Loading...
HomeMy WebLinkAboutCT 14-10; POINSETTIA 61; DRAINAGE STUDY; 2018-01-05I U DRAINAGE STUDY FOR POINSETTIA 61 CT- 14-10 GR 2017-0052, DWG NO. 507-2A January 3, 2018 Prepared For: Li Lennar Homes 25 Enterprise, Suite 300 Aliso Viejo, CA 92656 Prepared By: O'DAY CONSULTANTS, INC. 2710 Loker Avenue West, Suite 100 Carlsbad, CA 92010 J.N. 14-1018-05 Prepared by: O'DAY CONSULTANTS, INC. 2710 Loker Avenue West, Suite 100 Carlsbad, California 92008-6603 Tel: (760) 931-7700 Fax: (760) 931-8680 A~M ~ it -- (~ ;Jaz~ George O'ry RCE 32014 1 ç c1 ' Date CEIIVED JAN 17 2013 LAND D\ tUPMENT EN:: •:E:NG TABLE OF CONTENTS SECTION 1 - INTRODUCTION - Purpose of Study Scope HYDROLOGY I Modified Rational Method Description Program Process CONCLUSION SECTION 2 HYDROLOGY CALCULATIONS 100 Year - Existing Hydrology - Basin Al - Basin A2 - Basin B - Basin C 100 Year - Proposed Hydrology - Basin A - Basin Bi - Basin B2 - Basin B3 - Basin B4 - Basin B5 SECTION 3 REFERENCES County of San Diego References Existing Improvement and Grading Plans SECTION 4 EXHIBITS & ATTACHMENTS Existing Hydrology Exhibit I Proposed Hydrology Exhibit "Determination of Pre- and Post-developed 100-year flows" by TWE "BMP Sizing for Stormwater Treatment" by TWE I "SWMM Modeling for Hydromodification Compliance" by TWE "Determination of Potential Critical Coarse Sediment Yield Areas" by TWE Pipe hydraulic Calculations, Public Storm Drains I Pipe hydraulic Calculations, Private Storm Drains 18" and larger. Curb Inlet Sizing Calculations I 2 Section 1 - - - - U mm - - - - - - - p - - - - Purpose of Study I Poinsettia 61 project is located between Poinsettia Lane at the Cassia Road street intersection and Poinsettia Lane at the Oriole Court/Skimmer Court street intersection (future joining of west I Poinsettia Lane and east Poinsettia Lane); north of Aviara Parkway, east of Ambrosia Lane, and west of El Camino Real in the City of Carlsbad, California (see Vicinity Map below). The site consists of 2 undeveloped lots totaling approximately 50.8 acres. Poinsettia 61 consists of natural open space, I agricultural graded pads, and a previously graded area designated for future Poinsettia Lane construction. The purpose of this Drainage Study is to support rough grading and precise grading for the proposed development for residential purposes. Scope I Under existing conditions, the project is divided into three separate drainage basins. Basin "A" drains in a southwesterly direction toward the top northwesterly half of the project. Basin "B" drains toward the southerly boundary of the project, and Basin "C" is a small existing cut slope draining to the I western boundary. Basin "C" will not be altered from the existing condition, and is not included in the proposed drainage conditions study. Existing storm drain facilities are located near the northwesterly corner in Poinsettia Lane and along the westerly boundary of the project. These storm I drain facilities intercept a portion of the total project area at Nodes 30 and 360.1. The remainder drains southerly in a natural channel to the southerly property line of the project. The majority of the project area is undisturbed natural terrain with the remaining area being used for agriculture purposes. 1 A runoff coefficient of 0.35 is used in the existing hydrology calculations. Under the proposed drainage conditions, the project is divided into two separate basins. Basin "A" I drains towards the northwesterly corner of the project. The proposed storm drain in Basin "A" will connect to the existing storm drain facilities located in Poinsettia Lane. Basin "B" drains toward the I southerly boundary of the project. The proposed land use is Medium Density Residential use (7.3DU/AC). A runoff coefficient of 0.57 is used in the proposed hydrology calculations for the residential areas. An undisturbed natural I runoff coefficient of 0.35 will be utilized for the natural areas and the slopes on the perimeter of the grading limits. The drainage areas that include Poinsettia Lane utilize a higher runoff coefficient of 0.87. There are five bioretention facilities located on-site, each designed for combined water quality, I hydromodification and detention purposes. The County of San Diego Hydrology Manual Soil Hydrologic Group identifies Soil Group D as the I predominant soil type. Hydrologic Soils Group D soils have a very slow infiltration rate (high runoff potential) when thoroughly wet. These soils have a very slow rate of water transmission. HYDROLOGY I The hydrologic analyses are being performed according to the 2003 San Diego County Hydrology Manual. The overall drainage area is less than one square mile and includes junctions of independent drainage systems; therefore, the Modified Rational Method is being used for the analyses. The Modified Rational Method is applicable to a 6-hour storm duration because the procedure uses i Intensity-Duration Design Charts that are based on a 6-hour storm duration. In some cases, the 6-hour precipitation must be adjusted based on the ratio of the 6- to 24-hour precipitation. This will be performed where necessary. Modified Rational Method Description The modified rational method, as described in the 2003 San Diego County Flood Control/Hydrology Manual, is used to estimate surface runoff flows. The basic equation: Q = CIA C = runoff coefficient (varies with surface) I = intensity (varies with time of concentration) A = area in acres For the 100-year design storm, the 6-hour rainfall amount is 2.7 inches and the 24-hour rainfall amount is 4.7 inches. San Diego County Rational-Hydrology Program Package Version 7.4, developed by CivilCADD/CIVILDESIGN Engineering Software © (1991-2004), was used to determine the rainfall amount, times of concentration, corresponding intensities and flows for the various hydrologic basins within this model. The program was then used to route flows through drainage conveyance structures and confluence basins per the modified rational method. Program Process The Rational-Hydrology program is a computer-aided design program where the user develops a node link model of the watershed. Developing independent node link models of each interior watershed and linking these submodels together at confluence points create the node link model. The program has the capability of performing calculations for 11 different hydrologic and hydraulic processes. These processes are assigned and printed in the output. They are as follows: Initial sub-area input, top of stream. Street flow through sub-area, includes sub-area runoff. Addition of runoff from sub-area to stream. Street inlet and parallel street and pipeflow and area. Pipeflow travel time (program estimated pipe size). Pipeflow travel time (user-specified pipe size). Improved channel travel - Area add option. Irregular channel travel time - Area add option. User-specified entry of data at a point. Confluence at downstream point in current stream. Confluence of main streams. The results of the Poinsettia 61 drainage runoff analysis for existing conditions and proposed conditions are depicted below for the 100 year storm event for Basin A, Basin B and Basin C 4 Table 1-1 100 Year Storm Event- Basin A (without Detention) Existing Conditions Proposed Conditions Basin! Node Area (AC) Tc (mm) Q (CFS) Basin/Node Area (AC) Tc (mm) Q (CFS) A-1/30 11.60 15.38 13.99 A-1& 27.0 A-2/360.1 9.35 34.73 A-2/360 20.68 19.26 25.23 A-3/430 2.08 10.88 2.93 Total 32.28 Total 39.22 Total 29.08 Total 37.66 Table 1-2 100 Year Storm Event- Basin B (without Detention) Existing Conditions Proposed Conditions Basin! Node Area (AC) Tc (mm) Q (CFS) Basin/Node Area (AC) Tc (mm) Q (CFS) 13-1/ 1060 77.7 13.65 105.47 B-1/1060 80.90 13.9 123.73 Table 1-3 100 Year storm Event- Basin C- Existing & Proposed Conditions FLBashn/Node Area (AC) Tc (mm) Q (CFS) 251 1.05 8.97 1.79 cfs U Detention of the 100 Year Storm A Technical Memorandum for Determination of the Pre- and Post- Developed 100 year Peak Flows for Poinsettia, by Tory R. Walker Engineering on August 9, 2017 depicts the 100 year detention calculations for each point of compliance. Based on this study with storage of 100 year peak storm event in the bioretention facilities, it has been demonstrated that the post development 100 year peak flows are less than the existing conditions. Note that the points of compliance and methodology used by Tory Walker Engineering differ from the nodes and methodology used by O'day Consultants, Inc., and the results are therefore not interchangeable. Table 1-4 Summary of Peak Flow Results* POC Pre-development Peak Flow Post-Dev. Undetaiued Peak Flow (cfs) Post-Dev. Detained Peak Flow (cfs) Post Dev. -Pre- dev. Peak Flow (cfs) 1 14.72 16.55 13.91 -0.81 2 8.77 29.29 5.39 -3.38 3 1 43.24 48.73 42.70 -0.54 *per Tory R. Walker Engineering Technical Memorandum dated August 9, 2017 Table 1-5 SUMMARY OF DETENTION BASINS FOR POINSETTIA* BMP NAME NODE Q 10 (IN) TRIBUTARY AREA TC (MIN) Q100 (OUT)* BMP 1-1 NODE 270 6.49 CFS 2.20 AC 8.73 MIN 3.80 CFS BMP 2-1 NODE 960.1 25.60 CFS 9.06 AC 5.95 MIN 4.41 CFS BMP 3-1 NODE 140 5.81 CFS 1.84 AC 9.95 MIN 3.63CFS BMP 4-1 NODE 800 19.19 CFS 7.28 AC 9.09 MIN 7.52 CFS BMP 5-1 NODE 790.1 6.41 CFS 1.55 AC 5.56 MIN 5.25 CFS * The 100 year flowrate out of the bioretention areas are based on the Technical Memorandum "Determination of Pre- and Post-Developed 100 Year Peak Flows for Poinsettia" prepared by Tory Walker Engineering, dated August 9, 2017. CONCLUSION Based on the Technical Memorandum by Tory Walker for Pre and Post Developed 100 Year Peak Flows for Poinsettia, dated August 9, 2017, 100 year flowrates in the proposed post-development condition will be less than the existing condition due to the detention provided by the bioretention areas. BASIN A IMP 1-1 and IMP 3-1 are the bioretention basins in Basin A that will mitigate the project flows at I Node 360.1. Additionally, less area drains to Node 360.1 from the existing condition to the proposed condition. I Runoff will not increase from the existing 25.23 cfs at Node 360.1 where flow enters an existing 48- inch storm drain (DWG 341-5A, sheet 14) that connects to an existing 54-inch storm drain downstream (DWG 341-5, sheet 10) along the westerly boundary of the project. The natural I undisturbed land that drains onto the property at the south, and the landscaped hillside will not be treated in bioretention basins; however, the flow is considered in the 100-year storm event discharged I from the site. The flow from these areas will be conveyed by brow ditches and discharges to the natural channel running parallel to the western edge of the site. The channel flow remains unaltered and concludes at a type 'F' catch basin (Node 400) where it connects to the previously mentioned 54- inch storm drain (DWG 341-5, sheet 10). (Tory Walker Engineering POC-1). Excluding the 100 year detention calculations, there is an overall decrease in runoff in Basin A from 39.22 cfs to 37.66 cfs because 3.2 acres of tributary area is diverted to Basin B in the proposed condition. I The remainder of the project drains in Basin B towards the southerly property line at Node 1060. IMP 2-1, IMP 4-1 and IMP 5-1 are the bioretention basins in Basin B that will mitigate the project flows at Node 1060, which receives the runoff from both Tory Walker Engineering POC's 2 & 3. Proposed I project runoff and existing condition runoff in Basin B was evaluated at estimated 100 year storm event. The developed condition, 100 year flowrate at node 1060 without detention is 123.73 cfs, which is reduced below the pre-development condition flow of 105.5 cfs by the detention basins (reduction in flow from developed/un-detained; to developed/detained condition is 29.93 cfs). 7 Section 2 SECTION 2 Existing Hydrology SECTION 2 100 Year Existing Hydrology - Basin A San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (C) 1991-2006 Version 7.7 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 05/08/17 ------------------------------------------------------------------------ POINSETTIA BASIN A-1 JN 141018 EXISTING CHANNEL DRAINAGE NF 5/8/17 ------------------------------------------------------------------------ Hydrology Study Control Information Program License Serial Number 6218 ------------------------------------------------------------------------ Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.700 24 hour precipitation(inches) = 4.700 P6/P24 = 57.4% San Diego hydrology manual 'C' values used +++++++ ++ + + + + + +++++++ ++ +++ ++++++++++++++++++++++++++++++ ++++++++++++++ Process from Point/Station 10.000 to Point/Station 20.000 INITIAL AREA EVALUATION Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 77.000(Ft.) Highest elevation = 313.200(Ft.) Lowest elevation = 308.000(Ft.) Elevation difference = 5.200(Ft.) Slope = 6.753 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 6.75 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.14 minutes TC = [1.8*(1.1_C)*distance(Ft.)".5)/(% slope"(1/3)I TC = [1.8*(1.1_0.3500)*( 100.000'.5)/( 6.753"(1/3)1= 7.14 Rainfall intensity (I) = 5.652(In/Hr) for a 100.0 year storm 10 I I I I I I I I I U I I 1 Effective runoff coefficient used for area (QKCIA) is C = 0.350 Subarea runoff = 0.257(CFS) Total initial stream area = 0.130 (Ac.) ++++++++++++++ +++++++++ + +++++++++++ + ++++++ + ++ + ++++++ ++++++++++++ + + + + +-f Process from Point/Station 20.000 to Point/Station 30.000 IMPROVED CHANNEL TRAVEL TIME Upstream point elevation = 308.000(Ft.) Downstream point elevation = 218.600(Ft.) Channel length thru subarea = 1100.000(Ft.) Channel base width = 40.000(Ft.) Slope or 'Z' of left channel bank = 5.000 Slope or 'Z' of right channel bank = 5.000 Estimated mean flow rate at midpoint of channel = 7.163(CFS) Manning's 'N' = 0.035 Maximum depth of channel = 3.000(Ft.) Flow(q) thru subarea = 7.163(CFS) Depth of flow = 0.080(Ft.), Average velocity = 2.226(Ft/s) Channel flow top width = 40.797(Ft.) Flow Velocity = 2.23(Ft,'s) Travel time = 8.24 mm. Time of concentration = :5.38 mm. Critical depth = 0.100(Ft.) Adding area flow to channel Rainfall intensity (I) = 3.446(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 3.446(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 4.060 Subarea runoff = 13.735(CFS) for 11.470(Ac.) Total runoff = 13.992(CFS) Total area = 11.600(Ac.) Depth of flow = 0.119(Ft.), Average velocity = 2.898(Ft/s) Critical depth = 0.154(Ft.) End of computations, total study area = 11.600 (Ac.) 11 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2006 Version 7.7 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 05/11/17 ------------------------------------------------------------------------ POINSETTIA BASIN A-2 EXISTING 100 YEAR HYDROLOGY JN 141018 BY NF ------------------------------------------------------------------------ ********* Hydrology Study Control Information Program License Serial Number 6218 ------------------------------------------------------------------------ Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Nap data precipitation entered: 6 hour, precipitation(inches) = 2.700 24 hour precipitation(inches) = 4.700 P6/P24 = 57.4% San Diego hydrology manual 'C' values used ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 40.000 to Point/Station 50.000 INITIAL AREA EVALUATION Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type (General Industrial Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = 54.000(Ft.) Highest elevation = 248.100(Ft.) Lowest elevation = 244.800(Ft.) Elevation difference = 3.300(Ft.) Slope = 6.111 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 90.00 (Ft) for the top area slope value of 6.11 %, in a development type of General Industrial In Accordance With Figure 3-3 Initial Area Time of Concentration = 2.15 minutes TC = {1.8*(1.1_C)*distance(Ft.).5)/(% slope(1/3)] TC= [1.8*(1.1_0.8700)*( 90.000.5)/( 6.111"(1/3)J= 2.15 Calculated TC of 2.148 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations 12 Rainfall intensity (I) = 7.114(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea runoff = 1.114(CFS) Total initial stream area = 0.180 (Ac.) ++++++++++++++++++++++++++-++++++++++++++++++++++++++++++++++++++++++- Process from Point/Station 50.000 to Point/Station 60.000 IRREGULAR CHANNEL FLOW TRAVEL TIME Estimated mean flow rate at midpoint of channel = 3.682(CFS) Depth of flow = 0.328(Ft.), Average velocity = 2.534(Ft/s) Irregular Channel Data ----------------------------------------------------------------- Information entered for subchannel number 1 Point number 'X' coordinate 'Y' coordinate 1 0.00 0.52 2 20.00 0.12 3 21.33 0.00 4 21.50 0.50 Manning's 'N' friction facor = 0.015 ----------------------------------------------------------------- Sub-Channel flow = 3.682(CFS) flow top width = 11.828(Ft.) velocity= 2.534(Ft/s) area = 1.453(Sq.Ft) Froude number = 1.274 Upstream point elevation = 244.800(Ft.) Downstream point elevation = 241.200(Ft.) Flow length = 327.000(Ft.) Travel time = 2.15 mm,. Time of concentration = 4.30 mm. Depth of flow = 0.328(Ft.) Average velocity = 2.534(Ft/3) Total irrecular channel flaw = 3.682(CFS) Irregular channel normal depth above invert elev. = 0.328(Ft.) Average velocity of channel(s) = 2.534(Ft/s) Adding area flow to channel Calculated TC of 4.299 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 7.114(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type (General Industrial Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Rainfall intensity = 7.114(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.870 CA = 0.879 Subarea runoff = 5.13'7(CFS) for 0.830(Ac.) Total runoff = 6.251(CFS) Total area = 1.010(Ac.) Depth of flow = 0.382(Ft.), Average velocity = 2.884(Ft/s) 13 I +.++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 60.000 to Point/Station 90.000 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 232.500(Ft.) Downstream point/station elevation = 231.000(Ft.) Pipe length = 82.50(Ft.) Slope = 0.0182 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.251(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 6.251(CFS) Normal flow depth in pipe = 8.37(In.) Flow top width inside pipe = 17.96(In.) Critical Depth = 11.60(In.) Pipe flow velocity = 7.76(Ft/s) Travel time through pipe = 0.18 mm. Time of concentration (TC) = 4.48 min.- + ++++++ + +++++++++++++ + +++++++++++++++++++++ + + ++++++++++++++++++++++ + ++ Process from Point/Station 60.000 to Point/Station 90.000 CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 1.010 (Ac.) Runoff from this stream = 6.251(CFS) Time of concentration = 4.48 mm. Rainfall intensity = 7.114(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 70.000 to Point/Station 80.000 INITIAL AREA EVALUATION Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type I (General Industrial Impervious value, Al = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = 104.300(Ft.) Highest elevation = 282.400(Ft.) Lowest elevation = 280.500(Ft.) Elevation difference = 1.900(Ft.) Slope = 1.822 % Top of Initial Area Slope adjusted by User to 4.274 % Bottom of Initial Area Slope adjusted by User to 4.274 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 90.00 (Ft) for the top area slope value of 4.27 %, in a development General Industrial In Accordance With Figure 3-3 Initial Area Time of Concentration = 2.42 minutes TC = [1.8*(1.1_C)*distance(Ft.).5)/(% slope"(1/3)] 14 type of TC = [1.8*(1.1_0.8700)*( 90.000.5)/( 4.274"(1/3)1= 2.42 The initial area total distance of 104.30 (Ft.) entered leaves a remaining distance of 14.30 (Ft.) Using Figure 3-4, the travel time for this distance is 0.20 minutes for a distance of 14.30 (Ft.) and a slope of 4.27 % with, an elevation difference of 0.61(Ft.) from the end of the top area Tt = [11.9*1ength(Mi)"3)/(elevation change(Ft.))].385 *60(min/hr) = 0.204 Minutes Tt=[(11.9*0.00273)/( 0.61)].385= 0.20 Total initial area Ti = 2.42 minutes from Figure 3-3 formula plus 0.20 minutes from the Ficure 3-4 formula = 2.62 minutes Calculated TC of 2.624 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) =7.114(In/Hr) for a 100.0 year storm Effective r.inoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea runoff = 0.43(CFS) Total initial stream area = 0.070(Ac.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++4 I Process from Point/Station 80.000 to Point/Station 90.000 IRREGULAR CHANNEL FLOW TRAVEL TIME I Estimated mean flow rate at midpoint of channel = 4.081(CFS) Depth of flow = 0.287(Ft.), Average velocity = 4.040(Ft/s) ***k* Irregular Channel Data ----------------------------------------------------------------- I Information entered for subchannel number 1 Point number 'X' coorc.inate 'Y' coordinate 1 0.00 0.52 2 20.00 0.12 I 3 21.33 0.00 4 21.50 0.50 Manning's 'N' friction factor = 0.015 ----------------------------------------------------------------- I Sub-Channel flow = 4.081(CFS) flow top width = 9.762(Ft.) velocity= 4.040(Ft/s) area = 1.010(Sq.Ft) Froude number = 2.213 I Upstream point elevation = 280.700(Ft.) Downstream point elevation = 241.100(Ft.) Flow length = 1124.000(Ft.) Travel time = 4.64 mm. I Time of concentration = 7.26 mm. Depth of flow = 0.287(Ft.) Average velocity = 4.040(Ft/s) I Total irregular channel flcw = 4.081(CFS) Irregular channel normal depth above invert elev. = 0.287(Ft.) Average velocity of channel(s) = 4.040(Ft/s) Adding area flow to channel I Rainfall intensity (I) = 5.592(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 I Decimal fraction soil group 0 = 1.000 15 [INDUSTRIAL area type (General Industrial Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Rainfall intensity = 5.592(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.870 CA = 1.366 Subarea runoff = 7.205(CFS) for 1.500(Ac.) Total runoff = 7.639(CFS) Total area = 1.570(Ac.) Depth of flow = 0.342(Ft.), Average velocity = 4.700(Ft/s) + +++++ + ++++++++++++++++ + + + ++++++++++ ++ ++++++++++++++++++++++++++++++++ Process from Point/Station 80.000 to Point/Station 90.000 **** CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.570(Ac.) Runoff from this stream = 7.639(CFS) Time of concentration = 7.26 mm. Rainfall intensity = 5.592(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) 1 6.251 4.48 7.114 2 7.639 7.26 5.592 Qmax(l) = 1.000 * 1.000 * 6.251) + 1.000 * 0.616 * 7.639) + = 10.960 Qmax(2) = 0.786 * 1.000 * 6.251) + 1.000 * 1.000 * 7.639) + = 12.553 Total of 2 main streams to confluence: Flow rates before confluence point: 6.251 7.639 Maximum flow rates at confluence using above data: 10.960 12.553 Area of streams before confluence: 1.010 1.570 Results of confluence: Total flow rate = 12.553(CFS) Time of concentration = 7.261 mm. Effective stream area after confluence = 2.580(Ac.) ++++++++ ++++ +++ + +++ ++++++++++++ ++ ++++++++++++++++++++ ++ ++++++++ +++++ + + Process from Point/Station 90.000 to Point/Station 110.100 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 230.670(Ft.) 16 Downstream point/station elevation = 224.500(Ft.) Pipe length = 25.40(Ft.) Slope = 0.2429 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 12.553(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 12.553(CFS) Normal flow depth in pipe = 5.44(In.) Flow top width inside pipe = 20.09(In.) Critical Depth = 15.28(In.) Pipe flow velocity = 23.49(Ft/s) Travel time through pipe = 0.02 mm. Time of concentration (TC) = 7.28 mm. ++++++++++++++++++++++++++±+++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 90.000 to Point/Station 110.100 CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 2.580(Ac.) Runoff from this stream = 12.553(CFS) Time of concentration = 7.28 mm. Rainfall intensity = 5.583(In/Hr) Program is now starting with Main Stream No. 2 Process from Point/Station 100.000 to Point/Station 100.000 USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C' value of 0.540 given for subarea Rainfall intensity (I) = 3.008(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 18.99 mm. Rain intensity = 3.01(In/Hr) Total area = 17.600(Ac.) Total runoff = 18.000(CFS) ++ + + +++++++++++ ++++++ ++++++++++ + +++++++++++++++ Process from Point/Station 100.000 to Point/Station 110.100 PIPEFLCW TRAVEL TIME (Jser specified size) Upstream point/station elevation = 225.600(Ft.) Downstream point/station elevation = 224.330(Ft.) Pipe length = 135.00(Ft.) Slope = 0.0094 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 18.000(CFS) Given pipe size = 18.00(In.) NOTE: Normal flow is pressure flow in user selected pipe size. The approximate hydraulic grade line above the pipe invert is 5.109(Ft.) at the headworks or inlet of the pipe(s) Pipe friction loss = 3.963(Ft.) Mincr friction loss = 2.417(Ft.) K-factor = 1.50 Pipe flow velocity = 10.19(Ft/s) Travel time through pipe = 0.22 mm. Time of concentration (TC) = 19.21 mm. +++++++++++++++++++++++++++4-+++++++++++++++++++++++++++++++++++++++++. 17 Process from Point/Station 100.000 to Point/Station 110.100 CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 17.600 (Ac.) Runoff from this stream = 18.000(CFS) Time of concentration = 19.21 mm. Rainfall intensity = 2.986(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) 1 12.553 7.28 5.583 2 18.000 19.21 2.986 Qmax(1) = 1.000 * 1.000 * 12.553) + 1.000 * 0.379 * 18.000) + = 19.373 Qmax(2) = 0.535 * 1.000 * 12.553) + 1.000 * 1.000 * 18.000) + = 24.712 Total of 2 main streams to confluence: Flow rates before confluence point: 12.553 18.000 Maximum flow rates at confluence using above data: 19.373 24.712 Area of streams before confluence: 2.580 17.600 Results of confluence: Total flow rate = 24.712(CFS) Time of concentration = 19.211 mm. Effective stream area after confluence = 20.180 (Ac.) ++++++++++++ +++ ++ ++++ ++++ + ++ ++++ + ++++ +++++++++++++++ + ++ + ++++++++++++ ++ Process from Point/Station 110.100 to Point/Station 120.100 PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 224.000(Ft.) Downstream point/station elevation = 213.900(Ft.) Pipe length = 67.00(Ft.) Slope = 0.1507 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 24.712(CFS) Nearest computed pipe diameter = 15.00(In.) Calculated individual pipe flow = 24.712(CFS) Normal flow depth in pipe = 12.09(In.) Flow top width inside pipe = 11.86(In.) Critical depth could not be calculated. Pipe flow velocity = 23.30(Ft/s) Travel time through pipe = 0.05 mm. Time of concentration (TC) = 19.26 mm. 18 Process from Point/Station 110.100 to Point/Station 120.100 CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 20.180 (Ac.) Runoff from this stream = 24.712(CFS) Time of concentration = 19.26 mm. Rainfall inensity = 2.981(In/Hr) Program is now starting with Main Stream No. 2 + + + +.+ + + + + + + ± + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 120.200 to Point/Station 120.100 INITIAL AREA EVALUATICN Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space Impervious value, Ai = 0.00:0 Sub-Area C Value = 0.350 Initial subarea total flow distance = 135.000(Ft.) Highest elevation = 242.000(Ft.) Lowest elevation = 213.000(Ft.) Elevation difference = 29.000(Ft.) Slope = 21.481 % Top of Initial Area Slope aijusted by User to 5.000 % Bottom of Initial Area Slope adjusted by User to 5.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 5.00 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concencration = 7.89 minutes TC = [1.8*(1.1_C)*distance(Ft.).5)/(% slope"(1/3)] TC= [1.8*(1.1_0.3500)*( 100.000.5)/( 5.000(1/3)]= 7.89 The initial area total distance of 135.00 (Ft.) entered leaves a remaining distance of 35.00 (Ft.) Using Figure 3-4, the trave time for this distance is 0.38 minutes for a distance of 35.00 (Ft.) and a slope of 5.00 % with an elevation difference of 1.75(Ft.) from the end of the top area Tt = [11.9*length(Mi)3)/(elevation change(Ftj)J.385 *60(min/hr) = 0.382 Minutes Tt={(11.9*0.J066'3)/( 1.75):].385= 0.38 Total initial area Ti = 7.89 minutes from Figure 3-3 formula plus 0.38 minutes from the Figure 3-4 formula = 8.28 minutes Rainfall intensity (I) = 5.139(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 0.899(CF5) Total initial stream area = 0.500 (Ac.) ++++++++++++-+++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.200 to Point/Station 120.100 19 CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.500(Ac.) Runoff from this stream = 0.899(CFS) Time of concentration = 8.28 mm. Rainfall intensity = 5.139(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) 1 24.712 19.26 2.981 2 0.899 8.28 5.139 Qmax(l) = 1.000 * 1.000 * 24.712) + 0.580 * 1.000 * 0.899) + = 25.234 Qmax(2) = 1.000 * 0.430 * 24.712) + 1.000 * 1.000 * 0.899) + = 11.520 Total of 2 main streams to confluence: Flow rates before confluence point: 24.712 0.899 Maximum flow rates at confluence using above data: 25.234 11.520 Area of streams before confluence: 20.180 0.500 Results of confluence: Total flow rate = 25.234(CFS) Time of concentration = 19.259 mm. Effective stream area after confluence = 20.680 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 360.000 to Point/Station 360.100 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 212.050(Ft.) Downstream point/station elevation = 211.600(Ft.) Pipe length = 65.00(Ft.) Slope = 0.0069 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 25.234(CFS) Given pipe size = 48.00(In.) Calculated individual pipe flow = 25.234(CFS) Normal flow depth in pipe = 14.98(In.) Flow top width inside pipe = 44.48(In.) Critical Depth = 17.81(In.) Pipe flow velocity = 7.54(Ft/s) Travel time through pipe = 0.14 mm. Time of concentration (TC) = 19.40 mm. End of computations, total study area = 20.680 (Ac.) 20 U I I SECTION 2 100 Year Existing Hydrology - Basin B U 21 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (C) 1991-2006 Version 7.7 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 05/08/17 ------------------------------------------------------------------------ POINSETTIA BASIN B EXISTING SOUTH DRAINAGE NF 5/8/2017 JN 141018 ------------------------------------------------------------------------ ********* Hydrology Study Control Information ********** Program License Serial Number 6218 ------------------------------------------------------------------------ Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Nap data precipitation entered: 6 hour, precipitation(inches) = 2.700 24 hour precipitation(inches) = 4.700 P6/P24 = 57.4% San Diego hydrology manual 'C' values used ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 200.000 to Point/Station 200.000 USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C' value of 0.630 given for subarea Rainfall intensity (I) = 7.114(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 5.00 mm. Rain intensity = 7.11(In/Hr) Total area = 4.100(Ac.) Total runoff = 17.800(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 200.000 to Point/Station 210.000 IMPROVED CHANNEL TRAVEL TIME Upstream point elevation = 314.000(Ft.) Downstream point elevation = 169.000(Ft.) Channel length thru subarea = 2470.000(Ft.) Channel base width = 20.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 53.741(CFS) Manning's 'N' = 0.035 Maximum depth of channel = 4.000(Ft.) Flow(q) thru subarea = 53.741(CFS) 22 Depth of flow = 0.444(Ft.), Average velocity = 5.789(Ft/s) Channel flow top width = 21.778(Ft.) Flow Velocity = 5.79(Ftis) Travel time = 7.11 mm. Time of concentration = 12.11 mm. Critical depth = 0.594(Ft.) Adding area flow to channel Rainfall intensity (I) = 4.021(In/Hr) for a 1000 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN I (Permanent Open Space Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 4.021(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.369 CA = 22.288 Subarea runoff = 71.811(CFS) for 56.300(Ac.) Total runoff = 89.611(CFS) Total area = 60.400(Ac.) Depth of flow = 0.603(Ft.), Average velocity = 7.014(Ft/s) Critical depth = 0.828(Ft.) + ++ + +++++++++++++ + +++++++++ +++++ +++++++++ ++ +++ +++ ++++ +++++++++++++++++ Process from Point/Station 210.000 to Point/Station 220.000 IMPROVED CHANNEL TRAVEL TIME Upstream point elevation = 171.500(Ft.) Downstream point elevation = 146.700(Ft.) Channel length thru subarea = 600.000(Ft.) Channel base width = 20.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 97.584(CFS) Manning's 'N' = 0.035 Maximum depth of channel = 4.000(Ft.) Flow(q) thru subarea = 97.584(CFS) Depth of flow = 0.703(Ft. , Average velocity = 6.481(Ft/s) Channel flow top width = 22.814(Ft.) Flow Velocity = 6.48(Ft/s) Travel time = 1.54 mm. Time of concentration = 13.65 mm. Critical depth = 0.875 Ft.) Adding area flow to channe Rainfall intensity (I) = 3.721(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 3.721(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area 23 (Q=KCIA) is C = 0.365 CA = 28.343 Subarea runoff = 15.862(CFS) for 17.300(Ac.) Total runoff = 105.473(CFS) Total area = 77.700 (Ac.) Depth of flow = 0.737(Ft.), Average velocity = 6.668(Ft/s) Critical depth = 0.922(Ft.) End of computations, total study area = 77.700 (Ac.) I I I I I I I I I I I I I I 24 I I U I I I I I I I I I SECTION 2 100 Year Existing Hydrology - Basin C OR San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2006 Version 7.7 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 05/11/17 ------------------------------------------------------------------------ POINSETTIA 100 YEAR EXISTING HYDROLOGY BASIN C- W'LY PL ALONG AMBROSIA CALCS BY NF JN 141018 ------------------------------------------------------------------------ ********* Hydrology Study Control Information Program License Serial Number 6218 ------------------------------------------------------------------------ Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.700 24 hour precipitation(inches) = 4.700 P6/P24 = 57.4% San Diego hydrology manual 'C' values used ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 250.000 to Point/Station 251.000 INITIAL AREA EVALUATION Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN I (Permanent Open Space Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 370.000(Ft.) Highest elevation = 266.000(Ft.) Lowest elevation = 242.500(Ft.) Elevation difference = 23.500(Ft.) Slope = 6.351 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 6.35 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.29 minutes TC = [1.8*(1.1_C)*distance(Ft.)'.5)/(% slope"(1/3)] TC=[l.8*(1.l_0.3500)*(loo.000".5)/( 6.351"(1/3)1= 7.29 The initial area total distance of 370.00 (Ft.) entered leaves a 26 remaining distance of 270.JO (Ft.) Using Figure 3-4, the travel time for this distance is 1.68 minutes for a distance of 270.00 (Ft.) and a slope of 6.35 % with an elevation difference of 17.15(Ft.) from the end of the top area Tt = [11.9*iength(Mi)3)/(eLevation change(Ft.))].385 *60(min/hr) = 1.681 Minutes Tt=[(11.9*0.05113)/( 17.15)].385= 1.68 Total initial area Ti = 7.29 minutes from Figure 3-3 formula plus 1.68 minutes from the Figure 3-4 formula = 8.97 minutes Rainfall intensity (I) = 4.879(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 1.793(CFS) Total initial stream area = 1.050 (Ac.) End of computations, total study area = 1.050 (Ac.) I [1 27 SECTION 2 1 100 Year Proposed Hydrology - Basin A I 28 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2006 Version 7.7 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 05/11/17 ------------------------------------------------------------------------ POINSETTIA PROPOSED 100 YEAR HYDROLOGY BASIN Al& A2 JN 141018 CALCS BY NF ------------------------------------------------------------------------ ********* Hydrology Study Control Information Program License Serial Number 6218 ------------------------------------------------------------------------ Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.700 24 hour precipitation(inches) = 4.700 P6/P24 = 57.4% San Diego hydrology manual 'C' values used ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 20.000 INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 325.000(Ft.) Highest elevation = 312.000(Ft.) Lowest elevation = 279.000(Ft.) Elevation difference = 33.000(Ft.) Slope = 10.154 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 10.15 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.23 minutes 29 TC = [1.8*(1.1_C)*distance(Ft.)A.5)/(% slope'(1/3)] TC= [1.8*(1.1_0.3500)*( 100.000".5)/( 10.154"(1/3)1= 6.23 The initial area total distance of 325.00 (Ft.) entered leaves a remaining distance of 225.00 (Ft.) Using Figure 3-4, the travel time for this distance is 1.22 minuces for a distance of 225.00 :Ft.) and a slope of 10.15 % with an elevation difference of 22.85(Ft.) from the end of the top area Tt = [11.9*length(Mi)'3)/elevation change(Ftj)IA.385 *60(min/hr) = 1.220 Minutes Tt=[(11.9*0.04261'3)/( 22.85)]".385= 1.22 Total initial area Ti = 6.23 minutes from Figure 3-3 formula plus 1.22 minutes from the Figure 3-4 formula = 7.45 minutes Rainfall intensity (I) = 5.499(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 0.808(CFS) Total initial stream area = 0.420 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 20.000 to Point/Station 40.000 IMPROVED CHANNEL TRAVEL TIME Upstream point elevation = 279.000(Ft.) Downstream point elevation = 252.400(Ft.) Channel length thru subarea = 205.000(Ft.) Channel base width = 1.000(Ft.) Slope or 'Z' of left channel bank = 1.000 Slope or 'Z' of right charnel bank = 1.000 Estimated inean flow rate at midpoint of channel = 2.292(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 2.292(CFS) Depth of flow = 0.192(Ft.), Average velocity = 10.004(Ft/s) Channel flow top width = 1.384 (Ft.) Flow Velocity = 10.00(Ft/s) Travel time = 0.34 min. Time of concentration = 7.80 mm. Critical depth = 0.465(Ft.) Adding area flow to channel Rainfall intensity (I) = 5.342(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN I (Permanent Open Space Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall incensity = 5.342(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C =0.350 CA = 0.697 Subarea runoff = 2.912(CFS) for 1.570(Ac.) Total runoff = 3.721(CFS) Total area = 1.990(Ac.) Depth of flow = 0.255(Ft.), Average velocity = 11.625(Ft/s) 30 Critical depth = 0.609(Ft.) Process from Point/Station 40.000 to Point/Station 270.100 kkk PIPEFLOW TRAVEL TIME (Program estimated size) Upstream point/station elevation = 239.240(Ft.) Downstream point/station elevation = 233.540(Ft.) Pipe length = 95.00(Ft.) Slope = 0.0600 Manning's N 0.013 No. of pipes = 1 Required pipe flow = 3.721(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 3.721(CFS) Normal flow depth in pipe = 6.79(In.) Flow top width inside pipe = 7.75(In.) Critical depth could not be calculated. Pipe flow velocity = 10.40(Ft/s) Travel time through pipe = 0.15 mm. Time of concentration (TC) = 7.95 mm. Process from Point/Station 40.000 to Point/Station 270.100 **** CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 1.990 (Ac.) Runoff from this stream = 3.721(CFS) Time of concentration = 7.95 mm. Rainfall intensity = 5.276(In/Hr) Program is now starting with Main Stream No. 2 Process from Point/Station 50.000 to Point/Station 60.000 INITIAL AREA EVALUATION Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 90.000(Ft.) Highest elevation = 251.200(Ft.) Lowest elevation = 250.300(Ft.) Elevation difference = 0.900(Ft.) Slope = 1.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 65.00 (Ft) for the top area slope value of 1.00 %, in a development 7.3 DU/A or Less 31 type of In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.69 minutes TC = [1.8*(1.1_C)*distance(Ftj.5)/(% slope"(1/3)] TC= [1.8*(1.1_0.5700)*( 65.000".5)/( 1.000"(1/3)]= 7.69 The initial area total distance of 90.00 (Ft.) entered leaves a remaining distance of 25.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.55 minutes for a distance of 25.00 Ft.) and a slope of 1.00 % with an elevation difference of 0.25(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ftj)]A.385 *60(min/hr) = 0.548 Minutes Tt=[(11.9*0.00473)/( 0.25)]".385= 0.55 Total initial area Ti = 7.69 minutes from Figure 3-3 formula plus 0.55 minutes from the Figure 3-4 formula = 8.24 minutes Rainfall intensity (I) = 5.154(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.264(CFS) Total initial stream area = 0.090 (Ac.) Process from Point/Station 60.000 to Point/Station 70.000 k IRREGULAR CHANNEL FLOW TRAVEL TIME Estimated mean flow rate at midpoint of channel = 0.908(CFS) Depth of flow = 0.198(Ft.), Average velocity = 2.668(Ft/s) Irregular Channel Data ----------------------------------------------------------------- Information entered for subchannel number 1 Point number 'X' coordinate 'Y' coordinate 1 0.00 0.33 2 10.50 0.12 3 11.83 0.00 4 12.00 0.50 Manning's 'N' friction factor = 0.015 ----------------------------------------------------------------- Sub-Channel flow = 0.908(CFS) flow top width = 5.278(Ft.) velocity= 2.669(Ft/s) area = 0.340(Sq.Ft) Froude number 1.852 Upstream point elevation = 250.300(Ft.) Downstream point elevation = 245.000(Ft.) Flow length = 182.000(Ft..) Travel time = 1.14 mm. Time of concentration = 9.38 mm. Depth of flow = 0.198(Ft.) Average velocity = 2.668(Ft/s) Total irregular channel flcw = 0.908(CFS) Irregular channel normal depth above invert elev. = 0.198(Ft.) Average velocity of channel(s) = 2.668(Ft/s) Adding area flow to channel Rainfall intensity (I) = 4.742(In/Hr) for a 100.0 year storm 32 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL I (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.742(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.314 Subarea runoff = 1.222(CFS) for 0.460(Ac.) Total runoff = 1.487(CFS) Total area = 0.550 (Ac.) Depth of flow = 0.225(Ft.), Average velocity = 2.969(Ft/s) +++++++++++-I-++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 70.000 to Point/Station 100.000 PIPEFLOW TRAVEL TIME (User specified size) Upstream point/station elevation = 242.200(Ft.) Downstream point/station elevation = 242.080 (Ft.) Pipe length = 24.00(Ft.) Slope = 0.0050 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.487(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 1.487(CFS) Normal flow depth in pipe = 6.63(In.) Flow top width inside pipe = 11.93(In.) Critical Depth = 6.20(In.) Pipe flow velocity = 3.34(Ft/s) Travel time through pipe = 0.12 mm. Time of concentration (TC) = 9.50 mm. Process from Point/Station 70.000 to Point/Station 100.000 CONFLUENCE OF MINOR STREAMS Along Main Stream number: 2 in normal stream number 1 Stream flow area = 0.550 (Ac.) Runoff from this stream = 1.487(CFS) Time of concentration = 9.50 mm. Rainfall intensity = 4.703(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 80.000 to Point/Station 90.000 INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group 0 = 1.000 [MEDIUM DENSITY RESIDENTIAL 33 (7.3 DU/A or Less Impervious value, Ai = 0.400 I Sub-Area C Value = 0.570 Initial subarea total flow distance = 65.000(Ft.) Highest elevation = 255.000(Ft.) I Lowest elevation = 253.700(Ft.) Elevation difference = 1.300(Ft.) Slope = 2.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80.00 (Ft) I for the top area slope value of 2.00 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 I Initial Area Time of Concentration = 6.77 minutes TC = [1.8*(1.I_C)*distance(Ft.)".5)/(% slope"(1/3)J TC= [1.8*(1.1_0.5700)*( 80.000".5)/( 2.000"(1/3)1= 6.77 Rainfall intensity (I) = 5.849(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.100(CFS) Total initial stream area = 0.030 (Ac.) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 90.000 to Point/Station 100.1000 kk IRREGULAR CHANNEL FLOW TRAVEL TIME Estimated mean flow rate at midpoint of channel = 0.750(CFS) I Depth of flow = 0.178(Ft.), Average velocity = 3.019(Ft/s) Irregular Channel Data ----------------------------------------------------------------- I Information entered for subchannel number 1 Point number 'X' coordinate 'Y' coordinate 1 0.00 0.33 2 10.50 0.12 I 3 11.83 0.00 4 12.00 0.50 Manning's 'N' friction fa:tor = 0.015 ----------------------------------------------------------------- Sub-Channel flow = J.750(CFS) flow top width = 4.313(Ft.) velocity= 3.019(Ft/s) area = C.248(Sq.Ft) Froude number = 2.217 ' Upstream point elevation = 253.700(Ft.) Downstream point elevation = 245.000(Ft.) Flow length = 200.000(F.) I Travel time = 1.10 mm. Time of concentration = 7.88 mm. Depth of flow = 0.178(F.) I Average velocity = 3.019(Ft/s) Total irregular channel flow = 0.750(CFS) Irregular channel normal depth above invert elev. = 0.178(Ft.) Average velocity of channel(s) = 3.019(Ft/s) Adding area flow to channel I 34 Rainfall intensity (I) = 5.306(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL I (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 5.306(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.251 Subarea runoff = 1.231(CFS) for 0.410(Ac.) Total runoff = 1.331(CFS) Total area = 0.440(Ac.) Depth of flow = 0.207(Ft.), Average velocity = 3.389(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 90.000 to Point/Station 100.000 CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.440 (Ac.) Runoff from this stream = 1.331(CFS) Time of concentration = 7.88 mm. Rainfall intensity = 5.306(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) 1 1.487 9.50 4.703 2 1.331 7.88 5.306 Qmax(1) = 1.000 * 1.000 * 1.487) + 0.886 * 1.000 * 1.331) + = 2.666 Qmax(2) = 1.000 * 0.829 * 1.487) + 1.000 * 1.000 * 1.331) + = 2.564 Total of 2 streams to confluence: Flow rates before confluence point: 1.487 1.331 Maximum flow rates at confluence using above data: 2.666 2.564 Area of streams before confluence: 0.550 0.440 Results of confluence: Total flow rate = 2.666(CFS) Time of concentration = 9.496 mm. Effective stream area after confluence = 0.990(Ac.) 35 +++++++++++.+++++++++++++++++++++++++++++++++++++++++++++++++++++++-+++ Process from Point/Station 100.000 to Point/Station 100.100 I PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 242.080(Ft.) I Downstream point/station elevation = 241.300(Ft.) Pipe length = 116.00(Ft.) Slope = 0.0067 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 2.666(CFS) Given pipe size = 12.00(In.) ' Calculated individual pipe flow = 2.666(CFS) Normal flow depth in pipe = 9.00(In.) Flow top width inside pipe 10.39(In.) I Critical Depth = 8.40(In.) Pipe flow velocity = 4.22(Ft/s) Travel time through pipe = 0.46 mm. Time of concentration (TC) = 9.95 mm. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Statior. 100.000 to Point/Station 100.100 **** CONFLUENCE OF MINOR STREAMS I Along Main Stream number: 2 in normal stream number 1 Stream flow area = 0.990(Ac.) Runoff from this stream = 2.666(CFS) Time of concentration 9.95 mm. I Rainfall intensity = 4.563(In/Hr) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 101.000 to Point/Station 102.COO INITIAL AREA EVALUATION Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 145.000(Ft.) Highest elevation = 303.500(Ft.) Lowest elevation = 267.700(Ft.) Elevation difference = 35.800(Ft.) Slope = 24.690 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 24.69 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 3.28 minutes TC = [1.8*(1.1_C)*distance(Ft.).5)/(% slope"(1/3)] TC= [1.8*(1.1_0.5700)*( 100.000'.5)/( 24.690"(1/3)1= 3.28 The initial area total distance of 145.00 (Ft.) entered leaves a 36 remaining distance of 45.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.25 minutes for a distance of 45.00 (Ft.) and a slope of 24.69 % with an elevation difference of 11.11(Ft.) from the end of the top area Tt = [11.9*length(Mi)fs3)/(elevation change(Ftj)]A.385 *60(min/hr) = 0.251 Minutes Tt=[ (l1.9*0.00853)/( 11.11)]'.385= 0.25 Total initial area Ti = 3.28 minutes from Figure 3-3 formula plus 0.25 minutes from the Figure 3-4 formula = 3.53 minutes Calculated TC of 3.527 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 7.114(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.811(CFS) Total initial stream area = 0.200 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 102.000 to Point/Station 103.000 IMPROVED CHANNEL TRAVEL TIME 'k Upstream point elevation = 267.700(Ft.) Downstream point elevation = 241.300(Ft.) Channel length thru subarea = 230.000(Ft.) Channel base width = 1.000(Ft.) Slope or 'Z' of left channel bank = 1.000 Slope or 'Z' of right channel bank = 1.000 Estimated mean flow rate at midpoint of channel = 1.135(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 1.135(CFS) Depth of flow = 0.131(Ft.), Average velocity = 7.632(Ft/s) Channel flow top width = 1.263(Ft.) Flow Velocity = 7.63(Ft/s) Travel time = 0.50 mm. Time of concentration = 4.03 mm. Critical depth = 0.309(Ft.) Adding area flow to channel Calculated TC of 4.029 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 7.114(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 7.114(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.205 Subarea runoff = 0.649(CFS) for 0.160(Ac.) Total runoff = 1.460(CFS) Total area = 0.360 (Ac.) 37 Depth of flow = 0.153(Ft.), Average velocity = 8.296(Ft/s) Critical depth = 0.355(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-+++ Process from Point/Station 102.000 to Point/Station 103.000 CONFLUENCE OF MINOR STREAMS 'k'k Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.360(Ac.) Runoff from this stream = 1.460(CFS) Time of concentration = 4.03 mm. Rainfall intensity = '.114(In/Hr) +++++++++++++++++++++++++-++++++++++++++++++++++++++++++++++++++++-+++ Process from Point/Station 110.000 to Point/Station 120.000 kk INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type (General Industrial Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = 100.000(Ft.) Highest elevation = 245.680(Ft.) Lowest elevation = 244.650(Ft.) Elevation difference = 1.030(Ft.) Slope = 1.030 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 60.00 (Pt) for the tcp area slope value of 1.03 %, in a development type of General Industrial In Accordance With Figure 3-3 Initial Area Time of Concentration = 3.18 minutes TC = [1.8*(1.1_C)*distance(Ft.)t.5)/(% slope"(1/3)J TC= [l.8*(1.1_0.8700)*( 60.000".5)/( 1.030"(1/3)1= 3.18 The initial area total distance of 100.00 (Ft.) entered leaves a remaining distance of 40.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.78 minues for a distance of 40.00 (Ft.) and a slope of 1.03 % with an elevation difference of 0.41(Ft.) from the end of the top area Tt = [11.*length(Mi)"3)/(elevation change(Ft.))}.385 *60(min/hr) = 0.778 Minutes Tt=[ (11.9*C.0076"3)/( 0.41)]".385= 0.78 Total initial area Ti = 3.18 minutes from Figure 3-3 formula plus 0.78 mirutes from the Figure 3-4 formula = 3.95 minutes Calculatec TC of 3.954 minutes is less than 5 minutes, resettinc TC to 5.0 minue5 for rainfall intensity calculations Rainfall intensity (I) = 7.114(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea runoff = 0.631(CFS) 38 Total initial stream area = 0.110 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 120.000 to Point/Station 130.000 IRREGULAR CHANNEL FLOW TRAVEL TIME Estimated mean flow rate at midpoint of channel = 1.114(CFS) Depth of flow = 0.235(Ft.), Average velocity = 1.937(Ft/s) Irregular Channel Data ----------------------------------------------------------------- Information entered for subchannel number 1 Point number 'X' coordinate 'Y' coordinate 1 0.00 0.33 2 10.50 0.12 3 11.83 0.00 4 12.00 0.50 Manning's 'N' friction factor = 0.015 ----------------------------------------------------------------- Sub-Channel flow = 1.114(CFS) I I flow top width = 7.176(Ft.) velocity= 1.937(Ft/s) area = 0.575(Sq.Ft) Froude number = 1.206 Upstream point elevation = 244.650(Ft.) Downstream point elevation = 243.210(Ft.) Flow length = 126.000(Ft.) Travel time = 1.08 mm. Time of concentration = 5.04 mm. Depth of flow = 0.235(Ft.) Average velocity = 1.937(Ft/s) Total irregular channel flow = 1.114(CFS) Irregular channel normal depth above invert elev. = 0.235(Ft.) Average velocity of channel(s) = 1.937(Ft/s) Adding area flow to channel Rainfall intensity (I) = 7.079(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group S = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type (General Industrial Impervious value, Al = 0.950 Sub-Area C Value = 0.870 Rainfall intensity = 7.079(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.870 CA = 0.218 Subarea runoff = 0.859(CFS) for 0.140(Ac.) Total runoff = 1.540(CFS) Total area = 0.250(Ac.) Depth of flow = 0.256(Ft.), Average velocity = 2.088(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 39 Process from Point/Station 130.000 to Point/Station 130.100 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 341.460(Ft.) Downstream point/station elevation = 341.300(Ft.) Pipe length = 33.50(Ft.) Slope = 0.0048 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.540(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.540(CFS) Normal flow depth in pipe = 5.63(In.) Flow top width inside pipe = 16.69(In.) Critical Depth = 5.58(n.) Pipe flow velocity = 3.26(Ft/s) Travel time through pipe = 0.17 mm. Time of concentration (TC) = 5.21 mm. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++--+++ Process from Point/Station 130.000 to Point/Station 130.100 CONFLUENCE OF MINOR ETREAI'4S Along Main Stream number: 2 in normal stream number 3 Stream flow area = 0.250 (Ac.) Runoff from this stream = 1.540(CFS) Time of concentration = 5.21 mm. Rainfall intensity = €.928(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) 1 2.666 9.95 4.563 2 1.460 4.03 7.114 3 1.540 5.21 6.928 Qmax(1) = 1.000 * 1.000 * 2.666) + 0.641 * 1.000 * 1.460) + 0.659 * 1.000 * 1.540) + = 4.616 Qmax(2) = 1.000 * 0.405 * 2.666) + 1.000 * 1.000 * 1.460) + 1.000 * 0.774 * 1.540) + = 3.730 Qmax(3) = 1.000 * 0.523 * 2.666) + 0.974 * 1.000 * 1.460) + 1.000 * 1.000 * 1.540) + = 4.357 Total of 3 streams to confluence: Flow rates before confluence point: 2.665 1.460 1.540 Maximum flow rates at confluence using above data: 4.616 3.730 4.357 Area of streams before confluence: 40 0.990 0.360 0.250 Results of confluence: Total flow rate = 4.616(CFS) Time of concentration = 9.955 mm. Effective stream area after confluence = 1.600(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 140.000 to Point/Station 140.000 SUBAREA FLOW ADDITION Rainfall intensity (I) = 4.563(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Time of concentration = 9.95 mm. Rainfall intensity = 4.563(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.611 CA = 1.124 Subarea runoff = 0.511(CFS) for 0.240(Ac.) Total runoff = 5.127(CFS) Total area = 1.840(Ac.) Process from Point/Station 140.000 to Point/Station 270.100 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 236.550(Ft.) Downstream point/station elevation = 233.540(Ft.) Pipe length = 130.00(Ft.) Slope = 0.0232 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.127(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 5.127(CFS) Normal flow depth in pipe = 7.01(In.) Flow top width inside pipe = 17.55(In.) Critical Depth = 10.45(In.) Pipe flow velocity = 8.05(Ft/s) Travel time through pipe = 0.27 mm. Time of concentration (TC) = 10.22 mm. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 140.000 to Point/Station 270.100 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.840(Ac.) Runoff from this stream = 5.127(CFS) 41 Time of concentration = 10.22 mm. Rainfall intensity = 4.485(In/Hr) Program is now starting with Main Stream No. 3 I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-+++ Process from Point/Station 150.000 to Point/Station 160.000 INITIAL AREA EVALUATION I Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 I Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL I (7.3 DU/A or Less I Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 85.600(Ft.) Highest elevation = 247.800(Ft.) I Lowest elevation = 246.200(Ft.) Elevation difference = 1.600(Ft.) Slope = 1.869 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: I The maximum overland flow distance is 80.00 (Ft) for the top area slope value of 1.87 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 I Initial Area Time of Concentration = 6.93 minutes TC = [1.8*(1.1_C)*distance(Ft.)".5)/(% slope"(1/3)] TC= [1.8*(1.1_0.5700)*( 80.000".5)/( 1.869"(1/3)1= 6.93 I The initial area total distance of 85.60 (Ft.) entered leaves a remaining distance of 5.60 (Ft.) Using Figure 3-4, the travel time for this distance is 0.14 minutes I for a distance of 5.60 (Ft.) and a slope of 1.87 % with an elevation difference of 0.10(Ft.) from the end of the top area Tt = [11.9*1ength(Mi)t3)/(elevation change(Ft.))].385 *60(min/hr) = 0.136 Minutes I Tt=[(11.9*0.00113)/( 0.10)].385= 0.14 Total initial area Ti = 6.93 minutes from Figure 3-3 formula plus 0.14 minutes from the Figure 3-4 formula = 7.06 minutes I Rainfall intensity (I) = 5.693(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.324(CFS) Total initial stream area = 0.100 (Ac.) I + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ + + + + + + + + + + + + + I Process from Point/Station 160.000 to Point/Station 170.000 IRREGULAR CHANNEL FLOW TRAVEL TIME Estimated mean flow rate at midpoint of channel = 1.965(CFS) Depth of flow = 0.261(Ft.), Average velocity = 2.534(Ft/s) ******* Irregular Channel Data ----------------------------------------------------------------- Information entered for subchannel number 1 42 Point number 'X' coordinate 'Y' coordinate 1 0.00 0.33 2 10.50 0.12 3 11.83 0.00 4 12.00 0.50 Manning's 'N' friction factor = 0.015 ----------------------------------------------------------------- Sub-Channel flow = 1.965(CFS) flow top width = 8.467(Ft.) velocity= 2.534(Ft/s) area = 0.776(Sq.Ft) Froude number = 1.475 Upstream point elevation = 246.200(Ft.) Downstream point elevation = 243.000(Ft.) Flow length = 196.000(Ft.) Travel time = 1.29 mm. Time of concentration = 8.35 mm. Depth of flow = 0.261(Ft.) Average velocity = 2.534(Ft/s) Total irregular channel flow = 1.965(CFS) Irregular channel normal depth above invert elev. = 0.261(Ft.) Average velocity of channel(s) = 2.534(Ft/s) Adding area flow to channel Rainfall intensity (I) = 5.109(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL I (7.3 DU/A or Less Impervious value, Al = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 5.109(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.695 Subarea runoff = 3.229(CFS) for 1.120(Ac.) Total runoff = 3.553(CFS) Total area = 1.220(Ac.) Depth of flow = 0.307(Ft.), Average velocity = 2.917(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 170.000 to Point/Station 200.100 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 241.700(Ft.) Downstream point/station elevation = 241.100(Ft.) Pipe length = 34.00(Ft.) Slope = 0.0176 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.553(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 3.553(CFS) Normal flow depth in pipe = 7.76(In.) Flow top width inside pipe = 11.47(In.) Critical Depth = 9.66(In.) 43 Pipe flow velocity = 6.61(Ft/s) Travel time through pipe = 0.09 mm. Time of concentration (TC) = 8.44 mm. +++++++++++++++++++++++++-i-++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 170.000 to Point/Station 200.100 CONFLUENCE OF MINOR STREAMS Along Main Stream number: 3 in normal stream number 1 Stream flow area = ±.U(/c.) Runoff from this stream = 3.553(CFS) Time of concentration = 8.44 mm. Rainfall intensity = 5.076(In/Hr) Process from Point/Station 200.000 to Point/Station 200.300 INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL I (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 105.000(Ft.) Highest elevation = 246.000(Ft.) Lowest elevation = 244.330(Ft.) Elevation difference = 1.670(Ft.) Slope = 1.590 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80.00 (Ft) for the too area slope value of 1.59 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.31 minutes TC = [1.8*(1.1_C)*distance(Ft.).5)/(% slope"(1/3)J TC= [1.8*(1.1_0.5700)*( 80.000".5)/( 1.590"(1/3)1= 7.31 The initial area total distance of 105.00 (Ft.) entered leaves a remaining distance of 25.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.46 minutes for a distance of 25.00 (Ft.) and a slope of 1.59 % with an elevation difference of 0.40(Ft.) from the end of the top area Tt = [11.9*length(Mi)3)/(elevation change(Ft.))].385 *60(min/hr) = 0.459 Minutes Tt=[(11.9*0.0047'3)/( 0.40)]'.385= 0.46 Total initial area Ti = 7.31 minutes from Figure 3-3 formula plus 0.46 minutes from the Figure 3-4 formula = 7.77 minutes Rainfall intensity (I) = 5.353(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.214(CFS) Total initial stream area = 0.070 (Ac.) 44 I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 200.300 to Point/Station 200.100 IRREGULAR CHANNEL FLOW TRAVEL TIME Estimated mean flow rate at midpoint of channel = 0.366(CFS) Depth of flow = 0.172(Ft.), Average velocity = 1.646(Ft/s) Irregular Channel Data ----------------------------------------------------------------- Information entered for subchannel number 1 Point number 'X' coordinate 'Y' coordinate 1 0.00 0.33 2 10.50 0.12 3 11.83 0.00 4 12.00 0.50 Manning's 'N' friction factor = 0.015 ----------------------------------------------------------------- Sub-Channel flow = 0.366(CFS) flow top width = 3.999(Ft.) velocity= 1.646(Ft/s) area = 0.222(Sq.Ft) Froude number = 1.230 Upstream point elevation = 244.330(Ft.) Downstream point elevation = 243.000(Ft.) Flow length = 98.000(Ft.) Travel time = 0.99 mm. Time of concentration = 8.76 mm. Depth of flow = 0.172(Ft.) Average velocity = 1.646(Ft/s) Total irregular channel flow = 0.366(CFS) Irregular channel normal depth above invert elev. = 0.172(Ft.) Average velocity of channel(s) = 1.646(Ft/s) Adding area flow to channel Rainfall intensity (I) = 4.954(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL I (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.954(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.097 Subarea runoff = 0.266(CFS) for 0.100 (Ac.) Total runoff = 0.480(CFS) Total area = 0.170(Ac.) Depth of flow = 0.185(Ft.), Average velocity = 1.730(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 200.300 to Point/Station 200.100 45 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 2 Stream flow area = 0..170(Ac.) Runoff from this stream = 0.480(CFS) Time of concentration = 8.76 mm. Rainfall intensity = 4.954(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) 1 3.553 8.44 5.076 2 0.480 8.76 4.954 Qmax(l) = 1.000 * 1.000 * 3553) + 1.000 * 0.963 * 0.480) + = 4.015 Qmax(2) = 0.976 .* 1.000 * 3.553) + 1.000 * 1.000 * 0.480) + = 3.948 Total of 2 streams to confluence: Flow rates before confluence point: 3.553 0.480 Maximum flow rates at confluence using above data: 4.015 3.948 Area of streams before confluence: 1.220 0.170 Results of confluence: Total flow rate = 4.015(CFS) Time of concentration = 8.438 mm. Effective stream area after confluence = 1.390(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 200.100 to Point/Station 230.000 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 240.900(Ft.) Downstream point/station elevation = 239.800(Ft.) Pipe lengti = 22.00(Ft.) Slope = 0.0500 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.015(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 4.015(CFS) Normal flow depth in pipe = 6.03(In.) Flow top width inside pipe = 12.00(In.) Critical Depth = 10.19(m.) Pipe flow velocity = 10.16(Ft/s) Travel time through pipe = 0.04 mm. Time of concentration (TC) = 8.47 mm. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 46 I Process from Point/Station 200.100 to Point/Station CONFLUENCE OF MINOR STREAMS Along Main Stream number: 3 in normal stream number 1 Stream flow area = 1.390(Ac.) Runoff from this stream = 4.015(CFS) Time of concentration = 8.47 mm. Rainfall intensity = 5.062(In/Hr) 230.000 I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 210.000 to Point/Station 211.000 INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 77.000(Ft.) Highest elevation = 246.000(Ft.) Lowest elevation = 245.300(Ft.) Elevation difference = 0.700(Ft.) Slope = 0.909 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 65.00 (Ft) for the top area slope value of 0.91 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.94 minutes TC = [1.8*(1.1_C)*distance(Ft.).5)/(% slope"(1/3)] TC= [1.8*(1.1_0.5700)*( 65.000".5)/( 0.909"(1/3)1= 7.94 The initial area total distance of 77.00 (Ft.) entered leaves a remaining distance of 12.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.32 minutes for a distance of 12.00 (Ft.) and a slope of 0.91 % with an elevation difference of 0.11(Ft.) from the end of the top area Tt = [11.9*length(Mi)A3)/(elevation change(Ft.))]A.385 *60(min/hr) = 0.323 Minutes Tt= [(11.9*0. 