Loading...
HomeMy WebLinkAboutSDP 2021-0028; LEGOLAND PARKING STRUCTURE #2; DRAINAGE STUDY FOR LEGOLAND PARKING STRUCTURE #2; 2024-01-091 Drainage Study for LEGOLAND Parking Structure #2 SDP 2021-0028 / CDP 2021-0066 DWG No. 537-1A Prepared for: LEGOLAND California, LLC 1 Legoland Drive Carlsbad, CA 92008 Prepared by: Nasland Engineering 4740 Ruffner Street San Diego, Ca. 92111 (858) 292-7770 NE Job No. 121-149.1 2 TABLE OF CONTENTS 1.0 PURPOSE OF STUDY........................................................................................................ 3 2.0 EXISTING CONDITIONS ……..…………………………..……………………………. 3 3.0 PROPOSED CONDITIONS …………..…………………………………………………. 4 4.0 HYDROMODIFICATION ……………………...………………..………………………. 4 5.0 METHODOLOGY ………………...……………………………………………………... 5 6.0 SUMMARY OF RESULTS ……………………...…………….………………………… 6 7.0 ANALYSIS ………………………………………..……………………………………… 8 8.0 CONCLUSION …..……………………………………………………………………...... 9 10 DECLARATION OF RESPONSIBLE CHARGE…………….………………………...... 10 ATTACHMENTS A. EXISTING AND PROPOSED HYDROLOGY MAPS B. ONSITE HYDROLOGY CALCULATIONS C. D. REFERENCE MAPS AND TABLES HYDRAULIC ANALYSIS 3 1.0 PURPOSE OF THIS STUDY The purpose of this hydrology study is to examine the existing hydrologic conditions and the effects that the proposed parking structure will have on the existing drainage system. The project is located within the guest parking lot just south of the existing employee parking structure at the Legoland California Resort in the City of Carlsbad. The nearest cross streets are Palomar Airport Road and The Crossings Drive. This study assesses the hydrology associated with the immediate project area only. CITY OF OCEANSIDE L -, ~ITYOFVISTA IIOII> l I r ;\~ ,.._ \- CITY OF ENCINITAS \J ' I ITYOF SAN ARCOS CARLSBAD VICINITY PLAN 4 2.0 EXISTING CONDITION The total existing watershed area is 2.5 acres which includes a small portion of the existing employee parking lot areas to the north. Impervious surfaces within project vicinity include an asphalt parking lot, asphalt street, concrete sidewalks, and concrete curb and gutters. The existing impervious surface accommodate for 100% of the watershed. The pervious surfaces surrounding the watershed include site landscaping with mature trees and established shrubs surrounding the existing basin. There are no undeveloped or open space areas within the project vicinity. The existing topography slopes moderately south at approximately 5.5%. To accommodate parking, the lot was graded in multiple terraces using steep landscape planters to accommodate for the change in elevation. Each terrace is sloped between 2% and 3% and each planter has a slope of approximately 4 to 1. Two curb inlets are located at each end of the south planter to collect surface runoff within the parking lot. Approximately half of the site runoff is captured in a curb inlet and routed in a 30” RCP to the west through the existing parking lot. The other half of the site runoff is captured at the southeast curb inlet and routed in a 24” RCP toward The Crossings Drive. Both storm drain systems are directed to a large existing bioretention facility located along the frontage of Palomar Airport Road. The bioretention facility collects the excess storm water generated from the entire parking lot, detains it and discharges it to Encinas Creek on the south side of Palomar Airport Road. 3.0 PROPOSED CONDITIONS The proposed project plans to construct a free standing parking structure with 4 levels of parking. The parking structure will be cast in place concrete with smooth painted surfaces. Site improvements include remedial grading to accommodate the parking structure and site grading for surface driveway and walkways. The proposed topography will mimic the existing sites hydrologic regime. Attenuation of the storm water runoff will be achieved by routing proposed watershed to replaced curb inlets at the existing southern curb location. The total proposed watershed area is 2.56 acres comprising of a total of 4 drainage areas. Drainage Areas 1.1, 1.2, 2.1, and 2.2 include drainage from the parking structure roof and surrounding surface parking lot frontage which tie into the replaced curb inlets via downspout piping and surface drainage to curb inlet opening. Drainage area 3 includes a small section of area which will drain through a curb opening spillway and brow ditch into the existing Biofiltration Basin. Drainage area 4 has been isolated from the project watershed as well and drains away from the parking lot onto The Crossings Road. All drainage areas still maintain its ultimate destination at the bioretention facility to the South adjacent to Palomar Airport Road. 5 No water quality structural BMP have been proposed for this site area runoff due to previously accounted for BMP sizing detailed in the Legoland Regional Biofiltration Basin Storm Water Quality Management Plan (SDP 15-26 / CDP 15-50) prepared by R.E.C. Consultants dated 6/30/18. City of Carlsbad BMP Design Manual Chapter 4.4 requires trash capture devices for the development of The LEGOLAND Parking Structure #2. This requirement will be met and memorialized with installing ‘FlexStorm Connector Pipe Screen (CPS) trash capture to the proposed A4 Cleanout downstream of DMA 2 (Total Area=7.22cfs tributary to the to the CPS device) at POC 2. The standard 3L18H-Bypass-Shape CPS has been selected to screen over the existing 24” RCP outlet. See Appendix D for Trash Screen Hydraulic calculations. 4.0 HYDROMODIFICATION The site includes a total project limit of disturbance area of 3.012 acres. Within the site project disturbance limits there is an existing 109,827 sf impervious area and proposed 121,081 sf proposed impervious area which results in a total site increase of 10.2%. Hydromodification sizing for the increase of impervious area on this site has been accounted for by the Legoland Regional Water Quality and Hydromodification BMP report (SDP 15-26 / CDP 15-50) prepared by R.E.C. dated 6/30/2018 and latest Amendment dated 2/21/19. See proposed Amendment to Legoland Regional Biofiltration Basin Storm Water Quality Management Plan (SDP 15-26 / CDP 15-50) for equivalent area calculations prepared by Nasland Engineering on October 26, 2023 for more information. 5.0 METHODOLOGY Surface data and runoff equations were acquired from the County of San Diego Hydrology Manual dated June 2003 and the County of San Diego Hydraulic Design Manual dated September 2014. All maps and tables utilized from these Manuals are located in the maps and tables attachment at the end of this report. • The runoff coefficient C is determined using table 3-1 on page 65 of the County of San Diego Hydrology Design Manual or by using the following equation: C=0.9 x (% Impervious) + Cp x (1 - %impervious) Where: Cp = the pervious coefficient value for undisturbed natural terrain for type D soil (Cp=0.35) • The time of concentration for sheet flow conditions is determined using the chart and equation from the Figure 3-3 “Urban Area Overland Time of Flow Nomographs”. 