st each year, weekly during rainy season or within 24 hours prior to forecasts. To clean lower orifice in the event of clogging • This activity will require workers to open catch basin grates to remove debris from the lower orifice plate. • Remove grate and visually inspect lower orifice plate and blockage • Remove debris from inside of catch basin and around orifice plate ■ Replace grate when orifice plate and inside of catch basin are free of debris H. Vector Management Control Requirements Due to Clean Water Act requirements and mandates imposed by the Water Quality Control Board, large quantities of stormwater will be detained onsite in above ground and underground storage facilities for treatment and storage. These storage facilities are required to dewater or discharge at a very small flow rate in order to comply with these requirements. The outlet structure for the underground storage and bioretention facility had to be sized to a variable size between 0.25" to 6" in order to maintain the maximum allowed discharge flow. The facility was designed to dewater in less than 96 hours. However, due to its small size and if not properly maintained regularly, it is anticipated that the outlet might have a tendency to clog frequently. Consequently, the facility may not drain within 96 hours and possibly take substantially longer time. This creates an increased risk for onsite Vector Issues and bringing their potential for severe harm to human health. In order to implement vector controls including minimizing the risk for mosquito-borne disease 6 ... -• .. 11111 .. 11111 .. 1111 .. .. .. .. -.. - 111111 -.. ... ... ... lllr: ... ... Ill" ... ... .. .. .. ... ... 1111111 .. transmission, It is the responsibility of the Owner to regularly maintain the outlet structures and monitor the site after every storm event to ensure that the system (comprising of above ground storage facilities) is dewatered in less than 96 hours. Otherwise the owner will be required to implement a vector control plan in accordance with California Department of Public Health. General guidelines to help create a project specific vector control plan for your project: 7 I I ' 1 r I TYPE BMP Landscaping & irrigation Trash storage areas Bio retention Storm Water Conveyance system Stenciling & Signing Outlet Structures I 1 ' 1 ' 1 ' 1 ' 1 r I ' 1 ' 1 f 1 f I r I f I f I ' 1 I I ATTACHMENT "Al" INSPECTION & MAINTENANCE SCHEDULE PREVENTATIVE MAINTENANCE AND ROUTINE INSPECTION Routine Action Maintenance Maintenance MAINTENANCE SITE-SPECIFIC REQUIREMENTS Indicator Frequency ACTIVITY Proper irrigation & Less than 80% 30 days prior to Re-seed or Re-plant. All slopes and landscaped areas are to have a Fertilizer. coverage October 1st each year Repair Irrigation minimum coverage of 80% and Monthly system with-in 5-days. Trash free and removal Visual Inspection Daily inspection Remove trash and silt All trash storage areas to be free from trash of silt Daily. and silt at all times Trash free and removal of Silt build up of more 30 days prior to Remove trash and silt -All bio-filters to be free from trash and silt at all silt. Clear Clogged outlets than 2" no trash, October 1st each repair and reseed times, grass area to be free from exposed soil and Standing Water. Exposed soils, dead year, monthly during exposed areas, maintain and maintained to proper height, ponding of vegetation, ponded rainy season, and grass height so as not be water for more than 72 hours maintenance will water, and excessive after Storm Event shorter than 2" or higher be required vegetation than 5" remove all (see TC-32) ponded water weekly inspections, (See TC-32) Must be legible at all times Fading of paint or Semi-annually, 30 Repaint stenciling and/or Applicable to all stenciling and signs and have a clear view. illegible letters or days prior to October replace signs 30 days 1st each year & prior to October 1st. monthly during rainy season Must be kept functional at Silt, debris, trash 30 days prior to Silt, debris, trash All outlet structures shall be kept functional at all all times. Clear Clogged accumulation, Ponding October 1st each accumulation and repair times. outlets and Standing Water year and weekly any structural damage Water. during rainy season to the outlet structures. or within 24 hours orior to rain forecasts. ' 1 -.. .. -.. 1111111 ... Ila, ,.. ,.. -... .. .. ,.. '11111 ,.. .... ,.. .. .. ... -... .. ... ... ... ... ,.. ... ,. ATTACMENT "81" Annual Estimate to Maintain all BMPs Landscaping & Bioretention Maintenance oflandscaping and bio-filters is already included in the property management responsibilities. Additional cost: Irrigation System: Inspection and maintenance of the irrigation system is already included in the property management responsibilities, Additional cost: Training: Once a year & training of new employees within their first week of employment. Total Estimated Annual Cost to Maintain BMPs 9 Annual 10-Year $200 $2,000 $100 $1,000 $100 $1,000 ... .. .. -.. .. ... ... ... I ... ... ... ... ... .. ... ,.. ,.. ' ... ,.. ... ... ... -.. ,.. .. ... . ... ATTACHMENT "C1" BMP TRAINING LOG Personnel Date Type of Training Trained Trainer Mo/Day/Yr .. ... ... ... ,.. ,. ... ... .. ' .. ... ... ,.. .. ... ... .. ... ... - ,.. ... -.. --... ... ... ... ATTACHMENT "D1" INSPECTION AND MAINTENANCE LOG BMPTYP& DATE Name of Description of BMP Date Repair made LOCATION M/DN Person Condition/ Description repair and Description repair Inspecting required if any made and by who ... ... .. ' ... ,.. ... ... ... .... ... ... .. .. -... ... .. -... ... -... ,. I .... .. ! .. .. .. ,.. ... ,.. .. BMPTYP& LOCATION ATTACHMENT "D1" INSPECTION AND MAINTENANCE LOG DATE Name of Description of BMP Date Repair made M/D/Y Person Condition/ Description repair and Description repair Inspecting required if any made and by who .. ... -.... .. ... .... -.. --.. ... -... .. .. .. .. .. -.. - .. .. ,. .. ATTACHMENT "D1" INSPECTION AND MAINTENANCE LOG BMPTYP& DATE Name of Description of BMP Date Repair made LOCATION M/D/Y Person Condition/ Description repair and Description repair Inspecting required if any made and by who ATTACHMENT 3 STRUCTURAL BMP MAINTENANCE INFORMATION ATTACHMENT E1. MAINTENANCE INDICATORS T ABLE 7-2. Maintenance Indicators and Actions for Vegetated BMPs Typical Maintenance lndicator(s) . . r v t t d BMP Mamtenance Actions 1or cgc a c s Accumulation of sediment, litter, or debris Poor vegetation establishment Overgrown vegetation Erosion due to concentrated irrigation flow Remove and properly dispose of accumulated materials, without damage to the vegetation. Re-seed, re-plant, or re-establish vegetation per original plans. Mow or trim as appropriate, but not less than the design height of the vegetation per original plans when applicable (e.g. a vegetated swale may require a minimum vegetation height). Repair/re-seed/re-plant eroded areas and adjust the irrigation system. Typical Maintenance . . Indicator(s) for Vegetated BMPs Mamtcnance Actwns Erosion due to concentrated storm water runoff flow Standing water in vegetated swales Repair/re-seed/re-plant eroded areas, and make appropriate corrective measures such as adding erosion control blankets, adding stone at flow entry points, or minor re-grading to restore proper drainage according to the original plan. If the issue is not corrected by restoring the BMP to the original plan and grade, the [City Engineer] shall be contacted prior to any additional repairs or reconstruction. Make appropriate corrective measures such as adjusting irrigation system, removing obstructions of debris or invasive vegetation, loosening or replacing top soil to allow for better infiltration, or minor re-grading for proper drainage. If the issue is not corrected by restoring the BMP to the original plan and grade, the [City Engineer] shall be contacted prior to any additional repairs or reconstruction. Standing water tn bioretention, Make appropriate corrective measures such as adjusting irrigation biofiltration with partial retention, or system, removing obstructions of debris or invasive vegetation, biofiltration areas, or flow-through clearing underdrains (where applicable), or repairing/replacing planter boxes for longer than 96 hours clogged or compacted soils. following a storm event"' Obstructed inlet or outlet structure Clear obstructions. Damage to structural components such Repair or replace as applicable. as weirs, inlet or outlet structures "'These BMPs typically include a surface ponding layer as part of their function which may take 96 hours to drain following a storm event. TABLE 7-3. Maintenance Indicators and Actions for Non-Vegetated Infiltration BMPs Typical Maintenance Indicator(s) for Non-Vegetated Infiltration Maintenance Actions BMPs Accumulation of sediment, litter, or debris m infiltration basin, pretreatment device, or on permeable pavement surface Standing water in infiltration basin without subsurface infiltration gallery for longer than 96 hours following a storm event Standing water in subsurface infiltration gallery for longer than 96 