0023A3)/( 0.11)1 ^.385= 0.32 Total initial area Ti = 7.94 minutes from Figure 3-3 formula plus 0.32 minutes from the Figure 3-4 formula = 8.26 minutes Rainfall intensity (I) = 5.145(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.235(CFS) Total initial stream area = 0.080(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 211.000 to Point/Station 220.000 IRREGULAR CHANNEL FLOW TRAVEL TIME 47 Estimated mean flow rate at midpoint of channel = 0.572(CFS) Depth of flow = 0.184(Ft.), Average velocity = 2.093(Ft/s) Irregular Channel Data ------------------------------------------------------------------ Information entered for subchannel number 1 Point number 'X' coordinate 'Y' coordinate 1 0.00 0.33 2 10.50 0.12 3 11.83 0.00 4 12.00 0.50 Manning's 'N' friction factor = 0.015 ----------------------------------------------------------------- Sub-Channel flow = 0.572(CFS) flow top width = 4.594 (Ft.) velocity= 2.093(Ft/s) area = 0.273(Sq.Ft) Froude number = 1.512 Upstream point elevation = 245.300(Ft.) Downstream point elevation = 244.700(Ft.) Flow length = 30.000(F.) Travel time = 0.24 mm. Time of concentration = 8.50 mm. Depth of flow = 0.184(FL.) Average velocity = 2.093(Ft/s) Total irregular channel flow = 0.572(CFS) Irregular channel normal depth above invert elev. = 0.184(Ft.) Average ve-locity of channel(s) = 2.093(Ft/s) Adding area flow to channel Rainfall intensity (I) = 5.051(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL I (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 5.051(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.177 Subarea runoff = 0.658(CFS) for 0.230(Ac.) Total runoff = 0.893(CFS) Total area = 0.310 (Ac.) Depth of flow = 0.207(Ft.), Average velocity = 2.293(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Staticn 220.000 to Point/Station 220.100 PIPEE'LOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 239.910(Ft.) Downstream point/station elevation = 239.800(Ft.) Pipe length = 23.00(Ft.) Slope = 0.0048 Manning's N = 0.013 No. of pipes = 1 RequirEd pipe flow = 0.893(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 0.893(CFS) Normal flow depth in pipe = 4.99(In.) Flow top width inside pipe = 11.83(In.) Critical Depth = 4.74(In.) Pipe flow velocity = 2.89(Ft/s) Travel time through pipe = 0.13 mm. Time of concentration (TC) = 8.63 mm. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 220.000 to Point/Station 220.100 CONFLUENCE OF MINOR STREAMS Along Main Stream number: 3 in normal stream number 2 Stream flow area = 0.310 (Ac.) Runoff from this stream = 0.893(CFS) Time of concentration = 8.63 mm. Rainfall intensity = 5.001(In/I-Ir) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) 1 4.015 8.47 5.062 2 0.893 8.63 5.001 Qmax(l) = 1.000 * 1.000 * 4.015) + 1.000 * 0.981 * 0.893) + = 4.891 Qmax(2) = 0.988 * 1.000 * 4.015) + 1.000 * 1.000 * 0.893) + = 4.860 Total of 2 streams to confluence: Flow rates before confluence point: 4.015 0.893 Maximum flow rates at confluence using above data: 4.891 4.860 Area of streams before confluence: 1.390 0.310 Results of confluence: Total flow rate = 4.891(CFS) Time of concentration = 8.474 mm. Effective stream area after confluence = 1.700(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 220.000 to Point/Station 220.100 kkk SUBAREA FLOW ADDITION **** Rainfall intensity (I) = 5.062(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 49 I I I I I Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL I (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Time of concentration = 8.47 mm. Rainfall intensity = 5.062(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 1.066 Subarea runoff = 0.504(CFS) for 0.170(Ac.) Total runoff = 5.395(CFS) Total area = 1.870 (Ac.) Process from Point/Station 230.000 to Point/Station 231-000 I PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 239.800(Ft.) Downstream point/station elevation = 239.300(Ft.) - Pipe length = 106.00(Ft.) Slope = 0.0047 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 5.395(CFS) U Given pipe size = 12.00(In.) NOTE: Normal flow is pressure flow in user selected pipe size. The approximate hydraulic grade line above the pipe invert is 3.029(Ft.) at the headworks or inlet of the pipe(s) Pipe friction loss = 2.430(Ft.) Minor friction loss = 1.099(Ft.) K-factor = 1.50 Pipe flow velocity = 6.87(Ft/s) Travel time through pipe = 0.26 mm. Time of concentration (TC) = 8.73 mm. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 230.000 to Point/Station 231.000 CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 1 Stream flow area = 1.870 (Ac.) Runoff from this stream = 5.395(CFS) Time of concentration = 8.73 mm. Rainfall intensity = 4.965(In/Hr) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 240.000 INITIAL AREA EVALUATION Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type (General Industrial 50 Impervious value, Al = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = 65.000(Ft.) Highest elevation = 245.680(Ft.) Lowest elevation = 244.700(Ft.) Elevation difference = 0.980(Ft.) Slope = 1.508 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 70.00 (Ft) for the top area slope value of 1.51 %, in a development type of General Industrial In Accordance With Table 3-2 Initial Area Time of Concentration = 2.70 minutes (for slope value of 2.00 %) Calculated TC of 2.700 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 7.114(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea runoff = 0.371(CFS) Total initial stream area = 0.060(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 240.000 to Point/Station 260.000 IRREGULAR CHANNEL FLOW TRAVEL TIME Estimated mean flow rate at midpoint of channel = 0.990(CFS) Depth of flow = 0.235(Ft.), Average velocity = 1.734(Ft/s) Irregular Channel Data ----------------------------------------------------------------- Information entered for subchannel number 1 Point number 'X' coordinate 'Y' coordinate 1 0.00 0.33 2 10.50 0.12 3 11.83 0.00 4 12.00 0.50 Manning's 'N' friction factor = 0.015 ----------------------------------------------------------------- Sub-Channel flow = 0.990(CFS) flow top width = 7.148(Ft.) velocity= 1.734(Ft/s) area = 0.571(Sq.Ft) Froude number = 1.081 Upstream point elevation = 244.700(Ft.) Downstream point elevation = 243.210(Ft.) Flow length = 162.000(Ft.) Travel time = 1.56 mm. Time of concentration = 4.26 mm. Depth of flow = 0.235(Ft.) Average velocity = 1.734(Ft/s) Total irregular channel flow = 0.990(CFS) Irregular channel normal depth above invert elev. = 0.235(Ft.) Average velocity of channel(s) = 1.734(Ft/s) Adding area flow to channel 51 Calculated IC of 4.257 minutes is less than 5 minutes, resetting IC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 7.114(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type I (General Industrial Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Rainfall intensity = 7.114(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.870 CA = 0.226 Subarea runoff = 1.238(CFS) for 0.200(Ac.) Total runoff = 1.609(CFS) Total area = 0.260(Ac.) Depth of flow = 0.267(Ft.), Average velocity = 1.941(Ft/s) Process from Point/Station 260.000 to Point/Station 270.000 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 239.400(Ft.) Downstream point/station elevation = 239.300(Ft.) Pipe length = 20.00(Ft.) Slope = 0.0050 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.609(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 1.609(CFS:) Normal flow depth in pipe = 5.69(In.) Flow top width inside pipe = 16.74(In.) Critical Depth = 5.71(In.) Pipe flow velocity = 3.36(Ft/s) Travel time through pipe = 0.10 mm. Time of concentration (TC) = 4.36 mm. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 260.000 to Point/Station 270.000 CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 3 in normal stream number 2 Stream flow area = 0.260 (Ac.) Runoff from this stream = 1.609(CFS) Time of concentration = 4.36 mm. Rainfall intensity = 7.114(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) 1 5.395 8.73 4.965 2 1.609 4.36 7.114 52 Qmax(1) 1.000 * 1.000 * 5.395) + 0.698 * 1.000 * 1.609) + = 6.519 Qmax(2) = 1.000 * 0.499 * 5•395) + 1.000 * 1.000 * 1.609) + = 4.301 Total of 2 streams to confluence: Flow rates before confluence point: 5.395 1.609 Maximum flow rates at confluence using above data: 6.519 4.301 Area of streams before confluence: 1.870 0.260 Results of confluence: Total flow rate = 6.519(CFS) Time of concentration = 8.732 mm. Effective stream area after confluence = 2.130(Ac.) Process from Point/Station 270.000 to Point/Station 270.000 SUBAREA FLOW ADDITION Rainfall intensity (I) = 4.965(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less Impervious value, Al = 0.400 Sub-Area C Value = 0.570 Time of concentration = 8.73 mm. Rainfall intensity = 4.965(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.605 CA = 1.332 Subarea runoff = 0.095(CFS) for 0.070(Ac.) Total runoff = 6.614(CFS) Total area = 2.200 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 270.000 to Point/Station 270.100 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 234.750(Ft.) Downstream point/station elevation = 233.540(Ft.) Pipe length = 61.00(Ft.) Slope = 0.0198 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.614(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 6.614(CFS) Normal flow depth in pipe = 8.44(In.) Flow top width inside pipe = 17.96(In.) Critical Depth = 11.94(In.) 53 I Pipe flow velocity 8.14(Ft/s) Travel time through pipe = 0.12 mm. Time of concentration (TO) = 8.86 mm. I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 270.000 to Point/Station 270.100 **** CONFLUENCE OF MAIN STREAMS I The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 2.200(Ac.) I Runoff frcrrL this stream = 6.614(CFS) Time of concentration = 8.86 mm. Rainfall intensity = 4.920(In/Hr) I Summary of stream data: Stream Flow rate TO Rainfall Intensity No. (CFS) (mm) (In/Hr) I 1 3.721 7.95 5.276 I 2 5 .127 10.22 4.485 3 6.614 8.86 4.920 Qmax(1) = 1.000 * 1.000 * 3.721) + I 1 .000 * 0.777 * 5.127) + 1.000 * 0.897 * 6.614) + = 13.641 Qmax(2) = I 0.850 * 1.000 * 3.721) + 1.000 * 1.000 * 5.127) + 0.912 * 1.000 * 6.614) + = 14.319 Qmax(3) = I 0.933 * 1.000 * 3.721) + 1.000 * 0.866 * 5.127) + 1.000 * 1.000 * 6.614) + = 14.525 I Total of 3 main streams to confluence: Flow rates before confluence point: I 3.721 5.127 6.614 Maximum flow rates at confluence using above data: 13.641 14.319 14.525 Area of streams before confluence: 1.990 1.840 2.200 I Results of confluence: Total flow rate = 14.525(CFS) Time of concentration = 8.856 mm. Effective stream area after confluence = 6.030(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 270.100 to Point/Station 330.000 54 I PIPEFLOW TRAVEL TIME (User specified size) **** LI Upstream point/station elevation = 233.210(Ft.) Downstream point/station elevation = 231.000(Ft.) Pipe length = 147.00(Ft.) Slope = 0.0150 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 14.525(CFS) Given pipe size = 18.00(In.) NOTE: Normal flow is pressure flow in user selected pipe size. The approximate hydraulic grade line above the pipe invert is 2.173(Ft.) at the headworks or inlet of the pipe(s) Pipe friction loss = 2.810(Ft.) Minor friction loss = 1.574(Ft.) K-factor = 1.50 Pipe flow velocity = 8.22(Ft/s) Travel time through pipe = 0.30 mm. Time of concentration (TC) = 9.15 mm. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 270.100 to Point/Station 330.000 kk CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 6.030(Ac.) Runoff from this stream = 14.525(CFS) Time of concentration = 9.15 mm. Rainfall intensity = 4.816(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 280.000 to Point/Station 290.000 INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type (General Industrial Impervious value, Al = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = 55.000(Ft.) Highest elevation = 248.000(Ft.) Lowest elevation = 244.700(Ft.) Elevation difference = 3.300(Ft.) Slope = 6.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 90.00 (Ft) for the top area slope value of 6.00 %, in a development type of General Industrial In Accordance With Figure 3-3 Initial Area Time of Concentration = 2.16 minutes TC = [1.8*(1.1_C)*distance(Ft.)".5)/(% slope"(1/3)] TC= [1.8*(1.1_0.8700)*( 90.000".5)/( 6.000"(1/3)1= 2.16 55 I Calculated TC of 2.161 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 7.114(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea runoff = 1.114(CFS) Total initial stream area = 0.180 (Ac.) Process from Point/Station 290.000 to Point/Station 300.000 IRREGULAR CHANNEL FLOW TRAVEL TIME I Estimated mean flow rate at midpoint of channel = 3.775(CFS) Depth of flow = 0.326(Ftj, Average velocity = 2.544(Ft/s) Irregular Channel Data ----------------------------------------------------------------- I Informatior. entered for subchannel number 1 Point number 'X' coordinate 'Y' coordinate 1 0.00 0.52 I 2 20.00 0.12 3 21.33 0.00 4 22.00 0.50 I Manning's 'N' friction factor = 0.015 ----------------------------------------------------------------- Sub-Channel flow = 3.775(CFS) flow top width = 12.059(Ft.) velocity= 2.544(Ft/s) area = 1.484(Sq.Ft) Froude number = 1.278 I Upstream point elevation = 244.700(Ft.) Downstream point elevation = 241.100(Ft.) Flow length = 330.000(Ft.) I Travel time = 2.16 mm. Time of concentration = 4.32 mm. Depth of flow = 0.326(Ft.) I Average velocity = 2.544(Ft/s) Total irregular channel flow = 3.775(CFS) Irregular channel normal depth above invert elev. = 0.326(Ft.) U Average velocity of channel(s) = 2.544(Ft/s) Adding area flow to channel Calculated TC of 4.324 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations I Rainfall intensity (I) = 7.114(In/Hr) for a 100.0 year storm Decimal fraction soil grcup A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type I (General Industrial Impervious value, Ai = 0.950 - Sub-Area C Value = 0.870 Rainfall intensity = 7.114(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area 56 (Q=KCIA) is C = 0.870 CA = 0.905 Subarea runoff = 5.323(CFS) for 0.860(Ac.) Total runoff = 6.437(CFS) Total area = 1.040(Ac.) Depth of flow = 0.381(Ft.), Average velocity = 2.896(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 300.000 to Point/Station 330.000 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 232.500(Ft.) Downstream point/station elevation = 231.000(Ft.) Pipe length = 82.50(Ft.) Slope = 0.0182 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 6.437(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 6.437(CFS) Normal flow depth in pipe = 8.51(In.) Flow top width inside pipe = 17.97(In.) Critical Depth = 11.77(In.) Pipe flow velocity = 7.82(Ft/s) Travel time through pipe = 0.18 mm. Time of concentration (TC) = 4.50 mm. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 300.000 to Point/Station 330.000 CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.040(Ac.) Runoff from this stream = 6.437(CFS) Time of concentration = 4.50 mm. Rainfall intensity = 7.114(In/Hr) Program is now starting with Main Stream No. 3 Process from Point/Station 310.000 to Point/Station 320.000 INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type (General Industrial Impervious value, Al = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = 104.300(Ft.) Highest elevation = 282.400(Ft.) Lowest elevation = 280.500(Ft.) Elevation difference = 1.900(Ft.) Slope = 1.822 % Top of Initial Area Slope adjusted by User to 0.500 % 57 Bottom of Initial Area Slope adjusted by User to 0.500 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: I The maximum overland flow distance is 50.00 (Ft) for the top area slope value of 0.50 %, in a development type of General Industrial I In Accordance With Figure 3-3 Initial Area Time of Concentration = 3.69 minutes TC = [1.8*(1.1_C)*distance(Ftj".5)/(% slope"(1/3)] TC= {1.8*(l.1_0.8700)*( 50.000".5)/( 0.500"(1/3)]= 3.69 I The initial area total distance of 104.30 (Ft.) entered leaves a remaining distance of 54.30 (Ft.) Using Figure 3-4, the travel time for this distance is 1.30 minutes I for a distance of 54.30 (Ft.) and a slope of 0.50 % with an elevation difference of 0.27(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))].385 *60(min/hr) = 1.301 Minutes l Tt=[(11.9*0.0103'3)/( 0.27)]".385= 1.30 Total initial area Ti = 3.69 minutes from Figure 3-3 formula plus 1.30 minutes from the Figure 3-4 formula = 4.99 minutes I Calculated TC of 4.989 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 7.114(In/Hr) for a 100.0 year storm I Effective runoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea runoff = 0.433(CFS) Total initial stream area = 0.070(Ac.) +++++++++++++++++++++++++++.++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 320.000 to Point/Station 330.000 **** IRREGULAR CHANNEL FLOW TRAVEL TIME Estimated mean flow rate at midpoint of channel = 3.614(CFS) Depth of flow = 0.273(Ft.), Average velocity = 3.933(Ft/s) Irregular Channel Data ----------------------------------------------------------------- Information entered for subchannel number 1 I Point number 'X' coordinate 'Y' coordinate 1 0.00 0.52 2 20.00 0.12 I 3 21.33 0.00 4 22.00 0.50 Manning's 'N' friction factor = 0.015 ----------------------------------------------------------------- I Sub-Channel flow = 3.614(CFS) flow top width = 9.348(Ft.) velocity= 3.933(Ft/s) I I area = 0.919(Sq.Ft) Froude number = 2.211 Upstream point elevation = 280.700(Ft.) I' Downstream point elevation = 241.100(Ft.) Flow length = 1124.000(Ft.) Travel time = 4.76 mm. Time of concentration = 9.75 mm. i 58 Depth of flow = 0.273(Ft.) Average velocity = 3.933(Ft/s) Total irregular channel flow = 3.614(CFS) Irregular channel normal depth above invert elev. = 0.273(Ft.) Average velocity of channel(s) = 3.933(Ft/s) Adding area flow to channel Rainfall intensity (I) = 4.623(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type (General Industrial Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Rainfall intensity = 4.623(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.870 CA = 1.453 Subarea runoff = 6.284(CFS) for 1.600(Ac.) Total runoff = 6.717(CFS) Total area = 1.670(Ac.) Depth of flow = 0.325(Ft.), Average velocity = 4.560(Ft/s) Process from Point/Station 320.000 to Point/Station 330.000 CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 1.670 (Ac.) Runoff from this stream = 6.717(CFS) Time of concentration = 9.75 mm. Rainfall intensity = 4.623(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) 1 14.525 9.15 4.816 2 6.437 4.50 7.114 3 6.717 9.75 4.623 Qmax(1) = 1.000 * 1.000 * 14.525) + 0.677 * 1.000 * 6.437) + 1.000 * 0.939 * 6.717) + = 25.188 Qmax(2) = 1.000 * 0.491 * 14.525) + 1.000 * 1.000 * 6.437) + 1.000 * 0.461 * 6.717) + = 16.674 Qmax(3) = 0.960 * 1.000 * 14.525) + 0.650 * 1.000 * 6.437) + 1.000 * 1.000 * 6.717) + = 24.845 59 I Total of 3 main streams to confluence: I Flow rates before confluerce point: 14.525 6.437 6.717 Maximum flow rates at confluence using above data: I 25.188 16.674 24.845 Area of streams before confluence: 6.030 1.040 1.670 Results of confluence: Total flow rate = 25.188(CFS) I Time of concentration = 9.155 mm. Effective stream area after confluence = 8.740(Ac.) +++++++++++++++++++++++++-++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 330.000 to Point/Station 300.100 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 230.670(Ft.) Downstream point/station elevation = 224.500(Ft.) Pipe length = 25.40(F.) Slope = 0.2429 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 25.188(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 25.188(CFS) Normal flow depth in pipe = 8.86(In.) Flow top width inside pipe = 18.00(In.) Critical depth could not be calculated. Pipe flow velocity = 29.10(Ft/s) Travel time through pipe = 0.01 mm. Time of concentration (TO) = 9.17 mm. ++++++++++-+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 330.000 to Point/Station 300.100 **** CONFLUENCE OF MAIN STREAMS **** The followng data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 8.740(Ac.) Runoff from this stream = 25.188(CFS) Time of concentration 9.17 mm. Rainfall intensity = 4.811(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 350.000 to Point/Station 350.000 USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C' value of 0.540 given for subarea Rainfall intensity (I) = 3.008(In/Hr) for a 100.0 year storm User specified values are as follows: XC I TC = 18.99 mm. Rain intensity = 3.01(In/Hr) Total area = 17.600(Ac.) Total runoff = 18.000(CFS) 1 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 350.000 to Point/Station 300.100 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 225.500(Ft.) Downstream point/station elevation = 224.500(Ft.) Pipe length = 135.00(Ft.) Slope = 0.0074 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 18.000(CFS) Given pipe size = 18.00(In.) NOTE: Normal flow is pressure flow in user selected pipe size. The approximate hydraulic grade line above the pipe invert is 5.379(Ft.) at the headworks or inlet of the pipe(s) Pipe friction loss = 3.963(Ft.) Minor friction loss = 2.417(Ft.) K-factor = 1.50 Critical depth could not be calculated. Pipe flow velocity = 10.19(Ft/s) Travel time through pipe = 0.22 mm. Time of concentration (TC) = 19.21 mm. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 350.000 to Point/Station 300.100 CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 17.600 (Ac.) Runoff from this stream = 18.000(CFS) Time of concentration = 19.21 mm. Rainfall intensity = 2.986(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) 1 25.188 9.17 4.811 2 18.000 19.21 2.986 Qmax(1) = 1.000 * 1.000 * 25.188) + 1.000 * 0.477 * 18.000) + = 33.779 Qmax(2) = 0.621 * 1.000 * 25.188) + 1.000 * 1.000 * 18.000) + = 33.632 Total of 2 main streams to confluence: Flow rates before confluence point: 25.188 18.000 Maximum flow rates at confluence using above data: 33.779 33.632 61 Area of streams before confluence: 8.740 17.600 I Results of confluence: I Total flow rate = 33.779(CFS) Time of concentration = 9.169 mm. Effective stream area after confluence = 26.340 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-+++ Process from Point/Station 300.100 to Point/Station 350.00 kk PIPEFLOW TRAVEL TIME (User specified size) **** Upstream pcint/station elevation = 224.000(Ft.) Downstream point/station elevation = 214.410(Ft.) Pipe length = 45.00(Ft.) Slope = 0.2131 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 33.779(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 33.779(CFS) Normal flow depth in pipe = 9.39(In.) Flow top width inside pipe = 23.42(In.) Critical depth could not be calculated. Pipe flow velocity = 29.66(Ft/s) Travel time through pipe = 0.03 mm. Time of concentration (TC) = 9.19 mm. ' Process from Point/Station 350.100 to Point/Station 350.200 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 214.080(Ft.) Downstream point/station elevation = 213.500(Ft.) Pipe length = 18.00(Ft.) Slope = 0.0322 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 33.779(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 33.779(CFS) Normal flow depth in pipe = 16.71(In.) Flow top width inside pipe = 22.07(In.) Critical depth could not be calculated. Pipe flow velocity = 14.46(Ft/s) Travel time through pipe = 0.02 mm. Time of concentration (TC) = 9.22 mm. I ++++++++++±+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frDm Point/Station 350.100 to Point/Station 350.200 CONFLJENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: - In Main Stream number: 1 Stream flow area = 26.340(Ac.) I Runoff from this stream = 33.779(CFS) 62 Time of concentration = 9.22 mm. Rainfall intensity = 4.796(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 351.000 to Point/Station 360.000 INITIAL AREA EVALUATION Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN I (Permanent Open Space Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 137.000(Ft.) Highest elevation = 243.400(Ft.) Lowest elevation = 213.500(Ft.) Elevation difference = 29.900(Ft.) Slope = 21.825 % Top of Initial Area Slope adjusted by User to 2.000 % Bottom of Initial Area Slope adjusted by User to 30.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 85.00 (Ft) for the top area slope value of 2.00 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 9.88 minutes TC = [1.8*(1.1_C)*distance(Ft.)'.5)/(% slope"(1/3)] TC= [1.8*(1.1_0.3500)*( 85.000".5)/( 2.000"(1/3)1= 9.88 The initial area total distance of 137.00 (Ft.) entered leaves a remaining distance of 52.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.26 minutes for a distance of 52.00 (Ft.) and a slope of 30.00 % with an elevation difference of 15.60(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))].385 *60(min/hr) = 0.260 Minutes Tt=[(11.9*0.0098'3)/( 15.60)]A.385= 0.26 Total initial area Ti = 9.88 minutes from Figure 3-3 formula plus 0.26 minutes from the Figure 3-4 formula = 10.14 minutes Rainfall intensity (I) = 4.509(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 1.042(CFS) Total initial stream area = 0.660 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 351.000 to Point/Station 360.000 CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.660 (Ac.) 63 Runoff from this stream = 1.042(CFS) Time of concentration = 10.14 mm. Rainfall intensity = 4.509(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) 1 33.779 9.22 4.796 2 1.042 10.14 4.509 Qmax(1) = 1.000 * 1.000 * 33.779) + 1.000 * 0.909 * 1.042) + = 34.726 Qmax(2) = 0.940 * 1.000 * 33.779) + 1.000 * 1.000 * 1.042) + = 32.802 Total of 2 main streams to confluence: Flow rates before confluence point: 33.779 1.042 Maximum flow rates at confluence using above data: 34.726 32.802 Area of streams before confluence: 26.340 0.660 Results of confluence: Total flow rate = 34.726(CFS) Time of concentration = 9.215 mm. Effective stream area after confluence = 27.000(Ac.) Process from Point/Station 360.000 to Point/Station 360.100 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream pcint/station elevation = 212.050(Ft.) Downstream point/station elevation = 211.600 (Ft.) Pipe length = 65.00(Ft.) Slope = 0.0069 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 34.726(CFS) Given pipe size = 48.00(In.) Calculated individual pipe flow = 34.726(CFS) Normal flow depth in pipe = 17.72(In.) Flow top width inside pipe = 46.33(In.) Critical Depth = 21.04(In.) Pipe flow velocity = 8.24(Ft/s) Travel time through pipe = 0.13 mm. Time of concentration (TC) 9.35 mm. End of computations, total study area = 27.000 (Ac.) 64 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2006 Version 7.7 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 05/10/17 ------------------------------------------------------------------------ POINSETTIA 100 YEAR PROPOSED HYDROLOGY BASIN A3 INTO 54 JN 141018 CALCS BY NF ------------------------------------------------------------------------ Hydrology Study Control Information ********** Program License Serial Number 6218 ------------------------------------------------------------------------ Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.700 24 hour precipitation(inches) = 4.700 P6/P24 = 57.4% San Diego hydrology manual 'C' values used ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 380.000 to Point/Station 390.000 INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 105.000(Ft.) Highest elevation = 246.800(Ft.) Lowest elevation = 229.320(Ft.) Elevation difference = 17.480(Ft.) Slope = 16.648 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 16.65 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 5.29 minutes TC = [1.8*(1.1_C)*distance(Ft.)'.5)/(% slope"(1/3)] TC= [l.8*(1.1_0.3500)*(100.000".5)/( 16.648"(1/3)1= 5.29 The initial area total distance of 105.00 (Ft.) entered leaves a remaining distance of 5.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.05 minutes for a distance of 5.00 (Ft.) and a slope of 16.65 % with an elevation difference of 0.83(Ft.) from the end of the top area Tt = [ll.9*length(Mi)'3)/(elevation change(Ft.))].385 *60(min/hr) = 0.054 Minutes Tt=[(1 1 .9*0.0009"3)/( 0.83)].385= 0.05 Total initial area Ti = 5.29 minutes from Figure 3-3 formula plus 0.05 minutes from the Figure 3-4 formula = 5.34 minutes Rainfall intensity (I) = 6.818(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 0.191(CFS) Total initial stream area = 0.080 (Ac.) +++++++++++ --+++++++++++++++.+++++++++++++++++++++++++++++++++++++++++++ ' Process from Point/Station 390.000 to Point/Station 400.000 IMPROVED CHANNEL TRAVEL TIME Upstream point elevation = 229.320(Ft.) I Downstream point elevation = 223.300(Ft.) Channel length thru subarea = 425.000(Ft.) Channel base width = 1.000(Ft.) I Slope or 'Z' of left channel bank = 1.000 Slope or 'Z' of right channel bank = 1.000 Estimated mean flow rate at midpoint of channel = 0.580(CFS) Manning's 'N' = 0.015 I Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 0.580(CFS) Depth of flow = 0.164(Ft.), Average velocity = 3.034(Ft/s) Channel flow top width = 1.328(Ft.) ' Flow Velocity = 3.03(Ft/s) Travel time = 2.33 mm. Time of concentration = 7.68 mm. I Critical depth = 0.203(Ft.) Adding area flow to channel Rainfall intensity (I) = 5.396(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 I Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 I [UNDISTURBED NATURAL TERRAIN (Permanent Open Space Impervious valUe, Ai = 0.000 Sub-Area C Value = 0.350 I Rainfall intensity = 5.396(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 0.168 ' Subarea runoff = 0.716(CFS) for 0.400(Ac.) Total runoff = 0.906(CFS) Total area = 0.480(Ac.) Depth of flow = 0.214(Ft.), Average velocity = 3.498(Ft/s) Critical depth = 0.270(Ft.) + ++ ++++++ ++ ++++++++++++++++++++ ++ ++ + + + + ++++ ++++++++++++++++ ++++++++ +++ Process from Point/Station 390.000 to Point/Station 400.000 CONFLUENCE OF MAIN STREAMS **** 66 The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 0.480(Ac.) Runoff from this stream = 0.906(CFS) Time of concentration = 7.68 mm. Rainfall intensity = 5.396(In/Hr) Program is now starting with Main Stream No. 2 + ++ +++++++++ +++ ++++++++++++++++++++++++ ++ ++ ++++++ + ++ +++ ++ ++++ +++++++ + + Process from Point/Station 410.000 to Point/Station 400.000 INITIAL AREA EVALUATION Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space Impervious value, Ai = 0.000 Sub-Area C Value, = 0.350 Initial subarea total flow distance = 120.000(Ft.) Highest elevation = 243.300(Ft.) Lowest elevation = 223.300(Ft.) Elevation difference = 20.000(Ft.) Slope = 16.667 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 16.67 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 5.29 minutes TC = [1.8*(1.1_C)*distance(Ft.)'.5)/(% slope"(1/3)I TC= [1.8*(1.1_0.3500)*( 100.000'.5)/( 16.667'(1/3)1= 5.29 The initial area total distance of 120.00 (Ft.) entered leaves a remaining distance of 20.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.16 minutes for a distance of 20.00 (Ft.) and a slope of 16.67 % with an elevation difference of 3.33(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))].385 *60(min/hr) = 0.156 Minutes Tt=[(l1.9*0.0038'3)/( 3.33)].385= 0.16 Total initial area Ti = 5.29 minutes from Figure 3-3 formula plus 0.16 minutes from the Figure 3-4 formula = 5.44 minutes Rainfall intensity (I) = 6.736(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 0.212(CFS) Total initial stream area = 0.090 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 410.000 to Point/Station 400.000 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.090 (Ac.) 67 Runoff from this stream = 0.212(CFS) Time of concentration = 5.44 mm. Rainfall intensity = 6.736(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) I I 1 0.06 7.68 5.396 2 0.212 5.44 6.736 Qmax(1) = 1.000 * 1.000 * 0.906) + 0.801 * 1.000 * 0.212) + = Qmax(2) = 1.000 * 0.709 * 0.906) + 1.000 * 1.000 0.212) + = Total of 2 main streams to confluence: Flow rates before confluence point: 0.906 0.212 Maximum flow rates at confluence using above data 1.076 0.855 Area of streams before confluence: 0.480 0.090 1.076 0.855 - 1 Results of confluence: Total flow rate = 1.076(CFS) Time of concentration = 7.675 mm. Effective stream area after confluence = 0.570(Ac.) +++++++++-r--+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 400.000 to Point/Station 420.000 Ak PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 214.000(Ft.) Downstream point/station elevation = 213.500(Ft.) Pipe length = 7.00(Ft.) Slope = 0.0714 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.076(CFS) Given pipe size = 8.00(In.) Calculated individual pipe flow = 1.076(CFS) Normal flow depth in pipe = 3.18(In.) Flow top width inside pipe = 7.83(In.) Critical Depth = 5.91(In.) Pipe flow velocity = 8.32(Ft/s) Travel time through pipe = 0.01 mm. Time of concentration (TC) = 7.69 mm. +++++++++++++++++++++++++.++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 400.000 to Point/Station 420.0013 CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 68 Stream flow area = 0.570(Ac.) Runoff from this stream = 1.076(CFS) Time of concentration = 7.69 mm. Rainfall intensity = 5.389(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 380.100 to Point/Station 390.100 INITIAL AREA EVALUATION Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 100.000(Ft.) Highest elevation = 243.000(Ft.) Lowest elevation = 235.800(Ft.) Elevation difference = 7.200(Ft.) Slope = 7.200 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 7.20 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.99 minutes TC = [1.8*(1.1_C)*distance(Ft.).5)/(% slope"(1/3)] TC= [1.8*(1.1_0.3500)*( 100.000".5)/( 7.200'(1/3)]= 6.99 Rainfall intensity (I) = 5.731(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 0.080(CFS) Total initial stream area = 0.040(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 390.100 to Point/Station 420.000 IRREGULAR CHANNEL FLOW TRAVEL TIME kk Estimated mean flow rate at midpoint of channel = 0.351(CFS) Depth of flow = 0.143(Ft.), Average velocity = 1.721(Ft/s) ******* Irregular Channel Data ----------------------------------------------------------------- Information entered for subchannel number 1 Point number 'X' coordinate 'Y' coordinate 1 0.00 1.00 2 20.00 0.00 3 20.10 1.00 Manning's 'N' friction factor = 0.023 ----------------------------------------------------------------- Sub-Channel flow = 0.351(CFS) flow top width = 2.865(Ft.) velocity= 1.721(Ft/s) area = 0.204(Sq.Ft) Froude number = 1.136 69 i I Upstream point elevation = 235.700(Ft.) Downstream point elevation = 217.700(Ft.) I Flow length = 706.000(Ft.) Travel time = 6.84 mm. Time of concentration = 13.83 mm. I Depth of flow = 0.143(Ft.) Average velocity = 1.721(Ft/s) Total irregular channel flcw = 0.351(CFS) Irregular channel normal depth above invert elev. = 0.143(Ft.) I Average velocity of channel(s) = 1.721(Ft/s) Adding area flow to channel Rainfall intensity (I) = 3.691(In/Hr) for a 100.0 year storm I Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 I [UNDISTURBED NATURAL TERRAIN (Permanent Open Space Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 I Rainfall intensity = 3.691(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 0.147 I Subarea runoff = 0.462(CFS) for 0.380(Ac.) Total runoff = 0.543(CFS) Total area = 0.420(Ac.) Depth of flow = 0.168(Ft.), Average velocity = 1.918(Ft/s) ++++ +++ ++++ ++ ++ ++++++++++ ++++++ + + +++++++++++++++++++ ++ ++ + ++ Process from Point/Station 390.100 to Point/Station 420.000 CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: I In Main Stream number: 2 Stream flow area = 0.420 (Ac.) Runoff from this stream = 0.543(CFS) Time of concentration = 13.83 mm. ' Rainfall intensity = 3,.691(In/Hr) Program is now starting with Main Stream No. 3 I +++++++++++++++•+++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 440.000 to Point/Station 450.000 kkk INITIAL AREA EVALUATION **** I Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 428.000(Ft.) Highest elevation = 258.500(Ft.) Lowest elevation = 238.00O(Ft.) 70 Elevation difference = 20.500(Ft.) Slope = 4.790 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 4.79 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 8.01 minutes TC = [1.8*(1.1_C)*distance(Ft.).5)/(% slope"(1/3) I TC = [1.8*(1.1_0.3500)*( 100.000'.5)/( 4.790"(1/3)]= 8.01 The initial area total distance of 428.00 (Ft.) entered leaves a remaining distance of 328.00 (Ft.) Using Figure 3-4, the travel time for this distance is 2.18 minutes for a distance of 328.00 (Ft.) and a slope of 4.79 % with an elevation difference of 15.71(Ft.) from the end of the top area Tt = (11.9*length(Mi)"3)/(elevation change(Ft.))I.385 *60(min/hr) = 2.177 Minutes Tt=[ (ll.9*0.0621"3)/( 15.71)]".385= 2.18 Total initial area Ti = 8.01 minutes from Figure 3-3 formula plus 2.18 minutes from the Figure 3-4 formula = 10.19 minutes Rainfall intensity (I) = 4.496(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 1.369(CFS) Total initial stream area = 0.870 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 450.000 to Point/Station 430.000 IMPROVED CHANNEL TRAVEL TIME Upstream point elevation = 238.000(Ft.) Downstream point elevation = 217.700(Ft.) Channel length thru subarea = 287.850(Ft.) Channel base width = 1.000(Ft.) Slope or 'Z' of left channel bank = 1.000 Slope or 'Z' of right channel bank = 1.000 Estimated mean flow rate at midpoint of channel = Manning's 'N' = 0.015 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 1.542(CFS) Depth of flow = 0.182(Ft.), Average velocity = Channel flow top width = 1.364(Ft.) Flow Velocity = 7.16(Ft/s) Travel time = 0.67 mm. Time of concentration = 10.86 mm. Critical depth = 0.367(Ft.) Adding area flow to channel Rainfall intensity (I) = 4.315(In/Hr) for a Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 1.542(CFS) 7.163 (Ft/s) 100.0 year storm Rainfall intensity = 4.315(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area 71 (Q=KCIA) is C = 0.350 CA = 0.382 Subarea runoff = 0.277(CFS) for 0.220(Ac.) Total runoff = 1.646(CFS) Total area = 1.090(Ac.) Depth of flow = 0.189(Ft.), Average velocity = 7.314(Ft/s) Critical depth = 0.383(Ft.) Process from Point/Station 450.000 to Point/Station 430.000 I CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 I Stream flow area = 1.090 (Ac.) Runoff from this stream = 1.646(CFS) Time of concentration = 10.86 mm. I Rainfall intensity = 4.315(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) 1 1.076 7.69 5.389 2 0.543 13.83 3.691 3 1.646 10.86 4.315 Qmax(1) = 1.000 * 1.000 * 1.076) + 1.000 * 0.556 * 0.543) + 1.000 * 0.708 * 1.646) + = 2.544 Qmax(2) = 0.685 * 1.000 * 1.076) + 1.000 * 1.000 * 0.543) + 0.855 * 1.000 * 1.646) + = 2.688 Qmax(3) = 0.801 * 1.000 * 1.076) + 1.000 * 0.785 * 0.543) + 1.000 * 1.000 * 1.646) + = 2.934 Total of 3 main streams to confluence: Flow rates before confluence point: 1.076 0.543 1.646 Maximum flow rates at confluence using above data: 2.544 2.688 2.934 Area of stneams before confluence: 0.570 0.420 1.090 Results of confluence: Total flow rate = 2.934(CFS) Time of concentration = 10.855 mm. Effective stream area after confluence = 2.080(Ac.) +++++ ++ + + + +++++ ++ ++++ +++++++++ + ++++++++ ++++++++++++++++++++ ++ + ++++++++ Process from Point/Station 420.000 to Point/Station 430.000 PIPEFLOW TRAVEL TIME (User specified size) **** 72 I Upstream point/station elevation = 212.670(Ft.) Downstream point/station elevation = 202.270(Ft.) Pipe length = 24.30(Ft.) Slope = 0.4280 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 2.934(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 2.934(CFS) Normal flow depth in pipe = 2.54(In.) Flow top width inside pipe = 12.52(In.) Critical Depth = 7.80(In.) Pipe flow velocity = 19.33(Ft/s) Travel time through pipe = 0.02 mm. Time of concentration (TC) = 10.88 mm. End of computations, total study area = 2.080 (Ac.) 73 SECTION 2 100 Year Proposed Hydrology - Basin B 74 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2006 Version 7.7 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 05/16/17 ------------------------------------------------------------------------ POINSETTIA PROPOSED 100 YEAR HYDROLOGY BASIN Bi JN 141018 CALCS BY NP ------------------------------------------------------------------------ ********* Hydrology Study Control Information ********** Program License Serial Number 6218 ------------------------------------------------------------------------ Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.700 24 hour precipitation(inches) = 4.700 P6/P24 = 57.4% San Diego hydrology manual 'C' values used +++++++++++++ + ++ +++++++ +++++++ ++++++++++++++++++++ + +++++++++++++++++ + + Process from Point/Station 500.000 to Point/Station 500.000 USER DEFINED FLOW INFORMATION AT A POINT User specified 'C' value of 0.630 given for subarea Rainfall intensity (I) = 7.114(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 5.00 mm. Rain intensity = 7.11(In/Hr) Total area = 4.100(Ac.) Total runoff = 17.800(CFS) ++++ + ++++ +++ ++++++++++ +++++++++ + +++++++++ +++ +++ + + ++ + +++++++++++ +++++++ Process from Point/Station 500.000 to Point/Station 550.000 IMPROVED CHANNEL TRAVEL TIME Upstream point elevation = 314.000(Ft.) Downstream point elevation = 203.800 (Ft.) Channel length thru subarea = 1340.000(Ft.) Channel base width = 20.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 31.887 (CFS) Manning's 'N' = 0.035 Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 31.887(CFS) Depth of flow = 0.294(Ft.), Average velocity = 5.263 (Ft/s) 75 Channel flow top width = 21.177(Ft.) Flow Velocity = 5.26(Ft/s) Travel time = 4.24 mm. Time of concentration = 9.24 mm. Critical depth = 0.422(Ft.) Adding area flow to channel Rainfall intensity (I) = 4.786(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group :C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 4.786(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.398 CA = 9.593 Subarea runoff = 28.115(CFS) for 20.030(Ac.) Total runoff = 45.915(CFS) Total area = 24.130(Ac.) Depth of flow = 0.366(Ft.), Average velocity = 6.053(Ft/s) Critical depth = 0.539(Ft.) +++++++++++++++++++++++++++-4-++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 500.000 to Point/Station 550.000 CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 24.130 (Ac.) Runoff from this stream = 45.915(CFS) Time of concentration = 9.24 mm. Rainfall intensity = 4.786(In/Hr) Program is now starting with Main Stream No. 2 +++++++++++++++++++ ++ + + ++ + +++++++++ ++++++++ +++ +++++++++++++++ ++ +++++++ Process from Point/Station 540.400 to Point/Station 540.400 USER DEFINED FLOW INFORMATION AT A POINT Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity (I) = 5.362(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 7.75 mm. Rain intensity = 5.36(In/Hr) Total area = 5.570(Ac.) Total runoff = 12.000(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 540.400 to Point/Station 540.400 76 CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 5.570(Ac.) Runoff from this stream = 12.000(CFS) Time of concentration = 7.75 mm. Rainfall intensity = 5.362(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) 1 45.915 9.24 4.786 2 12.000 7.75 5.362 Qmax(l) = 1.000 * 1.000 * 45.915) + 0.893 * 1.000 * 12.000) + = 56.626 Qmax(2) = 1.000 * 0.838 * 45.915) + 1.000 * 1.000 * 12.000) + = 50.498 Total of 2 main streams to confluence: Flow rates before confluence point: 45.915 12.000 Maximum flow rates at confluence using above data: 56.626 50.498 Area of streams before confluence: 24.130 5.570 Results of confluence: Total flow rate = 56.626(CFS) Time of concentration = 9.243 mm. Effective stream area after confluence = 29.700 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 550.000 to Point/Station 800.200 IMPROVED CHANNEL TRAVEL TIME Upstream point elevation = 203.800(Ft.) Downstream point elevation = 198.300(Ft.) Channel length thru subarea = 216.000(Ft.) Channel base width = 20.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 56.672 (CFS) Manning's 'N' = 0.035 Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 56.672(CFS) Depth of flow = 0.588(Ft.), Average velocity = 4.550 (Ft/s) Channel flow top width = 22.353(Ft.) Flow Velocity = 4.55(Ft/s) Travel time = 0.79 mm. Time of concentration = 10.03 mm. 77 Critical depth = 0.617(Ft.) Adding area flow to channel Rainfall intensity (I) = 4.539(In/Hr) for a Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group ,D = 1.000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 The area added to the existing stream causes a a lower flow rate of Q = 54.826(CFS) 100.0 year storm therefore the upstream flow rate of Q = 56.626(CFS) i being used Rainfall intensity = 4.539(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.387 CA = 12.079 Subarea runoff = 0.000(CFS) for 1.530(1-\c.) Total runoff = 56.626(CFS) Total area = 31.230(Ac.) Depth of flow = 0.588(Ft.), Average velocity = 4.549(Ft/s) Critical depth = 0.617(Ft.) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++- Process from Point/Station 550.000 to Point/Station 800.200 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 31.230 (Ac.) Runoff from this stream = 56.626(CFS) Time of concentration = 10.03 mm. Rainfall intensity = 4.539(In/Hr) Program is now starting with Main Stream No. 2 - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 800.000 to Point/Station 800.000 USER DEFINED FLOW INFORMATION AT A POINT **** - Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL I (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity (I) = 4.811(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 9.17 mm. Rain intensity = 4.81(In/I-Ir) Total area = 7.280(Ac.) Total runoff = 18.900(CFS) Process from Point/Station 800.000 to Point/Station 800.000 CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 7.280(Ac.) Runoff from this stream = 18.900(CFS) Time of concentration = 9.17 mm. Rainfall intensity = 4.811(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 790.100 to Point/Station 790.100 USER DEFINED FLOW INFORMATION AT A POINT **** User specified 'C' value of 0.730 given for subarea Rainfall intensity (I) = 6.429(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 5.85 mm. Rain intensity = 6.43(In/Hr) Total area = 1.550(Ac.) Total runoff = 7.760(CFS) ++ +++++++++++ ++++ + ++++ ++ ++ + + ++++ ++ +++++++ Process from Point/Station 790.100 to Point/Station 790.100 CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 1.550 (Ac.) Runoff from this stream = 7.760(CFS) Time of concentration = 5.85 mm. Rainfall intensity = 6.429(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) 1 56.626 10.03 4.539 2 18.900 9.17 4.811 3 7.760 5.85 6.429 Qmax(1) = 1.000 * 1.000 * 56.626) + 0.944 * 1.000 * 18.900) + 0.706 * 1.000 * 7.760) + = 79.938 Qmax(2) = 1.000 * 0.914 * 56.626) + 1.000 * 1.000 * 18.900) + 0.748 * 1.000 * 7.760) + = 76.455 Qmax(3) = 1.000 * 0.583 * 56.626) + 1.000 * 0.638 * 18.900) + 1.000 * 1.000 * 7.760) + = 52.830 Total of 3 main streams to confluence: Flow rates before confluence point: 56.626 18.900 7.760 Maximum flow rates at confluence using above data: 79 79.938 76.455 52.830 Area of streams before confluence: 31.230 7.280 1.550 Results of confluence: I Total flow rate = 79.938(CFS) Time of concentration = 10.034 mm. Effective stream area after confluence = 40.060 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 800.100 to Point/Station 800.200 l IMPROVED CHANNEL TRAVEL TIME Upstream point elevation = 198.300(Ft.) I Downstream point elevation = 197.000(Ft.) Channel length thru subarea = 60.000(Ft.) Channel base width = 20.000(Ft.) Slope or 'Z' of left channel bank = 2.000 I Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 79.967(CFS) Manning's 'N' = 0.035 I Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 79.967(CFS) Depth of flow = 0.757(Ft.), Average velocity = 4.910(Ft/s) Channel flow top width = 23.028(Ft.) I Flow Velocity = 4.91 (Ft/s) Travel time = 0.20 mm. Time of concentration = 10.24 mm. Critical depth = 0.773(Ft.) I Adding area flow to channel Rainfall intensity (I) = 4.481(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 I Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN I I (Permanent Open Space Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 I The area added to the existing stream causes a a lower flow rate of Q = 78.489(CFS) therefore the upstream flow rate of 0 = 79.938(CFS) is being used Rainfall intensity = 4.481(In/Hr) for a 100.0 year storm I Effective runoff coefficient used for total area (Q=KCIA) is C = 0.432 CA = 17.517 Subarea runoff = 0.000(CFS) for 0.450(Ac.) I Total runoff = 79.938(CFS) Total area = 40.510 (Ac.) Depth of flow = 0.757(Ft.), Average velocity = 4.909(Ft/s) Critical depth = 0.773(Ft.) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 800.100 to Point/Station 800.200 CONFLUENCE OF MAIN STREAMS **** I ac The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 40.510(Ac.) Runoff from this stream = 79.938(CFS) Time of concentration = 10.24 mm. Rainfall intensity = 4.481(In/Hr) Program is now starting with Main Stream No. 2 ++ +++++++++ + + ++++++++++++++ ++++++++++++ ++ + + ++ +++++ + ++++++ +++++++++ ++++ Process from Point/Station 540.800 to Point/Station 800.300 INITIAL AREA EVALUATION Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 125.000(Ft.) Highest elevation = 237.500(Ft.) Lowest elevation = 214.000(Ft.) Elevation difference = 23.500(Ft.) Slope = 18.800 % Top of Initial Area Slope adjusted by User to 1.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 70.00 (Ft) for the top area slope value of 1.00 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 11.29 minutes TC = [1.8*(1.1_C)*distance(Ft.)".5)/(% slope"(1/3)I TC = [1.8*(1.1_0.3500)*( 70.000".5)/( 1.000"(1/3)1= 11.29 The initial area total distance of 125.00 (Ft.) entered leaves a remaining distance of 55.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.33 minutes for a distance of 55.00 (Ft.) and a slope of 18.80 % with an elevation difference of 10.34(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))].385 *60(min/hr) = 0.325 Minutes Tt=[(11.9*0.0104"3)/( 10.34)]".385= 0.33 Total initial area Ti = 11.29 minutes from Figure 3-3 formula plus 0.33 minutes from the Figure 3-4 formula = 11.62 minutes Rainfall intensity (I) = 4.129(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 0.116(CFS) Total initial stream area = 0.080 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 800.300 to Point/Station 800.200 **** CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.080(Ac.) HIM Runoff from this stream = 0.116(CFS) Time of concentration = 11.62 mm. Rainfall intensity = 4.129(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. CFS) (mm) (In/Hr) 1 79.938 10.24 4.481 2 0.16 11.62 4.129 Qmax(1) = 000 * 1.000 * 79.938) + 1000 * 0.881 * 0.116) + = 80.040 Qmax(2) = 0.922 * 1.000 * 79.938) + 1.000 * 1.000 * 0.116) + = 73.785 Total of 2 main streams to confluence: Flow rates before confluence point: 79.93:3 0.116 Maximum flow rates at confluence using above data: 80.040 73.785 Area of streams before confluence: 40.510 0.080 Results of confluence: Total flow rate = 80.040(CFS) Time of concentration = 10.238 mm. Effective stream area after confluence = 40.590 (Ac.) ++++++++++++++++++++++++++-+++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 800.200 to Point/Station 960.200 IMPROVED CHANNEL TRAVEL TIME **** Upstream point elevation = 197.000(Ft.) Downstream point elevation = 184.500(Ft.) Channel length thru subarea = 305.000(Ft.) Channel base width = 20.000(Ft.) Slope or 'Z,' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate a midpoint of channel = Manning's 'N' = 0.035 Maximum depth of channel = 2.000(Ft.) Li Flow(q) thru subarea = 80.084(CFS) Depth of flow = 0.627(Ft.), Average velocity = Channel flcw top width = 22.508(Ft.) Flow Velocity = 6.01(Ft/s) Travel time = 0.85 mm. Time of ccrcentration = 11.08 mm. Critical depth = 0.773(Ft.) Adding area flow to channel Rainfall intensity (I) = 4.257(In/Hr) for a Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 1 82 80.084(CFS) 6.008 (Ft/s) 100.0 year storm Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN I (Permanent Open Space Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 The area added to the existing stream causes a a lower flow rate of Q = 76.805(CFS) therefore the upstream flow rate of Q = 80.040(CFS) is being used Rainfall intensity = 4.257(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.429 CA = 18.042 Subarea runoff = 0.000(CFS) for 1.420(Ac.) Total runoff = 80.040(CFS) Total area = 42.010 (Ac.) Depth of flow = 0.627(Ft.), Average velocity = 6.007(Ft/s) Critical depth = 0.773(Ft.) + + + + + + + + + + + + + + + + + + +_+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 800.200 to Point/Station 960.200 CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 42.010 (Ac.) Runoff from this stream = 80.040(CFS) Time of concentration = 11.08 mm. Rainfall intensity = 4.257(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++ ++ + + + + + + + + +++++++++++++++++ ++ +++++ + +++++++++ ++++++++ Process from Point/Station 960.100 to Point/Station 960.100 USER DEFINED FLOW INFORMATION AT A POINT Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL I (7.3 DU/A or Less Impervious value, Al = 0.400 Sub-Area C Value = 0.570 Rainfall intensity (I) = 6.318(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 6.01 mm. Rain intensity = 6.32(In/Hr) Total area = 9.060(Ac.) Total runoff = 23.850(CFS) ++++ ++++++++++++++++++++++++ ++ ++ ++++++++ +++ ++ + ++ + ++ + +++++++ +++++ + + Process from Point/Station 960.100 to Point/Station 960.100 CONFLUENCE OF MINOR STREAMS Along Main Stream number: 2 in normal stream number 1 Stream flow area = 9.060 (Ac.) Runoff from this stream = 23.850(CFS) Time of concentration = 6.01 mm. HIM Rainfall intensity = €.318(In/I-lr) + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +. + + + + + + + + + + + + + + + + + + + + Process from Point/Station 960.300 to Point/Station 960.400 INITIAL AREA EVALUATON kkk Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN I (Permanent Open Space Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 235.000(Ft.) Highest elevation = 245.000(Ft.) Lowest elevation = 242.500(Ft.) Elevation difference = 2.500(Ft.) Slope = 1.064 % Top of Initial Area Slope adjusted by User to 30.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 30.00 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 - Initial Area Time of Concentration = 4.34 minutes TC = [1.8*(1.1_C)*distance(Ft.)'.5)/(% slope(1/3)I TC = [1.8*(1.1_0.3500)*( 100.000.5)/( 30.000"(1/3)]= 4.34 The initial area total distance of 235.00 (Ft.) entered leaves a remaining distance of 135.00 (Ft.) Using Figure 3-4, the travel time for this distance is 1.96 minutes for a distance of 135.00 (Ft.) and a slope of 1.06 % with an elevation difference of 1.44(Ft.) from the end of the top area Tt = [11.9*length(Mi)3)/(elevation change(Ftj)I".385 *60(min/hr) = 1.961 Minutes Tt=[ (11.9*0.0256'3)/( 1.44)1 ^.385= 1.96 Total initial area Ti = 4.34 minutes from Figure 3-3 formula plus 1.96 minutes from the Figure 3-4 formula = 6.31 minutes Rainfall intensity (I) = 6.125(In/Hr) for a 100.0 year storrr Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 0.257(CFS) Total initial stream area = 0.120(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++--+++ Process from Point/Station 960.400 to Point/Station 960.200 kk IMPROVED CHANNEL TRAVEL TIME Upstream point elevation = 241.500(Ft.) Downstream point elevation = 194.000(Ft.) Channel length thru subarea = 282.000(Ft.) Channel base width = 1.000(Ft.) Slope or 'Z' of left channel bank = 1.000 Slope or 'Z' of right channel bank = 1.000 Estimated mean flow rate at midpoint of channel = 0.568(CFS) Manning's 'N' = 0.01 Maximum depth of channel = 1.000(Ft.) ME Flow(q) thru subarea = 0.568(CFS) Depth of flow = 0.077(Ft.), Average velocity = 6.805(Ft/s) Channel flow top width = 1.155(Ft.) Flow Velocity = 6.80(Ft/s) Travel time = 0.69 mm. Time of concentration = 7.00 mm. Critical depth = 0.201(Ft.) Adding area flow to channel Rainfall intensity (I) = 5.728(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 5.728(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 0.143 Subarea runoff = 0.565(CFS) for 0.290(Ac.) Total runoff = 0.822(CFS) Total area = 0.410(Ac.) Depth of flow = 0.097(Ft.), Average velocity = 7.752(Ft/s) Critical depth = 0.254(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 960.400 to Point/Station 960.100 CONFLUENCE OF MINOR STREAMS Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.410(Ac.) Runoff from this stream = 0.822(CFS) Time of concentration = 7.00 mm. Rainfall intensity = 5.728(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) 1 23.850 6.01 6.318 2 0.822 7.00 5.728 Qmax(1) = 1.000 * 1.000 * 23.850) + 1.000 * 0.859 * 0.822) + = 24.556 Qmax(2) = 0.907 * 1.000 * 23.850) + 1.000 * 1.000 * 0.822) + = 22.444 Total of 2 streams to confluence: Flow rates before confluence point: 23.850 0.822 Maximum flow rates at confluence using above data: 24.556 22.444 Area of streams before confluence: 9.060 0.410 RR Results of confluence: Total flow rate = 24.556(CFS) Time of concentration = 6.010 mm. Effective stream area after confluence = 9.470 (Ac.) +++++ +++ +++++ +++++ ++++++++++++++++ ++++++++++++++ + ++ + + + +++++++++ +++++++ Process from Point/Station 960.400 to Point/Station 960.100 **** CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 9.470(Ac.) Runoff from this stream = 24.556(CFS) Time of concentration = 6.01 mm. Rainfall intensity = 6.318(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) 1 80.040 11.08 4.257 2 24.556 6.01 6.318 Qmax(1) = 1.000 * 1.000 * 80.040) + 0.674 * 1.000 * 24.556) + = 96.587 Qmax(2) = 1.000 * 0.542 * 80.040) + 1.000 * 1.000 * 24.556) + = 67.955 Total of 2 main streams to confluence: Flow rates before confluence point: 80.040 24.556 Maximum flow rates at confluence using above data: 96.587 67.955 Area of streams before confluence: 42.010 9.470 Results of confluence: Total flow rate = 96.587(CFS) Time of concentration = 11.084 mm. Effective stream area after confluence = 51.480(Ac.) +++++++++++++++++++++++++--++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 960.200 to Point/Station 970.000 IMPRCVED CHANNEL TRAVEL TIME Upstream point elevation = 184.500(Ft.) Downstream point elevation = 169.000(Ft.) Channel length thru subarea = 480.000(Ft.) Channel base width = 20.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z1 of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = 102.887(CFS) Manning's 'N' = 0.035 Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 102.887(CFS) Depth of flow = 0.781(Ft.), Average velocity = Channel flow top width = 23.124(Ft.) Flow Velocity = 6.11(Ft/s) Travel time = 1.31 mm. Time of concentration = 12.39 mm. Critical depth = 0.906(Ft.) Adding area flow to channel Rainfall intensity (I) = 3.961(In/Hr) for a Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 6.110 (Ft/s) 100.0 year storm Rainfall intensity = 3.961(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.434 CA = 27.543 Subarea runoff = 12.517(CFS) for 11.980(Ac.) Total runoff = 109.103(CFS) Total area = 63.460 (Ac.) Depth of flow = 0.809(Ft.), Average velocity = 6.242(Ft/s) Critical depth = 0.938(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 970.000 to Point/Station 1060.000 IMPROVED CHANNEL TRAVEL TIME Upstream point elevation = 169.000(Ft.) Downstream point elevation = 146.000(Ft.) Channel length thru subarea = 610.000(Ft.) Channel base width = 20.000(Ft.) Slope or 'Z' of left channel bank = 2.000 Slope or 'Z' of right channel bank = 2.000 Estimated mean flow rate at midpoint of channel = Manning's 'N' = 0.035 Maximum depth of channel = 2.000(Ft.) Flow(q) thru subarea = 116.451(CFS) Depth of flow = 0.803(Ft.), Average velocity = Channel flow top width = 23.211(Ft.) Flow Velocity = 6.72(Ft/s) Travel time = 1.51 mm. Time of concentration = 13.91 mm. Critical depth = 0.984(Ft.) Adding area flow to channel Rainfall intensity (I) = 3.677(In/Hr) for a Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space Impervious value, Ai = 0.000 HM 116. 451 (CFS) 6.715 (Ft/s) 100.0 year storm Sub-Area C Value = 0.350 Rainfall intensity = 3.677(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.416 CA = 33.647 Subarea runoff = 14.630(CFS) for 17.440(Ac.) Total runoff = 123.734(CFS) Total area = 80.900 (Ac.) Depth of flDw = 0.832(Ft.), Average velocity = 6.865(Ft/s) Critical depth = 1.023(Ft.) End of computations, total study area = 80.900 (Ac.) 88 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2006 Version 7.7 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 05/16/17 ------------------------------------------------------------------------ POINSETTIA 100 YEAR PROPOSED HYDROLOGY BASIN B2 NORTH OFFSITE FLOW THROUGH SITE JN 141018 CALCS BY NF ------------------------------------------------------------------------ Hydrology Study Control Information ********** Program License Serial Number 6218 ------------------------------------------------------------------------ Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.700 24 hour precipitation(inches) = 4.700 P6/P24 = 57.4% San Diego hydrology manual 'C' values used ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 10.000 to Point/Station 530.000 INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 175.000(Ft.) Highest elevation = 312.000(Ft.) Lowest elevation = 283.000(Ft.) Elevation difference = 29.000(Ft.) Slope = 16.571 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 16.57 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 5.30 minutes TC = [1.8*(1.1_C)*distance(Ft.)'.5)/(% slope"(1/3)] TC = [1.8*(1.1_0.3500)*( 100.000".5)/( 16.571'(1/3)1= 5.30 The initial area total distance of 175.00 (Ft.) entered leaves a remaining distance of 7.00 (Ft.) Using Ficure 3-4, the travel time for this distance is 0.43 minutes for a distance of 75.00 Ft.) and a slope of 16.57 % with an elevation difference of 12.43(Ft.) from the end of the top area Tt = [11.9*length(Mi)3)/.elevation change(Ftj)]A.385 *60(min/hr) = 0.433 Minutes Tt=[ (11.9*C.0142"3)/( 12.43)1^.385= 0.43 Total initial area Ti = 5.30 minutes from Figure 3-3 formula plus 0.43 minutes from the Figure 3-4 formula = 5.73 minutes Rainfall intensity (I) = 6.516(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 1.118(CFS) Total initial stream area = 0.490(Ac.) Process from Point/Station 530.000 to Point/Station 540.000 IMPROVED CHANNEL TRAVEL TIME kkk Upstream point elevation = 283.000(Ft.) Downstream point elevation = 246.500(Ft.) Channel length thru subarea = 300.000(Ft.) Channel base width = 1.000(Ft.) Slope or 'Z' of left channel bank = 1.000 Slope or 'Z' of right channel bank = 1.000 Estimated mean flow rate at midpoint of channel = Manning's 'N' = 0.015 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 5.526(CFS) Depth of flow = 0.326(Ft.), Average velocity = Channel flow top width = 1.652(Ft.) Flow Velocity = 12.78(Ft/s) Travel time = 0.39 mm. Time of concentration = 6.12 mm. Critical depth = 0.758(Ft.) Adding area flow to channel Rainfall intensity (I) = 6.244(In/Hr) for a 5.526(CFS) 12.780(Ft/s) 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space Impervious value, Ai = 0,. 000 Sub-Area C Value = 0.350 Rainfall Lntensity = 6.244(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 C7-\ = 1.582 Subarea runoff = 8.761(CFS) for 4.030(Ac.) Total runoff = 9.879(CFS) Total area = 4.520 (Ac Depth of flow = 0.452(Ft.), Average velocity = 15.066(Ft/s) Critical depth = 1.031(Ft.) Process from Point/Station 540.000 to Point/Station 540.100 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 242.000(Ft.) Downstream point/station elevation = 241.370(Ft.) Pipe length = 126.00(Ft.) Slope = 0.0050 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 9.879(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 9.879(CFS:) Normal flow depth in pipe = 13.64(In.) Flow top width inside pipe = 23.77(In.) Critical Depth = 13.48(In.) Pipe flow velocity = 5.36(Ft/s) Travel time through pipe = 0.39 mm. Time of concentration (TC) = 6.51 mm. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 540.000 to Point/Station 540.100 CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 4.520(Ac.) Runoff from this stream = 9.879(CFS) Time of concentration = 6.51 mm. Rainfall intensity = 5.999(In/Hr) Program is now starting with Main Stream No. 2 Process from Point/Station 101.000 to Point/Station 541.000 INITIAL AREA EVALUATION Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL I (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 105.000(Ft.) Highest elevation = 303.700(Ft.) Lowest elevation = 267.700(Ft.) Elevation difference = 36.000(Ft.) Slope = 34.286 % Top of Initial Area Slope adjusted by User to 1.000 % Bottom of Initial Area Slope adjusted by User to 30.