6 • The time of concentration for channelized flow conditions utilized Manning’s equation or Figure 3-7 • Manning Roughness Coefficients were determined using table 1-104-14A. • The intensity (I) is calculated as a function of time of concentration and can be determined by using the Intensity Duration Design Chart (Figure 3-1) or from the equation; I = 7.44 P6 D-0.645 Where: P6 = 6-Hour Precipitation Depth (inch) D = time of concentration (minutes) • The runoff discharge (Q) is calculated using the Rational Method. Q=CIA Q = Storm Specific Runoff discharge (cfs) C = runoff coefficient I = Storm Specific Rainfall intensity (in/hr) A = Watershed area (acres) HYDRAULIC DESIGN CRITERIA Drainage improvements for Legoland Parking Structure must collect, convey, detain, and treat all onsite excess storm water. The hydraulic analysis of onsite drainage features is modeled after the County of San Diego Hydraulic Design Manual. See Appendix D for inlet capacity and proposed storm drain pipe capacity calculations. Curb Inlet Design Capacity Inlet capacity is the rate of storm water the curb inlet can capture. All inlets are located in a sump condition and must fully intercept the peak discharge from the 100-year design event. The inlet capacity for the Type B curb inlets were analyzed under both weir and orifice conditions. The inlet capacity governed by the weir and orifice condition is calculated as: 𝑄=𝐶𝑤𝐿𝑤𝑑3/2 For Curb Inlets (Weir Condition) Where: Q= inlet capacity governed by weir flow (cfs) Cw= Weir Coefficient (Cw = 3.00) Pe= Effective Perimeter for sides accepting flow (ft) LW= Effective Weir Length (Curb Opening) (ft) d = depth of flow at the grate (ft) 𝑄=𝐶𝑛ℎ𝐿(2𝑔𝑑)1/2 For Curb Inlets (Orifice Flow Condition) Where: Q = inlet capacity governed by orifice flow (cfs) L = Curb Opening Length 7 Co = Orifice Coefficient (CO = 0.67) g = gravitational acceleration (32.17 ft/s2) Ae = Effective Area (ft2) d = depth of flow at the grate (ft) h = Curb Opening Height Storm Drain Pipes Underground storm drain pipes are designed to have a capacity to convey the 100-year design storm. Analysis of the flow conditions for the storm drain assumes a uniform flow condition. This assumption allows the use of the Manning Equation: 𝑄=1.49 𝑛𝐴𝑄2/3𝑄1/2 Where Q = discharge (cfs) n = Manning Coefficient A = Flow Area (ft2) R = Hydraulic Radius (ft) S = Swale slope (ft/ft) Storm Drain Pipes Trash capture standard CPS model number has been selected based on screen length, height, bypass height, and screen shape. Orifice bypass calculation has been used to determine the maximum screen flow and bypass through the 3L18H-Bypass-Shape. C S FLO lCULA 10 S HEIGHTS h a pre-set Length of en (l). • ss • iable u o con rm at I Lid esi exceeds e for a certain CB he sjzj le b o esulta r us B (b s heig ). ass CPS U 8 6.0 SUMMARY OF RESULTS This summary shows the results for the existing and proposed onsite hydrology. The onsite hydrology results show the existing runoff rates and the proposed unmitigated hydrologic conditions for a 6-hour 100 year design storm. For hydrologic calculations and the equations utilized in the study, see Attachment B: Onsite Hydrology Calculations located in the back of this report. Rainfall Precipitation Depths 85th Percentile Event 10 Year Event 100 Year Event P6 = - 1.8 2.5 P24 = 0.58 3.0 4.25 P6/P24 = - 60% 59% Adjusted P6 = 0.58 1.8 2.5 Note: • A minimum time of concentration of 5 minutes was utilized. • The project assumes hydrologic type D soil. 9 100 Year Design Storm Existing: Proposed (Unmitigated): Q100 Pre vs. Post Conditions: EX. DMA C Value Tc (mins) Intensity (I, in/hr) Area (acres) Runoff (Q, cfs) 100 Year E1.0 0.90 5.00 6.59 1.27 7.51 POC 1 E2.0 0.90 5.00 6.59 1.25 7.41 POC 2 EX. SUMMARY DRAINAGE AREA C Value Tc (mins) Intensity (I, in/hr) Area (acres) Runoff (Q, cfs) 100 Year 1.1 0.90 5.00 6.59 1.14 6.75 1.2 0.85 5.00 6.59 0.09 0.50 7.25 2.1 0.90 5.00 6.59 1.11 6.58 2.2 0.85 5.00 6.59 0.15 0.84 7.42 3 0.66 5.00 6.59 0.06 0.26 4 0.90 5.00 6.59 0.05 0.30 TOTAL POC 1 TOTAL POC 2 Summary POC EXISTING Q100 (CFS) PROPOSED Q100 (CFS) DELTA Q100 (CFS) 1 7.51 7.25 -0.26 2 7.41 7.42 0.01 Summary 10 7.0 ANALYSIS The runoff rates in this study have been calculated in order to compare the pre site condition runoff to the post site condition runoff. It has been observed that the total watershed runoff has been accounted for at each point of connection. After slight adjustments to the various proposed drainage areas, it has been confirmed that the total proposed development will reduce the overall peak runoff rate entering each catch basin POC. The total decrease in peak runoff is 0.25 CFS drainage to POC 1 and calculated equivalent CFS to POC 2. A curb inlet is proposed at the new low point along the southern curb to collect the drive aisle runoff from DMA 1.2 and convey the parking structure roof downspout runoff entering POC 1 sized at the same drainage capacity. A replaced curb inlet is proposed to collect drive aisle runoff from DMA 2.2 and convey DMA 2.1 into POC 2 discharge. See Appendix D for catch basin hydraulic sizing. Each of these POCs are piped and routed to the existing bioretention basin adjacent to Palomar Airport Road. This existing basin is sized to detain the 100 year storm prior to releasing excess storm water to Encinas Creek on the south side of Palomar Airport Road. Trash Capture CPS pipe screen protection device has a total Q screen flow rate of 8.72 cfs and a 12” bypass freeboard of 13.19 CFS. The A4 cleanout has a depth of 7.2 feet which allows for the required bypass to convey the peak flow of 7.20 CFS coming from combined DMA 2.1 and 2.2. See appendix D for CPS sizing calculations. 