hours following a storm event Standing water in permeable paving area Remove and properly dispose accumulated materials. Remove and replace clogged surface soils. This condition requires investigation of why infiltration is not occurring. If feasible, corrective action shall be taken to restore infiltration (e.g. flush fine sediment or remove and replace clogged soils). BMP may require retrofit if infiltration cannot be restored. If retrofit is necessary, the [City Engineer] shall be contacted prior to any repairs or reconstruction. Flush fin e sediment from paving and subsurface gravel. Provide routine vacuuming of permeable paving areas to prevent clogging. Note: When inspection or maintenance indicates sediment is accumulating in an infiltration BMP, the DMA draining to the infiltration BMP should be examined to determine the source of the sediment, and corrective measures should be made as applicable to minimize the sediment supply. TABLE 7-4. Maintenance Indicators and Actions for Filtration BMPs Typical Maintenance Indicator(s) for Maintenance Actions Filtration BMPs Accumulation of sediment, litter, or debris Remove and properly dispose accumulated materials. O bstructed inlet or outlet structure Clear obstructions. Clogged filter media Remove and properly dispose filter media, and replace with fresh media. Damage to components of the filtration Repair or replace as applicable. system Note: For proprietary media filters, refer to the manufacturer's maintenance guide. If These Sources Will Be on the Project Site ... 1 Potential Sources of Runoff Pollutants 0 A. Onsite storm drain inlets D Not Applicable Appendix E: BMP Design Fact Sheets . .. Then Your SWQMP Must Consider These Source Control BMPs 2 Permanent Controls-Show on Drawings 0 Locations of inlets. 3 Permanent Controls-List in Table and Narrative 0 Mark all inlets with the words "No Dumping! Flows to Bay'' or similar. See stencil template provided in Appendix I-4 E-4 4 Operational BMPs-Include in Table and Narrative 0 Maintain and periodically repaint or replace inlet markings. 0 Provide storm water pollution prevention information to new site owners, lessees, or operators. 0 See applicable operational BMPs in Fact Sheet SC-44, "Drainage System Maintenance," in the CASQA Storm Water Quality Handbooks at www.casqa.org/resources/bmp- handbooks / municipal-bmp- handbook. 0 Include the following in lease agreements: ''Tenant shall not allow anyone to discharge anything to storm drains or to store or deposit materials so as to create a potential discharge to storm drains." February 26, 2016 If These Sources Will Be on the Project Site ... 1 Potential Sources of Runoff Pollutants D B. Interior floor drains and elevator shaft sump pumps 0 Not Applicable D C. Interior parking garages 0 Not Applicable D D1. Need for future indoor & structural pest control 0 Not Applicable Appendix E: BMP Design Fact Sheets . .. Then Your SWQMP must consider These Source Control BMPs 2 Permanent Controls-Show on Drawings 3 Permanent Controls-List in Table and Narrative D State that interior floor drains and elevator shaft sump pumps will be plumbed to sanitary sewer. D State that parking garage floor drains will be plumbed to the sanitary sewer. D Note building design features that discourage entry of pests. E-5 4 Operational BMPs-Include in Table and Narrative D Inspect and maintain drains to prevent blockages and overflow. D Inspect and maintain drains to prevent blockages and overflow. D Provide Integrated Pest Management information to owners, lessees, and operators. February 26, 2016 If These Sources Will Be on the Project Site ... 1 Potential Sources of Runoff Pollutants 0 D2. Landscape/ Outdoor Pesticide Use 0 Not Applicable Appendix E: BMP Design Fact Sheets . .. Then Your S\'<'QMP must consider These Source Control BMPs 2 Permanent Controls-Show on Drawings 0 Show locations of existing trees or areas of shrubs and ground cover to be undisturbed and retained. Show self-retaining landscape areas, if any. Show storm water treatment facilities. 3 Permanent Controls-List in Table and Narrative State that final landscape plans will accomplish all of the following. 0 Preserve existing drought tolerant trees, shrubs, and ground cover to the maximum extent possible. 0 Design landscaping to mirurruze irrigation and runoff, to promote surface infiltration where appropriate, and to minimize the use of fertilizers and pesticides that can contribute to storm water pollution. 0 Where landscaped areas are used to retain or detain storm water, specify plants that are tolerant of periodic saturated soil conditions. 0 Consider using pest-resistant plants, especially adjacent to hardscape. 0 To ensure successful establishment, select plants appropriate to site soils, slopes, climate, sun, wind, rain, land use, air movement, ecological consistency, and plant interactions. E-6 4 Operational BMPs-lnclude in Table and Narrative 0 Maintain landscaping using minimum or no pesticides. 0 See applicable operational BMPs in Fact Sheet SC-41, "Building and Grounds Maintenance," in the CASQA Storm Water Quality Handbooks at www.casqa.org/resources/bmp -handbooks/municipal-bmp- handbook. 0 Provide IPM information to new owners, lessees and operators. February 26, 2016 If These Sources Will Be on the Project Site ... 1 Potential Sources of Runoff Pollutants D E. Pools, spas, ponds, decorative fountains, and other water features. 0 Not Applicable O F. Food service [Z] Not Applicable Appendix E: BMP Design Fact Sheets . .. Then Your SWQMP must consider These Source Control BMPs 2 Permanent Controls-Show on Drawings D Show location of water feature and a sanitary sewer cleanout in an accessible area within 10 feet. 0 For restaurants, grocery stores, and other food service operations, show location (indoors or in a covered area outdoors) of a floor sink or other area for cleaning floor mats, containers, and equipment. On the drawing, show a note that this drain will be connected to a grease interceptor before discharging to the sanitary sewer. All cleaning for restaurant facility will be done indoors. Indoor kitchen area is connected to aease interceptor. 3 Permanent Controls-List in Table and Narrative D If the local municipality requires pools to be plumbed to the sanitary sewer, place a note on the plans and state in the narrative that this connection will be made according to local requirements. 0 Describe the location and features of the designated cleaning area. □Describe the items to be cleaned in this facility and how it has been sized to ensure that the largest items can be accommodated. E-7 4 Operational BMPs-lnclude in Table and Narrative D See applicable operational BMPs in Fact Sheet SC-72, "Fountain and Pool Maintenance," in the CASQA Storm Water Quality Handbooks at www.casqa.org/resources/bm p-handbooks/municipal- bmp-handbook. February 26, 2016 If These Sources Will Be on the Project Site 1 Potential Sources of 0 G. Refuse areas 0 Not Applicable -Appendix E: BMP Design Fact Sheets ... Then Your SWQMP must consider These Source Control BMPs 2 Permanent Controls-Show on Drawings 0 Show where site refuse and recycled materials will be handled and stored for pickup. See local municipal requirements for sizes and other details of refuse areas. 0 If dumpsters or other receptacles are outdoors, show how the designated area will be covered, graded, and paved to prevent run- on and show locations of berms to prevent runoff from the area. Also show how the designated area will be protected from wind dispersal. 0 Any drains from dumpsters, compactors, and tallow bin areas must be connected to a grease removal device before discharge to sanitary sewer. 3 Permanent Controls-List in Table and Narrative 0 State how site refuse will be handled and provide supporting detail to what is shown on plans. 0 State that signs will be posted on or near dumpsters with the words "Do not dump hazardous materials here" or similar. E-8 4 Operational BMPs-Include in Table and Narrative 0 State how the following will be implemented: Provide adequate number of receptacles. Inspect receptacles regularly; repair or replace leaky receptacles. Keep receptacles covered. Prohibit/prevent dumping of liquid or hazardous wastes. Post "no hazardous materials" signs. Inspect and pick up litter daily and clean up spills immediately. Keep spill control materials available on-site. See Fact Sheet SC-34, ''Waste Handling and Disposal" in the CASQA Storm Water Quality Handbooks at www.casqa.org/resources /bmp- handbooks/municipal-bmp-handbook. February 26, 2016 1 Potential Sources of Runoff Pollutants D H. Industrial processes. 0 Not Applicable D I. Outdoor storage of equipment or materials. (See rows J and K for source control measures for vehicle cleaning, repair, and maintenance.) 