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 65.00 (Ft) for the top area slope value of 1.00 %, in a development 91 type of I I I I 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.69 minutes I TC = [1.8*(1.1_C)*distance(Ftj".5)/(% slope"(1/3)] TC= [1.8*(1.1_0.5700)*( 65.000".5)/( 1.000"(1/3)1= 7.69 I The initial area total distance of 105.00 (Ft.) entered leaves a remaining distance of 40.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.21 minutes for a distance of 40.00 :Ft.) and a slope of 30.00 % I with an elevation difference of 12.00(Ft.) from the end of the top area Tt = [1l.9*length(Mi)3)/(elevation change(Ftj)IA.385 *60(min/hr) = 0.213 Minutes Tt=[(11.9*0.0076"3)/( 12.00)].385= 0.21 I Total initial area Ti = 7.69 minutes from Figure 3-3 formula plus 0.21 minutes from the Figure 3-4 formula = 7.90 minutes Rainfall intensity (I) = 5.295(In/Hr) for a 100.0 year storm I Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.392(CFS) Total initial stream area = 0.130 (Ac.) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Staticn 541.000 to Point/Station 542.000 I IMPROVED CHANNEL TRAVEL TIME Upstream point elevation = 267.700(Ft.) Downstream point elevation = 250.700(Ft.) - Channel length thru subarea = 230.000(Ft.) Channel base width = 1.000(Ft.) Slope or 'Z' of left channel bank = 1.000 I Slope or 'Z' of right channel bank = 1.000 Estimated mean flow rate at midpoint of channel = 0.679(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 1.000(Ft.) - Flow(q) thru subarea = 0.679(CFS) Depth of flow = 0.110(Ft.), Average velocity = 5.543(Ft/s) Channel flow top width = 1.221(Ft.) Flow Velocity = 5.54(Ft/s) Travel time = 0.69 mm. Time of concentration = 8.60 mm. Critical depth = 0.225(Ft.) Adding area flow to channel Rainfall intensity (I) = 5.016(In/Hr) for a Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 5.016(In/Hr) for a Effective runoff coefficient used for total (Q=KCIA) is C = 0.570 CA = 0.182 92 I I I I 100.0 year storm 100.0 year storm area Subarea runoff = 0.523(CFS) for 0.190(Ac.) Total runoff = 0.915(CFS) Total area = 0.320(Ac.) Depth of flow = 0.132(Ft.), Average velocity = 6.133(Ft/s) Critical depth = 0.270(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 541.000 to Point/Station 542.000 **** CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 1 Stream flow area = 0.320(Ac.) Runoff from this stream = 0.915(CFS) Time of concentration = 8.60 mm. Rainfall intensity = 5.016(In/Hr) Process from Point/Station 543.000 to Point/Station 542.000 INITIAL AREA EVALUATION Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 287.000(Ft.) Highest elevation = 261.700(Ft.) Lowest elevation = 250.700(Ft.) Elevation difference = 11.000(Ft.) Slope = 3.833 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 95.00 (Ft) for the top area slope value of 3.83 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 5.94 minutes TC = [1.8*(1.1_C)*distance(Ft.).5)/(% slope"(1/3)] TC= [1.8*(1.1_0.5700)*( 95.000".5)/( 3.833"(1/3)1= 5.94 The initial area total distance of 287.00 (Ft.) entered leaves a remaining distance of 192.00 (Ft.) Using Figure 3-4, the travel time for this distance is 1.57 minutes for a distance of 192.00 (Ft.) and a slope of 3.83 % with an elevation difference of 7.36(Ft.) from the end of the top area Tt = [11.9*length(Mi)3)/(elevation change(Ft.))].385 *60(min/hr) = 1.571 Minutes Tt=[ (11.9*0.0364"3)/( 7.36)1^.385= 1.57 Total initial area Ti = 5.94 minutes from Figure 3-3 formula plus 1.57 minutes from the Figure 3-4 formula = 7.51 minutes Rainfall intensity (I) = 5.471(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.312(CFS) 93 I Total initial stream area = 0.100 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 543.000 to Point/Station 542.000 CONFLUENCE OF MINOR STREAMS Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.100 (Ac.) Runoff from this stream = 0.312(CFS) Time of concentration = 7.51 mm. Rainfall intensity = 5.471(In/Hr) Summary of stream data: - Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) 1 0.915 8.60 5.016 2 0.312 7.51 5.471 Qmax(l) = — 1.000 * 1.000 * 0.915) + 0.917 * 1.000 * 0.312) + = 1.201 Qmax(2) = 1.000 * 0.874 * 0.915) + 1.000 * 1.000 * 0.312) + = 1.111 Total of 2 streams to confluence: Flow rates before confluence point: 0.312 0.915 Maximum flow rates at confluence using above data: 1.201 1.111 Area of streams before confluence: 0.320 0.100 - Results of confluence: Total flow rate = 1.201(CFS) = 8.596 mm. Time of concentration Effective stream area after confluence = 0.420(Ac.) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 542.000 to Point/Station 54C.100 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 245.700(Ft.) Downstream point/station elevation = 242.040(Ft.) Pipe length = 35.00(Ft.) Slope = 0.1046 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.201(CFS) Given pipe size = 8.00(In.) Calculated individual pipe flow = 1.201(CFS) Normal flow depth in pipe = 3.04 (In.) Flow top width inside pipe = 7.77(In.) Critical Depth = 6.23(In.) Pipe flow velocity = 9.85(Ft/s) 94 I I I I Travel time through pipe = 0.06 mm. Time of concentration (TC) = 8.65 mm. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 542.000 to Point/Station 540.100 **** CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.420 (Ac.) Runoff from this stream = 1.201(CFS) Time of concentration = 8.65 mm. Rainfall intensity = 4.994(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) 1 9.879 6.51 5.999 2 1.201 8.65 4.994 Qmax(1) = 1.000 * 1.000 * 9.879) + 1.000 * 0.752 * 1.201) + = 10.782 Qmax(2) = 0.832 * 1.000 * 9.879) + 1.000 * 1.000 * 1.201) + = 9.423 Total of 2 main streams to confluence: Flow rates before confluence point: 9.879 1.201 Maximum flow rates at confluence using above data: 10.782 9.423 Area of streams before confluence: 4.520 0.420 Results of confluence: Total flow rate = 10.782(CFS) Time of concentration = 6.512 mm. Effective stream area after confluence = 4.940 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 540.100 to Point/Station 540.200 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 241.370(Ft.) Downstream point/station elevation = 240.370(Ft.) Pipe length = 128.00(Ft.) Slope = 0.0078 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 10.782(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 10.782(CFS) 95 Normal flow depth in pipe = 12.55(In.) Flow top width inside pipe = 23.97(In.) Critical DeDth = 14.12(In.) Pipe flow velocity = 6.48(Ft/s) Travel time through pipe = 0.33 mm. Time of concentration (TC) = 6.84 mm. +++++++++++++++++++++++++-I-++++++++++++++++++++++++++++++++++++++++-+++ Process from Point/Station 540.200 to Point/Station 540.300 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream pcint/station elevation = 240.040(Ft.) Downstream point/station elevation = 238.730(Ft.) Pipe length = 261.40(Ft.) Slope = 0.0050 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 10.782(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 10.782(CFS) Normal flow depth in pipe = 14.41(In.) Flow top widthinside pipe = 23.51(In.) Critical Depth = 14.12(In.) Pipe flow velocity = 5.47(Ft/s) Travel time through pipe = 0.80 mm. Time of concentration (TC) = 7.64 mm. + + + + + + + + + + + + + + + + + + + + + + + + ++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ++ + + + Process from Point/Station 540.300 to Point/Station 540.400 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 238.400(Ft.) Downstream point/station elevation = 208.280(Ft.) Pipe length = 146.00(Ft.) Slope = 0.2063 Manning's N = 0.01= No. of pipes = 1 Required pipe flow = 10.782(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 10.782(CFS) Normal flow depth in pipe = 5.25(In.) Flow top width inside pipe = 19.84(In.) Critical Depth = 14.12In.) Pipe flow velocity = 21.21(Ft/s) Travel time through pipe = 0.11 mm. Time of ccncentration (TC) = 7.75 mm. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 540.300 to Point/Station 540.400 CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 4.940(Ac.) Runoff from this stream = 10.782(CFS) Time of concentration = 7.75 mm. Rainfall intensity = 5.361(In/Hr) Program is now starting with Main Stream No. 2 Process from Point/Station 540.500 to Point/Station 540.600 INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 150.000(Ft.) Highest elevation = 279.300(Ft.) Lowest elevation = 255.500(Ft.) Elevation difference = 23.800(Ft.) Slope = 15.867 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 15.87 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 5.37 minutes TC = [1.8*(1.1_C)*distance(Ft.).5)/(% slope"(1/3)] TC= [1.8*(1.1_0.3500)*( 100.000".5)/( 15.867'(1/3)1= 5.37 The initial area total distance of 150.00 (Ft.) entered leaves a remaining distance of 50.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.32 minutes for a distance of 50.00 (Ft.) and a slope of 15.87 % with an elevation difference of 7.93(Ft.) from the end of the top area Tt = {11.9*length(Mi)"3)/(elevation change(Ft.))].385 *60(min/hr) = 0.323 Minutes Tt=[(11.9*0.0095"3)/( 7.93)].385= 0.32 Total initial area Ti = 5.37 minutes from Figure 3-3 formula plus 0.32 minutes from the Figure 3-4 formula = 5.69 minutes Rainfall intensity (I) = 6.541(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 0.137(CFS) Total initial stream area = 0.060(Ac.) Process from Point/Station 540.600 to Point/Station 540.700 IMPROVED CHANNEL TRAVEL TIME Upstream point elevation = 255.500(Ft.) Downstream point elevation = 221.500(Ft.) Channel length thru subarea = 302.000(Ft.) Channel base width = 1.000(Ft.) Slope or 'Z' of left channel bank = 1.000 Slope or IZ! of right channel bank = 1.000 Estimated mean flow rate at midpoint of channel = 0.458(CFS) 97 Manning's 'N' = 0.015 Maximum depth of channel = 1.000(Ft.) I Flow(q) thru subarea = 0.458(CFS) Depth of flow = 0.077(Ft.), Average velocity = 5.535(Ft/s) Channel flow top width = 1.154(Ft.) I Flow Velocity = 5.54(Ft/s) Travel time = 0.91 mm. Time of concentration = 6.60 mm. Critical depth = 0.176(Ft.) I Adding area flow to channel Rainfall intensity (I) = 5.945(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 - Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 I Rainfall intensity = 5.945(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 0.119 I Subarea runoff = 0.570(CFS) for 0.280(Ac.) Total runoff = 0.707(CFS) Total area = 0.340(Ac.) Depth of flow 0.100(Ft.), Average velocity = 6.452(Ft/s) Critical depth = 0.230(Ft.) I Process from Point/Station 540.700 to Point/Station 540.400 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 216.000(Ft.) Downstream point/station elevation = 208.280(Ft.) Pipe length = 210.00(Ft.) Slope = 0.0368 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 0.707(CFS) Given pipe size = 8.00(In.) Calculated individual pipe flow = 0.707(CFS) Normal flow depth in pipe = 3.04(In.) Flow top width inside pipe = 7.76(In.) Critical Depth = 4.761(In.) Pipe flow velocity = 5.83(Ft/s) Travel time through pipe = 0.60 mm. Time of concentration (T) = 7.20 mm. I Process from Point/Station 540.700 to Point/Station 540.400 **** CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed: In Main Stream number: 2. Stream flow area = 0.340 (Ac.) Runoff from this stream = 0.707(CFS) Time of concentration = 7.20 mm. Rainfall intensity = 5.621(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 540.800 to Point/Station 540.400 INITIAL AREA EVALUATION Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN I (Permanent Open Space Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 200.000(Ft.) Highest elevation = 237.500(Ft.) Lowest elevation = 207.000(Ft.) Elevation difference = 30.500(Ft.) Slope = 15.250 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 15.25 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 Initial Area Time of Concentration = 5.44 minutes TC = [1.8*(1.1_C)*distance(Ft.)".5)/(% slope'(1/3)] TC= [1.8*(1.1_0.3500)*( 100.000".5)/( 15.250"(1/3)1= 5.44 The initial area total distance of 200.00 (Ft.) entered leaves a remaining distance of 100.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.56 minutes for a distance of 100.00 (Ft.) and a slope of 15.25 % with an elevation difference of 15.25(Ft.) from the end of the top area Tt = [11.9*length(Mi)3)/(e1evation change(Ft.))].385 *60(min/hr) = 0.559 Minutes Tt=[ (11.9*0.0l893)/( 15.25)]A.385= 0.56 Total initial area Ti = 5.44 minutes from Figure 3-3 formula plus 0.56 minutes from the Figure 3-4 formula = 6.00 minutes Rainfall intensity (I) = 6.323(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 0.642(CFS) Total initial stream area = 0.290 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 540.800 to Point/Station 540.400 CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 0.290(Ac.) Runoff from this stream = 0.642(CFS) Time of concentration = 6.00 mm. - 99 Rainfall intensity = 6.323(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) 1 10.782 7.75 5.361 2 0.707 7.20 5.621 3 0.642 6.00 6.323 Qmax(1) = 1.000 * 1.000 * 10.782) + Q354 * 1.000 * 0.707) + 0.348 * 1.000 * 0.642) + = 12.001 Qmax(2) = 1.300 * 0.929 * 10.782) + 1.300 * 1.000 * 0.707) + 0.889 * 1.000 * 0.642) + = 11.298 Qmax(3) = 1.000 * 0.774 * 10.782) + 1.000 * 0.833 * 0.707) + 1.000 * 1.000 * 0.642) + = 9.579 Total of 3 main streams to confluence: Flow rates before confluence point: 10.782 0.707 0.642 Maximum flow rates at confluence using above data: 12.001 11.293 9.579 Area of streams before confluence: 4.940 0.343 0.290 Results of confluence: Total flow rate = 12.001(CFS) Time of concentration = 7.752 mm. Effective stream area after confluence = 5.570 (Ac.) End of computations, total study area = 5.570 (Ac.) - 100 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2006 Version 7.7 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 05/16/17 ------------------------------------------------------------------------ POINSETTIA 100 YEAR PROPOSED HYDROLOGY BASIN B3 JN 141018 CALCS BY NF ------------------------------------------------------------------------ Hydrology Study Control Information Program License Serial Number 6218 ------------------------------------------------------------------------ Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.700 24 hour precipitation(inches) = 4.700 P6/P24 = 57.4% San Diego hydrology manual 'C' values used ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 560.000 to Point/Station 570.000 INITIAL AREA EVALUATION Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL I (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 170.000(Ft.) Highest elevation = 265.000(Ft.) Lowest elevation = 251.600(Ft.) Elevation difference = 13.400(Ft.) Slope = 7.882 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 7.88 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 4.79 minutes TC= [1.8*(1.1_C)*distance(Ft.)".5)/(% slope"(1/3)I 101 TC= [1.8*(1.1_0.5700)*( 100.000".5)/( 7.882"(1/3)1= 4.79 The initial area total distance of 170.00 (Ft.) entered leaves a remaining distance of 70.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.55 minutes for a distance of 70.00 (Ft.) and a slope of 7.88 % with an elevation difference of 5.52(Ft.) from the end, of the top area Tt = [11.9*length(Mi)^3)/(elevation change(Ft.) )1.385 *60(min/hr) = 0.547 Minutes Tt=[(11.9*0.0133c'3)/( 5.2)J".385= 0.55 Total initial area Ti = 4.79 minutes from Figure 3-3 formula plus 0.55 minutes from the Figure 3-4 formula = 5.34 minutes Rainfall intensity (I) = 6.818(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.92(CFS) Total initial stream area = 0.250 (Ac.) +++++++++++++++++++++++++.++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 570.000 to Point/Station 571.000 *k IRREGULAR CHANNEL FLOW TRAVEL TIME Estimated mean flow rate at midpoint of channel = 2.129(CFS) Depth of flow = 0.222(F7-.), Average velocity = 2.141(Ft/s) Irregular Channel Data ----------------------------------------------------------------- Information entered for subchannel number 1 Point number 'XI coordinate 'Y' coordinate 1 0.00 0.83 2 0.17 0.33 3 10.50 0.12 4 12.00 0.00 5 13.50 0.12 6 23.83 0.33 7 24.00 0.83 Manning's 'N' friction factor = 0.015 ------------------------------------------------------------------ Sub-Channel flow = 2.129(CFS) flow top withh = 13.007(Ft.) velocity= 2.141(Ft/s) area = J.994(Sq.Ft) Froude number = 1.365 Upstream point elevation = 251.600(Ft.) Downstream point elevation = 247.490(Ft.) Flow length = 285.000(Ft.) Travel time = 2.22 man. Time of concentration = 7.56 mm. Depth of flow = 0.222(Ft.) Average velocity = 2.141(Ft/s) Total irregular channel flow = 2.129(CFS) Irregular channel normal depth above invert elev. = 0.222(Ft.) Average velocity of channel(s) = 2.141(Ft/s) Adding area flow to channel Rainfall intensity (I) = 5.449(In/Hr) for a 100.0 year storm 102 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL I (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 5.449(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.593 Subarea runoff = 2.259(CFS) for 0.790(Ac.) Total runoff = 3.230(CFS) Total area = 1.040(Ac.) Depth of flow = 0.248(Ft.), Average velocity = 2.352(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 571.000 to Point/Station 580.000 IRREGULAR CHANNEL FLOW TRAVEL TIME Estimated mean flow rate at midpoint of channel = 4.010(CFS) Depth of flow = 0.358(Ft.), Average velocity = 2.188(Ft/s) ******* Irregular Channel Data ----------------------------------------------------------------- Information entered for subchannel number 1 Point number 'X' coordinate 'Y' coordinate 1 0.00 0.43 2 15.50 0.12 3 16.83 0.00 4 17.00 0.50 Manning's 'N' friction factor = 0.015 ----------------------------------------------------------------- Sub-Channel flow = 4.010(CFS) flow top width = 13.344 (Ft.) velocity= 2.188(Ft/s) area = 1.832(Sq.Ft) I I Froude number = 1.041 Upstream point elevation = 247.490(Ft.) Downstream point elevation = 246.500(Ft.) Flow length = 140.000(Ft.) Travel time = 1.07 mm. Time of concentration = 8.63 mm. Depth of flow = 0.358(Ft.) Average velocity = 2.188(Ft/s) Total irregular channel flow = 4.010(CFS) Irregular channel normal depth above invert elev. = 0.358(Ft.) Average velocity of channel(s) = 2.188(Ft/s) Adding area flow to channel Rainfall intensity (I) = 5.004(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 103 [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A of Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall inensity = 5.004(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.946 Subarea runoff = 1.5C5(CFS) for 0.620(Ac.) Total runoff = 4.735(CFS) Total area = 1.660(Ac.) Depth of flow = 0.376(Ft.), Average velocity = 2.279(Ft/s) Process from Point/Station 571.000 to Point/Station 580.000 CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 1.660 (Ac.) Runoff from this stream = 4.735(CFS) Time of ccncentration = 8.63 mm. Rainfall intensity = 5.004(In/Hr) Program is now starting wth Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 102.000 to Point/Station 581.000 INITIAL AREA EVALUATION I Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 I [MEDIUM DENSITY RESIDENTIAL I (7.3 DU/A or Less Impervious value, Ai = 0.400 I Sub-Area C Value = 0.570 Initial subarea total flow distance = 60.000(Ft.) Highest elevation = 257.800(Ft.) I Lowest elevation = 254.300(Ft.) Elevation difference = 3.500(Ft.) Slope = 5.833 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Pt) I for the too area slope value of 5.83 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 I Initial Area Time of Concentration = 5.30 minutes TC = [1.8*(1.1_C)*distance(Ft.)".5)/(% slope"(1/3)] TC= [1.8*(1.1_0.5700)*( 100.000".5)/( 5.833"(1/3)1= 5.30 I Rainfall intensity (I) = 6.852(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.C'78(CFS) Total initial stream area = 0.020(Ac.) 104 I I +++++++++++++++++++++++++++++++++++++++-f++++++++++++++++++++++++++++++ Process from Point/Station 581.000 to Point/Station 582.000 IRREGULAR CHANNEL FLOW TRAVEL TIME Estimated mean flow rate at midpoint of channel = 0.273(CFS) Depth of flow = 0.169(Ft.), Average velocity = 1.295(Ft/s) ******* Irregular Channel Data ----------------------------------------------------------------- Information entered for subchannel number 1 Point number 'X' coordinate 'Y' coordinate 1 0.00 0.33 2 10.50 0.12 3 11.83 0.00 4 12.00 0.50 Manning's 'N' friction factor = 0.015 ----------------------------------------------------------------- Sub-Channel flow = 0.273(CFS) flow top width = 3.855(Ft.) velocity= 1.295(Ft/s) area = 0.211(Sq.Ft) Froude number = 0.975 Upstream point elevation = 249.770(Ft.) Downstream point elevation = 249.470(Ft.) Flow length = 35.000(Ft.) Travel time = 0.45 mm. Time of concentration = 5.75 mm. Depth of flow = 0.169(Ft.) Average velocity = 1.295(Ft/s) Total irregular channel flow = 0.273(CFS) Irregular channel normal depth above invert elev. = 0.169(Ft.) Average velocity of channel(s) = 1.295(Ft/s) Adding area flow to channel Rainfall intensity (I) = 6.500(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL I (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 6.500(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.068 Subarea runoff = 0.367(CFS) for 0.100(Ac.) Total runoff = 0.445(CFS) Total area = 0.120(Ac.) Depth of flow = 0.192(Ft.), Average velocity = 1.418(Ft/s) +++++++++++++++++++++++++++++++++++++++++++++-1-+++++++++++++++-l-++++++++ Process from Point/Station 582.000 to Point/Station 580.000 IRREGULAR CHANNEL FLOW TRAVEL TIME 105 I I Estimated mean flow rate at midpoint of channel = 1.424(CFS) Depth of flow = 0.259(Ftj, Average velocity = 1.881(Ft/s) Irregular Channel Data ----------------------------------------------------------------- Information entered for subchannel number 1 Point number 'X' coordinate 'Y' coordinate - 1 0.00 0.43 2 15.50 0.12 3 16.83 0.00 4 17.00 0.50 Manning's 'N' friction factor = 0.015 ----------------------------------------------------------------- Sub-Channel flow = 1.424(CFS) flow top width = 8.355(Ft.) velocity= 1.882(Ft/s) area = 0.757(Sq.Ft) Froude number = 1.102 Upstream point elevation = 249.470(Ft.) Downstream point elevation = 246.500(Ft.) Flow length = 325.000(Ft.) Travel time = 2.88 mm. Time of concentration = 8.63 mm. Depth of flow = 0.259(Ft.) Average velocity = 1.881(Ft/s) Total irregular channel flow = 1.424(CFS) Irregular channel normal depth above invert elev. = 0.259(Ft.) Average velocity of channel(s) = 1.881(Ft/s) Adding area flow to channel Rainfall intensity (I) = 5.003(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 5.003(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.462 Subarea runoff = 1.865(CFS) for 0.690(Ac.) Total runoff = 2.31'J(CFS) Total area = 0.810 (Ac.) Depth of flow = 0.295(Ft.), Average velocity = 2.110(Ft/s) I ++++++++-++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 582.000 to Point/Station 580.000 CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.810 (Ac.) 106 Runoff from this stream = 2.310(CFS) Time of concentration = 8.63 mm. Rainfall intensity = 5.003(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) 1 4.735 8.63 5.004 2 2.310 8.63 5.003 Qmax(l) = 1.000 * 1.000 * 4.735) + 1.000 * 1.000 * 2.310) + = 7.044 Qmax(2) = 1.000 * 1.000 * 4.735) + 1.000 * 1.000 * 2.310) + = 7.044 Total of 2 main streams to confluence: Flow rates before confluence point: 4.735 2.310 Maximum flow rates at confluence using above data: 7.044 7.044 Area of streams before confluence: 1.660 0.810 Results of confluence: Total flow rate = 7.044(CFS) Time of concentration = 8.625 mm. Effective stream area after confluence = 2.470(Ac.) Process from Point/Station 580.000 to Point/Station 610.000 kk PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 240.500(Ft.) Downstream point/station elevation = 239.810(Ft.) Pipe length = 34.50(Ft.) Slope = 0.0200 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 7.044(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 7.044(CFS) Normal flow depth in pipe = 8.72(In.) Flow top width inside pipe = 17.99(In.) Critical Depth = 12.33(In.) Pipe flow velocity = 8.29(Ft/s) Travel time through pipe = 0.07 mm. Time of concentration (TC) = 8.69 mm. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 580.000 to Point/Station 610.000 CONFLUENCE OF MAIN STREAMS k'k 107 The following data inside Main Stream is listed: I In Main Stream number: 1 Stream flow area = 2.470 (Ac.) Runoff from this stream = 7.044(CFS) I Time of concentration = 8.69 mm. Rainfall intensity = 4.979(In/Hr) Program is now starting with Main Stream No. 2 Process from Point/Staticn 590.000 to Point/Station 600.000 INITIAL AREA EVALUATION Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 90.000(Ft.) Highest elevation = 252.300(Ft.) Lowest elevation = 251.000(Ft.) Elevation difference = 1.300(Ft.) Slope = 1.444 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 65.00 (Pt) for the top area slope value of 1.44 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.80 minutes TC = [1.8*(1.1_C)*distance(Ft.).5)/(% slope"(1/3)] TC= [1.8*(1.1_0.5700)*( 65.000'.5)/( 1.444"(1/3)1= 6.80 The initial area total distance of 90.00 (Ft.) entered leaves a remaining distance of 25.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.48 minutes for a distance of 25.00 (Ft.) and a slope of 1.44 % with an elevation difference of 0.36(Ft.) from the end of the top area Tt = [11.9*length(Mi)'3)/(elevation change(Ft.))J.385 *60(min/hr) = 0.476 Minutes Tt=[(11.9*0.0047A3)/( 0.36)].385= 0.48 Total iniial area Ti = 6.80 minutes from Figure 3-3 formula plus 0.48 minutes from the Figure 3-4 formula = 7.28 minutes Rainfall intensity (I) = 5.583(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.318(CFS) U Total initial stream area = 0.100 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 600.000 to Point/Station 601.000 IRREGULAR CHANNEL FLOW TRAVEL TIME IM Estimated mean flow rate at midpoint of channel = 1.873(CFS) Depth of flow = 0.213(Ft.), Average velocity = 2.106(Ft/s) Irregular Channel Data ----------------------------------------------------------------- Information entered for subchannel number 1 Point number 'X' coordinate 'Y' coordinate 1 0.00 0.83 2 0.17 0.33 3 10.50 0.12 4 12.00 0.00 5 13.50 0.12 6 23.83 0.33 7 24.00 0.83 Manning's 'N' friction factor = 0.015 ----------------------------------------------------------------- Sub-Channel flow = 1.873(CFS) flow top width = 12.191(Ft.) velocity= 2.106(Ft/s) area = 0.890(Sq.Ft) Froude number = 1.374 Upstream point elevation = 251.000(Ft.) Downstream point elevation = 248.700(Ft.) Flow length = 155.000(Ft.) Travel time = 1.23 mm. Time of concentration = 8.51 mm. Depth of flow = 0.213(Ft.) Average velocity = 2.106(Ft/s) Total irregular channel flow = 1.873(CFS) Irregular channel normal depth above invert elev. = 0.213(Ft.) Average velocity of channel(s) = 2.106(Ft/s) Adding area flow to channel Rainfall intensity (I) = 5.049(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 5.049(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.661 Subarea runoff = 3.020(CFS) for 1.060(Ac.) Total runoff = 3.338(CFS) Total area = 1.160(Ac.) Depth of flow = 0.250(Ft.), Average velocity = 2.396(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 601.000 to Point/Station 610.000 IRREGULAR CHANNEL FLOW TRAVEL TIME Estimated mean flow rate at midpoint of channel = 4.185(CFS) 109 Depth of flow = 0.340(Ft.), Average velocity = 2.613(Ft/s) Irregular Channel Data ----------------------------------------------------------------- Information entered for subchannel number 1 Point number 'X' coordinate tyl coordinate 1 0.00 0.43 2 15.50 0.12 3 16.83 0.00 4 17.00 0.50 Manning's 'N' friction factor = 0.015 ----------------------------------------------------------------- Sub-Channel flow = 4.185(CFS) flow top width = 12.442(Ft.) velocity= 2.613(Ft/s) area = 1.601(Sq.Ft) Froude number ,= 1.284 Upstream point elevation = 248.700(Ft.) Downstream point elevation = 246.500(Ft.) Flow length = 200.000(Ft.) Travel time = 1.28 mm. Time of concentration = 9.78 mm. Depth of flow = 0.340(Ft.) Average velocity = 2.613(Ft/s) Total irrecular channel flow = 4.185(CFS) Irregular channel normal depth above invert elev. = 0.340(Ft.) Average velocity of channel(s) = 2.613(Ft/s) Adding area flow to channel Rainfall intensity (I) = 4.614(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.614(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) Ls C = 0.570 CA = 1.077 Subarea runoff = 1.632(CFS) for 0.730(Ac.) Total runoff = 4.971(CFS) Total area = 1.890(Ac.) Depth of flow = 0.357(Ft.), Average velocity = 2.725(Ft/s) +++++++++±++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 601.000 to Point/Station 610.000 CONFLJENCE OF MAIN STREAMS The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.890 (Ac.) Runoff from this stream = 4.971(CFS) Time of concentration = 9.78 mm. 110 I Rainfall intensity = 4.614(In/Hr) Program is now starting with Main Stream No. 3 Process from Point/Station 602.000 to Point/Station 610.000 kk' INITIAL AREA EVALUATION **** I Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 152.000(Ft.) Highest elevation = 248.250(Ft.) Lowest elevation = 246.500(Ft.) Elevation difference = 1.750(Ft.) Slope = 1.151 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 65.00 (Ft) for the top area slope value of 1.15 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.34 minutes TC = [1.8*(1.1_C)*distance(Ft.)'.5)/(% slope"(1/3)] TC= [1.8*(1.1_0.5700)*( 65.000'.5)/( 1.151"(1/3)1= 7.34 The initial area total distance of 152.00 (Ft.) entered leaves a remaining distance of 87.00 (Ft.) Using Figure 3-4, the travel time for this distance is 1.36 minutes for a distance of 87.00 (Ft.) and a slope of 1.15 % with an elevation difference of 1.00(Ft.) from the end of the top area Tt = [11.9*length(Mi)3)/(elevation change(Ft.))lt'.385 *60(min/hr) = 1.357 Minutes Tt=[(11.9*0.01653)/( 1.00)].".385= 1.36 Total initial area Ti = 7.34 minutes from Figure 3-3 formula plus 1.36 minutes from the Figure 3-4 formula = 8.70 minutes Rainfall intensity (I) = 4.978(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.369(CFS) Total initial stream area = 0.130(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 602.000 to Point/Station 610.000 CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 0.130 (Ac.) Runoff from this stream = 0.369(CFS) Time of concentration = 8.70 mm. Rainfall intensity = 4.978(In/Hr) 111 Summary of stream data: I Stream F--ow rate TO Rainfall Intensity No. (CFS) (mm) (In/Hr) 1 7.044 8.69 4.979 - 2 4.971 9.78 4.614 3 0.369 8.70 4.978 Qmax(l) = 1.000 * 1.000 * 7.044) + 1.000 * 0.889 * 4.971) + 1.000 * 1.000 * 0.369) + = 11.831 Qmax(2) = 0.927 * 1.000 * 7.044) + 1.000 * 1.000 * 4.971) + 0.927 * 1.000 * 0.369) + = 11.841 Qmax(3) = 1.000 * 1.000 * 7.044) + 1.000 * 0.889 * 4.971) + 1.000 * 1.000 * 0.369) + = 11.831 Total of 3 main streams to confluence: Flow rates before confluence point: 7.044 4.971 0.369 Maximum flow rates at confluence using above data: 11.831 11.841 11.831 Area of streams before confluence: 2.470 1.890 0.130 Results of confluence: Total flcw rate = 11.831(CFS) Time of concentration = 8.696 mm. Effective stream area after confluence = 4.490 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 610.000 to Point/Station 620.100 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 239.480(Ft.) Downstream point/station elevation = 234.670(Ft.) Pipe length = 224.30(Ft.) Slope = 0.0214 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 11.831(CFS) Given piDe size = 18.00(In.) Calculated individual pipe flow = 11.831(CFS) Normal flow depth in pipe = 11.84(In.) Flow top width inside pipe = 17.08(In.) Critical Depth = 15.68(In.) Pipe flow velocity = 9.60(Ft/s) Travel time through pipe = 0.39 mm. Time of concentration (TO) = 9.09 mm. 112 I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 610.000 to Point/Station 620.100 CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 4.490(Ac.) Runoff from this stream = 11.831(CFS) Time of concentration = 9.09 mm. Rainfall intensity = 4.840(In/Hr) Program is now starting with Main Stream No. 2 Process from Point/Station 620.000 to Point/Station 620.100 INITIAL AREA EVALUATION **** I Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 200.000(Ft.) Highest elevation = 250.200(Ft.) Lowest elevation = 246.200(Ft.) Elevation difference = 4.000(Ft.) Slope = 2.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80.00 (Ft) for the top area slope value of 2.00 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.77 minutes TC = [1.8*(1.1_C)*distance(Ft.).5)/(% slope"(1/3)] TC= [1.8*(1.1_0.5700)*( 80.000".5)/( 2.000"(1/3)1= 6.77 The initial area total distance of 200.00 (Ft.) entered leaves a remaining distance of 120.00 (Ft.) Using Figure 3-4, the travel time for this distance is 1.40 minutes for a distance of 120.00 (Ft.) and a slope of 2.00 % with an elevation difference of 2.40(Ft.) from the end of the top area Tt = [11.9*length(Mi)'3)/(elevation change(Ft.))].385 *60(min/hr) = 1.405 Minutes Tt=[(11.9*0.02273)/( 2.40)].385= 1.40 Total initial area Ti = 6.77 minutes from Figure 3-3 formula plus 1.40 minutes from the Figure 3-4 formula = 8.18 minutes Rainfall intensity (I) = 5.180(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 1.063(CFS) Total initial stream area = 0.360 (Ac.) 113 I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-1-+++ Process from Point/Station 620.000 to Point/Station 620.100 I CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: I In Main Stream number: 2 Stream flow area = 0.360(Ac.) Runoff from this stream = 1.063(CFS) Time of concentration = 8.18 mm. I Rainfall intensity = 5.180(In/Hr) Summary of stream data: I Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) I i 11.831 9.09 4.840 2 1.063 8.18 5.180 Qmax(i) = I 1.000 * 1.000 * 11.831) + 0.934 * 1.000 * 1.063) + = 12.824 Qmax(2) = I 1.000 * 0.900* 11.831) + 1.000 * 1.000 * 1.063) + = 11.711 Total of 2 main streams to confluence: Flow rates before confluence point: — 11.831 1.063 Maximum flow rates at confluence using above data: I 12.324 11.711 Area of screams before confluence: 4.490 0.360 - Results of confluence: Total flow rate = 12.824(CFS) Time of concentration = 9.085 mm. Effective stream area after confluence = 4.850 (Ac.) - Process from Point/Station 620.000 to Point/Station 620 .100 **** CONFLUENCE OF MAIN STREAMS **** The follcwing data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 4.850(Ac.) Runoff from this stream = 12.824(CFS) Time of concentration = 9.09 mm. Rainfall intensity = 4.840(In/Hr) Program is now starting with Main Stream No. 2 I ++++++++-++++++++++++++++++++++++++++++++++++++++++++++++++++++++-f++++ 114 I Process from Point/Station 630.000 to Point/Station 640.000 I kkk INITIAL AREA EVALUATION Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL I (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 80.000(Ft.) Highest elevation = 249.300(Ft.) Lowest elevation = 248.200(Ft.) Elevation difference = 1.100(Ft.) Slope = 1.375 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 65.00 (Ft) for the top area slope value of 1.38 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.92 minutes TC = [1.8*(1.1_C)*distance(Ft.)'.5)/(% slope"(1/3)} TC= [1.8*(1.1_0.5700)*( 65.000".5)/( 1.375"(1/3)1= 6.92 The initial area total distance of 80.00 (Ft.) entered leaves a remaining distance of 15.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.33 minutes for a distance of 15.00 (Ft.) and a slope of 1.38 % with an elevation difference of 0.21(Ft.) from the end of the top area Tt = [11.9*length(Mi)3)/(elevation change(Ft.))}".385 *60(min/hr) = 0.327 Minutes Tt=[(11.9*0.0028"3)/( 0.21)]".385= 0.33 Total initial area Ti = 6.92 minutes from Figure 3-3 formula plus 0.33 minutes from the Figure 3-4 formula = 7.24 minutes Rainfall intensity (I) = 5.601(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.255(CFS) Total initial stream area = 0.080 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 640.000 to Point/Station 650.000 IRREGULAR CHANNEL FLOW TRAVEL TIME **** Estimated mean flow rate at midpoint of channel = 0.910(CFS) Depth of flow = 0.130(Ft.), Average velocity = 2.176(Ft/s) Irregular Channel Data ----------------------------------------------------------------- Information entered for subchannel number 1 Point number 'X' coordinate 'Y' coordinate 1 0.00 0.20 2 9.83 0.00 3 10.00 0.50 4 15.00 0.60 Manning's 'N' friction factor = 0.015 115 I I I I I I I I I I I U Sub-Channel flow = 0.910(CFS) flow top width = 6.433(Ft.) velocity= 2.176(Ft/s) area = 0.418(Sq.Ft) Froude number = 1.504 Upstream point elevation = 248.200(Ft.) Downstream point elevation = 246.600(Ft.) Flow length = 85.000(Ft.) Travel time = 0.65 mm. Time of concentration = 7.90 mm. Depth of flow = 0.130(Ft.) Average velocity = 2.176(Ft/s) Total irregular channel flow = 0.910(CFS) Irregular channel normal depth above invert elev. = 0.130(Ft.) Average velocity of channel(s) = 2.176(Ft/s) Adding area flow to channel Rainfall intensity (I) = 5.298(In/Hr) for a 100.0 year storm Decimal fraction soil groiip A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL I (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 5.298(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.279 Subarea runoff = 1.224(CFS) for 0.410(Ac.) Total runoff = 1.48C(CFS) Total area = 0.490(Ac.) Depth of flow = 0.156(Ft.), Average velocity = 2.457(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 650.000 to Point/Station 650.100 ki PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 242.600(Ft.) Downstream point/station elevation = 234.670(Ft.) Pipe length = 50.00(Ft.) Slope = 0.1586 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 1.480(CFS) Given pipe size = 12.00(In.) Calculated individual pipe flow = 1.480(CFS) Normal flow depth in pipe = 2.62(In.) Flow top width inside pipe = 9.91(In.) Critical Depth = 6.18(In.) Pipe flow velocity = 11.70(Ft/s) Travel time through pipe = 0.07 mm. Time of concentration (TC) = 7.97 mm. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 116 Process from Point/Station 650.000 to Point/Station 650.100 CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.490(Ac.) Runoff from this stream = 1.480(CFS) Time of concentration = 7.97 mm. Rainfall intensity = 5.268(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 660.000 to Point/Station 661.000 INITIAL AREA EVALUATION Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 115.000(Ft.) Highest elevation = 251.600(Ft.) Lowest elevation = 248.900(Ft.) Elevation difference = 2.700(Ft.) Slope = 2.348 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80.00 (Ft) for the top area slope value of 2.35 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.42 minutes TC = [1.8*(1.1_C)*distance(Ft.).5)/(% slope"(1/3)] TC= [1.8*(1.1_0.5700)*( 80.000".5)/( 2.348"(1/3)1= 6.42 The initial area total distance of 115.00 (Ft.) entered leaves a remaining distance of 35.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.51 minutes for a distance of 35.00 (Ft.) and a slope of 2.35 % with an elevation difference of 0.82(Ft.) from the end of the top area Tt = [11.9*length(Mi)3)/(elevation change(Ft.))J.385 *60(min/hr) = 0.511 Minutes Tt=[(11.9*0.0066'3)/( 0.82)]A.385= 0.51 Total initial area Ti = 6.42 minutes from Figure 3-3 formula plus 0.51 minutes from the Figure 3-4 formula = 6.93 minutes Rainfall intensity (I) = 5.762(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.591(CFS) Total initial stream area = 0.180 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 661.000 to Point/Station 662.000 117 I IRREGULAR CHANNEL FLOW TRAVEL TIME I Estimated mean flow rate at midpoint of channel = 0.943(CFS) Depth of flow = 0.223(Ft.), Average velocity = 1.930(Ft/s) Irregular Channel Data ----------------------------------------------------------------- I Information entered for subchannel number 1 Point number 'X' coordinate 'Y' coordinate 1 0.00 0.43 I 2 15.50 0.12 3 16.83 0.00 4 17.00 0.50 I Manning's 'N' friction factor = 0.015 ----------------------------------------------------------------- Sub-Channel flow = 0.943(CFS) flow top width = 6.539(Ft.) velocity= 1.930(Ft/s) area = 0.488(Sq.Ft) Froude number = 1.245 Upstream point elevation = 248.900(Ft.) Downstream point elevation = 246.590(Ft.) I Flow length = 185.000(Ft.) Travel time = 1.60 min. Time of concentration = 8.53 min. Depth of flow = 0.223(Ft.) I Average velocity = 1.93C(Ft/s) Total irregular channel flow = 0.943(CFS) Irregular channel normal depth above invert elev. = 0.223(Ft.) I Average velocity of channel(s) = 1.930(Ft/s) Adding area flow to channel Rainfall intensity (I) = 5.041(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 I Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 I [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less Impervious value, Ai = 0.400 I Sub-Area C Value = 0.570 Rainfall intensity = 5.041(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.239 I Subarea runoff = 0.66(CFS) for 0.240(Ac.) Total runoff = 1.207:CFS) Total area = 0.420(Ac.) Depth of flow = 0.238(Ft.), Average velocity = 2.041(Ft/s) + + + + + + + + + + + + + + + + + + + + + + + + + - + + + + + + + + - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Process frcm Point/Station 662.000 to Point/Station 670.300 IRREGULAR CHANNEL FLOW TRAVEL TIME **** Estimated mean flow rate at midpoint of channel = 1.769(CFS) I Depth of flow = 0.220(Ft.), Average velocity = 3.748(Ft/s) 118 Irregular Channel Data ----------------------------------------------------------------- Information entered for subchannel number 1 Point number 'X' coordinate 'Y' coordinate 1 0.00 0.43 2 15.50 0.12 3 16.83 0.00 4 17.00 0.50 Manning's 'N' friction factor = 0.015 ----------------------------------------------------------------- Sub-Channel flow = 1.769(CFS) flow top width = 6.413(Ft.) velocity= 3.749(Ft/s) area = 0.472(Sq.Ft) Froude number = 2.435 Upstream point elevation = 246.560(Ft.) Downstream point elevation = 239.840(Ft.) Flow length = 140.000(Ft.) Travel time = 0.62 mm. Time of concentration = 9.15 mm. Depth of flow = 0.220(Ft.) Average velocity = 3.748(Ft/s) Total irregular channel flow = 1.769(CFS) Irregular channel normal depth above invert elev. = 0.220(Ft.) Average velocity of channel(s) = 3.748(Ft/s) Adding area flow to channel Rainfall intensity (I) = 4.817(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL I (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.817(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.473 Subarea runoff = 1.072(CFS) for 0.410(Ac.) Total runoff = 2.279(CFS) Total area = 0.830(Ac.) Depth of flow = 0.235(Ft.), Average velocity = 3.968(Ft/s) Process from Point/Station 670.000 to Point/Station 680.000 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = Downstream point/station elevation = Pipe length = 34.50(Ft.) Slope = No. of pipes = 1 Required pipe flow Given pipe size = 12.00(In.) Calculated individual pipe flow = 119 235.780 (Ft.) 235. 610 (Ft.) 0.0049 Manning's N = 0.013 = 2.279(CFS) 2.279 (CFS) U Normal flow depth in pipe = 9.00(In.) Flow top width inside pipe = 10.39(In.) Critical Depth = 7.75:In.) Pipe flow velocity = 3.61(Ft/s) Travel time through pipe = 0.16 mm. Time of ccncentration (TC) = 9.31 mm. +++++++++++++++++++++++++ +++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 670.000 to Point/Station 680.000 **** CONFLUENCE OF MINOR STREAMS Along Main Stream number: 3 in normal stream number 1 Stream flow area = 0.830 (Ac.) Runoff from this stream = 2.279(CFS) Time of concentration = 9.31 mm. Rainfall intensity = 4.764(In/Hr) + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Process from Point/Station 690.000 to Point/Station 700.000 kkk INITIAL AREA EVALUATION Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL I (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 90.000(Ft.) Highest elevation = 246.700(Ft.) Lowest elevation = 245.900(Ft.) Elevation difference = 0.800(Ft.) Slope = 0.889 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 65.00 (Ft) for the top area slope value of 0.89 %, in a development type cf - 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 8.00 minutes TC = [1.8k(1.1_C)*distance(Ft.).5)/(% slope"(1/3)] TC= [1.81,(1.1_0.5700)*( 65.000".5)/( 0.889(1/3)1= 8.00 The initial area total distance of 90.00 (Ft.) entered leaves a remaining distance of 25.00 (Ft.) Using Fig-are 3-4, the travel time for this distance is 0.57 minutes for a distance of 25.00 (Ft.) and a slope of 0.89 % with an elevation difference of 0.22(Ft.) from the end of the top area Tt = [11.9*length(Mi)3)/(elevation change(Ft.))]A.385 *60(min/hi) = 0.574 Minutes Tt=[ (1l.9*0.0047'3)/( C.22)1^.385= 0.57 Total initial area Ti = 8.00 minutes from Figure 3-3 formula plus 0.57 minutes from the Figure 3-4 formula = 8.57 minutes Rainfall intensity (I) = 5.024(In/Hr) for a 100.0 year storm 120 Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.286(CFS) Total initial stream area = 0.100 (Ac.) Process from Point/Station 700.000 to Point/Station 680.000 IRREGULAR CHANNEL FLOW TRAVEL TIME Estimated mean flow rate at midpoint of channel = 1.027(CFS) Depth of flow = 0.195(Ft.), Average velocity = 3.142(Ft/s) Irregular Channel Data ----------------------------------------------------------------- Information entered for subchannel number 1 Point number 'X' coordinate 'Y' coordinate 1 0.00 0.43 2 15.50 0.12 3 16.83 0.00 4 17.00 0.50 Manning's 'N' friction factor = 0.013 ----------------------------------------------------------------- Sub-Channel flow = 1.027(CFS) flow top width = 5.149(Ft.) velocity= 3.142(Ft/s) area = 0.327(Sq.Ft) Froude number = 2.198 Upstream point elevation = 245.900(Ft.) Downstream point elevation = 239.830(Ft.) Flow length = 196.000(Ft.) Travel time = 1.04 mm. Time of concentration = 9.61 mm. Depth of flow = 0.195(Ft.) Average velocity = 3.142(Ft/s) Total irregular channel flow = 1.027(CFS) Irregular channel normal depth above invert elev. = 0.195(Ft.) Average velocity of channel(s) = 3.142(Ft/s) Adding area flow to channel Rainfall intensity (I) = 4.667(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL I (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.667(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.365 Subarea runoff = 1.416(CFS) for 0.540(Ac.) Total runoff = 1.702(CFS) Total area = 0.640(Ac.) Depth of flow = 0.222(Ft.), Average velocity = 3.503(Ft/s) 121 I I +++++++++++±++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 700.000 to Point/Station 680.000 CONFLUENCE OF MINOR STREAMS I Along Main Stream number: 3 in normal stream number 2 Stream flow area = 0.640 (Ac.) Runoff from this stream = 1.702(CFS) Time of concentration = 9.61 mm. I Rainfall intensity = 4.667(In/Hr) Summary of stream data: I Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) I i 2.279 9.31 4.764 2 1.702 9.61 4.667 Qmax(1) = I 1 -000 * 1.000 * 2.279) + 1.000 * 0.969 * 1.702) + = 3.928 Qmax(2) = I 0.980 * 1.000 * 2.279) + 1.000 * 1.000 * 1.702) + = 3•935 Total of 2 streams to confluence: I Flow rates before confluence point: 2.279 1.702 Maximum flow rates at confluence using above data: I 3.928 3.95 Area of streams before confluence: 0.830 0.640 Results of confluence: Total flow rate = 3.935(CFS) Time of ccncentration = 9.612 mm. Effective stream area after confluence = 1.470(Ac.) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 680.000 to Point/Station 710.000 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 235.280(Ft.) Downstream point/station elevation = 234.000(Ft.) Pipe length = 223.00(Ft.) Slope = 0.0057 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.935(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.935(CFS) Normal flow depth in pipe = 8.94 (In.) Flow top width inside pipe = 18.00(In.) Critical Depth = 9.10(In.) Pipe flow velocity = 4.49(Ft/s) Travel time through pipe = 0.83 mm. Time of concentration (IC) = 10.44 mm. 122 Process from Point/Station 680.000 to Point/Station 710.000 CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 1.470 (Ac.) Runoff from this stream = 3.935(CFS) Time of concentration = 10.44 mm. Rainfall intensity = 4.425(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) 1 12.824 9.09 4.840 2 1.480 7.97 5.268 3 3.935 10.44 4.425 Qmax(1) = 1.000 * 1.000 * 12.824) + 0.919 * 1.000 * 1.480) + 1.000 * 0.870 * 3.935) + = 17.608 Qmax(2) = 1.000 * 0.877 * 12.824) + 1.000 * 1.000 * 1.480) + 1.000 * 0.763 * 3935) + = 15.727 Qmax(3) = 0.914 * 1.000 * 12.824) + 0.840 * 1.000 * 1.480) + 1.000 * 1.000 * 3.935) + = 16.902 Total of 3 main streams to confluence: Flow rates before confluence point: 12.824 1.480 3.935 Maximum flow rates at confluence using above data: 17.608 15.727 16.902 Area of streams before confluence: 4.850 0.490 1.470 Results of confluence: Total flow rate = 17.608(CFS) Time of concentration = 9.085 mm. Effective stream area after confluence = 6.810 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 680.000 to Point/Station 710.000 CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: 123 I I In Main Stream number: 1 Stream flow area = 6.810(Ac.) Runoff from this stream = 17.608(CFS) Time of concentration = 9.09 mm. Rainfall intensity = 4.840(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++..++++++++++++++ f++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 540.300 to Point/Station 620.100 INITIAL AREA EVALUATION Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL I (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 - Initial subarea total flcw distance = 120.000(Ft.) Highest elevation = 251.800(Ft.) Lowest elevation = 234.COO(Ft.) Elevation difference = 17.800(Ft.) Slope = 14.833 % Top of Initial Area Slope adjusted by User to 14.500 % Bottom of Initial Area Slope adjusted by User to 14.500 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 14.50 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 3.91 minutes TC = [1.8*(1.1_C)*distance(Ft.).5)/(% slope "(1/3)] TC = [1.8*(1.1_0.5700)*( 100.000".5)/( 14.500"(1/3)1= 3.91 - The initial area total distance of 120.00 (Ft.) entered leaves a remaining distance of 20.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.16 minutes for a distance of 20.00 (Ft.) and a slope of 14.50 % with an elevation difference of 2.90(Ft.) from the end of the top area Tt = [11.9*1ength(Mi)3)J(e1evation change(Ftj)I".385 *60(min/hr) = 0.165 Minutes Tt=[(11.9*0.0038.3)/( 2.90)]".385= 0.16 Total initial area Ti = 3.91 minutes from Figure 3-3 formula plus 0.16 minutes from the Figure 3-4 formula = 4.08 minutes Calculated TC of 4.077 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 7.114(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 1.906(CFS) Total initial stream area = 0.470 (Ac.) U ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 540.300 to Point/Station 620.100 124 I CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.470 (Ac.) Runoff from this stream = 1.906(CFS) Time of concentration = 4.08 mm. Rainfall intensity = 7.114(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) 1 17.608 9.09 4.840 2 1.906 4.08 7.114 Qmax(1) = 1.000 * 1.000 * 17.608) + 0.680 * 1.000 * 1.906) + = 18.904 Qmax(2) = 1.000 * 0.449 * 17.608) + 1.000 * 1.000 * 1.906) + = 9.808 Total of 2 main streams to confluence: Flow rates before confluence point: 17.608 1.906 Maximum flow rates at confluence using above data: 18.904 9.808 Area of streams before confluence: 6.810 0.470 Results of confluence: Total flow rate = 18.904(CFS) Time of concentration = 9.085 mm. Effective stream area after confluence = 7.280(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 710.100 to Point/Station 800.000 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 228.600(Ft.) I Downstream point/station elevation = 200.030(Ft.) Pipe length = 135.00(Ft.) Slope = 0.2116 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 18.904(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 18.904(CFS) Normal flow depth in pipe = 7.82(In.) Flow top width inside pipe = 17.84(In.) Critical depth could not be calculated. Pipe flow velocity = 25.67(Ft/s) Travel time through pipe = 0.09 mm. Time of concentration (TC) = 9.17 mm. End of computations, total study area = 7.280 (Ac.) - I I 125 I San Diego County Rational Hydrology Program I CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2006 Version 7.7 Rational method hydrology program based on I San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 05/16/17 ------------------------------------------------------------------------ POINSETTIA 100 YEAR PROPOSED HYDROLOGY CALCULATIONS BASIN B4- SOUTH END OF POINSETTIA — JN 141018 CALCS BY NP ------------------------------------------------------------ I Hydrology Stdy Control Information Program License Serial Number 6218 I ------------------------------------------------------------------------ Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.700 24 hour precipitation(inches) = 4.700 P6/P24 = 57.4% San Diegc hydrology manual tC' values used Process from Point/Station 760.000 to Point/Station 740.000 INITIAL AREA EVALUATION Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type I (General Industrial Impervious value, Al = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = 128.000(Ft.) Highest elevation = 25.500(Ft.) Lowest elevation = 251.500(Ft.) Elevation, difference = 4.000(Ft.) Slope = 3.125 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80.00 (Pt) for the top area slope value of 3.13 %, in a development type of General Industrial In Accordance With Figure 3-3 Initial Area Time of Concentration = 2.53 minutes TC = [l.,E.*(1.1C)*distance(Ft.)'.5)/(% slope"(1/3)I 126 TC= [1.8*(1.1_0.8700)*( 80.000".5)/( 3.125'(1/3)1= 2.53 The initial area total distance of 128.00 (Ft.) entered leaves a remaining distance of 48.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.58 minutes for a distance of 48.00 (Ft.) and a slope of 3.13 % with an elevation difference of 1.50(Ft.) from the end of the top area Tt = [11.9*length(Mi)3)/(elevation change(Ftj)]t'.385 *60(min/hr) = 0.584 Minutes Tt=[(11.9*0.0091"3)/( 1.50)}".385= 0.58 Total initial area Ti = 2.53 minutes from Figure 3-3 formula plus 0.58 minutes from the Figure 3-4 formula = 3.12 minutes Calculated TC of 3.117 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 7.114(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea runoff = 0.557(CFS) Total initial stream area = 0.090(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 740.000 to Point/Station 750.000 IRREGULAR CHANNEL FLOW TRAVEL TIME **** Estimated mean flow rate at midpoint of channel = 2.073(CFS) Depth of flow = 0.235(Ft.), Average velocity = 3.601(Ft/s) ******* Irregular Channel Data ----------------------------------------------------------------- Information entered for subchannel number 1 Point number 'X' coordinate 'Y' coordinate 1 0.00 0.50 2 0.17 0.00 3 1.50 0.12 4 20.50 0.50 Manning's 'N' friction factor = 0.015 ----------------------------------------------------------------- Sub-Channel flow = 2.073(CFS) flow top width = 7.181(Ft.) velocity= 3.601(Ft/s) area = 0.576(Sq.Ft) Froude number = 2.241 Upstream point elevation = 251.500(Ft.) Downstream point elevation = 236.500(Ft.) Flow length = 380.000(Ft.) Travel time = 1.76 mm. Time of concentration = 4.88 mm. Depth of flow = 0.235(Ft.) Average velocity = 3.601(Ft/s) Total irregular channel flow = 2.073(CFS) Irregular channel normal depth above invert elev. = 0.235(Ft.) Average velocity of channel(s) = 3.601(Ft/s) Adding area flow to channel Calculated TC of 4.876 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations 127 Rainfall intensity (I) = 7.114(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type (General Industrial Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Rainfall intensity = 7.114(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.870 CA = 0.505 Subarea runoff = 3.033(CFS) for 0.490(Ac.) Total runoff = 3.590(CFS) Total area = 0.580(Ac.) Depth of flow = 0.273(Ft.), Average velocity = 4.092(Ft/s) ++++++++++ --+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 750.000 to Point/Station 780.100 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 232.000(Ft.) Downstream point/station elevation = 231.590(Ft.) Pipe length = 55.00(Ft.) Slope = 0.0075 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.590(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.590(CFS) Normal flow depth in pipe = 7.87(In.) Flow top width inside pipe = 17.86(In.) Critical Depth = 8.68(In.) Pipe flow velocity = 4.83(Ft/s) Travel time through pipe = 0.19 mm. Time of ccncentration (TC) = 5.07 mm. Process from Point/Station 750.000 to Point/Station 780.100 **** CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed: In Main Stream number: 1 - Stream flow area = 0.580 (Ac.) Runoff from this stream = 3.590(CFS) Time of concentration = 5.07 mm. - Rainfall intensity = 7.054(In/Hr) Program is now starting with Main Stream No. 2 Process from Point/Station 760.000 to Point/Station 770.000 INITIAL AREA EVALUATION kk Decimal fraction soil group A = 0.000 I Decimal fraction soil group B = 0.000 128 I Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type (General Industrial Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = 112.000(Ft.) Highest elevation = 255.500(Ft.) Lowest elevation = 252.100(Ft.) Elevation difference = 3.400(Ft.) Slope = 3.036 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80.00 (Pt) for the top area slope value of 3.04 %, in a development type of General Industrial In Accordance With Figure 3-3 Initial Area Time of Concentration = 2.56 minutes TC = [1.8*(1.1_C)*distance(Ft.)A.5)/(% slope(1/3)] TC= [1.8*(1.1_0.8700)*( 80.000'.5)/( 3.036"(1/3)1= 2.56 The initial area total distance of 112.00 (Ft.) entered leaves a remaining distance of 32.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.43 minutes for a distance of 32.00 (Ft.) and a slope of 3.04 % with an elevation difference of 0.97(Ft.) from the end of the top area Tt = [11.9*length(Mi)3)/(elevation change(Ft.))].385 *60(min/hr) = 0.432 Minutes Tt=[(11.9*0.0061"3)/( 0.97)]'.385= 0.43 Total initial area Ti = 2.56 minutes from Figure 3-3 formula plus 0.43 minutes from the Figure 3-4 formula = 2.99 minutes Calculated TC of 2.990 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 7.114(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea runoff = 0.495(CFS) Total initial stream area = 0.080 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 770.000 to Point/Station 780.000 IRREGULAR CHANNEL FLOW TRAVEL TIME Estimated mean flow rate at midpoint of channel = 1.980(CFS) Depth of flow = 0.231(Ft.), Average velocity = 3.626(Ft/s) Irregular Channel Data ----------------------------------------------------------------- Information entered for subchannel number 1 Point number 'X' coordinate 'Y' coordinate 1 0.00 0.50 2 0.17 0.00 3 1.50 0.12 4 20.50 0.50 Manning's 'N' friction factor = 0.015 ----------------------------------------------------------------- Sub-Channel flow = 1.980(CFS) flow top width = 6.971(Ft.) 129 velocity= 3.626(Ft/s) area = 0.546(Sq.Ft) I t Froude number = 2.283 Upstream point elevation = 252.100(Ft.) I Downstream point elevation = 236.500(Ft.) Flow length = 378.000(Ft.) Travel time = 1.74 mm. Time of concentration = 4.73 mm. I Depth of flow = 0.231(Ft.) Average velocity = 3.626(Ft/s) Total irregular channel flow = 1.980(CFS) I Irregular channel normal depth above invert elev. = 0.231(Ft.) Average velocity of channel(s) = 3.626(Ft/s) Adding area flow to channel I Calculated TC of 4.727 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 7.114(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 I Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 I [INDUSTRIAL area type I (General Industrial Impervious value, Ai = 0.50 Sub-Area C Value = 0.870 I Rainfall intensity = 7.114(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.870 CA = 0.487 I Subarea runoff = 2.971(CFS) for 0.480(Ac.) Total runoff = 3.466(CFS) Total area = 0.560(Ac.) Depth of flow = 0.268(Ft.), Average velocity = 4.128(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 780.000 to Point/Station 780.100 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream paint/station elevation = 232.000(Ft.) Downstream point/station elevation = 231.590(Ft.) Pipe length = 23.50(Ft.) Slope = 0.0174 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.466(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.466(CFS) Normal flow depth in pipe = 6.13(In.) Flow top width inside pipe = 17.06(In.) Critical Depth = 8.52(m.) Pipe flow velocity = 6.52(Ft/s) Travel time through pipe= 0.06 mm. Time of ccncentration (TC) = 4.79 mm. Process from Point/Station 780.000 to Point/Station 780.100 130 CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.560(Ac.) Runoff from this stream = 3.466(CFS) Time of concentration = 4.79 mm. Rainfall intensity = 7.114(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) 1 3.590 5.07 7.054 2 3.466 4.79 7.114 Qmax(l) = 1.000 * 1.000 * 3.590) + 0.992 * 1.000 * 3.466) + = 7.027 Qmax(2) = 1.000 * 0.945 * 3.590) + 1.000 * 1.000 * 3.466) + = 6.858 Total of 2 main streams to confluence: Flow rates before confluence point: 3.590 3.466 Maximum flow rates at confluence using above data: 7.027 6.858 Area of streams before confluence: 0.580 0.560 Results of confluence: Total flow rate = 7.027(CFS) Time of concentration = 5.065 mm. Effective stream area after confluence = 1.140(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 780.100 to Point/Station 780.200 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 231.260(Ft.) Downstream point/station elevation = 230.760(Ft.) Pipe length = 65.99(Ft.) Slope = 0.0076 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 7.027(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 7.027(CFS) Normal flow depth in pipe = 11.84(In.) Flow top width inside pipe = 17.08(In.) Critical Depth = 12.30(In.) Pipe flow velocity = 5.71(Ft/s) Travel time through pipe = 0.19 mm. Time of concentration (TC) = 5.26 mm. 131 I I I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-i-+++ Process from Point/Station 780.200 to Point/Station 780.300 PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream pcint/station elevation = 230.430(Ft.) Downstream point/station elevation = 229.300(Ft.) Pipe length = 115.20(Ft.) Slope = 0.0098 Manning's N = 0.013 I No. of pipes = 1 Required pipe flow = 7.027(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 7.027(CFS) I Normal flow depth in pipe = 10.84(In.) Flow top width inside pipe = 17.62(In.) Critical Depth = 12.30(In.) I Pipe flow velocity = 6.32(Ft/s) Travel time through pipe = 0.30 mm. Time of concentration (TC) = 5.56 mm. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 780.200 to Point/Station 780.300 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 1.140 (Ac.) Runoff from this stream = 7.027(CFS) Time of ccncentration = 5.56 mm. Rainfall intensity = 6.642(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++--+++++++++++++++ - Process from Point/Station 780.400 to Point/Station 780.300 INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space Impervious value, Al = 0.000 Sub-Area 2 Value = 0.350 Initial subarea total flow distance = 195.000(Ft.) Highest elevation = 252.000(Ft.) Lowest elevation = 228.800(Ft.) Elevation difference = 23.200(Ft.) Slope = 11.897 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 11.90 %, in a development Permanent Open Space In Accordance With Figure 3-3 132 type of Initial Area Time of Concentration = 5.91 minutes TC = [1.8*(1.1_C)*distance(Ftjf'.5)/(% slope"(1/3)] TC= [1.8*(1.1_0.3500)*( 100.000".5)/( 11.897"(1/3)]= 5.91 The initial area total distance of 195.00 (Ft.) entered leaves a remaining distance of 95.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.59 minutes for a distance of 95.00 (Ft.) and a slope of 11.90 % with an elevation difference of 11.30(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))].385 *60(min/hr) = 0.591 Minutes Tt= [(11. 