Loading...
HomeMy WebLinkAboutSDP 2022-0003; FPC RESIDENTIAL; HYDROLOGY STUDY; 2023-12-01 FINAL HYDROLOGY STUDY FOR FPC RESIDENTIAL 7200, 7290, 7294 Ponto Drive SDP2022-0003/ CDP2022-0023 CITY OF CARLSBAD, CA PREPARED FOR: H.G. FENTON COMPANY 7577 MISSION VALLEY ROAD SAN DIEGO, CA 92108 PH: (619) 400-1034 PREPARED BY: PASCO LARET SUITER & ASSOCIATES, INC. 1911 SAN DIEGO AVE. SUITE 100 SAN DIEGO, CA 92110 PH: (858) 400-1034 Prepared: June 2023 Revised: December 2023 __________________________________________________ TYLER G. LAWSON, RCE 80356 DATE 12/01/2023 PLSA 3754 TABLE OF CONTENTS SECTION Executive Summary 1.0 Introduction 1.1 Existing Conditions 1.2 Proposed Project 1.3 Conclusions 1.4 References 1.5 Methodology 2.0 Introduction 2.1 County of San Diego Criteria 2.2 City of Carlsbad Standards 2.3 Runoff Coefficient Determination 2.4 Appendix 3.0 Appendix A: Hydrology Support Material Appendix B: Hydrology Calculations Appendix C: Hydraulic Calculation Appendix D: “Poinsettia Shores” Drainage Study Dated July 1994 PLSA 3754 Page 1 of 12 1.0 EXECUTIVE SUMMARY 1.1 Introduction This Final Hydrology Study for the proposed development of FPC Residential has been prepared to analyze the hydrologic and hydraulic characteristics of the existing and proposed project site. This report intends to present both the methodology and the calculations used for determining the runoff from the project site in both the pre-developed (existing) conditions and the post-developed (proposed) conditions produced by the 100- year, 6-hour storm. 1.2 Existing Conditions The subject property is generally located south of Poinsettia Lane, west of the Interstate 5, east of Ponto Road and north of Avenida Encinas. The site is adjacent to commercial property and the North County Transit District right-of-way. The existing site consists of an abandoned junk yard and an abandoned self-storage facility as well as miscellaneous concrete pads and buildings throughout the site. The portion of abandoned junk yard has become overgrown with some vegetation consisting of low shrubs and some trees. The project site is located within the San Marcos Creek Hydrologic Area, and more specifically, the Batiquitos Lagoon Hydrologic Sub-Area (904.51) of the Carlsbad Watershed. The existing site is comprised of approximately 4.64 acres, however, offsite improvements will bring the total disturbed area to approximately 5.40 acres. A master drainage study for this area was used as a reference for the development of this report. See “Poinsettia Shores” Drainage Study written by Oday Consultants dated July 1994 included within this report as Appendix B. The “Poinsettia Shores” hydrology exhibit has been updated to accurately reflect existing conditions based on a detailed review of the approved master drainage study for the area as well as a study of the existing topography and existing drainage structures. The updated existing conditions hydrology exhibit attached to this report, as Appendix A, clearly shows the drainage boundaries determined by the original master drainage study “Poinsettia Shores” compared to what exists on-site today. According to the “Poinsettia Shores” report the project site is generally part of sub-area ‘A-20’. The “Poinsettia Shores” report originally intended for sub-areas ‘A-20’, U, and K-1 to discharge to Node 14A. As shown highlighted in Appendix B. However, from the existing conditions hydrology exhibit, it is apparent that most of sub- area A-20 discharges to the two westerly 24” culverts, POC-B. Meanwhile sub-area K-1 and U do not at all make it to Node 14A. Runoff passing through both Node 14A and POC-B, however, will ultimately confluence downstream and together enter Batiquitos Lagoon and finally the Pacific Ocean. PLSA 3754 Page 2 of 12 It is important to note the differences in runoff patterns between the “Poinsettia Shores” drainage study and what exists today. That being said, this study assumes the runoff generated by ALL 210.1 acres enters into the existing 78” storm drain located in Ponto Drive, identified as POC-A on the Hydrology Exhibits included in Appendix A. A hydraulic calculation was conducted to ensure the existing pipe has the capacity to convey the existing flows as well as the flows generated by the proposed project. See Appendix C for hydraulic calculations. DRAINAGE FLOWS (PER POINSETTIA SHORES DRAINAGE STUDY) DISRCHARGE POINTS DRAINAGE AREA (ACRES) Q100 (CFS) I100 (IN/HR) POC-A 210.1 266.2 2.2 Table 1. Peak Drainage Flow Rates 1.3 Proposed Project The proposed project includes clearing of all onsite vegetation, demolition of existing buildings and pavement and the construction of 23 multi-family residential buildings. The project also proposes various hardscape and landscape improvements including private access roads, rear patios, and various amenity spaces. Site grading along with drainage and utility improvements typical of this type of residential development will also be constructed. In the proposed condition runoff will be collected via area drains and curb inlets and will be directed to the proprietary biofiltration BMP’s (BF-1) strategically placed at four locations throughout the site. Once runoff is properly treated by the proprietary biofiltration BMP’s it will be directed to the public storm drain system via pipe flow. Stormwater runoff will leave the site at the southerly boundary and enter the existing 78” RCP within Ponto Drive, similar to existing conditions. Once water enters the public storm drain system it will continue south towards Batiquitos Lagoon and finally into the Pacific Ocean. In the post-developed condition, the project discharges at a single location, identified as POC A on the Hydrology Exhibit in Appendix A. The area previously discharging to POC- B in the existing condition will now enter the proposed public storm drain system via curb inlets at the intersection of Ponto Road and Ponto Drive. Runoff will continue east via pipe flow and confluence with runoff from the project site at (POC-A). Discharge at POC-B will be reduced to zero, and therefore has not been analyzed as part of this post-developed condition. PLSA 3754 Page 3 of 12 The post-development condition has been broken up into seven (7) basins. Drainage Basins P1 through P4 encompass the proposed on-site development. See Proposed Hydro Exhibit in Appendix A for more information. Runoff from basins P1 through P4 will be collected via the proposed on-site storm drain system and conveyed to POC-A via pipe flow. Drainage Basin P5 encompasses a majority of the public right-of-way along the project frontage, including portions of Ponto Road, Ponto Drive, and Private Beach Way. Runoff generated by Basin P5 will be collected via curb inlet and conveyed to POC-A via pipe flow. Drainage Basin P6 consists of the westerly offsite portion of the original drainage basin (formerly A-19) as well as parts south of the site including Private Beach Way and Ponto Drive. Similar to Basin P5 runoff will be collected via curb inlet and conveyed to POC-A via pipe flow. Finally, Basin P7 encompasses portions of the North County Transit District right-of-way located to the east of the site. Runoff will be collected in the proposed brow ditch along the easterly property line, collected in a catch basin, and will be conveyed to POC-A via pipe flow. Runoff from Basin P6 was calculated assuming the original “Poinsettia Shores” drainage study runoff coefficient and intensity, while runoff from basins P1 through P5 were calculated using a composite runoff coefficient consistent with Section 3.1.2 of the San Diego County Hydrology Manual. Sample calculations are included on the Proposed Hydro Exhibit in Appendix A. Finally, runoff from Basin P7 was calculated using the value included in Table 3-1 of the County Manual for Undisturbed Natural Terrain and B soil classification. PLSA 3754 Page 4 of 12 The table below summarizes the runoff coefficients used for each drainage basin. PROPOSED RUNOFF COEFFICIENTS DRAINAGE BASIN RUNOFF COFFIECIENT P1 0.74 + P2 0.74 + P3 0.74 + P4 0.74 + P5 0.74 + P6 0.58 ++ P7 0.25 +++ + Indicates Composite Runoff Coefficient calculated using San Diego County Hydrology Manual Section 3.1.2. ++ Indicates Runoff Coefficient from master “Poinsettia Shores” Drainage Study written by O’Day Consultants dated July 1994. +++ Indicates Runoff Coefficient for Undisturbed Terrain, B soils, see San Diego County Hydrology Manual Table 3-1. Table 2 below summarizes the results of the Rational Method calculations. PROPOSED DRAINAGE FLOWS DISCHARGE POINTS DRAINAGE AREA (ACRES) Q100 (CFS) I100 (IN/HR) POC-A 9.4 24.98 4.5 Table 2. Proposed Condition Peak Drainage Flow Rates While the peak flow rate at POC-A has increased from pre-development conditions by approximately 25 cfs, it is important to note that the existing 78” RCP was analyzed and sized assuming the ultimate/developed condition as a part of the larger drainage basin for the area, as illustrated in the “Poinsettia Shores” drainage study. In addition, a portion of the calculated 266.2 CFS for the area assumed/included the proposed FPC Residential Site. This study does not “take credit” for this runoff, but instead, adds the runoff generated by the site to the total 266.2 CFS listed in the original study as shown in the table below. As shown in Appendix C the existing 78” pipe downstream of the site has the capacity to PLSA 3754 Page 5 of 12 convey the 100-year storm and will not be adversely impacted by the proposed development. RUNOFF CONTRIBUTING TO POC’A’ DESIGN DISCHARGE FROM “POINSETTIA SHORES” DRAINAGE STUDY (C.T. 94-01) (CFS) PROPOSED CONDITION (CFS) 266.2 24.98 Table 3. SD Line ‘A’ Discharge (78” RCP) In an effort to comply with City of Carlsbad’s storm water standards required of Priority Development projects, the subject property will also implement various source control and site design BMP’s where feasible and applicable in accordance with the City of Carlsbad’s BMP Design Manual. Aside from the proposed proprietary biofiltration BMP’s, the site will also implement minimized hardscape areas, minimize soil compaction where applicable, and promote runoff dispersion by draining new hardscape areas through landscaped swales. 1.4 Conclusions Based upon the analysis included in this report, the proposed onsite drainage system is designed to adequately capture and convey runoff generated by the 100-year, 6-hour event. In addition, the existing 78” and 84” storm drains serving the site have adequate capacity to convey the runoff generated by the site in addition to the existing 266.2 CFS generated by larger tributary drainage basin. As a result, it is our professional opinion that the proposed development will not adversely impact any downstream facilities. PLSA 3754 Page 6 of 12 1.5 References “San Diego County Hydrology Manual”, revised June 2003, County of San Diego, Department of Public Works, Flood Control Section. “San Diego County Hydraulic Design Manual”, revised September 2014, County of San Diego, Department of Public Works, Flood Control Section “Engineering Standards, Volume 5: Carlsbad BMP Design Manual”, revised February 2016, City of Carlsbad “Poinsettia Shores” Hydrology Study, Avenida Encinas & Offsite Storm Drain, C.T. 94- 01, revised July 1994, Oday Consultants Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Available online at http://websoilsurvey.nrcs.usda.gov. PLSA 3754 Page 7 of 12 2.0 METHODOLOGY 2.1 Introduction The hydrologic model used to perform the hydrologic analysis presented in this report utilizes the Rational Method (RM) equation, Q = CIA. The RM formula estimates the peak rate of runoff based on the variables of area, runoff coefficient, and rainfall intensity. The rainfall intensity (I) is equal to: I = 7.44 x P6 x D-0.645 Where: I = Intensity (in/hr) P6 = 6-hour precipitation (inches) D = duration (minutes – use Tc) Using the Time of Concentration (Tc), which is the time required for a given element of water that originates at the most remote point of the basin being analyzed to reach the point at which the runoff from the basin is being analyzed. The RM equation determines the storm water runoff rate (Q) for a given basin in terms of flow (typically in cubic feet per second (cfs) but sometimes as gallons per minute (gpm)). The RM equation is as follows: Q = CIA Where: Q = flow (in cfs) C = runoff coefficient, ratio of rainfall that produces storm water runoff (runoff vs. infiltration/evaporation/absorption/etc) I = average rainfall intensity for a duration equal to the Tc for the area, in inches per hour. A = drainage area contributing to the basin in acres. The RM equation assumes that the storm event being analyzed delivers precipitation to the entire basin uniformly, and therefore the peak discharge rate will occur when a raindrop that falls at the most remote portion of the basin arrives at the point of analysis. The RM also assumes that the fraction of rainfall that becomes runoff or the runoff coefficient C is not affected by the storm intensity, I, or the precipitation zone number. 2.2 County of San Diego Criteria As defined by the County Hydrology Manual dated June 2003, the rational method is the preferred equation for determining the hydrologic characteristics of basins up to PLSA 3754 Page 8 of 12 approximately one square mile in size. The County of San Diego has developed its own tables, nomographs, and methodologies for analyzing storm water runoff for areas within the county. The County has also developed precipitation isopluvial contour maps that show even lines of rainfall anticipated from a given storm event (i.e. 100-year, 6-hour storm). One of the variables of the RM equation is the runoff coefficient, C. The runoff coefficient is dependent only upon land use and soil type and the County of San Diego has developed a table of Runoff Coefficients for Urban Areas to be applied to basin located within the County of San Diego. The table categorizes the land use, the associated development density (dwelling units per acre) and the percentage of impervious area. Each of the categories listed has an associated runoff coefficient, C, for each soil type class. The County has also illustrated in detail the methodology for determining the time of concentration, in particular the initial time of concentration. The County has adopted the Federal Aviation Agency’s (FAA) overland time of flow equation. This equation essentially limits the flow path length for the initial time of concentration to lengths under 100 feet, and is dependent on land use and slope. 2.3 City of Carlsbad Standards The City of Carlsbad has additional requirements for hydrology reports and drainage plans which are outlined in the Grading Ordinance. Please refer to this manual for further details. 2.4 Runoff Coefficient Determination As stated in section 2.2, the runoff coefficient is dependent only upon land use and soil type and the County of San Diego has developed a table of Runoff Coefficients for Urban Areas to be applied to basin located within the County of San Diego. The table, included at the end of this section, categorizes the land use, the associated development density (dwelling units per acre) and the percentage of impervious area. PLSA 3754 Page 9 of 12 3.0 APPENDIX APPENDIX A: HYDROLOGY SUPPORT MATERIAL Hydrologic Soil Group—San Diego County Area, California Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 3/4/2022 Page 1 of 4 36 6 1 8 8 0 36 6 1 9 1 0 36 6 1 9 4 0 36 6 1 9 7 0 36 6 2 0 0 0 36 6 2 0 3 0 36 6 2 0 6 0 36 6 2 0 9 0 36 6 2 1 2 0 36 6 1 8 8 0 36 6 1 9 1 0 36 6 1 9 4 0 36 6 1 9 7 0 36 6 2 0 0 0 36 6 2 0 3 0 36 6 2 0 6 0 36 6 2 0 9 0 36 6 2 1 2 0 470610 470640 470670 470700 470730 470760 470790 470610 470640 470670 470700 470730 470760 470790 33° 5' 50'' N 11 7 ° 1 8 ' 5 4 ' ' W 33° 5' 50'' N 11 7 ° 1 8 ' 4 6 ' ' W 33° 5' 42'' N 11 7 ° 1 8 ' 5 4 ' ' W 33° 5' 42'' N 11 7 ° 1 8 ' 4 6 ' ' W N Map projection: Web Mercator Corner coordinates: WGS84 Edge tics: UTM Zone 11N WGS84 0 50 100 200 300 Feet 0 15 30 60 90 Meters Map Scale: 1:1,270 if printed on A portrait (8.5" x 11") sheet. Soil Map may not be valid at this scale. MAP LEGEND MAP INFORMATION Area of Interest (AOI) Area of Interest (AOI) Soils Soil Rating Polygons A A/D B B/D C C/D D Not rated or not available Soil Rating Lines A A/D B B/D C C/D D Not rated or not available Soil Rating Points A A/D B B/D C C/D D Not rated or not available Water Features Streams and Canals Transportation Rails Interstate Highways US Routes Major Roads Local Roads Background Aerial Photography The soil surveys that comprise your AOI were mapped at 1:24,000. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: San Diego County Area, California Survey Area Data: Version 16, Sep 13, 2021 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Jan 23, 2020—Feb 13, 2020 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. Hydrologic Soil Group—San Diego County Area, California Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 3/4/2022 Page 2 of 4 Hydrologic Soil Group Map unit symbol Map unit name Rating Acres in AOI Percent of AOI MlC Marina loamy coarse sand, 2 to 9 percent slopes B 5.9 100.0% Totals for Area of Interest 5.9 100.0% Description Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms. The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows: Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission. Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission. Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission. Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission. If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes. Rating Options Aggregation Method: Dominant Condition Hydrologic Soil Group—San Diego County Area, California Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 3/4/2022 Page 3 of 4 Project Location P6=2.5 Project Location P24=4.1 2.50 61%2.50 4.10 4.10 2.50 100 *Existing and offsite area per Avenida Encinas & Offsite Storm Drain C.T. 94-01 Hydrology Study, dated July 1994 (Poinsettia Shores) * RUNOFF COEFFICIENT USED FOR DRAINAGE BASIN P7.SEE POST-DEVELOPMENT HYDROLOGY NODE MAP RUNOFF COEFFICIENT USED FOR OFFSITE AREA(DRAINAGE BASIN P6) SEE POST DEVELOPMENTHYDROLOGY NODE MAP PLSA 3754 Page 10 of 12 APPENDIX B: HYDROLOGY CALCULATIONS ____________________________________________________________________________ **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE Reference: SAN DIEGO COUNTY FLOOD CONTROL DISTRICT 2003,1985,1981 HYDROLOGY MANUAL (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: Pasco Laret Suiter & Associates 119 Aberdeen Drive Cardiff, California 92007 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * PONTO ROAD * * 100-YEAR PROPOSED * * * ************************************************************************** FILE NAME: 3754PR.DAT TIME/DATE OF STUDY: 14:34 09/15/2023 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- 2003 SAN DIEGO MANUAL CRITERIA USER SPECIFIED STORM EVENT(YEAR) = 100.00 6-HOUR DURATION PRECIPITATION (INCHES) = 2.500 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 SAN DIEGO HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: USE MODIFIED RATIONAL METHOD PROCEDURES FOR CONFLUENCE ANALYSIS *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) === ===== ========= ================= ====== ===== ====== ===== ======= 1 20.0 15.0 0.020/0.020/0.020 0.50 1.50 0.0100 0.125 0.0180 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.50 FEET as (Maximum Allowable Street Flow Depth) -(Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 102.00 IS CODE = 22 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7400 S.C.S. CURVE NUMBER (AMC II) = 0 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.587 SUBAREA RUNOFF(CFS) = 0.24 TOTAL AREA(ACRES) = 0.05 TOTAL RUNOFF(CFS) = 0.24 **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 31 ---------------------------------------------------------------------------- 1 >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 40.73 DOWNSTREAM(FEET) = 38.35 FLOW LENGTH(FEET) = 475.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 1.86 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.24 PIPE TRAVEL TIME(MIN.) = 4.25 Tc(MIN.) = 9.25 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 103.00 = 575.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 38.35 DOWNSTREAM(FEET) = 34.49 FLOW LENGTH(FEET) = 240.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 1.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 2.84 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.24 PIPE TRAVEL TIME(MIN.) = 1.41 Tc(MIN.) = 10.66 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 104.00 = 815.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 104.10 TO NODE 104.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.041 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7400 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7400 SUBAREA AREA(ACRES) = 0.68 SUBAREA RUNOFF(CFS) = 2.02 TOTAL AREA(ACRES) = 0.7 TOTAL RUNOFF(CFS) = 2.17 TC(MIN.) = 10.66 **************************************************************************** FLOW PROCESS FROM NODE 104.20 TO NODE 104.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.041 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7400 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7400 SUBAREA AREA(ACRES) = 0.98 SUBAREA RUNOFF(CFS) = 2.93 TOTAL AREA(ACRES) = 1.7 TOTAL RUNOFF(CFS) = 5.10 TC(MIN.) = 10.66 **************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 34.49 DOWNSTREAM(FEET) = 34.35 FLOW LENGTH(FEET) = 11.00 MANNING'S N = 0.013 2 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.21 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.10 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 10.69 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 105.00 = 826.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 106.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 34.35 DOWNSTREAM(FEET) = 33.40 FLOW LENGTH(FEET) = 87.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.9 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.86 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.10 PIPE TRAVEL TIME(MIN.) = 0.25 Tc(MIN.) = 10.94 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 106.00 = 913.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 10.94 RAINFALL INTENSITY(INCH/HR) = 3.98 TOTAL STREAM AREA(ACRES) = 1.71 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.10 **************************************************************************** FLOW PROCESS FROM NODE 700.00 TO NODE 701.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .2500 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 UPSTREAM ELEVATION(FEET) = 50.00 DOWNSTREAM ELEVATION(FEET) = 46.55 ELEVATION DIFFERENCE(FEET) = 3.45 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 9.928 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 96.12 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.232 SUBAREA RUNOFF(CFS) = 0.14 TOTAL AREA(ACRES) = 0.13 TOTAL RUNOFF(CFS) = 0.14 **************************************************************************** FLOW PROCESS FROM NODE 701.00 TO NODE 702.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 46.55 DOWNSTREAM(FEET) = 45.45 CHANNEL LENGTH THRU SUBAREA(FEET) = 246.00 CHANNEL SLOPE = 0.0045 3 CHANNEL BASE(FEET) = 3.00 "Z" FACTOR = 0.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 0.50 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.639 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .2500 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.59 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.56 AVERAGE FLOW DEPTH(FEET) = 0.12 TRAVEL TIME(MIN.) = 2.62 Tc(MIN.) = 12.55 SUBAREA AREA(ACRES) = 0.98 SUBAREA RUNOFF(CFS) = 0.90 AREA-AVERAGE RUNOFF COEFFICIENT = 0.250 TOTAL AREA(ACRES) = 1.1 PEAK FLOW RATE(CFS) = 1.01 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.17 FLOW VELOCITY(FEET/SEC.) = 1.96 LONGEST FLOWPATH FROM NODE 700.00 TO NODE 702.00 = 346.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 702.00 TO NODE 703.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 39.52 DOWNSTREAM(FEET) = 36.53 FLOW LENGTH(FEET) = 80.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.76 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.01 PIPE TRAVEL TIME(MIN.) = 0.23 Tc(MIN.) = 12.78 LONGEST FLOWPATH FROM NODE 700.00 TO NODE 703.00 = 426.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 703.00 TO NODE 106.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 36.53 DOWNSTREAM(FEET) = 33.40 FLOW LENGTH(FEET) = 54.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.72 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.01 PIPE TRAVEL TIME(MIN.) = 0.13 Tc(MIN.) = 12.91 LONGEST FLOWPATH FROM NODE 700.00 TO NODE 106.00 = 480.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 12.91 RAINFALL INTENSITY(INCH/HR) = 3.57 TOTAL STREAM AREA(ACRES) = 1.11 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.01 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA 4 NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 5.10 10.94 3.975 1.71 2 1.01 12.91 3.572 1.11 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 5.96 10.94 3.975 2 5.60 12.91 3.572 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 5.96 Tc(MIN.) = 10.94 TOTAL AREA(ACRES) = 2.8 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 106.00 = 913.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 107.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 33.40 DOWNSTREAM(FEET) = 28.30 FLOW LENGTH(FEET) = 115.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 10.22 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.96 PIPE TRAVEL TIME(MIN.) = 0.19 Tc(MIN.) = 11.13 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 107.00 = 1028.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 107.00 TO NODE 108.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 28.30 DOWNSTREAM(FEET) = 25.21 FLOW LENGTH(FEET) = 142.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.88 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.96 PIPE TRAVEL TIME(MIN.) = 0.30 Tc(MIN.) = 11.43 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 108.00 = 1170.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 10 ---------------------------------------------------------------------------- >>>>>MAIN-STREAM MEMORY COPIED ONTO MEMORY BANK # 1 <<<<< ============================================================================ **************************************************************************** FLOW PROCESS FROM NODE 400.00 TO NODE 401.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7400 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 5 UPSTREAM ELEVATION(FEET) = 45.92 DOWNSTREAM ELEVATION(FEET) = 44.75 ELEVATION DIFFERENCE(FEET) = 1.17 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.054 WARNING: INITIAL SUBAREA FLOW PATH LENGTH IS GREATER THAN THE MAXIMUM OVERLAND FLOW LENGTH = 67.55 (Reference: Table 3-1B of Hydrology Manual) THE MAXIMUM OVERLAND FLOW LENGTH IS USED IN Tc CALCULATION! 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.541 SUBAREA RUNOFF(CFS) = 0.65 TOTAL AREA(ACRES) = 0.14 TOTAL RUNOFF(CFS) = 0.65 **************************************************************************** FLOW PROCESS FROM NODE 401.00 TO NODE 402.00 IS CODE = 62 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STREET TABLE SECTION # 1 USED)<<<<< ============================================================================ UPSTREAM ELEVATION(FEET) = 44.75 DOWNSTREAM ELEVATION(FEET) = 41.38 STREET LENGTH(FEET) = 300.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0180 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.26 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.31 HALFSTREET FLOOD WIDTH(FEET) = 10.30 AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.97 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.61 STREET FLOW TRAVEL TIME(MIN.) = 2.53 Tc(MIN.) = 7.59 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.033 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7400 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.740 SUBAREA AREA(ACRES) = 0.86 SUBAREA RUNOFF(CFS) = 3.19 TOTAL AREA(ACRES) = 1.0 PEAK FLOW RATE(CFS) = 3.69 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.36 HALFSTREET FLOOD WIDTH(FEET) = 12.53 FLOW VELOCITY(FEET/SEC.) = 2.23 DEPTH*VELOCITY(FT*FT/SEC.) = 0.79 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 402.00 = 400.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 402.00 TO NODE 402.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.033 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7400 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7400 SUBAREA AREA(ACRES) = 0.47 SUBAREA RUNOFF(CFS) = 1.75 TOTAL AREA(ACRES) = 1.5 TOTAL RUNOFF(CFS) = 5.45 TC(MIN.) = 7.59 6 **************************************************************************** FLOW PROCESS FROM NODE 402.00 TO NODE 403.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 36.42 DOWNSTREAM(FEET) = 30.71 FLOW LENGTH(FEET) = 38.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 15.46 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.45 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 7.63 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 403.00 = 438.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 403.00 TO NODE 403.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.63 RAINFALL INTENSITY(INCH/HR) = 5.02 TOTAL STREAM AREA(ACRES) = 1.46 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.45 **************************************************************************** FLOW PROCESS FROM NODE 300.00 TO NODE 300.00 IS CODE = 22 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7400 S.C.S. CURVE NUMBER (AMC II) = 0 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.587 SUBAREA RUNOFF(CFS) = 0.20 TOTAL AREA(ACRES) = 0.04 TOTAL RUNOFF(CFS) = 0.20 **************************************************************************** FLOW PROCESS FROM NODE 300.00 TO NODE 301.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 34.52 DOWNSTREAM(FEET) = 33.37 FLOW LENGTH(FEET) = 27.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 1.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 3.68 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.20 PIPE TRAVEL TIME(MIN.) = 0.12 Tc(MIN.) = 5.12 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 301.00 = 76.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 301.00 TO NODE 403.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 33.37 DOWNSTREAM(FEET) = 30.71 FLOW LENGTH(FEET) = 39.00 MANNING'S N = 0.013 7 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 1.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.37 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 0.20 PIPE TRAVEL TIME(MIN.) = 0.15 Tc(MIN.) = 5.27 LONGEST FLOWPATH FROM NODE 300.00 TO NODE 403.00 = 115.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 403.00 TO NODE 403.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 5.27 RAINFALL INTENSITY(INCH/HR) = 6.37 TOTAL STREAM AREA(ACRES) = 0.04 PEAK FLOW RATE(CFS) AT CONFLUENCE = 0.20 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 5.45 7.63 5.015 1.46 2 0.20 5.27 6.366 0.04 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 3.97 5.27 6.366 2 5.61 7.63 5.015 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 5.61 Tc(MIN.) = 7.63 TOTAL AREA(ACRES) = 1.5 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 403.00 = 438.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 403.00 TO NODE 404.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 30.71 DOWNSTREAM(FEET) = 29.16 FLOW LENGTH(FEET) = 163.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.71 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.61 PIPE TRAVEL TIME(MIN.) = 0.48 Tc(MIN.) = 8.11 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 404.00 = 601.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 404.00 TO NODE 404.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.11 8 RAINFALL INTENSITY(INCH/HR) = 4.82 TOTAL STREAM AREA(ACRES) = 1.50 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.61 **************************************************************************** FLOW PROCESS FROM NODE 200.00 TO NODE 201.00 IS CODE = 22 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7400 S.C.S. CURVE NUMBER (AMC II) = 0 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.587 SUBAREA RUNOFF(CFS) = 0.39 TOTAL AREA(ACRES) = 0.08 TOTAL RUNOFF(CFS) = 0.39 **************************************************************************** FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 62 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STREET TABLE SECTION # 1 USED)<<<<< ============================================================================ UPSTREAM ELEVATION(FEET) = 40.52 DOWNSTREAM ELEVATION(FEET) = 39.08 STREET LENGTH(FEET) = 127.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0180 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.81 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.29 HALFSTREET FLOOD WIDTH(FEET) = 9.37 AVERAGE FLOW VELOCITY(FEET/SEC.) = 1.88 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.55 STREET FLOW TRAVEL TIME(MIN.) = 1.13 Tc(MIN.) = 6.13 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.778 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7400 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.740 SUBAREA AREA(ACRES) = 0.66 SUBAREA RUNOFF(CFS) = 2.83 TOTAL AREA(ACRES) = 0.7 PEAK FLOW RATE(CFS) = 3.18 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.34 HALFSTREET FLOOD WIDTH(FEET) = 11.77 FLOW VELOCITY(FEET/SEC.) = 2.16 DEPTH*VELOCITY(FT*FT/SEC.) = 0.74 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 202.00 = 227.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 202.00 TO NODE 202.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.778 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7400 S.C.S. CURVE NUMBER (AMC II) = 0 9 AREA-AVERAGE RUNOFF COEFFICIENT = 0.7400 SUBAREA AREA(ACRES) = 0.43 SUBAREA RUNOFF(CFS) = 1.82 TOTAL AREA(ACRES) = 1.2 TOTAL RUNOFF(CFS) = 5.00 TC(MIN.) = 6.13 **************************************************************************** FLOW PROCESS FROM NODE 202.00 TO NODE 404.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 35.58 DOWNSTREAM(FEET) = 29.16 FLOW LENGTH(FEET) = 31.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 16.89 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.00 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 6.16 LONGEST FLOWPATH FROM NODE 200.00 TO NODE 404.00 = 258.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 404.00 TO NODE 404.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 6.16 RAINFALL INTENSITY(INCH/HR) = 5.76 TOTAL STREAM AREA(ACRES) = 1.17 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.00 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 5.61 8.11 4.823 1.50 2 5.00 6.16 5.760 1.17 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 9.70 6.16 5.760 2 9.80 8.11 4.823 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 9.80 Tc(MIN.) = 8.11 TOTAL AREA(ACRES) = 2.7 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 404.00 = 601.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 404.00 TO NODE 203.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 29.16 DOWNSTREAM(FEET) = 28.31 FLOW LENGTH(FEET) = 49.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.14 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 10 PIPE-FLOW(CFS) = 9.80 PIPE TRAVEL TIME(MIN.) = 0.10 Tc(MIN.) = 8.21 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 203.00 = 650.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 203.00 TO NODE 602.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 28.31 DOWNSTREAM(FEET) = 27.16 FLOW LENGTH(FEET) = 70.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.97 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 9.80 PIPE TRAVEL TIME(MIN.) = 0.15 Tc(MIN.) = 8.35 LONGEST FLOWPATH FROM NODE 400.00 TO NODE 602.00 = 720.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 602.00 TO NODE 602.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.35 RAINFALL INTENSITY(INCH/HR) = 4.73 TOTAL STREAM AREA(ACRES) = 2.67 PEAK FLOW RATE(CFS) AT CONFLUENCE = 9.80 **************************************************************************** FLOW PROCESS FROM NODE 600.00 TO NODE 601.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .5800 S.C.S. CURVE NUMBER (AMC II) = 0 INITIAL SUBAREA FLOW-LENGTH(FEET) = 100.00 UPSTREAM ELEVATION(FEET) = 65.80 DOWNSTREAM ELEVATION(FEET) = 60.70 ELEVATION DIFFERENCE(FEET) = 5.10 SUBAREA OVERLAND TIME OF FLOW(MIN.) = 5.438 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.240 SUBAREA RUNOFF(CFS) = 0.47 TOTAL AREA(ACRES) = 0.13 TOTAL RUNOFF(CFS) = 0.47 **************************************************************************** FLOW PROCESS FROM NODE 601.00 TO NODE 602.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 60.70 DOWNSTREAM(FEET) = 39.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 668.00 CHANNEL SLOPE = 0.0317 CHANNEL BASE(FEET) = 3.00 "Z" FACTOR = 50.