0 Not Applicable 2 Permanent Controls-Show on Drawings D Show process area. D Show any outdoor storage areas, including how materials will be covered. Show how areas will be graded and bermed to prevent run-on or runoff from area and protected from wind dispersal. D Storage of non-hazardous liquids must be covered by a roof and/ or drain to the sanitary sewer system, and be contained by berms, dikes, liners, or vaults. D Storage of hazardous materials and wastes must be in compliance with the local hazardous materials ordinance and a Hazardous Materials Management Plan for the site. Appendix E: BMP Design Fact Sheets 3 Permanent Controls-List in Table and Narrative □If industrial processes are to be located onsite, state: "All process activities to be performed indoors. No processes to drain to exterior or to storm drain system." □Include a detailed description of materials to be stored, storage areas, and structural features to prevent pollutants from entering storm drains. □Where appropriate, reference documentation of compliance with the requirements of local Hazardous Materials Programs for: • Hazardous Waste Generation • Hazardous Materials Release Response and Inventory • California Accidental Release Prevention Program • Aboveground Storage Tank • Uniform Fire Code Article 80 Section 103(b) & (c) 1991 • Underground Storage Tank E-9 4 Operational BMPs-Include in Table and Narrative Table and Narrative D See Fact Sheet SC-10, "Non- Storm Water Discharges" in the CASQA Storm Water Quality Handbooks at https: // www.casqa.org/resou rces/bm_R-handbooks. □See the Fact Sheets SC-31, "Outdoor Liquid Container Storage" and SC-33, "Outdoor Storage of Raw Materials" in the CASQA Storm Water Quality Handbooks at www.casqa.org/resources/bm p-handbooks/municipal-bmp- handbook. February 26, 2016 1 Potential Sources of Runoff Pollutants D J. Vehicle and Equipment Cleaning [l] Not Applicable 2 Pennanent Controls-Show on Drawings O Show on drawings as appropriate: (1) Commercial/ industrial facilities having vehicle / equipment cleaning needs must either provide a covered, bermed area for washing acttvtttes or discourage vehicle/ equipment washing by removing hose bibs and installing signs prohibiting such uses. (2) Multi-dwelling complexes must have a paved, bermed, and covered car wash area (unless car washing is prohibited onsite and hoses are provided with an automatic shut- off to discourage such use). (3) Washing areas for cars, vehicles, and equipment must be paved, designed to prevent run-on to or runoff from the area, and plumbed to drain to the sanitary sewer. ( 4) Commercial car wash facilities must be designed such that no runoff from the facility is discharged to the storm drain system. Wastewater from the facility must discharge to the sanitary sewer, or a wastewater reclamation system must be installed. E-10 3 Pennanent Controls-List in Table and Narrative 0 If a car wash area is not provided, describe measures taken to discourage onsite car washing and explain how these will be enforced. Appendix E: BMP Design Fact Sheets 4 Operational BMPs-Include in Table and Narrative Describe operational measures to implement the following (if applicable): D Washwater from vehicle and equipment washing operations must not be discharged to the storm drain system. 0 Car dealerships and similar may rinse cars with water only. 0 See Fact Sheet SC-21, "Vehicle and Equipment Cleaning," in the CASQA Storm Water Quality Handbooks at www.casqa.org/resources/bm p-handbooks/municipal-bmp- handbook. February 26, 2016 If These Sources Will Be on the Project Site ... 1 Potential Sources of Runoff Pollutants K. D Vehicle/Equipment Repair and Maintenance 0 Not Applicable Appendix E: BMP Design Fact Sheets . .. Then Your SWQMP must consider These Source Control BMPs Permanent Controls-Show on Drawings D Accommodate all vehicle equipment repair and maintenance indoors. Or designate an outdoor work area and design the area to protect from rainfall, run-on runoff, and wind dispersal. D Show secondary containment for exterior work areas where motor oil, brake fluid, gasoline, diesel fuel, radiator fluid, acid- containing batteries or other hazardous materials or hazardous wastes are used or stored. Drains must not be installed within the secondary containment areas. D Add a note on the plans that states either (1) there are no floor drains, or (2) floor drains are connected to wastewater pretreatment systems prior to discharge to the sanitary sewer and an industrial waste discharge permit will be obtained. Permanent Controls-List in Table and Narrative D State that no vehicle repair or maintenance will be done outdoors, or else describe the required features of the outdoor work area. D State that there are no floor drains or if there are floor drains, note the agency from which an industrial waste discharge permit will be obtained and that the design meets that agency's requirements. D State that there are no tanks, containers or sinks to be used for parts cleaning or rinsing or, if there are, note the agency from which an industrial waste discharge permit will be obtained and that the design meets that agency's requirements. E-11 Operational BMPs-lnclude in Table and Narrative In the report, note that all of the following restrictions apply to use the site: D No person must dispose of, nor permit the disposal, directly or indirectly of vehicle fluids, hazardous materials, or rinsewater from parts cleaning into storm drains. D No vehicle fluid removal must be performed outside a building, nor on asphalt or ground surfaces, whether inside or outside a building, except in such a manner as to ensure that any spilled fluid will be in an area of secondary containment. Leaking vehicle fluids must be contained or drained from the vehicle immediately. D No person must leave unattended drip parts or other open containers containing vehicle fluid, unless such containers are in use or in an area of secondary containment. February 26, 2016 1 Potential Sources of Runoff Pollutants O L. Fuel Dispensing Areas 0 Not Applicable 2 Permanent Controls-Show on Drawings 0 Fueling areas 16 must have impermeable floors (i.e., portland cement concrete or equivalent smooth impervious surface) that are (1) graded at the minimum slope necessary to prevent ponding; and (2) separated from the rest of the site by a grade break that prevents run-on of storm water to the MEP. O Fueling areas must be covered by a canopy that extends a minimum of ten feet in each direction from each pump. [Alternative: The fueling area must be covered and the cover's minimum dimensions must be equal to or greater than the area within the grade break or fuel dispensing area 1.] O The canopy [or cover] must not drain onto the fueling area. 3 Permanent Controls-List in Table and Narrative Appendix E: BMP Design Fact Sheets 4 Operational BMPs-lnclude in Table and Narrative □ The property owner must dry sweep the fueling area routinely. See the Business Guide Sheet, "Automotive Service-Service Stations" in the CASQA Storm Water Quality Handbooks at https: // www.casqa.org/resources /b mp-handbooks. 16 The fueling area must be defined as the area extending a minimum of 6.5 feet from the comer of each fuel dispenser or the length at which the hose and nozzle assembly may be operated plus a minimum of one foot, whichever is greater. E-12 February 26, 2016 1 Potential Sources of Runoff Pollutants M. Loading Docks 0 Not Applicable 2 Permanent Controls-Show on Drawings □ Show a preliminary design for the loading dock area, including roofing and drainage. Loading docks must be covered and/ or graded to minimize run-on to and runoff from the loading area. Roof downspouts must be positioned to direct storm water away from the loading area. Water from loading dock areas should be drained to the sanitary sewer where feasible. Direct connections to storm drains from depressed loading docks are prohibited. □ Loading dock areas draining directly to the sanitary sewer must be equipped with a spill control valve or equivalent device, which must be kept closed during periods of operation. □ Provide a roof overhang over the loading area or install door skirts ( cowling) at each bay that enclose the end of the trailer. 