9*Q• 0180'3) / ( 11.30)1 -.385= 0.59 Total initial area Ti = 5.91 minutes from Figure 3-3 formula plus 0.59 minutes from the Figure 3-4 formula = 6.50 minutes Rainfall intensity (I) = 6.004(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 0.862(CFS) Total initial stream area = 0.410(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 780.400 to Point/Station 780.300 CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.410 (Ac.) Runoff from this stream = 0.862(CFS) Time of concentration = 6.50 mm. Rainfall intensity = 6.004(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) 1 7.027 5.56 6.642 2 0.862 6.50 6.004 Qmax(l) = 1.000 * 1.000 * 7.027) + 1.000 * 0.855 * 0.862) + = 7.763 Qmax(2) = 0.904 * 1.000 * 7.027) + 1.000 * 1.000 * 0.862) + = 7.213 Total of 2 main streams to confluence: Flow rates before confluence point: 7.027 0.862 Maximum flow rates at confluence using above data: 7.763 7.213 Area of streams before confluence: 1.140 0.410 Results of confluence: 133 Total flow rate = 7.763(CFS) Time of concentration = 5.562 mm. Effective stream area after confluence = 1.550 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 780.300 to Point/Station 790.100 PIPEFLOW TRAVEL TIME (User specified size) **** I Upstream point/station elevation = 225.200(Ft.) Downstream point/station elevation = 201.030(Ft.) Pipe length = 259.40(Ft.) Slope = 0.0932 Manning's N = 0.013 I No. of pipes = 1 Required pipe flow = 7.763(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 7.763(CFS) I Normal flow depth in pipe = 6.03(In.) Flow top wdth inside pipe = 16.99(In.) Critical Depth = 12.95(In.) Pipe flow velocity = 14.95(Ft/s) I Travel time through pipe = 0.29 mm. Time of concentration (TC) = 5.85 mm. End of computations, total study area = 1.550 (Ac.) I 134 San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (c)1991-2006 Version 7.7 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 05/16/17 ------------------------------------------------------------------------ POINSETTIA PROPOSED 100 YEAR HYDROLOGY BASIN B5 JN 141018 CALCS BY NF ------------------------------------------------------------------------ Hydrology Study Control Information Program License Serial Number 6218 ------------------------------------------------------------------------ Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data precipitation entered: 6 hour, precipitation(inches) = 2.700 24 hour precipitation(inches) = 4.700 P6/P24 = 57.4% San Diego hydrology manual 'C' values used ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 110.000 to Point/Station 820.000 INITIAL AREA EVALUATION Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type (General Industrial Impervious value, Al = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = 100.000(Ft.) Highest elevation = 245.680(Ft.) Lowest elevation = 243.850(Ft.) Elevation difference = 1.830(Ft.) Slope = 1.830 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 70.00 (Ft) for the top area slope value of 1.83 %, in a development type of General Industrial In Accordance With Figure 3-3 Initial Area Time of Concentration = 2.83 minutes 135 I I I I I I I I TC = [1.8*(1.1_C)*distance(Ft.).5)/(% slope"(1/3)J TC= {1.8*(1.1_0.8700)*( 70000"5)/( 1.830"(1/3)]= 2.83 The initial area total distance of 100.00 (Ft.) entered leaves a remaining distance of 30.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.50 minutes for a distance of 30.00 Ft.) and a slope of 1.83 % with an elevation difference of 0.55(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))]A.385 *60(min/hr) = 0.500 Minutes Tt=[ (11.9*0.0057"3)/( 0.55)]".385= 0.50 Total initial area Ti = 2.83 minutes from Figure 3-3 formula plus 0.50 minutes from the Figure 3-4 formula = 3.33 minutes Calculated TC of 3.332 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 7.114(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea runoff = 0.928(CFS) Total initial stream area = 0.150 (Ac.) Process from ;Point/Static'n 820.000 to Point/Station 830.000 IRREGULAR CHANNEL FLOW TRAVEL TIME Estimated mean flow rate at midpoint of channel = 3.808(CFS) Depth of flow = 0.297(Ft.), Average velocity = 3.407(Ft/s) Irregular Channel Data ----------------------------------------------------------------- Information entered for subchannel number 1 Point number 'X' coordinate 'Y' coordinate 1 0.00 0.50 2 0.17 0.00 3 1.50 0.12 4 20.50 0.50 Manning's 'N' friction factor = 0.015 ----------------------------------------------------------------- Sub-Channel flow = 3.809(CFS) flow top width = 10.302(Ft.) velocity= 3.407(Ft/s) area = 1.118(Sq.Ft) Froude number = 1.823 Upstream point elevation = 243.850(Ft.) Downstream point elevation = 232.540(Ft.) Flow length = 481.000(Ft.) Travel time = 2.35 mm. Time of concentration = 5.68 mm. Depth of flow = 0.297cFt.) Average velocity = 3.407(Ft/s) Total irregular channel flow = 3.808(CFS) Irregular channel normal depth above invert elev. = 0.297(Ft.) Average velocity of channel(s) = 3.407(Ft/s) Adding area flow to channel Rainfall intensity (I) = 6.549(In/Hr) for a 100.0 year storm 136 Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type I (General Industrial Impervious value, Al = 0.950 Sub-Area C Value = 0.870 Rainfall intensity = 6.549(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.870 CA = 1.009 Subarea runoff = 5.681(CFS) for 1.010(Ac.) Total runoff = 6.609(CFS) Total area = 1.160(Ac.) Depth of flow = 0.348 (Ft.), Average velocity = 3.893(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 820.000 to Point/Station 830.000 CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 1.160(Ac.) Runoff from this stream = 6.609(CFS) Time of concentration = 5.68 mm. Rainfall intensity = 6.549(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 840.000 to Point/Station 841.000 INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type (General Industrial Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = 110.000(Ft.) Highest elevation = 237.700(Ft.) Lowest elevation = 234.110(Ft.) Elevation difference = 3.590(Ft.) Slope = 3.264 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80.00 (Ft) for the top area slope value of 3.26 %, in a development type of General Industrial In Accordance With Figure 3-3 Initial Area Time of Concentration = 2.50 minutes TC = [1.8*(1.1_C)*distance(Ft.)".5)/(% slope" (1/3)J TC= [1.8*(1.1_0.8700)*( 80.000".5)/( 3.264"(1/3)1= 2.50 The initial area total distance of 110.00 (Ft.) entered leaves a 137 remaining distance of 30.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.40 minutes for a distance of 30.00 •'Ft.) and a slope of 3.26 % with an elevation difference of 0.98(Ft.) from the end of the top area Tt = [l1.9*length(Mi)"3)/elevation change(Ftj)]A.385 *60(min/hr) = 0.40C Minutes Tt=[ (l1.9*C.00573) / ( 0.98)1^.385= 0.40 Total initial area Ti = 2.50 minutes from Figure 3-3 formula plus 0.40 minutes from the Figure 3-4 formula = 2.90 minutes Calculated TC of 2.896 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 7.114(In/Hr) for a 100.0 year storm Effective :unoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea runoff = 0.495(CFS) Total initial stream area = 0.080 (Ac.) Process from Point/Station 841.000 to Point/Station 830.000 IRREGULAR CHANNEL FLOW TRAVEL TIME Estimated mean flow rate at midpoint of channel = 1.453(CFS) Depth of flow = 0.274(Ft.), Average velocity = 1.638(Ft/s) Irregular Channel Data ----------------------------------------------------------------- Informatic•n entered for subchannel number 1 Point number 'X' coordinate 'Y' coordinate 1 0.00 0.50 2 0.17 0.00 3 1.50 0.12 4 20.50 0.50 Manning's 'N' friction factor = 0.015 ----------------------------------------------------------------- Sub-Channel flow = 1.454(CFS) flow top width = 9.107(Ft.) velocity= 1.638(Ft/s) area = 0.887(Sq.Ft) Froude number = 0.925 Upstream point elevation = 234.110(Ft.) Downstream point elevation = 232.540(Ft.) Flow length = 250.000iFt.) Travel time = 2.54 mm. Time of concentration = 5.44 mm. Depth of flow = 0.274Ft.) Average velocity = 1.638(Ft/s) Total irregular channel flow = 1.453(CFS) Irregular channel normal depth above invert elev. = 0.274(Ft.) Average velocity of channel(s) = 1.638(Ft/s) Adding area flow to channel Rainfall intensity (I) = 6.737(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 138 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type (General Industrial Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Rainfall intensity = 6.737(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.870 CA = 0.348 Subarea runoff = 1.849(CFS) for 0.320(Ac.) Total runoff = 2.345(CFS) Total area = 0.400(Ac.) Depth of flow = 0.312(Ft.), Average velocity = 1.837(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 841.000 to Point/Station 830.000 CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.400(Ac.) Runoff from this stream = 2.345(CFS) Time of concentration = 5.44 mm. Rainfall intensity = 6.737(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) 1 6.609 5.68 6.549 2 2.345 5.44 6.737 Qmax(1) = 1.000 * 1.000 * 6.609) + 0.972 * 1.000 * 2.345) + = 8.888 Qmax(2) = 1.000 * 0.957 * 6.609) + 1.000 * 1.000 2.345) + = 8.669 Total of 2 main streams to confluence: Flow rates before confluence point: 6.609 2.345 Maximum flow rates at confluence using above data: 8.888 8.669 Area of streams before confluence: 1.160 0.400 Results of confluence: Total flow rate = 8.888(CFS) Time of concentration = 5.685 mm. Effective stream area after confluence = 1.560(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 139 Process from Point/Station 830.000 to Point/Station 860.200 PIPEFLDW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 226.540(Ft.) Downstream paint/station elevation = 224.890(Ft.) Pipe length = 82.50(Ft.) Slope = 0.0200 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 8.888(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 8.888(CFS) Normal flow depth in pipe = 10.03(In.) Flow top width inside pipe = 17.88(In.) Critical Depth = 13.85(n.) Pipe flow velocity = 8.78(Ft/s) Travel time through pipe = 0.16 mm. Time of concentration (TC = 5.84 mm. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 830.000 to Point/Station 860.200 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 1.560(Ac.) Runoff from this stream = 8.888(CFS) Time of concentration = 5.84 mm. Rainfall intensity = 6.435(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++ f+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Staticn 840.000 to Point/Station 843.000 INITIAL AREA EVALUATION **** Decimal fraction soil grcup A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type I (General Industrial Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = 114.000(Ft.) Highest elevation = 237.670(Ft.) Lowest elevation = 234.10(Ft.) Elevation difference = 3.560(Ft.) Slope = 3.123 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80.00 (Ft) for the top area slope value of 3.12 %, in a development type of General Industrial In Accordance With Figure 3-3 Initial Area Time of Concentration = 2.53 minutes TC = [1.8*(1.1_C)*distance(Ft.)I.5)/(% slope'(1/3)] TC= [1.8(1.1_0.8700)*( 80.000".5)/( 3.123"(1/3)1= 2.53 140 The initial area total distance of 114.00 (Ft.) entered leaves a remaining distance of 34.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.45 minutes for a distance of 34.00 (Ft.) and a slope of 3.12 % with an elevation difference of 1.06(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ft.))].385 *60(min/hr) = 0.448 Minutes Tt=[ (11.9*0.0064'3)/( 1.06)]-.385= 0.45 Total initial area Ti = 2.53 minutes from Figure 3-3 formula plus 0.45 minutes from the Figure 3-4 formula = 2.98 minutes Calculated TC of 2.981 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 7.114(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea runoff = 0.557(CFS) Total initial stream area = 0.090 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 843.000 to Point/Station 860.200 IRREGULAR CHANNEL FLOW TRAVEL TIME Estimated mean flow rate at midpoint of channel = 1.530(CFS) Depth of flow = 0.280(Ft.), Average velocity = 1.622(Ft/s) Irregular Channel Data ----------------------------------------------------------------- Information entered for subchannel number 1 Point number 'X' coordinate 'Y' coordinate 1 0.00 0.50 2 0.17 0.00 3 1.50 0.12 4 20.50 0.50 Manning's 'N' friction factor = 0.015 ----------------------------------------------------------------- Sub-Channel flow = 1.530(CFS) flow top width = 9.411(Ft.) velocity= 1.622(Ft/s) area = 0.943(Sq.Ft) Froude number = 0.903 Upstream point elevation = 234.110(Ft.) Downstream point elevation = 232.540(Ft.) Flow length = 265.000(Ft.) Travel time = 2.72 mm. Time of concentration = 5.71 mm. Depth of flow = 0.280(Ft.) Average velocity = 1.622(Ft/s) Total irregular channel flow = 1.530(CFS) Irregular channel normal depth above invert elev. = 0.280(Ft.) Average velocity of channel(s) = 1.622(Ft/s) Adding area flow to channel Rainfall intensity (I) = 6.534(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 141 I I I I I I I I Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type I (General Industrial Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Rainfall intensity = 6.534(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.870 CA 0.374 Subarea runoff = 1.887(CFS) for 0.340(Ac.) Total runoff = 2.444CFS) Total area = 0.430(Ac.) Depth of flow = 0.319(Ft.), Average velocity = 1.815(Ft/s) Process from Point/Station 843.000 to Point/Station 860.200 **** CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 0.430(Ac.) Runoff from this stream = 2.444(CFS) Time of concentration = 5.71 mm. Rainfall intensity = 6.534(In/Hr) Program is now starting with Main Stream No. 3 Process from Point/Station 842.000 to Point/Station 860.200 INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type (General Industrial Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Initial subarea total flcw distance = 335.000(Ft.) Highest elevation = 242.320(Ft.) Lowest elevation = 232.40(Ft.) Elevation difference = 9.780(Ft.) Slope = 2.919 % Top of Initial Area Slope adjusted by User to 1.820 % Bottom of Initial Area Slope adjusted by User to 1.820 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 70.00 (Ft) for the top area slope value of 1.82 %, in a development type of General Industrial In Accordance With Figure 3-3 Initial Area Time of Concentration = 2.84 minutes TC = [1.8*(1.1_C)*distance(Ft.).5)/(% slope"(1/3)I TC= [1.8*(1.1_0.8700)*( 70.000'.5)/( 1.820"(1/3)1= 2.84 The initial area total distance of 335.00 (Ft.) entered leaves a 142 remaining distance of 265.00 (Ft.) Using Figure 3-4, the travel time for this distance is 2.68 minutes for a distance of 265.00 (Ft.) and a slope of 1.82 % with an elevation difference of 4.82(Ft.) from the end of the top area Tt = [11.9*length(Mi)s3)/(elevation change(Ftj)].385 *60(min/hr) = 2.681 Minutes Tt=[ (1l.9*0.0502'3)/( 4.82)1 ^.385= 2.68 Total initial area Ti = 2.84 minutes from Figure 3-3 formula plus 2.68 minutes from the Figure 3-4 formula = 5.52 minutes Rainfall intensity (I) = 6.675(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea runoff = 2.904(CFS) Total initial stream area = 0.500(Ac.) Process from Point/Station 842.000 to Point/Station 860.200 CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 0.500 (Ac.) Runoff from this stream = 2.904(CFS) Time of concentration = 5.52 mm. Rainfall intensity = 6.675(In/I-Ir) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) 1 8.888 5.84 6.435 2 2.444 5.71 6.534 3 2.904 5.52 6.675 Qmax(1) = 1.000 * 1.000 * 8.888) + 0.985 * 1.000 * 2.444) + 0.964 * 1.000 * 2.904) + = 14.094 Qmax(2) = 1.000 * 0.977 * 8.888) + 1.000 * 1.000 * 2.444) + 0.979 * 1.000 * 2.904) + = 13.967 Qmax(3) = 1.000 * 0.945 * 8.888) + 1.000 * 0.967 * 2.444) + 1.000 * 1.000 * 2.904) + = 13.665 Total of 3 main streams to confluence: Flow rates before confluence point: 8.888 2.444 2.904 Maximum flow rates at confluence using above data: 14.094 13.967 13.665 Area of streams before confluence: 1.560 0.430 0.500 U 143 Results of confluence: Total flow rate = 14.094(CFS) Time of concentration = 5.841 mm. Effective stream area after confluence = 2.490(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process frcm Point/Station 860.200 to Point/Station 860.300 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 224.090(Ft.) Downstream point/station elevation = 223.800(Ft.) Pipe length = 41.50(Ft.) Slope = 0.0070 Manning!s N = 0.013 No. of pipes = 1 Required pipe flow = 14.094(CFS) Given pipe size = 24.00(In.) Calculated individual pipe flow = 14.094(CFS) Normal flow depth in pipe = 15.45(In.) Flow top width inside pipe = 22.99(In.) Critical Depth = 16.22(In.) Pipe flow velocity = 6.60(Ft/s) Travel time through pipe = 0.10 mm. Time of concentration (TC) = 5.95 mm. Process from Point/Station 860.200 to Point/Station 860.300 kk CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 2.490(Ac.) Runoff from this stream = 14.094(CFS) Time of concentration = 5.95 mm. Rainfall intensity = 6.362(In/Hr) Program is now starting with Main Stream No. 2 Process from Point/Station 110.000 to Point/Station 870.000 INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type (General Industrial Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Initial subarea total flow distance = Highest elevation = 245.680(Ft.) Lowest elevation = 243.860(Ft.) 144 100. 000 (Ft. Elevation difference = 1.820(Ft.) Slope = 1.820 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 70.00 (Pt) for the top area slope value of 1.82 %, in a development type of General Industrial In Accordance With Figure 3-3 Initial Area Time of Concentration = 2.84 minutes TC = [1.8*(1.1_C)*distance(Ft.)'.5)/(% slopet'(1/3)] TC= [1.8*(1.1_0.8700)*( 70.000".5)/( 1.820"(1/3)1= 2.84 The initial area total distance of 100.00 (Ft.) entered leaves a remaining distance of 30.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.50 minutes for a distance of 30.00 (Ft.) and a slope of 1.82 % with an elevation difference of 0.55(Ft.) from the end of the top area Tt = [11.9*length(Mi)^3)/(elevation change(Ft.))IA.385 *60(min/hr) = 0.501 Minutes Tt=[ (11.9*0.00573) / ( 0.55)1^.385= 0.50 Total initial area Ti = 2.84 minutes from Figure 3-3 formula plus 0.50 minutes from the Figure 3-4 formula = 3.34 minutes Calculated TC of 3.338 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 7.114(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.870 Subarea runoff = 0.743(CFS) Total initial stream area = 0.120(Ac.) Process from Point/Station 870.000 to Point/Station 880.000 IRREGULAR CHANNEL FLOW TRAVEL TIME Estimated mean flow rate at midpoint of channel = 2.073(CFS) Depth of flow = 0.246(Ft.), Average velocity = 3.165(Ft/s) ******* Irregular Channel Data ----------------------------------------------------------------- Information entered for subchannel number 1 Point number 'X' coordinate 'Y' coordinate 1 0.00 0.50 2 0.17 0.00 3 1.50 0.12 4 20.50 0.50 Manning's 'N' friction factor = 0.015 ----------------------------------------------------------------- Sub-Channel flow = 2.073(CFS) flow top width = 7.717(Ft.) velocity= 3.165(Ft/s) area = 0.655(Sq.Ft) Froude number = 1.914 Upstream point elevation = 243.860(Ft.) Downstream point elevation = 237.650(Ft.) Flow length = 220.000(Ft.) Travel time = 1.16 mm. Time of concentration = 4.50 mm. 145 Depth of flow = 0.246(Ft.) Average velocity = 3.165(Ft/s) Total irregular channel flow = 2.073(CFS) Irregular channel normal depth above invert elev. = 0.246(Ft.) Average velocity of channel(s) = 3.165(Ft/s) Adding area flow to channel Calculated TC of 4.497 minutes is less than 5 minutes, resetting TC to 5.0 minutes for rainfall intensity calculations Rainfall intensity (I) = 7.114(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [INDUSTRIAL area type I (General Industrial Impervious value, Ai = 0.950 Sub-Area C Value = 0.870 Rainfall intensity = 7.114(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.870 CA = 0.478 Subarea runoff = 2.661(CFS) for 0.430(Ac.) Total runoff = 3.404(CFS) Total area = 0.550(Ac.) Depth of flow = 0.281(Ft.), Average velocity = 3.556(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 870.000 to Point/Station 880.000 - **** CONFLUENCE OF MINOR STREAMS Along Main Stream number: 2 in normal stream number 1 Stream flow area = 0.550 (Ac.) - Runoff from this stream = 3.404(CFS) Time of concentration = 4.50 mm. Rainfall intensity = 7.114(In/Hr) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-++++ Process from Point/Station 871.000 to Point/Station 880.000 *k INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 146.000(Ft.) Highest elevation = 243.300(Ft.) Lowest elevation = 237.650(Ft.) Elevation difference = 5.650(Ft.) Slope = 3.870 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 95.00 (Pt) 146 for the top area slope value of 3.87 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 5.92 minutes TC = [1.8*(1.1_C)*distance(Ft.)".5)/(% slope"(1/3)] TC= [1.8*(1.1_0.5700)*( 95.000".5)/( 3.870"(1/3)1= 5.92 The initial area total distance of 146.00 (Ft.) entered leaves a remaining distance of 51.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.56 minutes for a distance of 51.00 (Ft.) and a slope of 3.87 % with an elevation difference of 1.97(Ft.) from the end of the top area Tt = [11.9*length(Mi)3)/(elevation change(Ft.))]".385 *60(min/hr) = 0.564 Minutes Tt={ (11.9*0. 0097"3) / ( 1.97)1^.385= 0.56 Total initial area Ti = 5.92 minutes from Figure 3-3 formula plus 0.56 minutes from the Figure 3-4 formula = 6.49 minutes Rainfall intensity (I) = 6.014(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.411(CFS) Total initial stream area = 0.120 (Ac.) Process from Point/Station 871.000 to Point/Station 880.000 CONFLUENCE OF MINOR STREAMS **** Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.120 (Ac.) Runoff from this stream = 0.411(CFS) Time of concentration = 6.49 mm. Rainfall intensity = 6.014(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) 1 3.404 4.50 7.114 2 0.411 6.49 6.014 Qmax(1) = 1.000 * 1.000 * 3.404) + 1.000 * 0.693 * 0.411) + = 3.689 Qmax(2) = 0.845 * 1.000 * 3.404) + 1.000 * 1.000 * 0.411) + = 3.289 Total of 2 streams to confluence: Flow rates before confluence point: 3.404 0.411 Maximum flow rates at confluence using above data: 3.689 3.289 Area of streams before confluence: 0.550 0.120 Results of confluence: 147 I I I I I I I I I I I I I Total flow rate = 3.689(CFS) Time of concentration = 4.497 mm. Effective stream area after confluence 0.670(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 880.000 to Point/Station 910.000 kkk PIPEFLOW TRAVEL TIME (User specified size) **** Upstream pcint/station elevation = 231.950(Ft.) Downstream point/station elevation = 231.260(Ft.) Pipe length = 34.50(Ft.) Slope = 0.0200 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.689(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.689(CFS) Normal flow depth in pipe = 6.11(In.) Flow top width inside pipe = 17.05(In.) Critical Depth = 8.80(In.) Pipe flow velocity = 6.97(Ft/s) Travel time through pipe = 0.08 mm. Time of concentration (TCi 4.58 mm. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 880.000 to Point/Station 910.000 kk CONFLUENCE OF MINOR STREAMS Along Main Stream number: 2 in normal stream number 1 Stream flow area = 0.670 (Ac.) Runoff fron this stream = 3.689(CFS) Time of concentration = 4.58 mm. Rainfall intensity = 7.114(In/Hr) ++++++++++-+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 890.000 to Point/Station 900.000 INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 87.000(Ft.) Highest elevation = 242.900(Ft.) Lowest elevation = 242.000(Ft.) Elevation difference = 0.900(Ft.) Slope = 1.034 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 65.00 (Ft) for the top area slope value of 1.03 %, in a development type of 7.3 DU/A or Less 148 In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.61 minutes TC = [1.8*(1.1_C)*distance(FtjA.5)/(% slope"(1/3)] TC= [1.8*(1.1_0.5700)*( 65.000".5)/( 1.034"(1/3)1= 7.61 The initial area total distance of 87.00 (Ft.) entered leaves a remaining distance of 22.00 (Ft.) Using Figure 3-4, the travel time for this distance is 0.49 minutes for a distance of 22.00 (Ft.) and a slope of 1.03 % with an elevation difference of 0.23(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(FtJ)].385 *60(min/hr) = 0.491 Minutes Tt=[(11.9*0.0042"3)/( 0.23)]".385= 0.49 Total initial area Ti = 7.61 minutes from Figure 3-3 formula plus 0.49 minutes from the Figure 3-4 formula = 8.10 minutes Rainfall intensity (I) = 5.213(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.267(CFS) Total initial stream area = 0.090(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 900.000 to Point/Station 910.000 IRREGULAR CHANNEL FLOW TRAVEL TIME Estimated mean flow rate at midpoint of channel = 1.130(CFS) Depth of flow = 0.135(Ft.), Average velocity = 2.523(Ft/s) Irregular Channel Data ----------------------------------------------------------------- Information entered for subchannel number 1 Point number lX coordinate 'Y' coordinate 1 0.00 0.50 2 0.17 0.00 3 10.00 0.20 Manning's 'N' friction factor = 0.015 ----------------------------------------------------------------- Sub-Channel flow = 1.130(CFS) flow top width = 6.659(Ft.) velocity= 2.523(Ft/s) area = 0.448(Sq.Ft) Froude number = 1.714 Upstream point elevation = 242.000(Ft.) Downstream point elevation = 237.650(Ft.) Flow length = 180.000(Ft.) Travel time = 1.19 mm. Time of concentration = 9.29 mm. Depth of flow = 0.135(Ft.) Average velocity = 2.523(Ft/s) Total irregular channel flow = 1.130(CFS) Irregular channel normal depth above invert elev. = 0.135(Ft.) Average velocity of channel(s) = 2.523(Ft/s) Adding area flow to channel Rainfall intensity (I) = 4.772(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 149 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL I (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.772(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.399 Subarea runoff = 1.637(CFS) for 0.610(Ac.) Total runoff = 1.904(CFS) Total area = 0.700(Ac.) Depth of flow = 0.164(Ft.), Average velocity = 2.874(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 900.000 to Point/Station 910.000 'kk CONFLUENCE OF MINOR STREAMS Along Main Stream number: 2 in normal stream number 2 Stream flow area = 0.700 (Ac.) Runoff from this stream = 1.904(CFS) Time of concentration = 9.29 mm. Rainfall intensity = 4.772(In/Hr) - Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) 1 3.689 4.58 7.114 2 1.904 9.29 4.772 Qmax(1) 1.000 * 1.000 * 3.689) + 1.000 * 0.493 * 1.904) + = 4.628 Qmax(2) = 3.671 * 1.000 * 3.689) + 1.000 * 1.000 * 1.904) + = 4.379 Total of 2 streams to confluence: Flow rates before confluence point: 3.689 1.904 Maximum flow rates at confluence using above data: 4.628 4.379 Area of streams before confluence: 0.670 0.700 Results of confluence: Total flow rate = 4.628(CFS) Time of concentration = 4.579 mm. Effective stream area after confluence = 1.370(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 910.000 to Point/Station 910.100 150 I PIPEFLOW TRAVEL TIME (User specified size) I Upstream point/station elevation = 230.930(Ft.) Downstream point/station elevation = 223.800(Ft.) Pipe length = 142.60(Ft.) Slope = 0.0500 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 4.628(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 4.628(CFS) Normal flow depth in pipe = 5.42(In.) Flow top width inside pipe = 16.51(In.) Critical Depth = 9.91(In.) Pipe flow velocity = 10.33(Ft/s) Travel time through pipe = 0.23 mm. Time of concentration (TC) = 4.81 mm. Process from Point/Station 910.000 to Point/Station 910.100 CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.370 (Ac.) Runoff from this stream = 4.628(CFS) Time of concentration = 4.81 mm. Rainfall intensity = 7.114(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 920.000 to Point/Station 931.000 kkk INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL I (7.3 DU/A or Less Impervious value, Al = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 90.000(Ft.) Highest elevation = 248.300(Ft.) Lowest elevation = 247.900(Ft.) Elevation difference = 0.400(Ft.) Slope = 0.444 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 50.00 (Ft) for the top area slope value of 0.44 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 8.84 minutes TC = [1.8*(1.1_C)*distance(Ft.)".5)/(% slope"(1/3)I TC = [1.8*(1.1_0.5700)*( 50.000".5)/( 0.444"(1/3)1= 8.84 The initial area total distance of 90.00 (Ft.) entered leaves a 151 U remaining distance of 43.00 (Ft.) Using Figure 3-4, the travel time for this distance is 1.08 minutes for a distance of 40.00 (Ft.) and a slope of 0.44 % with an elevation difference of 0.18(Ft.) from the end of the top area Tt = [11.9*length(Mi)"3)/(elevation change(Ftj)]A.385 *60(min/hr) = 1.076 Minutes Tt=[(11.9*0.0076"3)/( 0.18)]".385= 1.08 Total initial area Ti = 8.84 minutes from Figure 3-3 formula plus 1.08 minjtes from the Figure 3-4 formula = 9.92 minutes Rainfall intensity (I) = 4.573(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 0.235(CFS) Total initial stream area = 0.090 (Ac.) ++++++++++++++++++++++++-f-+++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 931.000 to Point/Station 931.100 IRREGULAR CHANNEL FLOW TRAVEL TIME kk Estimated mean flow rate at midpoint of channel = 0.769(CFS) Depth of flow = 0.194(Ft.), Average velocity = 2.376(Ft/s) Irregular Channel Data ----------------------------------------------------------------- Information entered for subchannel number 1 Point number 'X' coordinate 'Y' coordinate 1 0.00 0.50 2 0.17 0.00 3 1.50 0.12 4 17.00 0.43 Manning's 'N' friction factor = 0.015 ----------------------------------------------------------------- Sub-Channel flow = 0.769(CFS) flow top width = 5.116(Ft.) velocity= 2.376(Ft/s) area = 0.324(Sq.Ft) Froude number = 1.665 Upstream Doint elevation = 247.900(Ft.) Downstream point elevation = 243.870(Ft.) Flow length = 170.000(Ft.) Travel time = 1.19 mm. Time of concentration = 11.11 mm. Depth of flow = 0.194(Ft.) Average velocity = 2.76(Ft/s) Total irregular channel flow = 0.769(CFS) Irregular channel normal depth above invert elev. = 0.194(Ft.) Average velocity of channel(s) = 2.376(Ft/s) Adding area flow to channel Rainfall intensity (I) = 4.250(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL 152 I (7.3 DO/A or Less Impervious value, Al = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.250(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.285 Subarea runoff = 0.977(CFS) for 0.410(Ac.) Total runoff = 1.211(CFS) Total area = 0.500(Ac.) Depth of flow = 0.219(Ft.), Average velocity = 2.619(Ft/s) I +++++++++++++++++-F++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 931.100 to Point/Station 932.000 IRREGULAR CHANNEL FLOW TRAVEL TIME Estimated mean flow rate at midpoint of channel = 1.897(CFS) Depth of flow = 0.251(Ft.), Average velocity = 2.732(Ft/s) Irregular Channel Data ----------------------------------------------------------------- Information entered for subchannel number 1 Point number 'X' coordinate 'Y' coordinate 1 0.00 0.50 2 0.17 0.00 3 1.50 0.12 4 17.00 0.43 Manning's 'N' friction factor = 0.015 ----------------------------------------------------------------- Sub-Channel flow = 1.897(CFS) flow top width = 7.969(Ft.) velocity= 2.732(Ft/s) area = 0.694(Sq.Ft) Froude number = 1.631 Upstream point elevation = 243.870(Ft.) Downstream point elevation = 241.150(Ft.) Flow length = 134.000(Ft.) Travel time = 0.82 mm. Time of concentration = 11.93 mm. Depth of flow = 0.251(Ft.) Average velocity = 2.732(Ft/s) Total irregular channel flow = 1.897(CFS) Irregular channel normal depth above invert elev. = 0.251(Ft.) Average velocity of channel(s) = 2.732(Ft/s) Adding area flow to channel Rainfall intensity (I) = 4.060(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (7.3 DO/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.060(In/Hr) for a 100.0 year storm 153 I I I I I I Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA .= 0.621 Subarea runoff = 1.311(CFS) for 0.590(Ac.) Total runoff = 2.523(CFS) Total area = 1.090(Ac.) Depth of flow = 0.271(E't.), Average velocity = 2.920(Ft/s) Process from Point/Staticn 932.000 to Point/Station 933.000 IRREGULAR CHANNEL FLOW TRAVEL TIME Estimated mean flow rate at midpoint of channel = 3.156(CFS) Depth of flow = 0.326(Ft.), Average velocity = 2.204(Ft/s) Irregular Channel Data ----------------------------------------------------------------- Information entered for subchannel number 1 Point number 'X' coordinate 'Y' coordinate 1 0.00 0.50 2 0.17 0.00 3 1.50 0.12 4 17.00 0.43 Manning's 'N' friction factor = 0.015 ----------------------------------------------------------------- Sub-Channel flow = 3.156(CFS) flow top width = 11.737(Ft.) velocity= 2.204(Ft/s) area = 1.432(Sq.Ft) Froude number = 1.112 Upstream point elevation = 241.150(Ft.) Downstream point elevation = 240.040(Ft.) Flow length = 132.000 (Ft.) Travel time = 1.00 mm. Time of concentration = 12.93 mm. Depth of flow = 0.326Ft.) Average velocity = 2.204(Ft/s) Total irregular channel flow = 3.156(CFS) Irregular channel normal depth above invert elev. = 0.326(Ft.) Average velocity of channel(s) = 2.204(Ft/s) Adding area flow to channel Rainfall intensity (I) = 3.855(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL I (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 3.855(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.958 Subarea runoff = 1.169(CFS) for 0.590(Ac.) Total runoff = 3.692(CFS) Total area = 1.680(Ac.) 154 Depth of flow = 0.341(Ft.), Average velocity = 2.290(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 933.000 to Point/Station 940.000 IRREGULAR CHANNEL FLOW TRAVEL TIME Estimated mean flow rate at midpoint of channel = 4.440(CFS) Depth of flow = 0.353(Ft.), Average velocity = 2.508(Ft/s) Irregular Channel Data ----------------------------------------------------------------- Information entered for subchannel number 1 Point number 'X' coordinate 'Y' coordinate 1 0.00 0.50 2 0.17 0.00 3 1.50 0.12 4 17.00 0.43 Manning's 'N' friction factor = 0.015 ----------------------------------------------------------------- Sub-Channel flow = 4.440(CFS) flow top width = 13.107(Ft.) velocity= 2.508(Ft/s) area = 1.770(Sq.Ft) Froude number = 1.203 Upstream point elevation = 240.040(Ft.) Downstream point elevation = 238.900(Ft.) Flow length = 120.000(Ft.) Travel time = 0.80 mm. Time of concentration = 13.72 mm. Depth of flow = 0.353(Ft.) Average velocity = 2.508(Ft/s) Total irregular channel flow = 4.440(CFS) Irregular channel normal depth above invert elev. = 0.353(Ft.) Average velocity of channel(s) = 2.508(Ft/s) Adding area flow to channel Rainfall intensity (I) = 3.709(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 3.709(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 1.385 Subarea runoff = 1.446(CFS) for 0.750(Ac.) Total runoff = 5.137(CFS) Total area = 2.430 (Ac.) Depth of flow = 0.368(Ft.), Average velocity = 2.599(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 155 Process from Point/Station 933.000 to Point/Station 940.000 **** CONFLUENCE OF MINOR STREAMS 'kkk - Along Main Stream number: 3 in normal stream number 1 Stream flow area = 2 .430 (Ac.) Runoff from this stream = 5. 137 (CFS) Time of concentration = 13.72 mm. - Rainfall intensity = 3.709(In/I-Ir) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 935.000 to Point/Station 936.000 **** INITIAL AREA EVALUATION Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDEN?IAL (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 260.000(Ft.) Highest elevation = 247.000(Ft.) Lowest elevation = 241.600(Ft.) Elevation difference = 5.400(Ft.) Slope = 2.077 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80.00 (Ft) for the top area slope value of 2.08 %, in a development type of 7.3 DU/A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 6.69 minutes TC = [1.8*(1.1_C)*distance(Ft.).5)/(% slope"(1/3)] TC= [1.8*(l.1_0.5700)*( 80.000".5)/( 2.077"(1/3)1= 6.69 The initial area total distance of 260.00 (Ft.) entered leaves a remaining distance of 180.00 (Ft.) Using Figure 3-4, the travel time for this distance is 1.89 minutes for a distance of 180.CO (Ft.) and a slope of 2.08 % with an elevation difference of 3.74(Ft.) from the end of the top area Tt = (11.9*length(Mi)'3)/(elevation change(Ft.))JA.385 *60(min/hr) = 1.892 Minutes Tt=[(11.9*0.03413)/( 3.74)1".385= 1.89 Total initial area Ti = 6.69 minutes from Figure 3-3 formula plus 1.89 minutes from the Figure 3-4 formula = 8.58 minutes Rainfall intensity (I) = 5.022(In/Hr) for a 100.0 year storm Effective runoff coeffcient used for area (Q=KCIA) is C = 0.570 Subarea runoff = 2.061(CFS) Total initial stream a--ea = 0.720 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 936.000 to Point/Station 937.000 IRREGULAR CHANNEL FLOW TRAVEL TIME kk 156 Estimated mean flow rate at midpoint of channel = 2.791(CFS) Depth of flow = 0.304(Ft.), Average velocity = 2.356(Ft/s) Irregular Channel Data ----------------------------------------------------------------- Information entered for subchannel number 1 Point number 'X' coordinate 'Y' coordinate 1 0.00 0.50 2 0.17 0.00 3 1.50 0.12 4 17.00 0.43 Manning's 'N' friction factor = 0.015 ----------------------------------------------------------------- Sub-Channel flow = 2.791(CFS) flow top width = 10.622(Ft.) velocity= 2.357(Ft/s) area = 1.184(Sq.Ft) Froude number = 1.244 Upstream point elevation = 241.600(Ft.) Downstream point elevation = 241.150(Ft.) Flow length = 41.500(Ft.) Travel time = 0.29 mm. Time of concentration = 8.87 mm. Depth of flow = 0.304(Ft.) Average velocity = 2.356(Ft/s) Total irregular channel flow = 2.791(CFS) Irregular channel normal depth above invert elev. = 0.304(Ft.) Average velocity of channel(s) = 2.356(Ft/s) Adding area flow to channel Rainfall intensity (I) = 4.914(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.914(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 CA = 0.701 Subarea runoff = 1.384(CFS) for 0.510(Ac.) Total runoff = 3.445(CFS) Total area = 1.230(Ac.) Depth of flow = 0.322(Ft.), Average velocity = 2.479(Ft/s) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 937.000 to Point/Station 940.000 IRREGULAR CHANNEL FLOW TRAVEL TIME Estimated mean flow rate at midpoint of channel = 3.704(CFS) Depth of flow = 0.331(Ft.), Average velocity = 2.490(Ft/s) Irregular Channel Data ----------------------------------------------------------------- 157 Information entered for subchannel number 1 Point number 'X' cocrdinate 'Y' coordinate i 0.00 0.50 2 0.17 0.00 3 1 . 504 0.12 4 17.00 0.43 Manning's 'N' friction factor = 0.015 Sub-Channel flow = 3.704(CFS) flow top width = 11.975(Ft.) velocity= 2.490(Ft/s) area = 1.488(Sq.Ft) Froude number = 1.245 - Upstream point elevation = 241.150(Ft.) Downstream point elevation = 238.900(Ft.) Flow length = 215.000(Ft.) Travel time = 1.44 mm. Time of concentration = 10.31 mm. Depth of flow = 0.331(Ft.) iff Average velocity = 2.490(Ft/s) Total irregular channel flow = 3.704(CFS) Irregular channel normal depth above invert elev. = 0.331(Ft.) Average velocity of channel(s) = 2.490(Ft/s) Adding area flow to channel Rainfall intensity (I) = 4.460(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A orLess Impervious value, Al = 3.400 Sub-Area C Value = 0.570 Rainfall intensity = 4.460(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.570 :CA = 0.866 Subarea runoff = 0.419(CFS) for 0.290(Ac.) Total runoff = 3.864(CFS) Total area = 1.520(Ac.) Depth of flow = 0.335(Ft.), Average velocity = 2.515(Ft/s) +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++±++++++ I Process from Point/Station 937.000 to Point/Station 9'0.000 **** CONFLUENCE OF MINOR STREAMS **** I Along Main Stream number: 3 in normal stream number 2 Stream flow area = 1.520(Ac.) Runoff from this stream = 3.864(CFS) Time of concentration = 10.31 mm. I Rainfall intensity = 4.460(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity 158 No. (CFS) (mm) (In/Hr) 1 5.137 13.72 3.709 2 3.864 10.31 4.460 Qmax(1) = 1.000 * 1.000 * 5.137) + 0.832 * 1.000 * 3.864) + = 8.351 Qmax(2) = 1.000 * 0.751 * 5.137) + 1.000 * 1.000 * 3.864) + = 7.724 Total of 2 streams to confluence: Flow rates before confluence point: 5.137 3.864 Maximum flow rates at confluence using above data: 8.351 7.724 Area of streams before confluence: 2.430 1.520 Results of confluence: Total flow rate = 8.351(CFS) Time of concentration = 13.724 mm. Effective stream area after confluence = 3.950 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 940.000 to Point/Station 950.000 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 232.700(Ft.) Downstream point/station elevation = 229.080(Ft.) Pipe length = 181.00(Ft.) Slope = 0.0200 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 8.351(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 8.351(CFS) Normal flow depth in pipe = 9.66(In.) Flow top width inside pipe = 17.95(In.) Critical Depth = 13.43(In.) Pipe flow velocity = 8.65(Ft/s) Travel time through pipe = 0.35 mm. Time of concentration (TC) = 14.07 mm. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 940.000 to Point/Station 950.000 CONFLUENCE OF MINOR STREAMS Along Main Stream number: 3 in normal stream number 1 Stream flow area = 3.950 (Ac.) Runoff from this stream = 8.351(CFS) Time of concentration = 14.07 mm. Rainfall intensity = 3.650(In/Hr) 159 I Process from Point/Station 940.200 to Point/Station 95C.000 INITIAL AREA EVALUATION Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL (7.3 DU/A or Less Impervious value, Al = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 140.000(Ft.) Highest elevation = 240.500(Ft.) Lowest elevation = 238.300(Ft.) Elevation difference = 2.200(Ft.) Slope = 1.571 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 80.00 (Ft) for the top area slope value of 1.57 %, in a development type of 7.3 DU//A or Less In Accordance With Figure 3-3 Initial Area Time of Concentration = 7.34 minutes TC = [1.8*(1.1_C)*distance(Ft.).5)/(% slope"(1/3)] TC= [1.8*(1.1_0.5700)*( 80.000'.5)/( 1.571"(1/3)1= 7.34 The initial area total distance of 140.00 (Ft.) entered leaves a remaining distance of 60.00 (Ft.) Usina Fioure 3-4, the travel time for this distance is 0.90 minutes for a distance of 60.00 (Ft.) and a slope of 1.57 % with an elevation difference of 0.94(Ft.) from the end of the top area Tt = [11.9*length(Mi)^3)/(elevation change(Ftj)].385 *60(min/r) = 0.904 Minutes Tt=[ (11.9*0.0114"3)/( 0.94)1^.385= 0.90 Total initial area Ti = 7.34 minutes from Figure 3-3 formula plus 0.90 minutes from the Figure 3-4 formula = 8.24 minutes Rainfall intensity (I) = 5.153(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea runoff = :.703(CFS) Total initial stream area = 0.580(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 940.200 to Point/Station 950.000 CONFLUENCE OF MINOR STREAMS Along Main Stream number: 3 in normal stream number 2 Stream flow area = 0.580(Ac.) Runoff from this stream = 1.703(CFS) Time of concentration = 8.24 mm. Rainfall intensity = 5.153(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) 160 1 8.351 14.07 3.650 2 1.703 8.24 5.153 Qmax(1) = 1.000 * 1.000 * 8.351) + 0.708 * 1.000 * 1.703) + = 9•557 Qmax(2) = 1.000 * 0.586 * 8.351) + 1.000 * 1.000 * 1.703) + = 6.596 Total of 2 streams to confluence: Flow rates before confluence point: 8.351 1.703 Maximum flow rates at confluence using above data: 9.557 6.596 Area of streams before confluence: 3.950 0.580 Results of confluence: Total flow rate = 9.557(CFS) Time of concentration = 14.073 mm. Effective stream area after confluence = 4.530 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 950.000 to Point/Station 950.100 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 228.750(Ft.) Downstream point/station elevation = 223.800(Ft.) Pipe length = 63.80(Ft.) Slope = 0.0776 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 9.557(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 9.557(CFS) Normal flow depth in pipe = 7.08(In.) Flow top width inside pipe = 17.58(In.) Critical Depth = 14.33(m.) Pipe flow velocity = 14.81(Ft/s) Travel time through pipe = 0.07 mm. Time of concentration (TC) = 14.14 mm. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 950.000 to Point/Station 950.100 **** CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 4.530(Ac.) Runoff from this stream = 9.557(CFS) Time of concentration = 14.14 mm. Rainfall intensity = 3.638(In/Hr) Program is now starting with Main Stream No. 4 161 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++T++++ Process from Point/Station 951.000 to Point/Station 910.100 INITIAL AREA EVALUATION Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL I (7.3 DU/A or Less Impervious value, Ai = 0.400 Sub-Area C Value = 0.570 Initial subarea total flow distance = 50.000(Ft.) Highest elevation = 242.300(Ft.) Lowest elevation = 222.800(Ft.) Elevation difference = 19.500(Ft.) Slope = 39.000 % Top of Initial Area Slope adjusted by User to 1.000 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow, distance is 65.00 (Ft) for the top area slope value of 1.00 %, in a development type of 7.3 DU/A or Less In Accorcance With Figuce 3-3 Initial Area Time of Concentration = 7.69 minutes TC = [1.8*(1.1_C)*distance(Ft.).5)/(% slope"(1/3)I TC= [1.8*(1.1_0.5700)*( 65.000".5)/( 1.000"(1/3)1= 7.69 Rainfall intensity (I) = 5.388(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.570 Subarea cunoff = 2.058(CFS) Total initial stream area = 0.670(Ac.) Process from Point/Station 951.000 to Point/Station 910.100 **** CONFLUENCE OF MAIN STREAMS kk The following data inside Main Stream is listed: ' In Main Stream number: 4 Stream flow area = 0.670(Ac.) Runoff from this stream = 2.058(CFS) Time of concentration = 7.69 mm. Rainfall intensity = 5.388(In/Hr) Summary of stream data: Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) 114.094 5.95 6.362 2 4.628 4.81 7.114 3 9.557 14.14 3.638 4 2.058 7.69 5.388 Qmax(1) = 1.000 * 1.000 * 14.094) + 0.894 * 1.000 * 4.628) + 162 1.000 * 0.420 * 9.557) + 1.000 * 0•773 * 2.058) + = 23.842 Qmax(2) = 1.000 * 0.809 * 14.094) + 1.000 * 1.000 * 4.628) + 1.000 * 0.340 * 9.557) + 1.000 * 0.625 * 2.058) + = 20.563 Qmax(3) = 0.572 * 1.000 * 14.094) + 0.511 * 1.000 * 4.628) + 1.000 * 1.000 * 9.557) + 0.675 * 1.000 * 2.058) + = 21.372 cmax(4) = 0.847 * 1.000 * 14.094) + 0.757 * 1.000 * 4.628) + 1.000 * 0.544 * 9557) + 1.000 * 1.000 * 2.058) + = 22.699 Total of 4 main streams to confluence: Flow rates before confluence point: 14.094 4.628 9.557 2.058 Maximum flow rates at confluence using above data: 23.842 20.563 21.372 22.699 Area of streams before confluence: 2.490 1.370 4.530 0.670 Results of confluence: Total flow rate = 23.842(CFS) Time of concentration = 5.946 mm. Effective stream area after confluence = 9.060(Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 960.000 to Point/Station 960.100 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 217.650(Ft.) Downstream point/station elevation = 194.000(Ft.) Pipe length = 101.00(Ft.) Slope = 0.2342 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 23.842(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 23.842(CFS) Normal flow depth in pipe = 8.67(In.) Flow top width inside pipe = 17.99(In.) Critical depth could not be calculated. Pipe flow velocity = 28.31(Ft/s) Travel time through pipe = 0.06 mm. Time of concentration (TC) = 6.01 mm. End of computations, total study area = 9.060 (Ac.) 163 U San Diego County Rational Hydrology Program CIVILCADD/CIVILDESIGN Engineering Software, (C) 1991-2006 Version 7.7 Rational method hydrology program based on San Diego County Flood Control Division 2003 hydrology manual Rational Hydrology Study Date: 08/16/17 ------------------------------------------------------------------------ POINSETTIA PROPOSED 100 YEAR HYDROLOGY BASIN Al AND A2 WITH DETENTION OF BIOFILTRATION AREAS JN 141018 CALCS BY NF To Size Proposed Storm Drain in Poinsettia Lane ------------------------------------------------------------------------ Hydrology Study Control Information ********** Program License Serial Number 6218 ------------------------------------------------------------------------ Rational hydrology study storm event year is 100.0 English (in-lb) input data Units used Map data orecipitation entered: 6 hour, Drecipitation(inches) = 2.700 24 hour p recipitation(inches) = 4.700 P6/P24 = 57.4% San Diego hydrology manual 'C' values used Process from Point/Station 10.000 to Point/Station 20.000 INITIAL AREA EVALUATION **** Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN I (Permanent Open Space Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Initial subarea total flow distance = 325.000(Ft.) Highest elevation = 312.000(Ft.) Lowest elevation = 279.000(Ft.) Elevation difference = 33.000(Ft.) Slope = 10.154 % INITIAL AREA TIME OF CONCENTRATION CALCULATIONS: The maximum overland flow distance is 100.00 (Ft) for the top area slope value of 10.15 %, in a development type of Permanent Open Space In Accordance With Figure 3-3 164 Initial Area Time of Concentration = 6.23 minutes TC = [1.8*(1.1_C)*distance(Ft.).5)/(% slope"(1/3)] TC= [1.8*(1.1_0.3500)*( 100.000".5)/( 10.154t(1/3)1= 6.23 The initial area total distance of 325.00 (Ft.) entered leaves a remaining distance of 225.00 (Ft.) Using Figure 3-4, the travel time for this distance is 1.22 minutes for a distance of 225.00 (Ft.) and a slope of 10.15 % with an elevation difference of 22.85(Ft.) from the end of the top area Tt = {11.9*length(Mi)"3)/(elevation change(FtJ)].385 *60(min/hr) = 1.220 Minutes Tt=[ (11.9*0.0426"3) / ( 22.85)1^.385= 1.22 Total initial area Ti = 6.23 minutes from Figure 3-3 formula plus 1.22 minutes from the Figure 3-4 formula = 7.45 minutes Rainfall intensity (I) = 5.499(In/Hr) for a 100.0 year storm Effective runoff coefficient used for area (Q=KCIA) is C = 0.350 Subarea runoff = 0.808(CFS) Total initial stream area = 0.420 (Ac.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 20.000 to Point/Station 40.000 IMPROVED CHANNEL TRAVEL TIME Upstream point elevation = 279.000(Ft.) Downstream point elevation = 252.400(Ft.) Channel length thru subarea = 205.000(Ft.) Channel base width = 1.000(Ft.) Slope or 'Z' of left channel bank = 1.000 Slope or 'Z' of right channel bank = 1.000 Estimated mean flow rate at midpoint of channel = 2.292(CFS) Manning's 'N' = 0.015 Maximum depth of channel = 1.000(Ft.) Flow(q) thru subarea = 2.292(CFS) Depth of flow = 0.192(Ft.), Average velocity = 10.004(Ft/s) Channel flow top width = 1.384 (Ft.) Flow Velocity = 10.00(Ft/s) Travel time = 0.34 mm. Time of concentration = 7.80 mm. Critical depth = 0.465(Ft.) Adding area flow to channel Rainfall intensity (I) = 5.342(In/Hr) for a 100.0 year storm Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [UNDISTURBED NATURAL TERRAIN (Permanent Open Space Impervious value, Ai = 0.000 Sub-Area C Value = 0.350 Rainfall intensity = 5.342(In/Hr) for a 100.0 year storm Effective runoff coefficient used for total area (Q=KCIA) is C = 0.350 CA = 0.697 Subarea runoff = 2.912(CFS) for 1.570(Ac.) Total runoff = 3.721(CFS) Total area = 1.990(Ac.) 165 Depth of flow = 0.255(Ft.), Average velocity = 11.625(Ft/s) Critical depth = 0.609(Ft.) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 40.000 to Point/Station 270.100 PIPEFLOW TRAVEL TIME (Program estimated size) **** Upstream point/station elevation = 239.240(Ft.) Downstream point/station elevation = 233.540(Ft.) - Pipe length = 95.00(Ft.) Slope = 0.0600 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.721(CFS) Nearest computed pipe diameter = 9.00(In.) Calculated individual pipe flow = 3.721(CFS) Normal flow depth in pipe = 6.79(In.) Flow top width inside pipe = 7.75(In.) Critical depth could not be calculated. Pipe flow velocity = 10.40(Ft/s) Travel time through pipe = 0.15 mm. Time of concentration (TC) = 7.95 mm. +++++++++++++++++++++++- 1++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 40.000 to Point/Station 270.100 CONFLUENCE OF MAIN STREAMS **** The following data inside Main Stream is listed: In Main Stream number: 1 Stream flow area = 1.990 (Ac.) Runoff from this stream = 3.721(CFS) Time of concentration = 7.95 mm. Rainfall intensity = 5.276(In/Hr) Program is now starting with Main Stream No. 2 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ I Process from Point/Station 140.000 to Point/Station 140.000 USER DEFINED FLOW INFORMATION AT A POINT I Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 I [MEDIUM DENSITY RESIDENTIAL I (7.3 DU/A or Less Impervious value, Al = 0.400 I Sub-Area C Value = 0.570 Rainfall intensity (I) = 2.813(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 21.07 mm. Rain intensity = 2.81(In/Hr) I Total area = 1.840(Ac.) Total runoff = 2.950(CFS) I ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 166 I Process from Point/Station 140.000 to Point/Station 270.100 1 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 236.550(Ft.) Downstream point/station elevation = 233.540(Ft.) Pipe length = 130.00(Ft.) Slope = 0.0232 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 2.950(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 2.950(CFS) Normal flow depth in pipe = 5.24(In.) Flow top width inside pipe = 16.35(In.) Critical Depth = 7.83(In.) Pipe flow velocity = 6.90(Ft/s) Travel time through pipe = 0.31 mm. Time of concentration (TC) = 21.38 mm. ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 140.000 to Point/Station 270.100 **** CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed: In Main Stream number: 2 Stream flow area = 1.840(Ac.) Runoff from this stream = 2.950(CFS) Time of concentration = 21.38 mm. Rainfall intensity = 2.786(In/Hr) Program is now starting with Main Stream No. 3 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 270.000 to Point/Station 270.000 USER DEFINED FLOW INFORMATION AT A POINT Decimal fraction soil group A = 0.000 Decimal fraction soil group B = 0.000 Decimal fraction soil group C = 0.000 Decimal fraction soil group D = 1.000 [MEDIUM DENSITY RESIDENTIAL I (7.3 DU/A or Less Impervious value, Al = 0.400 Sub-Area C Value = 0.570 Rainfall intensity (I) = 3.126(In/Hr) for a 100.0 year storm User specified values are as follows: TC = 17.89 mm. Rain intensity = 3.13(In/Hr) Total area = 2.200(Ac.) Total runoff = 3.920(CFS) ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Process from Point/Station 270.000 to Point/Station 270.100 PIPEFLOW TRAVEL TIME (User specified size) **** Upstream point/station elevation = 234.750(Ft.) Downstream point/station elevation = 233.540(Ft.) 167 I Pipe length = 61.00(Ft.) Slope = 0.0198 Manning's N = 0.013 No. of pipes = 1 Required pipe flow = 3.920(CFS) Given pipe size = 18.00(In.) Calculated individual pipe flow = 3.920(CFS) Normal flaw depth in pipe = 6.33(In.) Flow top width inside pipe = 17.19(In.) Critical Depth = 9.09(In.) Pipe flow velocity = 7.07(Ft/s) Travel time through pipe = 0.14 mm. Time of concentration (TC) = 18.03 mm. +++++++++++++++++++++++-++++++++++++++++++++++++++++++++++++++++-++-++ Process from Point/Staton 270.000 to Point/Station 270.100 CONFLUENCE OF MAIN STREAMS The following data inside Main Stream is listed: In Main Stream number: 3 Stream flow area = 2.200(Ac.) Runoff from this stream = 3.920(CFS) Time of concentration = 18.03 mm. Rainfall intensity = 3.110(In/Hr) Summary of stream data: - Stream Flow rate TC Rainfall Intensity No. (CFS) (mm) (In/Hr) U 1 3.721 7.95 5.276 2 2.950 21.38 2.786 3 I 3.920 18.03 3.110 Qmax(1) = 1.000 * 1.000 * 3.721) + I 1.000 * 0.372 * 2.950) + 1.000 * 0.441 * 3.920) + = 6.545 Qmax(2) = 0.528 * 1.000 * 3.721) + I 1.000 * 1.COO * 2.950) + 0.896 * 1.000 * 3.920) + = 8.427 Qmax(3) = I 0.589 * 1.000 * 3.721) + 1.000 * 0.843 * 2.950) + 1.000 * 1.000 * 3.920) + = 8.601 I Total of 3 main streams to confluence: Flow rates before confluence point: 3.721 2.950 3.920 Maximum I flow rates at confluence using above data: 6.545 8.427 8.601 Area of streams before confluence: 1.990 1.840 2.200 Results of confluence: Total flow rate = 8.601(CFS) Time of concentration = 18.034 mm. Effective stream area after confluence = 6.030 (Ac.) 169 Section 3 — — = — _, — — — — — — — — — p — XI willoWal 170 !33' 6'19"N 474442 S IL 5/8/2017 Page 1 of 4 474350 Hydrologic Soil Group—San Diego County Area, California I 473900 4730 4740 474170 474260 I 33643N , Xt I — 474350 S 47444C 37 6'43" N I I ci I I 1k I I I I Al , I - Lae valid at this scale. I 33" 6 19" N 473900 4739) 474080 474170 474200 Map Scale: 1:3,610 if printed on Aportrait (8.5'x 11') sheet. U , Me N 0 50 100 200 300 Feet 0 150 300 600 900 A I Map ojethon: Web MenBtor Comerwordinatee: WGSS4 Edge 8cs: UTM Zone uN WGS84 Sij Natural Resources Web Soil Survey Conservatbn Service National Cooperative Soil Survey Hydrologic Soil Group—San Diego County Area, California MAP LEGEND MAP INFORMATION Area of Interest (AOl) Area of Interest (AOl) Soils Soil Rating Polygons ND BID CID U Not rated or not available Soil Rating Lines - A ND ,. B B/D - C C/D D Not rated or not available Soil Rating Points • A • ND • B • BID C The soil surveys that comprise your AOl were mapped at 1:24,000. • D Warning: Soil Map may not be valid at this scale. D Not rated or not available Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil Water Features line placement. The maps do not show the small areas of Streams and Canals contrasting soils that could have been shown at a more detailed scale. Transportation Rails Please rely on the bar scale on each map sheet for map Interstate Highways measurements. US Routes Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Major Roads Coordinate System: Web Mercator (EPSG:3857) Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: San Diego County Area, California Survey Area Data: Version 10, Sep 12, 2016 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Nov 3, 2014—Nov 22, 2014 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. USDA Natural Resources Web Soil Survey 5/8/2017 Conservation Service National Cooperative Soil Survey Page 2 of 4 - - - - - - - - - 1=1 - - - = - - - - Hydrologic Soil Group—San Diego County Area, California Hydrologic Soil Group Hydrologic Soil Group— Summary by Map Unit - San Diego County Area, California (CA638) Map unit symbol Map unit name Rating Acres in AOl Percent of AOl CsB Corralitos loamy sand, 0 A 0.4 0.8% to 5 percent slopes CSC Corralitos loamy sand, 5 A 2.2 4.3% to 9 percent slopes LvF3 Loamy alluvial land- D 47.8 94.9% Huerhuero complex, 9 to 50 percent slopes, severely ercded Totals for Area of Interest 50.3 100.0% Description Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of fcur groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms. The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (AID, BID, and CID). The groups are defined as follows: Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission. Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission. Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission. Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission. If a soil is assigned tD a dual hydrologic group (AID, BID, or CID), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes. USDA Natural Resources Web Soil Survey 5/8/2017 Conservation Service National Cooperative Soil Survey Page 3 of 4 Hydrologic Soil Group—San Diego County Area, California Rating Options Aggregation Method: Dominant Condition Component Percent Cutoff. None Specified Tie-break Rule: Higher USDA Natural Resources Web Soil Survey 5/8/2017 Conservation Service National Cooperative Soil Survey Page 4 of 4 Section 4 - - - - - - - - - - - - - - - - - - SECTION 4 171 0 /TECHNICAL MEMORANDUM: Determination of Pre- and Post- Developed 100-year Peak Flow Poinsettia (CT 14-10, DWG 507-2A, GR 2017-0054) City of Carlsbad, CA Prepared for: Lennar California Coastal August 9, 2017. Revised October 9, 2017. 0--' V No. 45005 A 3-31-2018 Tory 'Walker, PE, CFM, LEED GA R.C.E. 45005 Pit TORY R.WALKERENGINEERING RELIABLE SOLUTIONS IN WATER RESOURCES CIVIC CENTER DR, STE 206, VISTA, CA 92084 760-414-9212 TORY R.WALKER ENGINEERING RELIABLE SOLUTIONS IN WATER RESOURCES TECHNICAL MEMORANDUM TO: Lennar California Coastal Attention: Jamison Nakaya 25 Enterprise, Suite 400 Aliso Viejo, CA 92656 FROM: Tory Walker, PE, CFM, LEED GA DATE: August 9, 2017. Revised October 9, 2017. RE: Determination of the 100-year Peak Flow in Pre- and Post-Developed Conditions for Poinsettia, City of Carlsbad, CA. INTRODUCTION This report is based on the hydrologic model used in the technical memorandum "SWMM Modeling for Hydromodification Compliance of Poinsettia, City of Carlsbad, CA, August 9, 20171 (HMP Study) by Tory R. Walker Engineering (TRWE). Pre- and post-developed 100-year, 6-hour hydrographs were generated to prove that post-developed peak flows are smaller than pre-developed peak flows for the project's Points of Compliance (POC). For this drainage analysis, the pre-developed conditions peak flows were calculated using the Rational Method as described in the "San Diego County Hydrology Manual (SDCHM), June 20032. In post- developed conditions, the time of concentration values and peak inflows to each biofiltration basin were obtained from the "Drainage Study for Poinsettia 61, May 12, 2017, Revised: August 18, 2017, Revised October 2017" by O'Day Consultants, Inc. (O'Day). For Drainage Management Areas (DMA) that bypass the biofiltration basins, peak flows were calculated using the Rational Method per the SDCHM. After peak flows were determined, hydrographs were generated using the Rational Method Hydrograph procedure as set forth in the SDCHM. This is the prescribed method for drainage areas less than one square mile. Hydraulic routing was performed in SWMM, as the complex routing structures discharging to each POC have already been built in SWMM for hydromodification analysis: models include LID calculations and Modified Puls routing at the surface level of the biofiltration facilities. PRE- AND POST-DEVELOPED CONDITIONS The Poinsettia project is a proposed residential development located just southeast of the intersection of Poinsettia Lane and Cassia Road in the City of Carlsbad. The existing site is a mix of agricultural land and natural open space. Three (3) Points of Compliance (POC) have been identified for the project (see Appendix 1 for Drainage Management Area exhibits). For each POC, two (2) SWMM scenarios were prepared, one for the pre-developed and another for the post-developed conditions. WATERSHED, FLOODPLAIN € -STORM WATER MANAGEMENT• RIVER RESTORATION -FLOOD FACILITIES DESIGN SEDIMENT 6 EROSION 122 CIVIC CENTER DRIVE, SUITE 206, VISTA CA 92084 760-414-9212 TRWENGINEERINC.COM Poinsettia Qioo October 9, 2017 —TRWE— GENERAL HYDROLOGIC CONSIDERATIONS SWMM was selected for the hydraulic routing because the model was already built for hydromodification analysis, and all parameters have already been defined to work under the SWMM framework. In order to change SWMM for hydromodification to SWMM for Qioo, changes in the rainfall data, infiltration method, and time interval were required. A general explanation of the changes and reasoning for the selection of SWMM as a hydraulic modeling tool for routing Qioo follows, as well as considerations for typical differences between SWMM and other models. Rainfall Rainfall was developed using the SDCHM, where the duration "t" is made equal to the time of concentration to maximize the peak flow. However, longer durations up to 360 minutes are used to build the complete hyetograph (precipitation distribution for the 100-year, 6-hour storm event). The 6- hour storm is distributed according to the methodology explained in the SDCHM, where the peak precipitation starts four hours after the beginning of the storm (see intensity tables in Appendix 2). Additionally, SWMM can only use whole numbers as time intervals for the determination of a hydrograph: only 1, 5, 10, 15, or 30 minutes are valid time intervals for input. Therefore, after the rainfall and runoff hydrographs are generated, all runoff hydrographs are interpolated to a time interval of 1 minute prior to entry into SWMM. This ensures that the shape of each runoff hydrograph is preserved. Pre- and Post-Developed Hydrograph Determination For pre-developed conditions, the runoff hydrographs were calculated with a spreadsheet following the SDCHM Rational Method Hydrograph procedure (see results in Appendix 2). Each peak at each time interval is equal to Q = 121/120•C•1•A (with I corresponding to the intensity at any given time during the 6-hour storm) For post-developed conditions, runoff hydrographs are determined using the same approach as described above for pre-developed conditions (SDCHM Rational Method Hydrograph spreadsheets were used, see results in Appendix 2). These hydrographs are then entered into the developed condition SWMM model. SWMM was selected for the hydraulic routing because 1) SWMM allows a more accurate routing procedure in all LIDs than other routing models, and 2) the model was aIready built for hydromodification modeling, with parameters defined to work under the SWMM framework. Transforming Intensities into SDCHM Runoff using SWMM SWMM does not include Rational Method (RM) runoff coefficients (C) among the options to determine runoff; it only uses the following methods: Horton, Green-Ampt and Curve Number. Therefore, TRWE developed a method to replicate the RM Hydrograph within the SWMM program: the rainfall intensities entered into the model have already been multiplied by the C coefficient of the Rational Method, and each area was assumed 100% impervious using the Green-Ampt Method, with no impervious storage. Therefore, all precipitation given (which is already effective precipitation) was transformed into runoff, as losses have already been accounted for. 2 Job #349-11 IIIIIII_I Poinsettia Qioo October 9, 2017 —TRWE— Additionally, in order to eliminate the effect of additional "routing", the width of the area was assumed so large that the sheetflow distance is extremely short: the width is equal to the area expressed in square feet, which means that the sheetf low length is only one foot. This allows SWMM to produce an instantaneous runoff response. The resulting runoff hydrograph is a 6-hour Rational Method hydrogrãph, in accordance with the SDCHM. One other modification is associated with the area of the biofiltration cell: different from hydromodification modeling, the total area (including biofiltration) is given at the DMA level, because the total area is associated with the modified effective precipitation (effective precipitation equals precipitation times C coefficient, and C is defined for the entire area). The reason for this modification in area is because LIDs cannot be defined as 100% impervious. To overcome the problem of counting the LID area twice, the LID/IMP is assigned the real value of its area and the real impervious percentage (0%), and each LID is associated with another storm event called LID rain, which is equal to zero in/hr at all times. Therefore, the LID/IMP area is associated with zero rainfall and does not affect the results. The advantage of proceeding this way is that the total hydrograph will be routed in the LID module before being routed in the surface pond of the biofiltration basin. LID Routing Considerations One of the main reasons for selecting SWMM to calculate the 100-year peak flow is because of the ability of SWMM to properly route runoff through a biofiltration cell. The LID routine embedded in SWMM accounts for the ponding at the surface while the water is infiltrating through the amended soil, and it accounts for the release of water through the underground French drain. For the simplified version of the LID model, SWMM assumes that once the flow fills the surface pond, all peak flows coming into the LID are equal to all flows discharged out of the LID. This approach is usually appropriate for hydromodification modeling, where hourly runoff is calculated and the surface volume does not generate a significant change in the hourly discharge. However, it is only an approximation of the real discharge of the LID, because the routing process taking place at the surface level reduces the peak flow. Expected peak flow reduction is sometimes very small but it can be significant, depending on the characteristics of the surface volume and the outlet structure. In order to properly model the routing process in the biofiltration basin, Modified Puls is performed at the surface level. In order to account for surface routing, each biofiltration basin is divided in two portions: the LID portion, and the surface volume above the invert of the lowest surface discharge structure. For the LID portion, the flows leaving through the French drain were directly connected to the outlet. For the surface portion, the volume of ponding above the invert of the lowest surface discharge opening was considered as a pond, which requires an elevation vs. area table, and an elevation vs. discharge table for use with the Modified Puls Method. The required stage-storage-discharge information and a detailed description of the basin outlet structures are provided in the HMP Study. The elevation vs. area tables, and the elevation vs. discharge tables are included in Appendix 3 of this report. Detailed explanations for obtaining those values are included in the HMP Study. 