11 8.0 CONCLUSION This study has discussed the existing and proposed conditions associated with the construction of a new parking structure within Legoland Parking Structure #2. Based on the calculations presented in this study, the proposed development will not pose any hydrologic or hydraulic conditions of concern when released to the existing public storm drain system. The proposed conditions will maintain the runoff entering the replaced curb inlet structures at POC 1 and POC 2. This project will maintain and slightly reduce the rate at which storm water will discharge from the site, therefore will not pose any impacts to the existing system. Although the overall proposed site results in a 1.0% increase of impervious area, this site will not require treatment area as the BMP sizing has been accounted for in the Legoland Regional Biofiltration Basin Storm Water Quality Management Plan (SDP 15-26 / CDP 15-50) prepared by R.E.C. Consultants dated 6/30/18. The increase in impervious area will be memorialized and deducted from the BMP area surplus a new amendment to the Legoland Regional Biofiltration Basin SWQMP. The proposed offsite redirection of flows will not pose concern to existing storm drain systems. ‘DMA 3’ flows to the existing biofiltration basin constructed for the parking structure north of the site. The existing biofiltration basin has been sized including ‘DMA 3’ within ‘DMA 1’ from SWQMP No. 16-25, Storm Water Quality Management Plan for Legoland Parking Structure, SDP96-14(I), prepared 8/8/2016. Since we are decreasing the amount of impervious area within ‘DMA 3’ by 500sf; no alternations to the existing biofiltration basin are required. ‘DMA 4’ encompasses a de-minimis area which is redirected from the proposed parking structure frontage and onto The Crossings Drive. This existing area ultimately drains to the same storm drain network as it will in the proposed conditions, therefore will not create a hydraulic or water quality impact to the existing storm drain network on The Crossings Drive. 12 9.0 DECLARATION OF RESPONSIBLE CHARGE I hereby declare that I am the engineer of work for this project, that I have exercised responsible charge over the design of the project as defined in section 6703 of the Business and Professions Code, and that the design is consistent with the current standards. I understand that the check of the project drawings and specifications by the City of Carlsbad is confined to a review only and does not relieve me, as Engineer of Work, of my responsibilities for project design. James J linn Date R.C.E. 84231 Exp. 9-30-2025 1/09/24 ATTACHMENT A: EXISTING AND PROPOSED SITE HYDROLOGY MAPS ~ -' / ~ / --- Civil Engineering T (858) 292-7770 Nasland Surveying 4740 Ruffner Street 0 Land Planning San Diego, CA 92111 nasland.com II#! LEGEND PROPOSED IMPROVEMENTS LANDSCAPE BASIN PERIMETER STORM DRAIN FLOW LINE SITE DATA TOTAL DRAINAGE AREA: LOGIC SOIL GROUP: EXHIBIT ------------SD--- .<=·<=·<=·<=. 2.52 ACRES D DEPTH TO GROUNDWATER: GREATER THAN 20' EX.SUMMARY Intensity Area Runoff EX. OMA C Value Tc (mins) (I, in/hr) (acres) (Q, cfs) 10 Year E1.0 0.90 5.00 4.74 1.27 5.40 POC 1 E2.0 0.90 5.00 4.74 1.25 5.34 POC2 100 Year E1.0 0.90 5.00 6.59 1.27 7.51 POC 1 E2.0 0.90 5.00 6.59 1.25 7.41 POC2 EXISTING HYDROLOGY OMA EXHIBIT CITY OF CARLSBAD ENGINEERING DEPARTMENT 50 100 PROJECT NO. SCALE 1''=50' I 11 I • -OMA 11.1 t14~ QIJ0•8.78CFB • EXIS'IK) PAFIKNQ 8TRJCTlJE ■ ■ ■ t-t-+-+-+--lr-t--+--t-t--+-f:::::::::l==l==:l:::::=l===l=::::!=:::!l:dl::::::::d:::::::l,211==1==1==4:=t+-+--+, ------+~---,------'-· OMA 12.1 tfl~ OIJO•UBCFB i I I I /1 I I I I I II : I I ~ II i 11 a 11 11 II - II = I f I / ~~~~J~~~-~~~;~~J!~~n1~~1~ti:~➔~:~:I:JHdtt~~t~~~~~~~~~~~~~~~4 ~J_, .._ 11-11-11-11-11-1 11---11-11-11-11-11-11-11-11-11-11-11 , __ _ --::::v-------(12 Nasland Civil Engineering Surveying Land Planning I . I I ' 11 11 11 11 T (858) 292-7770 4740 Ruffner Street San Diego, CA 92111 nasland.com 0 50 LEGEND PROPOSED IMPROVEMENTS LANDSCAPE IMPERVIOUS SURFACE BASIN PERIMETER STORM DRAIN FLOW LINE SITE DATA TOTAL WATERSHED AREA: LOGIC SOIL GROUP: DEPTH TO GROUNDWATER: EXHIBIT --------SD--- . <=·<=·<=·<=·<=·<=. 2.56 ACRES D GREATER THAN 20' Summarv DRAINAGE Intensity Area Runoff AREA C Value Tc (mins) (I, in/hr) (acres) (Q, cfs) 100 Year 1.1 0.90 5.00 6.59 1.14 6.75 1.2 0.85 5.00 6.59 0.09 0.50 TOTAL POC 1 7.25 2.1 0.90 5.00 6.59 1. 11 6.58 2.2 0.85 5.00 6.59 0.15 0.84 TOTAL POC 2 7.42 3 0.66 5.00 6.59 0.06 0.26 4 0.90 5.00 6.59 0.05 0.30 PROPOSED HYDROLOGY 100 DMA EXHIBIT CITY OF CARLSBAD ENGINEERING DEPARTMENT SCALE 1 "=50' I 11 PROJECT NO. I ATTACHMENT B: CALCULATIONS EXISTING CONDITIONS Runoff Coefficient EX. DMA Area (acres)% Impervious % Pervious Description Subbasin C Value E1.0 1.27 99.5% 0.5% Parking Lot 0.90 E2.0 1.25 100.0% 0.0% Parking Lot 0.90 2.52 Note: The site consists of hydrologic soil class D The Cp value for Hydrologic soil class D is Cp=0.35 Time of concentration Sheet Flow EX. DMA C Value L (ft) Delta (ft) Slope (%) Ti (min) E1.0 0.90 100.00 2.90 2.90 2.56 E2.0 0.90 100.00 2.90 2.90 2.52 Note: Minimum time of concentration (Tc) for all basins is 5 minutes Concentrated Flow EX. DMA Description L (ft) Delta (ft) Slope (%) Tt (min) E1.0 kirpach 226 6.60 3.00 1.98 E2.0 kirpach 228 6.70 2.90 1.99 Total Time of Concentration EX. DMA Ti (min)Tt (min) Tc (min) E1.0 2.56 1.98 5.00 E2.0 2.52 1.99 5.00 Note: Minimum time of concentration (Tc) for all basins is 5 minutes 10 YEAR - 6 HOUR Storm P6 = 1.8 in EX. DMA C Value Tc (mins) Intensity (in/hr)Area (acres) Runoff (Q, cfs) E1.0 0.90 5.00 4.74 1.27 5.40 E2.0 0.90 5.00 4.74 1.25 5.34 Note:See the charts and graphs used for the hydrologic calculations at the end of this study. 100 YEAR - 6 HOUR Storm P6 = 2.5 in EX. DMA C Value Tc (mins) Intensity (in/hr)Area (acres) Runoff (Q, cfs) E1.0 0.90 5.00 6.59 1.27 7.51 E2.0 0.90 5.00 6.59 1.25 7.41 Note:See the charts and graphs used for the hydrologic calculations at the end of this study. T, = 1.8(1.1 -C},/I • Vs Te -_L_ 60 D PROPOSED CONDITIONS Runoff Coefficient DMA Area (acres)% Impervious % Pervious Description C Value 1.1 1.14 100.0%0.0%Parking Lot 0.90 1.2 0.09 90.0%10.0%Parking Lot 0.85 2.1 1.11 100.0%0.0%Parking Lot 0.90 2.2 0.11 91.0%9.0%Parking Lot 0.85 3 0.06 56.0%44.0%Parking Lot 0.66 4 0.05 100.0%0.0%Parking Lot 0.90 Note: The site consists of hydrologic soil class D 0.84 The Cp value for Hydrologic soil class D is Cp=0.35 2.56 Time of concentration Sheet Flow DMA Node C Value L (ft)Delta (ft)Slope (%)Tc (min) 1.1 0.90 100.00 3.00 1.50 3.14 1.2 0.85 133.00 3.00 1.50 4.62 2.1 0.90 100.00 3.00 1.50 3.14 2.2 0.85 77.00 3.00 1.50 3.44 3 0.66 63.00 6.00 10.00 2.93 4 0.90 100.00 6.00 7.00 1.88 Total Time of Concentration Tc = Ti + Tt DMA Ti (min)Tc (min) 1.1 3.14 5.00 1.2 4.62 5.00 2.1 3.14 5.00 2.2 3.44 5.00 3 2.93 5.00 4 1.88 5.00 Note: Minimum of 5 minute Time of Concentration was utilized 10 YEAR - 6 HOUR Storm P6 =1.8 in DMA C Value Tc (mins) Intensity (I, in/hr) Area (acres) Runoff (Q, cfs) 1.1 0.90 5.00 4.74 1.14 4.87 1.2 0.85 5.00 4.74 0.09 0.36 BASIN 1 TOTAL 5.23 2.1 0.90 5.00 4.74 1.11 4.74 2.2 0.85 5.00 4.74 0.11 0.44 BASIN 2 TOTAL 5.18 3 0.66 5.00 4.74 0.06 0.19 4 0.90 5.00 4.74 0.05 0.21 Note:See the charts and graphs used for the hydrologic calculations at the end of this study. 