3 Permanent Controls-List in E-13 Appendix E: BMP Design Fact Sheets 4 Operational BMPs-Include in Table and Narrative □ Move loaded and unloaded items indoors as soon as possible. □ See Fact Sheet SC-30, "Outdoor Loading and Unloading," in the CASQA Storm Water Quality Handbooks at www.casqa.org/resources/bmp- handbooks/municipal-bmp-handbook. February 26, 2016 1 Potential Sources of Runoff Pollutants D N. Fire Sprinkler Test Water 0 Not Applicable 0. Miscellaneous Drain or Wash Water □Boiler drain lines □Condensate drain lines □Rooftop equipment □Drainage sumps □Roofing, gutters, and trim □Not Applicable 2 Permanent Controls- Show on Drawings Appendix E: BMP Design Fact Sheets 3 Permanent Controls-List in Table and Narrative □Provide a means to drain fire sprinkler test water to the sanitary sewer. □Boiler drain lines must be directly or indirectly connected to the sanitary sewer system and may not discharge to the storm drain system. □Condensate drain lines may discharge to landscaped areas if the flow is small enough that runoff will not occur. Condensate drain lines may not discharge to the storm drain system. □Rooftop mounted equipment with potential to produce pollutants must be roofed and/ or have secondary containment. D Any drainage sumps onsite must feature a sediment sump to reduce the quantity of sediment in pumped water. □Avoid roofing, gutters, and trim made of copper or other unprotected metals that may leach into runoff. E-14 4 Operational BMPs-Include in Table and Narrative D See the note in Fact Sheet SC- 41, "Building and Grounds Maintenance," in the CASQA Storm Water Quality Handbooks at www.casga.org/resources/bm p-handbooks/municipal-bmp- handbook February 26, 2016 1 Potential Sources of Runoff Pollutants !ti P. sidewalks, parking lots. D Not Applicable Plazas, and 2 Permanent Controls-Show on Drawings 3 Permanent Controls-List in Table and Narrative E-15 Appendix E: BMP Design Fact Sheets 4 Operational BMPs-Include in Table and Narrative 0 Plazas, sidewalks, and parking lots must be swept regularly to prevent the accumulation of litter and debris. Debris from pressure washing must be collected to prevent entry into the storm drain system. Washwater containing any cleaning agent or degreaser must be collected and discharged to the sanitary sewer and not discharged to a storm drain. February 26, 2016 I ATTACHMENT 3a STRUCTURAL MAINTENANCE PLAN ATTACHMENT 3A -MAY 2019 MAINTENACE INDICATORS Typical Maintenance lndicator(s) Maintenance Actions for Vegetated BMPs Accumulation of sediment, litter, or Remove and properly dispose of accumulated materials, without debris damage to the vegetation. Poor vegetation establishment Re-seed, re-plant, or re-establish vegetation per original plans. Overgrown vegetation Mow or trim as appropriate, but not less than the design height of the vegetation per original plans when applicable (e.g. a vegetated swale may require a minimum vegetation height). Erosion due to concentrated irrigation Repair/re-seed/re-plant eroded areas and adjust the irrigation flow system. Repair/re-seed/re-plant eroded areas, and make appropriate corrective measures such as adding erosion control blankets, Erosion due to concentrated storm water adding stone at flow entry points, or minor re-grading to restore runoff flow proper drainage according to the original plan. If the issue is not corrected by restoring the BMP to the original plan and grade, The County must be contacted prior to any additional repairs or reconstruction. Make appropriate corrective measures such as adjusting irrigation system, removing obstructions of debris or invasive vegetation, loosening or replacing top soil to allow for better infiltration, or Standing water in vegetated swales minor re-grading for proper drainage. If the issue is not corrected by restoring the BMP to the original plan and grade, County staff in the Watershed Protection Program must be contacted prior to any additional repairs or reconstruction. Standing water in bioretention, Make appropriate corrective measures such as adjusting irrigation biofiltration with partial retention, or biofiltration areas, or flow-through system, removing obstructions of debris or invasive vegetation, planter boxes for longer than 96 hours clearing underdrains (where applicable), or repairing/replacing following a storm event"' clogged or compacted soils. Obstructed inlet or outlet structure Clear obstructions. Damage to structural components such as Repair or replace as applicable. weirs, inlet or outlet structures *These BMPs typically include a surface ponding layer as part of their function which may take 96 hours to drain following a storm event. ATTACHMENT 3A -MAY 2019 2 ,... ... ,... ... ... ... ,.. ' ... ,.. ' ... ... .... ,.. ,.. --. ,.. ... ... .... ... ... ... ,... ... ... ... ... ,.. I .... ,. ... ACCESS AND MAINTENANCE Structural BMP-A Structural BMP-A is constructed in the northeast corner of the proposed site on Lot 2. Please see Figure I.11-2 of Attachment 36 for site overview and BMP location. Access for inspection and maintenance is provided through the parking lot west of the structural BMP . BMP-A is designed as a bioretention basin with a 48"x48" catch basin to attenuate a 100-year storm event. The basin design consist of layered sand and gravel aggregate with 6" surface ponding. Inspection of the outlet pipe will be performed through the grated lid of the catch basin. No proprietary parts have been used in the construction of this bioretention basin. Maintenance of BMP-1 will be performed, at minimum, when these thresholds are exceeded: • Grass higher than 4" • Wilting and/ or dying trees, shrubs or grass • Erosive conditions cause ponding area side slopes to exceed 3:1 • Silt buildup of more than 2" • Ponding surface drawdown time exceeds 24 hours • Ponding elevation exceeds top of pond elevation In order to perform maintenance on the structural BMP, it is recommended that lawn and shrub care equipment be used. Compaction of BMP soils shall be avoided and it is recommended that heavy equipment not be used. No special training or certification is needed in inspecting or maintaining this BMP. Structural BMP-B Structural BMP-B is constructed on the southeast side of the proposed site on Lot 2. Please see Figure 1.11-2 of Attachment 36 for site overview and BMP location. Access for inspection and maintenance is provided through the parking lot west of the structural BMP . BMP-B is designed as a bioretention basin with a 36"x36" catch basin to attenuate a 100-year storm event. The basin design consist of layered sand and gravel aggregate with 6" surface ponding . Inspection of the outlet pipe will be performed through the grated lid of the catch basin. No proprietary parts have been used in the construction of this bioretention basin . Maintenance of BMP-2 will be performed, at minimum, when these thresholds are exceeded: • Grass higher than 4" • Wilting and/ or dying trees, shrubs or grass • Erosive conditions cause ponding area side slopes to exceed 3: 1 • Silt buildup of more than 2" • Ponding surface drawdown time exceeds 24 hours • Ponding elevation exceeds top of pond elevation ATTACHMENT 3A-MAY 2019 3 .. ... ... ... ... ... ... ... -... -... .. ... ... ... ... ... ,.. 111111 ,. .. ... -... -... ... .. .. .. .. In order to perform maintenance on the structural BMP, it is recommended that lawn and shrub care equipment be used. Compaction of BMP soils shall be avoided and it is recommended that heavy equipment not be used . No special training or certification is needed in inspecting or maintaining this BMP . ATTACHMENT 3A-MAY 2019 4 ... ... ... ... ... Ill'"' .... ,.. ... .... ... ... ... .... ... .... ... .... .... ,. ... .... ... ... .. ,.. ... ... .. ATTACHMENT 3b DRAFT MAINTENANCE AGREEMENT ATTACHMENT 3B -MAY 2019 ... ... ,.. .... ,.. ... ... .... ... .... ... .... ... ... ,.. ,.. ... ... ... ... .. ,. .. RECORDING REQUESTD BY: WHEN RECORDED MAIL TO: ro ert owner SPACE ABOVE THIS LINE FOR RECORDER'S USE MAINTENANCE NOTIFICATION AGREEMENT FOR CATEGORY 1 STORMWATER STRUCTURAL BMP's THIS AGREEMENT is made on the ___________ day of ___ , 20 _____ _ _______________________ , the Owner(s) of the hereinafter described real property: Address ____________________ , Post Office ______ Zip Code _________ _ Assessor Parcel No.(s) List, identify, locate (plan/drawing number) and describe the Structural Owner(s) of the above property acknowledge the existence of the storm water Structural Best Management Practice on the said property. Perpetual maintenance of the Structural BMP{s) is the requirement of the State NPDES Permit, Order No. R9-2015-0001, Section E.3.e.(1 ){ c) and the County of San Diego Watershed Protection Ordinance {WPO) Ordinance No. 10385 Section 67.812 through Section 67.814, and County BMP Design Manual (BMP DM) Chapters 7 & 8. In consideration of the requirement to construct and maintain Structural BMP{s), as conditioned by Discretionary Permit, Grading Permit, and/or Building Permit {as may be applicable), I/we hereby covenant and agree that: 1. I/We are the owner{s) of the existing {or to be constructed concurrently) premises located on the above described property. 2. I/We shall take the responsibility for the perpetual maintenance of the Structural BMP{s) as listed above in accordance with the maintenance plan and in compliance with County's self-inspection reporting and verification for as long as I/we have ownership of said property{ies). 3. I/We shall cooperate with and allow the County staff to come onto said property(ies) and perform inspection duties as prescribed by local and state regulators. 4. I/We shall inform future buyer{s) or successors of said property(ies) of the existence and perpetual maintenance requirement responsibilities for Structural BMP{s) as listed above and to ensure that such responsibility shall transfer to the future owner(s). 