3 Job #349-11 Poinsettia Qioo October 9, 2017 - TRW E MODEL RESULTS The results show that the proposed biofiltration basins reduce the post-developed peak flows below pre-developed conditions. Results are displayed in Table 1. Pre- vs. post-developed hydrograph comparisons are illustrated in Figures 1 througi 3. It is clear that the biofiltration basins nct only satisfy hydromodification criteria, but a so reduce the post-developed peak flows below the pe-developed levels for the 100-year, 6-hour syrthetic storm. TABLE 1. SUMMARY OF PEAK FLOW RESULTS POC Pre-Dev. Tributary Area (ac) Pre-Dev. Peak flow (cfs) Post-Dev. Tributary Area (ac) Post-Dev. Undetained Peak flow (cfs) Post-Dev. Detained Peak flow (cfs) Post-Dev. - Pre-Dev. Peak Flaw (cfs) 1 11.53 14.72 8.34 16.55 13.91 -0.1 2 7.15 8.77 10.54 29.29 5.39 -3.58 3 34-37 43.24 35.98 48.73 42.70 -3.54 Pre-Dev & Post-Dev Hydrographs- Poinsettia (POC-1) 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 Time (hrs) -PreDev. - -Detained Post-Dev. -•-----Undetained Post-Dev. Figure 1. -lydrograph comparison for POC-1. 18 16 14 12 10 6 4 2 0 0.0 4 Jcb#349-11 Poinsettia Qioo October 9, 2017 TRW E Pre-Dev & Post-Dev Hydrographs - Poinsettia (POC-2) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 Time (hrs) -Pre-Dev. - -Detained Post-Dev, Undetained Post-Dev. Figure 2. Hydrograph comparison for POC-2. Pre-Dev & Post-Dev Hydrographs- Poinsettia (POC-3) 50 45 . 40 35 125- U. o20- 15 10- . ..-- 00 -5- 1.0 - 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 5.5 - 7.0 Time (hrs) -Pre-Dev. - -Detained Post-Dev. Undetained Post-Dev. Figure 3. Hydrograph comparison for POC-3. 5 Job #349-11 30 25 20 115 10 5 Poinsettia Qioo October 9, 2017 —TRWE— CONCLUSION The design of the IMP biofiltration basins with multiple functions (water quality, hydromoclification, and flood mitigation) allows the reduction of the 100-year post-developed peak flows below the pre- developed levels for the project's points of compliance. REFERENCES "SWMM Modeling for Hydromodifi cation Compliance of Poinsettia, City of Carlsbad, CA, August 9,2617", prepared by Tory R. Walker Engineering. "San Diego County Hydrology Manual, June 2003". Available at: http://www.sdcounty.ca .gov/dpw/floodcontrol/hydrologymanual.htm I "Dranage Study for Poinsettia 61, May 12, 2017, Revised: August 18, 2017, Revised October 2017', prepared by O'Day Consultants, Inc. "Handbook of Hydrology". David R. Maidment, Editor in Chief. 1992, McGraw Hill. APPENDIX LIST Appendix 1: Pre- and Post-Developed Maps Appendix 2: Time of Concentration, Precipitation, and Rational Method Hydrograph Data Appendix 3: Elevation vs. Area and Elevation vs. Discharge Curves Appendix 4: SWMM Model Input Appendix 5: SWMM Model Results I I I I I I 6 Job U 349-11 Appendix 1: Pre- and Post-Developed Maps POINSETTIA - - - - irOakrWaY am pm) \ / -Las Palmas Dr Proj aGrnIiIy Park VIIa Loma Apartments Cur ect Site Aviar 7p.i,s.wa Ln— __J - - I Daybreak Community Church! -- NC a Fairlead Ave Tradti Windsor'I Aviata '\ \' .Docena' ke ct. - V a' 1• c / 'a suirnmem oriole Cl N - wCarlsba - d City Librwy :A VICINITY MAP Wt [NO SCALE N - - - cnpoIisLuxtny ia - - ta Costa patorna - C' 'a 0 t4 Appendix 2: Time of Concentration, Precipitation, and Rational Method Hydrograph Data PRE - DEVELOPMENT DMA_i (POC-1) 0: I 14.721cf5 Time of concentration Initial Sub Area L: 100 ft A: 0.171 acres C: 0.350 Az : 41t 5: 4% ti: 8.50 mm P6: 2.7 in 5.05 in/hr Qi : 0.3021cf5 Final 0 Ltravel: 1058 ft vaverage: 3.06 ft/s tt: 5.76 mm tc: 14.26 mm 3.62 in/hr A: 11.530 acres C: 0.350 Mannings in triangular channel Initial velocity Final velocity z: 30 z: 10 n : 0.035 n : 0.035 (average n) so: 0.04 so: 0.08 y: 0.0951ft y: 0.5421ft Allow: 0.271 sq-ft Aflow: 2.937 sq-ft Pflow: 5.7 ft Pflow: 10.9 ft Q: I 0.3021cf5 Q: I 14.721cfs v: 1.114 ft/s v: 5.012 ft/s Time of concentration DMA-1 POC-1: Total Peak Flow 14.26 min A: 11.530 acres 15 mm (rounded) IC: 0.350 I: 3.62 in/hr 0: 14.72 cfs PRE -DEVELOPMENT DMA-2 (POC-2) Time of concentration Initial Sub Area Marnings in triangular channel 1: 100 ft Initial velocity Final velocity A: 0.127 acres z: 30 z: 10 C: 0.350 n : 0.035 n : 0.035 (average n) Az : 3 ft so: 0.03 so: 0.03 5: 3 % y: 0.0881ft y: 0.5361ft ti: 9.36 min Aflow: 0.231 sq-ft Aflow: 2.877 sq-ft P6: 2.7 in Pflow: 5.3 ft Pflow: 10.8 ft 4.75 in/hr 0: 0.2111cfs 0: 8.771cf5 Qi : 0.2111cfs v: 0.914 ft/s v: 3.048 ft/s Final Q Time of concentration DMA-2 (POC-2): Total Peak Flow Ltravel: 690.67 ft 15.17 min A: 7.148 acres vaverage: 1.98 ft/s 15 mm (rounded) IC: 0.350 tt: 5.81 mm 1: 3.48 in/hr tc: 15.17 min 0: 8.77 cfs 3.48 in/hr A: 7.148 acres C: C.350 I 8.771cf5 Final velocity z: 10 n: 0.035 (average n) so: 0.09 y: 0.7941ft Aflow: 6.306 sq-ft Pflow: 16.0 ft I 43.241cf5 v: 6.858 ft/s PRE - DEVELOPMENT DMA 3 (POC-3) Time of concentration Initial Sub Area L: 100 ft A: 0.181 acres C: 0.350 Az 5 f 5: 5% ti: 7.89 mm P6: 2.71n I: 5.30 in/hr Qi : 0.3351cf5 Mannings in triangular channel Initial velocity z: 30 n : 0.035 so: 0.05 y: 0. ft Aflow: 0.270 sq-ft Pflow: 5.7 ft I 0.3351cf5 v: 1.243 ft/s Final Q Ltravel: 1629 ft vaverage: 4.05 ft/s tt: 6.70 mm tc: 14.60 mm 1: 3.56 in/hr A: 34.373 acres C: 0.350 0: I 43.24Icfs Time of concentration DMA-3 (POC-3): Total Peak Flow 14.60 min A: 34.373 acres 15 mm (rounded) IC: 0.350 I: 3.56 in/hr 43.24 cfs Time of concentration Initial Sub Area L: 1U0 ft A: 0.039 acres C: 0.350 Az 6 f s: 6% ti: 7.43 mm P6: 2.7 in 5.51 in/hr Qi : 0.0751cf5 Final 0 Ltravel: 623 ft vaverage: 2.01 ft/s tt: 5.16 mm tc: 12.59 mm 3.92 in/hr A: 4.447 acres C: 0.350 Mannings in triangular channel Initial velocity Final velocity z: 30 z: 10 n: 0.035 n: 0.035 (average n) so: 0.06 so: 0.04 V I 00521ft v I 04451ft Aflow: 0.082 sq-ft Aflow: 1.979 sq-ft Pflow: 3.1 ft Pflow: 8.9 ft 0: I 0.0751cf5 Q: I 6.l5lcfs v: 0.916 ft/s v: 3.107 ft/s Time of concentration DMA-i BYPASS (POC-1): Total Peak Flow 12.59 min A: 4.447 acres 12 mm (rounded) IC: 0.350 I: 3.92 in/hr Q: 6.15 cfs POST - DEVELOPMENT DMA-1 BYPASS (POC-1) 0: I 6.l5lcfs POST - DEVELOPMENT DMA-2 BYPASS (POC-2) Time of concentration Initial Sub Area Mannings in triangular channel L: 100 ft Initial velocity Final velocity A: 0.054 acres z: 30 z: 10 C: 0.350 n : 0.035 n : 0.035 (average n) Az 4 ft so: 0.04 so: 0.17 5: 4 % y: 0.O62Ift y: 0.2381ft ti: 8.50 min Allow: 0.114 sq-ft Aflow: 0.566 sq-ft P6: 2.7 in Pflow: 3.7 ft Pflow: 4.8 ft 5.05 in/hr Q: I O,0951c1s 0: I 2.391cfs Qi: I 0.0951c15 v: 0.835 ft/s v: 4.221 ft/s Final Q Time of concentration DMA-2 BYPASS(POC-2): Total Peak Flow Itravel: 339 ft 10.74 min A: 1.559 acres vaverage: 2.53 ft/s 10 mm (rounded) IC: 0.350 tt: 2.24 mm 1: 4.34 in/hr tc: 10.74 min 0: 2.39 cfs 4.34 in/hr A: 1.559 acres C: 0.350 0:F 2.391c15 Final velocity z: 10 n: 0.035 (average n) so: 0.09 y: 0.7171ft Aflow: 5.137 sq-ft Pflow: 14.4 ft 0: F 32.901cfs v: 6.405 ft/s POST - DEVELOPMENT DMA 3 BYPASS (POC-3) Time of concentration Initial Sub Area L: 100 ft A: 0.181 acres C: 0.350 5 f 5: 5% ti: 7.89 mm P6: 2.7 in 5.30 in/hr Qi : 0.3351cfs Mannings in triangular channel Initial velocity z: 30 n: 0.035 so: 0.05 I 0.095ft Aflow: 0.270 sq-ft Pflow: 5.7 ft Q: I 0.3351cfs v: 1.243 ft/s Final 0 Time of concentration DMA-3 BYPASS (POC-3): Total Peak Flow Ltravel: 1629 ft 15.00 min A: 26.612 acres vaverage: 3.82 ft/s 15 mm (rounded) IC: 0.350 tt: 7.10 mm 1: 3.50 in/hr tc: 15.00 min 0: 32.90 cfs I: 3.50 in/hr A: 26.612 acres C: 0.350 0: I 32p]cfs DETERMINATION OF 100 YR -6 HR RUNOFF HYDROGRAPH A: POINSETTIA - PRE-DEV CONDITIONS - DMA-1 (POC-1) Tc: I: 3.502 in/hr C: 15 mm Q: 2.7 in 11.530 acres 14.26 mm 0.35 14.72 cfs time IP (in) 11 (in/hr) I Position 15.00 0.876 3.502 17 30.00 1.120 0.977 16 45.00 1.293 0.693 15 60.001 1.432 0.556 18 75.00 1.550 0.472 14 90.00 1.654 0.415 13 105.00 1.747 0.372 19 120.00 1.832 0.339 12 135.00 1.910 0.313 11 150.00 1.983 0.291 20 165.00 2.051 0.273 10 180.00 2.115 0.257 9 195.00 2.176 0.244 21 210.00 2.234 0.232 8 225.00 2.290 0.222 7 240.00 2.343 0.212 22 255.00 2.394 0.204 6 270.00 2.443 0.196 5 285.00 2.490 0.189 23 300.00 2.536 0.183 4 315.00 2.580 0.177 3 330.00 2.623 0.172 24 345.00 2.665 0.167 2 360.00 2.7061 0.1621 1 time I (in/hr) I Position IQ (cfs) 0.00 15.0 0.1623 1 0.66 30.0 0.1669 2 0.68 45.0 0.1772 3 0.72 60.0 0.1830 4 0.74 75.0 0.1963 5 0.80 90.0 0.2039 6 0.83 105.0 0.2216 7 0.90 120.0 0.2321 8 0.94 135.0 0.2574 9 1.05 150.0 0.2730 10 1.11 165.0 0.3129 11 1.27 180.0 0.3392 12 1.38 195.0 0.4147 13 1.69 210.0 0.4723 14 1.92 225.0 0.6935 15 2.82 240.0 0.9771 16 3.98 255.0 3.5023 17 14.25 270.0 0.5562 18 2.26 285.0 0.3721 19 1.51 300.0 0.2912 20 1.18 315.0 0.2439 21 0.99 330.0 0.2123 22 0.86 345.0 0.1894 23 0.77 360.01 0.17191 24 0.70 375.0 0.00 t Ia-correct 0:00 0.00 0:15 0.66 0:30 0.68 0:45 0.72 1:00 0.74 1:15 0.80 1:30 0.83 1:45 0.90 2:00 0.94 2:15 1.05 2:30 1.11 2:45 1.27 3:00 1.38 3:15 1.69 3:30 1.92 3:45 2.82 4:00 3.66 4:15 14.72 4:30 2.11 4:45 1.51 5:00 1.18 5:15 0.99 5:30 0.86 5:45 0.77 [--6:00 1 0.70 - - - - - - - - - - - - - - - - - DETERMINATION OF 100 YR -6 HR RUNOFF HYDROGRAPH A: Poinsettia - POST-DEV CONDITIONS - DMA-1-1 (POC-1) Tc I: 5.253 in/hr C: 8 mm 0: Pb: 2.7 in 2.27 acres 8.56 mm 0.68 7.04 cfs time P (in) II_(in/hr) IPosition 8 0.700 5.253 31 16 0.896 1.466 30 24 1.035 1.040 29 32 1.146 0.834 32 40 - 1.240 0.708 28 48 1.323 0.622 27 56 1.398 0.558 33 64 1.465 0.509 26 72 1.528 0.469 25 80 1.586 0.437 34 88 1.641 0.409 24 96 1.692 0.386 23 104 1.741 0.366 35 112 1.788 0.348 22 120 1.832 0.332 21 128 1.874 0.318 36 136 1.915 0.306 20 144 1.954 0.294 19 152 1.992 0.284 37 160 2.029 0.275 18 1681 2.064 0.266 17 176 2.099 0.258 38 184 2.132 0.250 16 192 2.164 0.243 15 200 2.196 0.237 39 208 2.227 0.231 14 216 2.257 0.225 13 224 2.286 0.220 40 232 2.315 0.215 12 240 2.343 0.210 11 time II_(mn/hr) IPosition 10_(cfs) 0.000 8 0.1612 1 0.251 16 0.1636 2 0.254 24 0.1687 3 0.262 32 0.1713 4 0.266 40 0.1770 5 0.275 48 0.1801 6 0.280 56 0.1865 7 0.290 64 0.1900 8 0.295 72 0.1975 9 0.307 80 0.2015 10 0.313 88 0.2102 11 0.327 96 0.2149 12 0.334 104 0.2253 13 0.350 112 0.2309 14 0.359 120 0.2434 15 0.378 128 0.2504 16 0.389 136 0.2658 17 0.413 144 0.2746 18 0.427 152 0.2944 19 0.457 160 0.3058 20 0.475 168 0.3324 21 0.516 176 0.3481 22 0.541 184 0.3861 23 0.600 192 0.4094 24 0.636 200 0.4693 25 0.729 208 0.5089 26 0.791 216 0.6220 27 0.966 224 0.7084 28 1.101 232 1.0402 29 1.616 2401 1.4656 30 2.277 t 1° 10-correct 0:00 0.110 0.000 0:08 0.111 0.251 0:16 0.115 0.254 0:24 0.117 0.262 0:32 0.120 0.266 0:40 0.122 0.275 0:48 0.127 0.280 0:56 0.129 0.290 1:04 0.134 0.295 1:12 0.137 0.307 1:20 0.143 0.313 1:28 0.146 0.327 1:36 0.153 0.334 1:44 0.157 0.350 1:52 0.166 0.359 2:00 0.170 0.378 2:08 0.181 0.389 2:16 0.187 0.413 2:24 0.200 0.427 2:321 0.208 0.457 2:40 0.226 0.475 2:48 0.237 0.516 2:56 0.263 0.541 3:04 0.278 0.600 3:12 0.319 0.636 3:20 0.346 0.729 3:28 0.423 0.791 3:36 0.482 0.966 3:441 0.7071 1.101 3:521 1.324 1.616 4:001 3.0821 3.025 time P (in) II (in/hr) IPosition 248 2.370 0.206 41 256 2.397 0.202 10 264 2.424 0.197 9 272 2.449 0.194 42 280 2.475 0.190 8 288 2.500 0.187 7 296 2.524 0.183 43 304 2.548 0.180 6 3121 2.572 0.177 5 320 2.595 0.174 44 328 2.618 0.171 4 336 2.640 0.169 3 344 2.6621 0.1661 45 3521 2.6841 0.164 2 3601 2.7061 0.1611 1 time 11 (in/hr) IPosition Q (cis) 248 5.2534 31 8.162 256 0.8343 32 1.296 264 0.5582 33 0.867 272 0.4368 34 0.679 280 0.3658 35 0.568 288 0.3184 36 0.495 296 0.2841 37 0.441 304 0.2578 381 0.401 312 0.2370 39 0.368 320 0.2200 40 0.342 328 0.2057 41 0.320 336 0.1937 42 0.301 344 0.1832 431 0.285 352 0.1741 44 0.271 360 0.1661 45 0.258 368 0.000 t id IQ-correct 4:08 0.731 7.041 4:16 0.380 1.670 4:24 0.297 0.867 4:32 0.249 0.679 4:401 0.217 0.568 4:48 0.193 0.495 4:56 0.175 0.441 5:04 0.161 0.401 5:12 0.150 0.368 5:20 0.140 0.342 5:28 0.132 0.320 5:36 0.125 0.301 5:44 0.118 0.285 5:52 0.113 0.271 6:00 0.000 0.258 6:081 0.000 0.000 DETERMINATION OF 100 YR -6 HR RUNOFF HYDROGRAPH A: 1.628 acres 3.898 POINSETTIA - POST-DEV CONDITIONS - DMA-3-1 (POC-1) Tc: 6.95 min 0.41765 I: 6.325 in/hr C: 0.68 0.58235 6 min 6.35 cfs P6: 2.7 in time IP (in) II (in/hr) IPosition 6 0.632 6.325 41 12 0.809 1.764 40 18 0.934 1.252 39 24 1.035 1.004 42 30 1.120 0.853 38 36 1.195 0.749 37 42 1.262 0.672 43 48 1.323 0.613 36 54 1.380 0.565 35 60 1.432 0.526 44 66 1.482 0.493 34 72 1.528 0.465 33 78 1.572 0.440 45 84 1.614 0.419 32 90 1.654 0.400 31 96 1.692 0.383 46 102 1.729 0.368 30 108 1.765 0.354 29 114 1.799 0.342 47 120 1.832 0.331 28 1261 1.864 0.320 27 132 1.895 0.310 48 138 1.925 0.301 26 144 1.954 0.293 25 150 1.983 0.285 49 156 2.011 0.278 24 162 2.038 0.271 23 168 2.064 0.265 50 174 2.090 0.259 22 1801 2.115 0.253 21 1861 2.140 0.248 51 time 11 (in/hr) IPosition Q (cfs) 0.000 6 0.1610 1 0.180 12 0.1627 2 0.182 18 0.1664 3 0.186 24 0.1683 4 0.188 30 0.1724 5 0.192 36 0.1745 6 0.195 42 0.1789 7 0.200 48 0.1812 8 0.202 54 0.1861 9 0.208 60 0.1887 10 0.211 66 0.1941 11 0.217 72 0.1970 12 0.220 78 0.2031 13 0.227 84 0.2063 14 0.230 90 0.2131 15 0.238 96 0.2168 16 0.242 102 0.2246 17 0.251 108 0.2288 18 0.255 114 0.2377 19 0.265 120 0.2426 20 0.271 126 0.2531 21 0.282 132 0.2588 22 0.289 138 0.2712 23 0.303 144 0.27801 24 0.310 150 0.2931 25 0.327 156 0.3014 26 0.336 162 0.3201 27 0.357 168 0.3305 28 0.369 174 0.3545 29 0.396 180 0.3682 30 0.411 186 0.4002 31 0.447 t 1° I0correct 0:00 0.109 0.000 0:06 0.111 0.180 0:12 0.113 0.182 0:18 0.114 0.186 0:24 0.117 0.188 0:301 0.119 0.192 0:36 0.122 0.195 0:42 0.123 0.200 0:48 0.127 0.202 0:54 0.128 0.208 1:00 0.132 0.211 1:06 0.134 0.217 1:12 0.138 0.220 1:18 0.140 0.227 1:24 0.145 0.230 1:30 0.147 0.238 1:36 0.153 0.242 1:42 0.156 0.251 1:48 0.162 0.255 1:54 0.165 0.265 :00 0.172 0.271 2:06 0.176 0.282 2:12 0.184 0.289 2:18 0.189 0.303 2:24 0.199 0.310 2:301 0.205 0.327 2:361 0.218 0.336 2:42 0.225 0.357 2:48 0.241 0.369 0.250 0.396 A 3:00 0.272 0.41 0.285 0.447 time P (in) II (in/hr) IPosition 192 2.164 0.243 20 198 2.188 0.238 19 204 2.212 0.233 52 2101 2.234 0.229 18 216 2.257 0.225 17 222 2.279 0.221 53 228 2.301 0.217 16 234 2.322 0.213 15 240 2.343 0.210 54 246 2.364 0.206 14 252 2.384 0.203 13 258 2.404 0.200 55 264 2.424 0.197 12 270 2.443 0.194 11 276 2.462 0.191 56 282 2.481 0.189 10 288 2.500 0.186 9 294 2.518 0.184 57 300 2.536 0.181 8 306 2.554 0.179 7 312 2.572 0.177 58 318 2.589 0.174 6 324 2.606 0.172 5 330 2.623 0.170 59 336 2.640 0.168 4 342 2.657 0.166 3 348 2.673 0.165 60 354 2.6901 0.163 2 3601 2.7061 0.1611 1 time II (in/hr) IPosition I Q_(cfs) 192 0.4191 32 0.468 198 0.4648 33 0.519 204 0.4929 34 0.550 210 0.5650 35 0.631 216 0.6126 361 0.684 222 0.7488 37 0.836 228 0.8529 38 0.952 234 1.2523 39 1.398 240 1.7645 40 1.970 246 6.3245 41 7.060 252 1.0044 42 1.121 258 0.6720 43 0.750 264 0.5258 44 0.587 270 0.4404 45 0.492 276 0.3833 46 0.428 282 0.3420 47 0.382 288 0.3104 48 0.346 294 0.2853 49 0.318 300 0.2648 501 0.296 306 0.2477 51 0.276 312 0.2331 52 0.260 318 0.2206 53 0.246 324 0.2096 54 0.234 330 0.2000 551 0.223 336 0.1914 56 0.214 342 0.1836 57 0.205 348 0.1767 58 0.197 354 0.1703 59 0.190 3601 0.1645 60 0.184 366 0.000 t la 10-correct 3:12 0.316 0.468 3:18 0.335 0.519 3:24 0.384 0.550 3:30 0.417 0.631 3:36 0.509 0.684 3:421 0.580 0.836 3:48 0.852 0.952 3:54 1.487 1.398 4:00 3.869 2.442 4:06 0.827 6.352 4:12 0.457 1.357 4:18 0.358 0.750 4:24 0.299 0.587 4:30 0.261 0.492 4:36 0.233 0.428 4:42 0.2111 0.382 4:48 0.194 0.346 4:54 0.180 0.318 5:00 0.168 0.296 5:06 0.159 0.276 5:12 0.150 0.260 5:18 0.143 0.246 5:24 0.136 0.234 5:30 0.130 0.223 5:36 0.125 0.214 5:42 0.120 0.205 5:48 0.116 0.197 5:54 0.112 0.190 6:00 0.000 0.184 6:06 0.000 0.000 - - - - - - - - - - - - - - - - - - - DETERMINATION OF 100 YR -6 HR RUNOFF HYDROGRAPH A: Poinsettia POST -DEV CONDITIONS - DMA 1-BYPASS (POC-1) Tc: I: 4.044 in/hr C: 12 mm P6: 2.7 in 4.447 acres 12.59 mm 0.35 6.15 cfs time I (in) II (in/hr) IPosition 12 0.809 4.044 21 24 1.035 1.128 20 36 1.195 0.801 19 48 1.323 0.642 22 60 1.432 0.545 18 72 1.528 0.479 17 84 1.614 0.430 23 96 1.692 0.392 16 108 1.765 0.361 15 120 1.832 0.336 24 132 1.895 0.315 14 144 1.954 0.297 13 156 2.011 0.282 25 168 2.064 0.268 12 180 2.115 0.256 11 192 2.164 0.245 26 204 2.212 0.235 10 216 2.257 0.227 9 228 2.301 0.219 27 240 2.343 0.211 8 252 2.384 0.205 7 264 2.424 0.198 28 276 2.462 0.193 6 288 2.500 0.187 5 300 2.536 0.182 29 312 2.572 0.178 4 324 2.606 0.173 3 336 2.640 0.169 30 348 2.673 0.165 2 360 2.706 0.162 1 time' Ii (in/hr) lPosition IQ (cfs) 0.000 12 0.1618 1 0.254 24 0.1655 2 0.260 36 0.1734 3 0.272 48 0.1778 4 0.279 60 0.1874 5 0.294 72 0.1927 6 0.302 84 0.2047 7 0.321 96 0.2114 8 0.332 108 0.22671 9 0.356 120 0.2354 10 0.370 132 0.2559 11 0.402 144 0.2680 12 0.421 156 0.2972 13 0.466 168 0.3152 14 0.495 180 0.3613 15 0.567 192 0.3918 16 0.615 204 0.4788 17 0.752 216 0.5454 18 0.856 228 0.8008 19 1.257 240 1.1284 20 1.771 252 4.0445 21 6.348 264 0.6423 22 1.008 276 0.4298 23 0.674 288 0.3363 24 0.528 300 0.2816 25 0.442 312 0.2451 26 0.385 324 0.2187 27 0.343 336 0.1985 28 0.311 348 0.1824 29 0.286 3601 0.16931 30 0.266 3721 1 0.000 t Icl IQ-correct 0:00 0.057 0.000 0:12 0.058 0.254 0:24 0.061 0.260 0:36 0.062 0.272 0:48 0.066 0.279 1:00 0.067 0.294 1:12 0.072 0.302 1:24 0.074 0.321 1:36 0.079 0.332 1:48 0.082 0.356 2:00 0.090 0.370 2:12 0.094 0.402 2:24 0.104 0.421 2:36 0.110 0.466 2:48 0.126 0.495 3:00 0,137 0.567 3:12 0.168 0.615 3:24 0.191 0.752 3:36 0.280 0.856 3:48 0.424 1.257 4:00 1.372 1.903 4:12 0.239 6.150 4:24 0.150 1.074 4:36 0.118 0.674 4:48 0.099 0.528 5:00 0.086 0.442 5:12 0.077 0.385 5:24 0.069 0.343 5:36 0.064 0.311 5:48 0.059 0.286 6:00 0.000 0.266 6:12 0.000 0.000 DETERMINATION OF 100 YR -6 HR RUNOFF HYDROGRAPH A: POINSETTIA - PRE-DEV CONDITIONS DMA-2 (POC-2) Tc: I: 3.502 in/hr C: 15 mm P6: 2.7 in 7.148 acres 15.17 mm 0.35 8.77 cfs time P (in) 11 (in/hr) jPosition 15.00 0.876 3.502 17 30.00 1.120 0.977 16 45.00 1.293 0.693 15 60.001 1.432 0.556 18 75.00 1.550 0.472 14 90.00 1.654 0.415 13 105.00 1.747 0.372 19 120.00 1.832 0.339 12 135.00 1.910 0.313 11 150.00 1.983 0.291 20 165.00 2.051 0.273 10 180.00 2.115 0.257 9 195.00 2.176 0.244 21 210.00 2.234 0.232 8 225.00 2.290 0.222 7 240.00 2.343 0.212 22 255.00 2.394 0.204 6 270.00 2.443 0.196 5 285.00 2.490 0.189 23 300.00 2.536 0.183 4 315.00 2.580 0.177 3 330.00 2.623 0.172 24 345.00 2.665 0.167 2 360.00 2.706 0.162 1 time I (in/hr) Ipmtm Q (cfs) 0.00 15.0 0.1623 1 0.41 30.0 0.1669 2 0.42 45.0 0.1772 3 0.45 60.0 0.1830 4 0.46 75.0 0.1963 5 0.50 90.0 0.2039 6 0.51 105.0 0.2216 7 0.56 120.0 0.2321 8 0.59 135.0 0.2574 9 0.65 150.0 0.2730 10 0.69 165.0 0.3129 11 0.79 180.0 0.3392 12 0.86 195.0 0.4147 13 1.05 210.0 0.4723 14 1.19 225.0 0.6935 15 1.75 240.0 0.9771 16 2.46 255.0 3.5023 17 8.84 270.0 0.5562 18 1.40 285.0 0.3721 19 0.94 300.0 0.2912 20 0.73 315.0 0.2439 21 0.62 330.0 0.2123 22 0.54 345.0 0.1894 23 0.48 360.01 0.17191 241 0.43 375.01 1 1 0.00 t IQ-correct 0:00 0.00 0:15 0.41 0:30 0.42 0:45 0.45 1:00 0.46 1:15 0.50 1:30 0.51 1:45 0.56 2:00 0.59 2:15 0.65 2:30 0.69 2:45 0.79 3:00 0.86 3:15 1.05 3:30 1.19 3:45 1.75 4:00 2.51 4:15 8.77 4:30 1.42 4:45 0.94 5:00 0.73 5:15 0.62 5:30 0.54 5:45 0.48 6:001 0.43 6:151 0.00 DETERMINATION OF 100 YR -6 HR RUNOFF HYDROGRAPH A: POINSETTIA - POST-DEV CONDITIONS - DMA-2-1 (POC-2) Tc I: 4.549 in/hr C: At: 10 mm 0: P6: 2.7 in 8.981 acres 9.989 mm 0.63 26.90 cfs time I P (in) 11 (in/hr) I Position 10 0.758 4.549 25 20 0.970 1.269 24 30 1.120 0.901 23 401 1.240 0.722 26 50 1.343 0.613 22 60 1.432 0.539 21 70 1.513 0.483 27 80 1.586 0.441 20 90 1.654 0.406 19 100 1.717 0.378 28 110 1.776 0.355 18 120 1.832 0.334 17 130 1.885 0.317 29 140 1.935 0.301 16 150 1.983 0.288 15 160 2.029 0.276 30 170 2.073 0.265 14 180 2.115 0.255 13 190 2.156 0.246 31 200 2.196 0.238 12 210 2.234 0.230 11 220 2.272 0.223 32 230 2.308 0.217 10 240 2.343 0.211 9 250 2.377 0.205 33 260 2.410 0.200 8 270 2.443 0.195 7 280 2.475 0.190 34 2901 2.5061 0.186 6 time 11 (in/hr) IPosition I (cfs) 0.000 10 0.1615 1 0.922 20 0.1645 2 0.939 30 0.1710 3 0.976 40 0.1745 41 0.996 50 0.1820 5 1.039 60 0.1861 6 1.062 70 0.1951 7 1.113 80 0.2000 8 1.141 90 0.2108 91 1.203 100 0.2168 10 1.237 110 0.2302 11 1.313 120 0.2378 12 1.356 130 0.2550 13 1.455 140 0.2648 14 1.511 150 0.2879 15 1.642 160 0.3014 16 1.720 170 0.3343 17 1.907 180 0.3545 18 2.023 190 0.4064 191 2.319 200 0.4406 20 2.514 210 0.5386 21 3.073 220 0.6135 22 3.500 230 0.9008 23 5.139 240 1.2692 24 7.241 250 4.5492 25 25.954 260 0.7225 26 4.122 270 0.4834 27 2.758 280 0.3782 28 2.158 2901 0.31681 291 1.807 t ClI IQ-correct 0:00 0.102 0.000 0:10 0.104 0.922 0:20 0.108 0.939 0:30 0.110 0.976 0:401 0.115 0.996 0:501 0.117 1.039 1:00 0.123 1.062 1:10 0.126 1.113 1:20 0.133 1.141 1:30 0.137 1.203 1:40 0.145 1.237 1:50 0.150 1.313 2:00 0.161 1.356 2:10 0.167 1.455 2:20 0.181 1.511 2:30 0.190 1.642 2:40 0.211 1.720 2:50 0.223 1.907 3:00 0.256 2.023 3:10 0.278 2.319 3:20 0.339 2.514 3:30 0.386 3.073 3:40 0.567 3.500 3:50 0.730 5.139 4:00 2.970 6.612 4:10 0.420 26.898 4:20 0.305 3.807 4:30 0.238 2.758 4:40 0.200 2.158 4:50 0.174 1.807 time I (in) Ii (in/hr) Iposition 300 2.536 0.182 5 310 2.566 0.178 35 320 2.595 0.174 4 330 2.623 0.171 3 3401 2.6511 0.168 36 3501 2.6791 0.165 2 3601 2.7061 0.162 1 time Ii (in/hr) IPosition lo (cfs) 300 0.2757 30 1.573 310 0.2460 31 1.403 320 0.2232 32 1.274 330 0.2052 33 1.171 340 0.1905 34 1.087 350 0.1782 35 1.016 360 0.1677 36 0.957 370 1 0.000 t ICI Ia-correct 5:00 0.155 1.573 5:10 0.141 1.403 5:20 0.129 1.274 5:30 0.120 1.171 5:40 0.112 1.087 5:50 0.106 1.016 6:00 0.000 0.957 6:10 0.000 0.000 DETERMINATION OF 100 YR -6 HR RUNOFF HYDROGRAPH A: POINSETTIA - POST -DEV CONDITIONS - DMA 2-BYPASS (POC-2) Tc: I: 4.549 in/hr C: 10 mm 0: P6: 2.7 in 1.559 acres 10.74 mm 0.35 2.39 cfs time P (in) Ii (in/hr) IPosition 10 0.758 4.549 25 20 0.970 1.269 24 30 1.120 0.901 23 401 1.240 0.722 26 50 1.343 0.613 22 60 1.432 0.539 21 70 1.513 0.483 27 80 1.586 0.441 20 90 1.654 0.406 19 100 1.717 0.378 28 110 1.776 0.355 18 120 1.832 0.334 17 130 1.885 0.317 29 140 1.935 0.301 16 150 1.983 0.288 15 160 2.029 0.276 30 170 2.073 0.265 14 180 2.115 0.255 13 190 2.156 0.246 31 200 2.196 0.238 12 210 2.234 0.230 11 220 2.272 0.223 32 230 2.308 0.217 10 240 2.343 0.211 9 250 2.377 0.205 33 260 2.410 0.200 8 270 2.443 0.195 7 280 2.475 0.190 34 290 2.506 0.1861 6 300 2.536 0.182 5 time II (in/hr) IPosition I Q (cfs) 0.000 10 0.1615 1 0.089 20 0.1645 2 0.091 30 0.1710 3 0.094 40 0.1745 4 0.096 50 0.1820 5 0.100 60 0.1861 6 0.102 70 0.1951 7 0.107 80 0.2000 8 0.110 90 0.2108 9 0.116 100 0.2168 10 0.119 110 0.2302 11 0.127 120 0.23781 12 0.131 130 0.2550 13 0.140 140 0.2648 14 0.146 150 0.2879 15 0.158 160 0.3014 16 0.166 170 0.3343 17 0.184 180 0.3545 18 0.195 190 0.4064 19 0.224 200 0.4406 20 0.242 210 0.5386 21 0.296 220 0.6135 22 0.338 230 0.9008 23 0.496 240 1.2692 24 0.698 250 4.5492 25 2.503 260 0.7225 26 0.398 270 0.4834 27 0.266 280 0.3782 28 0.208 290 0.3168 29 0.174 300 0.2757 30 0.152 t lo Ia-correct 0:00 0.057 0.000 0:10 0.058 0.089 0:20 0.060 0.091 0:30 0.061 0.094 0:40 0.064 0.096 0:50 0.065 0.100 1:00 0.068 0.102 1:10 0.070 0.107 1:20 0.074 0.110 1:30 0.076 0.116 1:40 0.081 0.119 1:50 0.083 0.127 2:00 0.089 0.131 2:10 0.093 0.140 2:20 0.101 0.146 2:30 0.106 0.158 2:40 0.117 0.166 2:50 0.124 0.184 3:00 0.142 0.195 3:10 0.154 0.224 3:20 0.189 0.242 3:30 0.215 0.296 3:40 0.315 0.338 3:50 0.492 0.496 4:00 1.520 0.774 4:10 0.277 2.390 4:20 0.169 0.435 4:30 0.132 0.266 4:40 0.111 0.208 4:50 0.0971 0.174 5:00 0.0861 0.152 time IP (in) Ii (in/hr) IPosition 310 2.566 0.178 35 320 2.595 0.174 4 330 2.623 0.171 3 340 2.651 0.168 36 350 2.6791 0.165 2 3601 2.7061 0.162 1 time Ii (in/hr) IPosition I (cfs) 310 0.2460 31 0.135 320 0.2232 32 0.123 330 0.2052 33 0.113 340 0.1905 34 0.105 350 0.1782 35 0.098 360 0.1677 36 0.092 370 0.000 t id IQ-correct 5:10 0.078 0.135 5:20 0.072 0.123 5:30 0.067 0.113 5:40 0.062 0.105 5:50 0.0591 0.098 6:00 0.0001 0.092 6:10 0.0001 0.000 DETERMINATION OF 100 YR -6 HR RUNOFF HYDROGRAPH A: POINSETTIA - PRE-DEV CONDITIONS - DMA_3 (POC-3) Tc: I: 3.502 in/hr C: 15 mm P6. 2.7 in 34.373 acres 14.6 mm 0.35 43.24 cfs time IP (in) 11 (in/hr) Position 15.00 0.876 3.502 17 30.00 1.120 0.977 16 45.00 1.293 0.693 15 60.00 1.432 0.556 18 75.00 1.550 0.472 14 90.00 1.654 0.415 13 105.00 1.747 0.372 19 120.001 1.832 0.339 12 135.00 1.910 0.313 11 150.00 1.983 0.291 20 165.00 2.051 0.273 10 180.00 2.115 0.257 9 195.00 2.176 0.244 21 210.00 2.234 0.232 8 225.00 2.290 0.222 7 240.00 2.343 0.212 22 255.00 2.394 0.204 6 270.00 2.443 0.196 5 285.00 2.490 0.189 23 300.00 2.536 0.183 4 315.00 2.580 0.177 3 330.00 2.623 0.172 24 345.00 2.665 0.167 2 360.00 2.706 0.162 1 time I I (in/hr) lPosition Q (cis) 0.00 15.0 0.1623 1 1.97 30.0 0.1669 2 2.02 45.0 0.1772 3 2.15 60.01 0.1830 4 2.22 75.0 0.1963 5 2.38 90.0 0.2039 6 2.47 105.0 0.2216 7 2.69 120.0 0.2321 8 2.82 135.0 0.2574 9 3.12 150.0 0.2730 10 3.31 165.0 0.3129 11 3.80 180.0 0.3392 12 4.12 195.0 0.4147 13 5.03 210.0 0.4723 14 5.73 225.0 0.6935 15 8.41 240.0 0.9771 16 11.85 255.0 3.5023 17 42.49 270.0 0.5562 18 6.75 285.0 0.3721 19 4.51 300.0 0.2912 20 3.53 315.0 0.2439 21 2.96 3300 0.2123 22 2.58 345.0 0.1894 23 2.30 360.0 0.1719 24 2.08 r---:375.0 0.00 t IQ-correct 0:00 0.00 0:15 1.97 0:30 2.02 0:45 2.15 1:001 2.22 1:15 2.38 1:30 2.47 1:45 2.69 2:00 2.82 2:15 3.12 2:30 3.31 2:45 3.80 3:00 4.12 3:15 5.03 3:30 5.73 3:45 8.41 4:00 11.35 4:15 43.24 4:30 6.50 4:45 4.51 5:00 3.53 5:15 2.96 5:30 2.58 5:45 2.30 6:00 2.08 6--151- :15 0.00 DETERMINATION OF 100 YR -6 HR RUNOFF HYDROGRAPH A: POINSETTIA - POSTDEV CONDITIONS - DMA-4-1 (POC-3) Tc: I: 4.549 in/hr C: At: 10 mm 0: P6: 2.7 in 7.938 acres 11.007 mm 0.59 20.72 cfs time P (in) Ii (in/hr) I Position 10 0.758 4.549 25 20 0.970 1.269 24 30 1.120 0.901 23 401 1.240 0.722 26 50 1.343 0.613 22 60 1.432 0.539 21 70 1.513 0.483 27 80 1.586 0.441 20 90 1.654 0.406 19 100 1.717 0.378 28 110 1.776 0.355 18 120 1.832 0.334 17 130 1.885 0.317 29 140 1.935 0.301 16 150 1.983 0.288 15 160 2.029 0.276 30 170 2.073 0.265 14 180 2.115 0.255 13 190 2.156 0.246 31 200 2.196 0.238 12 210 2.234 0.230 11 220 2.272 0.223 32 230 2.308 0.217 10 240 2.343 0.211 9 250 2.377 0.205 33 260 2.410 0.200 8 270 2.443 0.195 7 280 2.475 0.190 34 290 2.506 0.186 6 time Ii (in/hr) IPosition IQ (cfs) 0.000 10 0.1615 1 0.763 20 0.1645 2 0.777 30 0.1710 3 0.808 40 0.1745 41 0.824 50 0.1820 5 0.860 60 0.1861 6 0.879 70 0.1951 7 0.921 80 0.2000 8 0.944 90 0.2108 91 0.995 100 0.2168 10 1.024 110 0.2302 11 1.087 120 0.2378 12 1.123 130 0.2550 13 1.204 140 0.2648 141 1.251 150 0.2879 15 1.359 160 0.3014 16 1.424 170 0.3343 17 1.579 180 0.3545 18 1.674 190 0.4064 19 1.919 200 0.4406 20 2.081 210 0.5386 21 2.544 220 0.6135 22 2.897 230 0.9008 23 4.254 240 1.2692 24 5.994 250 4.5492 25 21.483 260 0.7225 26 3.412 270 0.4834 27 2.283 280 0.3782 28 1.786 2901 0.3168 29 1.496 t ICI 10-correct 0:00 0.095 0.000 0:10 0.097 0.763 0:20 0.101 0.777 0:30 0.103 0.808 0:401 0.107 0.824 0:50 0.110 0.860 1:00 0.115 0.879 1:10 0.118 0.921 1:20 0.124 0.944 1:30 0.128 0.995 1:40 0.136 1.024 1:50 0.140 1.087 2:00 0.150 1.123 2:10 0.156 1.204 2:20 0.170 1.251 2:30 0.178 1.359 2:40 0.197 1.424 2:50 0.209 1.579 3:00 0.240 1.674 3:10 0.260 1.919 3:20 0.318 2.081 3:30 0.362 2.544 3:40 0.531 2.897 3:50 0.813 4.254 4:00 2.588 6.504 4:10 0.458 20.718 4:20 0.285 3.667 4:30 0.223 2.283 4:40 0.187 1.786 4:501 0.163 - 1.496 time IP (in) Ii (in/hr) Iposition 300 2.536 0.182 5 310 2.566 0.178 35 320 2.595 0.174 4 330 2.623 0.171 3 3401 2.6511 0.168 36 3501 2.679 0.165 2 3601 2.7061 0.162 1 time Ii_(in/hr)IpositionIQ(cfs) 300 0.2757 30 1.302 310 0.2460 31 1.162 320 0.2232 32 1.054 330 0.2052 33 0.969 340 0.1905 341 0.899 350 0.1782 35 0.841 360 0.1677 36 0.792 370 0.000 t IC IQ-correct 5:00 0.145 1.302 5:10 0.132 1.162 5:20 0.121 1.054 5:30 0.112 0.969 5:40 0.105 0.899 5:50 0.099 0.841 6:00 0.000 0.792 6:10 0.0001 0.000 DETERMINATION OF 100 YR -6 HR RUNOFF HYDROGRAPH A: POINSETTIA - POST-DEV CONDITIONS - DMA-5-1 (POC-3) Tc: I: 6.325 in/hr C: 6 mm 0: P6: 2.7 in 1.431 acres 6.01 mm 0.75 6.94 cfs time P (in) 11 (in/hr) IPosition 6 0.632 6.325 41 12 0.809 1.764 40 18 0.934 1.252 39 24 1.035 1.004 42 30 1.120 0.853 38 36 1.195 0.749 37 42 1.262 0.672 43 48 1.323 0.613 36 54 1.380 0.565 35 60 1.432 0.526 44 66 1.482 0.493 34 72 1.528 0.465 33 78 1.572 0.440 45 84 1.614 0.419 32 90 1.654 0.400 31 96 1.692 0.383 46 102 1.729 0.368 30 108 1.765 0.354 29 114 1.799 0.342 47 120 1.832 0.331 28 126 1.864 0.320 27 132 1.895 0.310 48 138 1.925 0.301 26 144 1.954 0.293 25 150 1.983 0.285 49 156 2.011 0.278 24 162 2.038 0.271 23 168 2.064 0.265 50 174 2.090 0.259 22 180 2.115 0.253 21 186 2.140 0.248 51 time 11 (in/hr) IPosition '0 (cfs) 0.000 6 0.1610 1 0.174 12 0.1627 2 0.176 18 0.1664 3 0.180 24 0.1683 4 0.182 30 0.1724 5 0.187 36 0.1745 6 0.189 42 0.1789 7 0.194 48 0.1812 8 0.196 54 0.1861 9 0.201 60 0.1887 10 0.204 66 0.1941 11 0.210 72 0.1970 12 0.213 78 0.2031 13 0.220 84 0.2063 14 0.223 90 0.2131 15j 0.231 96 0.2168 16 0.235 102 0.2246 17 0.243 108 0.2288 18 0.248 114 0.2377 19 0.257 120 0.2426 20 0.263 126 0.2531 21 0.274 132 0.2588 22 0.280 138 0.2712 23 0.293 144 0.2780 241 0.301 150 0.2931 25 0.317 156 0.3014 26 0.326 162 0.3201 27 0.346 168 0.3305 28 0.358 174 0.3545 29 0.384 1801 0.36821 301 0.398 1861 0.40021 311 0.433 t la IQ-correct 0:00 0.121 0.000 0:06 0.122 0.174 0:12 0.125 0.176 0:18 0.126 0.180 0:24 0.129 0.182 0:301 0.131 0.187 0:36 0.134 0.189 0:42 0.136 0.194 0:48 0.140 0.196 0:54 0.142 0.201 1:00 0.146 0.204 1:06 0.148 0.210 1:12 0.152 0.213 1:18 0.155 0.220 1:24 0.160 0.223 1:30 0.163 0.231 1:36 0.168 0.235 1:42 0.172 0.243 1:48 0.178 0.248 1:54 0.182 0.257 2:00 0.190 0.263 2:06 0.194 0.274 2:12 0.2031 0.280 2:18 0.209 0.293 2:24 0.220 0.301 2:30 0.226 0.317 2:36 0.240 0.326 2:42 0.248 0.346 2:48 0.266 0.358 2:54 0.276 0.384 3:00 0.300 0.398 3:061 0.314 0.433 - - - - - - - - - - - - - = - M - - - time I P (in) II (in/hr) lPosition 192 2.164 0.243 20 198 2.188 0.238 19 204 2.212 0.233 52 210 2.234 0.229 18 2161 2.257 0.225 17 222 2.279 0.221 53 228 2.301 0.217 16 234 2.322 0.213 15 240 2.343 0.210 54 246 2.364 0.206 14 252 2.384 0.203 13 258 2.404 0.200 55 264 2.424 0.197 12 270 2.443 0.194 11 276 2.462 0.191 56 282 2.481 0.189 10 288 2.500 0.186 9 294 2.518 0.184 57 300 2.536 0.181 8 306 2.554 0.179 7 312 2.572 0.177 58 318 2.589 0.174 6 324 2.606 0.172 5 330 2.623 0.170 59 336 2.640 0.168 4 342 2.657 0.166 3 348 2.673 0.165 60 354 2.690 0.163 2 360 2.7061 0.1611 1 time I (in/hr) IPosition Q (cfs) 192 0.4191 32 0.454 198 0.4648 33 0.503 204 0.4929 34 0.533 2101 0.5650 35 0.611 216 0.6126 361 0.663 222 0.7488 371 0.810 228 0.8529 38 0.923 234 1.2523 39 1.355 240 1.7645 40 1.909 246 6.3245 41 6.844 252 1.0044 42 1.087 258 0.6720 43 - 0.727 264 0.5258 44 0.569 270 0.4404 45 0.477 276 0.3833 46 0.415 282 0.3420 47 0.370 288 0.3104 48 0.336 294 0.2853 49 0.309 300 0.2648 50 0.287 306 0.2477 51 0.268 312 0.2331 52 0.252 318 0.2206 53 0.239 324 0.2096 54 0.227 330 0.2000 55 0.216 336 0.1914 56 0.207 342 0.1836 57 0.199 348 0.1767 58 0.191 354 0.1703 59 0.184 360 0.1645 60 0.178 366 0.000 t Ic 10-correct 3:12 0.349 0.454 3:18 0.370 0.503 3:24 0.424 0.533 3:30 0.459 0.611 3:361 0.562 0.663 3:42 0.640 0.810 3:48 0.939 0.923 3:54 1.280 1.355 4:00 4.809 1.846 4:06 0.731 6.939 4:12 0.504 1.055 4:18 0.394 0.727 4:24 0.330 0.569 4:30 0.287 0.477 4:36 0.256 0.415 4:42 0.233 0.370 4:48 0.214 0.336 4:54 0.199 0.309 5:00 0.186 0.287 5:06 0.175 0.268 5:12 0.165 0.252 5:18 0.157 0.239 5:24 0.150 0.227 5:30 0.144 0.216 5:36 0.138 0.207 5:42 0.132 0.199 5:48 0.128 0.191 5:54 0.123 0.184 6:00 0.000 0.178 6:06 0.000 0.000 DETERMINATION OF 100 YR -6 HR RUNOFF HYDROGRAPH A: POINSETTIA - POST -0EV CONDITIONS - DMA 3-BYPASS (POC-3) Tc: I: 3.502 in/hr C: 15 mm 0: P5: 2.7 in 26.612 acres 15 mm 0.35 32.90 cfs time I P (in) I (in/hr) IPosition 15 0.876 3.502 17 30 1.120 0.977 16 45 1.293 0.693 15 60 1.432 0.556 18 75 1.550 0.472 14 90 1.654 0.415 13 105 1.747 0.372 19 120 1.832 0.339 12 135 1.910 0.313 11 150 1.983 0.291 20 165 2.051 0.273 10 180 2.115 0.257 9 195 2.176 0.244 21 210 2.234 0.232 8 225 2.290 0.222 7 240 2.343 0.212 22 255 2.394 0.204 6 270 2.443 0.196 5 285 2.490 0.189 23 300 2.536 0.183 4 315 2.580 0.177 3 330 2.623 0.172 24 345 2.665 0.1671 2 360 2.706 0.162 1 time 11 (in/hr) IPosit1on 10 (cfs) 0.000 15 0.1623 1 1.524 30 0.1669 2 1.568 45 0.1772 3 1.665 60 0.1830 4 1.719 75 0.1963 5 1.843 90 0.2039 6 1.915 105 0.2216 7 2.081 120 0.2321 8 2.180 135 0.2574 9 2.417 150 0.2730 10 2.564 165 0.3129 11 2.939 180 0.3392 12 3.186 195 0.4147 13 3.894 210 0.4723 14 4.436 225 0.6935 15 6.513 240 0.9771 16 9.177 255 3.5023 17 32.893 270 0.5562 18 5.224 285 0.3721 19 3.495 300 0.2912 20 2.735 315 0.2439 21 2.291 330 0.2123 22 1.994 345 0.1894 23 1.779 360 0.1719 24 1.614 375 0.000 t ICI IQ-correct 0:00 0.057 0.000 0:15 0.058 1.524 0:30 0.062 1.568 0:45 0.064 1.665 1:00 0.069 1.719 1:15 0.071 1.843 1:30 0.078 1.915 1:45 0.081 2.081 2:00 0.090 2.180 2:15 0.096 2.417 2:30 0.110 2.564 2:45 0.119 2.939 3:00 0.145 3.186 3:15 0.165 3.894 3:30 0.243 4.436 3:45 0.342 6.513 4:00 1.226 9.172 4:15 0.195 32.900 4:30 0.130 5.222 4:45 0.102 3.495 5:00 0.085 2.735 5:15 0.074 2.291 5:30 0.066 1.994 5:45 0.060 1.779 6:00 0.000 1.614 6:15 0.0001 0.000 Appendix 3: Elev. vs. Area Elev. vs. Discharge Curves Depth (ft) Area (ft) Volume (ft) 0.00 2488 0 0.08 2550 210 0.17 2612 425 0,25 2675 645 0.33 2738 871 0.42 2801 1102 0.50 2865 1338 0.58 2929 1579 0.67 2993 1826 0.75 3058 2078 0.83 3123 2336 0.92 3188 2598 1.00 3254 2867 1.08 3320 3141 1.17 3386 3420 1.25 3453 3705 1.33 3520 3996 1.42 3588 4292 1.50 3656 4594 1.58 3724 4901 1.67 3792 5214 1.75 3861 5533 1.83 3930 5858 1.92 4000 6188 2.00 4070 6525 2.08 4140 6867 2.17 4211 7215 2.25 4282 7569 2.33 4353 7928 2.42 4425 8294 2.50 4497 8666 3I0FILTRATION (1) I URFACEOUTLET2) Stage-Area for IMP 1-1 SUB SURFACE STORAGE IMP 1-1 Elevation (ft) Area (ft') Volume (ft) -1.50 2488 1120 Amended Soil Base (0.3 voids) -2.50 2488 995 Gravel Base (0.4 voids) Gravel & Amended Soil TOTAL = 2115 (ft3) Surface Total TOTAL = 1338 (ft3) IMP TOTAL = 3453 (ft3) The area at this surface elevation corresponds to the area of gravel and amended soil (Bio-retention layer) Volume at this elevation coresponds with surface volume for WQ purposes (invert of lowest surface outlet) Effective Depth: 6.45 in Stage-Area for IMP 2-1 Depth (ft) Area (ft) Volume (ft) 0.00 8277 0 0.08 8339 692 0.17 8402 1390 0.25 8465 2093 0.33 8527 2801 0.42 8590 3514 0.50 - 8654 4232 0.58 8717 4956 0.67 8781 5685 0.75 8844 6420 0.83 8908 7159 0.92 8973 7904 1.00 9037 8655 1.08 9101 1 9411 1.17 9166 10172 1.25 9231 10938 1.33 9296 11710 1.42 9361 12487 1.50 9426 13270 1.58 9492 14059 1.67 9558 14852 1.75 9623 15651 1.83 9690 16456 1.92 9756 17266 2.00 9822 18082 2.08 9889 18903 2.17 9956 19730 2.25 10023 20563 2.33 10090 21401 2.42 10157 22244 2.50 10225 23094 2.58 10292 23948 2.67 10360 24809 2.75 10428 25675 2.83 10496 26547 2.92 10565 27424 3.00 10633 28308 3.08 - 10702 29197 3.17 10771 30091 3.25 10840 30992 3.33 10909 31898 3.42 10979 32810 3.50 11048 33728 3.58 11118 34651 3.67 11188 35581 3.75 11258 1 36516 3.83 11329 37457 3.92 11399 38404 4.00 11470 39357 4.08 11541 40316 4.17 11612 41281 4.25 11683 42251 4.33 11754 43228 4.42 11826 1 44210 4.50 11898 45199 4.58 11970 46193 4.67 12042 47194 4.75 12114 48200 4.83 12187 49213 4.92 12259 50231 5.00 1 12332 51256 IIOFILTRATION (1) I URFACE OUTLET (2) SUB SURFACE STORAGE IMP 2-1 Elevation (ft) )ft) Volume (ft') -1.50 _Area Amended Soil Base (0.3 voids) -2.50 _8277 8277 _3725 3311 Gravel Base (0.4 voids) Gravel & Amended Soil TOTAL = 7035 (ft) Surface Total TOTAL = 10938 (it') IMP TOTAL = 17974 (ft') The area at this surface elevation corresponds to the area of gravel and amended soil (Bio-retention layer) Volume at this elevation coresponds with surface volume for WO purposes (invert of lowest surface outlet) lEffedive Depth: 19.24 in Stage-Area for IMP 3-1 Depth (ft) Area (ft') Volume (ft') 0.00 1733 0 0.08 1765 146 0.17 1796 294 0.25 1828 445 0.33 1860 599 0.42 1893 755 0.50 1925 914 0.58 1958 1076 0.67 1991 1241 0.75 2024 1408 0.83 2057 1578 0.92 2090 1751 1.00 2124 1926 1.08 2157 2105 1.17 2191 2286 1.25 2225 2470 1.33 2259 2657 1.42 2294 2846 1.50 2328 3039 1.58 2363 3234 1.67 2398 3433 1.75 2433 3634 1.83 2468 3838 1.92 2503 4045 2.00 2539 4255 2.08 2575 4468 2.17 2611 4684 2.25 2647 4904 2.33 2683 1 5126 2.42 2720 5351 2.50 2756 5579 SUB SURFACE STORAGE IMP 3-1 lOFlLTRATlON (1) I RFACEOUTLET Elevation (ft) Area (ft') -1.50 173,3 -2.50 1 f733 Gravel & Amended Soil TOTAL = Surface Total TOTAL = IMP TOTAL = Volume (ft) I 780 Amended Soil Base (0.3 voids) 693 Gravel Base (0.4 voids) 1473 (ft 3) 914 (ft3) estimated 2387 (ft) The area at any surface elevation corresponds to the area of gravel and amended soil (Bio-retention ft Volume at this elevation coresponds with surface volume for WQ purposes (invert of lowest surface o' lEffective Depth: 6.33 in I Stage-Area for IMP 4-1 (POC-3) Depth (ft) Area (ft) Volume (ft3) 0.00 7253 0 0.08 7321 607 0.17 7388 1220 0.25 7456 1839 0.33 7525 2463 0.42 7593 3093 0.50 7661 3728 0.58 7730 4370 0.67 7799 5017 0.75 7868 5669 0.83 7937 6328 0.92 8007 6992 1.00 8076 7662 1.08 8146 8338 1.17 8216 9020 1.25 8286 9708 1.33 8356 10401 1.42 8426 11100 1.50 8497 11805 1.58 8568 12517 1.67 8639 13233 1.75 8710 13956 1.83 8781 14685 1.92 8853 15420 2.00 8924 16161 2.08 8996 16907 2.17 9068 17660 2.25 9140 18419 2.33 9213 19183 2.42 9285 19954 2.50 9358 20731 2.58 9431 21514 2.67 9504 22303 2.75 9577 23098 2.83 9650 23899 2.92 9724 24706 3.00 9798 25519 3.08 9872 26339 3.17 9946 27165 3.25 10020 27997 3.33 10094 28835 3.42 10169 29679 3.50 10244 30530 SUB SURFACE STORAGE IMP 4-1 Elevation (ft) Area (ft') ] Volume (ft3) -1.50 3264 Amended Soil Base (0.3 voids) -3.00 253 4352 Gravel Base (0.4 voids) Gravel & Amended Soil TOTAL 7616 (ft) Surface Total TOTAL 5017 (ft) IMP TOTAL = 12632 (ft3) The area at this surface elevation corresponcs to the area of gravel and amended soil (Bio-retention Volume at this elevation coresponds with surface volume for WQ purposes (invert of lowest surface lEffective Depth: 8.30 in I BIOFILTRATION (1) SURFACE OUTLET (2) Stage-Area for IMP 5-1 (POC-3) Depth (ft) Area (ft') Volume (ft) 0.00 1400 0 0.08 1424 118 0.17 1449 237 0.25 1473 359 0.33 1498 483 0.42 1523 609 0.50 1548 737 0.58 1573 867 0.67 1599 999 0.75 1624 1133 0.83 1650 1270 0.92 1676 1408 1.00 1702 1549 1.08 1729 1692 1.17 1755 1837 1.25 1782 1985 1.33 1809 2134 1.42 1836 2286 1.50 1863 2440 1.58 1891 2597 1.67 1918 2755 1.75 1946 2916 1.83 1974 3080 1.92 2002 3245 2.00 2031 3413 2.08 2059 3584 2.17 2088 3757 2.25 2117 3932 2.33 2146 4109 2.42 2175 4289 2.50 2204 4472 IOFILTRATION (1) I URFACE OUTLET (2) SUB SURFACE STORAGE IMP 5-1 Elevation (ft) J Area (It') Volume (ft') Soil Base (0.3 voids) jGravel Base (0.4 voids) 630 jAmended -1.50 14OO -2.50 ibO 560 Gravel & Amended Soil TOTAL = 1190 (ft) Surface Total TOTAL = 737 (It3) IMP TOTAL= 1927 (ft3) The area at this surface elevation corresponds to the area of gravel and amended soil (Bio-retention Volume at this elevation coresponds with surface volume for WQ purposes (invert of lowest surface I Effective Depth: 6.31 in Low orifice 1.000 Lower slot Number of orif: 0 Number of slots: Cg-low: 0.62 Invert: B Middle orifice 1 h510 Number of orif: 0 Cg-middle: 0.62 Upper slot invert elev: 0.000 ft Number of slots: Invert: *Note: h = head above the invert of the B: lowest surface discharge opening. h510 Lower Weir 4 Number of weirs 0 0.00 ft Invert: 2.00 1.00 ft B: 1.75 0.250 ft 0 1.00 ft 1.00 ft 0.250 ft Emergency weir Invert: B: 1.00 ft 12.00 ft Outlet structure for Discharge of Biofiltration IMP 1-1 Discharge vs Elevation Table h* (ft) H/D-low - H/D-mid - Qiow-orif (cfs) Qiow-weir (cfs) Qtot-low (cfs) Qmid-orif (cfs) Qmid-weir (cfs) Qtot-med (cfs) Qslot-low (cfs) Qslot-upp (cfs) Qweir (cfs) Qemerg (cfs) Qtot (cfs) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.042 0.500 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.105 0.000 0.000 0.000 0.105 0.083 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.298 0.000 0.000 0.000 0.298 0.125 1.500 1.500 0.000 0.000 0.000 0.000 0.000 0.000 0.548 0.000 0.000 0.000 0.548 0.167 2.000 2.000 0.000 0.000 0.000 0.000 0.000 0.000 0.844 0.000 0.000 0.000 0.844 0.208 2.500 2.500 0.000 0.000 0.000 0.000 0.000 0.000 1.179 0.000 0.000 0.000 1.179 0.250 3.000 3.000 0.000 0.000 0.000 0.000 0.000 0.000 1.550 0.000 0.000 0.000 1.550 0.292 3.500 3.500 0.000 0.000 0.000 0.000 0.000 0.000 1.953 0.000 0.000 0.000 1.953 0.333 4.000 4.000 0.000 0.000 0.000 0.000 0.000 0.000 2.234 0.000 0.000 0.000 2.234 0.375 4.500 4.500 0.000 0.000 0.000 0.000 0.000 0.000 2.448 0.000 0.000 0.000 2.448 0.417 5.000 5.000 0.000 0.000 0.000 0.000 0.000 0.000 2.644 0.000 0.000 0.000 2.644 0.458 5.500 5.500 0.000 0.000 0.000 0.000 0.000 0.000 2.826 0.000 0.000 0.000 2.826 0.500 6.000 6.000 0.000 0.000 0.000 0.000 0.000 0.000 2.998 0.000 0.000 0.000 2.998 0.542 6.500 6.500 0.000 0.000 0.000 0.000 0.000 0.000 3.160 0.000 0.000 0.000 3.160 0.583 7.000 7.000 0.000 0.000 0.000 0.000 0.000 0.000 3.314 0.000 0.000 0.000 3.314 0.625 7.500 7.500 0.000 0.000 0.000 0.000 0.000 0.000 3.461 0.000 0.000 0.000 3.461 0.667 8.000 8.000 0.000 0.000 0.000 0.000 0.000 0.000 3.603 0.000 0.000 0.000 3.603 0.708 8.500 8.500 0.000 0.000 0.000 0.000 0.000 0.000 3.739 0.000 0.000 0.000 3.739 0.750 9.000 9.000 0.000 0.000 0.000 0.000 0.000 0.000 3.870 0.000 0.000 0.000 3.870 0.792 9.500 9.500 0.000 0.000 0.000 0.000 0.000 0.000 3.997 0.000 0.000 0.000 3.997 0.833 10.000 10.000 0.000 0.000 0.000 0.000 0.000 0.000 4.120 0.000 0.000 0.000 4.120 0.875 10.500 10.500 0.000 0.000 0.000 0.000 0.000 0.000 4.239 0.000 0.000 0.000 4.239 0.917 11.000 11.000 0.000 0.000 0.000 0.000 0.000 0.000 4.356 0.000 0.000 0.000 4.356 0.958 11.500 11.500 0.000 0.000 0.000 0.000 0.000 0.000 4.469 0.000 0.000 0.000 4.469 h* (ft) H/D-low - H/D-mid - Qiow-orif (cfs) Qlow-weir (cfs) Qtot-low (cfs) Qmid-orif (cfs) Qmid-weir (cfs) Qtot-med (cfs) Qslot-low (cfs) Qslot-upp (cfs) Qweir (cfs) Qemerg (cfs) Qtot (cfs) 1.000 12.000 12.000 0.000 0.000 0.000 0.000 0.000 0.000 4.579 0.000 0.000 0.000 4.579 1.042 12.500 12.500 0.000 0.000 0.000 0.000 0.000 0.000 4.687 0.000 0.000 0.316 5.003 1.083 13.000 13.000 0.000 0.000 0.000 0.000 0.000 0.000 4.792 0.000 0.000 0.895 5.687 1.125 13.500 13.500 0.000 0.000 0.000 0.000 0.000 0.000 4.895 0.000 0.000 1.644 6.539 1.167 14.000 14.000 0.000 0.000 0.000 0.000 0.000 0.000 4.996 0.000 0.000 2.531 7.527 1.208 14.500 14.500 0.000 0.000 0.000 0.000 0.000 0.000 5.095 0.000 0.000 3.537 8.632 1.250 15.000 15.000 0.000 0.000 0.000 0.000 0.000 0.000 5.192 0.000 0.000 4.650 9.842 1.292 15.500 15.500 0.000 0.000 0.000 0.000 0.000 0.000 5.287 0.000 0.000 5.860 11.147 1.333 16.000 16.000 0.000 0.000 0.000 0.000 0.000 0.000 5.381 0.000 0.000 7.159 12.540 1.375 16.500 16.500 0.000 0.000 0.000 0.000 0.000 0.000 5.473 0.000 0.000 8.543 14.016 1.417 17.000 17.000 0.000 0.000 0.000 0.000 0.000 0.000 5.563 0.000 0.000 10.005 15.569 1.458 17.500 17.500 0.000 0.000 0.000 0.000 0.000 0.000 5.653 0.000 0.000 11.543 17.195 1.500 18.000 18.000 0.000 0.000 0.000 0.000 0.000 0.000 5.740 0.000 0.000 13.152 18.892 1.542 18.500 18.500 0.000 0.000 0.000 0.000 0.000 0.000 5.826 0.000 0.000 14.830 20.656 1.583 19.000 19.000 0.000 0.000 0.000 0.000 0.000 0.000 5.912 0.000 0.000 16.574 22.485 1.625 19.500 19.500 0.000 0.000 0.000 0.000 0.000 0.000 5.995 0.000 0.000 18.381 24.376 1.667 20.000 20.000 0.000 0.000 0.000 0.000 0.000 0.000 6.078 0.000 0.000 20.249 26.327 1.708 20.500 20.500 0.000 0.000 0.000 0.000 0.000 0.000 6.160 0.000 0.000 22.177 28.337 1.750 21.000 21.000 0.000 0.000 0.000 0.000 0.000 0.000 6.240 0.000 0.000 24.162 30.402 1.792 21.500 21.500 0.000 0.000 0.000 0.000 0.000 0.000 6.320 0.000 0.000 26.203 32.523 1.833 22.000 22.000 0.000 0.000 0.000 0.000 0.000 0.000 6.398 0.000 0.000 28.299 34.697 1.875 22.500 22.500 0.000 0.000 0.000 0.000 0.000 0.000 6.476 0.000 0.000 30.448 36.924 1.917 23.000 23.000 0.000 0.000 0.000 0.000 0.000 0.000 6.552 0.000 0.000 32.648 39.201 1.958 23.500 23.500 0.000 0.000 0.000 0.000 0.000 0.000 6.628 0.000 0.000 34.899 41.528 2.000 24.000 24.000 0.000 0.000 0.000 0.000 0.000 0.000 6.703 0.000 0.000 37.200 43.903 - - - - - - - - - - - - - - - = - - - Outlet structure for Discharge of Biofiltration IMP 2-1 Discharge vs Elevation Table Low orifice 1.000 Lower slot Number of orif: 1 Number of slots: Cg-low: 0.62 Invert: B Middle orifice 1 h10 Number of orif: 0 Cg-middle: 0.62 Upper slot invert elev: 0.000 ft Number of slots: Invert: *Note. h = head above the invert of the B: lowest surface discharge opening. hSlot Lower Weir 4 Number of weirs: 0 1.00 ft Invert: 2.50 1.00 ft B: 1.00 0.250 ft 0.381 6.15 1 3 Emergency weir 0.027 6.750 0 Invert: 3.00 ft 2.00 ft B: 12.00 ft 0.50 ft 0.167 ft - - -- h* (ft) H/D-low - H/D-mid - Qiow-orif (cfs) Qiow-weir (cfs) Qtot-low (cfs) Qmld-orif (cfs) Qmid-weir (cfs) Qtot-med (cfs) Qslot-low (cfs) qslot-upp (cfs) Qweir (cfs) Qemerg (cfs) Qtot (cfs) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.083 1.000 1.000 0.006 0.005 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.167 2.000 2.000 0.010 0.013 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.250 3.000 3.000 0.012 0.014 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.012 0.333 4.000 4.000 0.015 0.024 0.015 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.417 5.000 5.000 0.017 0.095 0.017 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.017 0.500 6.000 6.000 0.018 0.184 0.018 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.018 0.583 7.000 7.000 0.020 0.200 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.020 0.667 8.000 8.000 0.021 0.215 0.021 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.021 0.750 9.000 9.000 0.023 0.228 0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.833 10.000 10.000 0.024 0.241 0.024 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.024 0.917 11.000 11.000 0.025 0.254 0.025 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.025 1.000 12.000 12.000 0.027 0.266 0.027 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.027 1.083 13.000 13.000 0.028 0.277 0.028 0.000 0.000 0.000 0.298 0.000 0.000 0.000 0.326 1.167 14.000 14.000 0.029 0.288 0.029 0.000 0.000 0.000 0.844 0.000 0.000 0.000 0.872 1.250 15.000 15.000 0.030 0.298 0.030 0.000 0.000 0.000 1.550 0.000 0.000 0.000 1.580 1.333 16.000 16.000 0.031 0.308 0.031 0.000 0.000 0.000 2.234 0.000 0.000 0.000 2.265 1.417 17.000 17.000 0.032 0.318 0.032 0.000 0.000 0.000 2.644 0.000 0.000 0.000 2.675 1.500 18.000 18.000 0.033 0.328 0.033 0.000 0.000 0.000 2.998 0.000 0.000 0.000 3.030 1.583 19.000 19.000 0.034 0.337 0.034 0.000 0.000 0.000 3.314 0.000 0.000 0.000 3.348 1.667 20.000 20.000 0.035 0.346 0.035 0.000 0.000 0.000 3.603 0.000 0.000 0.000 3.637 1.750 21.000 21.000 0.035 0.355 0.035 0.000 0.000 0.000 3.870 0.000 0.000 0.000 3.905 1.833 22.000 22.000 0.036 0.363 0.036 0.000 0.000 0.000 4.120 0.000 0.000 0.000 4.156 h* (ft) H/D-low - H/D-mid - Qiow-orif (cfs) Qiow-weir (cfs) Qtot-low (cfs) Qmid-orif (cfs) Qmid-weir (cfs) Qtot-med (cfs) Qslot-low (cfs) Qslot-upp (cfs) Qweir (cfs) Qemerg (cfs) Qtot (cfs) 1.917 23.000 23.000 0.037 0.372 0.037 0.000 0.000 0.000 4.356 0.000 0.000 0.000 4.393 2.000 24.000 24.000 0.038 0.380 0.038 0.000 0.000 0.000 4.579 0.000 0.000 0.000 4.617 2.083 25.000 25.000 0.039 0.388 0.039 0.000 0.000 0.000 4.792 0.000 0.000 0.000 4.831 2.167 26.000 26.000 0.040 0.396 0.040 0.000 0.000 0.000 4.996 0.000 0.000 0.000 5.036 2.250 27.000 27.000 0.040 0.403 0.040 0.000 0.000 0.000 5.192 0.000 0.000 0.000 5.232 2.333 28.000 28.000 0.041 0.411 0.041 0.000 0.000 0.000 5.381 0.000 0.000 0.000 5.422 2.417 29.000 29.000 0.042 0.418 0.042 0.000 0.000 0.000 5.563 0.000 0.000 0.000 5.605 2.500 30.000 30.000 0.043 0.425 0.043 0.000 0,000 0.000 5.740 0.000 0.000 0.000 5.783 2.583 31.000 31.000 0.043 0.433 0.043 0.000 0.000 0.000 5.912 0.000 0.000 0.000 5.955 2.667 32.000 32.000 0.044 0.440 0.044 0.000 0.000 0.000 6.078 0.000 0.000 0.000 6.122 2.750 33.000 33.000 0.045 0.447 0.045 0.000 0.000 0.000 6.240 0.000 0.000 0.000 6.285 2.833 34.000 34.000 0.045 0.453 0.045 0.000 0.000 0.000 6.398 0.000 0.000 0.000 6.444 2.917 35.000 35.000 0.046 1 0.460 0.046 0.000 0.000 0.000 6.552 0.000 0.000 0.000 6.598 3.000 36.000 36.000 0.047 0.467 0.047 0.000 0.000 0.000 6.703 0.000 0.000 0.000 6.750 3.083 37.000 37.000 0.047 0.473 0.047 0.000 0.000 0.000 6.850 0.000 0.000 0.895 7.793 3.167 38.000 38.000 0.048 0.480 0.048 0.000 0.000 0.000 6.995 0.000 0.000 2.531 9.574 3.250 39.000 39.000 0.049 0.486 0.049 0.000 0.000 0.000 7.136 0.000 0.000 4.650 11.835 3.333 40.000 40.000 0.049 0.492 0.049 0.000 0.000 0.000 7.275 0.000 0.000 7.159 14.483 3.417 41.000 41.000 0.050 0.499 0.050 0.000 0.000 0.000 7.411 0.000 0.000 10.005 17.466 3.500 42.000 42.000 0.050 0.505 0.050 0.000 0.000 0.000 7.544 1 0.000 0.000 13.152 20.747 - - - - - - - - - - - - - - - - - = Outlet structure for Discharge of Biofiltration IMP 3-1 Discharge vs Elevation Table Low orifice 1.000 Lower slot Lower Weir Number of orif: 0 Number of slots: 4 Number of weirs: 0 Cg-low: 0.62 Invert: 0.00 ft Invert: 0.00 B 1.00 ft B: 1.50 Middle orifice 1 hslot 0.250 ft Numbéroforif: 0 Cg-middle: 0.62 Upper slot Emergency weir invert elev: 0.000 ft Number of slots: 0 Invert: 1.00 ft Invert: 0.00 ft B: 12.00 ft *Note: h = head above the invert of the B: 0.00 ft lowest surface discharge opening. - - h10. 0.000 ft - h* (ft) H/D-low - H/D-mid - Qiow-orif (cfs) Qiow-weir (cfs) Qtot-low (cfs) Qmid-orif (cfs) Qmid-weir (cfs) Qtot-med (cfs) Qslot-low (cfs) Qslot-upp (cfs) Qweir (cfs) Qemerg (cfs) Qtot (cfs) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.042 0.500 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.105 0.000 0.000 0.000 0.105 0.083 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.298 0.000 0.000 0.000 0.298 0.125 1.500 1.500 0.000 0.000 0.000 0.000 0.000 0.000 0.548 0.000 0.000 0.000 0.548 0.167 2.000 2.000 0.000 0.000 0.000 0.000 0.000 0.000 0.844 0.000 0.000 0.000 0.844 0.208 2.500 2.500 0.000 0.000 0.000 0.000 0.000 0.000 1.179 0.000 0.000 0.000 1.179 0.250 3.000 3.000 0.000 0.000 0.000 0.000 0.000 0.000 1.550 0.000 0.000 0.000 1.550 0.292 3.500 3.500 0.000 0.000 0.000 0.000 0.000 0.000 1.953 0.000 0.000 0.000 1.953 0.333 4.000 4.000 0.000 0.000 0.000 0.000 0.000 0.000 2.234 0.000 0.000 0.000 2.234 0.375 4.500 4.500 0.000 0.000 0.000 0.000 0.000 0.000 2.448 0.000 0.000 0.000 2.448 0.417 5.000 5.000 0.000 0.000 0.000 0.000 0.000 0.000 2.644 0.000 0.000 0.000 2.644 0.458 5.500 5.500 0.000 0.000 0.000 0.000 0.000 0.000 2.826 0.000 0.000 0.000 2.826 0.500 6.000 6.000 0.000 0.000 0.000 0.000 0.000 0.000 2.998 0.000 0.000 0.000 2.998 0.542 6.500 6.500 0.000 0.000 0.000 0.000 0.000 0.000 3.160 0.000 0.000 0.000 3.160 0.583 7.000 7.000 0.000 0.000 0.000 0.000 0.000 0.000 3.314 0.000 0.000 0.000 3.314 0.625 7.500 7.500 0.000 0.000 0.000 0.000 0.000 0.000 3.461 0.000 0.000 0.000 3.461 0.667 8.000 8.000 0.000 0.000 0.000 0.000 0.000 0.000 3.603 0.000 0.000 0.000 3.603 0.708 8.500 8.500 0.000 0.000 0.000 0.000 0.000 0.000 3.739 0.000 0.000 0.000 3.739 0.750 9.000 9.000 0.000 0.000 0.000 0.000 0.000 0.000 3.870 0.000 0.000 0.000 3.870 0.792 9.500 9.500 0.000 0.000 0.000 0.000 0.000 0.000 3.997 0.000 0.000 0.000 3.997 0.833 10.000 10.000 0.000 0.000 0.000 0.000 0.000 1 0.000 4.120 0.000 0.000 0.000 4.120 0.875 10.500 10.500 0.000 0.000 0.000 0.000 0.000 0.000 4.239 0.000 0.000 0.000 1 4.239 0.917 11.000 11.000 0.000 0.000 0.000 0.000 0.000 0.000 4.356 0.000 0.000 0.000 4.356 h* (ft) H/D-low - H/D-mid - Qiow-orif (cfs) Qiow-weir (cfs) Qtot-low (cfs) Qmid-orif (cfs) Qmid-weir (cfs) Qtot-med (cfs) Qslot-low (cfs) Qslot-upp (cfs) Qweir (cfs) Qemerg (cfs) Qtot (cfs) 0.958 11.500 11.500 0.000 0.000 0.000 0.000 0.000 0.000 4.469 0.000 0.000 0.000 4.469 1.000 12.000 12.000 0.000 0.000 0.000 0.000 0.000 0.000 4.579 0.000 0.000 0.000 4.579 1.042 12.500 12.500 0.000 0.000 0.000 0.000 0.000 0.000 4.687 0.000 0.000 0.316 5.003 1.083 13.000 13.000 0.000 0.000 0.000 0.000 0.000 0.000 4.792 0.000 0.000 0.895 5.687 1.125 13.500 13.500 0.000 0.000 0.000 0.000 0.000 0.000 4.895 0.000 0.000 1.644 6.539 1.167 14.000 14.000 0.000 0.000 0.000 0.000 0.000 0.000 4.996 0.000 0.000 2.531 7.527 1.208 14.500 14.500 0.000 0.000 0.000 0.000 0.000 0.000 5.095 0.000 0.000 3.537 8.632 1.250 15.000 15.000 0.000 0.000 0.000 0.000 0.000 0.000 5.192 0.000 0.000 4.650 9.842 1.292 15.500 15.500 0.000 0.000 0.000 0.000 0.000 0.000 5.287 0.000 0.000 5.860 11.147 1.333 16.000 16.000 0.000 0.000 0.000 0.000 0.000 0.000 5.381 0.000 0.000 7.159 12.540 1.375 16.500 16.500 0.000 0.000 0.000 0.000 0.000 0.000 5.473 0.000 0.000 8.543 14.016 1.417 17.000 17.000 0.000 0.000 0.000 0.000 0.000 0.000 5.563 0.000 0.000 10.005 15.569 1.458 17.500 17.500 0.000 0.000 0.000 0.000 0.000 0.000 5.653 0.000 0.000 11.543 17.195 1.500 18.000 18.000 0.000 0.000 0.000 0.000 0.000 0.000 5.740 0.000 0.000 13.152 18.892 1.542 18.500 18.500 0.000 0.000 0.000 0.000 0.000 0.000 5.826 0.000 0.000 14.830 20.656 1.583 19.000 19.000 0.000 0.000 0.000 0.000 0.000 0.000 5.912 0.000 0.000 16.574 22.485 1.625 19.500 19.500 0.000 0.000 0.000 0.000 0.000 0.000 5.995 0.000 0.000 18.381 24.376 1.667 20.000 20.000 0.000 0.000 0.000 0.000 0.000 0.000 6.078 0.000 0.000 20.249 26.327 1.708 20.500 20.500 0.000 0.000 0.000 0.000 0.000 0.000 6.160 0.000 0.000 22.177 28.337 1.750 21.000 21.000 0.000 0.000 0.000 0.000 0.000 0.000 6.240 0.000 0.000 24.162 30.402 1.792 21.500 21.500 0.000 0.000 0.000 0.000 0.000 0.000 6.320 0.000 0.000 26.203 32.523 1.833 22.000 22.000 0.000 0.000 0.000 0.000 0.000 0.000 6.398 0.000 0.000 28.299 34.697 1.875 22.500 22.500 0.000 0.000 0.000 0.000 0.000 0.000 6.476 0.000 0.000 30.448 36.924 1.917 23.000 23.000 0.000 0.000 0.000 0.000 0.000 0.000 6.552 0.000 0.000 32.648 39.201 1.958 23.500 23.500 0.000 0.000 0.000 0.000 0.000 0.000 6.628 0.000 0.000 34.899 41.528 2.000 24.000 24.000 0.000 0.000 0.000 0.000 0.000 0.000 6.703 0.000 0.000 37.200 43.903 Outlet structure for Discharge of Biofiltration IMP, 4-1 (POC-3) Discharge vs Elevation Table Low orifice 1.000 Lower slot Number of orif: 0 Number of slots: 0 Cg-low: 0.62 Invert: 0.00 ft 13 0.00 ft Middle orifice 1 - hslot 0.000 ft Number of orif: - 0 Cg-middle: 0.62 Upper slot invert elev: 0.000 ft Number of slots: 0 Invert: 0.00 ft *Note: h = head above the invert of the B: 0.00 ft lowest surface discharge opening. - hslot 0.000 ft Lower Weir Number of weirs: 1 Invert: 0.00 B: 1.25 Emergency weir Invert: 2.00 ft B: 10.75 ft h* (ft) H/D-low - H/D-mid - Qiow-orif (cfs) Qiow-weir (cfs) Qtot-low (cfs) Qmid-orif (cfs) Qmid-weir (cfs) Qtot-med (cfs) Qslot-low (cfs) Qslot-upp (cfs) Qweir (cfs) Qemerg (cfs) Qtot (cfs) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.042 0.500 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.033 0.000 0.033 0.083 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.093 0.000 0.093 0.125 1.500 1.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.171 0.000 0.171 0.167 2.000 2.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.264 0.000 0.264 0.208 2.500 2.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.368 0.000 0.368 0.250 3.000 3.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.484 0.000 0.484 0.292 3.500 3.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.610 0.000 0.610 0.333 4.000 4.000 0.000 0.000 0.000 0.000 0.000 0.000 . _0.000 0.000 0.746 0.000 0.746 0.375 4.500 4.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.890 0.000 0.890 0.417 5.000 5.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.042 0.000 1.042 0.458 5.500 5.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.202 0.000 1.202 0.500 6.000 6.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.370 0.000 1.370 0.542 6.500 6.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.545 0.000 1.545 0.583 7.000 7.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.726 0.000 1.726 0.625 7.500 7.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.915 0.000 1.915 0.667 8.000 8.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.109 0.000 2.109 0.708 8.500 8.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.310 0.000 2.310 0.750 9.000 9.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.517 0.000 2.517 0.792 9.500 9.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.730 0.000 2.730 0.833 10.000 10.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.948 0.000 2.948 0.875 10.500 10.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3.172 0.000 3.172 0.917 11.000 11.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3.401 0.000 3.401 h* (ft) HID-low - H/D-mid - Qiow-orif (cfs) Qiow-weir (cfs) Qtot-low (cfs) Qmid-orif (cfs) Qmld-weir (cfs) Qtot-med (cfs) Qslot-low (cfs) Qslot-upp (cfs) Qweir (cfs) Qemerg (cfs) Qtot (cfs) 0.958 11.500 11.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3.635 0.000 3.635 1.000 12.000 12.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3.875 0.000 3.875 1.042 12.500 12.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4.120 0.000 4.120 1.083 13.000 13.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4.369 0.000 4.369 1.125 13.500 13.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4.624 0.000 4.624 1.167 14.000 14.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4.883 0.000 4.883 1.208 14.500 14.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 5.147 0.000 5.147 1.250 15.000 15.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 5.415 0.000 5.415 1.292 15.500 15.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 5.688 0.000 5.688 1.333 16.000 16.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 5.966 0.000 5.966 1.375 16.500 16.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 6.248 0.000 6.248 1.417 17.000 17.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 6.534 0.000 6.534 1.458 17.500 17.500 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 6.824 0.000 6.824 1.500 18.000 18.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 7.119 0.000 7.119 1.542 18.500 18.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 7.417 0.000 7.417 1.583 19.000 19.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 7.720 0.000 7.720 1.625 19.500 19.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 8.027 0.000 8.027 1.667 20.000 20.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 8.338 0.000 8.338 1.708 20.500 20.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 8.652 0.000 8.652 1.750 21.000 21.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 8.971 0.000 8.971 1.792 21.500 21.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 9.293 0.000 9.293 1.833 22.000 22.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 9.619 0.000 9.619 1.875 22.500 22.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 9.949 0.000 9.949 1.917 23.000 23.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 10.282 0.000 10.282 1.958 23.500 23.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 10.619 0.000 10.619 2.000 24.000 24.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 10.960 0.000 10.960 2.042 24.500 24.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 11.304 0.283 11.588 2.083 25.000 25.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 11.652 0.802 12.454 2.125 25.500 25.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 12.004 1.473 13.476 2.167 26.000 26.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 12.358 2.267 14.626 2.208 26.500 26.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 12.717 3.169 15.885 2.250 27.000 27.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 13.078 4.166 17.244 2.292 27.500 27.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 13.443 5.249 18.692 2.333 28.000 28.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 13.811 6.413 20.225 2.375 28.500 28.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 14.183 7.653 21.836 2.417 29.000 29.