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 0.50 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.567 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .5800 S.C.S. CURVE NUMBER (AMC II) = 0 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.62 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.29 AVERAGE FLOW DEPTH(FEET) = 0.14 TRAVEL TIME(MIN.) = 3.38 11 Tc(MIN.) = 8.82 SUBAREA AREA(ACRES) = 3.07 SUBAREA RUNOFF(CFS) = 8.13 AREA-AVERAGE RUNOFF COEFFICIENT = 0.580 TOTAL AREA(ACRES) = 3.2 PEAK FLOW RATE(CFS) = 8.47 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.18 FLOW VELOCITY(FEET/SEC.) = 3.91 LONGEST FLOWPATH FROM NODE 600.00 TO NODE 602.00 = 768.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 602.00 TO NODE 602.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.82 RAINFALL INTENSITY(INCH/HR) = 4.57 TOTAL STREAM AREA(ACRES) = 3.20 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.47 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 9.80 8.35 4.731 2.67 2 8.47 8.82 4.567 3.20 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 17.82 8.35 4.731 2 17.93 8.82 4.567 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 17.93 Tc(MIN.) = 8.82 TOTAL AREA(ACRES) = 5.9 LONGEST FLOWPATH FROM NODE 600.00 TO NODE 602.00 = 768.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 602.00 TO NODE 505.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 27.16 DOWNSTREAM(FEET) = 26.56 FLOW LENGTH(FEET) = 23.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 21.0 INCH PIPE IS 13.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 11.05 ESTIMATED PIPE DIAMETER(INCH) = 21.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 17.93 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 8.85 LONGEST FLOWPATH FROM NODE 600.00 TO NODE 505.00 = 791.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 505.00 TO NODE 505.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.85 12 RAINFALL INTENSITY(INCH/HR) = 4.56 TOTAL STREAM AREA(ACRES) = 5.87 PEAK FLOW RATE(CFS) AT CONFLUENCE = 17.93 **************************************************************************** FLOW PROCESS FROM NODE 500.00 TO NODE 501.00 IS CODE = 22 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7400 S.C.S. CURVE NUMBER (AMC II) = 0 USER SPECIFIED Tc(MIN.) = 5.000 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.587 SUBAREA RUNOFF(CFS) = 0.58 TOTAL AREA(ACRES) = 0.12 TOTAL RUNOFF(CFS) = 0.58 **************************************************************************** FLOW PROCESS FROM NODE 501.00 TO NODE 502.00 IS CODE = 62 ---------------------------------------------------------------------------- >>>>>COMPUTE STREET FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>(STREET TABLE SECTION # 1 USED)<<<<< ============================================================================ UPSTREAM ELEVATION(FEET) = 44.00 DOWNSTREAM ELEVATION(FEET) = 38.03 STREET LENGTH(FEET) = 391.00 CURB HEIGHT(INCHES) = 6.0 STREET HALFWIDTH(FEET) = 20.00 DISTANCE FROM CROWN TO CROSSFALL GRADEBREAK(FEET) = 15.00 INSIDE STREET CROSSFALL(DECIMAL) = 0.020 OUTSIDE STREET CROSSFALL(DECIMAL) = 0.020 SPECIFIED NUMBER OF HALFSTREETS CARRYING RUNOFF = 1 STREET PARKWAY CROSSFALL(DECIMAL) = 0.020 Manning's FRICTION FACTOR for Streetflow Section(curb-to-curb) = 0.0180 Manning's FRICTION FACTOR for Back-of-Walk Flow Section = 0.0200 **TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.59 STREETFLOW MODEL RESULTS USING ESTIMATED FLOW: STREET FLOW DEPTH(FEET) = 0.27 HALFSTREET FLOOD WIDTH(FEET) = 8.31 AVERAGE FLOW VELOCITY(FEET/SEC.) = 2.04 PRODUCT OF DEPTH&VELOCITY(FT*FT/SEC.) = 0.55 STREET FLOW TRAVEL TIME(MIN.) = 3.19 Tc(MIN.) = 8.19 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.791 *USER SPECIFIED(SUBAREA): USER-SPECIFIED RUNOFF COEFFICIENT = .7400 S.C.S. CURVE NUMBER (AMC II) = 0 AREA-AVERAGE RUNOFF COEFFICIENT = 0.740 SUBAREA AREA(ACRES) = 0.56 SUBAREA RUNOFF(CFS) = 1.97 TOTAL AREA(ACRES) = 0.7 PEAK FLOW RATE(CFS) = 2.40 END OF SUBAREA STREET FLOW HYDRAULICS: DEPTH(FEET) = 0.30 HALFSTREET FLOOD WIDTH(FEET) = 9.89 FLOW VELOCITY(FEET/SEC.) = 2.25 DEPTH*VELOCITY(FT*FT/SEC.) = 0.68 LONGEST FLOWPATH FROM NODE 500.00 TO NODE 502.00 = 10391.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 502.00 TO NODE 503.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 34.00 DOWNSTREAM(FEET) = 33.42 FLOW LENGTH(FEET) = 12.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 13 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.0 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 8.16 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.40 PIPE TRAVEL TIME(MIN.) = 0.02 Tc(MIN.) = 8.22 LONGEST FLOWPATH FROM NODE 500.00 TO NODE 503.00 = 10403.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 503.00 TO NODE 504.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 33.42 DOWNSTREAM(FEET) = 29.63 FLOW LENGTH(FEET) = 88.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.81 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.40 PIPE TRAVEL TIME(MIN.) = 0.19 Tc(MIN.) = 8.40 LONGEST FLOWPATH FROM NODE 500.00 TO NODE 504.00 = 10491.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 504.00 TO NODE 505.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 29.63 DOWNSTREAM(FEET) = 26.56 FLOW LENGTH(FEET) = 90.00 MANNING'S N = 0.013 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 7.20 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.40 PIPE TRAVEL TIME(MIN.) = 0.21 Tc(MIN.) = 8.61 LONGEST FLOWPATH FROM NODE 500.00 TO NODE 505.00 = 10581.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 505.00 TO NODE 505.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.61 RAINFALL INTENSITY(INCH/HR) = 4.64 TOTAL STREAM AREA(ACRES) = 0.68 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.40 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 17.93 8.85 4.556 5.87 2 2.40 8.61 4.638 0.68 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 20.01 8.61 4.638 14 2 20.29 8.85 4.556 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 20.29 Tc(MIN.) = 8.85 TOTAL AREA(ACRES) = 6.5 LONGEST FLOWPATH FROM NODE 500.00 TO NODE 505.00 = 10581.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 505.00 TO NODE 108.00 IS CODE = 31 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 26.56 DOWNSTREAM(FEET) = 25.21 FLOW LENGTH(FEET) = 83.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 15.4 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 9.55 ESTIMATED PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 20.29 PIPE TRAVEL TIME(MIN.) = 0.14 Tc(MIN.) = 9.00 LONGEST FLOWPATH FROM NODE 500.00 TO NODE 108.00 = 10664.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 108.00 TO NODE 108.00 IS CODE = 11 ---------------------------------------------------------------------------- >>>>>CONFLUENCE MEMORY BANK # 1 WITH THE MAIN-STREAM MEMORY<<<<< ============================================================================ ** MAIN STREAM CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 20.29 9.00 4.509 6.55 LONGEST FLOWPATH FROM NODE 500.00 TO NODE 108.00 = 10664.00 FEET. ** MEMORY BANK # 1 CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 5.96 11.43 3.865 2.82 LONGEST FLOWPATH FROM NODE 100.00 TO NODE 108.00 = 1170.00 FEET. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 24.98 9.00 4.509 2 23.35 11.43 3.865 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 24.98 Tc(MIN.) = 9.00 TOTAL AREA(ACRES) = 9.4 ============================================================================ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 9.4 TC(MIN.) = 9.00 PEAK FLOW RATE(CFS) = 24.98 ============================================================================ ============================================================================ END OF RATIONAL METHOD ANALYSIS 15 PLSA 3754 Page 11 of 12 APPENDIX C: HYDRAULIC CALCULATIONS ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: Pasco Laret Suiter & Associates 119 Aberdeen Drive Cardiff, California 92007 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * 3754 PONTO DRIVE * * 100-YEAR * * STORM DRAIN LINE B-2: INLET AT NODE 104 TO MWS (PVT. DRIVE “B”) * *************************************************************************** FILE NAME: 104MWS.PIP TIME/DATE OF STUDY: 11:15 09/21/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 104.00- 0.84* 28.22 0.54 24.44 } FRICTION } HYDRAULIC JUMP 103.50- 0.61*Dc 24.03 0.61*Dc 24.03 } CATCH BASIN 103.50- 0.91* 13.45 0.61 Dc 8.16 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 104.00 FLOWLINE ELEVATION = 37.19 PIPE FLOW = 2.02 CFS PIPE DIAMETER = 12.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 38.030 FEET ------------------------------------------------------------------------------ NODE 104.00 : HGL = < 38.030>;EGL= < 38.158>;FLOWLINE= < 37.190> ****************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 103.50 IS CODE = 1 UPSTREAM NODE 103.50 ELEVATION = 37.38 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.02 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 19.29 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.54 CRITICAL DEPTH(FT) = 0.61 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.61 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.607 4.052 0.862 24.03 0.007 0.604 4.072 0.862 24.03 0.030 0.601 4.093 0.862 24.03 0.071 0.599 4.115 0.862 24.03 0.129 0.596 4.136 0.862 24.04 0.209 0.594 4.158 0.862 24.04 0.311 0.591 4.180 0.862 24.05 0.438 0.588 4.202 0.863 24.06 0.593 0.586 4.224 0.863 24.07 0.779 0.583 4.247 0.863 24.08 1.001 0.581 4.270 0.864 24.10 1.264 0.578 4.293 0.864 24.11 1.573 0.575 4.317 0.865 24.13 1.935 0.573 4.341 0.866 24.15 2.362 0.570 4.365 0.866 24.16 2.863 0.568 4.389 0.867 24.19 3.456 0.565 4.414 0.868 24.21 4.163 0.562 4.439 0.869 24.23 5.012 0.560 4.464 0.869 24.26 6.050 0.557 4.490 0.870 24.28 7.344 0.555 4.516 0.871 24.31 9.011 0.552 4.542 0.873 24.34 11.266 0.549 4.568 0.874 24.38 14.596 0.547 4.595 0.875 24.41 19.290 0.545 4.617 0.876 24.44 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.84 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.840 2.867 0.968 28.22 1.007 0.831 2.896 0.961 27.92 2.004 0.821 2.925 0.954 27.63 2.988 0.812 2.956 0.948 27.36 3.960 0.803 2.989 0.941 27.09 4.919 0.793 3.022 0.935 26.83 5.866 0.784 3.057 0.929 26.57 6.798 0.775 3.093 0.923 26.33 7.715 0.765 3.131 0.918 26.10 8.616 0.756 3.170 0.912 25.88 9.500 0.747 3.211 0.907 25.67 10.366 0.737 3.253 0.902 25.48 11.211 0.728 3.297 0.897 25.29 12.034 0.719 3.343 0.892 25.11 12.833 0.709 3.390 0.888 24.95 13.604 0.700 3.439 0.884 24.80 14.344 0.691 3.490 0.880 24.66 15.050 0.681 3.543 0.876 24.53 15.716 0.672 3.599 0.873 24.42 16.337 0.663 3.656 0.870 24.32 16.905 0.653 3.716 0.868 24.23 17.411 0.644 3.778 0.866 24.16 17.842 0.635 3.842 0.864 24.10 18.183 0.625 3.909 0.863 24.06 18.411 0.616 3.979 0.862 24.04 18.496 0.607 4.052 0.862 24.03 19.290 0.607 4.052 0.862 24.03 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 17.61 FEET UPSTREAM OF NODE 104.00 | | DOWNSTREAM DEPTH = 0.640 FEET, UPSTREAM CONJUGATE DEPTH = 0.575 FEET | ------------------------------------------------------------------------------ NODE 103.50 : HGL = < 37.987>;EGL= < 38.242>;FLOWLINE= < 37.380> ****************************************************************************** FLOW PROCESS FROM NODE 103.50 TO NODE 103.50 IS CODE = 8 UPSTREAM NODE 103.50 ELEVATION = 37.38 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 2.02 CFS PIPE DIAMETER = 12.00 INCHES FLOW VELOCITY = 4.05 FEET/SEC. VELOCITY HEAD = 0.255 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.255) = 0.051 ------------------------------------------------------------------------------ NODE 103.50 : HGL = < 38.293>;EGL= < 38.293>;FLOWLINE= < 37.380> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 103.50 FLOWLINE ELEVATION = 37.38 ASSUMED UPSTREAM CONTROL HGL = 37.99 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: Pasco Laret Suiter & Associates 119 Aberdeen Drive Cardiff, California 92007 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * 3754 PONTO DRIVE * * 100-YEAR * * STORM DRAIN LATERAL C-1: CATCH BASIN AT NODE 702 (PVT. DRIVE “C”) TO NODE 106 * ************************************************************************** FILE NAME: 106LAT.DAT TIME/DATE OF STUDY: 12:17 09/20/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 106.00- 0.73* 15.71 0.25 13.88 } FRICTION } HYDRAULIC JUMP 703.00- 0.42*Dc 9.75 0.42*Dc 9.75 } JUNCTION 703.00- 0.44 Dc 9.78 0.26* 13.04 } FRICTION 702.00- 0.42*Dc 9.75 0.42*Dc 9.75 } CATCH BASIN 702.00- 0.61* 5.23 0.42 Dc 3.48 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 106.00 FLOWLINE ELEVATION = 33.40 PIPE FLOW = 1.01 CFS PIPE DIAMETER = 12.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 34.131 FEET ------------------------------------------------------------------------------ NODE 106.00 : HGL = < 34.131>;EGL= < 34.173>;FLOWLINE= < 33.400> ****************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 703.00 IS CODE = 1 UPSTREAM NODE 703.00 ELEVATION = 36.20 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.01 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 58.67 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.24 CRITICAL DEPTH(FT) = 0.42 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.42 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.422 3.204 0.582 9.75 0.006 0.415 3.277 0.582 9.76 0.024 0.408 3.354 0.583 9.77 0.055 0.401 3.434 0.584 9.80 0.102 0.393 3.518 0.586 9.83 0.166 0.386 3.606 0.588 9.88 0.249 0.379 3.697 0.592 9.93 0.353 0.372 3.794 0.596 10.00 0.482 0.365 3.895 0.601 10.08 0.639 0.358 4.001 0.606 10.17 0.827 0.351 4.112 0.613 10.28 1.053 0.343 4.230 0.621 10.40 1.322 0.336 4.353 0.631 10.54 1.641 0.329 4.483 0.641 10.69 2.021 0.322 4.621 0.654 10.86 2.474 0.315 4.766 0.668 11.05 3.016 0.308 4.920 0.684 11.26 3.670 0.301 5.083 0.702 11.49 4.468 0.293 5.256 0.723 11.74 5.455 0.286 5.440 0.746 12.02 6.704 0.279 5.636 0.773 12.32 8.335 0.272 5.844 0.803 12.65 10.573 0.265 6.067 0.837 13.01 13.926 0.258 6.305 0.875 13.40 20.023 0.250 6.560 0.919 13.83 58.670 0.250 6.590 0.924 13.88 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.73 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.731 1.641 0.773 15.71 0.232 0.719 1.671 0.762 15.30 0.461 0.706 1.703 0.751 14.90 0.688 0.694 1.736 0.741 14.51 0.913 0.682 1.771 0.730 14.13 1.135 0.669 1.807 0.720 13.77 1.354 0.657 1.846 0.710 13.42 1.570 0.645 1.887 0.700 13.08 1.782 0.632 1.929 0.690 12.76 1.991 0.620 1.975 0.680 12.45 2.195 0.607 2.022 0.671 12.15 2.394 0.595 2.072 0.662 11.87 2.588 0.583 2.125 0.653 11.60 2.777 0.570 2.181 0.644 11.35 2.958 0.558 2.241 0.636 11.11 3.133 0.546 2.304 0.628 10.89 3.299 0.533 2.370 0.621 10.69 3.456 0.521 2.441 0.614 10.51 3.603 0.509 2.516 0.607 10.34 3.737 0.496 2.596 0.601 10.19 3.859 0.484 2.681 0.596 10.06 3.965 0.472 2.772 0.591 9.95 4.053 0.459 2.869 0.587 9.87 4.120 0.447 2.973 0.584 9.81 4.164 0.434 3.084 0.582 9.77 4.180 0.422 3.204 0.582 9.75 58.670 0.422 3.204 0.582 9.75 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 1.07 FEET UPSTREAM OF NODE 106.00 | | DOWNSTREAM DEPTH = 0.673 FEET, UPSTREAM CONJUGATE DEPTH = 0.250 FEET | ------------------------------------------------------------------------------ NODE 703.00 : HGL = < 36.622>;EGL= < 36.782>;FLOWLINE= < 36.200> ****************************************************************************** FLOW PROCESS FROM NODE 703.00 TO NODE 703.00 IS CODE = 5 UPSTREAM NODE 703.00 ELEVATION = 36.53 (FLOW IS SUBCRITICAL) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 1.01 12.00 90.00 36.53 0.42 6.088 DOWNSTREAM 1.01 12.00 - 36.20 0.42 3.205 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03447 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00582 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02014 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.081 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.588)+( 0.000) = 0.588 ------------------------------------------------------------------------------ NODE 703.00 : HGL = < 36.794>;EGL= < 37.370>;FLOWLINE= < 36.530> ****************************************************************************** FLOW PROCESS FROM NODE 703.00 TO NODE 702.00 IS CODE = 1 UPSTREAM NODE 702.00 ELEVATION = 39.52 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 1.01 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 79.91 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.26 CRITICAL DEPTH(FT) = 0.42 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.42 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.422 3.204 0.582 9.75 0.006 0.416 3.271 0.582 9.76 0.026 0.409 3.341 0.582 9.77 0.061 0.402 3.413 0.584 9.79 0.113 0.396 3.489 0.585 9.82 0.183 0.389 3.567 0.587 9.85 0.274 0.383 3.649 0.590 9.90 0.388 0.376 3.735 0.593 9.96 0.528 0.370 3.825 0.597 10.02 0.699 0.363 3.918 0.602 10.10 0.904 0.357 4.016 0.607 10.19 1.148 0.350 4.118 0.614 10.29 1.438 0.344 4.226 0.621 10.40 1.782 0.337 4.338 0.630 10.52 2.191 0.331 4.456 0.639 10.66 2.676 0.324 4.580 0.650 10.81 3.255 0.318 4.710 0.662 10.98 3.952 0.311 4.848 0.676 11.16 4.800 0.304 4.992 0.692 11.36 5.845 0.298 5.145 0.709 11.58 7.163 0.291 5.306 0.729 11.81 8.879 0.285 5.477 0.751 12.07 11.225 0.278 5.657 0.776 12.35 14.729 0.272 5.848 0.803 12.65 21.078 0.265 6.051 0.834 12.98 79.910 0.264 6.086 0.840 13.04 ------------------------------------------------------------------------------ NODE 702.00 : HGL = < 39.942>;EGL= < 40.102>;FLOWLINE= < 39.520> ****************************************************************************** FLOW PROCESS FROM NODE 702.00 TO NODE 702.00 IS CODE = 8 UPSTREAM NODE 702.00 ELEVATION = 39.52 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 1.01 CFS PIPE DIAMETER = 12.00 INCHES FLOW VELOCITY = 3.21 FEET/SEC. VELOCITY HEAD = 0.160 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.160) = 0.032 ------------------------------------------------------------------------------ NODE 702.00 : HGL = < 40.134>;EGL= < 40.134>;FLOWLINE= < 39.520> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 702.00 FLOWLINE ELEVATION = 39.52 ASSUMED UPSTREAM CONTROL HGL = 39.94 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: PASCO LARET SUITER & ASSOCIATES 535 NORTH HIGHWAY 101, STE A SOLANA BEACH, CA 92075 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * 3754 PONTO DRIVE * * 100-YEAR * * PONTO DR & STORM DRAIN LATERAL B: NODE 404 TO NODE 108 * ************************************************************************** FILE NAME: 108-2PIP.DAT TIME/DATE OF STUDY: 09:31 11/17/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 108.00- 1.99* 448.18 1.49 422.45 } FRICTION } HYDRAULIC JUMP 505.00- 1.62*Dc 418.22 1.62*Dc 418.22 } JUNCTION 505.00- 2.89* 567.95 1.25 371.23 } FRICTION 602.00- 2.63* 518.52 1.53 Dc 352.23 } JUNCTION 602.00- 3.13* 476.85 0.90 168.58 } FRICTION 203.00- 2.45* 342.59 1.12 Dc 157.07 } JUNCTION 203.00- 2.36* 326.29 0.94 164.44 } FRICTION 404.00- 1.94* 243.62 1.12 Dc 157.07 } JUNCTION 404.00- 1.82* 182.39 0.73 78.30 } FRICTION } HYDRAULIC JUMP 403.00- 0.84*Dc 76.22 0.84*Dc 76.22 } JUNCTION 403.00- 0.92 74.92 0.38* 141.06 } FRICTION 402.50- 0.82*Dc 73.43 0.82*Dc 73.43 } CATCH BASIN 402.50- 1.20* 39.32 0.82 Dc 26.25 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 108.00 FLOWLINE ELEVATION = 25.21 PIPE FLOW = 20.29 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 27.200 FEET ------------------------------------------------------------------------------ NODE 108.00 : HGL = < 27.200>;EGL= < 27.848>;FLOWLINE= < 25.210> ****************************************************************************** FLOW PROCESS FROM NODE 108.00 TO NODE 505.00 IS CODE = 1 UPSTREAM NODE 505.00 ELEVATION = 26.08 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ 1 CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 20.29 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 87.13 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 1.48 CRITICAL DEPTH(FT) = 1.62 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.62 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.616 7.456 2.480 418.22 0.024 1.611 7.480 2.480 418.22 0.099 1.606 7.504 2.480 418.24 0.229 1.600 7.528 2.481 418.28 0.419 1.595 7.553 2.481 418.33 0.674 1.589 7.577 2.481 418.39 1.001 1.584 7.602 2.482 418.47 1.408 1.578 7.628 2.482 418.56 1.902 1.573 7.654 2.483 418.67 2.495 1.567 7.680 2.484 418.79 3.199 1.562 7.706 2.485 418.92 4.029 1.556 7.732 2.485 419.07 5.004 1.551 7.759 2.486 419.24 6.145 1.545 7.787 2.488 419.42 7.482 1.540 7.814 2.489 419.62 9.052 1.535 7.842 2.490 419.83 10.903 1.529 7.870 2.491 420.06 13.103 1.524 7.898 2.493 420.30 15.742 1.518 7.927 2.495 420.56 18.957 1.513 7.956 2.496 420.83 22.959 1.507 7.986 2.498 421.12 28.099 1.502 8.016 2.500 421.43 35.039 1.496 8.046 2.502 421.75 45.264 1.491 8.076 2.504 422.09 63.539 1.485 8.107 2.507 422.45 87.130 1.485 8.107 2.507 422.45 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.99 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.990 6.460 2.638 448.18 5.003 1.975 6.472 2.626 445.70 9.354 1.960 6.487 2.614 443.39 13.285 1.945 6.506 2.603 441.22 16.905 1.930 6.528 2.592 439.18 20.277 1.915 6.552 2.582 437.24 23.442 1.900 6.579 2.573 435.41 26.429 1.885 6.608 2.564 433.67 29.256 1.870 6.639 2.555 432.03 31.939 1.856 6.672 2.547 430.49 34.488 1.841 6.706 2.539 429.03 36.910 1.826 6.743 2.532 427.67 39.211 1.811 6.782 2.525 426.40 41.393 1.796 6.823 2.519 425.21 43.458 1.781 6.865 2.513 424.12 45.404 1.766 6.909 2.508 423.12 47.230 1.751 6.956 2.503 422.20 48.930 1.736 7.004 2.498 421.38 50.497 1.721 7.053 2.494 420.65 51.924 1.706 7.105 2.491 420.02 53.199 1.691 7.159 2.487 419.47 54.305 1.676 7.214 2.485 419.02 55.224 1.661 7.272 2.483 418.67 55.929 1.646 7.331 2.481 418.42 2 56.387 1.631 7.393 2.481 418.27 56.552 1.616 7.456 2.480 418.22 87.130 1.616 7.456 2.480 418.22 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 47.88 FEET UPSTREAM OF NODE 108.00 | | DOWNSTREAM DEPTH = 1.745 FEET, UPSTREAM CONJUGATE DEPTH = 1.494 FEET | ------------------------------------------------------------------------------ NODE 505.00 : HGL = < 27.696>;EGL= < 28.560>;FLOWLINE= < 26.080> ****************************************************************************** FLOW PROCESS FROM NODE 505.00 TO NODE 505.00 IS CODE = 5 UPSTREAM NODE 505.00 ELEVATION = 26.41 (FLOW UNSEALS IN REACH) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 17.93 24.00 90.00 26.41 1.53 5.707 DOWNSTREAM 20.29 24.00 - 26.08 1.62 7.458 LATERAL #1 2.36 18.00 0.00 26.58 0.58 1.335 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00628 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00825 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00727 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.029 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.241)+( 0.000) = 1.241 ------------------------------------------------------------------------------ NODE 505.00 : HGL = < 29.296>;EGL= < 29.801>;FLOWLINE= < 26.410> ****************************************************************************** FLOW PROCESS FROM NODE 505.00 TO NODE 602.00 IS CODE = 1 UPSTREAM NODE 602.00 ELEVATION = 26.83 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 17.93 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 26.72 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 17.93)/( 226.225))**2 = 0.00628 HF=L*SF = ( 26.72)*(0.00628) = 0.168 ------------------------------------------------------------------------------ NODE 602.00 : HGL = < 29.463>;EGL= < 29.969>;FLOWLINE= < 26.830> ****************************************************************************** FLOW PROCESS FROM NODE 602.00 TO NODE 602.00 IS CODE = 5 UPSTREAM NODE 602.00 ELEVATION = 27.16 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 9.80 24.00 0.00 27.16 1.12 3.119 DOWNSTREAM 17.93 24.00 - 26.83 1.53 5.707 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 8.13===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00188 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00628 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00408 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.016 FEET ENTRANCE LOSSES = 0.101 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.371)+( 0.101) = 0.472 ------------------------------------------------------------------------------ NODE 602.00 : HGL = < 30.290>;EGL= < 30.441>;FLOWLINE= < 27.160> 3 ****************************************************************************** FLOW PROCESS FROM NODE 602.00 TO NODE 203.00 IS CODE = 1 UPSTREAM NODE 203.00 ELEVATION = 27.98 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.80 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 71.99 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 9.80)/( 226.226))**2 = 0.00188 HF=L*SF = ( 71.99)*(0.00188) = 0.135 ------------------------------------------------------------------------------ NODE 203.00 : HGL = < 30.425>;EGL= < 30.576>;FLOWLINE= < 27.980> ****************************************************************************** FLOW PROCESS FROM NODE 203.00 TO NODE 203.00 IS CODE = 5 UPSTREAM NODE 203.00 ELEVATION = 28.31 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 9.80 24.00 78.00 28.31 1.12 3.119 DOWNSTREAM 9.80 24.00 - 27.98 1.12 3.119 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00188 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00188 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00188 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.008 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.247)+( 0.000) = 0.247 ------------------------------------------------------------------------------ NODE 203.00 : HGL = < 30.672>;EGL= < 30.823>;FLOWLINE= < 28.310> ****************************************************************************** FLOW PROCESS FROM NODE 203.00 TO NODE 404.00 IS CODE = 1 UPSTREAM NODE 404.00 ELEVATION = 28.83 (FLOW SEALS IN REACH) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 9.80 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 52.90 FEET MANNING'S N = 0.01300 ============================================================================== DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.36 ============================================================================== PRESSURE FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.362 3.119 2.513 326.29 45.549 2.000 3.119 2.151 255.28 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.92 CRITICAL DEPTH(FT) = 1.12 ============================================================================== ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 2.00 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 45.549 2.000 3.118 2.151 255.28 49.768 1.965 3.131 2.117 248.62 52.900 1.937 3.148 2.091 243.62 ------------------------------------------------------------------------------ NODE 404.00 : HGL = < 30.767>;EGL= < 30.921>;FLOWLINE= < 28.830> ****************************************************************************** FLOW PROCESS FROM NODE 404.00 TO NODE 404.00 IS CODE = 5 UPSTREAM NODE 404.00 ELEVATION = 29.16 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ 4 CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 5.61 24.00 0.00 29.16 0.84 1.866 DOWNSTREAM 9.80 24.00 - 28.83 1.12 3.149 LATERAL #1 4.19 24.00 90.00 29.16 0.72 1.461 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00054 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00165 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00109 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.004 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.116)+( 0.000) = 0.116 ------------------------------------------------------------------------------ NODE 404.00 : HGL = < 30.984>;EGL= < 31.038>;FLOWLINE= < 29.160> ****************************************************************************** FLOW PROCESS FROM NODE 404.00 TO NODE 403.00 IS CODE = 1 UPSTREAM NODE 403.00 ELEVATION = 30.38 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.61 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 160.55 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.73 CRITICAL DEPTH(FT) = 0.84 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.84 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.836 4.506 1.152 76.22 0.014 0.832 4.536 1.152 76.22 0.059 0.828 4.567 1.152 76.23 0.136 0.823 4.599 1.152 76.25 0.249 0.819 4.630 1.152 76.27 0.402 0.815 4.662 1.153 76.30 0.598 0.811 4.695 1.153 76.33 0.843 0.806 4.728 1.154 76.38 1.142 0.802 4.762 1.154 76.43 1.501 0.798 4.795 1.155 76.49 1.929 0.794 4.830 1.156 76.55 2.435 0.789 4.865 1.157 76.62 3.030 0.785 4.900 1.158 76.70 3.730 0.781 4.936 1.159 76.79 4.552 0.777 4.972 1.161 76.88 5.520 0.772 5.009 1.162 76.98 6.664 0.768 5.046 1.164 77.09 8.027 0.764 5.084 1.166 77.21 9.667 0.760 5.122 1.167 77.34 11.670 0.755 5.161 1.169 77.47 14.169 0.751 5.200 1.171 77.61 17.388 0.747 5.240 1.174 77.76 21.744 0.743 5.281 1.176 77.92 28.177 0.738 5.322 1.179 78.09 39.702 0.734 5.364 1.181 78.26 160.550 0.733 5.372 1.182 78.30 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.82 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ 5 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.824 1.866 1.878 182.39 5.352 1.784 1.895 1.840 175.36 10.678 1.745 1.929 1.803 168.49 15.980 1.705 1.965 1.765 161.79 21.258 1.666 2.006 1.728 155.26 26.513 1.626 2.050 1.692 148.92 31.743 1.587 2.098 1.655 142.78 36.947 1.547 2.150 1.619 136.84 42.123 1.508 2.207 1.583 131.11 47.269 1.468 2.269 1.548 125.60 52.381 1.429 2.335 1.514 120.32 57.455 1.389 2.408 1.479 115.28 62.485 1.350 2.486 1.446 110.48 67.466 1.310 2.571 1.413 105.93 72.388 1.271 2.663 1.381 101.65 77.241 1.231 2.764 1.350 97.65 82.010 1.192 2.873 1.320 93.93 86.679 1.152 2.992 1.291 90.51 91.222 1.113 3.123 1.264 87.41 95.609 1.073 3.266 1.239 84.63 99.795 1.034 3.423 1.216 82.21 103.715 0.994 3.597 1.195 80.15 107.274 0.955 3.789 1.178 78.49 110.319 0.915 4.002 1.164 77.26 112.583 0.876 4.239 1.155 76.48 113.543 0.836 4.506 1.152 76.22 160.550 0.836 4.506 1.152 76.22 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 107.83 FEET UPSTREAM OF NODE 404.00 | | DOWNSTREAM DEPTH = 0.947 FEET, UPSTREAM CONJUGATE DEPTH = 0.734 FEET | ------------------------------------------------------------------------------ NODE 403.00 : HGL = < 31.216>;EGL= < 31.532>;FLOWLINE= < 30.380> ****************************************************************************** FLOW PROCESS FROM NODE 403.00 TO NODE 403.00 IS CODE = 5 UPSTREAM NODE 403.00 ELEVATION = 30.71 (FLOW IS SUBCRITICAL) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 5.45 24.00 65.00 30.71 0.82 12.969 DOWNSTREAM 5.61 24.00 - 30.38 0.84 4.507 LATERAL #1 0.16 12.00 90.00 30.71 0.16 0.474 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.09032 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00461 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.04747 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.190 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 2.173)+( 0.000) = 2.173 ------------------------------------------------------------------------------ NODE 403.00 : HGL = < 31.093>;EGL= < 33.705>;FLOWLINE= < 30.710> ****************************************************************************** FLOW PROCESS FROM NODE 403.00 TO NODE 402.50 IS CODE = 1 UPSTREAM NODE 402.50 ELEVATION = 33.20 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.45 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 12.01 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.31 CRITICAL DEPTH(FT) = 0.82 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.82 6 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.824 4.466 1.134 73.43 0.005 0.803 4.618 1.135 73.51 0.021 0.783 4.780 1.138 73.74 0.049 0.762 4.953 1.144 74.14 0.092 0.742 5.138 1.152 74.72 0.151 0.721 5.336 1.164 75.48 0.229 0.701 5.549 1.179 76.45 0.329 0.681 5.778 1.199 77.64 0.454 0.660 6.024 1.224 79.07 0.610 0.640 6.291 1.255 80.75 0.801 0.619 6.579 1.292 82.72 1.035 0.599 6.892 1.337 85.00 1.320 0.578 7.233 1.391 87.62 1.667 0.558 7.606 1.457 90.61 2.090 0.537 8.014 1.535 94.03 2.608 0.517 8.462 1.630 97.93 3.246 0.497 8.957 1.743 102.36 4.038 0.476 9.505 1.880 107.39 5.034 0.456 10.115 2.045 113.13 6.308 0.435 10.797 2.247 119.67 7.972 0.415 11.564 2.493 127.15 10.223 0.394 12.431 2.795 135.72 12.010 0.383 12.965 2.995 141.06 ------------------------------------------------------------------------------ NODE 402.50 : HGL = < 34.024>;EGL= < 34.334>;FLOWLINE= < 33.200> ****************************************************************************** FLOW PROCESS FROM NODE 402.50 TO NODE 402.50 IS CODE = 8 UPSTREAM NODE 402.50 ELEVATION = 33.20 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 5.45 CFS PIPE DIAMETER = 24.00 INCHES FLOW VELOCITY = 4.47 FEET/SEC. VELOCITY HEAD = 0.310 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.310) = 0.062 ------------------------------------------------------------------------------ NODE 402.50 : HGL = < 34.396>;EGL= < 34.396>;FLOWLINE= < 33.200> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 402.50 FLOWLINE ELEVATION = 33.20 ASSUMED UPSTREAM CONTROL HGL = 34.02 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 7 8 ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: Pasco Laret Suiter & Associates 119 Aberdeen Drive Cardiff, California 92007 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * 3754 PONTO DRIVE * * 100-YEAR * * PONTO DRIVE, STORM DRAIN LINE B2 & C: INLET AT NODE 104 TO NODE 108 * ************************************************************************** FILE NAME: 108PIP.DAT TIME/DATE OF STUDY: 10:46 09/20/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 108.00- 5.32* 9346.96 4.43 Dc 8887.61 } FRICTION 107.00- 5.56* 9602.49 4.05 8986.49 } JUNCTION 107.00- 0.86 Dc 82.39 0.50* 118.79 } FRICTION 106.00- 0.86*Dc 82.39 0.86*Dc 82.39 } JUNCTION 106.00- 1.02 75.27 0.73* 75.45 } FRICTION 105.00- 0.87*Dc 72.26 0.87*Dc 72.26 } JUNCTION 105.00- 1.17* 82.96 0.76 74.11 } FRICTION 104.00- 1.00* 74.53 0.87 Dc 72.26 } CATCH BASIN 104.00- 1.31* 47.70 0.87 Dc 24.78 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 108.00 FLOWLINE ELEVATION = 21.88 PIPE FLOW = 272.16 CFS PIPE DIAMETER = 78.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 27.200 FEET ------------------------------------------------------------------------------ NODE 108.00 : HGL = < 27.200>;EGL= < 28.561>;FLOWLINE= < 21.880> ****************************************************************************** FLOW PROCESS FROM NODE 108.00 TO NODE 107.00 IS CODE = 1 UPSTREAM NODE 107.00 ELEVATION = 22.13 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 272.16 CFS PIPE DIAMETER = 78.00 INCHES PIPE LENGTH = 149.41 FEET MANNING'S N = 0.01300 ===> NORMAL PIPEFLOW IS PRESSURE FLOW ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 6.50 CRITICAL DEPTH(FT) = 4.43 ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 5.32 1 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 5.320 9.359 6.681 9346.96 25.314 5.367 9.284 6.706 9393.39 52.579 5.414 9.211 6.733 9441.77 81.856 5.462 9.141 6.760 9492.06 113.203 5.509 9.073 6.788 9544.23 146.669 5.556 9.008 6.817 9598.26 149.410 5.560 9.003 6.819 9602.49 ------------------------------------------------------------------------------ NODE 107.00 : HGL = < 27.690>;EGL= < 28.949>;FLOWLINE= < 22.130> ****************************************************************************** FLOW PROCESS FROM NODE 107.00 TO NODE 107.00 IS CODE = 5 UPSTREAM NODE 107.00 ELEVATION = 28.30 (FLOW IS SUBCRITICAL) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 5.96 24.00 90.00 28.30 0.86 9.591 DOWNSTREAM 272.16 78.00 - 22.13 4.43 9.006 LATERAL #1 266.20 78.00 0.00 22.38 4.38 8.445 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03580 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00251 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01916 JUNCTION LENGTH = 8.00 FEET FRICTION LOSSES = 0.153 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.284)+( 0.000) = 1.284 ------------------------------------------------------------------------------ NODE 107.00 : HGL = < 28.804>;EGL= < 30.233>;FLOWLINE= < 28.300> ****************************************************************************** FLOW PROCESS FROM NODE 107.00 TO NODE 106.00 IS CODE = 1 UPSTREAM NODE 106.00 ELEVATION = 32.90 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.96 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 115.09 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.49 CRITICAL DEPTH(FT) = 0.86 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.86 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.862 4.598 1.191 82.39 0.016 0.847 4.704 1.191 82.43 0.063 0.832 4.816 1.193 82.56 0.145 0.818 4.933 1.196 82.78 0.265 0.803 5.055 1.200 83.08 0.428 0.788 5.183 1.205 83.48 0.639 0.773 5.317 1.212 83.98 0.905 0.758 5.458 1.221 84.58 1.233 0.743 5.606 1.231 85.29 1.631 0.728 5.762 1.244 86.11 2.110 0.713 5.925 1.259 87.06 2.683 0.699 6.098 1.276 88.13 3.366 0.684 6.279 1.296 89.33 4.178 0.669 6.471 1.319 90.68 5.144 0.654 6.674 1.346 92.19 2 6.296 0.639 6.889 1.376 93.85 7.677 0.624 7.116 1.411 95.69 9.343 0.609 7.358 1.450 97.71 11.375 0.594 7.614 1.495 99.94 13.892 0.580 7.887 1.546 102.38 17.078 0.565 8.178 1.604 105.06 21.240 0.550 8.489 1.670 107.98 26.957 0.535 8.822 1.744 111.18 35.529 0.520 9.178 1.829 114.68 51.126 0.505 9.560 1.925 118.51 115.090 