5. I/We will abide by all of the requirements and standards of Section 67.812 through Section 67.814 of the WPO (or renumbering thereof) as it exists on the date of this Agreement, and which hereby is incorporated herein by reference. This Agreement shall run with the land. If the subject property is conveyed to any other person, firm, or corporation, the instrument that conveys title or any interest in or to said property, or any portion thereof, shall contain a provision transferring maintenance responsibility for Structural BMP{s) to the successive owner according to the terms of this Agreement. Any violation of this Agreement is grounds for the County to impose penalties upon the property owner as prescribed in County Code of Regulatory Ordinances, Title 1, Division 8, Chapter 1 Administrative Citations §§ 18.1 O 1-18.116. Owner(s) Signature(s) Print Owner(s) Name(s) and Title STATE OF CALIFORNIA COUNTY OF _______ _ On ___________ before me, ________________________ Notary Public, personally appeared ________________ who proved to me on the basis of satisfactory evidence to be the person(s) whose name{s) is/are subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their authorized capacity{ies), and that by his/her/their signature(s) on the instrument the person(s) or the entity upon behalf of which the person(s) acted, executed the instrument. I certify under PENALTY OF PERJURY under the laws of the State of California that the foregoing paragraph is true and correct. WITNESS my hand and official seal. ATTACHMENT 3B -MAY 2019 2 ,.. ... ,.. ... ,.. ... ,... ... ... ... ... ... ... .. ... ... ... ,.. ... ... ... ... ... ... ... .. 11111 ,. ... Chapter 7: Long Term Operation and Maintenance • The sump area of a structural BMP should not exceed 20 feet in depth due to the loss of efficiency of a vactor truck. The water removal rate is three to four times longer when the depth is greater than 20 feet. Deep structures may require additional equipment (stronger vactor trucks, ladders, more vactor pipe segments) . • All manhole access points to underground structural BMPs must include a ladder or steps. Measures to facilitate inspection of the structural BMP • Structural BMPs shall include inspection ports for observing all underground components that require inspection and maintenance . • Silt level posts or other markings shall be included in all BMP components that will trap and store sediment, trash, and/ or debris, so that the inspector may determine how full the BMP is, and the maintenance personnel may determine where the bottom of the BMP is. Posts or other markings shall be indicated and described on structural BMP plans . • Vegetation requirements including plant type, coverage, and minimum height when applicable shall be provided on the structural BMP and/ or landscaping plans as appropriate or as required by the [City Engineer] . • Signage indicating the location and boundary of the structural BMP is recommended . When designing a structural BMP, the engineer should review the typical structural BMP maintenance actions listed in Section 7.7 to determine the potential maintenance equipment and access needs. When selecting permanent structural BMPs for a project, the engineer and project owner should consider the long term cost of maintenance and what type of maintenance contracts a future property owner, homeowners association or property owners association will need to manage. The types of materials used (e.g. proprietary vs. non-proprietary parts), equipment used (e.g. landscape equipment vs. vactor truck), actions/labor expected in the maintenance process and required qualifications of maintenance personnel (e.g. confined space entry) affect the cost of long term O&M of the structural BMPs presented in the manual. 7.7 Maintenance Indicators and Actions for Structural BMPs This Section presents typical maintenance indicators and expected maintenance actions (routine and corrective) for typical structural BMPs. There are many different variations of structural BMPs, and structural BMPs may include multiple components. For the purpose of maintenance, the structural BMPs have been grouped into four categories based on common maintenance requirements: • Vegetated infiltration or filtration BMPs • Non-vegetated infiltration BMPs • Non-vegetated filtration BMPs • Detention BMPs 7-6 February 2016 I Chapter 7: Long Term Operation and Maintenance The project civil engineer is responsible for determining which categories are applicable based on the components of the structural BMP, and identifying the applicable maintenance indicators from within the category. Maintenance indicators and actions shall be shown on the construction plans and in the project-specific O&M Plan. During inspection, the inspector checks the maintenance indicators. If one or more thresholds are met or exceeded, maintenance must be performed to ensure the structural BMP will function as designed during the next storm event. 7. 7 .1 Maintenance of Vegetated Infiltration or Filtration BMPs "Vegetated infiltration or filtration BMPs" are BMPs that include vegetation as a component of the BMP. Applicable Fact Sheets may include INF-2 (bioretention), PR-1 (biofiltration with partial retention), BF-1 (biofiltration) or Ff-1 (vegetated swale). The vegetated BMP may or may not include amended soils, subsurface gravel layer, underdrain, and/ or impermeable liner. The project civil engineer is responsible for determining which maintenance indicators and actions shown below are applicable based on the components of the structural BMP. 7. 7 .2 Maintenance of Non-Vegetated Infiltration BMPs "Non-vegetated infiltration BMPs" are BMPs that store storm water runoff until it infiltrates into the ground, and do not include vegetation as a component of the BMP (refer to the "vegetated BMPs" category for infiltration BMPs that include vegetation). Non-vegetated infiltration BMPs generally include non-vegetated infiltration trenches and infiltration basins, dry wells, underground infiltration galleries, and permeable pavement with underground infiltration gallery. Applicable Fact Sheets may include INF-1 (infiltration basin) or INF-3 (permeable pavement). The non-vegetated infiltration BMP may or may not include a pre-treatment device, and may or may not include above- ground storage of runoff. The project civil engineer is responsible for determining which maintenance indicators and actions shown below are applicable based on the components of the structural BMP. TABLE 7-2. Maintenan ce Indicators and Actions for Vegetated BMPs Typical Maintenance .Maintenance Actions lndicator(s) for Vegetated BMPs Accumulation of sediment, litter, or Remove and properly dispose of accumulated materials, without debris damage to the vegetation. Poor vegetation establishment Re-seed, re-plant, or re-establish vegetation per original plans. Overgrown vegetation Mow or trim as appropriate, but not less than the design height of the vegetation per original plans when applicable (e.g. a vegetated swale may require a minimum vegetation height). Erosion due to concentrated irrigation Repair/ re-seed/ re-plant eroded areas and adjust the irrigation flow system. 7-7 February 2016 Chapter 7: Long Term Operation and Maintenance Typical Maintenance . . I d . ( ) c V d BMP Mamtenance Act10ns n 1cator s 1or egetate s Erosion due to concentrated storm water runoff flow Standing water in vegetated swales Repair/re-seed/re-plant eroded areas, and make appropriate corrective measures such as adding erosion control blankets, adding stone at flow entry points, or minor re-grading to restore proper drainage according to the original plan. If the issue is not corrected by restoring the BMP to the original plan and grade, the [City Engineer] shall be contacted prior to any additional repairs or reconstruction. Make appropriate corrective measures such as adjusting irrigation system, removing obstructions of debris or invasive vegetation, loosening or replacing top soil to allow for better infiltration, or minor re-grading for proper drainage. If the issue is not corrected by restoring the BMP to the original plan and grade, the [City Engineer] shall be contacted prior to any additional repairs or reconstruction. Standing water in bioretention, Make appropriate corrective measures such as adjusting irrigation biofiltration with partial retention, or system, removing obstructions of debris or invasive vegetation, biofiltration areas, or flow-through clearing underdrains (where applicable), or repairing/replacing planter boxes for longer than 96 hours clogged or compacted soils. following a storm event"' Obstructed inlet or outlet structure Clear obstructions. Damage to structural components such Repair or replace as applicable. as weirs, inlet or outlet structures >fcl'hese BMPs typically include a surface ponding layer as part of their function which may take 96 hours to drain following a storm event. 