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 14.558 8.963 23.521 2.458 29.500 29.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 14.936 10.341 25.276 h* (ft) H/D-low - H/D-mid - Qiow-orif (cfs) Qlow-weir (cfs) Qtot-low (cfs) Qmid-orif (cfs) Qmid-weir (cfs) Qtot-med (cfs) Qslot-low (cfs) Qslot-upp (cfs) Qweir (cfs) Qemerg (cfs) Qtot (cfs) 2.500 30.000 30.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 15.317 11.782 27.099 2.542 30.500 30.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 15.702 13.285 28.987 2.583 31.000 31.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 16.089 14.847 30.937 2.625 31.500 31.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 16.480 16.466 32.946 2.667 32.000 32.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 16.874 18.140 35.014 2.708 32.500 32.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 17.271 19.867 37.138 2.750 33.000 33.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 17.671 21.645 39.317 2.792 33.500 33.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 18.075 23.474 41.548 2.833 34.000 34.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 18.481 25.351 43.832 Low orifice 1.000 Lower slot Number of orif: 0 Number of slots: 0 Cg-low: 0.62 Invert: 0.00 ft B 0.00 ft Middle orifice 1 h105 0.000 ft Number of orif: 0 Cg-middle: 0.62 Upper slot invert elev: 0.000 ft Number of slots: 0 Invert: 0.00 ft B: 0.00 ft hslot 0.000 ft Lower Weir Number of weirs: 2 Invert: 0.00 B: 1.50 Emergency weir Invert: 1.00 ft B: 9.00 ft *Note. h = head above the invert of the lowest surface discharge opening. Outlet structure for Discharge of Biofiltration IMP 5-1 (POC-3) Discharge vs Elevation Table h* (ft) H/D-low - H/D-mid - Qiow-orif (cfs) Qiow-weir (cfs) Qtot-low (cfs) Qmid-orif (cfs) Qmid-weir (cfs) Qtot-med (cfs) Qslot-low (cfs) Qslot-upp (cfs) Qweir (cfs) Qemerg (cfs) Qtot (cfs) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.042 0.500 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.079 0.000 0.079 0.083 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.224 0.000 0.224 0.125 1,500 1.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.411 0.000 0.411 0.167 2.000 2.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.633 0.000 0.633 0.208 2.500 2.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.884 0.000 0.884 0.250 3.000 3.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.163 0.000 1.163 0.292 3.500 3.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.465 0.000 1.465 0.333 4.000 4.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.790 0.000 1.790 0.375 4.500 4.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.136 0.000 2.136 0.417 5.000 5.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.501 0.000 2.501 0.458 5.500 5.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.886 0.000 2.886 0.500 6.000 6.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3.288 0.000 3.288 0.542 6.500 6.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3.707 0.000 3.707 0.583 7,000 7.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4.143 0.000 4.143 0.625 7.500 7.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4.595 0.000 4.595 0.667 8.000 8.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 5.062 0.000 5.062 0.708 8.500 8.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 5.544 0.000 5.544 0.750 9.000 9.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 6.041 0.000 6.041 0.792 9.500 9.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 6.551 0.000 6.551 0.833 10.000 10.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 7.075 0.000 7.075 0.875 10.500 10.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 7.612 0.000 7.612 0.917 11.000 11.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 8.162 1 0.000 8.162 h* (ft) H/D-low - H/D-mid - Qiow-orif (cfs) Qiow-weir (cfs) qtot-low (cfs) Qmid-orif (cfs) Qmid-weir (cfs) Qtot-med (cfs) Qslot-low (cfs) Qslot-upp (cfs) Qweir (cfs) Qemerg (cfs) Qtot (cfs) 0.958 11.500 11.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 8.725 0.000 8.725 1.000 12.000 12.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 9.300 0.000 9.300 1.042 12.500 12.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 9.887 0.237 10.125 1.083 13.000 13.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 10.486 0.671 11.158 1.125 13.500 13.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 11.097 1.233 12.330 1.167 14.000 14.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 11.719 1.898 13.618 1.208 14.500 14.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 12.353 2.653 15.006 1.250 15.000 15.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 12.997 3.488 16.485 1.292 15.500 15.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 13.652 4.395 18.047 1.333 16.000 16.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 14.318 5.369 19.688 1.375 16.500 16.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 14.995 6.407 21.402 1.417 17.000 17.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 15.681 7.504 23.185 1.458 17.500 17.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 16.378 8.657 25.035 1.500 18.000 18.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 17.085 9.864 26.949 1.542 18.500 18.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 17.802 11.122 28.924 1.583 19.000 19.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 18.529 12.430 30.959 1.625 19.500 19.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 19.265 13.786 33.050 1.667 20.000 20.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 20.010 15.187 35.197 1.708 20.500 20.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 20.765 16.633 37.398 1.750 21.000 21.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 21.530 18.122 39.651 1.792 21.500 21.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 22.303 19.652 41.956 1.833 22.000 22.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 23.086 21.224 44.310 1.875 22.500 22.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 23.877 22.836 46.713 1.917 23.000 23.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 24.678 24.486 49.164 1.958 23.500 23.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 25.487 26.175 51.661 2.000 1 24.000 1 24.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 26.304 27.900 54.204 Appendix 4: SWMM Model Input POST-DEV (POC-1) SWMM 5- POST [Stud y Area Mapll ..PEV.Q1QC-Linp- file edit view. Eroject - Report loots Window Help {J]{X DMA ii DMA-1-1 DMA-3-1 DMA 31 U FM7ap Title/Notes Options 1 Climatology 0 a] Hydrology v El Hydraulics El Quality EJ Curves Time Series Time Patterns Map Labels LID _RAIN IMP i-i IMP 3-1 I 0 T DIV_3-1 SURF-3-1 DIv SURF-1-1 1-1 6-1 7DMA zi Title/Notes DMA-1-BYPASS 1-BYPASS OC AutoLength: DII - Offsets: Depth - Flow Unts: CFS - Zoom Level 100 XX: 1019.420, 5648.720 Post-Dev Input (POC-1) [TITLE] [OPTIONS] FLOW_UNITS CFS INFILTRATION GREEN AMPT FLOW ROUTING KINWAVE START_DATE 01/01/2000 START_TIME 00:00:00 REPORT_START_DATE 01/01/2000 REPORT_START_TIME 00:00:00 END_DATE 01/01/2000 END_TIME 12:00:00 SWEEP_START 01/01 SWEEP_END 12/31 DRY_DAYS 0 REPORT_STEP 00:01:00 WET STEP 00:01:00 DRY STEP 00:01:00 ROUTING STEP 0:01:00 ALLOW PONDING NO INERTIAL DAMPING PARTIAL VARIABLE STEP 0.75 LENGTHENING_STEP 0 MINSURFAREA 0 NORMAL_FLOW_LIMITED BOTH SKI P_STEADY_STATE NO FORCE_MAIN_EQUATION H-W LINK OFFSETS DEPTH MIN SLOPE 0 [EVAPORATION] ;;Type Parameters MONTHLY 0.041 0.076 0.118 0.192 0.237 0.318 0.308 0.286 0.217 0.14 0.067 0.041 DRY_ONLY NO [RAINGAGES Rain Time Snow Data ;;Name Type Intrv1 Catch Source DMA_i-i INTENSITY 0:01 1.0 TIMESERIES DMA 1-1 DMA 3-i INTENSITY 0:01 1.0 TIMESERIES DMA_3-1 DMA_i-BYPASS INTENSITY 0:01 1.0 TIMESERIES DMA_i-BYPASS LID RAIN INTENSITY 6:00 1.0 TIMESERIES LID RAIN [SUBCATCHMENTS] Total Pcnt. Pent. Curb Snow ;;Name Raingage Outlet Area Impery Width Slope Length Pack DMA_i-i DMA_i-i IMP -1-1 2.266 100 98706 1.3 0 DMA 3-1 DMA 3-i IMP 3-i 1.628 100 70915 2.2 0 DMA_i-BYPASS DMA_i-BYPASS POC-i 4.447 100 193711 17.3 0 IMP i-i LID RAIN DIV i-i 0.057117 0 10 1 0 IMP-3-1 LID_RAIN DIV 3-i 0.039784 0 10 1 0 [SUBAREAS] ;;Subcatchment H-Impery H-Pery S-Impery S-Pery PctZero RouteTo PctRouted DMA i-i 0.012 0.05 0.02 0.1 25 OUTLET DMA 3-1 0.012 0.05 0.02 0.1 25 OUTLET DMA 1-BYPASS 0.012 0.05 0.02 0.1 25 OUTLET IMP i-i 0.012 0.05 0.02 0.1 25 OUTLET IMP-3-1 0.012 0.05 0.02 0.1 25 OUTLET [INFILTRATION] ;;Subcatchment Suction HydCon IMDmax DMA 1-1 8.8 0.0240 0.30 DMA 3-1 9 0.01875 0.3 DMA i-BYPASS 8.1 0.059 0.30 IMP i-i 8.8 0.03 0.30 IMP-3-1 9 0.025 0.3 [LID CONTROLS] Type/Layer Parameters IMP i-i BC IMP i-i SURFACE 6.45 0.05 0 0 5 IMP i-i SOIL iS 0.4 0.2 0.1 5 5 1.5 IMP i-i STORAGE 12 0.67 0 0 IMP-1-1 DRAIN 1.4135 0.5 0 6 IMP 3-i BC IMP 3-1 SURFACE 6.33 0.05 0 0 5 IMP 3-1 SOIL 18 0.4 0.2 0.1 5 5 1.5 IMP 3-1 STORAGE 12 0.67 0 0 IMP 3-1 DRAIN 1.4530 0.5 0 6 SWMM 5 Page 1 Post-Dev Input (POC-1) [LID USAGE] ;;Subcatchment LID Process Number Area Width InitSatur Fromlmpry ToPery Report File IMP_i-i IMP -1-1 1 2488 0 0 100 0 IMP 3-i IMP 3-1 1 1733 0 0 100 0 [OUT FALLS] Iflvert Outfall Stage/Table Tide ;;Name fLee. Type Time Series Gate POC-1 0 FREE NO (DIVIDERS) Invert Diverted Divider ;;Name Elev. Link Type Parameters DIV_i-i 0 BYPASS _1-1 CUTOFF 0.26484 0 0 0 0 DIV 3-i 0 BYPASS-3-1 CUTOFF 0.19189 0 0 0 0 [STORAGE] Invert Max. Init. Storage Curve Ponded Evap. ;;Name Elev. Depth Depth Curve Params Area Frac. Infiltration Parameters SURF_i-i 0 2.00 0 TABULAR SURF_i-i 0 0 SURF 3-i 0 2.00 0 TABULAR SURF 3-i 0 0 [CONDUITS] Inlet Outlet Manning Inlet Outlet Init. Max. ;;Name Node Node Length N Offset Offset Flow Flow BYPASS_i-i DIV_i-i SURF: -1 400 0.01 0 0 0 0 DUN i-i DIV_i-i POC-i 400 0.01 0 0 0 0 BYPASS 3-1 DIV 3-i SURF 3-1 400 0.01 0 0 0 0 DUM3-1 DIV 3-i POC-1 400 0.01 0 0 0 0 [OUTLETS] Inlet Outie: Outflow Outlet Qcoeff/ Flap ;;Name Node Node Height Type Qlable Qexpon Gate i-i SURF _1-1 POC-i 0 TABULAR/HEAD OUT i-i NO 3-1 SURF 3-1 POC-i 0 TABULAR/HEAD OUT 3-i NO [XSECTIONS} ;;Link Shape Geomi Geom2 Geom3 Geom4 Barrels BYPASS_i-i DUMMY 0 0 0 0 DUN i-i DUMMY 0 0 0 0 1 BYPASS 3-1 DUMMY 0 0 0 0 1 DUN 3-i DUMMY 0 0 0 0 1 [LOSSES] ;;Link Inlet Outlet verage Flap Gate [CURVES] ;;Name Type X-Value f-Value OUT i-i Rating 0.000 3.000 OUT 1-1 0.042 3.105 OUT-1-1 0.083 0.298 OUT 1-1 0.125 0.548 OUT i-i 0.167 0.844 OUT i-i 0.208 1.179 OUT 1-1 0.250 1.550 OUT-1-1 0.292 1.953 OUT 1-1 0.333 2.234 OUT -1-1 0.375 2.448 OUT 1-1 0.417 2.644 OUT -1-1 0.458 2.826 OUT 1-1 0.500 2.998 OUT -1-1 0.542 3.160 OUT 1-1 0.583 3.314 OUT-i-i 0.625 3.461 OUT 1-1 0.667 3.603 OUT-1-1 0.708 3.739 OUT 1-1 0.750 3.870 OUT-1-1 0.792 3.997 OUT 1-1 0.833 4.120 OUT-1-1 0.875 4.239 OUT 1-1 0.917 4.356 OUT 1-1 0.958 4.469 OUT i-i 1.000 4.579 OUT 1-1 1.042 5.003 OUT 1-1 1.083 5.687 OUT 1-1 1.125 6.539 OUT-1-1 1.167 7.527 SWMM5 Page 2 Post-Dev Input (POC-1) OtJT1-1 1.208 8.632 OUT _1-1 1.250 9.842 OUT_i-i 1.292 11.147 OUT_i-i 1.333 12.540 OUT_i-i 1.375 14.016 OUT 1-1 1.417 15.569 OUT_i-i 1.458 17.195 OUT_i-i 1.500 18.892 OUT_i-i 1.542 20.656 OUT_i-i 1.583 22.485 OUT_i-i 1.625 24.376 OUT_i-i 1.667 26.327 OUT 1-1 1.708 28.337 OUT 1-1 1.750 30.402 OUT i-i 1.792 32.523 OUT 1-1 1.833 34.697 OUT 1-1 1.875 36.924 OUT 1-1 1.917 39.201 OUT i-i 1.958 41.528 OUT-1-1 2.000 43.903 OUT 3-i Rating 0.000 0.000 OUT 3-1 0.042 0.105 OUT-3-1 0.083 0.298 OUT 3-1 0.125 0.548 OUT 3-1 0.167 0.844 OUT-3-1 0.208 1.179 OUT 3-1 0.250 1.550 OUT 3-1 0.292 1.953 OUT 3-1 0.333 2.234 OUT 3-1 0.375 2.448 OUT 3-1 0.417 2.644 OUT 3-1 0.458 2.826 OUT 3-1 0.500 2.998 OUT 3-1 0.542 3.160 OUT 3-1 0.583 3.314 OUT 3-1 0.625 3.461 OUT 3-1 0.667 3.603 OUT 3-1 0.708 3.739 OUT 3-1 0.750 3.870 OUT 3-1 0.792 3.997 OUT 3-1 0.833 4.120 OUT 3-1 0.875 4.239 OUT 3-1 0.917 4.356 OUT 3-1 0.958 4.469 OUT 3-1 1.000 4.579 OUT 3-1 1.042 5.003 OUT 3-1 1.083 5.687 OUT 3-1 1.125 6.539 OUT 3-1 1.167 7.527 OUT 3-1 1.208 8.632 OUT 3-1 1.250 9.842 OUT 3-1 1.292 11.147 OUT_3-1 1.333 12.540 OUT 3-1 1.375 14.016 OUT 3-1 1.417 15.569 OUT 3-1 1.458 17.195 OUT 3-1 1.500 18.892 OUT 3-1 1.542 20.656 OUT 3-1 1.583 22.485 OUT 3-1 1.625 24.376 OUT 3-1 1.667 26.327 OUT 3-1 1.708 28.337 OUT 3-1 1.750 30.402 OUT 3-1 1.792 32.523 OUT 3-1 1.833 34.697 OUT-3-1 1.875 36.924 OUT 3-1 1.917 39.201 OUT 3-1 1.958 41.528 OUT-3-1 2.000 43.903 SURF 1-1 Storage 0.00 2865 SURF-1-1 0.08 2929 SURF_i-i 0.17 2993 SURF-1-1 0.25 3058 SURF 1-1 0.33 3123 SURF-1-1 0.42 3188 SURF_i-i 0.50 3254 SURF 1-1 0.58 3320 SURF 1-1 0.67 3386 SURF 1-1 0.75 3453 SURF-1-1 0.83 3520 SURF _1-1 0.92 3588 SURF i-i 1.00 3656 SURF -1-1 1.08 3724 SURF _1-1 1.17 3792 SURF-1-1 1.25 3861 SWMM5 Page 3 Post-Dev Input (POC-1) SURF_i-i 1.33 3930 SURF_i-i 1.42 4000 SURF _1-1 1.50 4070 SURF 1-1 1.58 4140 SURF 1-1 1.67 4211 SURF i-i 1.75 4282 SURF 1-1 1.83 4353 SURF 1-1 1.92 4425 SURF_i-i 2.00 4497 SURF 3-1 Storage 0.00 1925 SURF 3-1 0.08 1958 SURF 3-1 0.17 1991 SURF 3-1 0.25 2024 SURF 3-1 0.33 2057 SURF 3-1 0.42 2090 SURF 3-1 0.50 2124 SURF 3-1 0.58 2157 SURF 3-1 0.67 2191 SURF 3-1 0.75 2225 SURF 3-1 0.83 2259 SURF -3-1 0.92 2294 SURF 3-1 1.00 2328 SURF 3-1 1.08 2363 SURF 3-1 1.17 2398 SURF 3-1 1.25 2433 SURF 3-1 1.33 2468 SURF 3-1 1.42 2503 SURF 3-1 1.50 2539 SURF 3-1 1.58 2575 SURF 3-1 1.67 2611 SURF 3-1 1.75 2647 SURF 3-1 1.83 2683 SURF 3-1 1.92 2720 SURF -3-1 2.00 2756 [TIMESERIES] ;;Name Date Time Value DMA i-i 0:00 0.014 DMA i-i 0:01 0.027 DMA-1-1 0:02 0.041 DMA _1-1 0:03 0.055 DMA-1-1 0:04 0.069 DMA _1-1 0:05 0.082 DMA _1-1 0:06 0.096 DMA-1-1 0:07 0.110 DMA _1-1 0:08 0.110 DMA -1-1 0:09 0.110 DMA_i-i 0:10 0.110 DMA -1-1 0:11 0.110 DMA 1-1 0:12 0.111 DMA_i-i 0:13 0.111 DMA -1-1 0:14 0.111 DMA_i-i 0:15 0.111 DMA-1-1 0:16 0.112 DMA 1-1 - 0:17 0.112 DMA-1-1 0:18 0.113 DMA_i-i 0:19 0.113 DMA -1-1 0:20 0.113 DMA_i-i 0:21 0.114 DMA 1-1 0:22 0.114 DMA-1-1 0:23 0.115 DMA 1-1 0:24 0.115 DMA-1-1 0:25 0.115 DMA_i-i 0:26 0.115 DMA-1-1 0:27 0.116 DMA-1-1 0:28 0.116 DMA_i-i 0:29 0.116 DMA-1-1 0:30 0.116 DMA_i-i 0:31 0.117 DMA-1-1 0:32 0.117 DMA_i-i 0:33 0.117 DMA-1-1 0:34 0.118 DMA_i-i 0:35 0.118 DMA-1-1 0:36 0.119 DMA_i-i 0:37 0.119 DMA-1-1 0:38 0.120 DMA_i-i 0:39 0.120 DMA-1-1 0:40 0.121 DMA_i-i 0:41 0.121 DMA-1-1 0:42 0.121 DMA_i-i 0:43 0.121 DMA-1-1 0:44 0.122 DMA-1-1 0:45 0.122 DMA_i-i 0:46 0.122 DMA-1-1 0:47 0.122 SWMM5 Page 4 Post-Dev Input (POC-1) DMA 1-1 0:48 0.123 DMA 1-1 0:49 0.124 DMA 1-1 0:50 0.124 DMA 1-1 0:51 0.125 DMA 1-i 0:52 0.125 DMA_i-i 0:53 0.126 DMA 1-1 0:54 0.126 DMA 1-1 0:55 0.127 DMA 1-1 0:56 0.127 DMA DMA_i-i 1-1 0:57 0:58 0.127 0.128 DMA _1-1 0:59 0.128 DMA 1-1 1:00 0.128 DMA_i-i 1:01 0.129 DMA_i-i 1:02 0.129 DMA_i-i 1:03 0.129 DMA i-i 1:04 0.130 DMA -1-1 1:05 0.130 DMA _1-1 1:06 0.131 DMA_i-i 1:07 0.132 DMA i-i 1:08 0.132 DMA 1-1 1:09 0.133 DMA_i-i 1:10 0.134 DMA 1-1 i:ii 0.134 DMA 1-1 1:12 0.135 DMA_i-i 1:13 0.135 DMA i-i 1:14 0.135 DMA i-i 1:15 0.136 DMA_i-i 1:16 0.136 DMA _1-1 1:17 0.136 DMA i-i 1:18 0.137 DMA _1-1 1:19 0.137 DMA i-i 1:20 0.138 DMA 1-1 1:21 0.139 DMA _1-1 1:22 0.139 DMA _1-1 1:23 0.140 DMA _1-1 1:24 0.141 DMA _1-1 1:25 0.141 DMA _1-1 1:26 0.142 DMA_i-i 1:27 0.143 DMA_i-i 1:28 0.143 DMA i-i 1:29 0.144 DMA i-i 1:30 0.144 DMA i-i 1:31 0.145 DMA _1-1 1:32 0.145 DMA i-i 1:33 0.145 DMA i-i 1:34 0.146 DMA i-i 1:35 0.146 DMA_i-i 1:36 0.147 DMA 1-1 1:37 0.148 DMA 1-1 1:38 0.149 DMA_i-i 1:39 0.150 DMA 1-1 1:40 0.151 DMA 1-1 1:41 0.151 DMA i-i 1:42 0.152 DMA 1-1 1:43 0.153 DMA 1-1 1:44 0.154 DMA_i-i 1:45 0.154 DMA 1-1 1:46 0.155 DMA 1-1 1:47 0.155 DMA_i-i 1:48 0.156 DMA_i-i 1:49 0.156 DMA_i-i 1:50 0.157 DMA_i-i 1:51 0.157 DMA 1-1 1:52 0.158 DMA_i-i 1:53 0.159 DMA_i-i 1:54 0.160 DMA 1-1 1:55 0.161 DMA 1-1 1:56 0.162 DMA_i-i 1:57 0.163 DMA_i-i 1:58 0.164 DMA_i-i 1:59 0.166 DMA _1-1 2:00 0.166 DMA i-i 2:01 0.167 DMA i-i 2:02 0.167 DMA i-i 2:03 0.168 DMA _1-1' 2:04 0.168 DMA_i-i 2:05 0.169 DMA i-i 2:06 0.170 DMA _1-1 2:07 0.170 DMA i-i 2:08 0.172 DMA i-i 2:09 0.173 DMA _1-1 2:10 0.174 DMA _1-1 2:11 0.176 DMA 1-i 2:12 0.177 DMA i-i 2:13 0.178 DMA i-i 2:14 0.179 SWMM5 Page Post-Dev Input (POC-1) DMA i-i 2:15 0.181 DMA 1-1 2:16 0.182 DMA_i-i 2:17 0.182 DMA 1-1 2:18 0.183 DMA 1-1 2:19 0.184 DMA_i-i 2:20 0.184 DMA 1-1 2:21 0.185 DMA 1-1 2:22 0.186 DMA 1-1 2:23 0.187 DMA_i-i 2:24 0.188 DMA_i-i 2:25 0.190 DMA_i-i 2:26 0.192 DMA_i-i 2:27 0.193 DMA_i-i 2:28 0.195 DMA _1-1 2:29 0.197 DMA_i-i 2:30 0.199 DMA_i-i 2:31 0.200 DMA_i-i 2:32 0.201 DMA 1-1 2:33 0.202 DMA_i-i 2:34 C.203 DMA 1-1 2:35 C.204 DMA 1-1 2:36 C.205 DMA_i-i 2:37 C.206 DMA_i-i 2:38 0.207 DMA -1-1 2:39 0.208 DMA i-i 2:40 0.210 DMA 1-1 2:41 0.212 DMA 1-1 2:42 0.215 DMA 1-1 2:43 0.217 DMA -1-1 2:44 0.219 DMA 1-1 2:45 0.222 DMA 1-1 2:46 0.224 DMA 1-1 2:47 0.226 DMA__i-i 2:48 0.227 DMA -1-1 2:49 0.229 DMA_i-i 2:50 0.230 DMA 1-1 2:51 0.231 DMA -1-1 2:52 0.233 DMA 1-1 2:53 0.234 DMA 1-1 2:54 0.235 DMA 1-1 2:55 0.237 DMA -1-1 2:56 0.240 DMA_i-i 2:57 0.243 DMA -1-1 2:58 0.246 DMA_i-i 2:59 0.250 DMA 1-1 3:00 0.253 DMA 1-1 3:01 0.256 DMA 1-1 3:02 0.259 DMA__i-i 3:03 0.263 DMA 1-1 3:04 0.265 DMA -1-1 3:05 0.266 DMA 1-1 3:06 0.268 DMA -1-1 3:07 '1.270 DMA 1-1 3:08 3.272 DMA -1-1 3:09 1.274 DMA -1-1 3:10 3.276 DMA_i-i 3:11 3.278 DMA -1-1 3:12 3.284 DMA_i-i 3:13 3.289 DMA -1-1 3:14 0.294 DMA_i-i 3:15 0.299 DMA -1-1 3:16 0.304 DMA_i-i 3:17 0.309 DMA -1-1 3:18 0.314 DMA 1-1 3:19 0.319 DMA -1-1 3:20 0.322 DMA 1-1 3:21 0.326 DMA 1-1 3:22 0.329 DMA 1-1 3:23 0.333 DMA 1-1 3:24 0.336 DMA -1-1 3:25 0.339 DMA_i-i 3:26 0.343 DMA -1-1 3:27 0.346 DMA_i-i 3:28 0.356 DMA -1-1 3:29 0.365 DMA_i-i 3:30 0.375 DMA -1-1 3:31 0.384 DMA_i-i 3:32 0.394 DMA -1-1 3:33 0.404 DMA_i-i 3:34 0.413 DMA_i-i 3:35 0.423 DMA -1-1 3:36 0.430 DMA_i-i 3:37 0.438 DMA -1-1 3:38 0.445 DMA 1-1 3:39 0.452 DMA 1-1 3:40 0.460 DMA -1-1 3:41 0.467 SWMM5 Page Post-Dev Input (POC-1) DMA _1-1 3:42 0.474 DMA_i-i 3:43 0.482 DMA_i-i 3:44 0.510 DMA_i-i 3:45 0.538 DMA_i-i 3:46 0.566 DMA 1-1 3:47 0.595 DMA_i-i 3:48 0.623 DMA_i-i 3:49 0.651 DMA_i-i 3:50 0.679 DMA_i-i DMA_i-i 3:51 3:52 0.707 0.784 DMA_i-i 3:53 0.861 DMA_i-i 3:54 0.939 DMA_i-i 3:55 1.016 DMA_i-i 3:56 1.093 DMA_i-i 3:57 1.170 DMA 1-1 3:58 1.247 DMA_i-i 3:59 1.324 DMA 1-1 4:00 1.544 DMA_i-i 4:01 1.763 DMA_i-i 4:02 1.983 DMA 1-1 4:03 2.203 DMA_i-i 4:04 2.422 DMA_i-i 4:05 2.642 DMA_i-i 4:06 2.862 DMA_i-i 4:07 3.082 DMA_i-i 4:08 2.788 DMA_i-i 4:09 2.494 DMA_i-i 4:10 2.200 DMA 1-1 4:11 1.906 DMA_i-i 4:12 1.612 DMA_i-i 4:13 1.319 DMA 1-1 4:14 1.025 DMA_i-i 4:15 0.731 DMA_i-i 4:16 0.687 DMA DMA 1-1 1-1 4:17 4:18 0.643 0.599 DMA 1-1 4:19 0.555 DMA_i-i 4:20 0.511 DMA _1-1 4:21 0.467 DMA_i-i 4:22 0.424 DMA_i-i 4:23 0.380 DMA 1-1 4:24 0.369 DMA -1-1 4:25 0.359 DMA 1-1 4:26 0.349 DMA 1-1 4:27 0.338 DMA -1-1 4:28 0.328 DMA i-i 4:29 0.318 DMA i-i 4:30 0.307 DMA i-i 4:31 0.297 DMA -1-1 4:32 0.291 DMA i-i 4:33 0.285 DMA i-i 4:34 0.279 DMA i-i 4:35 0.273 DMA 1-1 4:36 0.267 DMA 1-1 4:37 0.261 DMA DMA i-i i-i 4:38 4:39 0.255 0.249 DMA 1-1 4:40 0.245 DMA i-i 4:41 0.241 DMA i-i 4:42 0.237 DMA DMA_i-i i-i 4:43 4:44 0.233 0.229 DMA _1-1 4:45 0.225 DMA 1-1 4:46 0.221 DMA 1-1 4:47 0.217 DMA 1-1 4:48 0.214 DMA 1-1 4:49 0.211 DMA_i-i 4:50 0.208 DMA_i-i 4:51 0.205 DMA_i-i 4:52 0.202 DMA_i-i 4:53 0.199 DMA_i-i 4:54 0.196 DMA_i-i 4:55 0.193 DMA_i-i 4:56 0.191 DMA 1-1 4:57 0.189 DMA _1-1 4:58 0.186 DMA 1-1 4:59 0.184 DMA 1-1 5:00 0.182 DMA_i-i 5:01 0.180 DMA_i-i 5:02 0.178 DMA_i-i 5:03 0.175 DMA_i-i 5:04 0.174 DMA 1-i 5:05 0.172 DMA_i-i 5:06 0.170 DMA_i-i 5:07 0.168 DMA i-i 5:08 0.166 SWMM5 Page 7 Post-Dev Input (POC-1) DMA 1-1 5:09 0.165 DMA_i-i 5:10 0.163 DMA_i-i 5:11 0.161 DMA_i-i 5:12 0.160 DMA 1-1 5:13 0.158 DMA 1-1 5:14 0.157 DMA 1-1 5:15 0.155 DMA 1-1 5:16 0.154 DMA 1-1 5:17 0.152 DMA 1-1 5:18 0.151 DMA 1-1 5:19 0.150 DMA 1-1 5:20 0.148 DMA 1-1 5:21 0.147 DMA 1-1 5:22 0.146 DMA 1-1 5:23 0.145 DMA-1-1 5:24 0.144 DMA i-i 5:25 0.142 DMA 1-1 5:26 C.141 DMA i-i 5:27 C.140 DMA i-i 5:28 C.139 DMA 1-1 5:29 C.138 DMA 1-1 5:30 0.137 DMA 1-1 5:31 0.136 DMA 1-1 5:32 0.135 DMA 1-1 5:33 0.134 DMA 1-1 5:34 0.133 DMA 1-1 5:35 0.132 DMA -1-1 5:36 0.131 DMA 1-1 5:37 0.130 DMA -1-1 5:38 0.129 DMA 1-1 5:39 0.128 DMA -1-1 5:40 0.127 DMA 1-1 5:41 0.126 DMA-1-1 5:42 0.125 DMA 1-1 5:43 0.125 DMA -1-1 5:44 0.124 DMA 1-1 5:45 0.123 DMA -1-1 5:46 0.122 DMA_i-i 5:47 0.122 DMA 1-1 5:48 0.121 DMA -1-1 5:49 0.120 DMA 1-1 5:50 0.119 DMA -1-1 5:51 0.118 DMA 1-1 5:52 0.118 DMA 1-1 5:53 0.117 DMA 1-1 5:54 0.116 DMA -1-1 5:55 0.116 DMA -1-1 5:56 ).115 DMA i-i 5:57 3.114 DMA i-i 5:58 3.114 DMA 1-1 5:59 3.113 DMA -1-1 6:00 3.099 DMA _1-1 6:01 0.085 DMA -1-1 6:02 0.071 DMA _1-1 6:03 0.056 DMA -1-1 6:04 0.042 DMA _1-1 6:05 0.028 DMA -1-1 6:06 0.014 DMA i-i 6:07 0.000 DMA -1-1 6:08 0.000 DMA -3-1 0:00 0.018 DMA 3-i 0:01 0.036 DMA -3-1 0:02 0.055 DMA -3-1 0:03 0.073 DMA 3-i 0:04 0.091 DMA_3-1 0:05 0.109 DMA_3-1 0:06 0.110 DMA -3-1 0:07 0.110 DMA 3-i 0:08 0.110 DMA -3-1 0:09 0.110 DMA 3-i 0:10 0.110 DMA -3-1 0:11 0.111 DMA 3-i 0:12 0.111 DMA -3-1 0:13 0.111 DMA 3-i 0:14 0.112 DMA -3-1 0:15 0.112 DMA 3-i 0:16 0.113 DMA -3-1 0:17 0.113 DMA 3-i 0:18 0.113 DMA -3-1 0:19 0.114 DMA -3-1 0:20 0.114 DMA_3-1 0:21 0.114 DMA -3-1 0:22 0.114 DMA 3-1 0:23 0.114 DMA 3-1 0:24 1 0.115 DMA_3-1 0:25 0.115 SWMM5 Page 8 Post-Dev Input (POC-1) DMA 3-1 0:26 0.116 DMA 3-1 0:27 0.116 DMA 3-1 0:28 0.117 DMA 3-1 0:29 0.117 DMA 3-1 0:30 0.117 DMA 3-1 0:31 0.118 DMA 3-1 0:32 0.118 DMA 3-1 0:33 0.118 DMA 3-1 0:34 0.118 DMA DMA 3-1 3-1 0:35 0:36 0.119 0.119 DMA 3-1 0:37 0.120 DMA 3-1 0:38 0.120 DMA 3-1 0:39 0.121 DMA 3-1 0:40 0.121 DMA 3-1 0:41 0.122 DMA 3-1 0:42 0.122 DMA 3-1 0:43 0.122 DMA 3-1 0:44 0.122 DMA 3-1 0:45 0.123 DMA 3-1 0:46 0.123 DMA 3-1 0:47 0.123 DMA 3-1 0:48 0.124 DMA 3-1 0:49 0.124 DMA 3-1 0:50 0.125 DMA 3-1 0:51 0.125 DMA 3-1 0:52 0.126 DMA 3-1 0:53 0.127 DMA 3-1 0:54 0.127 DMA 3-1 0:55 0.127 DMA 3-1 0:56 0.127 DMA 3-1 0:57 0.128 DMA 3-1 0:58 0.128 DMA 3-1 0:59 0.128 DMA 3-1 1:00 0.129 DMA 3-1 1:01 0.130 DMA 3-1 1:02 0.130 DMA 3-1 1:03 0.131 DMA 3-1 1:04 0.131 DMA 3-1 1:05 0.132 DMA 3-1 1:06 0.132 DMA 3-1 1:07 0.133 DMA 3-1 1:08 0.133 DMA 3-1 1:09 0.133 DMA 3-1 1:10 0.134 DMA 3-1 1:11 0.134 DMA 3-1 1:12 0.135 DMA 3-1 1:13 0.135 DMA 3-1 1:14 0.136 DMA 3-1 1:15 0.137 DMA 3-1 1:16 0.137 DMA 3-1 1:17 0.138 DMA 3-1 1:18 0.138 DMA 3-1 1:19 0.139 DMA 3-1 1:20 0.139 DMA 3-1 1:21 0.140 DMA 3-1 1:22 0.140 DMA 3-1 1:23 0.140 DMA 3-1 1:24 0.141 DMA 3-1 1:25 0.142 DMA 3-1 1:26 0.143 DMA DMA 3-1 3-1 1:27 1:28 0.143 0.144 DMA 3-1 1:29 0.145 DMA 3-1 1:30 0.145 DMA 3-1 1:31 0.146 DMA 3-1 1:32 0.146 DMA 3-1 1:33 0.147 DMA 3-1 1:34 0.147 DMA 3-1 1:35 0.147 DMA 3-1 1:36 0.148 DMA 3-1 1:37 0.149 DMA 3-1 1:38 0.150 DMA 3-1 1:39 0.151 DMA 3-1 1:40 0.152 DMA 3-1 1:41 0.153 DMA 3-1 1:42 0.153 DMA 3-1 1:43 0.154 DMA 3-1 1:44 0.154 DMA 3-1 1:45 0.155 DMA 3-1 1:46 0.155 DMA 3-1 1:47 0.156 DMA 3-1 1:48 0.157 DMA 3-1 1:49 0.158 DMA 3-1 1:50 0.159 DMA 3-1 1:51 0.160 DMA 3-1 1:52 0.161 SWMM5 Page 9 Post-Dev Input (POC-1) DMA 3-i 1:53 0.162 DMA 3-1 1:54 0.162 DMA_3-1 1:55 0.163 DMA 3-1 1:56 0.163 DMA 3-1 1:57 0164 DMA 3-1 1:58 0.164 DMA 3-1 1:59 0.165 DMA 3-1 2:00 0.166 DMA 3-1 2:01 0.167 DMA 3-1 2:02 0.169 DMA 3-1 2:03 0.170 DMA 3-1 2:04 0.171 DMA 3-1 2:05 0.172 DMA 3-1 2:06 0.173 DMA 3-1 2:07 0.173 DMA 3-1 2:08 0.174 DMA 3-1 2:09 0.175 DMA 3-i 2:10 0.175 DMA 3-1 2:11 0.176 DMA 3-1 2:12 C.177 DMA 3-1 2:13 C.179 DMA 3-1 2:14 C.180 DMA 3-1 2:15 C-.182 DMA-3-1 2:16 0.183 DMA 3-1 2:17 0.184 DMA 3-1 2:18 0.185 DMA -3-1 2:19 0.186 DMA 3-1 2:20 0.187 DMA 3-1 2:21 0.188 DMA 3-1 2:22 0.188 DMA 3-1 2:23 0.189 DMA-3-1 2:24 0.191 DMA 3-1 2:25 0.192 DMA 3-1 2:26 0.194 DMA 3-1 2:27 0.196 DMA 3-1 2:28 0.198 DMA-3-1 2:29 0.199 DMA -3-1 2:30 0.200 DMA 3-1 2:31 0.201 DMA 3-1 2:32 0.202 DMA 3-1 2:33 0.203 DMA -3-1 2:34 0.204 DMA -3-1 2:35 0.205 DMA 3-1 2:36 0.207 DMA 3-1 2:37 0.209 DMA 3-1 2:38 0.211 DMA -3-1 2:39 0.213 DMA 3-1 2:40 0.216 DMA 3-1 2:41 0.218 DMA -3-1 2:42 0.219 DMA 3-1 2:43 03.220 DMA -3-1 2:44 0.221 DMA 3-1 2:45 0.222 DMA -3-1 2:46 3.224 DMA 3-1 2:47 3.225 DMA 3-1 2:48 -3.227 DMA 3-1 2:49 3.230 DMA -3-1 2:50 3.233 DMA 3-i 2:51 3.236 DMA -3-1 2:52 3.238 DMA 3-1 2:53 0.241 DMA -3-1 2:54 0.243 DMA 3-1 2:55 0.244 DMA 3-1 2:56 0.246 DMA -3-1 2:57 0.247 DMA 3-1 2:58 0.249 DMA-3-1 2:59 0.250 DMA 3-1 3:00 0.254 DMA 3-1 3:01 0.258 DMA -3-1 3:02 0.261 DMA 3-1 3:03 0.265 DMA -3-1 3:04 0.269 DMA 3-1 3:05 0.272 DMA 3-1 3:06 0.274 DMA 3-1 3:07 0.276 DMA -3-1 3:08 0.279 DMA 3-1 3:09 0.281 DMA 3-1 3:10 0.283 DMA 3-1 3:11 0.285 DMA 3-1 3:12 0.290 DMA 3-1 3:13 0.295 DMA -3-1 3:14 0.301 DMA 3-1 3:15 0.306 DMA -3-1 3:16 0.311 DMA 3-1 3:17 0.316 DMA -3-1 3:18 0.319 DMA 3-1 3:19 0.322 SWMM5 Page 10 Post-Dev Input (POC-1) DMA 3-1 3:20 0.326 DMA 3-1 3:21 0.329 DMA 3-1 3:22 0.332 DMA 3-1 3:23 0.335 DMA 3-1 3:24 0.343 DMA 3-1 3:25 0.352 DMA 3-1 3:26 0.360 DMA 3-1 3:27 0.368 DMA 3-1 3:28 0.376 DMA DMA 3-1 3-1 3:29 3:30 0.384 0.390 DMA 3-1 3:31 0.395 DMA 3-1 3:32 0.400 DMA 3-1 3:33 0.406 DMA 3-1 3:34 0.411 DMA 3-1 3:35 0.417 DMA 3-1 3:36 0.432 DMA 3-1 3:37 0.447 DMA 3-1 3:38 0.463 DMA 3-1 3:39 0.478 DMA 3-1 3:40 0.494 DMA 3-1 3:41 0.509 DMA 3-1 3:42 0.521 DMA 3-1 3:43 0.533 DMA 3-1 3:44 0.545 DMA 3-1 3:45 0.556 DMA 3-1 3:46 0.568 DMA 3-1 3:47 0.580 DMA 3-1 3:48 0.625 DMA 3-1 3:49 0.670 DMA 3-1 3:50 0.716 DMA 3-1 3:51 0.761 DMA 3-1 3:52 0.806 DMA 3-1 3:53 0.852 DMA 3-1 3:54 0.958 DMA 3-1 3:55 1.063 DMA 3-1 3:56 1.169 DMA 3-1 3:57 1.275 DMA 3-1 3:58 1.381 DMA 3-1 3:59 1.487 DMA 3-1 4:00 1.884 DMA 3-1 4:01 2.281 DMA 3-1 4:02 2.678 DMA 3-1 4:03 3.075 DMA 3-1 4:04 3.472 DMA 3-i 4:05 3.869 DMA_3-1 4:06 3.362 DMA 3-1 4:07 2.855 DMA 3-1 4:08 2.348 DMA 3-1 4:09 1.841 DMA 3-1 4:10 1.334 DMA 3-1 4:11 0.827 DMA 3-1 4:12 0.765 DMA 3-1 4:13 0.703 DMA 3-1 4:14 0.642 DMA 3-1 4:15 0.580 DMA 3-1 4:16 0.519 DMA 3-1 4:17 0.457 DMA 3-1 4:18 0.440 DMA 3-i 4:19 0.424 DMA 3-1 4:20 0.407 DMA 3-1 4:21 0.391 DMA 3-1 4:22 0.374 DMA 3-1 4:23 0.358 DMA 3-1 4:24 0.348 DMA -3-1 4:25 0.338 DMA 3-1 4:26 0.329 DMA 3-1 4:27 0.319 DMA -3-1 4:28 0.309 DMA 3-1 4:29 0.299 DMA 3-1 4:30 0.293 DMA 3-1 4:31 0.287 DMA 3-1 4:32 0.280 DMA 3-1 4:33 0.274 DMA 3-1 4:34 0.267 DMA 3-1 4:35 0.261 DMA 3-1 4:36 0.256 DMA 3-1 4:37 0.251 DMA 3-1 4:38 0.247 DMA 3-1 4:39 0.242 DMA 3-1 4:40 0.237 DMA 3-1 4:41 0.233 DMA 3-1 4:42 0.229 DMA 3-1 4:43 0.225 DMA 3-1 4:44 0.222 DMA 3-1 4:45 0.218 DMA 3-1 4:46 0.215 SWMM5 Page 11 Post-Dev Input (POC-1) DMA 3-1 4:47 0.211 DMA 3-1 4:48 0.208 DMA 3-1 4:49 0.205 DMA 3-1 4:50 0.203 DMA 3-1 4:51 0.200 DMA 3-1 4:52 0.197 DMA 3-1 4:53 0.194 DMA 3-1 4:54 0.192 DMA 3-1 4:55 0.189 DMA 3-1 4:56 0.187 DMA 3-1 4:57 0.185 DMA 3-i 4:58 0.182 DMA 3-1 4:59 C.180 DMA -3-1 5:00 C.178 DMA 3-1 5:01 C.176 DMA -3-1 5:02 0.174 DMA 3-1 5:03 0.172 DMA -3-1 5:04 0.170 DMA 3-1 5:05 0.168 DMA -3-1 5:06 (1.167 DMA 3-1 5:07 0.165 DMA-3-1 5:08 0.163 DMA 3-1 5:09 0.162 DMA 3-1 5:10 0.160 DMA 3-1 5:11 0.159 DMA -3-1 5:12 0.157 DMA 3-1 5:13 0.156 DMA 3-1 5:14 0.154 DMA 3-1 5:15 0.153 DMA 3-1 5:16 0.151 DMA 3-1 5:17 0.150 DMA 3-1 5:18 0.149 DMA 3-1 5:19 0.148 DMA 3-1 5:20 0.146 DMA 3-1 5:21 0.145 DMA 3-1 5:22 0.144 DMA -3-1 5:23 1.143 DMA 3-1 5:24 0.141 DMA 3-1 5:25 0.140 DMA 3-1 5:26 0.139 DMA 3-1 5:27 0.138 DMA -3-1 5:28 3.137 DMA -3-1 5:29 3.136 DMA -3-1 5:30 3.135 DMA 3-1 5:31 3.134 DMA -3-1 5:32 0.133 DMA 3-1 5:33 0.132 DMA -3-1 5:34 0.131 DMA 3-1 5:35 0.130 DMA 3-1 5:36 0.129 DMA -3-1 5:37 0.128 DMA 3-1 5:38 0.127 DMA 3-1 5:39 0.127 DMA 3-1 5:40 0.126 DMA 3-1 5:41 0.125 DMA -3-1 5:42 0.124 DMA 3-1 5:43 0.123 DMA -3-1 5:44 0.123 DMA 3-1 5:45 0.122 DMA 3-1 5:46 0.121 DMA -3-1 5:47 0.120 DMA -3-1 5:48 0.119 DMA 3-1 5:49 0.119 DMA -3-1 5:50 0.118 DMA 3-1 5:51 0.117 DMA -3-1 5:52 0.117 DMA -3-1 5:53 0.116 DMA 3-1 5:54 0.115 DMA -3-1 5:55 0.115 DMA -3-1 5:56 0.114 DMA 3-1 5:57 0.113 DMA -3-1 5:58 0.113 DMA 3-1 5:59 0.112 DMA -3-1 6:00 0.093 DMA 3-1 6:01 0.075 DMA -3-1 6:02 0.056 DMA 3-1 6:03 0.037 DMA 3-1 6:04 0.019 DMA 3-1 6:05 0.000 DMA_3-1 6:06 0.000 DMA -1-BYPASS 0:00 0.005 DMA_i-BYPASS 0:01 0.009 DMA -BYPASS -1 0:02 0.014 DMA 1-BYPASS 0:03 0.019 DMA -1-BYPASS 0:04 0.024 DMA _i-BYPASS 0:05 0.028 SWMM5 Page 12 Post-Dev Input (POC-1) DMA_i-BYPASS 0:06 0.033 DMA _I-BYPASS 0:07 0.038 DMA _I-BYPASS 0:08 0.042 DMA _1-BYPASS 0:09 0.047 DMA _1-BYPASS 0:10 0.052 DMA _1-BYPASS .0:11 0.057 DMA 1-BYPASS 0:12 0.057 DMA 1-BYPASS 0:13 0.057 DMA 1-BYPASS 0:14 0.057 DMA i-BYPASS 0:15 0.057 DMA -1 -BYPASS 0:16 0.057 DMA _i-BYPASS 0:17 0.057 DMA 1-BYPASS 0:18 0.057 DMA 1-BYPASS 0:19 0.057 DMA _i-BYPASS 0:20 0.058 DMA 1-BYPASS 0:21 0.058 DMA 1-BYPASS 0:22 0.058 DMA _i-BYPASS 0:23 0.058 DMA i-BYPASS 0:24 0.058 DMA 1-BYPASS 0:25 0.058 DMA 1-BYPASS 0:26 0.059 DMA _i-BYPASS 0:27 0.059 DMA 1-BYPASS 0:28 0.059 DMA 1-BYPASS 0:29 0.059 DMA _i-BYPASS 0:30 0.060 DMA 1-BYPASS 0:31 0.060 DMA 1-BYPASS 0:32 0.060 DMA _i-BYPASS 0:33 0.060 DMA_i-BYPASS 0:34 0.060 DMA_i-BYPASS 0:35 0.061 DMA 1-BYPASS 0:36 0.061 DMA_i-BYPASS 0:37 0.061 DMA_i-BYPASS 0:38 0.061 DMA_i-BYPASS 0:39 0.061 DMA_i-BYPASS 0:40 0.061 DMA_i-BYPASS 0:41 0.061 DMA_i-BYPASS 0:42 0.062 DMA_i-BYPASS 0:43 0.062 DMA_i-BYPASS 0:44 0.062 DMA 1-BYPASS 0:45 0.062 DMA_i-BYPASS 0:46 0.062 DMA_i-BYPASS 0:47 0.062 DMA_i-BYPASS 0:48 0.063 DMA_i-BYPASS 0:49 0.063 DMA 1-BYPASS 0:50 0.063 DMA _i-BYPASS 0:51 0.063 DMA 1-BYPASS 0:52 0.064 DMA 1-BYPASS 0:53 0.064 DMA 1-BYPASS 0:54 0.064 DMA 1-BYPASS 0:55 0.064 DMA-1 -BYPASS 0:56 0.065 DMA 1-BYPASS 0:57 0.065 DMA 1-BYPASS 0:58 0.065 DMA-1 -BYPASS 0:59 0.066 DMA 1-BYPASS 1:00 0.066 DMA _i-BYPASS 1:01 0.066 DMA-1 -BYPASS 1:02 0.066 DMA _i-BYPASS 1:03 0.066 DMA 1-BYPASS 1:04 0.066 DMA 1-BYPASS 1:05 0.067 DMA 1-BYPASS 1:06 0.067 DMA 1-BYPASS 1:07 0.067 DMA 1-BYPASS 1:08 0.067 DMA-1 -BYPASS 1:09 0.067 DMA 1-BYPASS 1:10 0.067 DMA 1-BYPASS 1:11 0.067 DMA _i-BYPASS 1:12 0.068 DMA _i-BYPASS 1:13 0.068 DMA 1-BYPASS 1:14 0.069 DMA _i-BYPASS 1:15 0.069 DMA 1-BYPASS 1:16 0.069 DMA -BYPASS -1 1:17 0.070 DMA_i-BYPASS 1:18 0.070 DMA -1-BYPASS 1:19 0.070 DMA 1-BYPASS 1:20 0.071 DMA 1-BYPASS 1:21 0.071 DMA 1-BYPASS 1:22 0.071 DMA 1-BYPASS 1:23 0.072 DMA -1-BYPASS 1:24 0.072 DMA 1-BYPASS 1:25 0.072 DMA 1-BYPASS 1:26 0.072 DMA -1-BYPASS 1:27 0.072 DMA_i-BYPASS 1:28 0.073 DMA_i-BYPASS 1:29 0.073 DMA_i-BYPASS 1:30 0.073 DMA 1-BYPASS 1:31 0.073 DMA 1-BYPASS 1:32 0.073 SWMMS Page 13 Post-Dev Input (POC-1) DMA 1-BYPASS 1:33 0.074 DMA 1-BYPASS 1:34 0.074 DMA 1-BYPASS 1:35 0.074 DMA 1-BYPASS 1:36 0.074 DMA i-BYPASS 1:37 0.075 DMA 1-BYPASS 1:38 0.075 DMA _I-BYPASS 1:39 0.076 DMA 1-BYPASS 1:40 0.076 DMA 1-BYPASS 1:41 0.077 DMA 1-BYPASS 1:42 0.077 DMA 1-BYPASS 1:43 0.078 DMA 1-BYPASS 1:44 0.078 DMA _i-BYPASS 1:45 0.078 DMA-1 -BYPASS 1:46 0.079 DMA 1-BYPASS 1:47 0.079 DMA 1-BYPASS 1:48 0.080 DMA-1 -BYPASS 1:49 0.080 DMA 1-BYPASS 1:50 0.080 DMA 1-BYPASS 1:51 0.080 DMA 1-BYPASS 1:52 0.081 DMA 1-BYPASS 1:53 0.081 DMA _i-BYPASS 1:54 0.081 DMA i-BYPASS 1:55 0.081 DMA-1 -BYPASS 1:56 0.082 DMA 1-BYPASS 1:57 0.082 DMA_i-BYPASS 1:58 C.082 DMA 1-BYPASS 1:59 C.082 DMA _i-BYPASS 2:00 C.083 DMA-1 -BYPASS 2:01 C.084 DMA 1-BYPASS 2:02 C.084 DMA 1-BYPASS 2:03 C.085 DMA 1-BYPASS 2:04 C.085 DMA 1-BYPASS 2:05 C.086 DMA-1 -BYPASS 2:06 1.087 DMA 1-BYPASS 2:07 1.087 DMA _i-BYPASS 2:08 1.088 DMA 1-BYPASS 2:09 1.088 DMA _i-BYPASS 2:10 0.089 DMA-1 -BYPASS 2:11 0.090 DMA 1-BYPASS 2:12 0.090 DMA 1-BYPASS 2:13 9.090 DMA 1-BYPASS 2:14 0.091 DMA i-BYPASS 2:15 0.091 DMA 1-BYPASS 2:16 0.091 DMA 1-BYPASS 2:17 0.092 DMA 1-BYPASS 2:18 6.092 DMA 1-BYPASS 2:19 0.092 DMA 1-BYPASS 2:20 0.093 DMA_i-BYPASS 2:21 0.093 DMA 1-BYPASS 2:22 0.093 DMA 1-BYPASS 2:23 1.094 DMA-1 -BYPASS 2:24 0.095 DMA 1-BYPASS 2:25 1.096 DMA 1-BYPASS 2:26 3.096 DMA.i-BYPASS 2:27 3.097 DMA 1-BYPASS 2:28 3.098 DMA 1-BYPASS 2:29 3.099 DMA _i-BYPASS 2:30 3.100 DMA _i-BYPASS 2:31 3.101 DMA 1-BYPASS . 2:32 D.101 DMA _i-BYPASS 2:33 0.102 DMA 1-BYPASS 2:34 3.103 DMA 1-BYPASS 2:35 3.104 DMA _i-BYPASS 2:36 0.105 DMA 1-BYPASS 2:37 0.105 DMA 1-BYPASS 2:38 0.106 DMA 1-BYPASS 2:39 0.106 DMA 1-BYPASS 2:40 0.107 DMA-1 -BYPASS 2:41 0.107 DMA 1-BYPASS 2:42 0.108 DMA 1-BYPASS 2:43 0.108 DMA _i-BYPASS 2:44 0.109 DMA 1-BYPASS 2:45 0.109 DMA 1-BYPASS 2:46 0.110 DMA 1-BYPASS 2:47 0.110 DMA _i-BYPASS 2:48 0.112 DMA 1-BYPASS 2:49 0.113 DMA 1-BYPASS 2:50 0.114 DMA-1 -BYPASS 2:51 0.116 DMA 1-BYPASS 2:52 0.117 DMA 1-BYPASS 2:53 0.118 DMA 1-BYPASS 2:54 0.120 DMA 1-BYPASS 2:55 0.121 DMA 1-BYPASS 2:56 0.122 DMA -1 1-BYPASS 2:57 0.124 DMA -BYPASS 2:58 0.125 DMA-1 -BYPASS 2:59 0.126 SWMM5 Page 14 Post-Dev Input (POC-1) DMA 1-BYPASS 3:00 0.127 DMA 1-BYPASS 3:01 0.128 DMA_i-BYPASS 3:02 0.129 DMA _1-BYPASS 3:03 0.130 DMA_i-BYPASS 3:04 0.131 DMA 1-BYPASS 3:05 0.132 DMA_i-BYPASS 3:06 0.133 DMA 1-BYPASS 3:07 0.134 DMA_i-BYPASS 3:08 0.134 DMA_i-BYPASS 3:09 0.135 DMA_i-BYPASS 3:10 0.136 DMA_i-BYPASS 3:11 0.137 DMA _1-BYPASS 3:12 0.140 DMA_i-BYPASS 3:13 0.142 DMA_i-BYPASS 3:14 0.145 DMA_i-BYPASS 3:15 0.147 DMA _I-BYPASS 3:16 0.150 DMA_i-BYPASS 3:17 0.152 DMA_i-BYPASS 3:18 0.155 DMA _1-BYPASS 3:19 0.157 DMA_i-BYPASS 3:20 0.160 DMA 1-BYPASS 3:21 0.163 DMA i-BYPASS 3:22 0.165 DMA 1-BYPASS 3:23 0.168 DMA 1-BYPASS 3:24 0.170 DMA _i-BYPASS 3:25 0.171 DMA 1-BYPASS 3:26 0.173 DMA _i-BYPASS 3:27 0.175 DMA 1-BYPASS 3:28 0.177 DMA 1-BY PASS 3:29 0.179 DMA 1-BYPASS 3:30 0.181 DMA 1-BYPASS 3:31 0.183 DMA 1-BYPASS 3:32 0.185 DMA _i-BYPASS 3:33 0.187 DMA 1-BYPASS 3:34 0.189 DMA _i-BYPASS 3:35 0.191 DMA 1-BYPASS 3:36 0.198 DMA 1-BYPASS 3:37 0.206 DMA 1-BYPASS 3:38 0.213 DMA _i-BYPASS 3:39 0.221 DMA _i-BYPASS 3:40 0.228 DMA_i-BYPASS 3:41 0.236 DMA_i-BYPASS 3:42 0.243 DMA 1-BYPASS 3:43 0.250 DMA 1-BYPASS 3:44 0.258 DMA_i-BYPASS 3:45 0.265 DMA_i-BYPASS 3:46 0.273 DMA 1-BYPASS 3:47 0.280 DMA_i-BYPASS 3:48 0.290 DMA _1-BYPASS 3:49 0.299 DMA 1-BYPASS 3:50 0.309 DMA 1-BYPASS 3:51 0.319 DMA_i-BYPASS 3:52 0.328 DMA_i-BYPASS 3:53 0.338 DMA 1-BYPASS 3:54 0.347 DMA _i-BYPASS 3:55 0.357 DMA 1-BYPASS 3:56 0.366 DMA _i-BYPASS 3:57 0.376 DMA-1 -BYPASS 3:58 0.385 DMA _i-BYPASS 3:59 0.424 DMA _i-BYPASS 4:00 0.480 DMA 1-BYPASS 4:01 0.565 DMA 1-BYPASS 4:02 0.650 DMA 1-BYPASS 4:03 0.735 DMA 1-BYPASS 4:04 0.820 DMA _i-BYPASS 4:05 0.905 DMA 1-BYPASS 4:06 0.990 DMA _i-BYPASS 4:07 1.075 DMA 1-BYPASS 4:08 1.160 DMA 1-BYPASS 4:09 1.245 DMA _i-BYPASS 4:10 1.331 DMA 1-BYPASS 4:11 1.372 DMA 1-BYPASS 4:12 1.316 DMA-1 -BYPASS 4:13 1.217 DMA 1-BYPASS 4:14 1.118 DMA 1-BYPASS 4:15 1.019 DMA 1-BYPASS 4:16 0.919 DMA 1-BYPASS 4:17 0.820 DMA 1-BYPASS 4:18 0.721 DMA 1-BYPASS 4:19 0.622 DMA 1-BYPASS 4:20 0.523 DMA 1-BYPASS 4:21 0.423 DMA i-BYPASS 4:22 0.324 DMA _I-BYPASS 4:23 0.239 DMA_i-BYPASS 4:24 0.219 DMA 1-BYPASS 4:25 0.212 DMA 1-BYPASS 4:26 0.206 SWMM5 Page 15 Post-Dev Input (POC-1) DMA 1-BYPASS 4:27 0.200 DMA 1-BYPASS 4:20 0.194 DMA _1-BYPASS 4:29 0.188 DMA 1-BYPASS 4:30 0.181 DMA 1-BYPASS 4:31 0.175 DMA 1-BYPASS ' 4:32 0.169 DMA 1-BYPASS 4:33 0.163 DMA 1-BYPASS 4:34 0.157 DMA 1-BYPASS 4:35 0.150 DMA 1-BYPASS 4:36 0.148 DMA 1-BYPASS 4:37 0.145 DMA-1 -BYPASS 4:38 0.142 DMA 1-BYPASS 4:39 0.140 DMA 1-BYPASS 4:40 0.137 DMA -BYPASS -1 4:41 0.134 DMA _i-BYPASS 4:42 0.131 DMA -1-BYPASS 4:43 0.129 DMA _i-BYPASS 4:44 0.126 DMA 1-BYPASS 4:45 0.123 DMA 1-BYPASS 4:46 0.120 DMA -BYPASS -1 4:47 0.118 DMA 1-BYPASS 4:48 C.116 DMA 1-BYPASS 4:49 C.115 DMA 1-BYPASS 4:50 C.113 DMA -BYPASS -1 4:51 Clii DMA_i-BYPASS 4:52 (.110 DMA -BYPASS -1 4:53 (.108 DMA_i-BYPASS 4:54 (.107 DMA 1-BYPASS 4:55 (.105 DMA 1-BYPASS 4:56 (.103 DMA -BYPASS -1 4:57 (.102 DMA_i-BYPASS 4:58 (.100 DMA -BYPASS -1 4:59 0.099 DMA_i-BYPASS 5:00 (.098 DMA_i-BYPASS 5:01 0.096 DMA 1-BYPASS 5:02 0.095 DMA -1-BYPASS 5:03 0.094 DMA -1-BYPASS 5:04 0.093 DMA_i-BYPASS 5:05 0.092 DMA 1-BYPASS 5:06 0.091 DMA _i-BYPASS 5:07 0.090 DMA 1-BYPASS 5:08 0.089 DMA _i-BYPASS 5:09 0.088 DMA 1-BYPASS 5:10 0.087 DMA 1-BYPASS 5:11 0.086 DMA 1-BYPASS 5:12 0.085 DMA 1-BYPASS 5:13 0.084 DMA _i-BYPASS 5:14 0.083 DMA 1-BYPASS 5:15 0.083 DMA 1-BYPASS 5:16 0.082 DMA -1-BYPASS 5:17 ).081 DMA_i-BYPASS 5:18 3.080 DMA 1-BYPASS 5:19 3.080 DMA 1-BYPASS 5:20 3.079 DMA 1-BYPASS 5:21 3.078 DMA 1-BYPASS 5:22 3.077 DMA 1-BYPASS 5:23 3.077 DMA -1-BYPASS 5:24 3.076 DMA_i-BYPASS 5:25 3.075 DMA 1-BYPASS 5:26 3.075 DMA 1-BYPASS 5:27 3.074 DMA _i-BYPASS 5:28 3.074 DMA _i-BYPASS 5:29 3.073 DMA 1-BYPASS 5:30 0.072 DMA 1-BYPASS 5:31 0.072 DMA _i-BYPASS 5:32 0.071 DMA 1-BYPASS 5:33 0.071 DMA -1-BYPASS 5:34 0.070 DMA 1-BYPASS 5:35 0.069 DMA -1-BYPASS 5:36 0.069 DMA 1-BYPASS 5:37 0.069 DMA 1-BYPASS 5:38 0.068 DMA 1-BYPASS 5:39 0.068 DMA 1-BYPASS 5:40 0.067 DMA _i-BYPASS 5:41 0.067 DMA _i-BYPASS 5:42 0.066 DMA 1-BYPASS 5:43 0.066 DMA -1-BYPASS 5:44 0.065 DMA_i-BYPASS 5:45 0.065 DMA _i-BYPASS 5:46 0.064 DMAi-BYPASS 5:47 0.064 DMA -1 -BYPASS 5:48 0.063 DMAi-BYPASS 5:49 0.063 DMA -1 -BYPASS 5:50 0.063 DMA 1-BYPASS 5:51 0.062 DMA 1-BYPASS 5:52 0.062 DMA -1-BYPASS 5:53 0.062 SWMM5 Page 16 Post-Dev Input (POC-1) DMA i-BYPASS 5:54 0.061 DMA 1-BYPASS 5:55 0.061 DMA 1-BYPASS 5:56 0.060 DMA i-BYPASS 5:57 0.060 DMA 1-BYPASS 5:58 0.060 DMA 1-BYPASS 5:59 0.059 DMA 1-BYPASS 6:00 0.054 DMA 1-BYPASS 6:01 0.049 DMA 1-BYPASS 6:02 0.044 DMA 1-BYPASS 6:03 0.040 DMA 1-BYPASS 6:04 0.035 DMA 1-BYPASS 6:05 0.030 DMA 1-BYPASS 6:06 0.025 DMA 1-BYPASS 6:07 0.020 DMA 1-BYPASS DMA 1-BYPASS 6:08 6:09 0.015 0.010 DMA 1-BYPASS 6:10 0.005 DMA 1-BYPASS 6:11 0.000 DMA_i-BYPASS 6:12 0.000 LID RAIN 0:00 0 LID RAIN 6:00 0 [REPORT) INPUT NO CONTROLS NO SUBCATCHMENTS ALL NODES ALL LINKS ALL [TAGS] [MAP] DIMENSIONS 411.315 4941.240 1215.050 5719.468 Units None [COORDINATES] ;;Node X-Coord Y-Coord POC-1 859.672 4976.614 DIV_1-1 DIV 3-1 756.944 965.041 5245.370 5263.502 SURF 1-1 554.189 5245.793 SURF-3-1 1145.674 5263.502 [VERTICES] ;;Link X-Coord Y-Coord [Polygons] ;;Subcatchment X-Coord Y-Coord DMA 1-1 754.302 ------------------ 5684.094 DMA 1-1 754.302 5684.094 DMA 3-1 958.331 5683.191 DMA 1-BYPASS 591.010 5050.953 IMP 1-1 754.302 5475.126 IMP-3-1 960.614 5486.637 [SYMBOLS) ;;Gage X-Coord Y-Coord DMA 1-1 587.640 ------------------ 5667.586 DMA 3-1 1178.517 5673.351 DMA i-BYPASS 447.848 5052.210 LID RAIN 588.941 5474.295 I I 1 SWMM5 Page 17 POST-DEV (POC-2) Post-Dev Input (POC-2) [TITLE] I [OPTIONS] FLOW UNITS CFS INFILTRATION GREEN AMPT FLOW_ROUTING KINWAVE START DATE 01/01/2000 START TIME 00:00:00 REPORT START DATE 01/01/2000 REPORT START TIME 00:00:00 END DATE 01/01/2000 END TIME 12:00:00 SWEEP START 01/01 SWEEP_END 12/31 DRY DAYS 0 REPORT_STEP 00:01:00 WET_STEP 00:01:00 DRY_STEP 00:01:00 ROUTING_STEP 0:01:00 ALLOW PONDING NO INERTIAL DAMPING PARTIAL VARIABLE_STEP 0.75 LENGTHENING_STEP 0 MIN SURFAREA 0 NORMAL—FLOW—LIMITED BOTH SKIP_STEADY_STATE NO FORCE_MAIN_EQUATION H-W LINK_OFFSETS DEPTH MIN SLOPE 0 [EVAPORATION] ;;Type Parameters MONTHLY 0.041 0.076 0.118 0.192 0.237 0.318 0.308 0.286 0.217 0.14 0.067 0.041 DRY_ONLY NO [RAINGAGES ] Rain Time Snow Data ;;Name Type Intrvl Catch Source DMA 2-1 INTENSITY 0:01 1.0 TIMESERIES DMA 2-1 DMA 2-BYPASS INTENSITY 0:01 1.0 TIMESERIES DMA 2-BYPASS LID_RAIN INTENSITY 6:00 1.0 TIMESERIES LID RAIN SU B CATC NM ENTS I Total Pcnt. Pcnt. Curb Snow ;;Name Raingage Outlet Area Impery Width Slope Length Pack DNA 2-1 DMA 2-1 IMP 2-1 8.981 100 391203 2 0 DMA 2-BYPASS DMA 2-BYPASS POC-2 1.559 100 67895 17.6 0 IMP 2-1 LID RAIN DIV 2-1 0.190014 100 10 1 0 [SUBAREAS] ;;Subcatchment N-Impery N-Pery S-Impery S-Pery Pctlero RouteTo PctRouted DMA 2-1 0.012 0.05 0.02 0.1 25 OUTLET DMA 2-BYPASS 0.012 0.05 0.02 0.1 25 OUTLET IMP-2-1 0.012 0.05 0.02 0.1 25 OUTLET [INFILTRATION] ;;Subcatchment Suction HydCon IMDmax DMA 2-1 9 0.01875 0.30 DMA 2-BYPASS 9 0.025 0.30 IMP-2-1 9 0.025 0.30 [LID—CONTROLS] Type/Layer Parameters IMP 2-1 BC IMP 2-1 SURFACE 19.24 0.05 0 0 5 IMP 2-1 SOIL 18 0.4 0.2 0.1 5 5 1.5 IMP 2-1 STORAGE 12 0.67 0 0 IMP 2-1 DRAIN 0.4249 0.5 0 6 [LID_USAGE] ;;Subcatchment LID Process Number Area Width InitSatur Fromlmpry ToPery Report File IMP 2-1 IMP 2-1 1 8277 0 0 100 0 [OUTFALLS I Invert Outfall Stage/Table Tide ;;Name Elev. Type Time Series Gate POC-2 0 FREE NO [DIVIDERS] SWMM 5 Page 1 Post-Dev Input (POC-2) Invert Diverted Divider ;;Name Elev. Link Type Parameters DIV 2-1 0 BYPASS 2-1 CUTOFF 0.26484 0 0 0 0 [STORAGE] Irvert Max. Init. Storage Curve Ponded Evap. ;;Name Elev. Depth Depth Curve Pararns Area Frac. Infiltration Parameters SURF 2-1 0 3.5 0 TABULAR SURF 2-1 0 1 [CONDUITS] Irlet Outlet Manning Inlet Outlet Init.. Max. ;;Name Node Node Length N Offset Offset Flow Flow BYPASS 2-1 DIV 2-1 SURF 2-1 10 0.01 0 0 0 0 DUN 2-1 DV 2-1 POC-2 10 0.01 0 0 0 0 [OUTLETS] Inlet Outlet Outflow Outlet Qcoeff/ Flap ;;Name Node Node Height Type QTable Qexpcn Gate 2-1 SURF 2-1 POC-2 0 TABULAR/HEAD OUT 2-1 NO [XSECTIONS] ;;Link Shape Geomi Geom2 Geom3 Geom4 Barrels BYPASS 2-1 DUMMY 0 0 0 0 1 DUN 2-1 DUMMY 0 0 0 0 1 [LOSSES] ;;Link Ilet Outlet Average Flap Gate [CURVES] ;;Name Type X-Value 1-Value OUT 2-1 Rating 0.000 0.000 OUT-2-1 0.083 0.005 OUT 2-1 0.167 0.010 OUT 2-1 0.250 0.012 OUT 2-1 0.333 0.015 OUT 2-1 0.417 0.017 OUT-2-1 0.500 0.018 OUT 2-1 0.583 0.020 OUT 2-1 0.667 0.021 OUT-2-1 0.750 0.023 OUT 2-1 0.833 1.024 OUT-2-1 0.917 3.025 OUT 2-1 1.000 3.027 OUT -2-1 1.083 3.326 OUT 2-1 1.167 3.872 OUT -2-1 1.250 1.580 OUT 2-1 1.333 2.265 OUT -2-1 1.417 2.675 OUT 2-1 1.500 3.030 OUT-2-1 1.583 3.348 OUT 2-1 1.667 3.637 OUT-2-1 1.750 3.905 OUT 2-1 1.833 4.156 OUT -2-1 1.917 4.393 OUT 2-1 2.000 4.617 OUT -2-1 2.083 4.831 OUT 2-1 2.167 5.036 OUT -2-1 2.250 5.232 OUT 2-1 2.333 3.422 OUT-2-1 2.417 5.605 OUT 2-1 2.500 5.783 OUT -2-1 2.583 5.955 OUT 2-1 2.667 6.122 OUT -2-1 2.750 6.285 OUT 2-1 2.833 6.444 OUT -2-1 2.917 6.598 OUT 2-1 3.000 6.750 OUT-2-1 3.083 7.793 OUT 2-1 3.167 9.574 OUT-2-1 3.250 11.835 OUT 2-1 3.333 14.483 OUT-2-1 3.417 17.466 OUT 2-1 3.500 20.747 SURF-2-1 Storage 0.00 9426 SURF 2-1 0.08 9492 SURF-2-1 0.17 9558 SURF 2-1 0.25 9623 SURF 2-1 0.33 9690 SURF 2-1 0.42 9756 SWMM5 Page 2 Post-Dev Input (POC-2) SURF 2-1 0.50 9822 SURF 2-1 0.58 9889 SURF 2-1 0.67 9956 SURF-2-1 0.75 10023 SURF 2-1 0.83 10090 SURF 2-1 0.92 10157 SURF 2-1 1.00 10225 SURF -2-1 1.08 10292 SURF 2-1 1.17 10360 SURF 2-1 1.25 10428 SURF 2-1 1.33 10496 SURF 2-1 1.42 10565 SURF 2-1 1.50 10633 SURF-2-1 1.58 10702 SURF-2-1 1.67 10771 SURF 2-1 1.75 10840 SURF 2-i 1.83 10909 SURF-2-1 1.92 10979 SURF 2-1 2.00 11048 SURF -2-1 2.08 11118 SURF-2-1 2.17 11188 SURF 2-1 2.25 11258 SURF 2-1 2.33 11329 SURF-2-1 2.42 11399 SURF -2-1 2.50 11470 SURF 2-1 2.58 11541 SURF 2-1 2.67 11612 SURF -2-1 2.75 11683 SURF 2-1 2.83 11754 SURF -2-1 2.92 11826 SURF 2-1 3.00 11898 SURF-2-1 3.08 11970 SURF 2-1 3.17 12042 SURF-2-1 3.25 12114 SURF 2-1 333 12187 SURF -2-1 3.42 12259 SURF 2-1 3.50 12332 [TIMESERIES) ;;Name Date Time Value DMA 2-1 0:00 0.010 DMA 2-1 0:01 0.020 DMA 2-1 0:02 0.031 DMA 2-1 0:03 0.041 DMA 2-1 0:04 0.051 DMA 2-1 0:05 0.061 DMA 2-1 0:06 0.071 DMA 2-1 0:07 0.081 DMA 2-1 0:08 0.092 DMA 2-1 0:09 0.102 DMA 2-1 0:10 0.102 DMA 2-1 0:11 0.102 DMA 2-1 0:12 0.102 DMA 2-1 0:13 0.103 DMA 2-1 0:14 0.103 DMA 2-1 0:15 0.103 DMA 2-1 0:16 0.103 DMA 2-1 0:17 0.103 DMA 2-1 0:18 0.103 DMA 2-1 0:19 0.104 DMA 2-1 9:20 0.104 DMA 2-1 0:21 0.104 DMA 2-1 0:22 0.105 DMA 2-1 0:23 0.105 DMA 2-1 0:24 0.106 DMA 2-1 0:25 0.106 DMA 2-1 0:26 0.107 DMA 2-1 0:27 0.107 DMA 2-1 0:28 0.107 DMA 2-1 0:29 0.108 DMA 2-1 0:30 0.108 DMA 2-1 0:31 0.108 DMA 2-1 0:32 0.108 DMA 2-1 0:33 0.109 DMA 2-1 0:34 0.109 DMA 2-1 0:35 0.109 DMA 2-1 0:36 0.109 DMA 2-1 0:37 0.109 DMA 2-1 0:38 0.110 DMA 2-1 0:39 0.110 DMA 2-1 0:40 0.110 DMA 2-1 0:41 0.111 DMA 2-1 0:42 0.111 DMA 2-1 0:43 0.112 DMA 2-1 0:44 0.112 DMA 2-1 0:45 0.113 SWMM5 Page 3 Post-Dev Input (POC-2) DMA 2-1 0:46 0.113 DMA 2-i 0:47 0.114 DMA 2-1 0:48 0.114 DMA-2-1 0:49 0 115 DMA 2-1 0:50 0 115 DMA 2-1 0:51 0.115 DMA 2-1 0:52 0.115 DMA 2-1 0:53 0.116 DMA 2-1 0:54 0.116 DMA 2-1 0:55 0.116 DMA 2-1 0:56 0.116 DMA 2-1 0:57 0.117 DMA 2-1 0:58 0.117 DMA 2-1 0:59 0.117 DMA 2-1 1:00 0.118 DMA-2-1 1:01 0.118 DMA-2-1 1:02 0.119 DMA 2-1 1:03 0.120 DMA 2-1 1:04 0.120 DMA 2-1 1:05 0.121 DMA 2-1 1:06 0.121 DMA 2-1 1:07 0.122 DMA 2-1 1:08 0.122 DMA -2-1 1:09 0.123 DMA 2-1 1:10 0.123 DMA 2-1 1:11 0.124 DMA -2-1 1:12 0.124 DMA 2-1 1:13 0.124 DMA 2-1 1:14 C.124 DMA 2-1 1:15 C.125 DMA 2-1 1:16 1.125 DMA 2-1 1:17 1.125 DMA 2-1 1:18 1.126 DMA 2-1 1:19 C.126 DMA 2-1 1:20 C.127 DMA -2-1 1:21 (.127 DMA 2-1 1:22 (.128 DMA 2-1 1:23 (.129 DMA -2-1 1:24 0.129 DMA 2-1 1:25 0.130 DMA 2-1 1:26 0.131 DMA 2-1 1:27 0.131 DMA 2-1 1:28 (1.132 DMA -2-1 1:29 0.133 DMA 2-1 1:30 0.133 DMA 2-1 1:31 0.134 DMA -2-1 1:32 0.134 DMA 2-1 1:33 0.134 DMA 2-1 1:34 0.135 DMA 2-1 1:35 6.135 DMA 2-1 1:36 0.135 DMA 2-1 1:37 3.136 DMA 2-1 1:38 -1.136 DMA 2-1 1:39 1.137 DMA -2-1 1:40 3.137 DMA 2-1 1:41 3.138 DMA -2-1 1:42 3.139 DMA 2-1 1:43 3.140 DMA -2-1 1:44 3.141 DMA 2-1 1:45 3.142 DMA -2-1 1:46 3.142 DMA 2-1 1:47 3.143 DMA -2-1 1:48 3.144 DMA 2-1 1:49 0.145 DMA -2-1 1:50 0.146 DMA 2-1 1:51 0.146 DMA -2-1 1:52 0.146 DMA 2-1 1:53 0.147 DMA -2-1 1:54 0.147 DMA 2-1 1:55 0.148 DMA -2-1 1:56 0.148 DMA 2-1 1:57 -0.149 DMA_2-1 1:58 0.149 DMA 2-1 1:59 0.150 DMA -2-1 2:00 0.151 DMA -2-1 2:01 0.152 DMA 2-1 2:02 0.153 DMA -2-1 2:03 0.154 DMA 2-1 2:04 0.155 DMA -2-1 2:05 0.156 DMA 2-1 2:06 0.157 DMA 2-1 2:07 0.158 DMA -2-1 2:08 0.160 DMA 2-1 2:09 0.161 DMA 2-1 2:10 0.161 DMA -2-1 2:11 0.162 DMA 2-1 2:12 0.162 SWMM5 Page 4 Post-Dev Input (POC-2) DMA 2-i 2:13 0.163 DMA 2-1 2:14 0.164 DMA 2-1 2:15 0.164 DMA 2-1 2:16 0.165 DMA 2-i 2:17 0.166 DMA 2-1 2:18 0.166 DMA 2-1 2:19 0.167 DMA 2-1 2:20 0.168 DMA 2-1 2:21 0.170 DMA DMA 2-1 2-1 2:22 2:23 0.171 0.173 DMA 2-1 2:24 0.174 DMA 2-1 2:25 0.176 DMA 2-1 2:26 0.177 DMA 2-1 2:27 0.178 DMA 2-1 2:28 0.180 DMA 2-1 2:29 0.181 DMA 2-1 2:30 0.182 DMA 2-1 2:31 0.183 DMA 2-1 2:32 0.184 DMA 2-1 2:33 0.185 DMA 2-1 2:34 0.186 DMA 2-1 2:35 0.186 DMA 2-1 2:36 0.187 DMA 2-1 2:37 0.188 DMA 2-1 2:38 0.189 DMA 2-1 2:39 0.190 DMA 2-1 2:40 0.192 DMA 2-1 2:41 0.194 DMA 2-1 2:42 0.196 DMA 2-1 2:43 0.198 DMA 2-1 2:44 0.200 DMA 2-1 2:45 0.202 DMA 2-1 2:46 0.204 DMA 2-1 2:47 0.206 DMA 2-1 2:48 0.209 DMA 2-1 2:49 0.211 DMA 2-1 2:50 0.212 DMA 2-1 2:51 0.213 DMA 2-1 2:52 0.214 DMA 2-1 2:53 0.216 DMA 2-1 2:54 0.217 DMA 2-1 2:55 0.218 DMA 2-i 2:56 0.220 DMA 2-1 2:57 0.221 DMA 2-1 2:58 0.222 DMA 2-1 2:59 0.223 DMA 2-1 3:00 0.227 DMA 2-1 3:01 0.230 DMA 2-1 3:02 0.233 DMA 2-1 3:03 0.236 DMA 2-1 3:04 0.240 DMA 2-1 3:05 0.243 DMA 2-1 3:06 0.246 DMA 2-1 3:07 0.249 DMA 2-1 3:08 0.253 DMA 2-1 3:09 0.256 DMA 2-1 3:10 0.258 DMA 2-1 3:11 0.260 DMA 2-1 3:12 0.263 DMA 2-1 3:13 0.265 DMA 2-1 3:14 0.267 DMA 2-1 3:15 0.269 DMA 2-1 3:16 0.271 DMA 2-1 3:17 0.273 DMA 2-1 3:18 0.275 DMA 2-1 3:19 0.278 DMA 2-i 3:20 0.284 DMA 2-1 3:21 0.290 DMA 2-1 3:22 0.296 DMA 2-1 3:23 0.302 DMA 2-i 3:24 0.308 DMA 2-1 3:25 0.315 DMA 2-1 3:26 0.321 DMA 2-1 3:27 0.327 DMA 2-1 3:28 0.333 DMA 2-1 3:29 0.339 DMA 2-1 3:30 0.344 DMA 2-1 3:31 0.349 DMA 2-1 3:32 0.353 DMA 2-1 3:33 0.358 DMA 2-1 3:34 0.363 DMA 2-1 3:35 0.368 DMA 2-1 3:36 0.372 DMA 2-1 3:37 0.377 DMA 2-1 3:38 0.382 DMA 2-1 3:39 0.386 SWMM5 Page 5 Post-Dev Input (POC-2) DMA 2-1 3:40 0.405 DMA 2-1 3:41 0.423 DMA 2-1 3:42 0.441 DMA 2-1 3:43 0.459 DMA 2-1 3:44 0477 DMA 2-1 3:45 0-495 DMA 2-1 3:46 0 513 DMA 2-1 3:47 0.531 DMA 2-1 3:48 0.549 DMA 2-1 3:49 0.567 DMA 2-1 3:50 0.584 DMA 2-1 3:51 0.600 DMA 2-1 3:52 0.616 DMA 2-1 3:53 0.633 DMA 2-1 3:54 0.649 DMA 2-1 3:55 0.665 DMA 2-1 3:56 0.681 DMA 2-1 3:57 0.698 DMA 2-1 3:58 0.714 DMA 2-1 3:59 0.730 DMA 2-1 4:00 0.954 DMA 2-1 4:01 1.178 DMA 2-1 4:02 1.402 DMA 2-1 4:03 1.626 DMA -2-1 4:04 2.850 DMA 2-1 4:05 2.074 DMA 2-1 4:06 2.298 DMA 2-1 4:07 2.522 DMA -2-1 4:08 2.746 DMA 2-1 4:09 2.970 DMA 2-1 4:10 2.715 DMA 2-1 4:11 2.460 DMA 2-1 4:12 2.205 DMA 2-1 4:13 1.950 DMA 2-1 4:14 3.695 DMA -2-1 4:15 1.440 DMA 2-1 4:16 3.185 DMA -2-1 4:17 0.930 DMA 2-1 4:18 0.675 DMA -2-1 4:19 0.420 DMA 2-1 4:20 0.409 DMA 2-1 4:21 0.397 DMA -2-1 4:22 0.386 DMA 2-1 4:23 0.374 DMA 2-1 4:24 0.362 DMA 2-1 4:25 0.351 DMA -2-1 4:26 0.339 DMA 2-1 4:27 0.328 DMA 2-1 4:28 0.316 DMA 2-1 4:29 0.305 DMA -2-1 4:30 3.298 DMA 2-1 4:31 3.291 DMA 2-1 4:32 3.285 DMA -2-1 4:33 3.278 DMA 2-1 4:34 3.271 DMA -2-1 4:35 3.265 DMA 2-1 4:36 3.258 DMA 2-1 4:37 3.252 DMA 2-1 4:38 3.245 DMA -2-1 4:39 0.238 DMA 2-1 4:40 0.234 DMA 2-1 4:41 0.231 DMA 2-1 4:42 0.227 DMA -2-1 4:43 0.223 DMA 2-1 4:44 10.219 DMA 2-1 4:45 0.215 DMA -2-1 4:46 0.211 DMA 2-1 4:47 0.207 DMA 2-1 4:48 0.203 DMA 2-1 4:49 0.200 DMA 2-1 4:50 0.197 DMA 2-1 4:51 0.194 DMA 2-1 4:52 0.192 DMA -2-1 4:53 0.189 DMA 2-1 4:54 0.187 DMA -2-1 4:55 0.184 DMA 2-1 4:56 0.181 DMA -2-1 4:57 0.179 DMA 2-1 4:58 0.176 DMA -2-1 4:59 0.174 DMA 2-1 5:00 0.172 DMA -2-1 5:01 0.170 DMA 2-i 5:02 0.168 DMA 2-1 5:03 0.166 DMA -2-1 5:04 0.164 DMA 2-1 5:05 0.162 DMA -2-1 5:06 0.161 SWMM5 Page 6 Post-Dev Input (POC-2) DMA 2-1 5:07 0.159 DMA 2-1 5:08 0.157 DMA 2-1 5:09 0.155 DMA 2-1 5:10 0.154 DMA 2-1 5:11 0.152 DMA 2-1 5:12 0.151 DMA 2-1 5:13 0.149 DMA 2-1 5:14 0.148 DMA 2-1 5:15 0.146 DMA 2-1 5:16 0.145 DMA 2-1 5:17 0.144 DMA 2-1 5:18 0.142 DMA 2-1 5:19 0.141 DMA 2-1 5:20 0.140 DMA 2-1 5:21 0.138 DMA 2-i 5:22 0.137 DMA 2-1 5:23 0.136 DMA 2-1 5:24 0.135 DMA 2-1 5:25 0.134 DMA 2-1 5:26 0.133 DMA-2-1 5:27 0.132 DMA 2-i 5:28 0.130 DMA 2-1 5:29 0.129 DMA 2-1 5:30 0.128 DMA 2-1 5:31 0.127 DMA 2-1 5:32 0.126 DMA 2-1 5:33 0.126 DMA 2-1 5:34 0.125 DMA 2-1 5:35 0.124 DMA 2-1 5:36 0.123 DMA 2-1 5:37 0.122 DMA 2-1 5:38 0.121 DMA 2-1 5:39 0.120 DMA 2-1 5:40 0.119 DMA 2-1 5:41 0.118 DMA 2-1 5:42 0.118 DMA 2-1 5:43 0.117 DMA 2-1 5:44 0.116 DMA 2-1 5:45 0.115 DMA 2-1 5:46 0.115 DMA 2-1 5:47 0.114 DMA 2-1 5:48 0.113 DMA 2-1 5:49 0.112 DMA 2-1 5:50 0.112 DMA 2-1 5:51 0.111 DMA 2-1 5:52 0.110 DMA 2-1 5:53 0.110 DMA 2-1 5:54 0.109 DMA 2-1 5:55 0.108 DMA 2-1 5:56 0.108 DMA 2-1 5:57 0.107 DMA 2-1 5:58 0.106 DMA 2-1 5:59 0.106 DMA 2-1 6:00 0.095 DMA 2-1 6:01 0.085 DMA 2-1 6:02 0.074 DMA 2-1 6:03 0.063 DMA 2-1 6:04 0.053 DMA -2-1 6:05 0.042 DMA 2-1 6:06 0.032 DMA 2-1 6:07 0.021 DMA 2-1 6:08 0.011 DMA 2-1 6:09 0.000 DMA -2-1 6:10 0.000 DMA 2-BYPASS 0:00 0.006 DMA 2-BYPASS 0:01 0.011 DMA 2-BYPASS 0:02 0.017 DMA 2-BYPASS 0:03 0.023 DMA 2-BYPASS 0:04 0.028 DMA 2-BYPASS 0:05 0.034 DMA 2-BYPASS 0:06 0.040 DMA 2-BYPASS 0:07 0.045 DMA 2-BYPASS 0:08 0.051 DMA 2-BYPASS 0:09 0.057 DMA 2-BYPASS 0:10 0.057 DMA 2-BYPASS 0:11 0.057 DMA 2-BYPASS 0:12 0.057 DMA 2-BYPASS 0:13 0.057 DMA 2-BYPASS 0:14 0.057 DMA 2-BYPASS 0:15 0.057 DMA 2-BYPASS 0:16 0.057 DMA 2-BYPASS 0:17 0.057 DMA -2-BYPASS 0:18 0.057 DMA 2-BYPASS 0:19 0.058 DMA 2-BYPASS 0:20 0.058 DMA 2-BYPASS 0:21 0.058 SWMM5 Page 7 Post-Dev Input (POC-2) DMA -BYPASS -2 0:22 0 058 DMA 2-BYPASS 0:23 0 058 DMA 2-BYPASS 0:24 0.059 DMA 2-BYPASS 0:25 0.059 DMA 2-BYPASS 0:26 0.059 DMA -BYPASS -2 0:27 0.059 DMA 2-BYPASS 0:28 0.060 DMA -BYPASS -2 0:29 0.060 DMA 2-BYPASS 0:30 0.060 DMA -BYPASS -2 0:31 0.060 DMA 2-BYPASS 0:32 0.060 DMA -BYPASS -2 0:33 0.060 DMA -BYPASS -2 0:34 0.060 DMA 2-BYPASS 0:35 0.061 DMA 2-BYPASS 0:36 0.061 DMA 2-BYPASS 0:37 0.061 DMA 2-BYPASS 0:38 0.061 DMA 2-BYPASS 0:39 0.061 DMA -2-BYPASS 0:40 0.061 DMA 2-BYPASS 0:41 0.062 DMA 2-BYPASS 0:42 0.062 DMA -2-BYPASS 0:43 0.062 DMA 2-BYPASS 0:44 0.062 DMA 2-BYPASS 0:45 0.063 DMA 2-BYPASS 0:46 0.063 DMA -BYPASS -2 0:47 0.063 DMA 2-BYPASS 0:48 0.063 DMA -BYPASS -2 0:49 0.064 DMA 2-BYPASS 0:50 0.064 DMA 2-BYPASS 0:51 0.064 DMA -BYPASS -2 0:52 C.064 DMA 2-BYPASS 0:53 0.064 DMA 2-BYPASS 0:54 0.064 DMA 2-BYPASS . 0:55 C.065 DMA 2-BYPASS 0:56 0.065 DMA 2-BYPASS 0:57 0.065 DMA -2-BYPASS 0:58 0.065 DMA 2-BYPASS 0:59 1.065 DMA -2-BYPASS 1:00 (.065 DMA 2-BYPASS 1:01 (.066 DMA -BYPASS -2 1:02 (.066 DMA 2-BYPASS 1:03 0.066 DMA -BYPASS -2 1:04 0.067 DMA 2-BYPASS 1:05 0.067 DMA 2-BYPASS 1:06 0.067 DMA -2-BYPASS 1:07 0.068 DMA 2-BYPASS 1:08 0.068 DMA 2-BYPASS 1:09 0.068 DMA 2-BYPASS 1:10 0.068 DMA 2-BYPASS 1:11 0.069 DMA 2-BYPASS 1:12 0.069 DMA 2-BYPASS 1:13 0.069 DMA 2-BYPASS 1:14 0.069 DMA 2-BYPASS 1:15 0.069 DMA 2-BYPASS 1:16 0.069 DMA 2-BYPASS 1:17 0.070 DMA 2-BYPASS 1:18 1.070 DMA 2-BYPASS 1:19 0.070 DMA 2-BYPASS 1:20 1.070 DMA 2-BYPASS 1:21 1.071 DMA 2-BYPASS 1:22 1.071 DMA 2-BYPASS 1:23 3.072 DMA 2-BYPASS 1:24 3.072 DMA 2-BYPASS 1:25 3.072 DMA 2-BYPASS 1:26 3.073 DMA -2 - 2-BYPASS 1:27 3.073 DMA -BYPASS 1:28 J.073 DMA 2-BYPASS 1:29 3.074 DMA_ 2-BYPASS 1:30 3.074 DMA 2-BYPASS 1:31 3.074 DMA 2-BYPASS 1:32 3.074 DMA 2-BYPASS 1:33 3.075 DMA 2-BYPASS 1:34 0.075 DMA 2-BYPASS 1:35 0.075 DMA 2-BYPASS 1:36 0.075 DMA 2-BYPASS 1:37 0.075 DMA 2-BYPASS 1:38 0.076 DMA 2-BYPASS 1:39 0.076 DMA -2 -BYPASS 1:40 :0.076 DMA 2-BYPASS 1:41 0.077 DMA 2-BYPASS 1:42 0.077 DMA 2-BYPASS 1:43 0.078 DMA 2-BYPASS 1:44 0.078 DMA 2-BYPASS 1:45 0.079 DMA 2-BYPASS 1:46 0.079 DMA 2-BYPASS 1:47 0.080 DMA -2-BYPASS 1:48 0.080 SWMM5 Page 8 Post-Dev Input (POC-2) DMA 2-BYPASS 1:49 0.081 DMA 2-BYPASS 1:50 0.081 DMA 2-BYPASS 1:51 0.081 DMA 2-BYPASS 1:52 0.081 DMA 2-BYPASS 1:53 0.082 DMA 2-BYPASS 1:54 0.082 DMA 2-BYPASS 1:55 0.082 DMA 2-BYPASS 1:56 0.082 DMA 2-BYPASS 1:57 0.083 DMA DMA 2-BYPASS 2-BYPASS 1:58 1:59 0.083 0.083 DMA 2-BYPASS 2:00 0.084 DMA 2-BYPASS 2:01 0.084 DMA 2-BYPASS 2:02 0.085 DMA 2-BYPASS 2:03 0.086 DMA_2-BYPASS 2:04 0.086 DMA 2-BYPASS 2:05 0.087 DMA 2-BYPASS 2:06 0.087 DMA 2-BYPASS 2:07 0.088 DMA 2-BYPASS 2:08 0.089 DMA 2-BYPASS 2:09 0.089 DMA 2-BYPASS 2:10 0.090 DMA 2-BYPASS 2:11 0.090 DMA 2-BYPASS 2:12 0.090 DMA 2-BYPASS 2:13 0.091 DMA 2-BYPASS 2:14 0.091 DMA 2-BYPASS 2:15 0.091 DMA 2-BYPASS 2:16 0.092 DMA 2-BYPASS 2:17 0.092 DMA 2-BYPASS 2:18 0.092 DMA 2-BYPASS 2:19 0.093 DMA 2-BYPASS 2:20 0.093 DMA 2-BYPASS 2:21 0.094 DMA 2-BYPASS 2:22 0.095 DMA 2-BYPASS 2:23 0.096 DMA DMA 2-BYPASS 2-BYPASS 2:24 2:25 0.097 0.098 DMA 2-BYPASS 2:26 0.098 DMA 2-BYPASS 2:27 0.099 DMA 2-BYPASS 2:28 0.100 DMA 2-BYPASS 2:29 0.101 DMA 2-BYPASS 2:30 0.101 DMA 2-BYPASS 2:31 0.102 DMA 2-BYPASS 2:32 0.102 DMA 2-BYPASS 2:33 0.103 DMA 2-BYPASS 2:34 0.103 DMA 2-BYPASS 2:35 0.104 DMA 2-BYPASS 2:36 0.104 DMA 2-BYPASS 2:37 0.105 DMA 2-BYPASS 2:38 0.105 DMA 2-BYPASS 2:39 0.106 DMA 2-BYPASS 2:40 0.107 DMA 2-BYPASS 2:41 0.108 DMA_2-BYPASS 2:42 0.109 DMA 2-BYPASS 2:43 0.110 DMA 2-BYPASS 2:44 0.111 DMA 2-BYPASS 2:45 0.112 DMA 2-BYPASS 2:46 0.114 DMA 2-BYPASS 2:47 0.115 DMA 2-BYPASS 2:48 0.116 DMA 2-BYPASS 2:49 0.117 DMA 2-BYPASS 2:50 0.118 DMA 2-BYPASS 2:51 0.118 DMA -BYPASS -2 2:52 0.119 DMA 2-BYPASS 2:53 0.120 DMA 2-BYPASS 2:54 0.121 DMA 2-BYPASS 2:55 0.121 DMA 2-BYPASS 2:56 0.122 DMA 2-BYPASS 2:57 0.123 DMA 2-BYPASS 2:58 0.123 DMA 2-BYPASS 2:59 0.124 DMA 2-BYPASS 3:00 0.126 DMA_2-BYPASS 3:01 0.128 DMA 2-BYPASS 3:02 0.130 DMA 2-BYPASS 3:03 0.131 DMA 2-BYPASS 3:04 0.133 DMA 2-BYPASS 3:05 0.135 DMA 2-BYPASS 3:06 0.137 DMA 2-BYPASS 3:07 0.139 DMA 2-BYPASS 3:08 0.140 DMA 2-BYPASS 3:09 0.142 DMA 2-BYPASS 3:10 0.143 DMA 2-BYPASS 3:11 0.145 DMA 2-BYPASS 3:12 0.146 DMA 2-BYPASS 3:13 0.147 DMA 2-BYPASS 3:14 0.148 DMA 2-BYPASS 3:15 0.149 SWMM5 Page 9 Post-Dev Input (POC-2) DMA 2-BYPASS 3:16 0.151 DMA 2-BYPASS 3:17 0.152 DMA 2-BYPASS 3:18 0.153 DMA 2-BYPASS 3:19 0.154 DMA 2-BYPASS 3:20 0.158 DMA-2 -BYPASS 3:21 0.161 DMA 2-BYPASS 3:22 0165 DMA 2-BYPASS 3:23 0 168 DMA 2-BYPASS 3:24 0 171 DMA 2-BYPASS 3:25 0 175 DMA 2-BYPASS 3:26 0.178 DMA 2-BYPASS 3:27 0.182 DMA 2-BYPASS 3:28 0.185 DMA-2 -BYPASS 3:29 0.189 DMA 2-BYPASS 3:30 0.191 DMA 2-BYPASS 3:31 0.194 DMA 2-BYPASS 3:32 0.196 DMA 2-BYPASS 3:33 0.199 DMA 2-BYPASS 3:34 0.202 DMA 2-BYPASS 3:35 0.204 DMA 2-BYPASS 3:36 0.207 DMA -BYPASS -2 3:37 0.209 DMA 2-BYPASS 3:38 0.212 DMA 2-BYPASS 3:39 0.215 DMA 2-BYPASS 3:40 0.225 DMA 2-BYPASS 3:41 0.235 DMA 2-BYPASS 3:42 0.245 DMA 2-BYPASS 3:43 0.255 DMA -2-BYPASS 3:44 0.265 DMA 2-BYPASS 3:45 0.275 DMA 2-BYPASS 3:46 0.285 DMA 2-BYPASS 3:47 0.295 DMA 2-BYPASS 3:48 0.305 DMA -2-BYPASS 3:49 C.315 DMA 2-BYPASS 3:50 C.333 DMA -BYPASS -2 3:51 C.351 DMA 2-BYPASS 3:52 C.368 DMA -BYPASS -2 3:53 C.386 DMA 2-BYPASS 3:54 C.404 DMA -BYPASS -2 3:55 C.421 DMA 2-BYPASS 3:56 C.439 DMA 2-BYPASS 3:57 (.457 DMA -BYPASS -2 3:58 0.474 DMA 2-BYPASS 3:59 0.492 DMA -BYPASS -2 4:00 0.595 DMA 2-BYPASS 4:01 9.698 DMA 2-BYPASS 4:02 0801 DMA 2-BYPASS 4:03 0.903 DMA 2-BYPASS 4:04 .006 DMA 2-BYPASS 4:05 ..109 DMA 2-BYPASS 4:06 1.212 DMA 2-BYPASS 4:07 1.315 DMA 2-BYPASS 4:08 1.419 DMA 2-BYPASS 4:09 1.520 DMA 2-BYPASS 4:10 8.396 DMA 2-BYPASS 4:11 8.272 DMA 2-BYPASS 4:12 L147 DMA 2-BYPASS 4:13 1.023 DMA 2-BYPASS 4:14 3.899 DMA 2-BYPASS 4:15 3.774 DMA -2-BYPASS 4:16 3.650 DMA 2-BYPASS 4:17 3.526 DMA 2-BYPASS 4:18 3.401 DMA -2-BYPASS 4:19 3.277 DMA 2-BYPASS 4:20 3.266 DMA 2-BYPASS 4:21 3.255 DMA 2-BYPASS 4:22 0.245 DMA 2-BYPASS 4:23 0.234 DMA 2-BYPASS 4:24 0.223 DMA 2-BYPASS 4:25 0.212 DMA 2-BYPASS 4:26 0.201 DMA 2-BYPASS 4:27 0.191 DMA 2-BYPASS 4:28 0.180 DMA 2-BYPASS 4:29 0.169 DMA 2-BYPASS 4:30 0.166 DMA 2-BYPASS 4:31 0.162 DMA 2-BYPASS 4:32 0.158 DMA 2-BYPASS 4:33 0.154 DMA 2-BYPASS 4:34 0.151 DMA 2-BYPASS 4:35 0.147 DMA 2-BYPASS 4:36 0.143 DMA 2-BYPASS 4:37 0.140 DMA 2-BYPASS 4:38 0.136 DMA 2-BYPASS 4:39 0.132 DMA 2-BYPASS 4:40 0.130 DMA -2-BYPASS 4:41 0.128 DMA -2-BYPASS 4:42 0.126 SWMM5 Page 10 Post-Dev Input (POC-2) DMA 2-BYPASS 4:43 0.124 DMA 2-BYPASS 4:44 0.122 DMA 2-BYPASS 4:45 0.119 DMA 2-BYPASS 4:46 0.117 DMA 2-BYPASS 4:47 0.115 DMA 2-BYPASS 4:48 0.113 DMA 2-BYPASS 4:49 0.111 DMA 2-BYPASS 4:50 0.109 DMA 2-BYPASS 4:51 0.108 DMA DMA 2-BYPASS 2-BYPASS 4:52 4:53 0.107 0.105 DMA 2-BYPASS 4:54 0.104 DMA 2-BYPASS 4:55 0.102 DMA 2-BYPASS 4:56 0.101 DMA 2-BYPASS 4:57 0.099 DMA 2-BYPASS 4:58 0.098 DMA 2-BYPASS 4:59 0.097 DMA 2-BYPASS 5:00 0.095 DMA 2-BYPASS 5:01 0.094 DMA 2-BYPASS 5:02 0.093 2-BYPASS 5:03 0.092 DMA -2DMA -BYPASS 5:04 0.091 DMA 2-BYPASS 5:05 0.090 DMA 2-BYPASS 5:06 0.089 DMA 2-BYPASS 5:07 0.088 DMA 2-BYPASS 5:08 0.087 DMA 2-BYPASS 5:09 0.086 DMA 2-BYPASS 5:10 0.085 DMA 2-BYPASS 5:11 0.085 DMA 2-BYPASS 5:12 0.084 DMA 2-BYPASS 5:13 0.083 DMA 2-BYPASS 5:14 0.082 DMA 2-BYPASS 5:15 0.081 DMA 2-BYPASS 5:16 0.081 DMA 2-BYPASS 5:17 0.080 DMA 2-BYPASS 5:18 0.079 DMA 2-BYPASS 5:19 0.078 DMA 2-BYPASS 5:20 0.078 DMA-2 -BYPASS 5:21 0.077 DMA 2-BYPASS 5:22 0.076 DMA 2-BYPASS 5:23 0.076 DMA 2-BYPASS 5:24 0.075 DMA 2-BYPASS 5:25 0.074 DMA 2-BYPASS 5:26 0.074 DMA 2-BYPASS 5:27 0.073 DMA 2-BYPASS 5:28 0.072 DMA 2-BYPASS 5:29 0.072 DMA 2-BYPASS 5:30 0.071 DMA 2-BYPASS 5:31 0.071 DMA 2-BYPASS 5:32 0.070 DMA 2-BYPASS 5:33 0.070 DMA 2-BYPASS 5:34 0.069 DMA 2-BYPASS 5:35 0.069 DMA-2 -BYPASS 5:36 0.068 DMA 2-BYPASS 5:37 0.068 DMA-2 -BYPASS 5:38 0.067 DMA 2-BYPASS 5:39 0.067 DMA 2-BYPASS. 