0.504 9.588 1.933 118.79 ------------------------------------------------------------------------------ NODE 106.00 : HGL = < 33.762>;EGL= < 34.091>;FLOWLINE= < 32.900> ****************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 106.00 IS CODE = 5 UPSTREAM NODE 106.00 ELEVATION = 33.40 (FLOW IS SUBCRITICAL) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 5.10 18.00 90.00 33.40 0.87 5.960 DOWNSTREAM 5.96 24.00 - 32.90 0.86 4.593 LATERAL #1 0.86 12.00 0.00 33.40 0.39 1.955 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01027 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00464 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00746 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.030 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.592)+( 0.000) = 0.592 ------------------------------------------------------------------------------ NODE 106.00 : HGL = < 34.131>;EGL= < 34.683>;FLOWLINE= < 33.400> ****************************************************************************** FLOW PROCESS FROM NODE 106.00 TO NODE 105.00 IS CODE = 1 UPSTREAM NODE 105.00 ELEVATION = 34.02 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.10 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 58.77 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.73 CRITICAL DEPTH(FT) = 0.87 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.87 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.869 4.803 1.228 72.26 0.016 0.863 4.842 1.228 72.27 0.065 0.858 4.881 1.228 72.28 0.150 0.852 4.921 1.228 72.31 0.276 0.846 4.962 1.229 72.34 0.445 0.840 5.004 1.229 72.39 0.662 0.835 5.046 1.230 72.44 0.934 0.829 5.089 1.231 72.51 1.265 0.823 5.133 1.233 72.59 1.664 0.818 5.177 1.234 72.67 2.140 0.812 5.223 1.236 72.77 2.702 0.806 5.269 1.237 72.88 3.365 0.800 5.316 1.239 73.00 4.144 0.795 5.364 1.242 73.14 5.060 0.789 5.413 1.244 73.28 6.139 0.783 5.463 1.247 73.44 3 7.416 0.777 5.514 1.250 73.61 8.938 0.772 5.566 1.253 73.79 10.770 0.766 5.618 1.256 73.99 13.010 0.760 5.672 1.260 74.19 15.807 0.754 5.727 1.264 74.42 19.412 0.749 5.783 1.268 74.65 24.295 0.743 5.840 1.273 74.90 31.512 0.737 5.898 1.278 75.16 44.452 0.731 5.957 1.283 75.44 58.770 0.731 5.958 1.283 75.45 ------------------------------------------------------------------------------ NODE 105.00 : HGL = < 34.889>;EGL= < 35.248>;FLOWLINE= < 34.020> ****************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 5 UPSTREAM NODE 105.00 ELEVATION = 34.35 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 5.10 18.00 90.00 34.35 0.87 3.442 DOWNSTREAM 5.10 18.00 - 34.02 0.87 4.804 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00259 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00582 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00420 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.017 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.459)+( 0.000) = 0.459 ------------------------------------------------------------------------------ NODE 105.00 : HGL = < 35.522>;EGL= < 35.706>;FLOWLINE= < 34.350> ****************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 104.00 IS CODE = 1 UPSTREAM NODE 104.00 ELEVATION = 34.49 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.10 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 13.60 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.73 CRITICAL DEPTH(FT) = 0.87 ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.17 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.172 3.441 1.356 82.96 1.081 1.160 3.477 1.348 82.19 2.149 1.148 3.514 1.340 81.45 3.202 1.136 3.552 1.332 80.74 4.239 1.124 3.591 1.324 80.04 5.260 1.112 3.631 1.316 79.38 6.264 1.099 3.673 1.309 78.73 7.249 1.087 3.716 1.302 78.12 8.214 1.075 3.761 1.295 77.53 9.157 1.063 3.807 1.288 76.97 10.078 1.051 3.855 1.282 76.43 10.973 1.039 3.904 1.276 75.93 11.842 1.027 3.955 1.270 75.45 12.681 1.015 4.008 1.264 75.00 13.488 1.002 4.063 1.259 74.59 13.600 1.001 4.071 1.258 74.53 ------------------------------------------------------------------------------ NODE 104.00 : HGL = < 35.491>;EGL= < 35.748>;FLOWLINE= < 34.490> 4 ****************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 8 UPSTREAM NODE 104.00 ELEVATION = 34.49 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 5.10 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 4.07 FEET/SEC. VELOCITY HEAD = 0.257 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.257) = 0.051 ------------------------------------------------------------------------------ NODE 104.00 : HGL = < 35.800>;EGL= < 35.800>;FLOWLINE= < 34.490> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 104.00 FLOWLINE ELEVATION = 34.49 ASSUMED UPSTREAM CONTROL HGL = 35.36 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 5 ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: Pasco Laret Suiter & Associates 119 Aberdeen Drive Cardiff, California 92007 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * 3754 PONTO DRIVE * * 100-YEAR * * STORM DRAIN LATERAL B: INLET AT NODE 202 TO MWS (PVT DRIVE “B”) * ************************************************************************** FILE NAME: 202MWS.PIP TIME/DATE OF STUDY: 11:55 09/21/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 202.00- 0.76*Dc 44.23 0.75*Dc 44.25 } FRICTION 201.50- 0.76*Dc 44.23 0.76*Dc 44.23 } CATCH BASIN 201.50- 1.22* 35.22 0.76 Dc 13.79 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 202.00 FLOWLINE ELEVATION = 35.49 PIPE FLOW = 3.18 CFS PIPE DIAMETER = 12.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 35.170 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( -0.32 FT.) IS LESS THAN CRITICAL DEPTH( 0.76 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS ------------------------------------------------------------------------------ NODE 202.00 : HGL = < 36.238>;EGL= < 36.633>;FLOWLINE= < 35.490> ****************************************************************************** FLOW PROCESS FROM NODE 202.00 TO NODE 201.50 IS CODE = 1 UPSTREAM NODE 201.50 ELEVATION = 35.58 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.18 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 9.33 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.75 CRITICAL DEPTH(FT) = 0.76 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.76 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.764 4.938 1.143 44.23 0.003 0.763 4.943 1.143 44.23 0.010 0.763 4.947 1.143 44.23 0.024 0.762 4.951 1.143 44.23 0.044 0.761 4.955 1.143 44.23 0.071 0.761 4.959 1.143 44.23 0.105 0.760 4.964 1.143 44.23 0.148 0.759 4.968 1.143 44.23 0.200 0.759 4.972 1.143 44.23 0.263 0.758 4.977 1.143 44.23 0.338 0.757 4.981 1.143 44.23 0.426 0.757 4.985 1.143 44.23 0.530 0.756 4.989 1.143 44.23 0.651 0.756 4.994 1.143 44.24 0.794 0.755 4.998 1.143 44.24 0.962 0.754 5.002 1.143 44.24 1.161 0.754 5.007 1.143 44.24 1.397 0.753 5.011 1.143 44.24 1.680 0.752 5.016 1.143 44.24 2.027 0.752 5.020 1.143 44.24 2.458 0.751 5.024 1.143 44.25 3.013 0.750 5.029 1.143 44.25 3.763 0.750 5.033 1.143 44.25 4.869 0.749 5.038 1.143 44.25 6.850 0.748 5.042 1.143 44.25 9.330 0.748 5.042 1.143 44.25 ------------------------------------------------------------------------------ NODE 201.50 : HGL = < 36.344>;EGL= < 36.723>;FLOWLINE= < 35.580> ****************************************************************************** FLOW PROCESS FROM NODE 201.50 TO NODE 201.50 IS CODE = 8 UPSTREAM NODE 201.50 ELEVATION = 35.58 (FLOW UNSEALS IN REACH) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 3.18 CFS PIPE DIAMETER = 12.00 INCHES FLOW VELOCITY = 4.94 FEET/SEC. VELOCITY HEAD = 0.379 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.379) = 0.076 ------------------------------------------------------------------------------ NODE 201.50 : HGL = < 36.799>;EGL= < 36.799>;FLOWLINE= < 35.580> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 201.50 FLOWLINE ELEVATION = 35.58 ASSUMED UPSTREAM CONTROL HGL = 36.34 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: Pasco Laret Suiter & Associates 119 Aberdeen Drive Cardiff, California 92007 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * 3754 PONTO DRIVE * * 100-YEAR * * STORM DRAIN LINE B-1: INLET AT NODE 402 TO MWS (PVT DRIVE “B”) * ************************************************************************** FILE NAME: 402MWS.PIP TIME/DATE OF STUDY: 11:25 09/21/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 402.50- 1.10* 63.00 0.64 58.86 } FRICTION } HYDRAULIC JUMP 402.00- 0.82*Dc 54.40 0.82*Dc 54.40 } CATCH BASIN 402.00- 1.35* 41.87 0.82 Dc 16.06 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 402.50 FLOWLINE ELEVATION = 35.90 PIPE FLOW = 3.69 CFS PIPE DIAMETER = 12.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 37.000 FEET ------------------------------------------------------------------------------ NODE 402.50 : HGL = < 37.000>;EGL= < 37.343>;FLOWLINE= < 35.900> ****************************************************************************** FLOW PROCESS FROM NODE 402.50 TO NODE 402.00 IS CODE = 1 UPSTREAM NODE 402.00 ELEVATION = 36.42 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 3.69 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 23.64 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.62 CRITICAL DEPTH(FT) = 0.82 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.82 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.819 5.360 1.265 54.40 0.017 0.810 5.410 1.265 54.41 0.068 0.802 5.461 1.266 54.44 0.157 0.794 5.515 1.267 54.48 0.287 0.786 5.570 1.268 54.53 0.462 0.778 5.627 1.270 54.61 0.686 0.770 5.686 1.272 54.70 0.965 0.762 5.747 1.275 54.81 1.305 0.754 5.810 1.278 54.93 1.713 0.745 5.875 1.282 55.08 2.198 0.737 5.942 1.286 55.24 2.770 0.729 6.012 1.291 55.43 3.444 0.721 6.084 1.296 55.63 4.234 0.713 6.158 1.302 55.86 5.163 0.705 6.235 1.309 56.11 6.255 0.697 6.314 1.316 56.38 7.548 0.689 6.396 1.324 56.67 9.087 0.680 6.481 1.333 56.99 10.939 0.672 6.569 1.343 57.33 13.204 0.664 6.659 1.353 57.69 16.031 0.656 6.753 1.365 58.09 19.675 0.648 6.850 1.377 58.50 23.640 0.641 6.931 1.388 58.86 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.10 ============================================================================== PRESSURE FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.100 4.698 1.443 63.00 8.873 1.000 4.698 1.343 58.10 ============================================================================== ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.00 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 8.873 1.000 4.697 1.343 58.10 9.433 0.993 4.702 1.336 57.78 9.922 0.985 4.711 1.330 57.49 10.372 0.978 4.722 1.325 57.22 10.790 0.971 4.736 1.320 56.96 11.183 0.964 4.752 1.315 56.73 11.552 0.956 4.769 1.310 56.50 11.901 0.949 4.788 1.305 56.29 12.231 0.942 4.809 1.301 56.08 12.542 0.935 4.831 1.297 55.90 12.836 0.927 4.854 1.294 55.72 13.113 0.920 4.879 1.290 55.55 13.374 0.913 4.905 1.287 55.40 13.617 0.906 4.932 1.284 55.25 13.845 0.898 4.961 1.281 55.12 14.055 0.891 4.991 1.278 55.00 14.249 0.884 5.022 1.276 54.89 14.426 0.877 5.055 1.274 54.79 14.585 0.869 5.088 1.272 54.70 14.725 0.862 5.123 1.270 54.62 14.847 0.855 5.159 1.268 54.56 14.949 0.848 5.197 1.267 54.50 15.031 0.840 5.236 1.266 54.46 15.090 0.833 5.276 1.266 54.43 15.127 0.826 5.317 1.265 54.41 15.140 0.819 5.360 1.265 54.40 23.640 0.819 5.360 1.265 54.40 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 9.31 FEET UPSTREAM OF NODE 402.50 | | DOWNSTREAM DEPTH = 0.994 FEET, UPSTREAM CONJUGATE DEPTH = 0.661 FEET | ------------------------------------------------------------------------------ NODE 402.00 : HGL = < 37.239>;EGL= < 37.685>;FLOWLINE= < 36.420> ****************************************************************************** FLOW PROCESS FROM NODE 402.00 TO NODE 402.00 IS CODE = 8 UPSTREAM NODE 402.00 ELEVATION = 36.42 (FLOW UNSEALS IN REACH) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 3.69 CFS PIPE DIAMETER = 12.00 INCHES FLOW VELOCITY = 5.36 FEET/SEC. VELOCITY HEAD = 0.446 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.446) = 0.089 ------------------------------------------------------------------------------ NODE 402.00 : HGL = < 37.774>;EGL= < 37.774>;FLOWLINE= < 36.420> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 402.00 FLOWLINE ELEVATION = 36.42 ASSUMED UPSTREAM CONTROL HGL = 37.24 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: Pasco Laret Suiter & Associates 119 Aberdeen Drive Cardiff, California 92007 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * 3754 PONTO DRIVE * * 100-YEAR * * STORM DRAIN LINE A: INLET AT NODE 300 (PVT DRIVE “A”) TO NODE 402 (PVT DRIVE “B”) * ************************************************************************** FILE NAME: 403LAT.DAT TIME/DATE OF STUDY: 09:50 09/20/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 403.00- 0.38* 3.04 0.11 1.80 } FRICTION } HYDRAULIC JUMP 301.00- 0.18 Dc 1.24 0.15* 1.31 } JUNCTION 301.00- 0.18 Dc 1.24 0.11* 1.88 } FRICTION 300.00- 0.18*Dc 1.24 0.18*Dc 1.24 } CATCH BASIN 300.00- 0.26* 0.66 0.18 Dc 0.46 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 403.00 FLOWLINE ELEVATION = 30.71 PIPE FLOW = 0.20 CFS PIPE DIAMETER = 12.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 31.093 FEET ------------------------------------------------------------------------------ NODE 403.00 : HGL = < 31.093>;EGL= < 31.101>;FLOWLINE= < 30.710> ****************************************************************************** FLOW PROCESS FROM NODE 403.00 TO NODE 301.00 IS CODE = 1 UPSTREAM NODE 301.00 ELEVATION = 32.87 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.20 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 40.98 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.11 CRITICAL DEPTH(FT) = 0.18 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.15 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.153 2.634 0.261 1.31 0.049 0.151 2.680 0.263 1.32 0.104 0.149 2.727 0.265 1.33 0.164 0.147 2.775 0.267 1.34 0.231 0.146 2.825 0.270 1.36 0.305 0.144 2.876 0.272 1.37 0.387 0.142 2.930 0.275 1.38 0.478 0.140 2.984 0.279 1.39 0.580 0.138 3.041 0.282 1.41 0.692 0.137 3.100 0.286 1.42 0.817 0.135 3.160 0.290 1.44 0.957 0.133 3.222 0.294 1.46 1.114 0.131 3.287 0.299 1.48 1.291 0.129 3.354 0.304 1.50 1.492 0.128 3.423 0.310 1.52 1.720 0.126 3.495 0.316 1.54 1.983 0.124 3.569 0.322 1.56 2.288 0.122 3.646 0.329 1.58 2.646 0.120 3.726 0.336 1.61 3.076 0.119 3.809 0.344 1.63 3.602 0.117 3.895 0.353 1.66 4.269 0.115 3.985 0.362 1.69 5.159 0.113 4.078 0.372 1.72 6.457 0.111 4.174 0.382 1.75 8.755 0.110 4.275 0.394 1.79 40.980 0.109 4.302 0.397 1.80 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.38 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.383 0.722 0.391 3.04 0.143 0.375 0.743 0.384 2.91 0.286 0.367 0.765 0.376 2.79 0.428 0.359 0.788 0.369 2.67 0.569 0.351 0.813 0.361 2.55 0.710 0.343 0.839 0.354 2.44 0.849 0.335 0.866 0.347 2.34 0.986 0.327 0.895 0.340 2.23 1.123 0.319 0.926 0.332 2.14 1.258 0.311 0.959 0.325 2.04 1.391 0.303 0.995 0.318 1.95 1.522 0.295 1.032 0.312 1.87 1.651 0.287 1.072 0.305 1.79 1.777 0.279 1.115 0.298 1.72 1.901 0.271 1.162 0.292 1.65 2.020 0.263 1.211 0.286 1.58 2.136 0.255 1.265 0.280 1.52 2.247 0.247 1.323 0.274 1.47 2.352 0.239 1.386 0.269 1.42 2.450 0.231 1.454 0.264 1.38 2.540 0.223 1.528 0.260 1.34 2.621 0.215 1.610 0.256 1.31 2.690 0.207 1.699 0.252 1.28 2.744 0.199 1.797 0.249 1.26 2.781 0.191 1.906 0.248 1.25 2.794 0.183 2.026 0.247 1.24 40.980 0.183 2.026 0.247 1.24 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 1.65 FEET UPSTREAM OF NODE 403.00 | | DOWNSTREAM DEPTH = 0.288 FEET, UPSTREAM CONJUGATE DEPTH = 0.109 FEET | ------------------------------------------------------------------------------ NODE 301.00 : HGL = < 33.023>;EGL= < 33.131>;FLOWLINE= < 32.870> ****************************************************************************** FLOW PROCESS FROM NODE 301.00 TO NODE 301.00 IS CODE = 5 UPSTREAM NODE 301.00 ELEVATION = 33.37 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 0.20 12.00 90.00 33.37 0.18 4.545 DOWNSTREAM 0.20 12.00 - 32.87 0.18 2.635 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.05856 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01235 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.03545 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.142 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.665)+( 0.000) = 0.665 ------------------------------------------------------------------------------ NODE 301.00 : HGL = < 33.475>;EGL= < 33.796>;FLOWLINE= < 33.370> ****************************************************************************** FLOW PROCESS FROM NODE 301.00 TO NODE 300.00 IS CODE = 1 UPSTREAM NODE 300.00 ELEVATION = 34.52 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 0.20 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 17.42 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.10 CRITICAL DEPTH(FT) = 0.18 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.18 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.183 2.026 0.247 1.24 0.002 0.180 2.079 0.247 1.25 0.008 0.177 2.134 0.248 1.25 0.019 0.174 2.191 0.248 1.25 0.035 0.170 2.252 0.249 1.26 0.056 0.167 2.315 0.250 1.26 0.085 0.164 2.382 0.252 1.27 0.120 0.161 2.452 0.254 1.28 0.164 0.157 2.525 0.256 1.29 0.217 0.154 2.602 0.259 1.31 0.282 0.151 2.684 0.263 1.33 0.359 0.148 2.770 0.267 1.34 0.451 0.144 2.861 0.272 1.36 0.561 0.141 2.957 0.277 1.39 0.691 0.138 3.059 0.283 1.41 0.847 0.135 3.166 0.290 1.44 1.034 0.131 3.281 0.299 1.47 1.260 0.128 3.403 0.308 1.51 1.535 0.125 3.533 0.319 1.55 1.877 0.122 3.671 0.331 1.59 2.310 0.118 3.819 0.345 1.64 2.876 0.115 3.977 0.361 1.69 3.654 0.112 4.147 0.379 1.74 4.821 0.109 4.330 0.400 1.81 6.945 0.105 4.526 0.424 1.87 17.420 0.105 4.544 0.426 1.88 ------------------------------------------------------------------------------ NODE 300.00 : HGL = < 34.703>;EGL= < 34.767>;FLOWLINE= < 34.520> ****************************************************************************** FLOW PROCESS FROM NODE 300.00 TO NODE 300.00 IS CODE = 8 UPSTREAM NODE 300.00 ELEVATION = 34.52 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 0.20 CFS PIPE DIAMETER = 12.00 INCHES FLOW VELOCITY = 2.03 FEET/SEC. VELOCITY HEAD = 0.064 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.064) = 0.013 ------------------------------------------------------------------------------ NODE 300.00 : HGL = < 34.780>;EGL= < 34.780>;FLOWLINE= < 34.520> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 300.00 FLOWLINE ELEVATION = 34.52 ASSUMED UPSTREAM CONTROL HGL = 34.70 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: Pasco Laret Suiter & Associates 119 Aberdeen Drive