7-8 February 2016 Chapter 7: Long Term Operation and Maintenance TABLE 7-3. Maintenance Indicators and Actions for Non-Vegetated Infiltration BMPs Typical Maintenance Indicator(s) for Non-Vegetated Infiltration Maintenance Actions BMPs Accumulation of sediment, litter, or debris in infiltration basin, pre-Remove and properly dispose accumulated materials. treatment device, or on permeable pavement surface Standing water in infiltration basin without subsurface infiltration gallery Remove and replace clogged surface soils. for longer than 96 hours following a storm event This condition requires investigation of why infiltration is not Standing water in subsurface occurring. If feasible, corrective action shall be taken to restore infiltration (e.g. flush fine sediment or remove and replace infiltration gallery for longer than 96 clogged soils). BMP may require retrofit if infiltration cannot be hours following a storm event restored. If retrofit is necessary, the [City Engineer] shall be contacted prior to any repairs or reconstruction. Standing water in permeable paving Flush fine sediment from paving and subsurface gravel. Provide area routine vacuuming of permeable paving areas to prevent clogging. Damage to permeable paving surface Repair or replace damaged surface as appropriate. Note: When inspection or maintenance indicates sediment is accumulating in an infiltration BMP, the OMA draining to the infiltration BMP should be examined to determine the source of the sediment, and corrective measures should be made as applicable to minimize the sediment supply. 7. 7 .3 Maintenance of Non-Vegetated Filtration BMPs "Non-vegetated filtration BMPs" include media filters (FT-2) and sand filters (FT-3). These BMPs function by passing runoff through the media to remove pollutants. The project civil engineer is responsible for determining which maintenance indicators and actions shown below are applicable based on the components of the structural BMP. TABLE 7-4. Maintenance Indicators and Actions for Filtration BMPs Typical Maintenance Indicator(s) for Maintenance Actions Filtration BMPs Accumulation of sediment, litter, or Remove and properly dispose accumulated materials. debris Obstructed inlet or outlet structure Clear obstructions. Clogged filter media Remove and properly dispose filter media, and replace with fresh media. Damage to components of the filtration Repair or replace as applicable. system Note: For proprietary media filters, refer to the manufacturer's maintenance guide. 7-9 February 2016 ATTACHMENT 3 STRUCTURAL BMP MAINTENANCE INFORMATION ATTACHMENT El. MAINTENANCE INDICATORS TABLE 7-2. Maintenance Indicators and Actions for Vegetated BMPs Typical Maintenance Jndicator(s) . . r v t t d Bl\1P Maintenance Acttons 1or cge a e s Accumulation of sediment, litter, or debris Poor vegetation establishment Overgrown vegetation Erosion due to concentrated irrigation flow Remove and properly dispose of accumulated materials, without damage to the vegetation. Re-seed, re-plant, or re-establish vegetation per original plans. Mow or trim as appropriate, but not less than the design height of the vegetation per original plans when applicable ( e.g. a vegetated swale may require a minimum vegetation height). Repair/re-seed/re-plant eroded areas and adjust the irrigation system. Typical Maintenance . . I d • t ( ) r v t t d BMP Maintenance Actions n tea or s 1or cge a c s Erosion due to concentrated storm water runoff flow Standing water in vegetated swales Repair/re-seed/re-plant eroded areas, and make appropriate corrective measures such as adding erosion control blankets, adding stone at flow entry points, or minor re-grading to restore proper drainage according to the original plan. If the issue is not corrected by restoring the BMP to the original plan and grade, the [City Engineer] shall be contacted prior to any additional repairs or reconstruction. Make appropriate corrective measures such as adjusting irrigation system, removing obstructions of debris or invasive vegetation, loosening or replacing top soil to allow for better infiltration, or minor re-grading for proper drainage. If the issue is not corrected by restoring the BMP to the original plan and grade, the [City Engineer] shall be contacted prior to any additional repairs or reconstruction. Standing water in bioretention, Make appropriate corrective measures such as adjusting irrigation biofiltration with partial retention, or system, removing obstructions of debris or invasive vegetation, biofiltration areas, or flow-through clearing underdrains (where applicable), or repairing/replacing planter boxes for longer than 96 hours clogged or compacted soils. following a storm event* Obstructed inlet or outlet structure Clear obstructions. Damage to structural components such Repair or replace as applicable. as weirs, inlet or outlet structures >f<These BMPs typically include a surface ponding layer as part of their function which may take 96 hours to drain following a storm event. TABLE 7-3. Maintenance Indicators and Actions for Non-Vegetated Infiltration BMPs Typical Maintenance Indicator(s) for Non-Vegetated Infiltration Maintenance Actions BMPs Accumulation of sediment, litter, or debris in infiltration basin, pretreatment device, or on permeable pavement surface Standing water in infiltration basin without subsurface infiltration gallery for longer than 96 hours following a storm event Standing water m subsurface infiltration gallery for longer than 96 hours following a storm event Standing water in permeable paving area Remove and properly dispose accumulated materials. Remove and replace clogged surface soils. This condition requires investigation of why infiltration is not occurring. If feasible, corrective action shall be taken to restore infiltration (e.g. flush fine sediment or remove and replace clogged soils). BMP may require retrofit if infiltration cannot be restored. If retrofit is necessary, the [City Engineer] shall be contacted prior to any repairs or reconstruction. Flush fine sediment from paving and subsurface gravel. Provide routine vacuuming of permeable paving areas to prevent clogging. Note: When inspection or maintenance indicates sediment is accumulating in an infiltration BMP, the DMA draining to the infiltration BMP should be examined to determine the source of the sediment, and corrective measures should be made as applicable to minimize the sediment supply. TABLE 7-4. Maintenance Indicators and Actions for Filtration BMPs Typical Maintenance lnclicator(s) for Maintenance Actions Filtration BMPs Accumulation of sediment, litter, or debris Remove and properly dispose accumulated materials. Obstructed inlet or outlet structure Clear obstructions. Clogged filter media Remove and properly dispose filter media, and replace with fresh media. D amage to components of the filtration Repair or replace as applicable. system Note: For proprietary media filters, refer to the manufacturer's maintenance guide. If These Sources Will Be on the Project Site ... 1 Potential Sources of Runoff Pollutants 0 A. Onsite storm drain inlets D Not Applicable Appendix E: BMP Design Fact Sheets . .. Then Your SWQMP Must Consider These Source Control BMPs 2 Permanent Controls-Show on Drawings 0 Locations of inlets. 3 Permanent Controls-List in Table and Narrative 0 Mark all inlets with the words "No Dumping! Flows to Bay" or similar. See stencil template provided in Appendix I-4 E-4 4 Operational BMPs-Include in Table and Narrative 0 Maintain and periodically repaint or replace inlet markings. 0 Provide storm water pollution prevention information to new site owners, lessees, or operators. 0 See applicable operational BMPs in Fact Sheet SC-44, "Drainage System Maintenance," in the CASQA Storm Water Quality Handbooks at www.casqa.org/resources/bmp- handbooks/municipal-bmp- handbook. 0 Include the following in lease agreements: ''Tenant shall not allow anyone to discharge anything to storm drains or to store or deposit materials so as to create a potential discharge to storm drains." February 26, 2016 If These Sources Will Be on the Project Site ... 1 Potential Sources of Runoff Pollutants D B. Interior floor drains and elevator shaft sump pumps [l] Not Applicable D C. Interior parking garages [l] Not Applicable D Dt. Need for future indoor & structural pest control [l] Not Applicable -Appendix E: BMP Design Fact Sheets . .. Then Your SWQMP must consider These Source Control BMPs 2 Permanent Controls-Show on Drawings 3 Permanent Controls-List in Table and Narrative D State that interior floor drains and elevator shaft sump pumps will be plumbed to sanitary sewer. D State that parking garage floor drains will be plumbed to the sanitary sewer. D Note building design features that discourage entry of pests. E-5 4 Operational BMPs-Include in Table and Narrative D Inspect and maintain drains to prevent blockages and overflow. D Inspect and maintain drains to prevent blockages and overflow. D Provide Integrated Pest Management information to owners, lessees, and operators. February 26, 2016 If These Sources Will Be on the Project Site ... 1 Potential Sources of Runoff Pollutants 0 D2. Landscape/ Outdoor Pesticide Use 0 Not Applicable -Appendix E: BMP Design Fact Sheets . .. Then Your SWQMP must consider These Source Control BMPs 2 Permanent Controls-Show on Drawings 0 Show locations of existing trees or areas of shrubs and ground cover to be undisturbed and retained. Show self-retaining landscape areas, if any. Show storm water treatment facilities. 