100 YEAR - 6 HOUR Storm P6 =2.5 in DMA C Value Tc (mins) Intensity (I, in/hr) Area (acres) Runoff (Q, cfs) 1.1 0.90 5.00 6.59 1.14 6.76 1.2 0.85 5.00 6.59 0.09 0.50 POC 1 TOTAL 7.26 2.1 0.90 5.00 6.59 1.11 6.58 2.2 0.85 5.00 6.59 0.11 0.62 BASIN 2 TOTAL 7.20 3 0.66 5.00 6.59 0.06 0.26 4 0.90 5.00 6.59 0.05 0.30 Note:See the charts and graphs used for the hydrologic calculations at the end of this study. *DMA 3 DRAINS TO EXISTING BMP *DMA 4 DRAINS OFFSITE 3/2/2023 JOB NO. 107-217.1 r: = Ul{1.1 -C}.fi. ' v-g ATTACHMENT C: REFERENCE MAPS AND TABLES San Diego County Hydrology Manual Section: 3 Date: June 2003 Page: 6 of 26 Table 3-1 RUNOFF COEFFICIENTS FOR URBAN AREAS Land Use Runoff Coefficient “C” Soil Type NRCS Elements County Elements % IMPER. A B C D Undisturbed Natural Terrain (Natural) Permanent Open Space 0* 0.20 0.25 0.30 0.35 Low Density Residential (LDR) Residential, 1.0 DU/A or less 10 0.27 0.32 0.36 0.41 Low Density Residential (LDR) Residential, 2.0 DU/A or less 20 0.34 0.38 0.42 0.46 Low Density Residential (LDR) Residential, 2.9 DU/A or less 25 0.38 0.41 0.45 0.49 Medium Density Residential (MDR) Residential, 4.3 DU/A or less 30 0.41 0.45 0.48 0.52 Medium Density Residential (MDR) Residential, 7.3 DU/A or less 40 0.48 0.51 0.54 0.57 Medium Density Residential (MDR) Residential, 10.9 DU/A or less 45 0.52 0.54 0.57 0.60 Medium Density Residential (MDR) Residential, 14.5 DU/A or less 50 0.55 0.58 0.60 0.63 High Density Residential (HDR) Residential, 24.0 DU/A or less 65 0.66 0.67 0.69 0.71 High Density Residential (HDR) Residential, 43.0 DU/A or less 80 0.76 0.77 0.78 0.79 Commercial/Industrial (N. Com) Neighborhood Commercial 80 0.76 0.77 0.78 0.79 Commercial/Industrial (G. Com) General Commercial 85 0.80 0.80 0.81 0.82 Commercial/Industrial (O.P. Com) Office Professional/Commercial 90 0.83 0.84 0.84 0.85 Commercial/Industrial (Limited I.) Limited Industrial 90 0.83 0.84 0.84 0.85 Commercial/Industrial (General I.) General Industrial 95 0.87 0.87 0.87 0.87 *The values associated with 0% impervious may be used for direct calculation of the runoff coefficient as described in Section 3.1.2 (representing the pervious runoff coefficient, Cp, for the soil type), or for areas that will remain undisturbed in perpetuity. Justification must be given that the area will remain natural forever (e.g., the area is located in Cleveland National Forest). DU/A = dwelling units per acre NRCS = National Resources Conservation Service 3-6 SITE l--l--+-+-l--l--+-+-1-+--+--l-1-+--+-,b ,+H-++-H-++-H-++--H,LP+-+-+-il-l--+--l-l-l--+--l-H-l-b -l-H-+-+-H-+-+-H-++-Hi-L>++-H-++-H-++-H-++-<b,,--1-~-1--+-H-l---+-H-l---+-+-•M--+-+-,-+-+-+-,-+-+-+-H-I ~ Y 9 ~ M ~ I I I-HH--t-++++-t-t-H--t-+-~H H--t-+-+++-+-+-HH--+-+-+++-+-+-HH-+++++-+-H~H--+-+-+++t-t-HH--+++-11++-I--I--I-HH-l--l--l--l--l--l-1HHH-+++++-+-HH--t-+-.,..HH--t-++++-t-t-H--t--t-l I-.J.--1---l--ss,"Be:,..., W'"+ta:;..:J~.?+'...,+-Ft=t=:;:=t=t=#=l:=::t=W-l-1--+--1---4 -WL!--W+W+W-!-W---l---W-l-l--+..WW---l--)L!-..J...J+-l-l-!-W-!-W---l---W--1---l--++-ll--++-l-t-+-l-!-~-l-+-+++-++l-++f-++1-s1~ e,--,v ,-•• " "-1'-H♦l~1 Hl--l--++-+-I••-.,--, -J • If, /'-ll"'t..o _J.,._-l_ -+-H 1-HH-+-++++-+-HH--t ,v,l--'-1-+++-+-H <!!-+~"~. ~.,+.-'-P"f--'1:r.<-:+-~+++-t-HH-t-+-++++-t-HH-+~-++++t-Hl-'--l -~--.·1 ,1,i',i ~1-t1,·, . -· ,• I ,.· .. ,,/; I : ·a ·- r:. ·-: .. •: .., H--I-H-+-+-l-++-H--+-l-+-l-+--l---l-+-l-+-+-le-+---l-1-+-1--1-1--1-+-+--l-~I '{ n '" 1 ... . . ·... ~ ,_·_·.._.......,_,.+-,_,,,,-,_·i .... • -+-+-+S LI-L-, L, .tti--' __ ,_ . .;.r , -. . : \ • ._,·-=-:-: ·. ~·r: ...... >;,o ", • ,.I,,. 'I I -. ' County of San Diego Hydrology Manual Rainfall Isopluvials 10 Year Rainfall Event • 6 Hours lsopluvial (inches) s :tGIS We H:1,•c San Diego Owcrc<l! I f-++++-+-HHH--+-l-++-1-l--lf--l-+-+-1--1--1---1-+-+-f--le--1-+-1--1--1---1---1--1-l--'v• '-• II •·• • .. • .. • IL.. ·1 " • ' !..!. • • • ._ " .,.. .-··. ,1:1 1.-• ,~ ,, 1~ , N -,} ; • r__. ": .. ' .. -:.~"''-'''--'-',-• .._ ........ _~ --;" .. • J. -;• " 1 .... THIS UAP IS PRO\i1DED wm-tOUT WAASW,ITY OF ,WV KIND. EITHER EXPRESS M Olf'lll:O.INCLUOt,,G, avr NOT LO/IIED TO, THI: IMf)Lf=D WARRAlflf=S OF 1/£RCtiANT A.81!.ITY ANO FITNESS FOR A PARTK:ut.AR PURPOSE. COpy!lg'!l SIV'IGIS. Al Rlg!U R.Wi,ve<I. IM11E!Rl~~EI~-'--~ I• '· ;_i,>' • : , 1 ,.., ~~ ■1-+-+--,>-+--+-+-+--,>-+--1-+-4--;1--1-l-+-+-1--1--1-+-+ -1----1---l--l--l-++-l-l--l--l-++-l--l(... 1 -l--l--l-"'l--lH+-l--1-f... 0 --l-.-l-~,-l-: -l---1--l-l----l---l--l--l-++-l--f...\-l--l-l-t---l-•-l-+-l--H-+"+t-l--+-l--lH+++-H-+++-H-l-+t-H-+++-H-++-t-H w f E ll-+-H,_"l?'~v01H --l-+-+-l-+++-il-+++-~-++-;......!-!-+--i--l...L-+--1--iµ.++-l-l-l-+-l---l-l----l-+-IH---l--1---'l....l--l--l-1-+-++-l-4-l-+-+-!-+--l-+-,-!--+-4--il-+-'-+-!--f-'--!-H-'-+-H-'-++-,f-'--+-+-l--'--++-t--:-+"i-i,2fJOr-- l..-+-l--+-+-1--l--l-!...,1.-l--l--l--1--1-~,++++--l-+-H-!--+--++++i--<)---l-!-HH--+-l-++++--I-He-o•---l---l--l--l---l----l--hl--l--l-l--1--l--l-i('-H -1--1--l--l-+-t-hl--l--l-l--l--l-c·· H-+-+++++-t-HH'-f-t-+-ifJ+++-+-t-H-i-t-+--t---t--t-1 s This product'$ m11y icontar, nforrn:Won from 1h41 SIINOAG Regr,llld 1-ilO!'m.v:lon s~m wflk:tl c.1M01 bel80(l)duc.d w11ho..A 1t1e wllll.Crl pcrn,lulon d SANDAG, Thi& Pl'od-.-::tmey c~ ~om,~on-..tith~& beei'I reproduced..,111\ pcrm1"1on gtan1r.d by lhomM Brnlhcrs Maps, 0 le-+++-+-!-HH--+-1--l-++--l ~ ! p ~ f'? Ti""" ~ ~ ~ ~ ~ -<.p 3 3 Miles 1 1 T l 'T 'j" SITE l ;-t-t--t--t-+-+-t-+-+-+--+-+-+--+-+-+1-+-t-+-+-,t-++-i-+-+-t-+-+-+--+-+-+--+-+-+-+-+-+-+-,t-+--rl i-t---t-t-t-+-+H+t-t-++H ?+-H-l-+H-1----H-l-+l-l , :LP,-+-+-t-t-+-+-i-+-+-t-t-+-+-~ts.-1-+-+-+-+---+--+-1-+-+-+-+_, ;}.,,+-+---1-++-t-t-+-+--t-+-+--t-t-i:i.J. ,[ t-,...,i_--+t--+-'-1l---tt_-+-t_i_-➔t_-+t-tr-1t_-+t_tr-lt_--i:r-_·;I'.~H---t-t-t-t-H--t--t+t-Hr·,~[:t++t-H-+++t-H-++--1~~+++--l---l-l-+++--l-l-l-+--i:;UW-+---l--l----l---l-l-+---l---l---l-l-l-g~tiJ--J-.. iJf--r-.. iJ~J-.. t--+iJ-""+,....,---l ?!; ~·=-"';_-+t--_;_"";_-+t--_;f-"";_-++--_;r"";_-++---+r-;_--,. ": t--1-t---+-+-+-t-rf-+-+-+-+-+-~-,-t--t-t-H--+-t--+-+-H--t-t-+-;i=---HH-++++-H--t-+++-l--~~·....+++++-H--l--l--l-+-l--l-l _<D~c..+---+--+-+-1-+--+--+--+-+-+-<f--+--+--"-f'-l---+--+--+-+-1-+--+--+--+-+-+-<-t1 I ~ l ~ ~ H--ri"""t-H-t--t-t-H-t--t-t-H -++--I-H-++--1-H-+++I~ "' . ,, iJ. IMREIW r . . I : r .., County of San Diego Hydrology Manual Rainfall Isopluvials 10 Year Rainfall Event-24 Hours I so pluvial (inches) DPW *GIS ~ S?iiGIS We Ha,•c San Diego C<wcrc<l! THIS IAAP IS PRO'v10£() VJITl-lOUT W~ANTV <$ ANY KINI>, EITl-lER £XPRESS OR IIIF\.JE0.11«:LUONC. 8Vf NOT Llt,'ITEO TO. THE IMPLlaO WARRAN'TES OF 1.IERQ-IANTASIUrY ANO FITNI;.$$ FOR A PARTl!;l,11.,AR PVRPOSE. Copyri!,1'11 SanGIS. Al Rigl't! ~e"- lhlt pt0(1-..cl$ m;iy oont.-n fnlomi$1>on lrom !ti$ $ANQAG Regon.t t',lorm81:ion Syst,em whid'I tolV'IOI be n!'Produeti'd wi1hout the wlltl6"'1 P@fmittiOO ot SANOA.C, This l)l'oduetmlly ~ i'lfOftllllltion M'iehl'llls ~. ltllllodU~Y>ill, ~°" o,Mle<I l)y ThOiM8& 8'0l.h&!'I M81>$, 3 Miles I SITE I I I 1t-~t~=t=t=tjtj=t=t=tjtj=t=.H~.