Cardiff, California 92007 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * 3754 PONTO DRIVE * * 100-YEAR * * STORM DRAIN LATERAL B: NODE 202.5 TO NODE 404 (PVT DRIVE “B”) * ************************************************************************** FILE NAME: 404LAT.DAT TIME/DATE OF STUDY: 15:03 09/19/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 404.00- 1.76* 167.18 0.35 134.21 } FRICTION } HYDRAULIC JUMP 202.50- 0.79*Dc 65.74 0.79*Dc 65.74 } CATCH BASIN 202.50- 1.14* 35.14 0.79 Dc 23.58 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 404.00 FLOWLINE ELEVATION = 29.16 PIPE FLOW = 5.00 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 30.922 FEET ------------------------------------------------------------------------------ NODE 404.00 : HGL = < 30.922>;EGL= < 30.967>;FLOWLINE= < 29.160> ****************************************************************************** FLOW PROCESS FROM NODE 404.00 TO NODE 202.50 IS CODE = 1 UPSTREAM NODE 202.50 ELEVATION = 32.12 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 5.00 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 13.60 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.30 CRITICAL DEPTH(FT) = 0.79 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.79 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.788 4.350 1.082 65.74 0.005 0.768 4.500 1.083 65.81 0.019 0.748 4.660 1.086 66.02 0.045 0.729 4.831 1.091 66.39 0.085 0.709 5.013 1.099 66.91 0.139 0.689 5.209 1.111 67.61 0.211 0.670 5.419 1.126 68.49 0.303 0.650 5.646 1.145 69.58 0.419 0.630 5.890 1.169 70.88 0.563 0.611 6.153 1.199 72.42 0.740 0.591 6.439 1.235 74.21 0.956 0.571 6.749 1.279 76.29 1.219 0.552 7.087 1.332 78.68 1.541 0.532 7.457 1.396 81.42 1.933 0.512 7.861 1.473 84.54 2.413 0.493 8.307 1.565 88.10 3.005 0.473 8.799 1.676 92.15 3.741 0.453 9.344 1.810 96.76 4.667 0.434 9.952 1.973 102.01 5.851 0.414 10.632 2.170 108.01 7.402 0.395 11.397 2.413 114.87 9.499 0.375 12.263 2.712 122.74 12.487 0.355 13.250 3.083 131.83 13.600 0.351 13.507 3.185 134.21 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.76 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.762 1.706 1.807 167.18 0.172 1.723 1.737 1.770 160.41 0.343 1.684 1.771 1.733 153.81 0.513 1.645 1.808 1.696 147.37 0.682 1.606 1.849 1.659 141.12 0.849 1.567 1.893 1.623 135.04 1.016 1.528 1.941 1.587 129.16 1.181 1.489 1.993 1.551 123.48 1.344 1.450 2.049 1.515 118.01 1.505 1.411 2.110 1.480 112.75 1.665 1.372 2.175 1.446 107.71 1.822 1.333 2.247 1.412 102.90 1.976 1.294 2.324 1.378 98.33 2.128 1.255 2.408 1.345 94.01 2.276 1.216 2.499 1.313 89.93 2.419 1.177 2.599 1.282 86.12 2.558 1.138 2.707 1.252 82.59 2.691 1.099 2.825 1.223 79.34 2.818 1.060 2.955 1.196 76.39 2.936 1.021 3.098 1.171 73.75 3.045 0.982 3.255 1.147 71.45 3.142 0.943 3.429 1.126 69.49 3.225 0.904 3.622 1.108 67.91 3.290 0.866 3.837 1.094 66.74 3.334 0.827 4.078 1.085 66.00 3.350 0.788 4.350 1.082 65.74 13.600 0.788 4.350 1.082 65.74 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 0.93 FEET UPSTREAM OF NODE 404.00 | | DOWNSTREAM DEPTH = 1.548 FEET, UPSTREAM CONJUGATE DEPTH = 0.354 FEET | ------------------------------------------------------------------------------ NODE 202.50 : HGL = < 32.908>;EGL= < 33.202>;FLOWLINE= < 32.120> ****************************************************************************** FLOW PROCESS FROM NODE 202.50 TO NODE 202.50 IS CODE = 8 UPSTREAM NODE 202.50 ELEVATION = 32.12 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 5.00 CFS PIPE DIAMETER = 24.00 INCHES FLOW VELOCITY = 4.35 FEET/SEC. VELOCITY HEAD = 0.294 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.294) = 0.059 ------------------------------------------------------------------------------ NODE 202.50 : HGL = < 33.260>;EGL= < 33.260>;FLOWLINE= < 32.120> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 202.50 FLOWLINE ELEVATION = 32.12 ASSUMED UPSTREAM CONTROL HGL = 32.91 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS ______________________________________________________________________________ ****************************************************************************** PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (c) Copyright 1982-2016 Advanced Engineering Software (aes) Ver. 23.0 Release Date: 07/01/2016 License ID 1452 Analysis prepared by: PASCO LARET SUITER & ASSOCIATES 535 NORTH HIGHWAY 101, STE A SOLANA BEACH, CA 92075 858-259-8212 ************************** DESCRIPTION OF STUDY ************************** * 3754 PONTO DRIVE * * 100-YEAR * * STORM DRAIN LATERAL P-2, PONTO RD AND PONTO DR TO NODE 505 * ************************************************************************** FILE NAME: 505LAT.DAT TIME/DATE OF STUDY: 09:44 11/17/2023 ______________________________________________________________________________ ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 505.00- 2.72* 223.11 0.37 36.27 } FRICTION } HYDRAULIC JUMP 504.00- 0.59*Dc 27.21 0.59*Dc 27.21 } JUNCTION 504.00- 0.68 28.28 0.35* 38.00 } FRICTION 503.00- 0.59*Dc 27.21 0.59*Dc 27.21 } JUNCTION 503.00- 0.68 28.28 0.38* 34.79 } FRICTION 502.00- 0.59*Dc 27.21 0.59*Dc 27.21 } CATCH BASIN 502.00- 0.85* 14.54 0.59 Dc 9.77 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 505.00 FLOWLINE ELEVATION = 26.58 PIPE FLOW = 2.40 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 29.296 FEET ------------------------------------------------------------------------------ NODE 505.00 : HGL = < 29.296>;EGL= < 29.325>;FLOWLINE= < 26.580> ****************************************************************************** FLOW PROCESS FROM NODE 505.00 TO NODE 504.00 IS CODE = 1 UPSTREAM NODE 504.00 ELEVATION = 29.30 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.40 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 83.62 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.36 CRITICAL DEPTH(FT) = 0.59 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.59 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ 1 DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.586 3.750 0.805 27.21 0.010 0.577 3.829 0.805 27.23 0.041 0.568 3.911 0.806 27.26 0.097 0.559 3.997 0.807 27.31 0.178 0.550 4.086 0.809 27.39 0.289 0.541 4.178 0.812 27.50 0.432 0.532 4.275 0.816 27.63 0.612 0.523 4.376 0.820 27.78 0.834 0.514 4.481 0.826 27.97 1.103 0.505 4.591 0.832 28.18 1.426 0.496 4.706 0.840 28.43 1.811 0.487 4.826 0.849 28.70 2.269 0.478 4.952 0.859 29.01 2.812 0.469 5.084 0.870 29.36 3.455 0.460 5.223 0.884 29.74 4.220 0.451 5.368 0.899 30.16 5.133 0.442 5.521 0.915 30.62 6.231 0.433 5.682 0.934 31.13 7.565 0.424 5.851 0.956 31.68 9.211 0.415 6.030 0.980 32.29 11.286 0.406 6.219 1.007 32.95 13.985 0.397 6.418 1.037 33.66 17.677 0.388 6.629 1.070 34.43 23.188 0.379 6.852 1.108 35.27 33.169 0.370 7.090 1.151 36.18 83.620 0.369 7.111 1.154 36.27 ------------------------------------------------------------------------------ HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS ============================================================================== DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 2.72 ============================================================================== PRESSURE FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 2.716 1.358 2.745 223.11 37.993 1.500 1.358 1.529 89.02 ============================================================================== ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 37.993 1.500 1.358 1.529 89.02 39.122 1.463 1.366 1.492 85.04 40.241 1.427 1.383 1.457 81.13 41.352 1.390 1.404 1.421 77.30 42.456 1.354 1.429 1.386 73.56 43.555 1.317 1.459 1.350 69.90 44.647 1.281 1.493 1.315 66.35 45.732 1.244 1.531 1.281 62.91 46.810 1.208 1.574 1.246 59.58 47.880 1.171 1.621 1.212 56.37 48.941 1.134 1.673 1.178 53.29 49.992 1.098 1.731 1.144 50.35 51.030 1.061 1.795 1.111 47.54 52.055 1.025 1.865 1.079 44.87 53.063 0.988 1.943 1.047 42.36 54.051 0.952 2.029 1.016 40.00 55.016 0.915 2.125 0.985 37.81 55.953 0.879 2.231 0.956 35.79 56.854 0.842 2.349 0.928 33.95 57.712 0.805 2.482 0.901 32.30 58.516 0.769 2.631 0.876 30.85 59.250 0.732 2.799 0.854 29.61 59.895 0.696 2.990 0.835 28.61 60.420 0.659 3.209 0.819 27.86 60.785 0.623 3.459 0.809 27.38 60.926 0.586 3.750 0.805 27.21 83.620 0.586 3.750 0.805 27.21 2 ------------------------END OF HYDRAULIC JUMP ANALYSIS------------------------ | PRESSURE+MOMENTUM BALANCE OCCURS AT 56.01 FEET UPSTREAM OF NODE 505.00 | | DOWNSTREAM DEPTH = 0.876 FEET, UPSTREAM CONJUGATE DEPTH = 0.375 FEET | ------------------------------------------------------------------------------ NODE 504.00 : HGL = < 29.886>;EGL= < 30.105>;FLOWLINE= < 29.300> ****************************************************************************** FLOW PROCESS FROM NODE 504.00 TO NODE 504.00 IS CODE = 5 UPSTREAM NODE 504.00 ELEVATION = 29.63 (FLOW IS SUBCRITICAL) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 2.40 18.00 90.00 29.63 0.59 7.553 DOWNSTREAM 2.40 18.00 - 29.30 0.59 3.751 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03521 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00501 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02011 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.080 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.765)+( 0.000) = 0.765 ------------------------------------------------------------------------------ NODE 504.00 : HGL = < 29.983>;EGL= < 30.869>;FLOWLINE= < 29.630> ****************************************************************************** FLOW PROCESS FROM NODE 504.00 TO NODE 503.00 IS CODE = 1 UPSTREAM NODE 503.00 ELEVATION = 33.09 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.40 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 89.05 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.34 CRITICAL DEPTH(FT) = 0.59 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.59 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.585 3.756 0.805 27.21 0.011 0.576 3.841 0.805 27.23 0.041 0.566 3.929 0.806 27.27 0.094 0.557 4.021 0.808 27.33 0.171 0.547 4.117 0.810 27.43 0.276 0.537 4.217 0.814 27.55 0.412 0.528 4.322 0.818 27.70 0.583 0.518 4.432 0.823 27.88 0.793 0.508 4.547 0.830 28.09 1.048 0.499 4.668 0.837 28.34 1.354 0.489 4.794 0.846 28.63 1.720 0.480 4.927 0.857 28.95 2.155 0.470 5.067 0.869 29.31 2.671 0.460 5.214 0.883 29.72 3.285 0.451 5.369 0.899 30.16 4.015 0.441 5.533 0.917 30.66 4.888 0.431 5.705 0.937 31.21 5.940 0.422 5.888 0.960 31.81 7.221 0.412 6.081 0.987 32.46 8.804 0.403 6.285 1.016 33.18 10.803 0.393 6.502 1.050 33.97 13.410 0.383 6.733 1.088 34.82 16.984 0.374 6.979 1.130 35.75 22.329 0.364 7.241 1.179 36.77 3 32.034 0.354 7.520 1.233 37.88 89.050 0.353 7.550 1.239 38.00 ------------------------------------------------------------------------------ NODE 503.00 : HGL = < 33.675>;EGL= < 33.895>;FLOWLINE= < 33.090> ****************************************************************************** FLOW PROCESS FROM NODE 503.00 TO NODE 503.00 IS CODE = 5 UPSTREAM NODE 503.00 ELEVATION = 33.42 (FLOW IS SUBCRITICAL) (NOTE: POSSIBLE JUMP IN OR UPSTREAM OF STRUCTURE) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 2.40 18.00 90.00 33.42 0.59 6.726 DOWNSTREAM 2.40 18.00 - 33.09 0.59 3.751 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2-Q1*V1*COS(DELTA1)-Q3*V3*COS(DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*16.1)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.02540 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00501 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01521 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.061 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.611)+( 0.000) = 0.611 ------------------------------------------------------------------------------ NODE 503.00 : HGL = < 33.804>;EGL= < 34.506>;FLOWLINE= < 33.420> ****************************************************************************** FLOW PROCESS FROM NODE 503.00 TO NODE 502.00 IS CODE = 1 UPSTREAM NODE 502.00 ELEVATION = 34.00 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD): PIPE FLOW = 2.40 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 16.50 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.35 CRITICAL DEPTH(FT) = 0.59 ============================================================================== UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.59 ============================================================================== GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.586 3.750 0.805 27.21 0.010 0.577 3.832 0.805 27.23 0.040 0.568 3.917 0.806 27.26 0.094 0.558 4.005 0.807 27.32 0.173 0.549 4.097 0.810 27.41 0.281 0.540 4.193 0.813 27.52 0.420 0.530 4.293 0.817 27.65 0.596 0.521 4.398 0.822 27.82 0.812 0.512 4.508 0.827 28.02 1.074 0.502 4.622 0.834 28.25 1.389 0.493 4.742 0.843 28.51 1.766 0.484 4.868 0.852 28.80 2.213 0.475 5.000 0.863 29.14 2.744 0.465 5.139 0.876 29.51 3.374 0.456 5.285 0.890 29.92 4.124 0.447 5.438 0.906 30.37 5.019 0.437 5.599 0.924 30.87 6.097 0.428 5.770 0.945 31.41 7.408 0.419 5.949 0.969 32.01 9.027 0.409 6.139 0.995 32.67 11.069 0.400 6.340 1.025 33.38 13.729 0.391 6.553 1.058 34.15 16.500 0.384 6.724 1.086 34.79 ------------------------------------------------------------------------------ NODE 502.00 : HGL = < 34.586>;EGL= < 34.805>;FLOWLINE= < 34.000> 4 ****************************************************************************** FLOW PROCESS FROM NODE 502.00 TO NODE 502.00 IS CODE = 8 UPSTREAM NODE 502.00 ELEVATION = 34.00 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE CATCH BASIN ENTRANCE LOSSES(LACFCD): PIPE FLOW = 2.40 CFS PIPE DIAMETER = 18.00 INCHES FLOW VELOCITY = 3.75 FEET/SEC. VELOCITY HEAD = 0.219 FEET CATCH BASIN ENERGY LOSS = .2*(VELOCITY HEAD) = .2*( 0.219) = 0.044 ------------------------------------------------------------------------------ NODE 502.00 : HGL = < 34.848>;EGL= < 34.848>;FLOWLINE= < 34.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 502.00 FLOWLINE ELEVATION = 34.00 ASSUMED UPSTREAM CONTROL HGL = 34.59 FOR DOWNSTREAM RUN ANALYSIS ============================================================================== END OF GRADUALLY VARIED FLOW ANALYSIS 5 6 Hydraulic Analysis Report Project Data Project Title: 3754 Ponto Drive Project Date: September 2023 Curb and Gutter Analysis: Node 104 Notes: Type B-1 Curb Inlet Gutter Input Parameters Longitudinal Slope of Road: 0.01800 ft/ft Cross-Slope of Pavement: 0.0200 ft/ft Depressed Gutter Geometry Cross-Slope of Gutter: 0.0830 ft/ft Manning's n: 0.0150 Gutter Width: 2.0000 ft Gutter Result Parameters Design Flow: 2.0200 cfs Gutter Result Parameters Width of Spread: 6.7203 ft Gutter Depression: 1.5120 in Area of Flow: 0.5776 ft^2 Eo (Gutter Flow to Total Flow): 0.7715 Gutter Depth at Curb: 3.1249 in Inlet Input Parameters Inlet Location: Inlet on Grade Inlet Type: Curb Opening Length of Inlet: 8.0000 ft Local Depression: 4.0000 in Inlet Result Parameters Intercepted Flow: 2.0200 cfs Bypass Flow: 0.0000 cfs Efficiency: 1.0000 Curb and Gutter Analysis: Node 202 Notes: Type B Curb Inlet Gutter Input Parameters Longitudinal Slope of Road: 0.0100 ft/ft Cross-Slope of Pavement: 0.0200 ft/ft Depressed Gutter Geometry Cross-Slope of Gutter: 0.0830 ft/ft Manning's n: 0.0150 Gutter Width: 2.0000 ft Gutter Result Parameters Design Flow: 3.1800 cfs Gutter Result Parameters Width of Spread: 9.7855 ft Gutter Depression: 1.5120 in Area of Flow: 1.0836 ft^2 Eo (Gutter Flow to Total Flow): 0.5888 Gutter Depth at Curb: 3.8605 in Inlet Input Parameters Inlet Location: Inlet in Sag Percent Clogging: 0.0000 % Inlet Type: Curb Opening Length of Inlet: 4.0000 ft Curb opening height: 6.0000 in Local Depression: 4.0000 in Inlet Result Parameters Perimeter: 7.6000 ft Effective Perimeter: 7.6000 ft Area: 3.3333 ft^2 Effective Area: 3.3333 ft^2 Depth at curb face (upstream of local depression): 0.3211 ft Computed Width of Spread at Sag: 9.7532 ft Flow type: Weir Flow Efficiency: 1.0000 Curb and Gutter Analysis: Node 300 Notes: Type B-1 Curb Inlet Gutter Input Parameters Longitudinal Slope of Road: 0.0200 ft/ft Cross-Slope of Pavement: 0.0200 ft/ft Depressed Gutter Geometry Cross-Slope of Gutter: 0.0830 ft/ft Manning's n: 0.0150 Gutter Width: 2.0000 ft Gutter Result Parameters Design Flow: 0.2000 cfs Gutter Result Parameters Width of Spread: 1.3883 ft Gutter Depression: 1.5120 in Area of Flow: 0.1453 ft^2 Eo (Gutter Flow to Total Flow): 1.0000 Gutter Depth at Curb: 1.3827 in Inlet Input Parameters Inlet Location: Inlet on Grade Inlet Type: Curb Opening Length of Inlet: 4.0000 ft Local Depression: 4.0000 in Inlet Result Parameters Intercepted Flow: 0.2000 cfs Bypass Flow: 0.0000 cfs Efficiency: 1.0000 Curb and Gutter Analysis: Node 402 Notes: Type B-1 Curb Inlet Gutter Input Parameters Longitudinal Slope of Road: 0.0100 ft/ft Cross-Slope of Pavement: 0.0200 ft/ft Depressed Gutter Geometry Cross-Slope of Gutter: 0.0830 ft/ft Manning's n: 0.0150 Gutter Width: 2.0000 ft Gutter Result Parameters Design Flow: 3.6900 cfs Gutter Result Parameters Width of Spread: 10.4733 ft Gutter Depression: 1.5120 in Area of Flow: 1.2229 ft^2 Eo (Gutter Flow to Total Flow): 0.5558 Gutter Depth at Curb: 4.0256 in Inlet Input Parameters Inlet Location: Inlet on Grade Inlet Type: Curb Opening Length of Inlet: 10.0000 ft Local Depression: 4.0000 in Inlet Result Parameters Intercepted Flow: 3.6865 cfs Bypass Flow: 0.0035 cfs Efficiency: 0.9991 Curb and Gutter Analysis: Node 502 Notes: Type B Curb Inlet Gutter Input Parameters Longitudinal Slope of Road: 0.0150 ft/ft Cross-Slope of Pavement: 0.0200 ft/ft Depressed Gutter Geometry Cross-Slope of Gutter: 0.0830 ft/ft Manning's n: 0.0150 Gutter Width: 2.0000 ft Gutter Result Parameters Design Flow: 2.4000 cfs Gutter Result Parameters Width of Spread: 7.7353 ft Gutter Depression: 1.5120 in Area of Flow: 0.7244 ft^2 Eo (Gutter Flow to Total Flow): 0.7048 Gutter Depth at Curb: 3.3685 in Inlet Input Parameters Inlet Location: Inlet in Sag Percent Clogging: 0.0000 % Inlet Type: Curb Opening Length of Inlet: 4.0000 ft Curb opening height: 6.0000 in Local Depression: 4.0000 in Inlet Result Parameters Perimeter: 7.6000 ft Effective Perimeter: 7.6000 ft Area: 3.3333 ft^2 Effective Area: 3.3333 ft^2 Depth at curb face (upstream of local depression): 0.2661 ft Computed Width of Spread at Sag: 7.0071 ft Flow type: Weir Flow Efficiency: 1.0000 Curb and Gutter Analysis: Node 602 Notes: Type B-2 Curb Inlet Gutter Input Parameters Longitudinal Slope of Road: 0.0150 ft/ft Cross-Slope of Pavement: 0.0200 ft/ft Depressed Gutter Geometry Cross-Slope of Gutter: 0.0830 ft/ft Manning's n: 0.0150 Gutter Width: 2.0000 ft Gutter Result Parameters Design Flow: 8.4700 cfs Gutter Result Parameters Width of Spread: 13.7524 ft Gutter Depression: 1.5120 in Area of Flow: 2.0173 ft^2 Eo (Gutter Flow to Total Flow): 0.4326 Gutter Depth at Curb: 4.8126 in Inlet Input Parameters Inlet Location: Inlet in Sag Percent Clogging: 0.0000 % Inlet Type: Curb Opening Length of Inlet: 7.0000 ft Curb opening height: 6.0000 in Local Depression: 4.0000 in Inlet Result Parameters Perimeter: 10.6000 ft Effective Perimeter: 10.6000 ft Area: 5.8333 ft^2 Effective Area: 5.8333 ft^2 Depth at curb face (upstream of local depression): 0.4942 ft Computed Width of Spread at Sag: 18.4098 ft Flow type: Weir Flow Efficiency: 1.0000   PLSA 3754 Page 12 of 12 APPENDIX D: MASTER HYDROLOGY STUDY 92-1016-5 AVENlDA ENCINAS & OFFSITE STORM DRAIN C.T. 94-01 HYDROLOGY STUDY MARCH 1994 JULY 1994 "" "" . SECTION 1 STORM DRAIN LINE "A" - "" .