3 Permanent Controls-List in Table and Narrative State that final landscape plans will accomplish all of the following. 0 Preserve existing drought tolerant trees, shrubs, and ground cover to the maximum extent possible. 0 Design landscaping to rrururruze irrigation and runoff, to promote surface infiltration where appropriate, and to minimize the use of fertilizers and pesticides that can contribute to storm water pollution. 0 Where landscaped areas are used to retain or detain storm water, specify plants that are tolerant of periodic saturated soil conditions. 0 Consider using pest-resistant plants, especially adjacent to hardscape. 0 To ensure successful establishment, select plants appropriate to site soils, slopes, climate, sun, wind, rain, land use, air movement, ecological consistency, and plant interactions. E-6 4 Operational BMPs-Include in Table and Narrative 0 Maintain landscaping using minimum or no pesticides. 0 See applicable operational BMPs in Fact Sheet SC-41, "Building and Grounds Maintenance," in the CASQA Storm Water Quality Handbooks at www.casqa.org/resources/bmp -handbooks/municipal-bmp- handbook. 0 Provide IPM information to new owners, lessees and operators. February 26, 2016 If These Sources Will Be on the Project Site ... 1 Potential Sources of Runoff Pollutants □ E. Pools, spas, ponds, decorative fountains, and other water features. D Not Applicable D F. Food service [l] Not Applicable Appendix E: BMP Design Fact Sheets . .. Then Your SWQMP must consider These Source Control BMPs 2 Permanent Controls-Show on Drawings D Show location of water feature and a sanitary sewer cleanout in an accessible area within 10 feet. D For restaurants, grocery stores, and other food service operations, show location (indoors or in a covered area outdoors) of a floor sink or other area for cleaning floor mats, containers, and equipment. On the drawing, show a note that this drain will be connected to a grease interceptor before discharging to the sanitary sewer. All cleaning for restaurant facility will be done indoors. Indoor kitchen area is connected to ~ease interceptor. 3 Permanent Controls-List in Table and Narrative D If the local municipality requires pools to be plumbed to the sanitary sewer, place a note on the plans and state in the narrative that this connection will be made according to local requirements. □Describe the location and features of the designated cleaning area. D Describe the items to be cleaned in this facility and how it has been sized to ensure that the largest items can be accommodated. E-7 4 Operational BMPs-Include in Table and Narrative D See applicable operational BMPs in Fact Sheet SC-72, "Fountain and Pool Maintenance," in the CASQA Storm Water Quality Handbooks at www.casqa.org/resources/bm p-handbooks/municipal- bmp-handbook. February 26, 2016 If These Sources Will Be on the Project Site 1 Potential Sources of 0 G. Refuse areas D Not Applicable -Appendix E: BMP Design Fact Sheets ... Then Your SWQMP must consider These Source Control BMPs 2 Permanent Controls-Show on Drawings 0 Show where site refuse and recycled materials will be handled and stored for pickup. See local municipal requirements for sizes and other details of refuse areas. 0 If dumpsters or other receptacles are outdoors, show how the designated area will be covered, graded, and paved to prevent run- on and show locations of berms to prevent runoff from the area. Also show how the designated area will be protected from wind dispersal. 0 Any drains from dumpsters, compactors, and tallow bin areas must be connected to a grease removal device before discharge to sanitary sewer. 3 Permanent Controls-List in Table and Narrative 0 State how site refuse will be handled and provide supporting detail to what is shown on plans. 0 State that signs will be posted on or near dumpsters with the words "Do not dump hazardous materials here" or similar. E-8 4 Operational BMPs-lnclude in Table and Narrative 0 State how the following will be implemented: Provide adequate number of receptacles. Inspect receptacles regularly; repair or replace leaky receptacles. Keep receptacles covered. Prohibit/ prevent dumping of liquid or hazardous wastes. Post "no hazardous materials" signs. Inspect and pick up litter daily and clean up spills immediately. Keep spill control materials available on-site. See Fact Sheet SC-34, ''Waste Handling and Disposal" in the CASQA Storm Water Quality Handbooks at www.casqa.org/resources/bmp- handbooks/municipal-bmp-handbook. February 26, 2016 1 Potential Sources of Runoff Pollutants D H. Industrial processes. 0 Noc Applicable D I. Outdoor storage of equipment or materials. (See rows J and K for source control measures for vehicle cleaning, repair, and maintenance.) 0 Not Applicable 2 Permanent Controls-Show on Drawings D Show process area. D Show any outdoor storage areas, including how materials will be covered. Show how areas will be graded and bermed to prevent run-on or runoff from area and protected from wind dispersal. D Storage of non-hazardous liquids must be covered by a roof and/ or drain to the sanitary sewer system, and be contained by berms, dikes, liners, or vaults. D Storage of hazardous materials and wastes must be in compliance with the local hazardous materials ordinance and a Hazardous Materials Management Plan for the site. Appendix E: BMP Design Fact Sheets 3 Permanent Controls-List in Table and Narrative □If industrial processes are to be located onsite, state: "All process activities to be performed indoors. No processes to drain to exterior or to storm drain system." □Include a detailed description of materials to be stored, storage areas, and structural features to prevent pollutants from entering storm drains. □Where appropriate, reference documentation of compliance with the requirements of local Hazardous Materials Programs for: • Hazardous Waste Generation • Hazardous Materials Release Response and Inventory • California Accidental Release Prevention Program • Aboveground Storage Tank • Uniform Fire Code Article 80 Section 103(b) & (c) 1991 • Underground Storage Tank E-9 4 Operational BMPs-Include in Table and Narrative Table and Narrative D See Fact Sheet SC-10, "Non- Storm Water Discharges" in the CASQA Storm Water Quality Handbooks at https://www.casqa.org/resou rces /bmo-handbooks. □See the Fact Sheets SC-31, "Outdoor Liquid Container Storage" and SC-33, "Outdoor Storage of Raw Materials" in the CASQA Storm Water Quality Handbooks at www.casqa.org/resources/bm p-handbooks/municipal-bmp- handbook. February 26, 2016 1 Potential Sources of Runoff Pollutants 2 Permanent Controls-Show on Drawings □ J. Vehicle and I D Show on drawings as appropriate: Equipment Cleaning [Z] Not Applicable (1) Commercial/industrial facilities having vehicle / equipment cleaning needs must either provide a covered, bermed area for washing activities or discourage vehicle/ equipment washing by removing hose bibs and installing signs prohibiting such uses. (2) Multi-dwelling complexes must have a paved, bermed, and covered car wash area (unless car washing is prohibited onsite and hoses are provided with an automatic shut- off to discourage such use). (3) Washing areas for cars, vehicles, and equipment must be paved, designed to prevent run-on to or runoff from the area, and plumbed to drain to the sanitary sewer. ( 4) Commercial car wash facilities must be designed such that no runoff from the facility is discharged to the storm drain system. Wastewater from the facility must discharge to the sanitary sewer, or a wastewater reclamation system must be installed. E-10 3 Permanent Controls-List in Table and Narrative D If a car wash area is not provided, describe measures taken to discourage onsite car washing and explain how these will be enforced. Appendix E: BMP Design Fact Sheets 4 Operational BMPs-Include in Table and Narrative Describe operational measures to implement the following (if applicable): D Washwater from vehicle and equipment washing operations must not be discharged to the storm drain system. D Car dealerships and similar may rinse cars with water only. D See Fact Sheet SC-21, "Vehicle and Equipment Cleaning," in the CASQA Storm Water Quality Handbooks at www.casqa.org/resources/bm p-handbooks/municipal-bmp- handb__QQk. February 26, 2016 IfThese Sources Will Be on the Project Site ... 