~--t-+-++++-t-HH--+-++~.J~e-4--+-+++++-l---l----l-l-J.+--l--8 '++-+-HH-t-+-+++-+-+-I-Y;1:H -+-+-++++-+-H-l-+-++-EJ..SH--+-+++++-He-!-+-+-++JiilA•++-+-+-HH-+-+++-+-+-l r;..\::"i--t,-t-i---t-t-t-HH-+-++-k-++-+-HH-++++-t-+-Hf-· -~-t-+-HH--l-l--l-+-1--1--1--Hl--•~H-+-+++-+-+-+-H-+-+-f-+-.O: ~--+-+++-+-+-+-HH-+-+++-o,~,-1.-f--f-+-+-+-+-H-+-+++--I ~ ~ ~ ~ ~ ~ 1 1-t--t-t-t-HH-+-t+-t-t-+-H~H -t-++++-t-HHH-+-+++'-t-+-HH-l-++-l--l--t-+-Hf--l ,_--l-l-++-I--I--I--HH-l--l--l-+-1--1--1-+-HH-+-+++-+-+-t-1 ,.: .. I \ ,\ I . • : 3 30•·-- - r .. 1-t--1-t-- l --l-t--r.'_:2'0 301111r H"""t--r+-H"""t-t-i-t-i-;--t-+r.H++.1..-1H+-!-+-H-+-++-H-+-++-j.....j-+++-H-+++--!--!4-l-+-~µ--1-..1...J-J4..l.....j._.:..-1--l--1-+--!--L.!4-l-.LU4..L-!--U-l--l-+-J.JU--l-+-.l- 1'111HTt-1H--t-H--t-H~~,.+-HH-+H++-H++·'iii"• >++H++-1--+++--1-+-+-l--o ++-t-++-H-+-Hr-+-t-H-'-.!H-+-Hr-+-+-+-1-+-+-H-+-+ c· >-+-+-t-+-+--HH--+-+-+-+-1--H·,, H--HH-+-+-+-++3-20 1-3+~..,·--1--+-1■ 1-HH--t-+-++++-t-HHH~:[~+-HH--l-l--l--l-+-l--l--l---l--l--:~;;-'.-++-+-+-+-+-HH-+-+++-+,~t-· --t-+-+-+-HH-+-+-++-+-+--Hi -+++-+-+-+-+-HH-+-++4 ;,,• :t-t--+--+-+--+--+-+-+-+-1--<>-+--+--+~;->--<--+--+-+--+--+-+-+-+-1--<1--+---<■ I .... l l __ __ " County of San Diego Hydrology Manual 100 Year Rainfall Event-6 Hours I so pluvial (inches) DPW *GIS ~ S~GIS We Ha,•c San Diego (~wcrc<l! TMIS 1,1,'P IS PR0\110£() v,m-,ollT W#J:$.ANTV cs ANY KINI>, Eln-lER £XPRESS OR IIIF\JED.11«:LUOt.lC. 8VT NOT Llt,'ITEO TO. THE b.lPLEI WARRAN'TlaS OF IIERQ-IANTASIUTY ANO FITNI;.$$ FOR A PARTf:;lA,AR PVRPOSE. CoPVri$,tll SanGIS. Al Rigt'tl ~t"-'- lhlt P,00-..cti m;iy oont.-n fnlOffllill.lon lrom !ti$ $ANQAG R,gon., t'llortmltion S~m whictl tlllV'IOI be rl$!0Cluet:d wilhout lhe wlltl$11 l>@fMittiO!I ot SANOII.C, This l)l'oduet n,ay ~ i'lformllltion w.tieh l'llls .,_, 1e111odueed \lrtill, l)Eotm'8$I01tQl8i'll$CI l)y Th0ir'll$$ 8'0l.h813 M81>$, 3 Miles I SITE I I H-+-+H-+-+H-++H-i +H-++H-++H1-1-++--1b-1---J-H1-1---J--1---1-1---J--1---1-1-+~Y.},:tr~tr=tr=tr=tr=t1=t1-"¼-t-+--t-+--t-+--+-t1~--t-+-++-+-l-++-+-l-+-1 • ~ ) , c.. (,.1 !t11-~7-t_7-t--H--HH-H-H-H-++++++++++-+-:11W), ■r :;2•45:,-t--t-H-t--t-H rt++-,r-+++-4++-H+~~ ' 0 ..,.. . ·•·++ .. -.+.-. HH-111-+-+-+--11 H 3 County of San Diego Hydrology Manual Rainfall Isopluvials 100 Year Rainfall Event• 24 Hours 0 lsopluvial (inches) s:tGIS We H:1,•c San Diego Owcrc<l! THIS UAP IS PRO\i1DED wm-tOUT WAASW,ITY OF ,WV KIND. EITHER EXPRESS M Olf'lll:O.INCLUOt,,G, avr NOT LO/IIED TO, THI: IMf)Lf=D WARRAlflf=S OF 1/£RCtiANT A.81!.ITY ANO FITNESS FOR A PARTK:ut.AR PURPOSE. COpy!lg'!l SIV'IGIS. Al Rlg!U R.Wi,ve<I. This product'$ m11y icontar, nforrn:Won from 1h41 SIINOAG Regr,llld 1-ilO!'m.v:lon S~m wflk:tl c.1M01 bel80(l)duc.d w11ho..A 1t1e wllll.Crl pcrn,lulon d SANDAG, Thi& Pl'od-.-::tmey c~ ~om,~on-..tith~& beei'I reproduced..,111\ pcrm1"1on gtan1r.d by lhomM Brnlhcrs Maps, 3 Miles -.::-:, 0 ,!:: "' a, .c g,.o ~0 .9 -~0.8 (I) ~0.7 0.6 0.5 0.4 0.3 0.1 5 i-1. ~,..~ ~ I ~ ~~ ~ ~ ~ " r-.. ... ,. ~ ~ ~~ ~,.. ~~ ~~ C) ± ""r-. ~~~ 0 "'"' ~ !:; "'i.. ~ "'"' ~ al " ... r-.." ► " r..." '-i-,. "' 1, " I• "'""~ " " I"' ,-.,._ ~ "' ► "r--~~ I• ~,.. 1, I""" """' ~~ "' "r--. ~ "' ~~ ~~ ~ ~,. C) -+-++-+-H--+-+-t-H-+-l~~H"f-t~+~lt+H+l+l+lf+++f++H-,++,++,~~++H~W:l-+-::p,.,,iH--+31-~~..+-F~f-PM.!-R~:il-6.0 R -++++-H-+-++-t-+-H-+-t-+-tf-tt*Fl',i;Htl+l+l+H-llt+t-All1ic:lrtt,r+l++HfM:!++IH+-+..HH'-ld--t-lf!IH-H~H+l½R~ff-s.5 ~ """" "' la ~ ~ ~~ ,. i-.. ,~,.. "'~ ~~ ++++-H-+-++-t-+-H-+-t-Hr+t++f++-~~+H-llt++-H-#iH+lliH++Hf:!++l+RtW:!-+-R~++~t-H-A'~I-A-l~M:!1-5.o g 4.5 5 -++++-H-+-++-t-+-H-H-+-tr+t++f++-Htl+H-lfm!~+-H-#iH+IHfl-ffl,:!++l+HfH+-~ot--11-++:,-.1:-,H-J~~H+l-ld-l~:!I-o ""r-.. I",-. ~ ~ r-.. ... ~,.."' ~ ~~ I• ~"'~ 4.0 ~ -++++-H-+-++-t-+-H-+-t-+-tf-H++fttHfl+H-l+H-llt+-!-Rll1ic:IH+IHfl-l+l+:!++l+Rt~+HH'-ld--t-lH-f'"1d-f+1fl!l,li!-H.J.m'lt-3.5 ~ -t--+-+-+-t-t--+-++-t-+-H-+-t-l-1H-+++-H+H+l-H+lff+H~t-H+t-lH+ll-fflii:!-+l+++l+++++++-+--N!-+++-l-1r-Nn+++,f-H-1+H+++l• 3.0 -+--t-+-H-+-++-1-++-t-Hl+i+t++lt+H-t1H+Hl+H-lfH-ti+H+H+,H++H#H#fffliiH-Hl-+-H-H~l-l-!++l+FH.t-l4-l+HII-2.5 I "'r-. ,..~ ~~ ~ .... ► l""t-,, ~~~ ~~ 1 ..... ,..~ " "'~ I~ I•,-. ~~~ " ~ ~~ " "r-. ~~ ~~ 2.0 I 1.5 I 1111 6 7 8 ·9 10 15 20 30 40 50 2 3 4 5 6 Minutes Hours Duration Intensity-Duration Design Chart -Template Directions for Application: (1) From precipitation maps determine 6 hr and 24 hr amounts for the selected frequency. These maps are included in the County Hydrology Manual (10, 50, and 100 yr maps induded in the Design and Procedure Manual). (2) Adjust 6 hr precipitation (if necessary) so that it is within the range of 45% to 65% of the 24 hr precipitation (not applicaple to Desert). (3) Plot 6 hr precipitation on the right side of the chart. (4) Draw a line through the point parallel to the plotted lines. (5) This line is the intensity-duration curve for the location being analyzed. Application Form: (a) Selected frequency ___ year p (b) P5 = in. P24 = ----2. = 0;o<2l --' --'P24 -- (c) Adjusted P6(2) = ___ in. (d) 1x = __ min. (e) I= ___ in./hr. Note: This chart replaces the Intensity-Duration-Frequency curves used since 1965. P6 1.5 2 2.5 3 3.5-4 4.5 5 5.5 6 Duration I I I -I -·1 I I I • I ' I 5 2.63 3.95 5.27 6.59 7.90 9.22 110.54 11.86 13.17 14.49 15.81 7 TI2"°3-:1s-4.24 5.30 ·6.36 7.42 : 8.48 9.54 10.60°11.66°12.72 10 1.68 • 2.5:3° 3.37 . 4.21 5.05 • 5.90 1 6.74 7.58 8.42 • 9.27 • 10.11 ts (30 "f!fs 2.59:i:2T 3.ss·4_54 s.19 s .84-6.49 . 'i.Th 1.1a 20 1.08 1.62 2.15 1 2,_69 ~_3.23. 3.77 .,._ 4.31 4.85-5.39--5.~j : ~.46 25 0.93 1.40 1.87 2.33 2.80 3.27 3,73 4.20 4.67 5.13 5.60 30 0.83 1.24 1.615 2.07 . 2.49 2.90: 3..32 3.73 4.15 ' 4.56 4.98 40 0.69 ·1.03 1.38 1.72 °2.07°2.41. 2.76 . 3.10 3.45 . 3.79 4.13 SO 0.60 0.90~1.19 1,49 1.79 2.09 : 2.39 '2.69 . 2.98 ' 3.28 3.58 so p.53 ).ao:1.00: 1.:i3~1 sguis: 2.12 2:ag 2.ss ;2 .92 3.18 90 0.41 0.61 0.82 1.02 1.23 1.431 1.63 1.84 2.04 2.25 2.45 -r20 0 ~34 ·o_s,-0.68 • o:as-1.02 1.191 1.36 • 1.53 -1.10 • 1.a7' 2:04 15Q ~29 ~0.4(0.59 ° 0.73~0.88. 1.03; 1.18 1.32 . 1.47 ~ 1.62 1.76 180 0.26 . 0.39, 0.52_ 0.65_ 0.78 _0.9\ 1.04 . 1.18 _ 1.31 1.44 .. 1.57 240 0.22 0.33 0.43 0.54 0.65 0.76 0.87 0.98 1.08 1.19 1.30 ~ 0.10 0.28 o.aa • o.47 -o-:-56 • 6.66 • 0.15 o.ss o.94 • 1.63-1.13 s&o o.11 ·0.2s·o33 · 0Aro.scro.ss · o.·si -o.1s • o.84 • o.s2 • 1.00 F I G U R E ~ I-w w LL z w u z <( I- CfJ 0 w CfJ 0:: ::::J 0 u 0:: w t-<( ~ 2.50% slope---2.0-+- 1 __ __,,,,,, 10Ql---_:_1L_.5~t====~~~~~~I 0 EXAMPLE: Given: Watercourse Distance (D} = 70 Feet Slope (s) =1.3% Runoff Coefficient (C) = 0 .41 Overland Flow Time (T) = 9.5 Minutes T= 1.8 (1.1-C) D 3\fs SOURCE: Airport Drainage, Federal Aviation Administration, 1965 Rational Formula -Overland Time of Flow Nomograph (/} UJ I- => z 20 ~ z w ~ I- ~ 0 ...J u. Cl 10 z <( ...J a:: UJ > 0 FIGURE 3.3 EQUATION: V = 1.49 R213 s112 n (J) I 0 .E Q) 0.. Q) ~ C 0.3 0.2 0.15 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.009 0.008 u W 0.007 :::J a.. ::, g 0.006 ~ CJ) . 