5:40 0.066 DMA 2-BYPASS 5:41 0.066 DMA 2-BYPASS 5:42 0.065 DMA 2-BYPASS 5:43 0.065 DMA-2 -BYPASS 5:44 0.065 DMA 2-BYPASS 5:45 0.064 DMA-2 -BYPASS 5:46 0.064 DMA 2-BYPASS 5:47 0.063 DMA 2-BYPASS 5:48 0.063 DMA 2-BYPASS 5:49 0.062 DMA 2-BYPASS 5:50 0.062 DMA 2-BYPASS 5:51 0.062 DMA 2-BYPASS 5:52 0.061 DMA 2-BYPASS 5:53 0.061 DMA 2-BYPASS 5:54 0.061 DMA 2-BYPASS 5:55 0.060 DMA-2 -BYPASS 5:56 0.060 DMA 2-BYPASS 5:57 0.059 DMA 2-BYPASS 5:58 0.059 DMA-2 -BYPASS 5:59 0.059 DMA 2-BYPASS 6:00 0.053 DMA 2-BYPASS 6:01 0.047 DMA 2-BYPASS 6:02 0.041 DMA 2-BYPASS 6:03 0.035 DMA 2-BYPASS 6:04 0.029 DMA 2-BYPASS 6:05 0.023 DMA 2-BYPASS 6:06 0.018 DMA 2-BYPASS 6:07 0.012 DMA 2-BYPASS 6:08 0.006 DMA 2-BYPASS 6:09 0.000 SWMM5 Page 11 Post-Dev Input (POC-2) DMA 2-BYPASS 6:10 0.000 LID RAIN 0 0 LID RAIN 6:00 0 [REPORT] INPUT NO CONTROLS NO SUBCATCHMENTS ALL NODES ALL LINKS ALL [TAGS] [NAP] DIMENSIONS 110.559 4920.830 791.082 5718.627 Units None [COORDINATES] ;Node X-Coord Y-Coord POC-2 756.643 4963.675 DIV 2-1 756.944 5245.370 SURF 2-1 260.236 5245.858 [VERTICES] ;;Link X-Coord Y-Coord [Polygons] ;;Subcatchment X-Coord Y-Coord DMA 2-1 756.643 5641.802 DMA 2-1 756.643 5641.802 DMA 2-BYPASS 251.371 5058.228 IMP-2-1 736.643 5445.308 [SYMBOLS] ;;Gage X-Coord Y-Ccord DMA 2-1 6)8.902 5631.460 DMA 2-BYPASS 123.081 5053.568 LID RAIN 638.902 5433.488 SWMM5 Page 12 POST-DEV (POC-3) Post-Dev Input (POC-3) [TITLE] [OPTIONS] FLOW_UNITS CFS INFILTRATION GREEN ANPT FLOW ROUTING KINWAVE START DATE 01/01/2000 START TIME 00:00:00 REPORT START DATE 01/01/2000 REPORT START TIME 00:00:00 END DATE 01/01/2000 END TIME 12:00:00 SWEEP START 01/01 SWEEP END 12/31 DRY DAYS 0 REPORT STEP 00:01:00 WET STEP 00:01:00 DRY STEP 00:01:00 ROUTING STEP 0:01:00 ALLOW PONDING NO INERTIAL DAMPING PARTIAL VARIABLE STEP 0.75 LENGTHENING_STEP 0 WIN SURFAREA 0 NORMAL FLOW LIMITEC BOTH SKIP STEADY STATE NO FORCE MAIN EQUATION H-W LINK OFFSETS DEPTH MIN SLOPE 0 [EVAPORATION] ;;Type Parameters MONTHLY 0.041 0.076 0.118 0.192 0.237 0.318 0.308 0.286 0.217 0.14 0.067 0.041 DRY-ONLY NO [RAINGAGES Rain Time Snow Data ;;Name Type Intrvl Catch Source DMA 4-1 INTENSITY 0:01 1.0 TIMESERIES DNA 4-1 DMA -5-1 INTENSITY 0:01 1.0 TIMESERIES DMA_S-i DMA -BYPASS _3 INTENSITY 0:01 1.0 TIMESERIES DMA 3-BYPASS LID-RAIN INTENSITY 6:00 1.0 TIMESERIES LID_RAGE SO BCATC NM ENTS Total Pcnt. Pcnt. Curb Snow ;;Name Raingage Outlet Area Impery Width Slope Length Pack DMA 4-i DMA 4-i IMP 4-1 7.938 100 345789 1.1 0 DMA 5-i DMA IMP _5-1 5-i 1.431 100 62328 3.5 0 DMA 3-BYPASS DMA 3-BYPASS POC-3 26.612 100 1159197 18.6 0 IMP 4-1 LID RAIN DIV 4-i 0.166506 0 10 1 0 IMP-5-1 LID RAIN DIV_S-i 0.032140 0 10 1 0 [SUBAREAS] ;;Subcatchment N-Impery N-Pery S-Impery S-Pery Pctiero RouteTo PctRouted DMA 4-1 C.012 0.05 0 0.1 25 OUTLET DMA 5-1 C.012 0.05 3 0.1 25 OUTLET DMA 3-BYPASS C.012 0.05 3 0.1 25 OUTLET IMP 4-1 C.012 0.05 3.02 0.1 25 OUTLET IMP-5-1 0.012 0.05 0.02 0.1 25 OUTLET [INFILTRATION] ;;Subcatchment Suction HydCon IMDmax DMA 4-1 9 0.01875 0.30 DMA 5-1 9 0.01875 0.30 DMA 3-BYPASS 9 0.025 0.30 IMP 4-1 9 0.025 0.30 IMP-5-1 9 0.025 0.30 (LID-CONTROLS] Type/Layer Parameters IMP 4-i BC IMP 4-1 SURFACE 8.30 0.05 0 0 5 IMP 4-1 SOIL 18 0.4 0.2 0.1 S 5 1.5 IMP 4-1 STORAGE 18 0.67 0 0 IMP-4-1 DRAIN 0.8292 0.5 0 6 IMP 5-1 BC IMP 5-1 SURFACE 6.31 0.05 0 0 5 IMP 5-1 SOIL 18 0.4 0.2 0.1 S 5 1.5 IMP 5-1 STORAGE 12 0.67 0 0 IMP-5-1 DRAIN 0.9513 0.5 0 6 SWMM5 Page 1 Post-Dev Input (POC-3) [LID USAGE] ;;Subcatchment LID Process Number Area Width InitSatur Fromlmpry ToPery Report File IMP 4-i IMP 4-1 1 7253 0 0 100 0 IMP 5-1 IMPS-i 1 1400.02 0 0 100 0 [OUTFALLS I Invert Outfall Stage/Table Tide ;;Name Elev. Type Time Series Gate POC-3 0 FREE NO [DIVIDERS] Invert Diverted Divider ;;Name Elev. Link Type Parameters DIV 4-1 0 BYPASS 4-i CUTOFF 0.56023 0 0 0 0 DIV 5-1 0 BYPASS_S-i CUTOFF 0.10327 0 0 0 0 [STORAGE] Invert Max. Init. Storage Curve Ponded Evap. ;;Name Elev. Depth Depth Curve Params Area Frac. Infiltration Parameters SURF 4-1 0 2.83 0 TABULAR SURF 4-i 0 SURF-5-1 0 2 0 TABULAR SURF 5-i 0 0 [CONDUITS] Inlet Outlet Manning Inlet Outlet bit. Max. ;;Name Node Node Length N Offset Offset Flow Flow BYPASS 4-1 DIV_a-i SURF 4-1 10 0.01 0 0 0 0 DUN 4-1 DIV 4-1 POC-3 10 0.01 0 0 0 0 BYPASS 5-1 DIV_S-i SURF_S-i 10 0.01 0 0 0 0 DUN-S-i DIV_S-i POC-3 10 0.01 0 0 0 0 [OUTLETS] Inlet Outlet Outflow Outlet Qcoeff/ Flap ;;Name Node Node Height Type QTable Qexpon Gate 4-1 SURF 4-1 POC-3 0 TABULAR/DEPTH OUTLET_4-1 NO S-i SURF-5-1 POC-3 0 TABULAR/DEPTH OUTLETS-i NO [XSECTIONS] ;;Link Shape Geomi Geom2 Geom3 Geom4 Barrels BYPASS 4-1 DUMMY 0 0 0 0 DUN 4-1 DUMMY 0 0 0 0 1 BYPASS 5-1 DUMMY 0 0 0 0 1 DUN-S-i DUMMY 0 0 0 0 [LOSSES] ;;Link Inlet Outlet Average Flap Gate [CURVES] ;;Name Type X-Value Y-Value OUTLET 4-1 Rating 0.000 0.000 OUTLET-4-1 0.042 0.033 OUTLET 4-1 0.083 0.093 OUTLET-4-1 0.125 0.171 OUTLET 4-1 0.167 0.264 OUTLET-4-1 0.208 0.368 OUTLET 4-1 0.250 0.484 OUTLET 4-1 0.292 0.610 OUTLET 4-1 0.333 0.746 OUTLET 4-i 0.375 0.890 OUTLET_a-i 0.417 1.042 OUTLET-4-1 0.458 1.202 OUTLET_a-i 0.500 1.370 OUTLET-4-1 0.542 1.545 OUTLET 4-1 0.583 1.726 OUTLET-4-1 0.625 1.915 OUTLET_a-i 0.667 2.109 OUTLET 4-1 0.708 2.310 OUTLET 4-1 0.750 2.517 OUTLET 4-1 0.792 2.730 OUTLET 4-1 0.833 2.948 OUTLET 4-1 0.875 3.172 OUTLET 4-i 0.917 3.401 OUTLET 4-1 0.958 3.635 OUTLET 4-1 1.000 3.875 OUTLET 4-1 1.042 4.120 OUTLET 4-1 1.083 4.369 OUTLET 4-1 1.125 4.624 OUTLET-4-1 1.167 4.883 SWMM5 Page 2 Post-Dev Input (POC-3) OUTLET 4-1 1.208 5.147 OUTLET 4-i 1.250 5.415 OUTLET 4-1 1.292 5.688 OUTLET 4-i 1.333 5966 OUTLET 4-i 1.375 6 248 OUTLET 4-1 1.417 6 534 OUTLET 4-1 1.458 6,824 OUTLET 4-1 1.500 7.119 OUTLET 4-i 1.542 7.417 OUTLET 4-i 1.583 7.720 OUTLET 4-i 1.625 8.027 OUTLET 4-i 1.667 8.338 OUTLET 4-i 1.708 8.652 OUTLET 4-i 1.750 8.971 OUTLET 4-1 1.792 9.293 OUTLET 4-1 1.833 9.619 OUTLET 4-1 1.875 9.949 OUTLET_a-i 1.917 13.282 OUTLET_a-i 1.958 13.619 OUTLET 4-1 2.000 13.960 OUTLET 4-1 2.042 11.588 OUTLET 4-1 2.083 12.454 OUTLET 4-1 2.125 13.476 OUTLET 4-1 2.167 14.626 OUTLET 4-1 2.208 15.885 OUTLET 4-1 2.250 17.244 OUTLET 4-1 2.292 18.692 OUTLET 4-1 2.333 20.225 OUTLET 4-1 2.375 21.836 OUTLET 4-1 2.417 23.521 OUTLET 4-1 2.458 25.276 OUTLET 4-1 2.500 27.099 OUTLET 4-1 2.542 28.987 OUTLET 4-1 2.583 10.937 OUTLET 4-1 2.625 2.946 OUTLET 4-1 2.667 5.014 OUTLET 4-1 2.708 17.138 OUTLET 4-1 2.750 9.317 OUTLET 4-1 2.792 '1.548 OUTLET-4-1 2.833 '3.832 OUTLET-5-1 Rating 0.000 0.000 OUTLET_S-i 0.042 0.079 OUTLET 5-1 0.083 0.224 OUTLET 5-1 0.125 0.411 OUTLET 5-1 0.167 0.633 OUTLET 5-1 0.208 0.884 OUTLET 5-1 0.250 1.163 OUTLET 5-1 0.292 1.465 OUTLET 5-1 0.333 1.790 OUTLET 5-1 0.375 2.136 OUTLET 5-1 0.417 2.501 OUTLET -5-1 0.458 2.886 OUTLETS-i 0.500 3.288 OUTLET_S-i 0.542 3.707 OUTLET 5-1 0.583 4.143 OUTLET 5-1 0.625 4.595 OUTLET 5-1 0.667 5.062 OUTLET 5-1 0.708 5.544 OUTLET 5-1 0.750 6.041 OUTLET 5-1 0.792 6.551 OUTLET 5-1 0.833 7.075 OUTLET 5-1 0.875 7.612 OUTLET 5-1 0.917 8.162 OUTLET 5-1 0.958 8.725 OUTLET 5-1 1.000 9.300 OUTLET 5-1 1.042 10.125 OUTLET 5-1 1.083 11.158 OUTLET 5-1 1.125 12.330 OUTLET 5-1 1.167 13.618 OUTLET 5-1 1.208 15.006 OUTLET 5-1 1.250 16.485 OUTLET 5-1 1.292 18.047 OUTLET 5-1 1.333 19.688 OUTLET 5-1 1.375 21.402 OUTLET 5-1 1.417 23.185 OUTLET 5-1 1.458 25.035 OUTLET 5-1 1.500 26.949 OUTLET 5-1 1.542 28.924 OUTLET 5-1 1.583 30.959 OUTLET 5-1 1.625 33.050 OUTLET 5-1 1.667 35.197 OUTLET 5-1 1.708 37.398 OUTLET 5-1 1.750 39.651 OUTLET 5-1 1.792 41.956 OUTLET 5-1 1.833 44.310 OUTLET -5-1 1.875 46.713 SWMM5 Page Post-Dev Input (POC-3) OUTLETS-1 1.917 49.164 OUTLET 5-1 1.958 51.661 OUTLET 5-1 2.000 54.204 SURF 4-1 Storage 0.00 7799 SURF 4-1 0.08 7868 SURF 4-1 0.17 7937 SURF 4-1 0.25 8007 SURF 4-1 0.33 8076 SURF 4-1 0.42 8146 SURF 4-1 0.50 8216 SURF 4-1 0.58 8286 SURF 4-1 0.67 8356 SURF 4-1 0.75 8426 SURF 4-1 0.83 8497 SURF 4-1 0.92 8568 SURF 4-1 1.00 8639 SURF 4-1 1.08 8710 SURF-4-1 1.17 8781 SURE' 4-1 1.25 8853 SURF 4-1 1.33 8924 SURF-4-1 1.42 8996 SURF 4-1 1.50 9068 SURF 4-1 1.58 9140 SURF 4-1 1.67 9213 SURF 4-1 1.75 9285 SURF 4-1 1.83 9358 SURF 4-1 1.92 9431 SURF 4-1 2.00 9504 SURF -4-1 2.08 9577 SURF 4-1 2.17 9650 SURF -4-1 2.25 9724 SURF 4-1 2.33 9798 SURF-4-1 2.42 9872 SURF 4-1 2.50 9946 SURF 4-1 2.58 10020 SURF 4-1 2.67 10094 SURF 4-1 2.75 10169 SURF-4-1 2.83 10244 SURF 5-1 Storage 0.00 1548 SURF 5-1 0.08 1573 SURF 5-1 0.17 1599 SURF 5-1 0.25 1624 SURF 5-1 0.33 1650 SURF 5-1 0.42 1676 SURF 5-1 0.50 1702 SURF 5-1 0.58 1729 SURF 5-1 0.67 1755 SURF 5-1 0.75 1782 SURF-5-1 0.83 1809 SURF 5-1 0.92 1836 SURF 5-1 1.00 1863 SURF 5-1 1.08 1891 SURF 5-1 1.17 1918 SURF 5-1 1.25 1946 SURF 5-1 1.33 1974 SURF 5-1 1.42 2002 SURF-5-1 1.50 2031 SURF _5-1 1.58 2059 SURF-5-1 1.67 2088 SURF_S-i 1.75 2117 SURF_S-i 1.83 2146 SURF 5-1 1.92 2175 SURF_S-i 2.00 2204 [TIMESERIES] ;;Name Date Time Value DMA 4-1 0:00 0.010 DMA 4-1 0:01 0.019 DMA 4-1 0:02 0.029 DMA 4-1 0:03 0.038 DMA 4-1 0:04 0.048 DMA 4-1 0:05 0.057 DMA 4-1 0:06 0.067 DMA 4-1 0:07 0.076 DMA 4-1 0:08 0.086 DMA-4-1 0:09 0.093 DMA 4-1 0:10 0.095 DMA 4-1 0:11 0.096 DMA 4-1 0:12 0.096 DMA 4-1 0:13 0.096 DMA-4-1 0:14 0.096 DMA 4-i 0:15 0.096 DMA 4-1 0:16 0.097 DMA-4-1 0:17 0.097 SWMM5 Page 1 I I I I I I I I I Post-Dev Input (POC-3) DMA 4-1 0:18 0.097 DMA 4-1 0:19 0.097 DMA 4-1 0:20 0.097 DMA 4-1 0:21 0.098 DMA 4-1 0:22 0.098 DMA 4-1 0:23 0.099 DMA 4-1 0:24 0.099 DMA '1-1 0:25 0.099 DMA 4-1 0:26 0.100 DMA 4-1 0:27 0.100 DMA 4-1 0:28 0.101 DMA 4-1 0:29 0.101 DMA 4-1 0:30 0.101 DMA 4-1 0:31 0.101 DMA 4-1 0:32 0.102 DMA 4-1 0:33 0.102 DMA_4-1 0:34 0102 DMA 4-i 0:35 0 102 DMA 4-1 0:36 0 102 DMA 4-1 0:37 0.103 DMA 4-1 0:38 0.103 DMA 4-1 0:39 0.103 DMA 4-1 0:40 0.103 DMA 4-1 0:41 0.104 DMA 4-1 0:42 0.104 DMA 4-1 0:43 0.105 DMA 4-1 0:44 0.105 DMA 4-1 0:45 0.106 DMA-4-1 0:46 0.106 DMA 4-1 0:47 0.107 DMA -4-1 0:48 0.107 DMA 4-1 0:49 0.107 DMA -4-1 0:50 0.108 DMA 4-1 0:51 0.108 DMA -4-1 0:52 0.108 DMA 4-1 0:53 0.108 DMA-4-1 0:54 0.109 DMA -4-1 0:55 0.109 DMA 4-1 0:56 C.109 DMA 4-1 0:57 C.109 DMA 4-1 0:58 C.iiO DMA -4-1 0:59 CuD DMA 4-i 1:00 C.110 DMA 4-1 1:01 (.111 DMA -4-1 1:02 (.111 DMA 4-1 1:03 0.112 DMA 4-i 1:04 0.112 DMA 4-1 1:05 0.113 DMA -4-1 1:06 0.114 DMA 4-1 1:07 0.114 DMA 4-i 1:08 0.115 DMA -4-1 1:09 0.115 DMA 4-1 1:10 0.115 DMA -4-1 1:11 0.116 DMA 4-i 1:12 0.116 DMA -4-1 1:13 0.116 DMA_a-i 1:14 0.117 DMA -4-1 1:15 0.117 DMA 4-i 1:16 ).117 DMA _4-1 1:17 3.117 DMA -4-1 1:18 3.118 DMA 4-1 1:19 3.118 DMA 4-1 1:20 3.119 DMA 4-1 1:21 0.119 DMA -4-1 1:22 3.120 DMA 4-i 1:23 3.121 DMA -4-1 1:24 0.121 DMA_a-i 1:25 0.122 DMA -4-1 1:26 0.122 DMA 4-i 1:27 0.123 DMA -4-1 1:28 0.124 DMA_a-i 1:29 0.124 DMA -4-1 1:30 0.125 DMA_a-i 1:31 0.125 DMA -4-1 1:32 0.125 DMA 4-i 1:33 0.126 DMA -4-1 1:34 0.126 DMA_a-i 1:35 0.126 DMA -4-1 1:36 0.127 DMA -4-1 1:37 0.127 DMA 4-1 1:38 0.128 DMA -4-1 1:39 0.128 DMA 4-i 1:40 0.129 DMA -4-1 1:41 0.129 DMA -4-1 1:42 0.130 DMA 4-1 1:43 0.131 DMA -4-1 1:44 0.132 SWMM5 Page Post-Dev Input (POC-3) DMA 4-1 1:45 0.133 DMA 4-1 1:46 0.133 DMA_a-i 1:47 0.134 DMA 4-i 1:48 0.135 DMA 4-1 1:49 0.136 DMA 4-1 1:50 0.136 DMA 4-1 1:51 0.137 DMA 4-1 1:52 0.137 DMA_a-i 1:53 0.138 DMA DMA 4-1 4-1 1:54 1:55 0.138 0.138 DMA_4-1 1:56 0.139 DMA_a-i 1:57 0.139 DMA 4-1 1:58 0.140 DMA 4-1 1:59 0.140 DMA 4-1 2:00 0.141 DMA_a-i 2:01 0.142 DMA 4-1 2:02 0.143 DMA 4-1 2:03 0.144 DMA 4-1 2:04 0.145 DMA 4-1 2:05 0.146 DMA 4-1 2:06 0.147 DMA 4-1 2:07 0.148 DMA 4-i 2:08 0.149 DMA 4-1 2:09 0.150 DMA 4-1 2:10 0.151 DMA 4-1 2:11 0.152 DMA 4-1 2:12 0.152 DMA 4-i 2:13 0.153 DMA 4-1 2:14 0.153 DMA 4-i 2:15 0.154 DMA a-i 2:16 0.155 DMA 4-1 2:17 0.155 DMA 4-1 2:18 0.156 DMA 4-i 2:19 0.156 DMA 4-i 2:20 0.158 DMA 4-1 2:21 0.159 DMA 4-1 2:22 0.160 DMA_a-i 2:23 0.162 DMA 4-1 2:24 0.163 DMA 4-1 2:25 0.164 DMA 4-1 2:26 0.166 DMA 4-1 2:27 0.167 DMA 4-1 2:28 0.168 DMA_a-i 2:29 0.170 DMA _4-1 2:30 0.171 DMA 4-i 2:31 0.171 DMA 4-i 2:32 0.172 DMA 4-i 2:33 0.173 DMA 4-i 2:34 0.174 DMA 4-1 2:35 0.175 DMA 4-1 2:36 0.175 DMA 4-1 2:37 0.176 DMA 4-1 2:38 0.177 DMA_a-i 2:39 0.178 DMA 4-1 2:40 0.180 DMA 4-1 2:41 0.182 DMA 4-1 2:42 0.184 DMA 4-1 2:43 0.186 DMA 4-i 2:44 0.188 DMA_4-1 2:45 0.189 DMA 4-i 2:46 0.191 DMA_4-1 2:47 0.193 DMA _4-1 2:48 0.195 DMA_a-i 2:49 0.197 DMA a-i 2:50 0.198 DMA 4-1 2:51 0.200 DMA 4-1 2:52 0.201 DMA 4-1 2:53 0.202 DMA 4-1 2:54 0.203 DMA 4-1 2:55 0.204 DMA 4-1 2:56 0.206 DMA 4-1 2:57 0.207 DMA 4-1 2:58 0.208 DMA 4-i 2:59 0.209 DMA 4-1 3:00 0.212 DMA 4-1 3:01 0.215 DMA 4-i 3:02 0.218 DMA 4-i 3:03 0.221 DMA 4-1 3:04 0.224 DMA_a-i 3:05 0.228 DMA 4-1 3:06 0.231 DMA 4-1 3:07 0.234 DMA 4-1 3:08 0.237 DMA 4-1 3:09 0.240 DMA 4-1 3:10 0.242 DMA 4-1 3:11 0.244 SWMM5 Page Post-Dev Input (POC-3) DMA 4-1 3:12 0.246 DMA 4-1 3:13 0.248 DMA 4-i 3:14 0.250 DMA 4-i 3:15 0.252 DMA 4-1 3:16 0.254 DMA 4-1 3:17 0.256 DMA 4-i 3:18 0.258 DMA 4-i 3:19 0.260 DMA 4-1 3:20 0.266 DMA 4-1 3:21 0.272 DMA 4-1 3:22 0.277 DMA 4-1 3:23 0.283 DMA 4-1 3:24 0.289 DMA 4-1 3:25 0.295 DMA_a-i 3:26 0.300 DMA -4-1 3:27 0.306 DMA 4-1 3:28 0.312 DMA 4-1 3:29 0.318 DMA -4-1 3:30 0 322 DMA 4-1 3:31 0 327 DMA_4-1 3:32 0.331 DMA 4-1 3:33 0.335 DMA -4-1 3:34 0.340 DMA 4-1 3:35 0.344 DMA -4-1 3:36 0.349 DMA 4-1 3:37 0.353 DMA 4-i 3:38 0.358 DMA 4-1 3:39 0.362 DMA_a-i 3:40 0.379 DMA -4-1 3:11 0.396 DMA_a-i 3:42 0.413 DMA_a-i 3:43 0.430 DMA -4-1 3:44 0.447 DMA_a-i 3:45 0.464 DMA -4-1 3:46 0..81 DMA -4-1 3:47 0.498 DMA_a-i 3:48 0.515 DMA -4-1 3:49 0.531 DMA_a-i 3:50 C.560 DMA 4-1 3:51 C.588 DMA 4-1 3:52 C.616 DMA -4-1 3:53 C.644 DMA_a-i 3:51 C.672 DMA 4-1 3:55 (.700 DMA I-i 3:56 C.728 DMA 4-1 3:57 0.756 DMA -4-1 3:58 0.784 DMA_a-i 3:59 0.813 DMA -4-1 4:00 0.990 DMA_a-i a:oi :.168 DMA_a-i 4:02 :.345 DMA -4-1 4:03 1.523 DMA_a-i a:oa 1.700 DMA -4-1 4:05 1.876 DMA 4-i 4:06 2.056 DMA -4-1 4:07 2.233 DMA 4-i 4:08 2.411 DMA -4-1 4:09 2.588 DMA 4-1 4:10 2.375 DMA -4-1 4:11 2.162 DMA _4-1 4:12 1.949 DMA 4-1 4:13 1.736 DMA 4-1 . 4:14 1.523 DMA 4-1 4:15 1.310 DMA -4-1 4:16 1.097 DMA 1-1 4:17 0.884 DMA 4-1 4:18 0.671 DMA 4-1 4:19 0.458 DMA -4-1 1:20 o.aai DMA_a-i 4:21 0.124 DMA 4-1 1:22 0.406 DMA -4-1 1:23 0.389 DMA 4-1 4:24 0.372 DMA -4-1 1:25 0.354 DMA_I-i 4:26 0.337 DMA -4-1 4:27 0.320 DMA 4-1 1:28 0.302 DMA -4-1 1:29 0.285 DMA_a-i 4:30 0.279 DMA 4-1 1:31 0.273 DMA 4-1 1:32 0.267 DMA -4-1 1:33 0.260 DMA 4-1 1:34 0.251 DMA -4-1 4:35 0.248 DMA_I-i 4:36 0.242 DMA 4-1 1:37 0.236 DMA -4-1 1:38 0.229 SWMM5 Page Post-Dev Input (POC-3) DMA 4-i 4:39 0.223 DMA 4-i 4:40 0.220 DMA 4-1 4:41 0.216 DMA 4-1 4:42 0.212 DMA 4-1 4:43 0.209 DMA 4-1 4:44 0.205 DMA_I-i 4:45 0.201 DMA 4-i 4:46 0.198 DMA 4-1 4:47 0.194 DMA 4-1 4:48 0.191 DMA 4-1 4:49 0.187 DMA 4-i 4:50 0.184 DMA 4-i 4:51 0.182 DMA 4-1 4:52 0.180 DMA 4-1 4:53 0.177 DMA 4-i 4:54 0.175 DMA 4-i 4:55 0.172 DMA 4-i 4:56 0.170 DMA 4-1 4:57 0.168 DMA 4-1 4:58 0.165 DMA 4-1 4:59 0.163 DMA 4-1 5:00 0.161 DMA 4-1 5:01 0.159 DMA 4-1 5:02 0.157 DMA 4-1 5:03 0.156 DMA 4-1 5:04 0.154 DMA 4-1 5:05 0.152 DMA 4-3. 5:06 0.150 DMA 4-1 5:07 0.149 DMA 4-1 5:08 0.147 DMA_a-i 5:09 0.145 DMA 4-1 5:10 0.144 DMA 4-1 5:11 0.142 DMA 4-1 5:12 0.141 DMA 4-1 5:13 0.140 DMA 4-i 5:14 0.138 DMA _4-1 5:15 0.137 DMA_a-i 5:16 0.136 DMA 4-1 5:17 0.134 DMA 4-1 5:18 0.133 DMA 4-i 5:19 0.132 DMA 4-1 5:20 0.131 DMA_a-i 5:21 0.130 DMA 4-i 5:22 0.129 DMA 4-1 5:23 0.127 DMA 4-1 5:24 0.126 DMA I-i 5:25 0.125 DMA 4-1 5:26 0.124 DMA 4-1 5:27 0.123 DMA 4-1 5:28 0.122 DMA 4-1 5:29 0.121 DMA 4-1 5:30 0.120 DMA 4-1 5:31 0.119 DMA 4-1 5:32 0.118 DMA I-i 5:33 0.118 DMA 4-1 5:34 0.117 DMA 4-1 5:35 0.116 DMA I-i 5:36 0.115 DMA 4-1 5:37 0.114 DMA 4-1 5:38 0.113 DMA 4-1 5:39 0.112 DMA 4-1 5:40 0.112 DMA 4-1 5:41 0.111 DMA-4-1 5:42 0.110 DMA 4-1 5:43 0.109 DMA 4-1 5:44 0.109 DMA 4-1 5:45 0.108 DMA 4-1 5:46 0.107 DMA 4-1 5:47 0.107 DMA_a-i 5:48 0.106 DMA 4-1 5:49 0.105 DMA_a-i 5:50 0.104 DMA_4-1 5:51 0.104 DMA 4-1 5:52 0.103 DMA 4-1 5:53 0.103 DMA 4-1 5:54 0.102 DMA 4-1 5:55 0.101 DMA 4-1 5:56 0.101 DMA 4-1 5:57 0.100 DMA 4-1 5:58 0.100 DMA 4-1 5:59 0.099 DMA 4-1 6:00 0.089 DMA 4-i 6:01 0.079 DMA _4-1 6:02 0.069 DMA 4-i 6:03 0.059 DMA _4-1 6:01 0.049 DMA 4-1 6:05 0.040 SWMM5 Page 8 Post-Dev Input (POC-3) DMA 4-i 6:06 0.030 DMA 4-i 6:07 0.020 DMA 4-i 6:08 0.310 DMA 4-i 6:09 0.300 DMA 4-1 6:10 0.300 DMA 5-1 0:00 0.320 DMA 5-1 0:01 0.340 DMA 5-1 0:02 0.060 DMA 5-1 0:03 0.080 DMA 5-1 0:04 0.101 DMA 5-1 0:05 0.121 DMA 5-1 0:06 0.121 DMA -5-1 0:07 0.121 DMA 5-1 0:08 0.121 DMA -5-1 0:09 0.122 DMA 5-1 0:10 0.122 DMA -5-1 0:11 0.122 DMA 5-1 0:12 0.123 DMA -5-1 0:13 0.123 DMA 5-1 0:14 0.123 DMA -5-1 0:15 0.124 DMA S-i 0:16 0.124 DMA 5-1 0:17 0125 DMA 5-1 0:18 0 125 DMA 5-1 0:19 0 125 DMA 5-1 0:20 0,126 DMA 5-1 0:21 0.126 DMA 5-1 0:22 0.126 DMA 5-1 0:23 0.126 DMA -5-1 0:24 0.127 DMA 5-1 0:25 0.127 DMA -5-1 0:26 0.128 DMA 5-1 0:27 0.128 DMA 5-1 0:28 0.129 DMA 5-1 0:29 0.129 DMA -5-1 0:30 0.130 DMA_S-i 0:31 0.130 DMA 5-1 0:32 0.130 DMA 5-1 0:33 0.130 DMA 5-1 0:34 0.131 DMA -5-1 0:35 0.131 DMA 5-1 0:36 0.131 DMA 5-1 0:37 0.132 DMA 5-1 0:38 0.133 DMA 5-1 0:39 0.133 DMA -5-1 0:40 1.134 DMA_S-i 0:41 C.134 DMA_S-i 0:42 C.134 DMA 5-1 0:43 C.135 DMA -5-1 0:44 0.135 DMA 5-1 0:45 0.135 DMA 5-1 0:46 0.136 DMA 5-1 0:47 0.136 DMA -5-1 0:48 0.137 DMA 5-1 0:49 0.137 DMA -5-1 0:50 0.138 DMA_S-i 0:51 0.138 DMA -5-1 0:52 3.139 DMA_S-i 0:53 3.140 DMA -5-1 0:54 3.140 DMA_S-i 0:55 3.140 DMA 5-1 0:56 3.141 DMA -5-1 0:57 3.141 DMA 5-1 0:58 3.141 DMA 5-1 0:59 3.142 DMA 5-1 1:00 0.142 DMA 5-1 1:01 0.143 DMA 5-1 1:02 0.144 DMA 5-1 1:03 0.144 DMA -5-1 1:04 0.145 DMA 5-1 i:OS 0.146 DMA -5-1 1:06 0.146 DMA_S-i 1:07 0.146 DMA -5-1 1:08 0.147 DMA_S-i 1:09 0.147 DMA 5-1 1:10 0.147 DMA -5-1 1:11 0.148 DMA_S-i 1:12 0.149 DMA -5-1 1:13 0.149 DMA_5-i 1:14 0.150 DMA -5-1 i:iS 0.151 DMA_S-i 1:16 0.152 DMA -5-1 1:17 0.152 DMA 5-1 1:18 0.153 DMA -5-1 1:19 0.153 DMA_S-i 1:20 0.154 SWMM5 Page 9 Post-Dev Input (POC-3) DMA 5-i 1:21 0.154 DMA 5-1 1:22 0.154 DMA 5-i 1:23 0.155 DMA 5-1 1:24 0.156 DMA DMA 5-i 5-1 1:25 1:26 0.156 0.157 DMA 5-1 1:27 0.158 DMA 5-1 1:28 0.159 DMA_S-i 1:29 0.160 DMA 5-1 1:30 0.160 DMA 5-1 1:31 0.161 DMA _5-1 1:32 0.161 DMA 5-1 1:33 0.162 DMA S-i 1:34 0.162 DMA _5-1 1:35 0.163 DMA _5-1 1:36 0.164 DMA _5-1 1:37 0.165 DMA 5-1 1:38 0.166 DMA _5-1 1:39 0.166 DMA _5-1 1:40 0.167 DMA 5-1 1:41 0.168 DMA S-i 1:42 0.169 DMA 5-1 1:43 0.169 DMA S-i 1:44 0.170 DMA 5-1 1:45 0.171 DMA _5-1 1:46 0.171 DMA _5-1 1:47 0.172 DMA _5-1 1:48 0.173 DMA _5-1 1:49 0.174 DMA 5-1 1:50 0.175 DMA _5-1 1:51 0.176 DMA _5-1 1:52 0.177 DMA S-i 1:53 0.178 DMA 5-1 1:54 0.179 DMA _5-1 i:SS 0.180 DMA S-i 1:56 0.180 DMA _5-1 1:57 0.181 DMA 5-1 1:58 0.181 DMA S-i 1:59 0.182 DMA S-i 2:00 0.183 DMA S-i 2:01 0.185 DMA S-i 2:02 0.186 DMA _5-1 2:03 0.187 DMA _5-1 2:04 0.188 DMA _5-1 2:05 0.190 DMA _5-1 2:06 0.191 DMA _5-1 2:07 0.191 DMA S-i 2:08 0.192 DMA _5-1 2:09 0.193 DMA _5-1 2:10 0.193 DMA S-i 2:11 0.194 DMA 5-1 2:12 0.196 DMA S-i 2:13 0.197 DMA S-i 2:14 0.199 DMA S-i 2:15 0.200 DMA S-i 2:16 0.202 DMA S-i 2:17 0.203 DMA _5-1 2:18 0.204 DMA _5-1 2:19 0.205 DMA 5-1 2:20 0.206 DMA-5-1 2:21 0.207 DMA S-i 2:22 0.208 DMA _5-1 2:23 0.209 DMA 5-1 2:24 0.210 DMA S-i 2:25 0.212 DMA S-i 2:26 0.214 DMA S-i 2:27 0.216 DMA S-i 2:28 0.218 DMA S-i 2:29 0.220 DMA S-i 2:30 0.221 DMA S-i 2:31 0.222 DMA S-i 2:32 0.223 DMA 5-1 2:33 0.224 DMA 5-1 2:34 0.225 DMA _5-1 2:35 0.226 DMA S-i 2:36 0.228 DMA 5-1 2:37 0.231 DMA S-i 2:38 0.233 DMA S-i 2:39 0.235 DMA 5-1 2:40 0.238 DMA 5-1 2:41 0.240 DMA S-i 2:42 0.241 DMA 5-1 2:43 0.243 DMA 5-1 2:44 0.244 DMA S-i 2:45 0.245 DMA _5-1 2:46 0.247 DMA S-i 2:47 0.248 SWMM5 Page 10 Post-Dev Input (POC-3) 5-1 2:48 0.251 DMA DMA 5-1 2:49 0.254 DMA 5-1 2:50 0.257 DMA 5-1 2:51 0.260 DMA 5-1 2:52 0.263 DMA 5-1 2:53 0.266 DMA 5-1 2:54 0.268 DMA 5-1 2:55 0.269 DMA 5-1 2:56 0.271 DMA 5-1 2:57 0.273 DMA_S-i 2:58 0.274 DMA 5-1 2:59 0.276 DMA 5-1 3:00 0.280 DMA 5-1 3:01 0.284 DMA 5-1 3:02 0.288 DMA S-i 3:03 0.292 DMA 5-1 3:04 0.296 DMA _5-1 3:05 0.300 DMA 5-1 3:06 0.303 DMA S-i 3:07 0.305 DMA S-i 3:08 0.307 DMA 5-1 3:09 0.310 DMA 5-1. 3:10 0.312 DMA S-i 3:11 0314 D?4A5-1 3:12 0 320 DMA 5-1 3:13 0 326 DMA _5-1 3:14 0.331 DMA _5-1 3:15 0.337 DMA 5-1 3:16 0.343 DMA S-i 3:17 0.349 DMA _5-1 3:18 0.352 DMA _5-1 3:19 0.356 DMA _5-1 3:20 0.359 DMA _5-1 3:21 0.363 DMA S-i 3:22 0.366 DMA 5-1 3:23 0.370 DMA 5-1 3:24 0.379 DMA 5-1 3:25 0.388 DMA 5-1 3:26 0.397 DMA S-i 3:27 0.406 DMA S-i 3:28 0.415 DMA 5-1 3:29 0.424 DMA -5-1 3:30 0.430 DMA 5-1 3:31 0.436 DMA S-i 3:32 0.442 DMA S-i 3:33 0.448 DMA -5-1 3:34 0.454 DMA S-i 3:35 C.459 DMA 5-1 3:36 C.476 DMA -5-1 3:37 C.494 DMA _5-1 3:38 C.511 DMA -5-1 3:39 0.528 DMA _5-1 3:40 C1.545 DMA S-i 3:41 0.562 DMA S-i 3:42 0.575 DMA S-i 3:43 0.588 DMA -5-1 3:44 0.601 DMA _5-1 3:45 0.614 DMA 5-1 3:46 0.627 DMA -5-1 3:47 0.640 DMA S-i 3:48 3.690 DMA -5-1 3:49 3.740 DMA 5-1 3:50 3.789 DMA S-i 3:51 3.839 DMA -5-1 3:52 3.889 DMA _5-1 3:53 3.939 DMA S-i 3:54 3.996 DMA -5-1 3:55 1.053 DMA _5-1 3:56 1.109 DMA -5-1 3:57 1.166 DMA 5-1 3:58 1.223 DMA -5-1 3:59 1.280 DMA S-i 4:00 .1.868 DMA 5-1 4:01 2.456 DMA S-i 4:02 3.044 DMA -5-1 4:03 3.633 DMA _5-1 4:04 4.221 DMA S-i 4:05 4.809 DMA -5-1 4:06 4.129 DMA 5-1 4:07 3.450 DMA S-i 4:08 2.770 DMA -5-1 4:09 2.091 DMA _5-1 4:10 1.411. DMA -5-1 4:11 0.731 DMA _5-1 4:12 0.694 DMA S-i 4:13 0.656 DMA -5-1 4:14 0.618 SWMM5 Page 11 Post-Dev Input (POC-3) DMA 5-1 4:15 0.580 DMA 5-1 4:16 0.542 DMA 5-1 4:17 0.504 DMA 5-1 4:18 0.486 DMA 5-i 4:19 0.467 DMA 5-1 4:20 0.449 DMA 5-1 4:21 0.431 DMA 5-1 4:22 0.413 DMA_S-i 4:23 0.394 DMA 5-1 4:24 0.384 DMA 5-1 4:25 0.373 DMA 5-1 4:26 0.362 DMA 5-1 4:27 0.352 DMA 5-1 4:28 0.341 DMA 5-1 4:29 0.330 DMA 5-i 4:30 0.323 DMA 5-1 4:31 0.316 DMA 5-1 4:32 0.309 DMA 5-1 4:33 0.302 DMA 5-1 4:34 0.295 DMA 5-1 4:35 0.287 DMA 5-1 4:36 0.282 DMA 5-1 4:37 0.277 DMA 5-1 4:38 0.272 DMA 5-1 4:39 0.267 DMA 5-1 4:40 0.262 DMA 5-1 4:41 0.256 DMA 5-1 4:42 0.253 DMA 5-1 4:43 0.249 DMA 5-1 4:44 0.245 DMA 5-1 4:45 0.241 DMA 5-1 4:46 0.237 DMA 5-1 4:47 0.233 DMA 5-1 4:48 0.230 DMA DMA_ S-i 4:49 0.227 5-1 4:50 0.223 DMA -5-1 4:51 0.220 DMA 5-1 4:52 0.217 DMA 5-1 4:53 0.214 DMA 5-1 4:54 0.211 DMA 5-1 4:55 0.209 DMA 5-1 4:56 0.206 DMA 5-1 4:57 0.204 DMA _5-1 4:58 0.201 DMA 5-1 4:59 0.199 DMA 5-1 5:00 0.196 DMA 5-1 5:01 0.194 DMA 5-1 5:02 0.192 DMA 5-1 5:03 0.190 DMA 5-1 5:04 0.188 DMA 5-1 S:OS 0.186 DMA 5-1 5:06 0.184 DMA 5-1 5:07 0.182 DMA -5-1 5:08 0.180 DMA 5-1 5:09 0.178 DMA_S-i 5:10 0.177 DMA 5-1 S:il 0.175 DMA 5-1 5:12 0.173 DMA 5-1 5:13 0.172 DMA 5-1 5:14 0.370 DMA 5-1 5:15 0.169 DMA 5-1 5:16 0.167 DMA 5-1 5:17 0.165 DMA 5-1 5:18 0.164 DMA 5-1 5:19 0.163 DMA 5-1 5:20 0.161 DMA -5-1 5:21 0.160 DMA 5-1 5:22 0.159 DMA S-i 5:23 0.157 DMA S-i 5:24 0.156 DMA S-i 5:25 0.155 DMA 5-1 5:26 0.154 DMA 5-1 5:27 0.152 DMA 5-1 5:28 0.151 DMA 5-1 5:29 0.150 DMA 5-1 5:30 0.149 DMA 5-1 5:31 0.148 DMA 5-1 5:32 0.147 DMA -5-1 5:33 0.146 DMA 5-1 5:34 0.145 DMA 5-1 5:35 0.144 DMA 5-1 5:36 0.143 DMA 5-1 5:37 0.142 DMA 5-1 5:38 0.141 DMA S-i 5:39 0.140 DMA 5-1 5:40 0.139 DMA -5-1 5:41 0.138 SWMM5 Page 12 Post-Dev Input (POC-3) DMA 5-1 5:42 0.137 DMA 5-1 5:43 0..36 DMA 5-1 5:44 0.135 DMA_5-1 5:45 0.134 DMA -5-1 5:46 0.133 DMA _5-1 5:47 0.32 DMA _5-1 5:48 0.132 DMA 5-1 5:49 0.131 DMA 5-1 5:50 0.130 DMA_S-i 5:51 0.129 DMA -5-1 5:52 0.129 DMA_S-i 5:53 0.128 DMA S-i 5:54 0.127 DMA 75-1 5:55 0.126 DMA -5-1 5:56 0.126 DMA_S-i 5:57 0.125 DMA 5-1 5:58 0.124 DMA 5-1 5:59 0.123 DMA 5-1 6:00 0.103 DMA 5-1 6:01 0.082 DMA 5-1 6:02 0.062 DMA 5-1 6:03 0.041 DMA 5-1 6:04 0.021 DMA 5-1 6:05 0.000 DMA-5-1 6:06 0.000 DMA 3-BYPASS 0:00 0 004 DMA 3-BYPASS 0:01 0.008 DMA 3-BYPASS 0:02 0.011 DMA 3-BYPASS 0:03 0.015 DMA 3-BYPASS 0:04 0.019 DMA 3-BYPASS 0:05 0.023 DMA 3-BYPASS 0:06 0.027 DMA 3-BYPASS 0:07 0.030 DMA 3-BYPASS 0:08 0.034 DMA 3-BYPASS 0:09 0.038 DMA 3-BYPASS 0:10 0.042 DMA 3-BYPASS 0:11 0.045 DMA 3-BYPASS 0:12 0.049 DMA 3-BYPASS 0:13 0.053 DMA 3-BYPASS 0:14 0.057 DMA 3-BYPASS 0:15 0.037 DMA 3-BYPASS 0:16 0.057 DMA 3-BYPASS 0:17 C.057 DMA 3-BYPASS 0:18 C.057 DMA 3-BYPASS 0:19 C.057 DMA 3-BYPASS 0:20 C.057 DMA 3-BYPASS 0:21 C.058 DMA 3-BYPASS 0:22 C.058 DMA 3-BYPASS 0:23 0.058 DMA 3-BYPASS 0:24 0.058 DMA-3 -BYPASS 0:25 0.058 DMA 3-BYPASS 0:26 (3.058 DMA-3 -BYPASS 0:27 0.058 DMA 3-BYPASS 0:28 0.058 DMA 3-BYPASS 0:29 0.058 DMA-3 -BYPASS 0:30 0.059 DMA 3-BYPASS 0:31 '1.059 DMA 3-BYPASS 0:32 -).059 DMA 3-BYPASS 0:33 3.059 DMA 3-BYPASS 0:34 3.060 DMA-3 -BYPASS 0:35 3.060 DMA 3-BYPASS 0:36 3.060 DMA 3-BYPASS 0:37 :3.060 DMA -BYPASS -3 , 0:38 3.061 DMA 3-BYPASS 0:39 0.061 DMA 3-BYPASS 0:40 0.061 DMA 3-BYPASS 0:41 0.061 DMA -BYPASS -3 0:42 0.062 DMA 3-BYPASS 0:43 10.062 DMA -BYPASS -3 0:44 0.062 DMA 3-BYPASS 0:45 0.062 DMA -BYPASS -3 0:46 0.062 DMA 3-BYPASS 0:47 0.062 DMA -BYPASS -3 0:48 0.063 DMA 3-BYPASS 0:49 0.063 DMA 3-BYPASS 0:50 0.063 DMA -BYPASS -3 0:51 0.063 DMA 3-BYPASS 0:52 0.063 DMA -BYPASS -3 0:53 0.063 DMA 3-BYPASS 0:54 0.063 DMA-3 -BYPASS 0:55 0.064 DMA 3-BYPASS 0:56 0.064 DMA -3-BYPASS 0:57 0.064 DMA 3-BYPASS 0:58 0.064 DMA 3-BYPASS 0:59 0.064 DMA-3 -BYPASS 1:00 0.064 SWMM5 Page 13 Post-Dev Input (POC-3) DMA 3-BYPASS 1:01 0.065 DMA 3-BYPASS 1:02 0.065 DMA 3-BYPASS 1:03 0.065 DMA 3-BYPASS 1:04 0.066 DMA 3-BYPASS 1:05 0.066 DMA 3-BYPASS 1:06 0.066 DMA 3-BYPASS 1:07 0.067 DMA 3-BYPASS 1:08 0.067 DMA 3-BYPASS 1:09 0.067 DMA 3-BYPASS 1:10 0.067 DMA 3-BYPASS 1:11 0.068 DMA 3-BYPASS 1:12 0.068 DMA 3-BYPASS 1:13 0.068 DMA 3-BYPASS 1:14 0.069 DMA 3-BYPASS 1:15 0.069 DMA 3-BYPASS 1:16 0.069 DMA 3-BYPASS 1:17 0.069 DMA 3-BYPASS 1:18 0.069 DMA 3-BYPASS 1:19 0.070 DMA 3-BYPASS 1:20 0.070 DMA 3-BYPASS 1:21 0.070 DMA 3-BYPASS 1:22 0.070 DMA 3-BYPASS 1:23 0.070 DMA 3-BYPASS 1:24 0.070 DMA 3-BYPASS 1:25 0.071 DMA 3-BYPASS 1:26 0.071 DMA 3-BYPASS 1:27 0.071 DMA 3-BYPASS 1:28 0.071 DMA 3-BYPASS 1:29 0.071 DMA 3-BYPASS 1:30 0.072 DMA 3-BYPASS 1:31 0.072 DMA 3-BYPASS 1:32 0.073 DMA 3-BYPASS 1:33 0.073 DMA 3-BYPASS 1:34 0.073 DMA 3-BYPASS 1:35 0.074 DMA 3-BYPASS 1:36 0.074 DMA 3-BYPASS 1:37 0.075 DMA 3-BYPASS 1:38 0.075 DMA 3-BYPASS 1:39 0.075 DMA 3-BYPASS 1:40 0.076 DMA 3-BYPASS 1:41 0.076 DMA 3-BYPASS 1:42 0.077 DMA 3-BYPASS 1:43 0.077 DMA 3-BYPASS 1:44 0.078 DMA 3-BYPASS 1:45 0.078 DMA 3-BYPASS 1:46 0.078 DMA 3-BYPASS 1:47 0.078 DMA 3-BYPASS 1:48 0.079 DMA 3-BYPASS 1:49 0.079 DMA 3-BYPASS 1:50 0.079 DMA 3-BYPASS 1:51 0.079 DMA 3-BYPASS 1:52 0.080 DMA 3-BYPASS 1:53 0.080 DMA 3-BYPASS 1:54 0.080 DMA 3-BYPASS 1:55 0.080 DMA 3-BYPASS 1:56 0.080 DMA 3-BYPASS 1:57 0.081 DMA 3-BYPASS 1:58 0.081 DMA 3-BYPASS 1:59 0.081 DMA 3-BYPASS 2:00 0.082 DMA 3-BYPASS 2:01 0.082 DMA 3-BYPASS 2:02 0.083 DMA 3-BYPASS 2:03 0.084 DMA 3-BYPASS 2:04 0.084 DMA 3-BYPASS 2:05 0.085 DMA 3-BYPASS 2:06 0.085 DMA_ 3-BYPASS 2:07 0.086 DMA 3-BYPASS 2:08 0.087 DMA 3-BYPASS 2:09 0.087 DMA 3-BYPASS 2:10 0.088 DMA 3-BYPASS 2:11 0.088 DMA 3-BYPASS 2:12 0.089 DMA 3-BYPASS 2:13 0.089 DMA-3 -BYPASS 2:14 0.090 DMA 3-BYPASS 2:15 0.090 DMA 3-BYPASS 2:16 0.091 DMA-3 -BYPASS 2:17 0.091 DMA 3-BYPASS 2:18 0.092 DMA 3-BYPASS 2:19 0.092 DMA 3-BYPASS 2:20 0.092 DMA 3-BYPASS 2:21 0.093 DMA 3-BYPASS 2:22 0.093 DMA 3-BYPASS 2:23 0.093 DMA-3 -BYPASS 2:24 0.094 DMA 3-BYPASS 2:25 0.094 DMA 3-BYPASS 2:26 0.094 DMA 3-BYPASS 2:27 0.095 SWMM5 Page 14 I I I I I I I I I I I I I I I I I I I Post-Dev Input (POC-3) DMA 3-BYPASS 2:28 0.195 DMA 3-BYPASS 2:29 0.096 DMA 3-BYPASS 2:30 0.096 DMA 3-BYPASS 2:31 0.097 DMA 3-BYPASS 2:32 0.098 DMA 3-BYPASS 2:33 0.099 DMA 3-BYPASS 2:34 0.00 DMA 3-BYPASS 2:35 0.101 DMA -BYPASS -3 2:36 0.02 DMA 3-BYPASS 2:37 0.103 DMA 3-BYPASS 2:38 0.104 DMA 3-BYPASS 2:39 0.105 DMA 3-BYPASS 2:40 0.106 DMA_3-BYPASS 2:41 0.107 DMA 3-BYPASS 2:42 0.108 DMA -BYPASS -3 2:43 0.109 DMA 3-BYPASS 2:44 0.110 DMA -BYPASS -3 2:45 0.7.10 DMA 3-BYPASS 2:46 0.111 DMA 3-BYPASS 2:47 0.111 DMA 3-BYPASS 2:48 0.112 DMA -BYPASS -3 2:49 0.113 DMA 3-BYPASS 2:50 0.113 DMA -BYPASS -3 2:51 0.114 DMA 3-BYPASS 2:52 0.114 DMA 3-BYPASS 2:53 0.115 DMA -3-BYPASS 2:54 0.116 DMA 3-BYPASS 2:55 0.116 DMA 3-BYPASS 2:56 0117 DMA 3-BYPASS 2:57 0 118 DMA 3-BYPASS 2:58 0 118 DMA 3-BYPASS 2:59 0 .119 DMA -BYPASS -3 3:00 0.120 DMA 3-BYPASS 3:01 0.122 DMA -BYPASS -3 3:02 0.124 DMA 3-BYPASS 3:03 0.126 DMA -BYPASS -3 3:04 0.128 DMA 3-BYPASS 3:05 0.129 DMA -BYPASS -3 3:06 0.131 DMA 3-BYPASS 3:07 0.133 DMA 3-BYPASS 3:08 0.135 DMA -3-BYPASS 3:09 0.136 DMA 3-BYPASS 3:10 0.138 DMA -BYPASS -3 3:11 0.140 DMA 3-BYPASS 3:12 0.142 DMA 3-BYPASS 3:13 0.143 DMA 3-BYPASS 3:14 0.145 DMA 3-BYPASS 3:15 C.146 DMA 3-BYPASS 3:16 0.148 DMA 3-BYPASS 3:17 1.149 DMA 3-BYPASS 3:18 1.151 DMA 3-BYPASS 3:19 C.152 DMA 3-BYPASS 3:20 0.153 DMA -3-BYPASS 3:21 0.155 DMA 3-BYPASS 3:22 0.156 DMA 3-BYPASS 3:23 0.157 DMA -3-BYPASS 3:24 0.159 DMA 3-BYPASS 3:25 0.160 DMA -3-BYPASS 3:26 0.161 DMA -BYPASS -3 3:27 -7.163 DMA 3-BYPASS 3:28 7.164 DMA 3-BYPASS 3:29 3.165 DMA 3-BYPASS 3:30 3.170 DMA -3-BYPASS 3:31 3.176 DMA 3-BYPASS 3:32 0.181 DMA -BYPASS -3 3:33 3.186 DMA 3-BYPASS 3:34 0.191 DMA -BYPASS -3 3:35 0.196 DMA -3-BYPASS 3:36 0.201 DMA 3-BYPASS 3:37 0.207 DMA -BYPASS -3 3:38 0.212 DMA 3-BYPASS 3:39 0.217 DMA 3-BYPASS 3:40 0.222 DMA 3-BYPASS 3:41 0.227 DMA -BYPASS -3 3:42 0.232 DMA 3-BYPASS 3:43 0.238 DMA 3-BYPASS 3:44 0.243 DMA 3-BYPASS 3:45 0.249 DMA 3-BYPASS 3:46 0.256 DMA 3-BYPASS 3:47 0.263 DMA 3-BYPASS 3:48 0.269 DMA 3-BYPASS 3:49 0.276 DMA 3-BYPASS 3:50 0.282 DMA 3-BYPASS 3:51 0.289 DMA -BYPASS -3 3:52 0.296 DMA 3-BYPASS 3:53 0.302 DMA 3-BYPASS 3:54 0.309 Page 15 Post-Dev Input (POC-3) DMA 3-BYPASS 3:55 0.315 DMA 3-BYPASS 3:56 0.322 DMA 3-BYPASS 3:57 0.329 DMA 3-BYPASS 3:58 0.335 DMA 3-BYPASS 3:59 0.342 DMA 3-BYPASS 4:00 0.401 DMA 3-BYPASS 4:01 0.460 DMA 3-BYPASS 4:02 0.519 DMA 3-BYPASS 4:03 0.578 DMA 3-BYPASS 4:04 0.637 DMA 3-BYPASS 4:05 0.696 DMA 3-BYPASS 4:06 0.754 DMA 3-BYPASS 4:07 0.813 DMA 3-BYPASS 4:08 0.872 DMA 3-BYPASS 4:09 0.931 DMA 3-BYPASS 4:10 0.990 DMA 3-BYPASS 4:11 1.049 DMA 3-BYPASS 4:12 1.108 DMA 3-BYPASS 4:13 1.167 DMA 3-BYPASS 4:14 1.226 DMA 3-BYPASS 4:15 1.157 DMA 3-BYPASS 4:16 1.089 DMA-3 -BYPASS 4:17 1.020 DMA 3-BYPASS 4:18 0.951 DMA 3-BYPASS 4:19 0.882 DMA 3-BYPASS 4:20 0.813 DMA 3-BYPASS 4:21 0.745 DMA 3-BYPASS 4:22 0.676 DMA 3-BYPASS 4:23 0.607 DMA 3-BYPASS 4:24 0.538 DMA 3-BYPASS 4:25 0.470 DMA 3-BYPASS 4:26 0.401 DMA 3-BYPASS 4:27 0.332 DMA 3-BYPASS 4:28 0.263 DMA 3-BYPASS 4:29 0.195 DMA 3-BYPASS 4:30 0.190 DMA 3-BYPASS 4:31 0.186 DMA 3-BYPASS 4:32 0.182 DMA 3-BYPASS 4:33 0.177 DMA 3-BYPASS 4:34 0.173 DMA 3-BYPASS 4:35 0.169 DMA 3-BYPASS 4:36 0.165 DMA 3-BYPASS 4:37 0.160 DMA 3-BYPASS 4:38 0.156 DMA 3-BYPASS 4:39 0.152 DMA 3-BYPASS 4:40 0.147 DMA 3-BYPASS 4:41 0.143 DMA 3-BYPASS 4:42 0.139 DMA 3-BYPASS 4:43 0.135 DMA 3-BYPASS 4:44 0.130 DMA 3-BYPASS 4:45 0.128 DMA 3-BYPASS 4:46 0.126 DMA 3-BYPASS 4:47 0.125 DMA 3-BYPASS 4:48 0.123 DMA 3-BYPASS 4:49 0.121 DMA 3-BYPASS 4:50 0.119 DMA DMA 3-BYPASS 3-BYPASS 4:51 4:52 0.117 0.115 DMA-3 -BYPASS 4:53 0.113 DMA 3-BYPASS 4:54 0.111 DMA 3-BYPASS 4:55 0.109 DMA 3-BYPASS 4:56 0.108 DMA 3-BYPASS 4:57 0.106 DMA 3-BYPASS 4:58 0.104 DMA 3-BYPASS 4:59 0.102 DMA 3-BYPASS 5:00 0.101 DMA -3 -BYPASS 5:01 0.100 DMA 3-BYPASS 5:02 0.099 DMA 3-BYPASS 5:03 0.098 DMA 3-BYPASS 5:04 0.096 DMA -3 -3 -BYPASS 5:05 0.095 DMA -BYPASS 5:06 0.094 DMA 3-BYPASS 5:07 0.093 DMA -3 -BYPASS 5:08 0.092 DMA 3-BYPASS 5:09 0.091 DMA 3-BYPASS 5:10 0.090 DMA 3-BYPASS 5:11 0.089 DMA 3-BYPASS 5:12 0.088 DMA 3-BYPASS 5:13 0.086 DMA 3-BYPASS 5:14 0.085 DMA 3-BYPASS 5:15 0.085 DMA-3 -BYPASS 5:16 0.084 DMA 3-BYPASS 5:17 0.083 DMA -3-BYPASS 5:18 0.082 DMA 3-BYPASS 5:19 0.082 DMA 3-BYPASS 5:20 0.081 DMA 3-BYPASS 5:21 0.080 SWMM5 Page 16 Post-Dev Input (POC-3) 5:22 0.C79 DMA 3-BYPASS DMA 3-BYPASS 5:23 0.C79 DMA 3-BYPASS 5:24 O.C78 DMA 3-BYPASS 5:25 0.077 DMA 3-BYPASS 5:26 0.077 5:27 0.076 DMA 3-BYPASS DMA 3-BYPASS 5:28 0.075 DMA 3-BYPASS 5:29 0.074 DMA 3-BYPASS 5:30 0.074 5:31 0.073 DMA 3-BYPASS DMA_3-BYPASS 5:32 0.073 DMA-BYPASS -3 5:33 0.772 DMA 3-BYPASS 5:34 0.372 DMA 3-BYPASS 5:35 0.771 DMA 3-BYPASS 5:36 0.771 DMA 3-BYPASS 5:37 0.070 DMA 3-BYPASS 5:38 0.069 - DMA 3-BYPASS 5:39 0.069 DMA 3-BYPASS 5:40 0.068 DMA 3-BYPASS 5:41 0.068 DMA-BYPASS -3 5:42 0.067 DMA 3-BYPASS 5:43 0.067 - DMA 3-BYPASS 5:44 0.066 DMA_3-BYPASS 5:45 0.066 DMA 3-BYPASS 5:46 0.065 DMA 3-BYPASS 5:47 0.065 DMA 3-BYPASS 5:48 0.065 DMA 3-BYPASS 5:49 0.064 DMA 3-BYPASS 5:50 0.064 DMA 3-BYPASS 5:51 0 063 5:52 0 063 DMA 3-BYPASS DMA 3-BYPASS 5:53 0.063 DMA 3-BYPASS 5:54 0.062 DMA 3-BYPASS 5:55 0.062 DMA 3-BYPASS 5:56 0.061 DMA 3-BYPASS 5:57 0.061 DMA 3-BYPASS 5:58 0.061 DMA 3-BYPASS 5:59 0.060 DMA 3-BYPASS 6:00 0.056 DMA 3-BYPASS 6:01 0.052 DMA 3-BYPASS 6:02 0.048 DMA 3-BYPASS 6:03 0.044 DMA 3-BYPASS 6:04 0.040 DMA 3-BYPASS 6:05 0.036 DMA 3-BYPASS 6:06 C.032 DMA 3-BYPASS 6:07 C.028 DMA 3-BYPASS 6:08 C.024 DMA 3-BYPASS 6:09 0.020 DMA-3-BYPASS 6:10 (.016 DMA 3-BYPASS 6:11 (.012 DMA 3-BYPASS 6:12 0.008 DMA-3-BYPASS 6:13 0.004 DMA 3-BYPASS 6:14 0.000 DMA-3-BYPASS 6:15 0.000 LID-RAIN 0 0 LID-RAIN 6:00 '3 LID RAGE 0:00 LID RAGE 6:00 [REPORT] INPUT NO CONTROLS NO SUBCATCHMENTS ALL NODES ALL LINKS ALL [TAGS] [MAP] DIMENSIONS 361.608 4986.883 1178.373 5715.481 Units None [COORDINATES] ;;Node X-Coord Y-Coord POC-3 853.473 5020.001 DIV 4-1 756.944 52'.5.370 DIV 5-1 968.583 5251.991 SURF 4-1 542.678 5245.793 SURF-5-1 1141.247 5251.991 [VERTICES] ;;Link X-Coord Y-Coord SWMM5 Page 17 Post-Dev Input (POC-3) [Polygons] ;;Subcatchment X-Coord Y-Coord DMA 4-1 756.868 5656.743 DMA 4-1 756.868 5656.743 DMA 5-1 968.074 5657.993 DMA 3-BYPASS 539.414 5075.614 IMP 4-1 756.868 5450.536 IMP5-1 968.074 5455.535 [SYMBOLS) ;;Gage X-Coord Y-Coord DMA 4-1 641.892 5654.244 DMA 5-1 1116.793 5651.744 DMA 3-BYPASS 433.186 5095.610 LID RAIN 625.646 5444.288 SWMM5 Page 18 J U Appendix 5: SWMM Model Results Post-Dev Output (POC-1) EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.022) -------------------------------------------------------------- NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. Analysis Options Flow Units ...............CFS Process Models: Rainfall/Runoff ........YES Snowmelt ...............NO Groundwater ............NO Flow Routing ...........YES Ponding Allowed ........NO Water Quality ..........NO Infiltration Method ......GREEN AMPT Flow Routing Method ......KINWAVE Starting Date ............JAN-01-2000 00:00:00 Ending Date ..............JAN-01-2000 12:00:00 Antecedent Dry Days ......0.0 Report Time Step .........00:01:00 Wet Time Step ............00:01:00 Dry Time Step ............00:01:00 Routing Time Step ........60.00 sec WARNING 04: minimum elevation drop used for Conduit BYPASS 1-1 WARNING 04: minimum elevation drop used for Conduit DUN_i-i WARNING 04: minimum elevation drop used for Conduit BYPASS-3-1 WARNING 04: minimum elevation drop used for Conduit DUM3-1 Volume Depth Runoff Quantity Continuity acre-feet inches Total Precipitation 0.948 1.348 Evaporation Loss 0.013 0.018 Infiltration Loss 0.000 0.000 Surface Runoff 0.916 1.303 Final Surface Storage . . . 0.020 0.028 Continuity Error )%) -0.045 * *************************Volume Volume Flow Routing Continuity acre-feet 106 gal Dry Weather Inflow 0.000 0.000 Wet Weather Inflow 0.916 0.298 Groundwater Inflow 0.000 0.000 RDII Inflow ..............0.000 0.000 External Inflow 0.000 0.000 External Outflow 0.916 0.298 Internal Outflow 0.000 0.000 Storage Losses 0.000 0.000 Initial Stored Volume . . . 0.000 0.000 Final Stored Volume 0.000 0.000 Continuity Error (%) 0.021 Highest Flow Instability Indexes All links are stable. I Routing Time Step Summary Minimum Time Step : Average Time Step : 60.00 sec 60.00 sec Maximum Time Step : 60.00 sec Percent in Steady State : 0.00 Average Iterations per Step : 1.00 Subcatchment Runoff Summary - SWMM 5 Page 1 Post-Dev Output (POC-1) Total lotal -------------------------------------------------------------------------------------------------------- Total Total Total Total Peak Runoff Precip F.unon Evap Infil Runoff Runoff Runoff Coeff Subcatchment in in in in in 106 gal CFS DMA_i-i 1.84 0.00 -------------------------------------------------------------------------------------------------------- 0.02 0.00 1.81 0.11 7.04 0.986 DMA 3-1 1.84 0.00 0.02 0.00 1.82 0.08 6.33 0.987 DMA 1-BYPASS 0.95 0.00 0.02 0.00 0.92 0.11 6.14 0.973 IMP -1-1 0.00 :1.99 0.02 0.00 70.21 0.11 6.76 0.975 IMP -3-1 0.00 4.30 0.02 0.00 72.52 0.08 6.00 0.976 LID Performance Summary Total Evap ------------------------------------------------------------------------------------------------------------------ Infil Surface Drain Init. Final Pcnt. Inflow Loss Loss Outflow Outflow Storage Storage Error Subcatchment LID Control in in in in in in in IMP i-i IMP-1-1 71.99 0.02 ------------------------------------------------------------------------------------------------------------------ 0.00 36.76 33.45 0.00 1.79 -0.06 IMP-3-1 IMP-3-1 74.30 0.02 0.00 38.99 33.53 0.00 1.79 -0.06 Node Depth Summary -------------------------------------- Average Maximum Maximum Time of Max Depth Depth HGL Occurrence Node Type --------------------------------------------------------------------- Fee: Feet Feet days hr:min POC-1 OUTFALL 0.00 0.00 0.00 0 00:00 DIV_i-i DIVIDER 0.00 0.00 0.00 0 00:00 DIV 3-1 DIVIDER 0.0) 0.00 0.00 0 00:00 SURF 1-1 STORAGE 0.0.3 0.73 0.73 0 04:14 SURF-3-1 STORAGE 0.03 0.68 0.68 0 04:11 Node Inflow Summary Maximjm ------------------------------------------------------------------------------------- Maximum Lateral Total Lateral Total Time of Max Inflow Inflow Inf1w Inflow Occurrence Volume Volume Node Type CFS ------------------------------------------------------------------------------------- CFS days hr:min 106 gal 106 gal POC-i OUTFALL 6.14 13.91 0 04:12 0.111 0.298 DIV_i-i DIVIDER 6.76 6.76 0 04:09 0.109 0.109 DIV 3-i DIVIDER 6.30 6.00 0 04:07 0.078 0.078 SURF 1-1 STORAGE 0.30 6.49 0 04:09 0.000 0.057 SURF 3-i STORAGE 0.30 5.81 0 04:07 0.000 0.041 Node Surcharge Summary Surcharging occurs when water rises aove the top of the highest conduit. Max. Height Mm. Depth Hours Above Crown Below Rim Node Type Surcharged Feet Feet DIV_i-i DIVIDER --------------------------------------------------------------------- 12.02 0.000 0.000 DIV 3-i DIVIDER 12.02 0.000 0.000 SURF-1-1 STORAGE 12.02 0.727 1.273 SURF-3-1 STORAGE 12.02 0.676 1.324 Node Flooding Summary No nodes were flooded. Storage Volume Summary -------------------------------------------------------------------------------------------- Average Avg E&I Maximum Max Time of Max Maximum SWMM5 Page 2 Post-Dev Output (POC-1) Volume Pcnt Pcnt Volume Pcnt Occurrence Outflow Storage Unit 1000 ft3 Full Loss 1000 ft3 Full days hr:min CFS SURF_i-i 0.102 1 -------------------------------------------------------------------------------------------- 0 2.302 31 0 04:14 3.80 SURF 3-1 0.050 1 0 1.394 30 0 04:11 3.63 Outfall Loading Summary ----------------------------------------------------------- Flow Avg. Max. Total Freq. Flow Flow Volume Outfall Node Pcnt. CFS CFS 106 gal POC-1 ----------------------------------------------------------- 83.08 1.11 13.91 0.298 System ----------------------------------------------------------- 83.08 1.11 13.91 0.298 Link Flow Summary ----------------------------------------------------------------------------- Maximum Time of Max Maximum Max! Max! Flowl Occurrence IVelocl Full Full Link Type ----------------------------------------------------------------------------- CFS days hr:min ft/sec Flow Depth BYPASS 1-1 DUMMY 6.49 0 04:09 DUM1-1 DUMMY 0.26 0 04:05 BYPASS 3-1 DUMMY 5.81 0 04:07 DUN 3-i DUMMY 0.19 0 03:54 1-1 DUMMY 3.80 0 04:14 3-1 DUMMY 3.63 0 04:11 Conduit Surcharge Summary Hours Hours Hours Full --------Above Full Capacity Conduit Both Ends Upstream ---------------------------------------------------------------------------- Dnstream Normal Flow Limited BYPASS 1-1 0.01 0.01 0.01 12.02 0.01 DUM1-1 0.01 0.01 0.01 12.02 0.01 BYPASS 3-1 0.01 0.01 0.01 12.02 0.01 DUN 3-1 0.01 0.01 0.01 12.02 0.01 SWMM 5 Page 3 Post-Dev Output (POC-2) EPA STORM MATER MANAGEMENT MODEL - VEPSION 5.0 (Build 5.0.022( -------------------------------------------------------------- MOTE: The summary statistics displayec in this report are based on results found at every computational time step, not just on results from each reporting time step. Analysis Options Flow Units ...............CFS Process Models: Rainfall/Runoff ........YES Snowmelt ...............NO Groundwater ............NO Flow Routing ...........YES Ponding Allowed ........NO Water Quality ..........NO Infiltration Method ......GREEN AMPT Flow Routing Method ......KINWAVE Starting Date ............JAN -01-2000 00:00:00 Ending Date ..............JAN -01-2000 12:00:00 Antecedent Dry Days ......0.0 Report Time Step .........00:01:00 Wet Time Step ............00:01:00 Dry Time Step ............00:01:00 Routing Time Step ........60.00 sec WARNING 04: minimum elevation drop used for Conduit BYPASS-2-1 WARNING 04: minimum elevation drop used for Conduit DUM2-1 Voljme Depth Runoff Quantity Continuity acre-feet inches Total Precipitation 1.399 1.564 Evaporation Loss 0.316 0.018 Infiltration Loss 0.100 0.000 Surface Runoff 1.163 1.188 Final Surface Storage . . . 0.321 0.359 Continuity Error (%) -0.393 Volime Volume Flow Routing Cortinuity acre-feet 10*6 gal Dry Weather Inflow 0.300 0.000 Wet Weather Inflow 1.362 0.346 Groundwater Inflow 0.300 0.000 RDII Inflow ..............0.000 0.000 External Inflow 0.000 0.000 External Outflow 0.837 0.273 Internal Outflow 0.000 0.000 Storage Losses 0.000 0.000 Initial Stored Volume . . . 0.000 0.000 Final Stored Volume 0.223 0.073 Continuity Error (%( 0.166 Highest Flow Instability Indexes All links are stable. Routing Time Step Summary Minimum Time Step 60.00 sec Average Time Step : 60.00 sec Maximum Time Step : 60.00 sec Percent in Steady State : 0.CO Average Iterations per Step : 1.00 Subcatchment Runoff Summary --------------------------------------------------------------------------------------------------------- Total Total Total Total Total Total Peak Runoff Precip Runon Evap Infil Runoff Runoff Runoff Coeff SWMM5 Page 1 Post-Dev Output (POC-2) Subcatchment in in in in in 106 gal CFS DMA 2-1 1.70 0.00 -------------------------------------------------------------------------------------------------------- 0.02 0.00 1.68 0.41 26.88 0.986 DMA 2-BYPASS 0.95 0.00 0.02 0.00 0.92 0.04 2.39 0.973 IMP 2-i 0.00 79.40 0.02 0.00 59.55 0.31 25.86 0.750 LID Performance Summary ------------------------------------------------------------------------------------------------------------------ Total Evap Infil Surface Drain Init. Final Pcnt. Inflow Loss Loss Outflow Outflow Storage Storage Error Subcatchment LID Control in in in in in in in IMP 2-1 IMP-2-1 79.40 0.02 0.00 43.85 15.70 0.00 19.86 -0.05 Node Depth Summary -------------------------------------- Average Maximum Maximum Time of Max Depth Depth HGL Occurrence Node Type --------------------------------------------------------------------- Feet Feet Feet days hr:min POC-2 OUTFALL 0.00 0.00 0.00 0 00:00 DIV 2-1 DIVIDER 0.00 0.00 0.00 0 00:00 SURF 2-1 STORAGE 0.75 1.92 1.92 0 04:22 Node Inflow Summary Maximum ------------------------------------------------------------------------------------- Maximum Lateral Total Lateral Total Time of Max Inflow Inflow Inflow Inflow Occurrence Volume Volume Node Type CFS ------------------------------------------------------------------------------------- CFS days hr:min 106 gal 106 gal POC-2 OUTFALL 2.39 5.39 0 04:16 0.039 0.273 DIV 2-1 DIVIDER 25.86 25.86 0 04:11 0.307 0.307 SURF 2-1 STORAGE 0.00 25.60 0 04:11 0.000 0.231 Node Surcharge Summary Surcharging occurs when water rises above the top of the highest conduit. Max. Height Mm. Depth Hours Above Crown Below Rim Nude Type Surcharged Feet Feet --------------------------------------------------------------------- DIV 2-1 DIVIDER 12.02 0.000 0.000 SURF-2-1 STORAGE 12.02 1.923 1.577 Node Flooding Summary No nodes were flooded. Storage Volume Summary Average Avg -------------------------------------------------------------------------------------------- E&I Maximum Max Time of Max Maximum Volume Pcnt Pcnt Volume Pcnt Occurrence Outflow Storage Unit 1000 ft3 Full Loss 1000 ft3 Full days hr:min CFS SURF 2-1 7.416 20 -------------------------------------------------------------------------------------------- 0 19.635 52 0 04:21 4.41 Outfall Loading Summary ----------------------------------------------------------- Flow Avg. Max. Total Freq. Flow Flow Volume SWMM5 Page Post-Dev Output (POC-2) Outfall Node Pcnt. ----------------------------------------------------------- CFS CFS 106 gal POC-2 100.00 0.84 5.39 0.273 System ----------------------------------------------------------- 100.00 0.84 5.39 0.273 Link Flow Summary ----------------------------------------------------------------------------- Maximum Time of Max Maximum Max! Max! IFlowl Occurrence IVelocl Full Full Link Type CFS days hr:min ft/sec Flow Depth BYPASS 2-1 DUMMY ----------------------------------------------------------------------------- 25.60 0 04:11 DUN 2-1 DUMMY 0.26 0 03:53 2-1 DUMMY 4.41 0 04:22 Conduit Surcharge Summary ---------------------------------------------------------------------------- Hours Hours Hours Full --------Above Full Capacity Conduit Both Ends Upstream Dnstream Normal Flow Limited ----------------------------------------------------------------------------- BYPASS 2-1 0.01 0.01 0.01 12.02 0.01 DUN 2-1 0.01 0.01 0.01 12.02 0.01 SWMM5 Page 3 Post-Dev Output (POC-3) EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.022) NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. Analysis Options Flow Units ...............CFS Process Models: Rainfall/Runoff ........YES Snowmelt ...............NO Groundwater ............NO Flow Routing ...........YES Ponding Allowed ........NO Water Quality ..........NO Infiltration Method ......GREEN AMPT Flow Routing Method ......KINWAVE Starting Date ............JAN -01-2000 00:00:00 Ending Date ..............JAN -01-2000 12:00:00 Antecedent Dry Days ......0.0 Report Time Step .........00:01:00 Wet Time Step ............00:01:00 Dry Time Step ............00:01:00 Routing Time Step ........60.00 sec WARNING 04: minimum elevation drop used for Conduit BYPASS-4-1 WARNING 04: minimum elevation drop used for Conduit DuM4-1 WARNING 04: minimum elevation drop used for Conduit BYPASS 5-1 WARNING 04: minimum elevation drop used for Conduit DOW 5-1 ** ************Volume Depth Runoff Quantity Continuity acre-feet inches Total Precipitation 3.398 1.127 Evaporation Loss 0.032 0.011 Infiltration Loss 0.000 0.000 Surface Runoff 3.324 1.202 Final Surface Storage . . . 0.043 0.014 Continuity Error (%) -0.019 ******** Volume Volume Flow Routing Continuity acre-feet 10*6 gal Dry Weather Inflow 0.000 0.000 Wet Weather Inflow 3.324 1.083 Groundwater Inflow 0.000 0.000 ROIl Inflow ..............0.000 0.000 External Inflow 0.000 0.000 External Outflow 3.318 1.082 Internal Outflow 0.000 0.000 Storage Losses 0.000 0.000 Initial Stored Volume . . . 0.000 0.000 Final Stored Volume 0.004 0.001 Continuity Error (%) 0.035 Highest Flow Instability Indexes All links are stable. I Routing Time Step Summary Minimum Time Step : 60.00 sec Average Time Step : 60.00 sec Maximum Time Step : 60.00 sec Percent in Steady State : 0.00 Average Iterations per Step : 1.00 Subcatchment Runoff Summary SWMM 5 Page 1 Post-Dev Output (POC-3) Total Total -------------------------------------------------------------------------------------------------------- Total Total Total Total Peak Runoff Precip Runon Evap Infil Runoff Runoff Runoff Coeff Subcatchment in in in in in 106 gal CFS DMA 4-1 1.60 0.00 -------------------------------------------------------------------------------------------------------- 0.01 0.00 1.59 0.34 20.70 0.993 DMA 5-1 2.03 0.00 0.01 0.00 2.02 0.08 6.94 0.995 DMA 3-BYPASS 0.95 0.00 0.01 0.00 0.94 0.68 32.85 0.989 IMP 4-i 0.00 75.60 0.02 0.00 72.89 0.33 19.75 0.964 IMP 5-. 0.00 89.90 0.02 0.00 88.11 0.08 6.51 0.980 LID Performance Summary Total Evap ------------------------------------------------------------------------------------------------------------------ Infil Surface Drain Init. Final Pcnt. Inflow Loss Loss Outflow Outflow Storage Storage Error Subcatchment LID Control in in in in in in in IMP 4-1 IMP 4-1 75.60 0.02 ------------------------------------------------------------------------------------------------------------------ 0.00 40.08 32.81 0.00 2.73 -0.05 IMP-5-1 IMP-5-1 89.90 0.02 0.00 58.15 29.97 0.00 1.80 -0.03 Node Depth Summery -------------------------------------- Average Maximum Maximum Time of Max Depth Depth NGL Occurrence Node Type Feet --------------------------------------------------------------------- Feet Feet days hr:min POC-3 OUTFALL 0.00 0.00 0.00 0 00:00 DIV 4-1 DIVIDER 0.00 0.00 0.00 0 00:00 DIV 5-1 DIVIDER 0.00 0.00 0.00 0 00:00 SURF 4-1 STORAGE 0.18 1.56 1.56 0 04:19 SURF-5-1 STORAGE 0.04 0.68 0.68 0 04:09 Node Inflow Sunlrary Naximim ------------------------------------------------------------------------------------- Maximum Lateral Total Lateral Total Time of Max Inflow Inflow Inflow Inflow Occurrence Volume Volume Node Type CFS CFS days hr:min 106 gal 106 gal POC-3 OUTFALL 32.35 ------------------------------------------------------------------------------------- 42.70 0 04:15 0.677 1.081 DIV 4-1 DIVIDER 19.75 19.75 0 04:11 0.330 0.329 DIV 5-1 DIVIDER 6.51 6.51 0 04:07 0.077 0.077 SURF 4-1 STORAGE 0.10 19.19 0 04:11 0.000 0.185 SURF-5-1 STORAGE 0.10 6.41 0 04:07 0.000 0.051 Node Surcharge Summary Surcharging occurs when water rises above the top of the highest conduit Max. Height Mm. Depth Hours Above Crown Below Rim Node Type --------------------------------------------------------------------- Surcharged Feet Feet DIV 4-1 DIVIDER 12.02 0.000 0.000 DIV-5-1 DIVIDER 12.02 0.000 0.000 SURF 4-1 STORAGE 12.02 1.556 1.274 SURF-5-1 STORAGE 12.02 0.683 1.317 Node Flooding Summary No nodes were flooded. Storage Volume lummary -------------------------------------------------------------------------------------------- Average Avg ElI Maximum Max Time of Max Maximum SWMM5 Page 2 Post-Dev Output (POC-3) Volume Pcnt Pcnt Volume Pcnt Occurrence Outflow Storage Unit 1000 ft3 Full Loss 1000 ft3 Full days hr:rnin CFS SURF 4-1 1.477 6 -------------------------------------------------------------------------------------------- 0 13.180 52 0 04:19 7.52 SURF 5-1 0.058 2 0 1.133 30 0 04:09 5.25 Outfall Loading Summary ----------------------------------------------------------- Flow Avg. Max. Total Freq. Flow Flow Volume Outfall Node Pcnt. CFS CFS 106 gal POC-3 ----------------------------------------------------------- 100.00 3.34 42.70 1.081 System ----------------------------------------------------------- 100.00 3.34 42.70 1.081 Link Flow Summary ----------------------------------------------------------------------------- Maximum Time of Max Maximum Max! Max! I Flowl Occurrence IVeloci Full Full Link Type CFS days hr:min ft/sec Flow Depth BYPASS 4-1 DUMMY ----------------------------------------------------------------------------- 19.19 0 04:11 DUM4-1 DUMMY 0.56 0 04:04 BYPASS 5-1 DUMMY 6.41 0 04:07 DUN 5-1 DUMMY 0.10 0 04:02 4-1 DUMMY 7.52 0 04:19 5-1 DUMMY 5.25 0 04:09 Conduit Surcharge Summary Hours Hours Hours Full --------Above Full Capacity Conduit Both Ends ---------------------------------------------------------------------------- Upstream Dnstream Normal Flow Limited BYPASS 4-1 0.01 0.01 0.01 12.02 0.01 DUN 4-1 0.01 0.01 0.01 12.02 0.01 BYPASS 5-1 0.01 0.01 0.01 12.02 0.01 DUM5-1 0.01 0.01 0.01 12.02 0.01 SWMM5 Page /TECHNICAL MEMORANDUM: / BMP Sizing for Stormwater Treatment Poinsettia (CT 14-10) City of Carlsbad, CA Prepared for: Lennar California Coastal August 9, 2017 No. 45005 11 * Eç 3-31-2018 Tory RS'claIker, R.C. E. 45005 President TORY R.WALKERENGINEERING RELIABLE SOLUTIONS IN WATER RESOURCES CIVIC CENTER OR, STE 206, VISTA, CA 92084 760-414-9212 TORY R.WALKERENGINEERING RELIABLE SOLUTIONS IN WATER RESOURCES I I [1 TECHNICAL MEMORANDUM TO: Lennar California Coastal Attention: Jamison Nakaya 25 Enterprise, Suite 400 Aliso Viejo, CA 92656 FROM: Tory Walker, PE, CFM, LEED GA DATE: August 9, 2017 RE: Summary of BM Sizing for Stormwater Treatment for Poinsettia, City of Carlsbad, CA. INTRODUCTION This technical memorandum summarizes the approach used to size biofiltration Best Management Practices (BMPs) for treatment of stormwater from the proposed Poinsettia development in the City of Carlsbad, CA. The biofiltration basins are sized using Worksheet 8.5-1: Simple Sizing Method for Biofiltration BMPs, as provided in the "City of Carlsbad BMP Design Manual"' (BMP Design Manual). The BMP Design Manual was developed for the City of Carlsbad in order to address the BMP sizing requirements set forth in NPDES permit Order No. R9-2013-00012, as established by the San Diego Regional Water Quality Control Board (SDRWQCB). BMP SIZING The biofiltration basins were sized to treat stormwater based on the criteria presented in the BMP Design Manual. Sizing calculations for each BMP follow Worksheet B.5-1 (see Attachment 1). Essentially, the Design Capture Volume (DCV) was calculated for each BMP, followed by calculation of the minimum required footprint (where footprint is equal to the treatment area, which is equal to the area of the amended soil and gravel layers). The footprint provided for each BMP was made larger than the minimum required footprint in order to demonstrate compliance with the BMP Design Manual. The required and provided footprints are shown in Table 1. Each BMP has a footprint that is larger than the required area because hydromodification management plan (HMP) criteria was the controlling factor for sizing each basin. For further information regarding HMP requirements for the project, please refer to the site specific HMP3. Worksheet 8.5-1 presents two options for achieving water quality compliance. For this project, Option 1 (Biofilter 1.5 times the DCV), was selected as the water quality criteria for all BMPs. In addition, the BMP Design Manual requires that all biofiltration basins have a footprint greater than or equal to 3% of the area tributary to the BMP multiplied by the adjusted runoff factor (C). The 3% rule is a minimum sizing factor, which for this project requires footprint sizes to be greater than Option 1. WATERSHED, FLOODPLAIN 6STORM WATER MANACEM ENT RIVER RESTORATION -FLOOD FACILITIES DESIGN SEDIMENT &- EROSION 122 Civic CENTER DRIVE, SUITE 206, VISTA CA 92084 . 760-414-9212 . TRWENGINEERING.COM I I 1 I I Poinsettia BMP Sizing Memo August 9, 2017 —TRWE— The BMP Design Manual also requires consideration of partial retention for biofiltration BMPs. Partial retention was not incorporated into the design of the project's BMPs because the geotechnical investigation recommends against infiltration into the underlying soil (due mostly to seepage related slope instability). Thus, all biofiltration basins are fully lined with an impermeable liner. TABLE 1— SUMMARY OF BMP FOOTPRINTS BMP Footprint Required (ft) Footprint Provided (ft) 1-1 1,642 2,488 2-1 6,757 8,277 3-1 992 1,733 4-1 4,933 7,253 5-1 1,317 1,400 SUMMARY This technical memorandum has demonstrated that the proposed biofiltration basins within the Poinsettia project satisfy the BMP Design Manual water quality criteria, provided that the cross- sectional areas and volumes recommended within this technical memorandum are incorporated as specified within the proposed project site. KEY ASSUMPTIONS 1. Zero partial retention is used because the project's geotechnical investigation recommends against infiltration into the underlying soil. Thus, the biofiltration basins are lined with an impermeable liner. REFERENCES - "City of Carlsbad Engineering Standards Volume 5 Carlsbad BMP Design Manual - 2016 Edition", February 16, 2016, City of Carlsbad. - Order 119-2013-001, California Regional Water Quality Control Board San Diego Region (SDRWQCB). - "SWMM Modeling for Hydromodification Compliance of Poinsettia, City of Carlsbad, CA, August .9, 2017", prepared by Tory R. Walker Engineering. - "Report of Geotechnical Investigation, Poinsettia Development, Carlsbad, California, November 20, 2014", prepared by Group Delta Consultants, Inc. ATTACHMENTS 1. BMP Sizing Calculations 2 Job # 349-11 ATTACHMENT 1 BMP Sizing Calculations e Poinsettia I TORY R. WALKER EN C I N E ERI N G :: :m .:...... 349-11 RELIABLE SOLUTIONS IN WATER RESOURCES Date.......................8/9/2017 RUNOFF FACTOR CALCULATION BMP ID: BMP 1-1 Contributing DMA(S): DMA 1-1 Weighted Runoff Factor DMA Surface Type Area (sf) Runoff Factor C C 1 IMPERVIOUS 56089 0.9 0.55 PERVIOUS (LANDSCAPE) 42639 0.1 TOTAL 98728 TOTAL (ac) 2.266 BMP ID: BMP 2-. Contributing DMA(S): DMA 2-1 Weighted Runoff Factor DMA Surface Type Area (sf) Runoff Factor C C 2 IMPERVIOUS 232630 0.9 0.58 PERVIOJS (LANDSCAPE) 158573 0.1 TOTAL 391203 TOTAL (ac) 8.981 BMP ID: BMP 3-1 Contributing DMA(S): DMA 3-1 Weighted Runoff Factor DMA Surface Type Area (sf) Runoff Factor C C IMPERVIOUS 32480 0.9 0.47 PERVICUS (LANDSCAPE) 38430 0.1 TOTAL 70910 TOTAL (ac) 1.628 BMP ID: BMP 4-1 Contributing DMA(s): DMA 4-1 Weighted Runoff Factor DMA Surface Type Area (sf) Runoff Factor C C IMPERVIOUS 162338 0.9 0.48 PERVIOUS (LANDSCAPE) 183451 0.1 TOTAL 345789 TOTAL (ac) 7.938 BMP ID: BMP 5-1 Contributing DMA(S): DMA 5-1 Weighted Runoff Factor DMA Surface Type Area (sf) Runoff Factor C C IMPERVIOUS 47103 0.9 0.70 PERVIOUS (LANDSCAPE) 15225 0.1 TOTAL 62328 TOTAL (ac) 1.431 BMP Sizing for Biofiltration Basin 1-1 (IMP 1-1) DESIGN CAPTURE VOLUME (DCV) (per BMP Design Manual) C 0.554 Area weighted runoff factor, per Table 13.1-1 d 0.64 in (85th percentile, 24-hr storm rainfall depth) A 2.266 ac (area tributary to BMP) DCV 2920 cubic-feet Worksheet B.5-1: Simple Sizing Method for Biofiltration BMPs Simple Sizing Method for Biofiltration BMPs Worksheet B.5-1 BMP Design Manual 1Remaining DCV after implementing retention BMPs 2920 cubic-feet Partial Retention 2 Infiltration rate from Worksheet D.5-1 if partial infiltration is feasible N/A in/hr. 3 Allowable drawdown time for aggregate storage below the underdrain 36 hours 4 Depth of runoff that can be infiltrated [Line 2 x Line 3] N/A inches 5 Aggregate pore space 0.4 in/in 6 Required depth of gravel below the underdrain [Line 4/ Line 5] N/A inches 7 Assumed surface area of the biofiltration BMP 2488 sq-ft 8 Media retained pore space 0.1 in/in 9 Volume retained by BMP [[Line 4 + (Line 12 x Line 8)]/12] x Line 7 N/A cubic-feet 10 DCV that requires biofiltration [Line 1 - Line 91 2920 cubic-feet BMP Parameters 11 Surface Ponding [6 inch minimum, 12 inch maximum] 6 inches 12 Media Thickness [18 inches minimum] 18 inches 13 Aggregate Storage above underdrain invert (12 inches typical) - use 0 inches for sizing if the aggregate is not over the entire bottom surface area 12 inches 14 Media available pore space 0.2 in/in 15 Media filtration rate to be used for sizing 5 in/hr. Baseline Calculations 16 Allowable Routing Time for sizing 6 hours 17 Depth filtered during storm [Line 15 x Line 16] 30 inches 18 Depth of Detention Storage [Line 11 + (Line 12 x Line 14) + (Line 13 x Line 5)] 14.4 inches 19 Total Depth Treated [Line 17 + Line 18] 44.4 inches Option 1 - Biofilter 1.5 times the DCV 20 Required biofiltered volume [1.5 x Line 10] 4380 cubic-feet 21 Required Footprint [Line 20/ Line 19] x 12 1184 sq-ft Option 2 - Store 0.75 of remaining DCV in pores and ponding 22 Required Storage (surface + pores) Volume [0.75 x Line 101 2190 cubic-feet 23 Required Footprint [Line 22/ Line 181 x 12 1825 sq-ft Required Footprint of the BMP 24 Area draining to the BMP 98728 sq-ft 25 Adjusted Runoff Factor for drainage area (Refer to Appendix 8.1 and 13.2) 0.554 26 Minimum BMP Footprint [Line 24 x Line 25 x 0.031 1642 sq-ft 27 Footprint of the BMP = Maximum(Minimum(Line 21, Line 23), Line 26) 1642 sq-ft Biofiltration footprint provided [Line 71 2488 sq-ft Check that Line 7 is greater than or equal to Line 27 OK BMP Sizing for Biofiltration Basin 2-1 (IMP 2-1) DESIGN CAPTURE VOLUME (DCV) (per BMP Design Manual) C 0.576 Area weighted runoff factor, per Table 13.1-1 T 0.64 in (85th percentile, 24-hr storm rainfall depth) A 8.981 ac (area tributary to BMP) DCV 12012 ft3 Worksheet B.5.-1: Simple Sizing Method for Biofiltration BMPs Simple Sizing Method for Biofiltration BMPs Worksheet B.5-1 BMP Design Manual 1Remaining DCV after implementing retention BMPs 12012 1 cubic-feet - Partial Retention 2 Infiltration rate from Worksheet D.5-1 if partial infiltration is feasible I N/A in/hr. 3 Allowable drawdown time for aggregate storage below the underdrain 36 hours 4 Depth of runoff that can be infiltrated [Line 2 x Line 3] N/A inches 5 Aggregate pore space 0.4 in/in 6 Required depth of gravel below the underdrain [Line 4/ Line 51 N/A inches 7 Assumed surface area of the biofiltration BMP 8277 sq-ft 8 Media retained pore space 0.1 in/in 9 Volume retained by BMP [[Line 4 + (Line 12 x Line 8)1/12] x Line 7 N/A cubic-feet 10 DCV that requires biofiltration [Line 1 - Line 9] 12012 cubic-feet BMP Parameters 11 Surface Ponding [6 inch minimum, 12 inch maximum] 12 inches 12 Media Thickness [18 inches minimum] 18 inches 13 Aggregate Storage above underdrain invert (12 inches typical) - use 0 inches for sizing if the aggregate is not over the entire bottom surface area 12 inches 14 Media available pore space 0.2 in/in 15 Media filtration rate to be used for sizing 5 in/hr. Baseline Calculations 16 Allowable Routing Time for sizing 6 hours 17 Depth filtered during storm [Line 15 x Line 16] 30 inches 18 Depth of Detention Storage [Line 11 + (Line 12 x Line 14) + (Line 13 x Line 5)] 20.4 inches 19 Total Depth Treated [Line 17 + Line 18] 50.4 inches Option 1 - Biofilter 1.5 times the DCV 20 Required biofiltered volume [1.5 x Line 10] 18018 cubic-feet 211 Required Footprint [Line 20/ Line 19] x 12 4290 sq-ft Option 2 - Store 0.75 of remaining DCV in pores and ponding ________ 22 Required Storage (surface + pores) Volume [0.75 x Line 10] 9009 1 cubic-feet 23 Required Footprint [Line 22/ Line 18] x 12 5299 sq-ft Required Footprint of the BMP 24 Area draining to the BMP 391203 sq-ft 25 Adjusted Runoff Factor for drainage area (Refer to Appendix 13.1 and B.2) 0.576 26 Minimum BMP Footprint [Line 24 x Line 25 x 0.03] 6757 sq-ft 27 Footprint of the BMP = Maximum (Minimum(Line 21, Line 23), Line 26) 6757 sq-ft Biofiltration footprint provided [Line 7] 8277 sq-ft Check that Line 7 is greater than or equal to Line 27 1 OK BMP Sizing for Biofiltration Basin 3-1 (IMP 3-1) DESIGN CAPTURE VOLUME (DCV) (per BMP Design Manual) C 0.466 Area weighted runoff factor, per Table 13.1-1 d 0.64 in (85th percentile, 24-hr storm rainfall depth) A 1.628 ac (area tributary to BMP) DCV 1764 cubic-feet Worksheet B.5-1: Simple Sizing Method for Biofiltration BMPs Simple Sizing Method for Biofiltration BMPs Worksheet B.5-1 BMP Design Manual 1Remaining DCV after implementing retention BMPs 1764 cubic-feet Partial Retention 2 Infiltration rate from Worksheet D.5-1 if partial infiltration is feasible N/A in/hr. 3 Allowable drawdown time for aggregate storage below the underdrain 36 hours 4 Depth of runoff that can be infiltrated [Line 2 x Line 3] N/A inches 5 Aggregate pore space 0.4 in/in 6 Required depth of gravel below the underdrain [Line 4/ Line 5] N/A inches 7 Assumed surface area of the biofiltration BMP 1733 sq-ft 8 Media retained pore space 0.1 in/in 9 Volume retained by BMP [[Line 4 + (Line 12 x Line 8)]/12] x Line 7 N/A cubic-feet 10 DCV that requires biofiltration [Line 1 - Line 9] 1 1764 cubic-feet BMP Parameters 11 Surface Ponding [6 inch minimum, 12 inch maximum] 6 inches 12 Media Thickness [18 inches minimum] 18 inches 13 Aggregate Storage above underdrain invert (12 inches typical) - use 0 inches for sizing if the aggregate is not over the entire bottom surface area 12 inches 14 Media available pore space 0.2 in/in 15 Media filtration rate to be used for sizing 5 in/hr. Baseline Calculations 16 Allowable Routing Time for sizing 6 hours 17 Depth filtered during storm [Line 15 x Line 16] 30 inches 18 Depth of Detention Storage [Line 11 + (Line 12 x Line 14) + (Line 13 x Line 5)] 14.4 inches 19 Total Depth Treated [Line 17 + Line 18] 44.4 inches Option 1 - Biofilter 1.5 times the DCV 20 Required biofiltered volume [1.5 x Line 10] 2646 cubic-feet 21 Required Footprint [Line 20/ Line 191 x 12 1 715 sq-ft Option 2 - Store 0.75 of remaining DCV in pores and ponding 22 Required Storage (surface + pores) Volume [0.75 x Line 101 1323 cubic-feet 23 Required Footprint [Line 22/ Line 18] x 12 1103 sq-ft Required Footprint of the BMP 24 Area draining to the BMP 70910 sq-ft 25 Adjusted Runoff Factor for drainage area (Refer to Appendix B.1 and B.2) 0.466 26 Minimum BMP Footprint [Line 24 x Line 25 x 0.03] 992 sq-ft 27 Footprint of the BMP = Maxim um(Minimum(Line 21, Line 23), Line 26) 992 sq-ft Biofiltration footprint provided [Line 7] 1733 sq-ft Check that Line 7 is greater than or equal to Line 27 OK BMP Sizing for Biofiltration Basin 4-1 (IMP 4-1) DESIGN CAPTURE VOLUME (DCV) (per BMP Design Manual) C 0.476 Area weighted runoff factor, per Table 13.1-1 d 0.64 in (85th percentile, 24-hr storm rainfall depth) A 7.938 ac (area tributary to BMP) DCV 8771 cubic-feet Worksheet B.5-1: Simple Sizing Method for Biofiltration BMPs Simple Sizing Method for Biofiltration BMPs Worksheet B.5-1 BMP Design Manual 1Remaining DCV after implementing retention BMPs 8771 cubic-feet Partial Retention 2 Infiltration rate from Worksheet D.5-1 if partial infiltration is feasible I N/A in/hr. 3 Allowable drawdown time for aggregate storage below the underdrain 36 hours 4 Depth of runoff that can be infiltrated [Line 2 x Line 3] N/A inches 5 Aggregate pore space 0.4 in/in 6 Required depth of gravel below the underdrain [Line' 4/ Line 5] N/A inches 7 Assumed surface area of the biofiltration BMP 7253 sq-ft 8 Media retained pore space 0.1 in/in 9 Volume retained by BMP [[Line 4 + (Line 12 x Line 8)1/12] x Line 7 N/A cubic-feet 10 DCV that requires biofiltration [Line 1 - Line 9] 8771 cubic-feet BMP Parameters 11 Surface Ponding [6 inch minimum, 12 inch maximum] ' 8 inches 12 Media Thickness [18 inches minimum] 18 inches 13 Aggregate Storage above underdrain invert (12 inches typical) - use 0 inches for sizing if the aggregate is not over the entire bottom surface area 18 inches 14 Media available pore space 0.2 in/in 15 Media filtration rate to be used for sizing 5 in/hr. Baseline Calculations 16 Allowable Routing Time for sizing 6 hours 17 Depth filtered during storn [Line 15 x Line 16] 30 inches 18 Depth of Detention Storage [Line 11 + (Line 12 x Line 14) + (Line 13 x Line 5)] 18.8 inches 19 Total Depth Treated [Line 17 + Line 18] 48.8 inches Option 1 - Biofilter 1.5 times the DCV 20 Required biofiltered volume [1.5 x Line 10] 13156 cubic-feet 211 Required Footprint [Line 20/ Line 19] x 12 3235 sq-ft Option 2 - Store 0.75 of remaining DCV in pores and ponding 22 Required Storage (surface + pores) Volume [0.75 x Line 101 6578 cubic-feet 23 Required Footprint [Line 22/ Line 18] x 12 1 4199 sq-ft Required Footprint of the BMP 24 Area draining to the BMP 345789 sq-ft 25 Adjusted Runoff Factor for drainage area (Refer to Appendix B.1 and 13.2) 0.476 26 Minimum BMP Footprint [Line 24 x Line 25 x 0.031 4933 sq-ft 27 Footprint of the BMP = Maximum(Minimum(Line 21, Line 23), Line 26) 4933 sq-ft Biofiltration footprint provided [Line 7] 7253 sq-ft Check that Line 7 is greater than or equal to Line 27 OK BMP Sizing for Biofiltration Basin 5-1 (IMP 5-1) DESIGN CAPTURE VOLUME (DCV) (per BMP Design Manual) C 0.705 Area weighted runoff factor, per Table 13.1-1 d 0.64 in (85th percentile, 24-hr storm rainfall depth) A 1.431 ac (area tributary to BMP) DCV 2342 cubic-feet Worksheet B.5-1: Simple Sizing Method for Biofiltration BMPs Simple Sizing Method for Biofiltration BMPs Worksheet B.5-1 BMP Design Manual 1Remaining DCV after implementing retention BMPs 2342 cubic-feet Partial Retention 2 Infiltration rate from Worksheet 0.5-1 if partial infiltration is feasible N/A in/hr. 3 Allowable drawdown time for aggregate storage below the underdrain 36 hours 4 Depth of runoff that can be infiltrated [Line 2 x Line 3] N/A inches 5 Aggregate pore space 0.4 in/in 6 Required depth of gravel below the underdrain [Line 4/ Line 51 N/A inches 7 Assumed surface area of the biofiltration BMP 1400 sq-ft 8 Media retained pore space 0.1 in/in 9 Volume retained by BMP [[Line 4 + (Line 12 x Line 8)]/12] x Line 7 N/A cubic-feet 10 DCV that requires biofiltration [Line 1 - Line 9] 2342 cubic-feet BMP Parameters 11 Surface Ponding [6 inch minimum, 12 inch maximum] 6 inches 12 Media Thickness [18 inches minimum] 18 inches 13 Aggregate Storage above underdrain invert (12 inches typical) - use 0 inches for sizing if the aggregate is not over the entire bottom surface area 12 inches 14 Media available pore space 0.2 in/in 15 Media filtration rate to be used for sizing 5 in/hr. Baseline Calculations 16 Allowable Routing Time for sizing 6 hours 17 Depth filtered during storm [Line 15 x Line 161 30 inches 18 Depth of Detention Storage [Line 11 + (Line 12 x Line 14) + (Line 13 x Line 5)] 14.4 inches 19 Total Depth Treated [Line 17 + Line 18] 44.4 inches Option 1 - Biofilter 1.5 times the DCV 20 Required biofiltered volume [1.5 x Line 10] 3513 cubic-feet 21 Required Footprint [Line 20/ Line 191 x 12 950 sq-ft Option 2 - Store 0.75 of remaining DCV in pores and ponding 22 Required Storage (surface + pores) Volume [0.75 x Line 10] 1757f cubic-feet 23 Required Footprint [Line 22/ Line 18] x 12 1464jq-ft Required Footprint of the BMP 24 Area draining to the BMP 62328 sq-ft 25 Adjusted Runoff Factor for drainage area (Refer to Appendix B.1 and 13.2) 0.705 26 Minimum BMP Footprint [Line 24 x Line 25 x 0.03] 1317 sq-ft 27 Footprint of the BMP = Maximum (Minimum (Line 21, Line 23), Line 26) 1317 sq-ft Biofiltration footprint provided [Line 7] 1400 sq-ft Check that Line 7 is greater than or equal to Line 27 OK /1 /TECHNICAL MEMORANDUM: SWMM Modeling for Hydromodification Compliance of: Poinsettia (CT 14-10) City of Carlsbad, CA Prepared for: Lennar California Coastal August 9, 2017 0-11, A~ V Toro( Walker, R.C. E. 45005 President No. 45005 *\ EIp 3-31-2018 * TORY R.WALKERENGINEERING RELIABLE SOLUTIONS IN WATER RESOURCES CIVIC CENTER DR, STE 206, VISTA, CA 92084 760-414-9212 I TORY R.WALKERENGINEERING I RELIABLE SOLUTIONS IN WATER RESOURCES - TECHNICAL MEMORANDUM TO: Lennar California Coastal Attention: Jamison Nakaya 25 Enterprise, Suite 400 Aliso Viejo, CA 92656 FROM: Tory Walker, PE, CFM, LEED GA DATE: August 9, 2017 RE: Summary of SWMM Modeling for Hydromodification Compliance of Poinsettia, City of Carlsbad, CA. INTRODUCTION This technical memorandum summarizes the approach used to model the proposed Poinsettia development in the City of Carlsbad, CA, using the Environmental Protection Agency (EPA) Storm Water Management Model (SWMM). SWMM analyses were prepared for the pre- and post-developed conditions at the project site to determine if the proposed biofiltration basins meet Hydromodification Management Plan (HMP) requirements. The City of Carlsbad established these requirements in the City of Carlsbad BMP Design Manual' (BMPDM). SWMM MODEL DEVELOPMENT The Poinsettia project is a proposed residential development located just southeast of the intersection of Poinsettia Lane and Cassia Road in the City of Carlsbad. Two (2) SWMM scenarios were prepared for this study, one for the pre-developed and another for the post-developed conditions. Three (3) Points of Compliance (POC) have been identified along the boundary of the project site, as shown on the pre- and post-developed Drainage Management Area (DMA) maps in Attachment 5. For both SWMM scenarios, flow duration curves were prepared for each POC to determine if the proposed biofiltration Integrated Management Practices (IMPs) are sufficient to meet the current HMP requirements. The input data required to develop SWMM analyses include rainfall, watershed characteristics, and IMP configurations. The Oceanside gauge from the Project Clean Water website was used for this study, since it is the most representative of the site precipitation due to elevation and proximity to the project site. Evaporation for the site was modeled using average monthly values from the BMPDM. The site was modeled with Types D and A hydrologic soils, as determined from the Natural Resources Conservation Service (NRCS) Web Soil Survey. Soils are mostly assumed to be uncompacted in existing conditions. In developed conditions, soils within the developed portion of the site are assumed to be compacted, while soils in undeveloped areas are assumed to remain uncompacted. Based on the BMPDM and the WATERSHED, FLOODPLAIN &STORM WATER MANAGEMENT RIVER RESTORATION -FLOOD FACILITIES DESIGN SEDIMENT &EROSION 122 CIVIC CENTER DRIVE, SUITE 206, VISTA CA 92084 . 