- . i = 3.0-7 I I = 36.17 ! . j I! r" ! ! II .. !' SECTION 2 SUB-BASIN AREA CALCS. Rt - - 3.34 I ! ~ ! ! ” i i Ii I I I /I .. /I C= 0.3 /I i /+= a.7 I I/ - L 3 CFS I ! .. I Ii I/ i i . .. ~. .. _- I. I! I I I ...,., I' ii SECTION 3 STORM DRAIN LINES "B" THRU :'X" - i ! ! /- , - \ - / . .. / I i: I' I. .. !' I; .. ~ I! I SECTION 4 .. .. I ~4 ?itX PIPE HYDRAULICS *I****** k** ******** *** *** I<""""""-( 35 05')""""""",1 **I I**AAAAAAAA *** Wat.er Depth ! 2.51.' !ArA**Arr*** *** *** *** *x* *** ***I.:""- ( 25.@0'!---->1*** ........................ tt******f*t*n***t*~* Trapezoidal Channel """""""""_ Trapezoidal Channel """""""""_ Flowrate .................. Velocity .................. Depth of Flow ............. Critical Depth .............. Freeboard ...................... Total Dept.h ............... Width at Water Surface .... Top Width ................. Left Side Slope Slope of Channel Base Width Right Si3e Slope Wetted Perimeter X-Sectional Area Hannings 'n' ARA(2/3) ,, .......... ........... ............. ................ .......... .......... .................. .............. 323.260 CFS 4.283 fps 2.513 feet 0.000 feet 1.655 feet, 2.513 feet 35.052 feet 35.052 feet 0.586 5 2.000 : 1 2.000 : 1 25.000 feet 36.238 feet 75.454 sq. ft. 123.034 0.040 ... Inside Diameter i 84.00 in.) * * * * * t I I * I i 63.71 iu.) * ( 5.361'3 it.. ) I I * * """" v- Circular Channel Section """""""""""" Flowrate .................. Velocity .................. Diameter of Pipe ........... Depth of Flow. ............. Depth of Flow .............. Critical Depth ............ Depth/Dianeter (D/d] ..... Slope of Pipe ............. X-Sectional Area .......... Wetted Perimeter .......... ARA(2/3) .................. Wannings 'n' .............. Win. Fric. Slope, 84 inch Pipe Flouing Full ....... 323.200 CFS 18.326 fps 84.000 inches 63.7161 inches 5.369 feet 4.725 feet 0.3610 % 0.758 31.317 sq. ft. 14.798 feet 51.622 0.c113 0.256 % 1.fiside Diameter ( 84..M0 in j 1 1 * * Circular Channel Section """"""-"""-"" Flowrate .................. Velocity .................. Diameter of Pipe ........... Depth of Plow .............. Depth of Plow .............. Critical Depth ............ Depth/Dianeter [D/tf) ..... Slope of Pipe ............. X-Sectional Area ........... Wetted Perimeter .......... ARA(2/3) .................. Hanninga '11' .............. Hin. Fric. Slope, 84 inch Pipe F1.nwing Full. ...... L, HE- "A" 323.266 CFS 84.000 inches 15.763 fps 44.163 inches 4.730 feet 3.680 feet 0.865 Z 0.526 20.563 sq. ft. 11.356 feet 38.401 M.013 Gl.256 % Taside Diameter i 84 .Q@ i.n. ! * 1 t * I I * I * ( 62 .95 in. > I I ( 5.246 ft.,) * * """" v- Circular Channel Section """"""-"""""- Blowrate .................. Velocity .................. Diameter of Pipe ............ Depth of Flow .............. Depth of Flow.. .............. Critical Depth ............ Depth/Diameter (D/dj ...... Slope of Pipe ............. X-Sectional Area .......... Wet.t.ed Perimeter .......... ARA(2/3j ................... Hanuings 'n' ............... Nin. Fric. Slope, 84 inch Pipe Flowing Full.. ...... 318.800 84.000 le. 3B5 62,955 4.712 5.246 0.149 0.300 38,938 14 652 50.919 @.@13 c? ,249 CFS fps inches inches feet feet 5, sq. ft. feet. Inside Diameter { 84.@@ i.n.1 * * * * * Circular Channel Section """""_""""~"" Flowrate .................. Velocity .................. Diameter of Pipe.. ........... Depth of Flow.. .............. Depth of Plow .............. Critical Depth ............ Depth/Dianeter (D/J) ..... Slope of Pipe ............. X-Sectional Area .......... Wetted Perimster ............ ARA(2/3) .................. Hannings 'n' .............. Nin. Fric. Slope, 84 inch Pipe Flowing Full ....... 323.200 le. 326) 84.060 6:3.718 4.725 5.383 6.758 0.360 31.317 14.798 51.622 8.613 8.256 CF8 fps inches inches feet feet % feet sq. ft -6 t * * 3 'r).&Y CONSULTANTS 1220 Avmida Eacinas, Suite 204 CarLsbad. California. 92009 t * * ~~. ~~~ ~ * * i619) 931-7706 * ......................................................................... * FAX (613) 331-8686 Inside Diameter ( 7iR.cdB in.) * * * Circular Channel Section """""""""""" Plowrate .................. Velocity .................... Diameter of Pipe ........... Depth of Flow .............. Depth of Flow.. .............. Critical Depth ............ Depth/Diameter (D/d) ..... Slope of Pipe ............. X-Sectional Area ............. Wetted Perinet.er .......... RR"(2/3) .................. Mannings 'n' .............. Min. Fric. Slope, 18 inch Pipe Flowing Frill.. ..... 266.200 16.548 78.060 38.068 3.172 4.365 0.488 1.120 3 6 -886 22.0G5 1.0.055 0.@13 R. 258 CFS fps inches inches feet fe.?t. % feet. sq. ft. Inside Diameter ! 78.n@ in.) * * * * t I ! * * i * ( 54.46 in.) ! 4.538 ft..) * * t t ! 1 """" v- Circular Channel Section ~"""~"""""""~~ .................. Velocity Plowrate Diameter of Pipe ........... Depth of Flou .............. Depth of Flow.. .............. Critical Depth ............ Depth/Diameter [D/d) ..... Slope of Pipe ............. Wetted Perimeter X-Sectional Area AR"(2/3) .................... Hanniags 'n' .............. Hin. Fric. Slope, 78 inch Pipe Flouing Full ....... .................. .......... .......... - 239.600 9.685 18.0@0 54.457 4.149 e. 538 0.698 24.733 0 .300 12.853 38.269 c3.013 9.209 CPS f!?s inches inches feet feet "6 feet sq. ft. .. ........................ - ttrttttrttt+ttt++r+..+.i+++.....t.+*+.ette t Q'DAY CONSULTAPTS t t 7220 Avenida Encinas, Suite 204 t t . Carlsbad, California, 92.009 t t (619) 931-7788 ; e t FAX (619) 931-8680 tttttttttttttttt~tttteetettttttnettttttttetteteetttttttetetetttee*n t Inside Diameter . ( 42.80 in.) .. t e t t t e I I t I t e ( 13.60 in. ) ( 1.134 ft.) e ~e I I e t """" v- Circular Channel Section """""""""""" Plourilte- .................. Velocity .............. ;... Diamctrr of Pipe.. ......... Depth of Plow .............. Depth of Plow....... ....... Depth/Diameter (D/d) ..... Hope of Pipe ............. X-Sectional Area .......... Wetted-Perimeter .......... AR"!2/3)-; ................. Hannings 'n' .............. Hin. 'Pric. Slope, 42 inch Pipe Flowing Full.. ..... . Critical Depth ............ -. 19.5@0 CFS 29.492 fps 42.000 inches 13.604 inches 1.134 feet 0.324 2.190 feet 2.699 s.q. ft. 4.238 feet 0.013 1.998 0.626 % 12.150 't .. ... ... Inside Diameter ( 42.00 in.) I I a * i l 22.27 in.) * t ( 1.856 ft.i I e * r """" v- Circular Channel Section """""""""""" Plowrate .................. Velocity .................. Diameter of Pipe... ........ Depth of Flow............ .. Depth of Flow .............. Critical Depth .......... ;. Depth/Diameter (D/d) ..... . Slope of Pipe ............. X-Sectional Area .......... Wetted Perimeter .......... Hannings 'n* ARA(2/3) Hin. Pric. Slope, 42 inch .................. .............. Pipe Flowing Full....... 55.500 CFS 10.713 fps 42.000 inches 22.268 inches 1.856 feet 0.530 2.338 feet 1.00a % 5.180 sq. ft. 5.709 feet 0.013 4.855 0.304 % Inside Diameter ( 24.00 in.) * " n I I * I * ( 8.86 in.) ( 0.738 ft.) * * * I I """" v- Circular Channel Section """""""""~""~ Flowrate .................. Velocity .................. Depth of Flow Diameter of Pipe Depth of Flow .............. Critical Depth ............ ........... .............. Depth/Diameter (D/d) ..... Slope of Pipe ............. X-Sectional Area .......... Wet.ted Perimeter .......... ARA(2/3) .................. Hannings 'n' .............. Hin. Fric. Slope, 24 inch Pipe Flowing Full....... 28.800 27.339 24.000 8.859 0.738 0.369 1.843 19.200 2.612 1.053 0.013 0.575 1.620 CFS fPS inches inches feet feet 9; feet sq. ft. Inside Diameter ( 18.0@ in.) * * * * * * I I I ( 1.67 in.) * """" v- Circular Channel Section """""""""""" Flowrate .................. Velocity .................. Depth of Flow.. Diameter of Pipe Depth of Flow .............. Critical Depth ............ Depth/Dianeter (D/d) ..... Slope of Pipe ............. X-Sectional Area .......... Wetted Perimeter .......... ARA(2/3) .................. Hannings 'n' .............. Hin. Fric. Slope, 18 inch Pipe Flowing Full..... .. ........... ............ 14.653 fps 1.200 CFS 18.000 inches 1.667 inches 0.409 feet 0.139 feet 0.093 0.082 sq. ft. G9.928 feet 41.600 0 0.016 0.013 0.013 0 Inside DiameteI ( 1.8.*0 in.) * * t t * Y ! I t * I { 2.89 in.. j * * * Y Y i 0.241 ft.) I 1 """" v- Circular Channel Section """""""""""" ................... Ve1ocit.y Flowrate Diameter of Pipe ........... Oepth of Flow. ............. Depth of Flow.. ............ Critical Dept.h ............ Depth/Diameter (D/d) ..... Slope of Pipe ............. Wetted Perimeter X-Sectional Area Nannings 'n' ARA(2/3) Min. Fric. Slope, 18 inch .................. .......... .......... .................. .............. Pipe Flouiug Full.. ....... 27.305 fps 5.000 CFS 18.0@0 inches 2.681 inches C3.861 feet 0.241 feet 0. 168 72.800 % 0.183 sq. ft. 0.051 1.236 feet. 0.e1.3 e.221 49 Inside Diameter ( 18.00 in.) * * * * * I I * I ( 3.98 in.) ( 0.332 ft.) * I I """" v- Circular Channel Section ""_"""""""""~ .................. Velocity Flowrate Diameter of Pipe ........... Depth of Flow .............. Critical Depth Depth of Flow. .................. ............. ............ Depth/Diameter (D/d) ..... Slope of Pipe ............. .......... Wetted Perimeter X-Sectional Area. ARA(2/3) .................. Wannings 'n' .............. Win. Fric. Slope, 18 inch .......... .- Pipe Flowing Full.... ... 1.600 CFS 5.490 fps 18.000 inches 0.332 feet 3.984 inches 0.477 feet 0.221 2.000 9 0.291 sq. ft. 0.099 1.469 feet 0.013 0.023 'c Imide Diameter i 18.00 in. 1 * * * * * I I * I * ( 9.86 in.) I ( 0.822 ft.) * * * 1 """" v- Circular Channel Section Flowrate .................... Velocity .................. Diameter of Pipe ........... Depth of Plow .............. Depth of Plow .............. Critical Depth ............ Depth/Dianeter (D/d) ..... Slope of Pipe ............. X-Sectional Area .......... Wetted Perimeter .......... AR^(2/3) .................. Nannings '11' .............. Hin. Fric. Slope, 18 inch Pipe Plowing Full.. ..... 28.100 CFS 28.339 fps 18.060 inches 9.865 inches 0.822 feet 0.548 1.492 feet 21.100 % 0.992 sq. ft. 0.535 2,. 501 feet 0.013 7..156 % Inside Diameter 18.00 in.) * 8 * * * * t 1 t I * I ! 4.79 i.n, ) ( 6-35? ft.) * I I * * """" v- Circular Channel Section """""""-""""- Flowrate .................. Velocity .................. Diameter of Pipe ........... Depth of Flow.. ............ Depth of Flow .............. Critical Depth ............ Depth/Diameter (D/d) ..... Slope of Pipe ............. X-Sectional Area .......... Wetted Perimeter .......... AR*(2/3) .................. Hanninys 'n' .............. Min. Fric. Slope, 18 inch Pipe Flowing Full ....... 5.140 CFS 13.641 fps 18.000 inches 4.786 inches 0.869 feet 0.399 feet 10.000 % 0.266 0.377 sq. ft. 0.142 1.625 feet 0.013 0.239 2 Inside Diameter ! 18.0~3 in..) t * t Circular Channel Section """""""""""" Flowrate .................. Velocity .................. Diameter of Pipe ........... Depth of Plow .............. Depth of Flow.. ............ Depth/Dianeter (D/d; ..... X-Sectional Area .......... Wetted Perimeter .......... 21RA!2/3) .................. Hannings 'n' .............. Hin. Fric. Slope, 18 inch Pipe Plowing Full ....... Critical Depth ............ Slope of Pipe ............. 14.300 37.791 18. 000 4.800 0.400 0.267 1.385 76.5BG) 0.378 1.628 Q. 143 0.913 1.852 CFS fPS inches inches feet feet % feet sq. ft IGside Diameter 15.W in.! * * * * t t * 1 I t I * ( 13.23 in.) Y ( 1.102 ft.) * t I 1 * * """" v- Circular Channel Section """""""""""" Plowrate ................... Ve1oci.t.y .................. Diameter of Pipe ........... Depth of Flow .............. Depth of Flow .............. Critical Depth ............ Depth/Diameter (D/d) . . - ., .. Slope of Pipe ............. X-Sectional Area ............ Wetted Perimeter .......... ARA(2/3) .................. Hin. Fric. Slape, 18 inch Manning= 'n' .............. Pipe Flowing Full.. ..... Lrj" €'LV a &NL67- 20.3QQ CFS 15.020 fps 18.860 inches 13.225 inches 2.1Q2 feet 6.735 1.472 feet 5.80@ 's 1.3'32 sq. ft. 3.089 feet. @. 818 0.013 3.959 40 " k " Inside Diameter i 30.00 in. t * t * I I t * I t ! 22 .7@ in. j ! 1.892 ft. ) * * t * * ! I """" v- Circular Channel Section """""""""""" Plowrate .................. Velocity .................. Diameter af Pipe. ........... Depth of F~GW .............. Depth of Flow. ............... Critical Depth ............ Depth/Dianeter [D/J) ..... Slope of Pipe ............. X-Sectional Area ........... netted Perimeter .......... ARA[2/3) .................. Hannings *n' .............. Kin. Fric. Slope, 3@ inch Pipe Flouing F1!11.. , . . , , 41.400 30.000 10.387 22.705 2.156 1.892 6. 757 1.200 3.986 5.276 0.@13 3.366 1.019 CFS f ps inches inches feet feet. 0. b sq. ft. feet % Inside Diameter ( 18.00 in.) * * * I I * I * ( 6.40 in.) * * ( 0.533 ft.) I I """" v- Circular Channel Section Flowrate .................. Velocity .................. Depth of Flow. Diameter of Pipe Depth of Flow .............. Critical Depth ............ Depth/Diameter (D/d) ..... X-Sectional Area .......... Wetted Perimeter .......... ARA(2/3) .................. Hannings 'n' .............. Hin. Fric. Slope, 18 inch ........... ............. Slope of Pipe ............. Pipe Flowing Full...... . .. .. 5.400 CFS 18.000 inches 9.585 fps 6.398 inches 0.533 feet 0.893 feet 0.355 3.608 % 0.563 sq. ft. 1.916 feet 0.249 0.013 0.264 % "L" Inside Diameter ( 18.00 in.) * * * * AAAAAAAAIAAIAAAAAA~AA A "" x Water * I * * I I I * ( 6.35 in.) ( 0.529 ft.) x * 8 I I """" v- Circular Channel Section "~""""""""""~ Flowrate .................. Velocity .................. Diameter of Pipe ........... Depth of Plow. ............. Depth of Plow.. ............ Critical Depth ............ Depth/Diameter (D/d) ..... Slope of Pipe ............. X-Sectional Area .......... Wetted Perimeter .......... ARA(2/3) .................. Hannings 'n' .............. Hin. Fric. Slope, 18 inch Pipe Flowing Full ....... 5.400 18.000 9.1@0 0.529 6.345 0.899 0.353 0.551 3.720 0.245 1.901 0.013 0.264 CFS fps inches inches feet feet 0 feet sq. ft. 0 _- ................................................................... 9)'DAY CONSULTANTS 722R Avenida Encinas, Suit.e 204 Carlsbad, California, 92009 (619) 931-7700 * * * * Inside Diameter ( 18.00 in.) * * * Circular Channel Section """""""""""" Flowrate .................. Velocity .................. Diameter of Pipe ........... Depth of Flow. ............. Depth of Flow .............. Critical Depth ............ Depth/Diameter (D/d) ..... Slope of Pipe .. Wetted Perimeter X-Sectional Area ARA(2/3) ........ ........... ........... .......... .......... Hannings 'n' .............. Hin. Pric. Slope, 18 inch Pipe Flowing Pull ....... 8.600 CFS 14.421 fps 18.000 inches 0.556 feet 6.677 inches 1.131 feet 0.371 7.800 % 0.596 sq. ft. 0.269 1.965 feet 0.013 C3.670 % Inside Diameter ( 18.Gi0 in.) * * * * * I I * * I * ( 11.10 in.) ( 0.925 ft.) I I * 8 * """" v- Circular Channel Section """""""""""" Flowrate .................. Velocity .................. Diameter of Pipe ........... Depth of Flow.. ............ Depth of Flow .............. Critical Depth ............ Depth/Dianeter (D/d) ..... Slope of Pipe ............. X-Sectional Area .......... Wetted Perimeter .......... ARA(2/3) .................. Hannings 'II' .............. Hin. Fric. Slope, 18 inch Pipe Flowing Full..... .. 18.000 inches 11.097 inches 0.925 feet @.E75 feet 0.616 0.500 9 1.143 sq. ft. 2.709 feet 0.643 0.013 0.245 9 Inside Diameter ( 24.00 in.) * *. * * AAAAAA~AA~-~*AAAAAAAA A "" Water * I I I I * * * * ( 18.67 in.) ( 1.556 ft.) * I I * * """" v- Circular Channel Section """""""""""" Flowrate .................. Velocity .................. Diameter of Pipe ........... Depth of Flow .............. Depth of Flow .............. Depth/Diaaeter (D/d) ..... Wetted Perimet.er X-Sectional Area ARA(2/3) .................. Critical Depth ............ '.,Slope of Pipe ............. .......... .......... Hannings 'n' .............. Nin. Eric. Slope, 24 inch Pipe Flowing Full. ...... 15.200 24.000 5.795 18.674 1.556 1.401 0.778 0.508 2.623 4.321 0.013 1.880 0.451 CPS fPS inches inches feet feet 's feet sq. ft. Inside Diameter { 18.069 in.) * n I I * I * ( 4.83 in.) ( 0.403 ft.) I I t * * * """" v- Circular Channel Section """""""""""" .................. Velocity Flowrate Diameter of Pipe ........... Depth of Plow. ............. Depth of Plow .............. Critical Depth ............ Depth/Diameter (D/d) ..... Slope of Pipe ............. X-Sectional Area .......... Wetted Perimeter .......... ARA(2/3) .................. Wannings 'n' .............. Win. Fric. Slope, 18 inch Pipe Flowing Full....... .................. 3.700 CFS 9.696 fps 18.000 inches 4.831 inches 0.403 feet 0.733 feet 0.268 5.000 9 0.382 sq. ft. 0.145 1.634 feet 0.013 0.124 Z Inside Diameter ( 18.@0 in.) * * * * I I * I * ( 4.75 in.) ( 0.396 ft.) I I * * * * """" v- Circular Channel Section """""""""""" Flowrate .................. Velocity .................. Diameter of Pipe ........... Depth of Flow .............. Depth of Flow........... ... Critical Depth ............ Depth/Diameter (D/d) ..... Slope of Pipe ............. X-Sectional Area .......... Wetted Perimeter .......... ARA(2/3) .................. Hin. Fric. Slope, 18 inch Hannings 'n' .............. Pipe Flowing Full... .... 3.200 CPS 8.589 fps 18.000 inches 4.749 inches 0.396 feet 0.681 feet 0.264 4.000 5 0.313 sq. ft. 1.618 feet 0.140 8.013 e.093 % .. O'DAY CONSULTANTS 7220 Avenida Encinas, Suite 204 Carlsbad, California, 92009 (619) 931-7700 Inside Diameter ( 18.00 in.) n n n * * I I n I I 6.55 in.) n ( 0.545 ft.i * n I I * """" v- Circular Channel Section "~"""_""""""" Plowrate .................. Velocity .................. Diameter of Pipe ........... Depth of Flow. ............. Depth of Plow.. ............ Critical Depth ............ Depth/Diameter (D/d) ..... Slope of Pipe ............. X-Sectional Area .......... Wetted Perimeter .......... ARA[2/3) .................. Hannings 'n' .............. Hin. Fric. Slope, 18 inch Pipe Flowing Full ....... 4.200 CPS 7.228 ips 18.000 inches 0.545 feet 6.546 inches 0.785 feet 0.364 2.000 0 0.581 sq. ft. B. 260 1.942 feet 0.@13 C3.160 's Inside Diameter ( 18.@0 in.) * * * * I I * I * ( 10.38 in.) ( 0.865 ft.) * * x I I * * """" v- Circular Channel Section -""""""~""""" Plowrate .................. Velocity .................. Depth of Flow Diameter of Pipe Depth of.Flow .............. Critical Depth ............ Depth/Diameter (D/d) ..... Slope of Pipe ............. X-Sectional Area .......... Wetted Perimeter .......... ARA(2/3) .................. Hannings '11' .............. Hin. Fric. Slope, 18 inch Pipe Flowing Full ....... ........... .............. 4.100 CFS 4.447 fps 10.385 inches 18.000 inches 0.865 feet 6.835 feet 0.511 @.SO@ 5 1.056 sq. ft. 0.581 2.588 feet 0.013 0.20@ 'h " Q " Inside Diameter ( 18.610 iu.) * * Circular Channel Section Flowrate .................. Velocity .................. Diameter of Pipe ........... Depth of Flow .............. Depth of Flow .............. Critical Depth ............ Depth/Diameter (D/d) ..... Slope of Pipe ............. X-Sectional Area .......... Wetted Perimeter .......... Hannings *n' .............. Hin. Fric. Slope, 18 inch Pipe Flowing Full... .... ARA(2/3) .................. 5.300 CFS 9.905 fps 18.000 inches 0.513 feet 6.161 inches 0.883 feet 0.342 4.000 % 0.535 sq. ft. 0.232 1.875 feet 0.013 0.254 5 Inside Diameter { 18.00 in.) * * * * I I R * I * l 4.28 in.) * * I """" v- Circular Channel Section """""""""""" Plowrate .................. Velocity .................. Diameter of Pipe ........... Depth of Plow .............. Depth of Plow.. ............ Critical Depth ............ Depth/Diameter (D/d) ..... Slope of Pipe ............. X-Sectional Area .......... Wetted Perimeter .......... ARA(2/3) .................. Hannings 'n' .............. Hin. Fric. Slope, 18 inch Pipe Flowing Full ....... 2.600 CPS 8.092 fps 18.006 inches 4.278 inches 9.612 feet 0.357 feet 0.238 4.0@0 % 0.322 sq. ft. 1.528 feet 0.114 0.013 0.061 % Inside Diameter ( 18.00 in.) * * * I I * i 0.425 ft.i * I I Circular Channel Section """""""""""" Flowrate .................. Ve1ocit.y .................. Depth of Flow.. Diameter of Pipe Depth of Flow... ........... Depth/Dianeter (D/d) ..... Slope of Pipe ............. Wetted Perimeter X-Sectional Area Hannings 'n* ARA(2/3) Hin. Fric. Slope, 18 inch ........... ............ Critical Depth ............ .......... .......... .................. .............. Pipe Flowing Full ....... 2.600 CFS 6.319 fps 18.000 inches 0.425 feet 5.097 inches 0.615 feet 0.283 2.000 s 0.411 sq. ft. 1.683 feet 0.161 0.013 0.@61 0 - ................................................................... O'DAY CONSULTANTS * * * * 7220 Avenida Encinas, Suite 2Q4 * Carlsbad, California, 92009 (619) 931-7700 * FAX (619) 931-8680 * ................................................................... Inside Diameter ( 18.00 in.) t * AA~A~AAAAA~AAAAAAAA~A 6 "" * Water * I I I I * ( 5.72 ill.) * t * * ( 0.477 ft.) I I """" y- Circular Channel Section """"~"""""""~ Flowrate .................. Velocity .................. Diameter of Pipe ........... Depth of Flow .............. Depth of Plow .............. Critical Depth ............ Depth/Dianeter (D/d) ..... Slope of Pipe ............. X-Sectional Area .......... Wetted Perimeter .......... AR"(2/3) .................. Hannings 'n* .............. Hin. Fric. Slope, 18 inch Pipe Flowing Full....... 2.300 CPS 18.000 inches 4.761 fps 0.477 feet 5.719 inches 0.572 feet 0.318 1.R00 % 0.483 sq. ft. 1.796 feet 0.201 8.013 0.048 's Inside Diameter ( 18.00 in.) n n * * I I n ( 5.43 in.) ( 0.453 ft.) I I n * """" "- Circular Channel Section """"~"""""""~ Flowrate .................. Velocity .................. Diameter of Pipe ........... Depth of Flow .............. Depth of Flow. ............. Critical Depth ............ Depth/Diareter (D/d) ..... Slope of Pipe ............. X-Sectional Area .......... Wetted Perimeter .......... AR"(2/3) .................. Nannings '11' .............. Nin. Fric. Slope, 18 inch Pipe Flowing Full... .... 12.300 CFS 27.379 fps 18.000 inches 5.430 inches 0.453 feet 0.302 1.328 feet 0.449 sq. ft. 1.744 feet. 0.182 c3.013 1.372 % 35.c100 0 Inside Diameter ( 18.00 in.) * t * AAAAAAA~AnAAAAAAAAAAA "" n A Water * I I I I * * ( 3.15 in.) ( 0.263 ft.) * * * * I I """" "- Circular Channel Section """""""""""" Flowrate .................. Velocity .................. Diameter of Pipe ........... Depth of Flow. ............. Depth of Flow. ............. Depth/Diameter (D/d) ..... Slope of Pipe ............. X-Sectional Area .......... Wetted Perimeter .......... ARA(2/3) .................. Hannings 'n' .............. Hin. Fric. Slope, 18 inch Pipe Flowing Full ....... Critical Depth ............ 21.318 fps 5.100 CFS 18.000 inches 3.155 inches 0.263 feet 0.923 feet 8.115 0.208 sq. ft. 0.062 1.296 feet. 0.013 0.294 % 65.1C)A t Inside Diameter { 18.00 in.) * * * I I " n I * ( 5.34 in.) ( 0.445 ft.) I I * * """" v- Circular Channel Section """"""~"""""~ Flowrate .................. Velocity .................. Diameter of Pipe ........... Depth of Flow .............. Depth of Flow .............. Critical Depth ............ Depth/Diameter (D/d) ..... Slope of Pipe ............. X-Sectional Area .......... Wetted Perimeter .......... ARA(2/3) .................. Hannings 'n' .............. Hin. Fric. Slope, 18 inch Pipe Plowing Full...... . 0.900 CFS 2.051 fps 18.000 inches 0.445 feet 5.338 inches 0.353 feet 0.297 0.200 0 0.439 sq. ft. 1.728 feet. 0.176 0.013 0.007 k SECTION 5 HGL CALCULATIONS f. Junction losses The hydraulic analysis of junctions requires the evaluation of pressures and momen- Design, City of Los Angeles, has evolved a mathematical derivation which has tums at various locations inthe junction. Mr. Donald Thompson, Chief Engineer of simplified these calculations (see Section M, Volume 2). The head loss at a junc- tion, h., is computed as follows: I h. = AY + h I vl - hv2 where hvl hv2 = upstream velocity head = downstream velocity head AY = change in hydraulic grade line g. Manhole losses to transition or junction head losses. - The following head losses at manholes for conduits under pressure are in addition (1) Manhole shaft on rectangular conduit - head loss negligible. (2) Manhole shaft on circular or 9 conduit: hm = 0.05 hv2 where hV2 = downstream velocity head (3) Rectangular structure with manhole shaft joining circular conduits with or .- without shaped invert: For Dl = D2 For Dl f D2 hm = 0.12 hv2 hm m v2 =k h where Dl and D2 are the diameters of the conduits entering and leaving the manhole respectively: km is the head loss coefficient whose values are shown in Fig. II-2. For junctions h 7 h. m1 h. Flow separation Occasionally, such as with relief drains, there is need for the separation of flow. Although a great deal of experimentation has been done on this subject, attempts of experiments to arrive at general solutions have been few. Even less is known in the determination of head losses for flow separations in storm drains. The rewmmendations of the ASCE Task Committee on Branching Conduits are suitable for general use to determine the head losses. The recommendations, based on results of the committee's investigations made on the subject of head presented in the ASCE Journal of the Hydraulic Division, HY5, May 1973, are losses for dividing flow with special reference to large hydraulic conduits. Of the numerous experiments investigated, all were for pressure flow with the major- ity at low velocities and for various pipe sizes and branch angles. The recom- 11-5 were developed from the committee's recommended head loss coefficients mended head loss coefficients are shown in Figs. 11-3 and II-6. Figures II-4 and and exh-apolation from the experimental data presented. II-1 A. Hydraulic Grade LinbConlrol Criteria 1. The design of the main-line underground storm drain system is based on the laws of hy- draulics. After the hydrology is completed and the quantity of flow in each section of the conduit is known, the final conduit sizes are determined. 2. Generally speaking, @e storm drain conduit will discharge into a channel or conduit where the hydraulic gradient or water surface is above the soffit of the cmduit. This will normally be the point of control for the start of hydraulic computations. Taking count of all the losses, the conduit is sized to keep the hydraulic gradient below the growd surface so tk: inflow may be accepted from catch basin and laterals. Care must be ex- ercised that the construction slope of the conduit is such that the velocity will be at least 4 fps when the conduit is half-full. This will allow a fair self-cleansing velocity. In ad- dition, steep construction slopes are to be avoided so that velocities are not excessive during part-full flow conditions. If a storm drain is designed to flow full during peak flow conditions, the conduit will be less than full during most of the storm and will flow part full for the entire storm period when the peak flow is lower than the design runoff for the conduit. 3. If part-full flow is supercritical, care must be exercised at transitions, bends, inlets, and other obstructions, that a hydraulic jump is not created. Hydraulic jump may raise the hydraulic grade above the street elevation, where water might discharge through catch basins rather than enter the main-line conduit. 4. The following head losses for pressure flow conduits are used by the City of Los Angeles. .- .7 a. Head LOSS due to friction hf = LSf -q where L = length of conduit Sf = friction slope (hydraulic grade line) b. Bend loss due to curves h b = 0.002A 3 "-1 2g where 4 = angle of curvature in degrees I c. Bend loss due to angle pmnt ha = 0.0033A2 2g e where A = deflection angle in degrees d. Transition loss - See Fig. 11-1. If the rate of contraction or expansion is different for the side walls than for the top and floor slabs, the bend loss is based on the condition which produces the greater loss. - e. Sudden expansion or contraction loss Conduits of unequal sizes may have to be joinedwithout the use of transitions, how- .. ever, a sudden contraction without a transition should be avoided. i .. . ... .. I :". . , .. ' z ,," I -1" 2 ul vl - i-" - -" + I ' si aL I I T v SECTION 6 CURB INLET SIZING I! i I I .c. .:- -7. I-a. ." ~ SECTION 7. '1 EXHIBITS .. RUNOFF COEFFICIENTS (R4TIONAL "HOD) LUD USE UndeveIopei Residential: .Pur2 1 Single Family .Ilulti-Units Mobile Homes (2) Commercial [2) 80% Impervious Industrial (2) 90% Impervious XOTES : Coefficient, C Soil Group (11 . 33 .53 . JC " . 40 .4s .50 .45 .50 ' -60 .45 .50 . 55. . 70 -75 .8C . so .8S .9u - C .15 .-J .- .95 (I) Obtain soil group from maps on file with the Department of Sanitation ' and FIood Control. (2) .fiere tc-i conditions deviate significzntly frcm tie tabulated C, may be revised by multiplying 80% or 9C% by the -ratio of ac?ual immcervistisness values of 50% or 90%. the values given for coefficiecr inperfioumess to tile tabulated imperfiousness. However, in r.0 cxse ccmmercial Jroperty on D soil group. sha!: r5e final coefficient be less ~.c.ul 0.30. For ex@:e: ConsiGei &xual imperviousness = 50% Tahuiated imperviousness = SO!i Revised C = X 0.85 = 0.53 w SAN DIEGO COUNN DEPARTMENTOF SPECIAL C!STRICT SEitVICES I i I ?IREAN AREAS OVESLAND TItJE OF FLOW CL'PVES I H 1 .- H I L z .. SAN OIEGO COUNTY . OF nME OF CONCENTRATION (T~) DEPARTMENT OF SPECIAL DISTRICT SERVICES NOMOGPAPH FOR OET€QMlNATroN DESIGN MANUAL FcR NATURAL WATERSHEDS .. . nATF n/l/sq I ."r..".Y .I . ADDDnVFn #J'.//. /!La%. .. 2 .. .. ....... . ., ~ .... .- .. .......... ... .... .. ...... .......... ........ .. .. .. .. '.., s" .... ... ... .:.: .... .,.. ::.: .. .. ..... .... c &a I 6-Hour Precipitation (inches) o~omom 0 "" 0 u3 Ln e m ...... - , I' . :. ;, ....... ..... ... ..... .. ..::$:.,:*;: :. ..... .,.: -. . .... 10 L 0 hlI 0 m z 0 r . Y x .: . .. . .. ... : : . :;: , , 2 -I .. :. :. .... -,..> ~.., .... ~ . _. ::. .. .... . i. .;i. *,.; ::.:,>::.,:,: . ... ... . . .. .. . .. .. . ., . .. .. .. .. - . . .. . .. .. .. .. . . . .. . .. '. - ... !' ~ ~, . ... .~::..:.:: :. ~..... .. . . . .: . ~. . : .. . ~. ......... < .. . .. . .:. , . ~. .. ..,..;: .:..:: .. .. .. . .~ .. .. . . ... :..:.,::..;. :- ..:: :.:: .. . . .- I Given8 C.= IO S = 25 % Chart w: aapth = 44, Velccity = 4.4 tps. .~ SAN DIEGO COUKn i 'GUTTER AND ROADWAY I DEPARTMENT OF SPECIAL DETECT SERVICES j 01SCilARGE-VELOC!TY CHART :, ...., I .,...* :...:I :, .,:.:,<-. :. .. i .. 1 3ATE .-!&&I A2?ENCIX X-D i.. .. .. . . . .. #. :. ir" .* :,. .. .~ ~. ~ . . "" " . . - .. - ~ "" .- " -. j. ! ,- I i I/ ... - .. 1: i! j I ! , ~ SECTION 8 URBAN POLLUTION STUDY 1. 1 i = 37.2 ci=i i " Iaside Diameter [ 36..@0 in.) * t * * t * t I I I ( 24.20 in. 1 ! 2.017 ft.) t * t 1 t I I """" v- Circular Channel Section """""""""""" Ploarate .................. Velocity .................. Diameter of Pipe.. ........... Depth of Flow.. .............. Critical Depth ............ Depth/Diameter (D/d) ....... Slope of Pipe ............. Wetted Perimeter X-Sectional Area Hannings 'n' ARA(2/3) Hin. Fric. Slope, 36 inch Depth of Flow.. .............. .......... .......... .................. .............. Pipe Flowing Full.. ..... 37.480 CFS 36 .OB0 inches 24.202 iqches 2.017 feet 1 ., 908 f set B. 672 6.500 Z 5.053 sq. ft. 5.768 feet 4.627 0.613 0.314 Z 7.4M1 fps ******** *** *X****** *** *** I<""""""-, 9.52':"""""""- . I *** ***AAAAA*Ah " ater Depth ( 0,38')AA**AAAr*x* t*n *** *** .*I .** **t ***I<""- ( 8.00')---->1*** ****t**~**.**.t********* .................... Trapezoidal Channel """""""""- Trapezoidal Channel """""""""_ Flourate ................... Velocity .................. Depth of Flov ............... Critical Depth ............. Freeboard .................. Total Depth ............... Width at Water Surface .... Top Width ................. Left Side Slope Slope of Channel Right Side Slope .......... Base Width ................ X-Sectional Area .......... Wetted Perimeter .......... ARA!2/3) .................. Nannings '11' .............. .......... ........... 37.4@0 CFS 11.217 fps 0.381 feet 0.822 feet 0.0BB feet M. 381 feet 9.522 feet 9.522 feet 4.000 9 2.080 1 1 2.00@ : 1 8.clcl0 feet 3.335 sq. ft. 9.702 feet. 0.013 1.636 RUNOFF CURVE' NUMEERS FOR WOROLOGIC SOIL-COVER CO~IPLEXES (CN) TABLE I-A-1 Ant 2 . Ia = 0.25 Cover or Practice Treatment 3 Hydrologi Cond it ion 6. A 8 C D Soil Grouos Hydrologic Land Use water Surfaces (during floods) 97 9a 99 99 Urban tonnnercial-industrial a9 so 91 92 High density residential 75 82 aa 90 Med i& dens ity res ident ial 73 80 a6 a8 Lon density residential 70 78 a4 . a7 Barren 78 86 -31 93 Fa1 low Straight row 76 a5 90. 92 Vineyards (see acccmnpanying land-use description) .. d is ked annual grass or Poor legume aver Fair Good Roads5 (hard surface) (dirt) .. Row crops Straight row Poor Good Contoured bor 70 79 84 aa Good . 65 75 82 ' 86 Narrcw leaf chaparra 1 Po0 r 71 a2 aa 91 Fair 55 72 81 86 .. /. I-+ 5 Figure 111-A-2 C 1 111-A-5 . - P e 2 4 -E 0 L? X SECTION 9 DESILTATION BASIN STUDY - -I - ...... .......... .... ... ....... , ... ..... .... ... ... ! 1- &- E: '.. total 6-hr nin c- c .. ... .. > - ...... .. P = 1.6 ........ ........ .... ......... ........;..........x..: .::. ..,.> ...... ........ ...... .......... - .. .~ ...... : .. ~. .. ;.. .;: .... ..... . : ................ j. C' 0.58 -. .. ...... ., .; ....: ......-..:..-...'. ... .... .... : ........ ..... ..... ..... . ~~ ..... .~ .............. .. -. ... ..... ...... ... . " . . - . . " - ... -b - -. ...... ......... :'. .. ............ ..... ... R= 1'0.55 ( 1-2) 2.k ......... :.- .. .... ............... : ~ .............. ::. ../. . i .......... ..... = 24.7 .... .. ..'. .~ ." .. :. .. ... i.. ':. - - 'i- .... ..... .. .... -. ... ....... ....... ......... ...... ..;. ........ . : .. .. ... . ,. . .. ...... ... " ..... .. ;.. .. :.. ... ...... -e.- I ...... d ... 90 70 50 .. .. ... .... .... .. ... - .. ................ " ..: ..... .... 1- ... .. .... ..: .......... ............ ......... :: ..:. ?:..:: .... :,:, .. .. ............. I.. - " - .~ ~- 53i Using the USLE ....... "_ . .. "~ ~..~ Sampk Soil Loss Cala&&on: Stepbystcp Proeedurr - t Determine ths R factor. Z Bd on soil mple psrtide size adpis, determine the K value horn the nomograph (Fig. 5.6). Repeat if you have more than one rail -pie. ... .... ..:.: . . ,. :.. : . .. . .~ .., . . _.; . ., I' . . ... _- . .. . .-.: . 2 ... .. .. ..... .... .~ ... I .. ..:. ... .. ...... .. ......... _... .:.. . .: .. ............... . .... ......I. .. ...?:.,:.! ........ .... ...... .,.,: ; .:.. '::. ..... .. i c 8 i 'r ? a3 -18- ,- .::.. .,. . ., * -.:.. . .: .. . ' .* .. . W 0 4 z YI e RUNOFF COEFFICIENTS (R4TIONAL iriETH00) i, \ .\ LUD USE Undeveloped Residential: hral Single Family Multi-Units Mobile Homes (z) Commercial (2) YO% Impervious Industrial (2) 90% Imervious Coefficient, C Soil Group (1) .X .33 .JO " .40 .45 .so .45 . 50 .60 .J5 .50 . 55. . io -75 . so . so .as .90 . -> .- XOTES : (I) Obtain soil group from maps on file with the Departaent of Sanitation and Flood Control. (2) *$re actual conditions deviate sigzificsntly from the tabulatzd imFerviousness values of SO% or 90%, the values given for coefficiezr C, may be revised by mulriplying 80% or 90% by the ratio of actual shall c!!e final coefficient be less tkn 0.50. For example: Consids inpemiousness to %!e tabulated imperviousness. However, in no czso ccmmercisl 2roperty on D soil group. Actual imperviousness = 50% Tabulated imperviousness = 80% Revised C = so X 0.85 = 0.55 w APPENDIX iX I . .:. . .. ... .: : ....... -. .~ ...... ;. .................... .... ......... .... .. .. .......................... .... ..... .. ....... ....... -23 - - . ,. .. .. ... .... .... ..... ...i.. I. . . ............. ....... .. .... ... 'D d i .. .. .. .. .. :I I 3i L .. .. .. ... ................ .,~ ........ ::..:.:>..::: ~ ......... :~... .. .. .. .. .. ......... : ........ ...... ...... .. .. .... .. . ..... ..... ............ .... .. .. ............ .; ,: ~ .: - " ." " - ", ....... .. .... ....... .... ...... .. . .: .. .. .. .. .I ... ~~ . . ?. . :.. .i .. .. . - ..: . . .. ..... ,:<.,:... .. . : .. i, .. . .... ..... ......... ..: ::.. ... ............ -. ... ............................. ..... ;~. ..... ... .....",. . .... .!..., ...... : ..... .. .. . .~ ..... ....... .I Tributary Area Project Location