0.005 O >-0.004 c-,<:l1/ I ~ C'i-.;;.r ~ 0.002 0.001 0.0009 0.0008 0.0007 0.0006 0.0005 0.0004 0.0003 E 0.2 0.3 0.4 0.5 4 5 6 7 8 9 10 20 SOURCE: USDOT, FHWA, HDS-3 (1961) GENERAL SOLUTION Manning's Equation Nomograph r o r o 30 20 2 1.0 0.9 0.8 0.7 0.6 0.5 C c Q) ·u :E Q) 0 u CJ) CJ) w z I (!) ::i 0 a:: 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.2 0.3 0.4 FIGURE ~ ATTACHMENT D: HYDRAULIC ANALYSIS CURB INLET HYDAULIC ANALYSIS Page A-4 San Diego County Hydraulic Design Manual September 2014 Table A-2 Average Manning Roughness Coefficients for Closed Conduits3 Reinforced Concrete Pipe (RCP) ............................................................................................. 0.013 Corrugated Metal Pipe and Pipe Arch 2-3/8 x 1/2 inch Corrugations Unlined ......................................................................................................................... 0.024 Half Lined Full Flow ................................................................................................................ 0.018 d/D>=0.60 ............................................................................................................. 0.016 d/D<0.60 ................................................................................................................ 0.013 Fully Lined ................................................................................................................... 0.013 3 x 1 inch Corrugations ...................................................................................................... 0.027 6 x 2 inch Corrugations ...................................................................................................... 0.032 Spiral Rib Pipe ................................................................................................................... 0.013 Helically Wound Pipe 18-inch ......................................................................................................................... 0.015 24-inch ......................................................................................................................... 0.017 30-inch ......................................................................................................................... 0.019 36-inch ......................................................................................................................... 0.021 42-inch ......................................................................................................................... 0.022 48-inch ......................................................................................................................... 0.023 Plastic Pipe (HPDE and PVC) Smooth ............................................................................................................................... 0.013 Corrugated ......................................................................................................................... 0.024 Vitrified Clay Pipe ..................................................................................................................... 0.014 Cast-Iron Pipe (Uncoated) ........................................................................................................ 0.013 Steel Pipe ................................................................................................................................. 0.011 Brick .......................................................................................................................................... 0.017 Cast-In-Place Concrete Pipe Rough Wood Forms ........................................................................................................... 0.017 Smooth Wood or Steel Forms ............................................................................................ 0.014 3 Based on materials and workmanship required by standard specifications. Table A-2 Weir Coefficient:3.00 Orifice Coefficient 0.67 Curb Inlet Opening Height: 0.50 ft Gutter Depression Depth, a: 0.33 ft Curb Inlets Depth of Flow (ft) Qapproach (cfs) Curb Inlet Opening (ft) Effective Curb Inlet Opening, Lw (ft) effective Depth do (ft) Inlet Capacity (Weir Flow) (cfs) Inlet Capacity (Orifice Flow) Inlet Capacity (cfs) Percent Intercept ed 100-YR 0.50 0.7 4.00 4.00 0.24 4.2 5.3 4.24 100% 0.50 0.6 4.00 4.00 0.24 4.2 5.3 4.24 100% Assumption * Curb inlet and grate capacity is analyzed under both weir and orifice conditions. The capacity of the inlet is the smaller of the orifice or the weir condition. * Curb Inlets and Grates are considered in sump condition with the inlet apron if 1) the inlet capacity is greater than the approaching excess storm water; and 2) The flow is fully contained within the swale. * The adjusted inlet capacity is the capacity of the grate with pooling behind the 4" weir. The pooling depth is taken as 3" (0.25') so that 1" of freeboard is provided behind the weir. The inlet capacity will be taken as the maximum of the Pooling Capacity or the flow capacity, as long as the flow capacity satisfies the sump conditions assumed above. All other flow will be bypassed. Curb Inlet Analysis TYPE B CURB INLET PARAMETERS: Type B Curb Inlet (POC 2) Approach Flow Inlet Geometry Inlet Capacity Description Type B Curb Inlet (POC 1) I I I I STORM DRAIN PIPE ANALYSIS Channel Report Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.Tuesday, Oct 24 2023 POC 1 - 18 IN Circular Diameter (ft)= 1.50 Invert Elev (ft) = 113.41 Slope (%)= 1.00 N-Value = 0.013 Calculations Compute by:Known Q Known Q (cfs) = 6.76 Highlighted Depth (ft)= 0.88 Q (cfs)= 6.760 Area (sqft)= 1.08 Velocity (ft/s)= 6.24 Wetted Perim (ft) = 2.62 Crit Depth, Yc (ft) = 1.01 Top Width (ft)= 1.48 EGL (ft)= 1.49 0 1 2 3 Elev (ft)Section 112.50 113.00 113.50 114.00 114.50 115.00 Reach (ft) -_.,,-------' ~ " -~ ( -\ V ' -- - - ) 7 / -/ ---- Channel Report Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.Tuesday, Oct 24 2023 POC 1 - EX 30 IN Circular Diameter (ft)= 2.50 Invert Elev (ft) = 113.41 Slope (%)= 1.00 N-Value = 0.013 Calculations Compute by:Known Q Known Q (cfs) = 7.26 Highlighted Depth (ft)= 0.72 Q (cfs)= 7.260 Area (sqft)= 1.18 Velocity (ft/s)= 6.18 Wetted Perim (ft) = 2.84 Crit Depth, Yc (ft) = 0.90 Top Width (ft)= 2.27 EGL (ft)= 1.31 0 1 2 3 4 Elev (ft)Section 112.50 113.00 113.50 114.00 114.50 115.00 115.50 116.00 Reach (ft) ~ ---------~ ~ -/--' / -~ T --\ , _, - - - -J -,_ ,-, ,_ V ~ -I ~ / - '-/ '--_/ -........... ------ Channel Report Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.Tuesday, Oct 24 2023 POC 2 - 18 IN Circular Diameter (ft)= 1.50 Invert Elev (ft) = 112.10 Slope (%)= 1.00 N-Value = 0.013 Calculations Compute by:Known Q Known Q (cfs) = 7.20 Highlighted Depth (ft)= 0.91 Q (cfs)= 7.200 Area (sqft)= 1.13 Velocity (ft/s)= 6.39 Wetted Perim (ft) = 2.68 Crit Depth, Yc (ft) = 1.04 Top Width (ft)= 1.46 EGL (ft)= 1.55 0 1 2 3 Elev (ft)Section 111.50 112.00 112.50 113.00 113.50 114.00 Reach (ft) --~ ---------~ -/ -L 7 v -'\ -- \ ) \. / ' / ' / --~ -- Channel Report Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.Tuesday, Oct 24 2023 POC 2 - EX 24 IN Circular Diameter (ft)= 2.00 Invert Elev (ft) = 111.80 Slope (%)= 24.00 N-Value = 0.013 Calculations Compute by:Known Q Known Q (cfs) = 7.20 Highlighted Depth (ft)= 0.35 Q (cfs)= 7.200 Area (sqft)= 0.37 Velocity (ft/s)= 19.39 Wetted Perim (ft) = 1.73 Crit Depth, Yc (ft) = 0.95 Top Width (ft)= 1.52 EGL (ft)= 6.20 0 1 2 3 4 Elev (ft)Depth (ft)Section 111.00 -0.80 111.50 -0.30 112.00 0.20 112.50 0.70 113.00 1.20 113.50 1.70 114.00 2.20 Reach (ft) --------..... / .......... "" -/ ~ -, 7 ., l J ~ -'Olli; 7 !--, --= ~-/- -~ ~ - ADS FLEXSTORM CPS U EXT TRASH SCREEN HYDRAULIC ANALYSIS Page | 13 APPENDIX A. Design Criteria and Sample Calculations CPS FLOW CALCULATIONS STANDARD LENGTHS. VARIABLE BYPASS HEIGHTS ADS CPS units are !itandardized with a pre-set Length of s.creen [L). The heigJlt of the bypass is the variable used to confirm th at the tota I 0.vpo,• for the CPS with lid design exceeds the Max Q,0 for a certain CB width. The sizing table below shows th e resultant Or"I?'" for the various B (bypa.ss heights). Defini:ning the Orifice bypass equation tor CPS with deflector lids °-t,ypass = CbypassAbypass ✓ 2g H ~ •• = .6 (coelificient) g= 3 2.2 ftls' ~ =L tfu:,(1EJ-.•,f>ChlbotJaahdJ.hll ~ = depth of water to centroid of bypass CPS U SIZING TABLE MINIMUM BYPASS RATINGS for lid desi ns with 6" Freeboard CPS Flow Rates by Model B(bypass height)= 4" B (bypass ll [bypass B(bypass B (bypass height)= 6" height) =8" height)= 10" height) = 12" Model Screen Screen A,.,-.,,0 et 0.,,.,0 Flow lt.,pm Q4 H., Length Height D~!'.!1 11~) Rate (ds) (ft) Q6 H, QS Hs QlO H10 Q12 3L18H-B ass-Sha e 3 18 1.80 8.72 3.00 3.93 8 5.52 7 6.81 6 7.77 5 13.19 4l18H-Bypass-Shape 4 18 2..45 11.84 SL18H-Bypass-Shape 5 18 3.09 14.96 Determine CPS model number based on screen length and height -bypass height-and s.creen shape_ For example Model 3U8H-8-U is 3' wide x 18" tall, has 8" bypass height, and is "U" shaped. Cu!itom lengths and heights are available for any catch basin. Example Seleotion and Calculation: 4.00 5.24 8 7.35 7 9.08 5.00 6.55 8 9.19 7 11.35 &yp.i~!. r.'tirn,;::-. in 81.-ck ;;;Je for 3.5' Vb MinimWT:'I C;tc 8.i:!:in De,p &yp.r.~!. r;;;tir;!. in Re .ire r~• Vb Minimum Catch B.tl"11 ~pths- 6 10.36 5 17.58 6 12.95 5 2.1.98 Assume we have a 7' wide catch basin with a depth Vb of 3.5' and 18" connector pipe. The Ma:x Q,is 1.2 CFS and the Ma:x Q10 is 5.3 CFS per the hydrology !itudy table to the right. Select th e appropriate s.creen to pass the 1 year flow then determine the minimum bypass height required to pass the 10 year flow. The 3L18H-6B s.creen (highlighted tn green) passes 8.52 CFS far e:xceeding the 1.2 CFS requirement. According to the sizing table that unit will bypass 5..5-2 CFS with a 6" bypass heigllt based on the OrifiGe Flow bypass equation which is greater than the required 5.3 CFS maximum lOyrflow seen by the 7' wide catch basin. The bypass is calculated as follows: Q"IP',. = ~,,.A,,~, \fiiH ~ = .6 (orifice coefficiem) g= 32.2 ft/s2 A,,.,,,.,. = L [1e"-""'°''"""'IX h •>w='-"<;ht] = (3 X 6/12) = 1.5 ft2 H = depth of water to centroid of bypass (maintaining 6" freeboard) We need to check Clearance and determine the H Clearance = Vdepth-Hscreen-Hbypass-rnrb height (mu!it always be > 4") Clearance = 42"-18"-6"-8"=10'" H = H bypass/2 + Cleara nee -6" freeboa rd (sized conservatively) H = 6/2 + 10 -6 = T' or .583 ft Finally, O.Y?"' = ~po,,A'Y?"' ,fijiii a_,= ,6 X 1.5 v'2 X 32, 2 X. 583 = 5.52.cfS f:qr,Bl.oo H,, 10 10 10 Ca·tch B,11sin R:,11tine~ far~ y!!.u ,11nd ten y9r rain ~enls 11:S determlMd by LA County h dra ~tu:dJB CII widd, M,xO,m Ma°-1,1 () (ml tct.) l-5 u 0.6 5.3 1.2 10 7-5 1.7 1• 10 2.2 21 ll.9 ].1 ZS 17.3 3.S Page | 14 Appendix B. Specification and Design Drawings ADS FLEXSTORM: CONNECTOR PIPE SCREEN (CPS) PROTECTIVE BYPASS UD CPS L 14 GA 5 MM PERFORATED STAINLESS STEEL 50% OPEN AREA SIZING TABLE CPS Flow Rates by Model M odel Screen Screen ~c:rtien {Net O screen Flow Length Height open ;,re;,) Rate (cfs) 3Ll8H-Bypass-Shape 3 18 1.80 8 .72 4Ll8H-Bypass-Shape 4 18 2.45 11.84 SL18H-Bypass-Shape 5 18 3.09 14.96 lt,ypass (ft) 3.00 4 .00 5.00 CPS U 12 GA U-CHANNEL STIFFENER (Typ.) 3/8" WEDGE ANCHOR BOLTS SLOTTED HOLES FOR SLOPED CATCH BASIN FLOORS CPS U-EXT MINIMUM BYPASS RATINGS for lid designs with 6" Freeboard B (bypass B (bypass B (bypass B (bypass B (bypass hei ht =4" hei ht = 6" hei ht = 8" hei ht = 10" hei ht = 12" Q4 H• Q6 H6 Q8 Ha QlO H10 Q12 H12 3.93 8 5.52 7 6.81 6 7 .77 5 13.19 10 5.24 8 7.35 7 9.08 6 10.36 5 17.58 10 6.55 8 9 .19 7 11.35 6 12.95 5 21.98 10 Determine CPS model number based on screen length and height -bypass height -and screen shape. For example Model 3L18H-8-U is 3' wide x 18" tall, has 8" bypass height, and is "U" shaped. Custom lengths and heights are available for an catch basin. 14GA5MM PERFORATED SCREEN50% OPEN ---------------------7 N 3" (TYP) 3 .. BASE SUPPORT BRACKET (TYP) CENTER STIFFENER SPOT WELD (TYP) SEE NOTE 3 HEREON ELEVATION VIEW N.T.S. ~--------"'L SECTION TOP 14GA5MM PERFORATED SCREEN50% OPEN NOTES: 1. ALL MATERIALS ARE TYPE 304SS UNLESS OTHERWISE NOTED 2. CENTER STIFFENER REQUIRED WHEN S 2: 3'-0 .. 3. CENTER STIFFENER WILL BE SPOT WELDED @ 4" C.C. (Max) TO PERFORATED SCREEN 4. EXTENSION PANELS USED FOR UNEVEN CATCH BASIN FLOOR 5. SCREENS LESS THAN 18" TALL WILL NOT INCLUDE A CHANNEL AT MID-HEIGHT . 66w 3/8" x 3 WEDGE ANCHOR, 2 PER CONNECTION (TYP) 5/16 .. X 1-1/8 .. HEX BOLT, WASHER, AND LOCK NUT (TYP) SECTION A-A N.T.S . L.06.oNOB.flOOOJlm'......::w.::illl(8 ·-□---IIOlEO 8 :mc,t.LCUlATIONI .50 ADS FLEXSTORM CPS U EXT *SEE APPENDIX APPENDIX A-1 AND CPS SIZING TABLE FOR Hb, Hs, & L VALUES VIEW N.T.S. VIEWN-N TOP AND BOTTOM SCREEN BEND PROFILE VIEWC-C PLAN, ELEVATION, AND DETAIL N.T.S. Mn 1f22f2020 !!H~ET 1 Cll' I -B D C B A Page | 15 •Hs 2" (Typ.) 0 0 Horizontal 1 /4" X 1/2" X 1/2" 12GA U-Channel Stiffener (Typ.) I •Hb 2" (Typ.) Vertical 1 1/4" X 1/2" X 1/2" 12GA U-Channel Stiffener (Typ.) ELEVATION VIEW N.T.S. R=10" (Typ.) I Spot Weld (Typ.) See Note 2 Hereon 1 1/2" X 1 1/2" 13GA Mounting Bracket (Typ.) --------14GA 5m m Perforated Screen 50% Open NOTES: 1. All Materials Are Type 304SS Unless Otherwise Noted 2. All Horizontal And Vertical Stiffeners Shall Be Spot Welded @ 4"C.C. (Max) To Perforated Screen 3. For Catch Basin Uneven Floor Extension Panel Detail See Sh. 3 3/8" X 3" Wedge Anchor, 2 Per Connection (Typ.) Ex. Catch Basin Wall 1 1/2" X 1 1/2" X "Hs" 13GA Mounting Bracket (Typ.) 3/4" (Typ } 14GA 5mm Perforated Screen 50% Open I I I I I I I 1 1/4" X 1/2" X 1/2" 12GA U-Channel Stiffener (Typ,) DETAIL A N.T.S. Ver!Jcal PLAN VIEW N.T.S. 1 1/4" x 1/2" x 1/2" 12GA U-Channel S iffener (Typ.) ....