1 Potential Sources of Runoff Pollutants K. D Vehicle/Equipment Repair and Maintenance 0 Not Applicable Appendix E: BMP Design Fact Sheets . .. Then Your SWQMP must consider These Source Control BMPs Pennanent Controls-Show on Drawings D Accommodate all vehicle equipment repair and maintenance indoors. Or designate an outdoor work area and design the area to protect from rainfall, run-on runoff, and wind dispersal. D Show secondary containment for exterior work areas where motor oil, brake fluid, gasoline, diesel fuel, radiator fluid, acid- containing batteries or other hazardous materials or hazardous wastes are used or stored. Drains must not be installed within the secondary containment areas. D Add a note on the plans that states either (1) there are no floor drains, or (2) floor drains are connected to wastewater pretreatment systems prior to discharge to the sanitary sewer and an industrial waste discharge permit will be obtained. Pennanent Controls-List in Table and Narrative D State that no vehicle repair or maintenance will be done outdoors, or else describe the required features of the outdoor work area. D State that there are no floor drains or if there are floor drains, note the agency from which an industrial waste discharge permit will be obtained and that the design meets that agency's requirements. D State that there are no tanks, containers or sinks to be used for parts cleaning or rinsing or, if there are, note the agency from which an industrial waste discharge permit will be obtained and that the design meets that agency's requirements. E-11 Operational BMPs-Include in Table and Narrative In the report, note that all of the following restrictions apply to use the site: D No person must dispose of, nor permit the disposal, directly or indirectly of vehicle fluids, hazardous materials, or rinsewater from parts cleaning into storm drains. D No vehicle fluid removal must be performed outside a building, nor on asphalt or ground surfaces, whether inside or outside a building, except in such a manner as to ensure that any spilled fluid will be in an area of secondary containment. Leaking vehicle fluids must be contained or drained from the vehicle immediately. D No person must leave unattended drip parts or other open containers containing vehicle fluid, unless such containers are in use or in an area of secondary containment. February 26, 2016 1 Potential Sources of Runoff Pollutants □ L. Fuld Dispensing Areas 0 Not Applicable 2 Permanent Controls-Show on Drawings 0 Fueling areas 16 must have impermeable floors (i.e., portland cement concrete or equivalent smooth impervious surface) that are (1) graded at the minimum slope necessary to prevent ponding; and (2) separated from the rest of the site by a grade break that prevents run-on of storm water to the MEP. □ Fueling areas must be covered by a canopy that extends a minimum of ten feet in each direction from each pump. [Alternative: The fueling area must be covered and the cover's minimum dimensions must be equal to or greater than the area within the grade break or fuel dispensing area 1.] O The canopy (or cover] must not drain onto the fueling area. 3 Permanent Controls-List in Table and Narrative Appendix E: BMP Design Fact Sheets 4 Operational BMPs-Include in Table and Narrative □ The property owner must dry sweep the fueling area routinely. See the Business Guide Sheet, "Automotive Service-Service Stations" in the CASQA Storm Water Quality Handbooks at https: // www.casqa.org/resources/b mp-handbooks. 16 The fueling area must be defined as the area extending a minimum of 6.5 feet from the comer of each fuel dispenser or the length at which the hose and nozzle assembly may be operated plus a minimum of one foot, whichever is greater. E-12 February 26, 2016 1 Potential Sources of Runoff Pollutants M. Loading Docks 0 Not Applicable 2 Permanent Controls-Show on Drawings D Show a preliminary design for the loading dock area, including roofing and drainage. Loading docks must be covered and/ or graded to minimize run-on to and runoff from the loading area. Roof downspouts must be positioned to direct storm water away from the loading area. Water from loading dock areas should be drained to the sanitary sewer where feasible. Direct connections to storm drains from depressed loading docks are prohibited. D Loading dock areas draining directly to the sanitary sewer must be equipped with a spill control valve or equivalent device, which must be kept closed during periods of operation. D Provide a roof overhang over the loading area or install door skirts (cowling) at each bay that enclose the end of the trailer. 3 Permanent Controls-List in E-13 Appendix E: BMP Design Fact Sheets 4 Operational BMPs-Include in Table and Narrative D Move loaded and unloaded items indoors as soon as possible. D See Fact Sheet SC-30, "Outdoor Loading and Unloading," in the CASQA Storm Water Quality Handbooks at www.casqa.org/resources/bmp- handbgoks/municipal-bmp-handbook. February 26, 2016 1 Potential Sources of Runoff Pollutants □ N. Fire Sprinkler Test Water 0Not Applicable 0. Miscellaneous Drain or Wash Water □Boiler drain lines □ Condensate drain lines □Rooftop equipment □Drainage sumps □Roofing, gutters, and trim ONot Applicable 2 Permanent Controls- Show on Drawings Appendix E: BMP Design Fact Sheets 3 Permanent Controls-List in Table and Narrative □Provide a means to drain fire sprinkler test water to the sanitary sewer. □Boiler drain lines must be directly or indirectly connected to the sanitary sewer system and may not discharge to the storm drain system. □ Condensate drain lines may discharge to landscaped areas if the flow is small enough that runoff will not occur. Condensate drain lines may not discharge to the storm drain system. □Rooftop mounted equipment with potential to produce pollutants must be roofed and/ or have secondary containment. □Any drainage sumps onsite must feature a sediment sump to reduce the quantity of sediment in pumped water. □Avoid roofing, gutters, and trim made of copper or other unprotected metals that may leach into runoff. E-14 4 Operational BMPs-lnclude in Table and Narrative □ See the note in Fact Sheet SC- 41, "Building and Grounds Maintenance," in the CASQA Storm Water Quality Handbooks at www.casqa.org/resources/bm p-handbooks/municipal-bmp- handbook February 26, 2016 1 Potential Sources of Runoff Pollutants 0 P. sidewalks, parking lots. D Not Applicable Plazas, and 2 Permanent Controls-Show on Drawings 3 Permanent Controls-List in Table and Narrative E-15 Appendix E: BMP Design Fact Sheets 4 Operational BMPs-Include in Table and Narrative 0 Plazas, sidewalks, and parking lots must be swept regularly to prevent the accumulation of litter and debris. Debris from pressure washing must be collected to prevent entry into the storm drain system. Washwater containing any cleaning agent or degreaser must be collected and discharged to the sanitary sewer and not discharged to a storm drain. February 26, 2016 ATTACHMENT 4 City standard Single Sheet BMP (SSBMP) Exhibit [Use the City's standard Single Sheet BMP Plan.] BMPTABLE BMP# BMPTYPE SYMBOL CAS/J,4# Ql/ANTITY HYOROMOOIFICATION & TREATMENT CONTROL 0-0 BIOF/l. lli'A 110N ?t:t;t:?i 10,4!6 SF AREA TC-32 SOl/RCE CONTROL 0 INLET 3EA. STENC/UNG N/A SC-50 0 SHUPING N/A 5EA. SE-7 0 /YA/ER _Q_ 4 EA. {llJAUTY 570\I PERMANENT WATER QUALITY TREATMENT FACILITY KEEPING DUR WATER WAYS Cl.£11N M/\INTAN il'IT,i CA:;:f NO MDDIFICATONS Wl'li'.lUT A3ENCY APPR DETAIL WATER QUALITY SIGN-PLACED AT EACH BI0FILTRAll0N BASIN NOTE: ALL BIOFILTRATION AREAS WILL HAVE A SIGN POSTED TO BE VISIBLE AT ALL TIMES. DRAWING# 523-9A 523-9A 523--9A 523-9A SHEET#(S) INSPECTION MAINTENANCE FREQl/ENCY FREQl/ENCY 3, 5-8 Ol/ARTERLY SEMI-ANNI/Ail Y 3, 5-8 Ol/ARTERLY !'EARLY 3, 5-8 JIEEKLY WEEKLY 3, 5-8 N/A N/A ATTACHMENT 4 SINGLE SHEET BMP PLAN CARLSBAD OAKS LOT 2 - ----- SCALE: f"=,f.(J' 0 40 80 /20 /50 - PARTY RESPONSIBLE FOR MA/NlENANCE: MICHAEL KALSHEl/R (760)-525-8834 NAM£· CONTACT' AOORESS.· 3405 HIGHLANO OR/vE -STE 100 CARLSBAO. CA .92ll0 PLAN PREPAR[l) BY: NAM£· COMPANr: At;ORESS.· PHONE NO. ROBERT 0£N11NO EXCEL ENGINEERING 440 STATE PL ESCONDIDO CA .92029 706.745.8188 C£R17RCA110N: R.C£ 45629 SIGNAll/RE BAfPNOlES: !. 2 3. 4. 5. 6. THESE BMPS ARE MANDATORY TO BE INSTAilED PER MANl/FACll/RER's RECOMMENOAllONS OR THESE PLANS: NO CHANGES TO THE PROPOSED BMPS ON THIS SHEET WITHOUT PRIOR APPROVAL FROM THE CITY ENGINEER. NO Sl/BS111//110NS TO lHE MATERIAL OR TYPES OR PLANllNG T'rPES l't!THOl/T PRIOR APPROVAL FROM 1HE CITY ENGINEER. NO OCCl/PANCY Will 8£ GRANTEO l/NllL 1H£ CITY INSP£C110N STAFF HAS INSP£C7FlJ 1HIS PROJECT FOR APPROPRIATE Bl.IP CONSlli'l/CllON ANO INSTALLA 110N. REFER TO MAINTENANCE AGREEMENT OOCUMENT. SEE PROJECT SIIMP FOR AOO/llONAL INFORMA 110N. BVP CONSllrtlCllCW ANO INSPECTICW NOTES: ll/£ EOIY llfLL /1£1?/FY 1J-IAT PERMANENT BMPS ARE CONSll?LIClEiJ ANO OPEJ?AllNG IN COMPUANCE 1111J-I 1l-l£ APPLJCABL£ REOIJll?EJ,f£NJS. PRIOR TO OCCUPANCY THE EOIY ML/ST PROl40£: 1. PHOTOGRAPHS OF 1l-lE INSTALLA 710N OF PB/I.IANENT 81,/PS PRIOR TO CONSll?l/CllON, /JIJRING CONSll?L/CllON, ANO AT RNAL INSTALLA 110N. 2. A IIU STAMP£1J LET/ER /1£Rln1NG 1J-IAT PERMANENT 81,/PS ARE CONSll?LIClEiJ ANO OPERAllNC PER 1J-IE REOIJIREJIEN!S OF ll/E APPRO!,EO PLANS: 3. PHOTOCRAPHS TO lfl?IFY 1J-IAT PERMANENT /YA/ER (){JAUTY ll?EA lJ.IENT S/0\IAGE HAS BFEN INSTALf.£0. INSPECTOR DATE SHEET 1 CITY OF CARLSBAD ENGINEERING DEPARTMENT 1-----------------------t-------+--t------jl----jBMP SITE PLAN: CARLSBAD OAKS LOT 2 APPROVED: JASON S. GELDERT RCE 63912 EXPIRES 9 30 20 DATE REVISION DESCRIPTION OWN BY: AG.ll.CV'--J...C"--"-" 1--D_A TE _ __,__IN_l_TI_A_L+_D_A_TE _ _...__IN_ITI_A_L_ CHKD BY: __ _ RVWD BY: OTHER APPROVAL CITY APPROVAL PROJECT NO. SOP 2019-0014 DRAWING NO. 523-9A