----..... / ,, I \ / \ 1 1/2" X 1 1/2" 13GA Mounting Bracket ---· ADS FLEXSTORM CPS U PLAN, ELEVATION, AND DETAIL All Materials Ive Type 304SS Unless Otherwise Noted 2 All Honzontal And Vertical Stiffeners Shall Be Spot Welded@ 4"C.C. (Max} To Perforated Screen 3 Center Stiffener Required When S 2: 3'-0" 4. Top And Center Base Support Brackets Required When S 2: 3'-0" 5. 3" Base Support Bracket At The In ecbon Point Required For All Units 6. For Catch Basin Uneven Floor Extension Panel Detail See Sh 4 ' ' (Typ.) [ 5/16" x 1· Hex Bolt, Washer, And Lock Nut, 2 Per Connection 3" Base Support\',..___ __ ...,(12" Center Base Support Bracket ("!YP ), Bracket (When S 2: 3'-0") 1 1/4" X 1/2" X 1/2" -/l.__ 12GA U-Channel\ i V i See Oetatl 0, Sh. 3 See Detail C, Sh 3 Top Support Bracket, See Sh. 2 ELEVATION VIEW NT.S 3/8" X 3" Wedge Anchor {Typ.) ----------•L __________ _,, PLAN VIEW N.T.S. Stiffener {Typ.) 1 I I 3/4" J..---'---l...:..---.1' (Typ.) ! 14GA5mm Perforated Screen 50% Open 1 1/2" x 1 1/2" x "Hs" 13GA Mounting Bracket (Typ.) See Detail A Hereon I 2" I (Typ.) 7 I I I ~318"x3" Ex. Catch I Wedge Anchor, Basin Wall 1 2 Per Connection DETAIL A N.T.S. I (Typ.) --' ADS FLEXSTORM CPSL PLAN. ELEVATION, ANO Page | 16 Appendix C. Extension Panel Work Instructions EXTENSION PANEL WORK INSTRUCTIONS Use a grinding wheel to cut the panel after scribing the pattern of the floor on the top portion of t he panel. Cut the pattern out and now reverse it for installation. Use provided S the extension panel to t he CPS. For Quick angle may be placed behind the sere ills more than a 2" gap. For standard ins t anchored into the floor To scribe the basin floor pattern onto the extension panel use a spacer or our scribing tool as show n. Run the tool along the basin floor with a marker scribing the contour on the top portion of the extension panel. Cut the line off w ith a portable cutoff grindi ng tool. Reverse the panel cut side dow n w hich should match the flooring contour perfectly. Install the tek screw s on the top portion of the extension panel connecting it to the main CPS screen. Page | 17 14GA 5mm Perforated Screen 50% Open Z" x 'Z' x 3--14GA5mm P"rforated Base Support Bracket Ex Catch Basin Floor A 7 EXTENSION PANEL WORK INSTRUCTIONS ELEVATION VIEW N.T.S. 1 Piece ExtenstOn Panel 14GA 5mm Perforated Screen 50%0pen 1 1/2" x 1 1/2" 13GA Mounting Bracket (Typ.) See Detail A, Sh. 1 (Typ.) Extension Pa~ Scribed To Conform To Catch Basin Floor 1 Piece Extension Panel 14GA 5mm Perforated Screen 500/. Open 3116" Self Drillng screw (Typ.) SECTION A-A N.T.S. 14GA 5rm1 Perforated Screen 50% Open Horizontal 1 114• x 1/2'" x 1/2" 12GA U.Channet Stiffener ADS FLEXSTORM CPS U EXTENSION PANEL DETAILS Page | 18 Appendix D. Photo Gallery Hinged Lid Installation Photos Page | 19 4lOSO'SFIEl.DPHOTOS llEFOlll •lld.AITUI MAJ,._'ltlUf,;Q Page | 20 Appendix E. Vector Control Drawing Showing Hinged Lid CPS HINGED LID FOR VECTOR CONTROL HINGED LID SHOWN IN OPEN POSmON (REMAINS IN OPEN POSmON ON ITS OWN) LID BRACKETS SEOJRED TO WALL WITH SS WEDGE ANCHORS STAINLESS STEEL HINGE WELDED TO LID AT EAQ-1 SUPPORT BRACKET = -Tin: IIWIGIO --c CPS CONNECTOR PIPE ~ A ~ ... -.:.:.. Page | 21 APPENDIX F. ADS CPS Load Testing ADS CPS LOAD TESTING Uniform water loading results in 54 lbs/sqft against a solid screen. Triangular load distribution over an 18" tall screen results in 94 lbs/sqft along the bottom edge and tapers off to zero at the very top of the screen. LA County has asked us to simulate this triangular load scenario as trash builds up along the bottom and blinds the lower portion of the screen. We used steel bundles of channel that measured 6" x 8" and weighed 18 lbs each. 3 bundles make up 1 sqft at exactly 54 lbs or 54 lbs /sqft If we orientate the bundles to create 2 rows each 8" tall side by side, then we can create an 8" tall load of 108 lbs/sqft by stacking 2 bundles high on the bottom and 54 lbs/sqft in a single layer on the top. This provides a fairly significant safety factor vs the real world triangular load distribution. We proceeded with this loading scenario on a 10' I ong continous screen in our U-Extended configuration. The screen is rolled on 2 ends and a 7' straight length results across the mid section at 12" spacing from the wall. We previously determined that the maximum straight length span for our screen is 42" before deflecting more than 1". Test 1: We anchored the 10' continuous screen on a concrete floor at both ends and added two support brackets at 40" spacing centered on the screen and anchored on the brick wall. We added the load stacking 2 bundles high on the bottom row and 1 bundle tall covering the entire screen and witnessed minimal deflection if any. We continued loading adding additional bundles to the bottom load and also having 2 people stand in the center of the screen witnessing minimal deflection less than 1/2". Test 2: We ran another test on our 2 pc screen using only one l-bracket behind the connector located in the center of the 10' long screen comprised of 2 separate 5' l -shaped screens. We duplicated the load scenario and once again saw no deflection. We captued the loading on video which can be found at these dropbox links .. https://www.dropbox.com/s/vaqz52zoacxsiie/Video%20Mar°/o2008%2C%203%2002%2053%20P M. mov?dl=0 https://www.dropbox.com/s/ysrtl 1 wa nyhzzqg/Video%20Mar%2008%2C%202%2043%2043%20PM .mov?dl=0 TEST 2 VIDEO TEST 1 VIDEO Page | 22 ADS CPS DEFLECTOR LOAD TESTING U-BEND FRONT EDGE WITH 36" SUPPORT BRACKET SPACING Wt continued ttstin& with I ntw dtfkctor that included a U bend on the front edct. 1" drop i nd 1/2• bend under. The center1ine spacing on the Support Brackets was once again 36". The results were quite conclusive a.sour 22S lb test load (worker) wu a bit to Jump up and down on 1 foot at tdgt for scrttn without 1ny deformation. Wt propose all deflectors will include tM double bend on outer front ed;e for the continous lellJth. No Edge Stiffener is required. We are asking for a callout allowing 36" Max Allowabte Spacing between any 2 Support Bru'kets.