760-414-9212 . TRWENCINEERING.COM I Poinsettia HMP Memo August 9, 2017 —TRWE— HMP Review and Analysis prepared for the Cities of San Marcos, Oceanside & Vista2, other SWMM inputs for the subareas are discussed in the appendices to this document, where the selection of the parameters is explained in detail. HMP MODELING pOC-1 POC-1 is located along the western boundary of the project site (see DMA maps in Attachment 5). In existing conditions, DMA 1 drains southwesterly to POC-1. In proposed conditions, DMAs 1-1 and 3-1 are drained to two receiving IMP biofiltration basins (IMPs 1-1 and 3-1). Once flows are routed via the proposed IMPs, all flows are then conveyed via storm drain to POC-1. The area labeled as DMA 1- BYPASS bypasses the IMP facilities and drains directly to POC-1. Tables 1.1 and 1.2 summarize data for POC1 DMAs: in the existing and developed conditions. The IMP biofiltration basins (IMPs 1-1 and 3-1) are responsible for handling hydromodification requirements for POC-1. The biofiltration basins have been designed with a uniform surface depth of 2.50 feet. Each IMP is comprised of an 18-inch layer of amended soil (a highly sandy, organic rich compost with an infiltration capacity of at least 5 in/hr), and a 12-inch layer of gravel for additional detention and to accommodate the French drain system. Below the gravel layer, the basins are lined to prevent infiltration into the underlying soil. Flows will discharge from each basin via a low-flow orifice outlet within the gravel layer to the receiving storm drain system. A riser structure will be constructed within each IMP with orifices and an emergency overflow, such that peak flows can be safely discharged to the receiving storm drain system (see dimensions in Tables 5 and 6). TABLE 1.1 - SUMMARY OF EXISTING CONDITIONS FOR POC-1 DMA Tributary Area, A (ac) Impervious Percentage, Ip DMA 1 11.53 0.0% TOTAL 11.53 - TABLE 1.2 - SUMMARY OF DEVELOPED CONDITIONS FOR POC-1 DMA Tributary Area, A (ac) Impervious Percentage, Ip DMA 1-1 2.21 58.3% DMA 3-1 1.59 47.0% DMA 1-BYPASS 4.44 3.1% IMP 1-1 0.06 0.0% IMP 3-1 0.04 0.0% TOTAL 8.34 - POC-2 POC-2 is located near the middle of the project site (see DMA maps in Attachment 5). In existing conditions, DMA 2 drains southeasterly to POC-2. In proposed conditions, DMA 2-1 is drained to one receiving IMP biofiltration basin (IMP 2-1). Once flows are routed via the proposed IMP, all flows are then conveyed via storm drain to POC-2. The area labeled as DMA 2-BYPASS bypasses the IMP facility 2 Job # 349-11 L.... I Poinsettia HMP Memo August 9, 2017 -TRWE- and drains directly to POC-2. Tables 2.1 and 2.2 summarize data for POC-2 DMAs in the existing and developed conditions. The IMP biofiltration basin (IMP 2-1) is responsible for handling hydromodification requirements for POC-2. The biofiltration basin has been designed with a uniform surface depth of 5.00 feet. The IMP is comprised of an 18-inch layer of amended soil (a highly sandy, organic rich compost with an infiltration capacity of at least 5 in/hr), and a 12-inch layer of gravel for additional detention and to accommodate the French drain system. Below the gravel layer, the basin is lined to prevent infiltration into the underlying soil. Flows will discharge from the basin via a low-flow orifice outlet within the gravel layer to the receiving storm drain system. A riser structure will be constructed within the IMP with orifices and an emergency overflow, such that peak flows can be safely discharged to the receiving storm drain system (see dimensions in Tables 5 and 6). TABLE 2.1 - SUMMARY OF EXISTING CONDITIONS FOR POC-2 DMA Tributary Area, A (ac) Impervious Percentage, Ip DMA 7.15 0.0% TOTAL 7.15 - TABLE 2.2 - SUMMARY OF DEVELOPED CONDITIONS FOR POC-2 DMA Tributary Area, A (ac) Impervious Percentage, Ip DMA 2-1 8.79 60.8% DMA 2-BYPASS 1.56 0.0% IMP 2-1 0.19 0.0% TOTAL 10.54 - POC-3 POC-3 is located just north of the proposed Poinsettia Lane bridge within the project site (see DMA maps in Attachment 5). In existing conditions, DMA 3 drains southwesterly to POC-3. In proposed conditions, DMAs 4-1 and 5-1 are drained to two receiving IMP biofiltration basins (IMPs 4-1 and 5-1). Once flows are routed via the proposed IMPs, all flows are then conveyed via storm drain to POC-3. The area labeled as DMA 3-BYPASS and DMA 3-BYPASS-S bypasses the IMP facilities and drains directly to POC-3. Tables 3.1 and 3.2 summarize data for POC-3 DMAs in the existing and developed conditions. The IMP biofiltration basins (IMPS 4-1 and 5-1) are responsible for handling hydromodification requirements for POC-3. The biofiltration basins have been designed with uniform surface depths of 3.50 and 2.50 feet respectively (3.50 feet for IMP 4-1 and 2.50 feet for IMP 5-1). Each IMP is comprised of an 18-inch layer of amended soil (a highly sandy, organic rich compost with an infiltration capacity of at least 5 in/hr), and a layer of gravel (18-inches for IMP 4-1 and 12-inches for IMP 5-1) for additional detention and to accommodate the French drain system. Below the gravel layer, the basins are lined to prevent infiltration into the underlying soil. Flows will discharge from each basin via a low-flow orifice outlet within the gravel layer to the receiving storm drain system. A riser structure will be constructed within each IMP with a lower weir and an emergency overflow, such that peak flows can be safely discharged to the receiving storm drain system (see dimensions in Tables 5 and 6). 3 Job # 349-11 Poinsettia HMP Memo August 9, 2017 —TRWE— TABLE 3.1 - SUMMARY OF EXISTING CONDITIONS FOR POC-3 DMA Tributary Area, A (ac) Impervious Percentage, Ip DMA 3 34.37 0.0% TOTAL 34.37 - TABLE 3.2 - SUMMARY OF DEVELOPED CONDITIONS FOR POC-3 DMA Tributary Area, A (ac) Impervious Percentage, Ip DMA 4-1 7.77 48.0% DMA 5-1 1.40 77.3% DMA 3-BYPASS 25.75 0.0% DMA 3-BYPASS-S 0.86 0.0% IMP 4-1 0.17 0.0% IMP 5-1 0.03 0.0% TOTAL 35.98 - 4 Job # 349-11 I I I I I I I Poinsettia HMP Memo August 9, 2017 —TRWE— General Considerations All biofiltration basins were modeled using the biofiltration LID module within SWMM. The biofiltration module can model the underground gravel storage layer, underdrain with an orifice plate, amended soil layer, and a surface storage pond up to the elevation of the invert of the lowest surface discharge opening in the basin riser structure. Ponding above the invert of the lowest surface discharge opening in the basin riser structure is modeled as a detention basin: elevation vs. area, and elevation vs. discharge tables are needed by SWMM for Modified Puls routing purposes. Detailed outlet structure locations and elevations should be shown on the construction plans based on the recommendations of this study. It is assumed that stormwater quality requirements for the project will be met by the proposed stormwater quality facilities. However, detailed water quality requirements are not discussed within this technical memo. For further information regarding stormwater quality requirements for the project, please refer to the project specific Stormwater Quality Management Plan (SWQMP). IMP MODELING FOR HMP PURPOSES Modeling HMP IMPs Biofiltration basins are proposed for hydromodification conformance for the project site. Tables 5 and 6 illustrate the dimensions required for HMP compliance according to the SWMM models that were undertaken for the project. TABLE 5 - SUMMARY OF DUAL PURPOSE IMPs: Biofiltration with Surface Ponding IMP DIMENSIONS FOR POC-1 IMP Gravel Area' (ft2) Gravel Depth (in) Underdrain Orif. D (in)2 Surface Bottom Area (ft) Surface Area at Top of Basin (ft2) Surface Depth 13) (ft) 1-1 2,488 12 3.25 2,488 4,497 2.50 3-1 1,733 12 2.75 1,733 2,756 2.50 IMP DIMENSIONS FOR POC-2 IMP Gravel Area (1) (ft2) Gravel Depth (in) Underdrain Orif. D (in)21 Surface Bottom Area (ft2) Surface Area at Top of Basin (ft2) Surface Depth '3 (ft) 2-1 81277 12 3.25 8,277 12,332 5.00 IMP DIMENSIONS FOR POC-3 IMP Gravel Area (1) (ft2) Gravel Depth (in) Underdrain Orif. D ()(Z) Surface Bottom Area (ft2) Surface Area at Top of Basin (ft2) Surface Depth 13) (ft) 4-1 7,253 18 4.25 7,253 10,244 3.50 571 1,400 12 2.0 1,400 2204 2.50 Gravel Area = Amended Soil Area. Amended soil depth is equal to 18-inches for all IMPs. Diameter of orifice in gravel layer with invert at bottom of layer; tied with hydromod min threshold (10%02). The total surface ponding depth from the bottom of the pond to the top of the pond berm (pond spill crest). 5 Job #349-11 - Iiiiir I Poinsettia HMP Memo August 9, 2017 —TRWE— TABLE 6— SUMMARY OF HMP RISER SURFACE DISCHARGE STRUCTURES IMP RISER DIMENSIONS FOR POC-1 LOWER OUTLET EMERGENCY WEIR _________ Outlet Type(i) Invert Elevation (ft)121 Dimensions (# - height x width) (3) Invert Elevation (ft)(4) Weir Length (ft)151 1-1 Slot Orifice 0.50 4— 3 in x 12 in 1.50 12.0 3-1 Slot Orifice 0.50 4— 3 in x 12 in 1.50 12.0 RISER DIMENSIONS FOR POC-2 LOWER OUTLET EMERGENCY WEIR IMP Dimensions Outlet Invert (# - height x width or Invert Elevation Type(l) Elevation (ft)121 diameter) (3) (ft) (4) Weir Length (ft)151 2-1 Circular Orifice 1.50 1 - 1.0 in 4.50 12.0 Slot Orifice 2.50 4-3 in x 12 in IMP RISER DIMENSIONS FOR POC-3 LOWER OUTLET EMERGENCY WEIR _________ Outlet Type(i) Invert Elevation (ft)(2) Dimensions (# - width) 13) Invert Elevation (ft) (4) Weir Length (ft)(") 4-1 Weir 0.67 1 - 1.25 ft 2.67 10.75 5-1 Weir 0.50 2 - 1.50 ft 1.50 9.0 Type of opening in riser structure. Depth from bottom of pond to invert of lower orifice or weir. Number of outlets - dimensions of outlets. For example: for IMP 1-1,4 lower slots, one on each side of square riser structure. Each slot is 3 inches high by 12 inches wide. Depth from bottom of pond to invert of emergency overflow weir. Weir length = the internal perimeter of the riser structure. For all IMPs a square riser structure is assumed with 3 feet x 3 feet internal dimensions. For IMPs with lower weirs, the lower weir length is subtracted from the internal perimeter of the riser. For example, for IMP 5-1: emergency weir length = 12 ft —(2 x 1.50 ft ) = 9.0 ft. FLOW DURATION CURVE COMPARISON Flow Duration Curves (FDC) were compared at the project's POCs by exporting the hourly runoff time series results from SWMM to a spreadsheet. The FDC for each POC was compared between 10% of the existing condition Q2 up to the existing condition Q10. The 02 and Qio were determined with a partial duration statistical analysis of the runoff time series in an Excel spreadsheet using the Cunnane plotting position method (which is the preferred plotting methodology in the HMP Permit). As the SWMM Model includes a statistical analysis based on the Weibull Plotting Position Method, the Weibull Method was also used within the spreadsheet to ensure that the results were similar to those obtained by the SWMM Model. The range from 10% of Q2 up to Q10 was divided into 100 equal time intervals; the number of hours that each flow rate was exceeded was counted from the hourly series. Additionally, the intermediate peaks with a return period "i" were obtained (0., with i=3 to 9). For the purpose of the plot, the values are 6 Job #349-11 Poinsettia HMP Memo August 9, 2017 —TRWE-- presented as percentage of time exceeded for each flow rate. FDC comparisons for the project's POCs are illustrated in Figures 1 through 3 in both normal and logarithmic scale. As can be seen in Figures 1 through 3, the FDCs for the proposed condition with the HMP facilities are within 110% of the curve for the existing condition in both peak flow and duration. The additional runoff volume generated from developing the site will be released to the storm drain system at a flow rate below the 10% Q2 lower threshold. Additionally, the project will not increase peak flow rates between the 02 and the Q, as shown in the FDC plots and also in the peak flow tables in Attachment 1. DRAWDOWN TIME To ensure compliance with the 24-hour and 96-hour drawdown requirements (per Section 6.3.7 of the BMPDM), drawdown calculations are provided in Attachment 10 of this report. SUMMARY This study has demonstrated that the proposed biofiltration basins provided within the Poinsettia project are sufficient to meet the current HMP criteria if the cross-sectional area and volume recommended within this technical memorandum, and the respective orifices and outlet structures, are incorporated as specified within the proposed project site. KEY ASSUMPTIONS Type 0 and A soil is representative of both the existing and developed conditions site per the NRCS Web Soil Survey. The biofiltration basins are lined in order to prevent infiltration into the underlying soil. 7 Job #349-11 1 I Poinsettia HMP Memo August 9, 2017 - -TRWE- - Flow Duration Curve - Poinsettia (POC-1) 10.00 900 800 ----- 7.00 -Exntlng --------------•_Th-. ---- ---- I - - - - Proposed - 6 00 -----clx --------------------------•__ --------- 5.00 400 3.00 ----.. --------- 11 2.00 ________________________ --- ___________________ 1.00 ---\ 0(8) 0.0001 0.001 0.01 0.1 Percentage of time exceeded (%) Flow Duration Curve - Poinsettia (POC-1) 10.01) - 9.00 U . .. . - Qa : 80) 700 , -------------------------------------------------------Q3 60) 1 - - - _._._.. - -- - - - --- -- - --. - - -QZ Cr . . -. -Existing 40) I . .. . . . -Proposed Is --clx 300 0.5 . ----- 2.0) l.__ ----------- 10) - O.1 ------ ------------------------------- ----------'----- 0.00 . . . . . . -0.01 0 0.01 0.02 003 0.04 0.05 006 007 0.08 0.09 0.1 0.11 0.12 0.13 11.14 Pxrcentage of time exceeded (%) Figure 1. How Duration Curve Compariscn for POC-1 (Iogarittmic and normal 'x" scale). I I 11' 8 Poinsettia HMP Memo August 9, 2017 --TRWE - Flow Duration Curve - Poinsettia (POC-2) 6.50 602 QTh f.- - -- - -- -- ----- 5.50 : :-:: ::: : ::::::: : :: : : :: : ::::: : 5.00 :=:==: Existing (Y4 450 - -, - - - - Froposec 4(X) -- 350 1. 3.00 a 2.50 - 2.02 ---- --- ---- ----- --- ------------------ 1.50 O.3Q__ --- T .TTT.T-:TTTT :— T 2 1.00 0.50 - - - O.1Q2-—------------------------------------------------------- ----- 050 0.0303 018)3 0.33 0.3 Percentage of time exceeded (%) Flow Duration Curve - Poinsettia (POC-2) : - Existing q— :-.T.T - - -. Proposed Q3 2 0.102 0 -002 U ------------------------------------------- 0.02 0.04 C1.06 0.04 0.1 0.12 0.14 0.16 0.18 0.2 Percentage of time exceeded (%) Figure 2. Flow Duration Curve Comparison for POC-2 (logarithmic and normal "x" scale). 9 Job #349-11 4 a 3 tir.... I Poinsettia HMP Memo August 9, 2017 I RWE— Flow Duration Curve - Poinsettia (POC-3) 30 Qror-- 25 Ba ;.:::.:.::.:.:::.:::: : ::.:.:.:.:.: 04------------------- Existing - 04 - - Proposed 20 -------------------- Q — --04 .15 —' 10 - -------------------- -- -- 0.5 --------------------------------------•s_s._.... ._. ------------------ .. - 00008 0.008 0.08 Pxrcentage of time exceeded (%) Flow Duration Curve - Poinsettia (POC-3) 3000 -- --- --- 7--- -———----—------- 04---04 25.00 l —Exiling - - Proosec 2000 Qj ---':3. 04----- 15.00 ------- - - 10.00 — SQj 5(0 0.3 ----------------------------c.,Q 0. 1% 0.00-- --- ---------- - - - - .0.02 0 0.02 (.04 006 0.08 0.0 0.12 0.14 0.16 0.18 0.2 0.22 Percentage of time exceeded (%) Figure 3. Flow Duration Curve Comparison for POC-3 (logarithrr ic and normal "x" scale). 10 Job 4* 349-11 I I I I I IItiiir. I Poinsettia HMP Memo August 9, 2017 - -TRWE--- REFERENCES - "City of Carlsbad Engineering Standards Volume 5 Carlsbad BMP Design Manual - 2016 Edition", February 16, 2016, City of Carlsbad. - "Review and Analysis of San Diego County Hydromodification Management Plan (HMP): Assumptions, Criteria, Methods, & Modeling Tools - Prepared for the Cities of San Marcos, Oceanside & Vista", May 2012, Tory R. Walker Engineering. - Order R9-2013-001, California Regional Water Quality Control Board San Diego Region (SD RWQCB). - "Handbook of Hydrology", David R. Maidment, Editor in Chief. 1992, McGraw Hill. ATFACHMENTS 02 to Q10 Comparison Tables FDC Plots (Log and Natural "x" Scale) and Flow Duration Tables. List of the "n" largest Peaks: Pre-Developed and Post-Developed Conditions Elevation vs. Area Curves and Elevation vs. Discharge Curves to be used in SWMM Vicinity Map, Existing and Developed Condition DMA Maps, Project plan and section sketches SWMM Input Data in Input Format (Existing and Developed Models) SWMM Screens and Explanation of Significant Variables Soil Map Summary files from the SWMM Model Drawdown Calculations 11 Job #349-11 1 ATTACHMENT 1 Q2 to Q10 Comparison Tables ATTACHMENT 1 Q2 to Q10 Comparison Table - POC-1 Return Period Existing Condition (cfs) Mitigated Condition (cfs) Reduction, Exist - Mitigated (cfs) 2-year 5.923 3.593 2.330 3-year 6.467 4.559 1.908 4-year 7.375 5.067 2.308 5-year 7.857 5.400 2.457 6-year 8.201 5.655 2.545 7-year 8.251 5.879 2.372 8-year 8.608 5.977 2.631 9-year 9.107 6.102 3.004 10-year 9.340 6.442 2.898 Q2 to Q10 Comparison Table - POC-2 Return Period Existing Condition (cfs) Mitigated Condition (cfs) Reduction, Exist - Mitigated (cfs) 2-year 3.832 2.393 1.439 3-year 4.121 3.091 1.030 4-year 4.730 3.359 1.371 5-year 4.889 3.771 1.118 6-year 4.937 4.218 0.719 7-year 5.241 4.384 0.857 8-year 5.361 4.433 0.928 9-year 5.620 4.540 1.081 10-year 6.158 4.739 1.419 Q2 to Q10 Comparison Table - POC-3 Return Period Existing Condition (cfs) Mitigated Condition (cfs) Reduction, Exist - Mitigated (cfs) 2-year 18.425 15.972 2.453 3-year 19.817 18.741 1.076 4-year 22.746 20.447 2.299 5-year 23.510 21.703 1.807 6-year 23.739 22.718 1.022 7-year 25.207 23.398 1.809 8-year 25.781 24.267 1.514 9-year 27.028 25.233 1.794 10-year 29.615 25.858 3.757 ATTACHMENT 2 I FDC Plots (Log and Natural "x" Scale) and Flow Duration Table 1 I ATTACHMENT 2 FLOW DURATION CURVE ANALYSIS I i) Flow duration curve shall not exceed the existing conditions by more than 101/o. neither in peak flow nor duration. I The figures on the following pages illustrate that, for each POC, the flow duration curve in post- developed conditions with the proposed IMPs is below the existing flow duraticn curve. The I flow duration curve table following the curve shows that if the interval 0.1002 - 03 is divided in 100 sub-intervals, then a) the post-developed divided by pre-developed durations are never larger than 110% (the permit allows up to 110%); and b) there are n more than 10 intervals in the range 101%-110% which would imply an excess over 10% of the length of the curve (the permit allows less than 10% of excesses measured as 101-110%). Consequently, the design passes the hydrmodification test. It is important to note that the flow duration curve can be expressed in the x' axis as percentage of time, hours per year, total number of hours, or any other similar time variable. As those variables only differ by a multiplying constant, their plot in logarithmic scale is going to look exactly the same, and ccmpliance can be observed regardless of the variabl€ s2lected. In this case, % of time exceeded is the variable of choice in the flow duration curve. The selection of a logarithmic scale in lieu of the normal scale is preferred, as differences between the pre- developed and post-developed curves can be seen more clearly in the entire range of analysis. Both graphics are presented just to prove the difference. For the axis, the peak flow value is the variable of choice. As an additional analysis performed by TRWE, not only the range of analysis is clearly depicted (10% of 02 to Q10) but also all intermediate flows are shown (0.2, 03, 04, 0.5, 06, 07, 08 and Qg) in order to demonstrate compliance at any range Q - One of the limitations of both the SWMM and SDHM models is that the intermediate analysis is not performed (to obtain 0 from i = 2 to 10). TRWE performed the analysis using the Cunnane Plotting Position Method (the preferred method in the HMP permit) from the "n" largest independent peak flows obtained from the continuous time series. I The largest "n" peak flows are attached in this appendix, as well as the values of Qi with a return period "i", from i=2 to 10. The 01 values are also added into the flow-duraticn plot. I I Flow Duration Curve - Poinsettia (POC-1) 10.00 9.00 800 7.00 Existing L 1 - - - Proposed I --Qx 6.00 11r2 1!t2 1% H :. 5.00 Cr Lj 4.00 ----- __- O5Q2 ::: TI O.3Q2 rH t H! 1.00 01 --.-.-.-.-,-.-..----.------.-------.-. _.__.__.__.___.-._---.---.__.-..._.__.--...-.-.--.. 1. H 0.00 0.0001 0.001 0.01 0.1 Percentage of time exceeded (%) — — — — — — — — — — — — — — — — — — — Flow Duration Curve — Poinsettia (POC-1) 10.00 ----------- ------------- ---------------------- '1O 9.00 -j- 800 7.00 - 6.00 -q-- 1-;-=... — . — —. — . . . —. In £5.00 I Existing I — — — Proposed 4.00 -j----- - ------------j $ 3.00 5q — — — — —------ 2.00 --a-- a a a 1.00 ----- --------- .-- -----------------------_______________ a — — — 0.00 -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 Percentage of time exceeded (%) Flow Duration Curve Data for Poinsettia (POC-1), Carlsbad, CA Q2 = 5.92 cfs Fraction 010 = 9.34 cfs Step = 0.0884 cfs Count= 497370 hours 56.74 years Interval Existing Condition Detention Optimized Pass or Fail? Q (cfs) Hours > Q % time Hours>Q % time Post/Pre 1 0.592 682 1.37E-01 590 1.19E-01 87% Pass 2 0.681 635 1.28E-01 515 1.04E-01 81% Pass 3 0.769 606 1.22E-01 462 9.29E-02 76% Pass 4 0.857 576 1.16E-01 412 8.28E-02 72% Pass 5 0.946 532 1.07E-01 368 7.40E-02 69% Pass 6 1.034 509 1.02E-01 338 6.80E-02 66% Pass 7 1.122 490 9.85E-02 292 5.87E-02 60% Pass 8 1.211 473 9.51E-02 261 5.25E-02 55% Pass 9 1.299 456 9.17E-02 216 4.34E-02 47% Pass 10 1.388 410 8.24E-02 191 3.84E-02 47% Pass 11 1.476 383 7.70E-02 173 3.48E-02 45% Pass 12 1.564 360 7.24E-02 162 3.26E-02 45% Pass 13 1.653 341 6.86E-02 153 3.08E-02 45% Pass 14 1.741 316 6.35E-02 140 2.81E-02 44% Pass 15 1.829 292 5.87E-02 127 2.55E-02 43% Pass 16 1.918 280 5.63E-02 118 2.37E-02 42% Pass 17 2.006 268 5.39E-02 105 2.11E-02 39% Pass 18 2.094 257 5.17E-02 94 1.89E-02 37% Pass 19 2.183 242 4.87E-02 89 1.79E-02 37% Pass 20 2.271 232 4.66E-02 81 1.63E-02 35% Pass 21 2.360 221 4.44E-02 76 1.53E-02 34% Pass 22 2.448 205 4.12E-02 75 1.51E-02 37% Pass 23 2.536 193 3.88E-02 69 1.39E-02 36% Pass 24 2.625 182 3.66E-02 67 1.35E-02 37% Pass 25 2.713 169 3.40E-02 62 1.25E-02 37% Pass 26 2.801 149 3.00E-02 56 1.13E-02 38% Pass 27 2.890 144 2.90E-02 54 1.09E-02 38% Pass 28 2.978 137 2.75E-02 47 9.45E-03 34% Pass 29 3.066 133 2.67E-02 45 9.05E-03 34% Pass 30 3.155 127 2.55E-02 45 9.05E-03 35% Pass 31 3.243 119 2.39E-02 39 7.84E-03 33% Pass 32 3.331 117 2.35E-02 36 7.24E-03 31% Pass 33 3.420 108 2.17E-02 36 7.24E-03 33% Pass 34 3.508 103 2.07E-02 36 7.24E-03 35% Pass 35 3.597 100 2.01E-02 34 6.84E-03 34% Pass 36 3.685 94 1.89E-02 33 6.63E-03 35% Pass 37 3.773 93 1.87E-02 30 6.03E-03 32% Pass 10% Interval Existing Condition Detention Optimized Pass or Fail? Q (cfs) Hours > Q % time Hours>Q % time Post/Pre 38 3.862 84 1.69E-02 28 5.63E-03 33% Pass 39 3.950 78 1.57E-02 28 5.63E-03 36% Pass 40 4.038 70 1.41E-02 27 5.43E-03 39% Pass 41 4.127 65 1.31E-02 27 5.43E-03 42% Pass 42 4.215 62 1.25E-02 27 5.43E-03 44% Pass 43 4.303 62 1.25E-02 25 5.03E-03 40% Pass 44 4.392 62 1.25E-02 24 4.83E-03 39% Pass 45 4.480 57 1.15E-02 22 4.42E-03 39% Pass 46 4.569 53 1.07E-02 21 4.22E-03 40% Pass 47 4.657 52 1.05E-02 19 3.82E-03 37% Pass 48 4.745 50 1.01E-02 17 3.42E-03 34% Pass 49 4.834 48 9.65E-03 17 3.42E-03 35% Pass 50 4.922 46 9.25E-03 17 3.42E-03 37% Pass 51 5.010 44 8.85E-03 17 3.42E-03 39% Pass 52 5.099 43 8.65E-03 16 3.22E-03 37% Pass 53 5.187 42 8.44E-03 16 3.22E-03 38% Pass 54 5.275 41 8.24E-03 15 3.02E-03 37% Pass 55 5.364 40 8.04E-03 13 2.61E-03 33% Pass 56 5.452 38 ..64E-03 12 2.41E-03 32% Pass 57 5.541 36 7.24E-03 11 2.21E-03 31% Pass 58 5.629 36 7.24E-03 11 2.21E-03 31% Pass 59 5.717 33 6.63E-03 10 2.01E-03 30% Pass 60 5.806 33 5.63E-03 9 1.81E-03 27% Pass 61 5.894 33 5.63E-03 8 1.61E-03 24% Pass 62 5.982 31 6.23E-03 7 1.41E-03 23% Pass 63 6.071 29 5.83E-03 6 1.21E-03 21% Pass 64 6.159 28 5.63E-03 6 1.21E-03 21% Pass 65 6.247 28 5.63E-03 6 1.21E-03 21% Pass 66 6.336 23 4.62E-03 6 1.21E-03 26% Pass 67 6.424 23 4.62E-03 6 1.21E-03 26% Pass 68 6.512 21 4.22E-03 6 1.21E-03 29% Pass 69 6.601 21 4.22E-03 5 1.01E-03 24% Pass 70 6.689 21 4.22E-03 5 1.01E-03 24% Pass 71 6.778 21 4.22E-03 5 1.01E-03 24% Pass 72 6.866 20 4.02E-03 5 1.01E-03 25% Pass 73 6.954 20 4.02E-03 5 1.01E-03 25% Pass 74 7.043 20 4.02E-03 5 1.01E-03 25% Pass 75 7.131 18 3.62E-03 5 1.01E-03 28% Pass 76 7.219 18 3.62E-03 5 1.01E-03 28% Pass 77 7.308 17 3.42E-03 5 1.01E-03 29% Pass 78 7.396 13 2.61E-03 5 1.01E-03 38% Pass 79 7.484 12 2.41E-03 5 1.01E-03 42% Pass 80 7.573 12 2.41E-03 5 1.01E-03 42% Pass 81 7.661 12 2.41E-03 5 1.01E-03 42% Pass 82 7.750 12 2.41E-03 4 8.04E-04 33% Pass Interval Existing Condition Detention Optimized Pass or Fail? Q (cfs) Hours > Q % time Hours>Q % time Post/Pre 83 7.838 12 2.41E-03 3 6.03E-04 25% Pass 84 7.926 10 2.01E-03 3 6.03E-04 30% Pass 85 8.015 10 2.01E-03 3 6.03E-04 30% Pass 86 8.103 10 2.01E-03 3 6.03E-04 30% Pass 87 8.191 10 2.01E-03 2 4.02E-04 20% Pass 88 8.280 8 1.61E-03 2 4.02E-04 25% Pass 89 8.368 7 1.41E-03 1 2.01E-04 14% Pass 90 8.456 7 1.41E-03 1 2.01E-04 14% Pass 91 8.545 7 1.41E-03 1 2.01E-04 14% Pass 92 8.633 7 1.41E-03 1 2.01E-04 14% Pass 93 8.721 7 1.41E-03 1 2.01E-04 14% Pass 94 8.810 7 1.41E-03 1 2.01E-04 14% Pass 95 8.898 7 1.41E-03 1 2.01E-04 14% Pass 96 8.987 7 1.41E-03 1 2.01E-04 14% Pass 97 9.075 6 1.21E-03 1 2.01E-04 17% Pass 98 9.163 6 1.21E-03 1 2.01E-04 17% Pass 99 9.252 6 1.21E-03 1 2.01E-04 17% Pass 100 9.340 6 1.21E-03 0 0.00E+00 0% Pass Peak Flows calculated with Cunnane Plotting Position Return Period (years) Pre-dev. Q (cfs) Post-Dev. Q (cfs) Reduction (cfs) 10 9.340 6.442 2.898 9 9.107 6.102 3.004 8 8.608 5.977 2.631 7 8.251 5.879 2.372 6 8.201 5.655 2.545 5 7.857 5.400 2.457 4 7.375 5.067 2.308 3 6.467 4.559 1.908 2 5.923 3.593 2.330 Flow Duration Curve - Poinsettia (POC-2) 6.50 71o: .Q T:T 6.00 I ::: _Q4 Existing 4.50 -------------'------ ------------- -------- - Proposed 400 - 3.50 ct 3.00 2.50-- 200 O.52 ffI"" 1.50 1. ::: - ---- :° fl.1ftj H H iQ 0.00 0.0003 0.003 0.03 0.3 Percentage of time exceeded (%) iI H II tH 2 I I I Ii I I I Ill II I I 00 I d I I I I I I'I .0 ______ I a I -- i - I•i—iI I II III I I I H I I I ---I- ¶ ci (sp) Flow Duration Curve Data for Poinsettia (POC-2), Carlsbad, CA Q2 = 3.83 cfs Fraction Q10 = 6.16 cfs Step = 0.0583 cfs Count = 497370 hours 56.74 years Interval Existing Condition Detention Optimized Pass or Fail? Q (cfs) Hours > Q % time Hours>Q % time Post/Pre 1 0.383 956 1.92E-01 1031 2.07E-01 108% Pass 2 0.442 863 1.74E-01 804 1.62E-01 93% Pass 3 0.500 790 1.59E-01 617 1.24E-01 78% Pass 4 0.558 741 1.49E-01 486 9.77E-02 66% Pass 5 0.617 701 1.41E-01 418 8.40E-02 60% Pass 6 0.675 663 1.33E01 348 7.00E-02 52% Pass 7 0.733 625 1.26E-01 281 5.65E-02 45% Pass 8 0.792 596 1.20E-01 254 5.11E-02 43% Pass 9 0.850 562 1.13E-01 218 4.38E-02 39% Pass 10 0.908 529 1.06E-01 189 3.80E-02 36% Pass 11 0.966 487 9.79E-02 173 3.48E-02 36% Pass 12 1.025 459 9.23E-02 162 3.26E-02 35% Pass 13 1.083 417 8.38E-02 148 2.98E-02 35% Pass 14 1.141 386 7.76E-02 136 2.73E-02 35% Pass 15 1.200 351 7.06E-02 126 2.53E-02 36% Pass 16 1.258 325 6.53E-02 118 2.37E-02 36% Pass 17 1.316 308 6.19E-02 111 2.23E-02 36% Pass 18 1.375 299 6.01E-02 105 2.11E-02 35% Pass 19 1.433 293 5.89E-02 102 2.05E-02 35% Pass 20 1.491 279 5.61E-02 97 1.95E-02 35% Pass 21 1.550 260 5.23E-02 91 1.83E-02 35% Pass 22 1.608 240 4.83E-02 88 1.77E-02 37% Pass 23 1.666 230 4.62E-02 85 1.71E-02 37% Pass 24 1.725 221 4.44E-02 81 1.63E-02 37% Pass 25 1.783 202 4.06E-02 77 1.55E-02 38% Pass 26 1.841 184 3.70E-02 75 1.51E-02 41% Pass 27 1.900 160 3.22E-02 75 1.51E-02 47% Pass 28 1.958 147 2.96E-02 72 1.45E-02 49% Pass 29 2.016 138 2.77E-02 68 1.37E-02 49% Pass 30 2.075 130 2.61E-02 67 1.35E-02 52% Pass 31 2.133 127 2.55E-02 63 1.27E-02 50% Pass 32 2.191 123 2.47E-02 62 1.25E-02 50% Pass 33 2.250 120 2.41E-02 62 1.25E-02 52% Pass 34 2.308 114 2.29E-02 56 1.13E-02 49% Pass 35 2.366 108 2.17E-02 55 1.11E-02 51% Pass 36 2.425 99 1.99E-02 53 1.07E-02 54% Pass 37 2.483 95 1.91E-02 50 1.01E-02 53% Pass 10% Interval Existing Condition Detention Optimized Pass or Fail? Q (cfs) Hours > Q % time Hours>Q % time Post/Pre 38 2.541 86 1.73E-02 48 9.65E-03 56% Pass 39 2.600 79 1.59E-02 46 9.25E-03 58% Pass 40 2.658 73 1.47E-02 44 8.85E-03 60% Pass 41 2.716 69 1.39E-02 41 8.24E-03 59% Pass 42 2.775 68 1.37E-02 38 7.64E-03 56% Pass 43 2.833 64 1.29E-02 37 7.44E-03 58% Pass 44 2.891 63 1.27E-02 36 7.24E-03 57% Pass 45 2.950 60 1.21E-02 34 6.84E-03 57% Pass 46 3.008 55 1.11E-02 32 6.43E-03 58% Pass 47 3.066 53 1.07E-02 31 6.23E-03 58% Pass 48 3.125 52 1.05E-02 30 6.03E-03 58% Pass 49 3.183 48 9.65E-03 29 5.83E-03 60% Pass 50 3.241 45 9.05E-03 29 5.83E-03 64% Pass 51 3.300 43 8.65E-03 27 5.43E-03 63% Pass 52 3.358 42 8.44E-03 25 5.03E-03 60% Pass 53 3.416 41 8.24E-03 25 5.03E-03 61% Pass 54 3.475 41 8.24E-03 24 4.83E-03 59% Pass 55 3.533 40 8.04E-03 23 4.62E-03 58% Pass 56 3.591 39 7.84E-03 20 4.02E-03 51% Pass 57 3.650 37 7.44E-03 19 3.82E-03 51% Pass 58 3.708 37 7.44E-03 19 3.82E-03 51% Pass 59 3.766 35 7.04E-03 17 3.42E-03 49% Pass 60 3.825 33 6.63E-03 16 3.22E-03 48% Pass 61 3.883 32 6.43E-03 16 3.22E-03 50% Pass 62 3.941 30 6.03E-03 15 3.02E-03 50% Pass 63 4.000 29 5.83E-03 15 3.02E-03 52% Pass 64 4.058 23 4.62E-03 15 3.02E-03 65% Pass 65 4.116 22 4.42E-03 14 2.81E-03 64% Pass 66 4.175 22 4.42E-03 14 2.81E-03 64% Pass 67 4.233 21 4.22E-03 13 2.61E-03 62% Pass 68 4.291 21 4.22E-03 13 2.61E-03 62% Pass 69 4.350 21 4.22E-03 13 2.61E-03 62% Pass 70 4.408 21 4.22E-03 10 2.01E-03 48% Pass 71 4.466 21 4.22E-03 10 2.01E-03 48% Pass 72 4.525 21 4.22E-03 9 1.81E-03 43% Pass 73 4.583 20 4.02E-03 9 1.81E-03 45% Pass 74 4.641 18 3.62E-03 9 1.81E-03 50% Pass 75 4.700 16 3.22E-03 9 1.81E-03 56% Pass 76 4.758 14 2.81E-03 9 1.81E-03 64% Pass 77 4.816 12 2.41E-03 8 1.61E-03 67% Pass 78 4.875 12 2.41E-03 8 1.61E-03 67% Pass 79 4.933 9 1.81E-03 8 1.61E-03 89% Pass 80 4.991 9 1.81E-03 7 1.41E-03 78% Pass 81 5.050 9 1.81E-03 7 1.41E-03 78% Pass 82 5.108 9 1.81E-03 7 1.41E-03 78% Pass Interval Existing Condition Detention Optimized Pass or Fail? Q (cfs) Hours > Q % time Hours>Q % time Post/Pre 83 5.166 9 1.81E-03 7 1.41E-03 78% Pass 84 5.225 8 1.61E-03 6 1.21E-03 75% Pass 85 5.283 8 1.61E-03 6 1.21E-03 75% Pass 86 5.341 7 1.41E-03 6 1.21E-03 86% Pass 87 5.400 7 1.41E-03 5 1.01E-03 71% Pass 88 5.458 6 1.21E-03 5 1.01E-03 83% Pass 89 5.516 6 1.21E-03 5 1.01E-03 83% Pass 90 5.575 6 1.21E-03 5 1.01E-03 83% Pass 91 5.633 6 1.21E-03 5 1.01E-03 83% Pass 92 5.691 6 1.21E-03 4 8.04E-04 67% Pass 93 5.749 6 1.21E-03 3 6.03E-04 50% Pass 94 5.808 6 1.21E-03 3 6.03E-04 50% Pass 95 5.866 6 1.21E-03 3 6.03E-04 50% Pass 96 5.924 6 1.21E-03 2 4.02E-04 33% Pass 97 5.983 6 1.21E-03 2 4.02E-04 33% Pass 98 6.041 6 1.21E-03 2 4.02E-04 33% Pass 99 6.099 6 1.21E-03 2 4.02E-04 33% Pass 100 6.158 6 1.21E-03 2 4.02E-04 33% Pass Peak Flows calculated with Cunnane Plotting Position Return Period (years) Pre-dev. 0 (cfs, Post-Dev. Q (cfs) Reduction (cis) 10 6.158 4.739 1.419 9 5.620 4.540 1.081 8 5.361 4.433 0.928 7 5.241 4.384 0.857 6 4.937 4.218 0.719 5 4.889 3.771 1.118 4 4.730 3.359 1.371 3 4.121 3.091 1.030 2 3.832 2.393 1.439 Flow Duration Curve - Poinsettia (POC-3) ° 25 ___ ____ _________ _____ L Existing Proposed 20 --Qx ................_._•_•_•_•_•_•_•_•_•_._•_•_•_•_•_•_•_•-Q2 14 :1 15 cr 10 5 0.3 O.11 O1Q2 0 ----- 0.0008 0.008 0.08 Percentage of time exceeded (%) Flow Duration Curve - Poinsettia (POC-3) 30.00 - 25.00 8&7 ¶1 Existing 20.00 . - -. - - Proposed --Qx (12 15.00 Cr 10.00 - - - - - - 5.00 0.3qj - - (iOU 1 I -U.U2 U 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 Percentage of time exceeded (%) Flow Duration Curve Data for Poinsettia (POC-3), Carlsbad, CA Q2 = 18.43 cfs Fraction Q10 = 29.62 cfs Step = 0.2805 cfs Count = 497370 hours 56.74 years Interval Existing Condition Detention Optimized Pass or Fail? Q (cfs) Hours > Q % time Hours>Q % time Post/Pre 1 1.843 957 1.92E-01 1016 2.04E-01 106% Pass 2 2.123 863 1.74E-01 917 1.84E-01 106% Pass 3 2.404 790 1.59E-01 828 1.66E-01 105% Pass 4 2.684 743 1.49E-01 758 1.52E-01 102% Pass 5 2.965 700 1.41E-01 696 1.40E-01 99% Pass 6 3.245 662 1.33E-01 652 1.31E-01 98% Pass 7 3.526 627 1.26E-01 601 1.21E-01 96% Pass 8 3.806 598 1.20E-01 553 1.11E-01 92% Pass 9 4.087 563 1.13E-01 504 1.01E-01 90% Pass 10 4.367 529 1.06E-01 474 9.53E-02 90% Pass 11 4.648 488 9.81E-02 432 8.69E-02 89% Pass 12 4.928 460 9.25E-02 396 7.96E-02 86% Pass 13 5.209 418 8.40E-02 369 7.42E-02 88% Pass 14 5.489 386 7.76E-02 350 7.04E-02 91% Pass 15 5.770 353 7.10E-02 329 6.61E-02 93% Pass 16 6.051 327 6.57E-02 302 6.07E-02 92% Pass 17 6.331 309 6.21E-02 278 5.59E-02 90% Pass 18 6.612 300 6.03E-02 257 5.17E-02 86% Pass 19 6.892 293 5.89E-02 235 4.72E-02 80% Pass 20 7.173 280 5.63E-02 215 4.32E-02 77% Pass 21 7.453 260 5.23E-02 198 3.98E-02 76% Pass 22 7.734 240 4.83E-02 184 3.70E-02 77% Pass 23 8.014 230 4.62E-02 168 3.38E-02 73% Pass 24 8.295 221 4.44E-02 159 3.20E-02 72% Pass 25 8.575 202 4.06E-02 146 2.94E-02 72% Pass 26 8.856 185 3.72E-02 134 2.69E-02 72% Pass 27 9.136 160 3.22E-02 126 2.53E-02 79% Pass 28 9.417 147 2.96E-02 118 2.37E-02 80% Pass 29 9.697 138 2.77E-02 110 2.21E-02 80% Pass 30 9.978 130 2.61E-02 102 2.05E-02 78% Pass 31 10.259 128 2.57E-02 96 1.93E-02 75% Pass 32 10.539 123 2.47E-02 92 1.85E-02 75% Pass 33 10.820 120 2.41E-02 86 1.73E-02 72% Pass 34 11.100 114 2.29E-02 80 1.61E-02 70% Pass 35 11.381 108 2.17E-02 75 1.51E-02 69% Pass 36 11.661 99 1.99E-02 72 1.45E-02 73% Pass 37 11.942 95 1.91E-02 69 1.39E-02 73% Pass 38 12.222 86 1.73E-02 64 1.29E-02 74% Pass 10% Interval Existing Condition Detention Optimized Pass or Fail? Q (cfs) Hours > Q % time Hours>Q % time Post/Pre 39 12.503 79 1.59E-02 60 1.21E-02 76% Pass 40 12.783 73 1.47E-02 56 1.13E-02 77% Pass 41 13.064 69 1.39E-02 53 1.07E-02 77% Pass 42 13.344 68 1.37E-02 53 1.07E-02 78% Pass 43 13.625 64 1.29E-02 48 9.65E-03 75% Pass 44 13.906 63 1.27E-02 47 9.45E-03 75% Pass 45 14.186 60 1.21E-02 45 9.05E-03 75% Pass 46 14.467 56 1.13E-02 43 8.65E-03 77% Pass 47 14.747 53 1.07E-02 42 8.44E-03 79% Pass 48 15.028 52 1.05E-02 41 8.24E-03 79% Pass 49 15.308 48 9.65E-03 40 8.04E-03 83% Pass 50 15.589 45 9.05E-03 35 7.04E-03 78% Pass 51 15.869 43 8.65E-03 34 6.84E-03 79% Pass 52 16.150 42 8.44E-03 30 6.03E-03 71% Pass 53 16.430 41 8.24E-03 30 6.03E-03 73% Pass 54 16.711 41 8.24E-03 28 5.63E-03 68% Pass 55 16.991 40 8.04E-03 27 5.43E-03 68% Pass 56 17.272 39 7.84E-03 27 5.43E-03 69% Pass 57 17.552 37 7.44E-03 26 5.23E-03 70% Pass 58 17.833 37 7.44E-03 25 5.03E-03 68% Pass 59 18.114 35 7.04E-03 25 5.03E-03 71% Pass 60 18.394 33 6.63E-03 24 4.83E-03 73% Pass 61 18.675 32 6.43E-03 23 4.62E-03 72% Pass 62 18.955 30 6.03E-03 19 3.82E-03 63% Pass 63 19.236 29 5.83E-03 19 3.82E-03 66% Pass 64 19.516 23 4.62E-03 19 3.82E-03 83% Pass 65 19.797 22 4.42E-03 18 3.62E-03 82% Pass 66 20.077 21 4.22E-03 18 3.62E-03 86% Pass 67 20.358 21 4.22E-03 17 3.42E-03 81% Pass 68 20.638 21 4.22E-03 16 3.22E-03 76% Pass 69 20.919 21 4.22E-03 15 3.02E-03 71% Pass 70 21.199 21 4.22E-03 15 3.02E-03 71% Pass 71 21.480 21 4.22E-03 14 2.81E-03 67% Pass 72 21.760 21 4.22E-03 12 2.41E-03 57% Pass 73 22.041 20 4.02E-03 12 2.41E-03 60% Pass 74 22.322 18 3.62E-03 12 2.41E-03 67% Pass 75 22.602 16 3.22E-03 12 2.41E-03 75% Pass 76 22.883 14 2.81E-03 11 2.21E-03 79% Pass 77 23.163 12 2.41E-03 11 2.21E-03 92% Pass 78 23.444 12 2.41E-03 10 2.01E-03 83% Pass 79 23.724 9 1.81E-03 9 1.81E-03 100% Pass 80 24.005 9 1.81E-03 7 1.41E-03 78% Pass 81 24.285 9 1.81E-03 7 1.41E-03 78% Pass 82 24.566 9 1.81E-03 7 1.41E-03 78% Pass 83 24.846 9 1.81E-03 7 1.41E-03 78% Pass 84 25.127 8 1.61E-03 6 1.21E-03 75% Pass Interval Existing Condition Detention Optimized Pass or Fail? Q (cfs) Hours> Q % time Hours>Q % time Post/Pre 85 25.407 8 1.61E-03 6 1.21E-03 75% Pass 86 25.688 7 1.41E-03 6 1.21E-03 86% Pass 87 25.969 7 1.41E-03 6 1.21E-03 86% Pass 88 26.249 6 1.21E-03 5 1.01E-03 83% Pass 89 26.530 6 1.21E-03 5 1.01E-03 83% Pass 90 26.810 6 1.21E-03 5 1.01E-03 83% Pass 91 27.091 6 1.21E-03 5 1.01E-03 83% Pass 92 27.371 6 1.21E-03 5 1.01E-03 83% Pass 93 27.652 6 1.21E-03 5 1.01E-03 83% Pass 94 27.932 6 1.21E-03 5 1.01E-03 83% Pass 95 28.213 6 1.21E-03 5 1.01E-03 83% Pass 96 28.493 6 1.21E-03 5 1.01E-03 83% Pass 97 28.774 6 1.21E-03 5 1.01E-03 83% Pass 98 29.054 6 1.21E-03 5 1.01E-03 83% Pass 99 1 29.335 1 6 1.21E-03 5 1.01E-03 83% Pass 100 29.615 6 1.21E-03 5 1.01E-03 83% Pass Peak Flows calculated with Cunnane Plotting Position Return Period (years) Pre-dev. 0 (cfs) Post-Dev. Q (cfs) Reduction (cfs) 10 29.615 25.858 3.757 9 27.028 25.233 1.794 8 25.781 24.267 1.514 7 25.207 23.398 1.809 6 23.739 22.718 1.022 5 23.510 21.703 1.807 4 22.746 20.447 2.299 3 19.817 18.741 1.076 2 18.425 15.972 2.453 ATTACHMENT 3 List of the "n" largest Peaks: Pre-Development and Post-Development Conditions ATTACHMENT 3 List of the "n" Largest Peaks: Pre & Post-Developed Conditions Basic Probabilistic Equation: R = 1/P R: Return period (years). P: Probability of a flow to be equaled or exceeded any given year (dimensionless). Cunnane Equation: Weibull Equation: i-O.4 n+O.2 n+1 i: Position of the peak whose probability is desired (sorted from large to small) n: number of years analyzed. Explanation of Variables for the Tables in this Attachment Peak: Refers to the peak flow at the date given, taken from the continuous simulation hourly results of the n year analyzed. Posit: If all peaks are sorted from large to small, the position of the peak in a sorting analysis is included under the variable Posit. Date: Date of the occurrence of the peak at the outlet from the continuous simulation Note: all peaks are not annual maxima; instead they are defined as event maxima, with a threshold to separate peaks of at least 12 hours. In other words, any peak P in a time series is defined as a value where dP/dt = 0, and the peak is the largest value in 25 hours (12 hours before the hour of occurrence and 12 hours after the occurrence, so it is in essence a daily peak). List of Peak events and Determination of Q2 and Q10 (Pre-Development) Poinsettia (POC-1) T (Year) Cunnane (cfs) Weibull (cfs) Peaks (cfs) Date Posit Period of Return (Years) 10 9.34 9.52 Weibull Cunnane 9 9.11 9.22 4.156 1/11/2005 57 1.02 1.01 8 8.61 8.83 4.181 9/18/1963 56 1.04 1.03 7 8.25 8.28 4.414 4/27/1960 55 1.05 1.05 6 8.20 8.20 4.435 2/22/2008 54 1.07 1.07 5 7.86 7.86 4.455 3/17/1963 53 1.09 1.09 4 7.37 7.38 4.494 2/22/1998 52 1.12 1.11 3 6.47 6.47 4.494 11/8/2002 51 1.14 1.13 2 5.92 5.92 4.494 2/12/2003 50 1.16 1.15 Note: Cunnane is the preferred method by the HMP permit. 4.651 2/12/1992 49 1.18 1.18 4.715 3/1/1991 48 1.21 1.20 4.736 3/15/1986 47 1.23 1.23 4.823 1/29/1980 46 1.26 1.25 4.83 2/6/1969 45 1.29 1.28 4.864 3/19/1981 44 1.32 1.31 4.893 2/15/1986 43 1.35 1.34 4.958 1/6/2008 42 1.38 1.38 4.959 2/14/1998 41 1.41 1.41 5.076 2/8/1993 40 1.45 1.44 5.107 1/16/1978 39 1.49 1.48 5.189 3/11/1995 38 1.53 1.52 5.341 11/11/1985 37 1.57 1.56 5.39 11/15/1952 36 1.61 1.61 5.439 12/2/1961 35 1.66 1.65 5.496 2/4/1994 34 1.71 1.70 5.536 1/18/1993 33 1.76 1.75 5.656 10/20/2004 32 1.81 1.81 5.657 2/17/1998 31 1.87 1.87 5.669 12/19/1970 30 1.93 1.93 5.923 2/16/1980 29 2.00 2.00 5.926 1/29/1983 28 2.07 2.07 6.006 2/23/1998 27 2.15 2.15 6.019 2/18/1993 26 2.23 2.23 6.112 3/2/1980 25 2.32 2.33 6.288 2/10/1978 24 2.42 2.42 6.292 12/30/1991 23 2.52 2.53 6.31 11/22/1965 22 2.64 2.65 6.316 2/27/1983 21 2.76 2.78 6.463 1/27/2008 20 2.90 2.92 6.471 2/3/1998 19 3.05 3.08 7.096 3/1/1978 18 3.22 3.25 7.26 1/16/1952 17 3.41 3.45 7.316 3/17/1982 16 3.63 3.67 7.366 4/1/1958 15 3.87 3.92 7.396 2/20/1980 14 4.14 4.21 7.468 10/27/2004 13 4,467 4.54 7.856 1/14/1993 12 4.83 4.93 7.866 2/18/2005 11 5.27 5.40 8.2 10/29/2000 10 5.80 5.96 8.213 2/25/1969 9 6.44 6.65 8.309 2/4/1958 8 7.25 7.53 9.029 2/25/2003 7 8.29 8.67 9.39 9/23/1986 6 9.67 10.21 10.137 1/4/1995 5 11.60 12.43 10.456 1/15/1979 4 14.50 15.89 11.098 10/1/1983 3 19.33 22.00 11.675 1/4/1978 2 29.00 35.75 12.561 1 4/14/2003 j 1 1 58.00 1 95.33 F List of Peak events and Determination of Q2 and Q1O (Post-Development) Poinsettia (POC-1) T (Year) Cunnane (cfs) Weibull (cfs) Peaks (cfs) Date Posit Period of Return (Years) 10 6.44 6.73 Weibull Cunnane 9 6.10 6.26 2.599 1/18/1993 57 1.02 1.01 8 5.98 5.98 2.655 2/14/1998 56 1.04 1.03 7 5.88 5.92 2.664 2/23/2005 55 1.05 1.05 6 5.66 5.70 2.681 1/20/1962 54 1.07 1.07 5 5.40 5.42 2.701 2/4/1994 53 1.09 1.09 4 5.07 5.10 2.707 3/8/1968 52 1.12 1.11 3 4.56 4.58 2.726 1/9/2005 51 1.14 1.13 2 3.59 3.59 2.746 3/1/1983 50 1.16 1.15 Note: Cunnane is the preferred method by the HMP permit. 2.747 1/6/2008 49 1.18 1.18 2.779 1/6/1979 48 1.21 1.20 2.781 12/24/1988 47 1.23 1.23 2.789 12/2/1961 46 1.26 1.25 2.812 3/17/1963 45 1.29 1.28 2.917 1/11/2005 44 1.32 1.31 2.933 9/18/1963 43 1.35 1.34 2.936 1/15/1978 42 1.38 1.38 2.953 2/15/1986 41 1.41 1.41 3.005 2/18/1993 40 1.45 1.44 3.059 4/27/1960 39 1.49 1.48 3.179 8/17/1977 38 1.53 1.52 3.185 11/11/1985 37 1.57 1.56 3.213 11/15/1952 36 1.61 1.61 3.231 1/16/1972 35 1.66 1.65 3.24 2/16/1980 34 1.71 1.70 3.24 10/20/2004 33 1.76 1.75 3.246 1/29/1983 32 1.81 1.81 3.29 1/27/2008 31 1.87 1.87 3.579 2/17/1998 30 1.93 1.93 3.593 2/27/1983 29 2.00 2.00 3.608 2/22/2008 28 2.07 2.07 3.703 1/29/1980 27 2.15 2.15 3.804 1/16/1978 26 2.23 2.23 3.836 12/19/1970 25 2.32 2.33 4.018 2/23/1998 24 2.42 2.42 4.234 12/30/1991 23 2.52 2.53 4.348 2/3/1998 22 2.64 2.65 4.425 4/1/1958 21 2.76 2.78 4.476 3/2/1980 20 2.90 2.92 4.635 3/17/1982 19 3.05 3.08 4.639 11/22/1965 18 3.22 3.25 4.685 2/10/1978 17 3.41 3.45 4.692 1/14/1993 16 3.63 3.67 5.017 10/29/2000 15 3.87 3.92 5.191 2/18/2005 14 4.14 4.21 5.337 3/1/1978 13 4.46 4.54 5.387 1/16/1952 12 4.83 4.93 5.477 2/20/1980 11 5.27 5.40 5.645 10/27/2004 10 5.80 5.96 5.819 2/4/1958 9 6.44 6.65 5.969 2/25/1969 8 7.25 7.53 5.989 9/23/1986 7 8.29 8.67 6.515 2/25/2003 6 9.67 10.21 7.739 1/15/1979 5 11.60 12.43 7.769 1/4/1995 4 14.50 15.89 8.126 1/4/1978 3 19.33 22.00 8.304 10/1/1983 2 29.00 35.75 9.316 4/14/2003 1 58.00 95.33 - List of Peak events and Determination of Q2 and Q10 (Pre-Development) Poinsettia (POC-2) I (Year) Cunnane (cfs) Weibull (cfs) Peaks (cfs) Date Posit Period of Return (Years) 10 6.16 6.31 Weibull Cunnane 9 5.62 5.87 2.89 2/6/1969 57 1.02 1.01 8 5.36 5.40 2.894 2/22/1998 56 1.04 1.03 7 5.24 5.27 2.921 2/8/1993 55 1.05 1.05 6 4.94 5.01 2.935 4/27/1960 54 1.07 1.07 5 4.89 4.89 2.981 1/16/1972 53 1.09 1.09 4 4.73 4.73 2.992 2/22/2008 52 1.12 1.11 3 4.12 4.14 3.008 3/19/1981 51 1.14 1.13 2 3.83 3.83 3.033 4/28/2005 50 1.16 1.15 Note: Cunnane is the preferred method by the HMP permit. 3.11 3/1/1991 49 1.18 1.18 3.131 12/22/1982 48 1.21 1.20 3.146 3/15/1986 47 1.23 1.23 3.161 2/12/1992 46 1.26 1.25 3.183 2/14/1998 45 1.29 1.28 3.199 1/29/1980 44 1.32 1.31 3.216 3/17/1963 43 1.35 1.34 3.238 2/15/1986 42 1.38 1.38 3.258 2/27/1991 41 1.41 1.41 3.284 1/6/2008 40 1.45 1.44 3.311 1/16/1978 39 1.49 1.48 3.389 3/11/1995 38 1.53 1.52 3.525 1/18/1993 37 1.57 1.56 3.572 2/4/1994 36 1.61 1.61 3.615 2/17/1998 35 1.66 1.65 3.619 12/2/1961 34 1.71 1.70 3.763 11/15/1952 33 1.76 1.75 3.765 10/20/2004 32 1.81 1.81 3.776 11/11/1985 31 1.87 1.87 3.801 2/18/1993 30 1.93 1.93 3.832 2/23/1998 29 2.00 2.00 3.904 1/29/1983 28 2.07 2.07 3.913 2/16/1980 27 2.15 2.15 3.967 12/19/1970 26 2.23 2.23 4.002 1/27/2008 25 2.32 2.33 4.021 2/3/1998 24 2.42 2.42 4.042 11/22/1965 23 2.52 2.53 4.044 12/30/1991 22 2.64 2.65 4.046 2/10/1978 21 2.76 2.78 4.062 2/27/1983 20 2.90 2.92 4.175 3/2/1980 19 3.05 3.08 4.627 4/1/1958 18 3.22 3.25 4.633 3/1/1978 17 3.41 3.45 4.67 1/16/1952 16 3.63 3.67 4.723 3/17/1982 15 3.87 3.92 4.747 2/20/1980 14 4.14 4.21 4.814 2/18/2005 13 4.46 4.54 4.889 10/29/2000 12 4.83 4.93 4.89 10/27/2004 11 5.27 5.40 4.92 1/14/1993 10 5.80 5.96 5.2 2/25/1969 9 6.44 6.65 5.304 2/4/1958 8 7.25 7.53 5.441 2/25/2003 7 8.29 8.67 6.273 9/23/1986 6 9.67 10.21 6.504 1/4/1995 5 11.60 12.43 6.749 1/15/1979 4 14.50 15.89 7.195 10/1/1983 3 19.33 22.00 7.52 1/4/1978 2 29.00 35.75 8.03 4/14/2003 1 58.00 95.33 List of Peak events and Determination of Q2 and Q10 (Post-Development) Poinsettia (POC-2) T (Year) Cunnane (cfs) Weibull (cfs) I Peaks (cfs) Date Posit Period of Return (Years) 10 4.74 4.85 Weibull Cunnane 9 4.54 4.63 1.17 12/19/1970 57 1.02 1.01 8 4.43 4.45 1.205 3/2/1983 56 1.04 1.03 7 4.38 4.39 1.222 3/2/1980 55 1.05 1.05 :6 4.22 4.26 1.231 10/20/2004 54 1.07 1.07 is 3.77 3.81 1.237 2/26/2004 53 1.09 1.09 4 3.36 3.39 1.289 12/30/1991 52 1.12 1.11 3 3.09 3.10 1.312 10/29/2000 51 1.14 1.13 2 2.39 2.39 1.325 1/11/2005 50 1.16 1.15 Note: Cunnane is the preferred method by the H M P permit. 1.326 3/1/1983 49 1.18 1.18 1.33 1/27/1956 48 1.21 1.20 1.331 1/15/1993 47 1.23 1.23 1.338 2/18/2005 46 1.26 1.25 1.357 1/14/1993 45 1.29 1.28 1.46 4/1/1958 44 1.32 1.31 1.531 1/18/1993 43 1.35 1.34 1.643 2/20/1980 42 1.38 1.38 1.689 9/23/1986 41 1.41 1.41 1.707 12/5/1966 40 1.45 1.44 1.776 1/18/1952 39 1.49 1.48 1.81 11/29/1985 38 1.53 1.52 1.94 2/18/1980 37 1.57 1.56 2.103 2/10/1978 36 1.61 1.61 2.149 1/22/1967 35 1.66 1.65 2.266 11/30/2007 34 1.71 1.70 2.274 3/5/1995 33 1.76 1.75 2.277 12/25/1983 32 1.81 1.81 2.278 1/11/1980 31 1.87 1.87 2.31 2/4/1958 30 1.93 1.93 2.393 1/25/1969 29 2.00 I 2.00 2.458 3/1/1991 28 2.07 2.07 2.481 2/23/1998 27 2.15 2.15 2.514 1/13/1997 26 2.23 2.23 2.764 11/22/1996 25 2.32 2.33 2.827 2/25/2003 24 2.42 2.42 2.896 3/11/1995 23 2.52 2.53 2.957 10/27/2004 22 2.64 2.65 2.977 1/16/1993 21 2.76 2.78 3.057 1/20/1962 20 2.90 2.92 3.122 1/16/1952 19 3.05 3.08 3.154 1/9/2005 18 3.22 3.25 3.244 2/15/1986 17 3.41 3.45 3.259 1/15/1978 16 3.63 3.67 3.311 2/23/2005 15 3.87 3.92 3.48 3/8/1968 14 4.14 4.21 3.558 1/6/1979 13 4.46 4.54 3.746 1/16/1978 12 4.83 4.93 3.915 2/22/2008 11 5.27 5.40 4.208 10/1/1983 10 5.80 5.96 4.371 11/22/1965 9 6.44 6.65 4.404 3/17/1982 8 7.25 7.53 4.473 1/29/1980 7 8.29 8.67 4.782 3/1/1978 6 9.67 10.21 5.194 2/25/1969 5 11.60 12.43 5.636 1/4/1978 4 14.50 15.89 5.708 1/15/1979 3 19.33 22.00 6.793 4/14/2003 2 29.00 35.75 7.704 1/4/1995 1 58.00 95.33 List of Peak events and Determination of Q2 and Q10 (Pre-Development) Poinsettia (POC-3) T (Year) Cunnane (cfs) Weibull (cfs) Peaks (cfs) Date Posit Period of Return (Years) 10 29.62 30.36 Weibull Cunnane 9 27.03 28.24 13.902 2/6/1969 57 1.02 1.01 8 25.78 25.98 13.918 2/22/1998 56 1.04 1.03 7 25.21 25.35 14.048 2/8/1993 55 1.05 1.05 6 23.74 24.08 14.115 4/27/1960 54 1.07 1.07 5 23.51 23.51 14.335 1/16/1972 53 1.09 1.09 4 22.75 22.77 14.39 2/22/2008 52 1.12 1.11 3' 19.82 19.89 14.468 3/19/1981 51 1.14 1.13 2 18.43 18.43 14.598 4/28/2005 50 1.16 1.15 Note: Cunnane is the preferred method by the HMP permit. 14.957 3/1/1991 49 1.18 1.18 15.063 12/22/1982 48 1.21 1.20 15.128 3/15/1986 47 1.23 1.23 15.205 2/12/1992 46 1.26 1.25 15.305 2/14/1998 45 1.29 1.28 15.383 1/29/1980 44 1.32 1.31 15.468 3/17/1963 43 1.35 1.34 15.573 2/15/1986 42 1.38 1.38 15.694 2/27/1991 41 1.41 1.41 15.794 1/6/2008 40 1.45 1.44 15.924 1/16/1978 39 1.49 1.48 16.298 3/11/1995 38 1.53 1.52 16.952 1/18/1993 37 1.57 1.56 17.177 2/4/1994 36 1.61 1.61 17.385 2/17/1998 35 1.66 1.65 17.405 12/2/1961 34 1.71 1.70 18.1 11/15/1952 33 1.76 1.75 18.105 10/20/2004 32 1.81 1.81 18.162 11/11/1985 31 1.87 1.87 18.283 2/18/1993 30 1.93 1.93 18.425 2/23/1998 29 2.00 2.00 18.777 1/29/1983 28 2.07 2.07 18.82 2/16/1980 27 2.15 2.15 19.078 12/19/1970 26 2.23 2.23 19.248 1/27/2008 25 2.32 2.33 19.335 2/3/1998 24 2.42 2.42 19.437 11/22/1965 23 2.52 2.53 19.447 12/30/1991 22 2.64 2.65 19.458 2/10/1978 21 2.76 2.78 19.536 2/27/1983 20 2.90 2.92 20.076 3/2/1980 19 3.05 3.08 22.253 4/1/1958 18 3.22 3.25 22.277 3/1/1978 17 3.41 3.45 22.457 1/16/1952 16 3.63 3.67 22.713 3/17/1982 15 3.87 3.92 22.829 2/20/1980 14 4.14 4.21 23.149 2/18/2005 13 4.46 4.54 23.509 10/29/2000 12 4.83 4.93 23.518 10/27/2004 11 5.27 5.40 23.658 1/14/1993 10 5.80 5.96 25.007 2/25/1969 9 6.44 6.65 25.508 2/4/1958 8 7.25 7.53 26.165 2/25/2003 7 8.29 8.67 30.17 9/23/1986 6 9.67 10.21 31.275 1/4/1995 5 11.60 12.43 32.453 1/15/1979 4 14.50 15.89 34.601 10/1/1983 3 19.33 22.00 36.163 1/4/1978 2 29.00 35.75 38.614 4/14/2003 1 58.00 95.33 - List of Peak events and Determination of Q2 and Q1O (Post-Development) Poinsettia (POC-3) T (Year) Cunnane (cfs) Weibull (cfs) Peaks (cfs) Date Posit Period of Return (Years) 10 25.86 27.11 Weibull Cunnane 9 25.23 25.53 12.153 1/6/1979 57 1.02 1.01 8 24.27 24.67 12.17 1/15/1978 56 1.04 1.03 7 23.40 23.56 12.312 4/28/2005 55 1.05 1.05 6 22.72 22.84 12.333 3/19/1981 54 1.07 1.07 5 21.70 21.71 12.419 3/1/1991 53 1.09 1.09 4 20.45 20.50 12.657 12/22/1982 52 1.12 1.11 3 18.74 18.74 12.668 2/12/1992 51 1.14 1.13 2 15.97 15.97 12.675 2/27/1991 50 1.16 1.15 Note: Cunnane is the preferred method by the H M P permit. 12.83 3/15/1986 49 1.18 1.18 12.908 2/14/1998 48 1.21 1.20 12.921 4/27/1960 47 1.23 1.23 13.454 1/6/2008 46 1.26 1.25 13.486 2/15/1986 45 1.29 1.28 13.504 3/11/1995 44 1.32 1.31 13.537 3/17/1963 43 1.35 1.34 13.596 8/17/1977 42 1.38 1.38 13.816 1/16/1972 41 1.41 1.41 13.988 1/18/1993 40 1.45 1.44 14.316 2/4/1994 39 1.49 1.48 14.395 2/22/2008 38 1.53 1.52 14.494 12/2/1961 37 1.57 1.56 15.182 10/20/2004 36 1.61 1.61 15.36 2/17/1998 35 1.66 1.65 15.387 2/18/1993 34 1.71 1.70 15.549 11/15/1952 33 1.76 1.75 15.562 11/11/1985 32 1.81 1.81 15.762 2/16/1980 31 1.87 1.87 15.902 1/29/1983 30 1.93 1.93 15.972 1/16/1978 29 2.00 2.00 16.048 1/27/2008 28 2.07 2.07 16.104 1/29/1980 27 2.15 2.15 16.452 2/27/1983 26 2.23 2.23 16.553 2/23/1998 25 2.32 2.33 16.829 12/19/1970 24 2.42 2.42 17.49 2/3/1998 23 2.52 2.53 17.557 12/30/1991 22 2.64 2.65 18.294 3/2/1980 21 2.76 2.78 18.739 11/22/1965 20 2.90 2.92 18.742 2/10/1978 19 3.05 3.08 18.945 4/1/1958 18 3.22 3.25 19.572 3/17/1982 17 3.41 3.45 20.123 1/14/1993 16 3.63 3.67 20.367 10/29/2000 15 3.87 3.92 20.647 2/18/2005 14 4.14 4.21 21.243 2/20/1980 13 4.46 4.54 21.701 3/1/1978 12 4.83 4.93 21.715 1/16/1952 11 5.27 5.40 22.688 10/27/2004 10 5.80 5.96 23.179 2/4/1958 9 6.44 6.65 23.728 2/25/1969 8 7.25 7.53 25.025 2/25/2003 7 8.29 8.67 25.992 9/23/1986 6 9.67 10.21 32.487 1/4/1995 5 11.60 12.43 32.74 1/4/1978 4 14.50 15.89 32.84 1/15/1979 3 19.33 22.00 34.201 10/1/1983 2 29.00 35.75 38.364 4/14/2003 1 58.00 95.33 ATTACHMENT 4 Elevation vs. Area Curves and Elevation vs. Discharge Curves to be used in SWMM ATTACHMENT 4 ELEVATION vs. AREA The elevation vs. area tables in the model are calculated in Excel and imported into the model. The summary of elevation vs. area for each IMP has been provided on the following pages. The LID surface storage depth beneath the lowest surface discharge structure is accounted for in the LID module as illustrated in Attachment 7. ELEVATION vs. DISCHARGE The total elevation vs. discharge curve is imported from an Excel spreadsheet that calculates the elevation vs. discharge of the outlet system. Elevation vs. discharge relationships are provided for the surface discharge of the biofiltration basins as this is where a Modified Puls routing procedure will be taken into account in the continuous simulation model. The orifice sizes have been selected to maximize their size while still restricting flows to conform with the required 10% of the 02 event flow as mandated in the City of Carlsbad BMP Design Manual. While TRWE acknowledges that these orifices are small, to increase the size of these outlets would impact the basin's ability to restrict flows beneath the HMP thresholds, thus preventing the IMP from conforming with HMP requirements. In order to further reduce the risk of blockage of the orifices, regular maintenance of the riser and orifices must be performed to ensure potential blockages are minimized. A detail of the orifice and riser structures is provided in Attachment 5 of this memorandum. DISCHARGE EQUATIONS Weir: Q= CLH 3"2 (1) Slot: As an orifice: Q B c9 J2g (H - (2 a) As a weir: QS = B H312 (2.b) For H > h slot works as weir until orifice equation provides a smaller discharge. The elevation such that equation (2.a) = equation (2.b) is the elevation at which the behavior changes from weir to xifice. Vertical Orifices As an orifice: Q0 = 0.25 . irD c9 j2g (H - (3.a) As a weir: Critical depth and geometric family of circular sector must be solved to determined 0 as a function of H: Q A3. A r D2 H = Ycr + , ; T. 2.Jy(D Ycr) = —[acr --sin(acr)]; 8 'Cr ' I Cr 8 D y,= Ti• [1 - sin(0.5 (3.b.1, 3.b.2, 3.b.3, 3.b.4 and 3.b 5) There is a value of H (approximately H = 110% D) from which orifices no longer work as weirs as critical depth is not possible at the entrance of the orifice. This value of H is obtained equaling the discharge using critical equations and equations (3.b). A mathematical model is prepared with the previous equations depending on the type of discharge. The following are the variables used above: Ow, Os, Q0 = Discharge of weir, slot or orifice (cfs) C, cg : Coefficients of discharge of weir (typically 3.1) and orifice (0.61 to 0.62) L, B5, D, h : Length of weir, width of slot, diameter of orifice and height of slot, respectively; (ft) H: Level of water in the pond over the invert of slot, weir or orifice (ft) Tcr, Vcr, acr: Critical variables for circular sector: area (ft), top width (ft), critical depth (ft), and angle to the center, respectively. Stage-Area for IMP 1-1 Depth (ft) Area (ft') Volume (ft3) 0.00 2488 0 0.08 2550 210 0.17 2612 425 0.25 2675 645 0.33 2738 871 0.42 2801 1102 0.50 2865 1338 0.58 2929 1579 0.67 2993 1826 0.75 3058 2078 0.83 3123 2336 0.92 3188 2598 1.00 3254 2867 1.08 3320 3141 1.17 3386 3420 1.25 3453 3705 1.33 3520 3996 1.42 3588 4292 1.50 3656 4594 1.58 3724 4901 1.67 3792 5214 1.75 3861 5533 1.83 3930 5858 1.92 4000 6188 2.00 4070 6525 2.08 4140 6867 2.17 4211 7215 2.25 4282 7569 2.33 4353 7928 2.42 4425 8294 2.50 4497 8666 I I 3I0FILTRATION (1) 1 1 I JRFACEOUTLET(2)l SUBSURFACE STORAGE IMP 1-1 Elevation (ft) Area (ft') ( Volume (ft) - - - - - -1.50 2488 1120 Amended Soil Base (0.3 voids) -2.50 488 995 Gravel Base (0.4 voids) I Gravel & Amended Soil TOTAL = 2115 (ft) Surface Total TOTAL = 1338 (ft3) IMP TOTAL = 3453 (ft) The area at this surface elevation corresponds to the area of gravel and amended soil (Bio-retention layer) Volume at this elevation coresponds with surface volume for Wa purposes (invert of lowest surface outlet) lEctive Depth: 6.45 in Stage-Area for IMP 2-1 Depth (ft) Area (ft) Volume (ft') 0.00 8277 0 0.08 8339 692 0.17 8402 1390 0.25 8465 2093 0.33 8527 2801 0.42 8590 3514 0.50 8654 4232 0.58 8717 4956 0.67 8781 5685 0.75 8844 6420 0.83 8908 7159 0.92 8973 7904 1.00 9037 8655 1.08 9101 9411 1.17 9166 10172 1.25 9231 10938 1.33 9296 11710 1.42 9361 12487 1.50 9426 13270 1.58 9492 14059 1.67 9558 14852 1.75 9623 15651 1.83 9690 16456 1.92 9756 17266 2.00 9822 18082 2.08 9889 18903 2.17 9956 19730 2.25 10023 20563 2.33 10090 21401 2.42 10157 22244 2.50 10225 23094 2.58 10292 23948 2.67 10360 24809 2.75 10428 25675 2.83 10496 26547 2.92 10565 27424 3.00 10633 28308 3.08 10702 29197 3.17 10771 30091 3.25 10840 30992 3.33 10909 31898 3.42 10979 32810 3.50 11048 33728 3.58 11118 34651 3.67 11188 1 35581 3.75 11258 36516 3.83 11329 37457 3.92 11399 38404 4.00 11470 39357 4.08 11541 40316 4.17 11612 41281 4.25 11683 42251 4.33 11754 43228 - 4.42 11826 44210 4.50 11898 45199 4.58 11970 46193 4.67 12042 47194 4.75 12114 48200 4.83 12187 49213 4.92 12259 50231 5.00 12332 51256 IlOFILTRATION (1) I 4JRFACE OUTLET (2) SUB SURFACE STORAGE IMP 2-1 Elevation (ft) Area (ft') Volume (ft 5) -1.50 8277 3725 Amended Soil Base (0.3 voids) -2.50 8277 3311 Gravel Base (0.4 voids) Gravel & Amended Soil TOTAL = 7035 (f15) Surface Total TOTAL = 10938 (it') IMP TOTAL = 17974 (ft5) The area at this surface elevation corresponds to the area of gravel and amended soil (Bio-retention layer) Volume at this elevation coresponds with surface volume for WO purposes (insert of lowest surface outlet) lEffective Depth: 19.24 in 71 Stage-Area for IMP 3-1 Depth (ft) Area (ft) Volume (ft) 0.00 1733 0 0.08 1765 146 0.17 1796 294 0.25 1828 445 0.33 1860 599 0.42 1893 755 0.50 1925 914 0.58 1958 1076 0.67 1991 1241 0.75 2024 1408 0.83 2057 1578 0.92 2090 1751 1.00 2124 1926 1.08 2157 2105 1.17 2191 2286 1.25 2225 2470 1.33 2259 2657 1.42 2294 2846 1.50 2328 3039 1.58 2363 3234 1.67 2398 3433 1.75 2433 3634 1.83 2468 3838 1.92 2503 4045 2.00 2539 4255 2.08 2575 4468 2.17 2611 4684 2.25 2647 4904 2.33 2683 1 5126 2.42 2720 5351 2.50 2756 5579 SUB SURFACE STORAGE IMP 3-1 lOFILTRATlON (1) RFAc OUTLET )] Elevation (ft) Area (ft) Volume (ft) Soil Base (0.3 voids) Base (0.4 voids) 780 jAmended -1.50 1733. -2.50 1733 693 jGravel Gravel & Amended Soil Surface Total IMP TOTAL = TOTAL = TOTAL = 1473 914 2387 (ft) (ft3) estimated (ft) The area at any surface elevation corresponds to the area of gravel and amended soil (Bio-retention l Volume at this elevation coresponds with surface volume for WQ purposes (invert of lowest surface o' Effective Depth: 6.33 in Stage-Area for IMP 4-1 (POC-3) Depth (ft) Area (ft') Volume (ft') 0.00 7253 0 0.08 7321 607 0.17 7388 1220 0.25 7456 1839 0.33 7525 2463 0.42 7593 3093 0.50 7661 3728 0.58 7730 4370 0.67 7799 5017 0.75 7868 5669 0.83 7937 6328 0.92 8007 6992 1.00 8076 7662 1.08 8146 8338 1.17 8216 9020 .25 8286 9708 .33 8356 10401 1.42 8426 11100 1.50 8497 11805 1.58 8568 12517 1.67 8639 13233 1.75 8710 13956 1.83 8781 14685 1.92 8853 15420 2.00 8924 16161 2.08 8996 16907 2.17 9068 17660 2.25 9140 18419 2.33 9213 19183 2.42 9285 19954 2.50 9358 20731 2.58 9431 21514 2.67 9504 22303 2.75 9577 23098 2.83 9650 23899 2.92 9724 24706 3.00 9798 25519 3.08 9872 26339 3.17 9946 27165 3.25 10020 27997 3.33 10094 28835 3.42 10169 29679 3.50 10244 30530 SUB SURFACE STORAGE IMP 4-1 Elevation (ft) Area (ft) Volume (ft) Amended Soil Base (0.3 voids) GravelBase(0.4voids) -1.50 7253 3264 -3.00 7253 4352 Gravel & Amended Soil Surface Total IMP TOTAL = TOTAL = TOTAL = 7616 5017 12632 (ft) (ft) (ft) The area at this surface elevation corresponds to the area of gravel and amended soil (Bio-retention Volume at this elevation coresponds with surface volume for WO purposes (invert of lowest surface lEffective Depth: 8.30 in I IOFILTRATION (1) SURFACE OUTLET (2) Depth (ft) Area (ft 2) Volume (ft) 0.00 1400 0 0.08 1424 118 0.17 1449 237 0.25 1473 359 0.33 1498 483 0.42 1523 609 0.50 1548 737 0.58 1573 867 0.67 1599 999 0.75 1624 1133 0.83 1650 1270 0.92 1676 1408 1.00 1702 1549 1.08 1729 1692 1.17 1755 1837 1.25 1782 1985 1.33 1809 2134 1.42 1836 2286 1.50 1863 2440 1.58 1891 2597 1.67 1918 2755 1.75 1946 2916 1.83 1974 3080 1.92 2002 3245 2.00 2031 3413 2.08 2059 3584 2.17 2088 3757 2.25 2117 3932 2.33 2146 4109 2.42 2175 4289 2.50 2204 4472 BIOFILTRATION (1) I SURFACE-06TLET (2) -I -ii - J Stage-Area for IMP 5-1 (POC-3) SUB SURFACE STORAGE IMP 5-1 Elevation (ft) Area (1fl J volume (W) Amended Soil Base (0.3 voids) Gravel Base (0.4 voids) -1.50 1400 630 -2.50 1400 560 Gravel & Amended Soil TOTAL = 1190 (ft3) Surface Total TOTAL = 737 (ft) IMP TOTAL = 1927 (ft) The area at this surface elevation corresponds to the area of gravel and amended soil (Bio-retention Volume at this elevation coresponds with surface volume for WQ purposes (invert of lowest surface Effective Depth: 6.31 in Low orifice 1.000 Lower slot Number of orif: 0 Number of slots: Cg-low: 0.62 Invert: B Middle orifice 1 hslot Number of orif: 0 Cg-middle: 0.62 Upper slot invert elev: 0.000 ft Number of slots: Invert: *Note: h = head above the invert of the B lowest surface discharge opening. hslot Lower Weir 4 Number of weirs 0 0.00 ft Invert: 2.00 1.00 ft B: 1.75 0.250 ft 0 1.00 ft 1.00 ft 0.250 ft Emergency weir Invert: B: 1.00 ft 12.00 ft Outlet structure for Discharge of Biofiltration IMP 1-1 Discharge vs Elevation Table h* (ft) H/D-low - H/D-mid - Qlow-orif (cfs) Qlow-weir (cfs) Qtot-low (cfs) Qmid-orif (cfs) Qmid-weir (cfs) Qtot-med (cfs) Qslot-low (cfs) Qslot-upp (cfs) Qweir (cfs) Qemerg (cfs) Qtot (cfs) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.042 0.500 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.105 0.000 0.000 0.000 0.105 0.083 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.298 0.000 0.000 0.000 0.298 0.125 1.500 1.500 0.000 0.000 0.000 0.000 0.000 0.000 0.548 0.000 0.000 0.000 0.548 0.167 2.000 2.000 0.000 0.000 0.000 0.000 0.000 0.000 0.844 0.000 0.000 0.000 0.844 0.208 2.500 2.500 0.000 0.000 0.000 0.000 0.000 0.000 1.179 0.000 0.000 0.000 1.179 0.250 3.000 3.000 0.000 0.000 0.000 0.000 0.000 0.000 1.550 0.000 0.000 0.000 1.550 0.292 3.500 3.500 0.000 0.000 0.000 0.000 0.000 0.000 1.953 0.000 0.000 0.000 1.953 0.333 4.000 4.000 0.000 0.000 0.000 0.000 0.000 0.000 2.234 0.000 0.000 0.000 2.234 0.375 4.500 4.500 0.000 0.000 0.000 0.000 0.000 0.000 2.448 0.000 0.000 0.000 2.448 0.417 5.000 5.000 0.000 0.000 0.000 0.000 0.000 0.000 2.644 0.000 0.000 0.000 2.644 0.458 5.500 5.500 0.000 0.000 0.000 0.000 0.000 0.000 2.826 0.000 0.000 0.000 2.826 0.500 6.000 6.000 0.000 0.000 0.000 0.000 0.000 0.000 2.998 0.000 0.000 0.000 2.998 0.542 6.500 6.500 0.000 0.000 0.000 0.000 0.000 0.000 3.160 0.000 0.000 0.000 3.160 0.583 7.000 7.000 0.000 0.000 0.000 0.000 0.000 0.000 3.314 0.000 0.000 0.000 3.314 0.625 7.500 7.500 0.000 0.000 0.000 0.000 0.000 0.000 3.461 0.000 0.000 0.000 3.461 0.667 8.000 8.000 0.000 0.000 0.000 0.000 0.000 0.000 3.603 0.000 0.000 0.000 3.603 0.708 8.500 8.500 0.000 0.000 0.000 0.000 0.000 0.000 3.739 0.000 0.000 0.000 3.739 0.750 9.000 9.000 0.000 0.000 0.000 0.000 0.000 0.000 3.870 0.000 0.000 0.000 3.870 0.792 9.500 9.500 0.000 0.000 0.000 0.000 0.000 0.000 3.997 0.000 0.000 0.000 3.997 0.833 10.000 10.000 0.000 0.000 0.000 0.000 0.000 0.000 4.120 0.000 0.000 0.000 4.120 0.875 10.500 10.500 0.000 0.000 0.000 0.000 0.000 0.000 4.239 0.000 0.000 0.000 4.239 0.917 11.000 11.000 0.000 0.000 0.000 0.000 0.000 0.000 4.356 0.000 0.000 0.000 4.356 0.958 11.500 11.500 0.000 0.000 0.000 0.000 0.000 0.000 4.469 0.000 0.000 0.000 4.469 h* (ft) HID-low - H/D-mid - qiow-orif (cfs) Qiow-weir (cfs) Qtot-low (cfs) - Qmid-orif (cfs) Qmid-weir (cfs) Qtot-med (cfs) Qslot-low (cfs) Qslot-upp (cfs) Qweir (cfs) Qemerg (cfs) Qtot (cfs) 1.000 12.000 12.000 0.000 0.000 0.000 0.000 0.000 0.000 4.579 0.000 0.000 0.000 4.579 1.042 12.500 12.500 0.000 0.000 0.000 0.000 0.000 0.000 4.687 0.000 0.000 0.316 5.003 1.083 13.000 13.000 0.000 0.000 0.000 0.000 0.000 0.000 4.792 0.000 0.000 0.895 5.687 1.125 13.500 13.500 0.000 0.000 0.000 0.000 0.000 0.000 4.895 0.000 0.000 1.644 6.539 1.167 14.000 14.000 0.000 0.000 0.000 0.000 0.000 0.000 4.996 0.000 0.000 2.531 7.527 1.208 14.500 14.500 0.000 0.000 0.000 0.000 0.000 0.000 5.095 0.000 0.000 3.537 8.632 1.250 15.000 15.000 0.000 0.000 0.000 0.000 0.000 0.000 5.192 0.000 0.000 4.650 9.842 1.292 15.500 15.500 0.000 0.000 0.000 0.000 0.000 0.000 5.287 0.000 0.000 5.860 11.147 1.333 16.000 16.000 0.000 0.000 0.000 0.000 0.000 0.000 5.381 0.000 0.000 7.159 12.540 1.375 16.500 16.500 0.000 0.000 0.000 0.000 0.000 0.000 5.473 0.000 0.000 8.543 14.016 1.417 17.000 17.000 0.000 0.000 0.000 0.000 0.000 0.000 5.563 0.000 0.000 10.005 15.569 1.458 17.500 17.500 0.000 0.000 0.000 0.000 0.000 0.000 5.653 0.000 0.000 11.543 17.195 1.500 18.000 18.000 0.000 0.000 0.000 0.000 0.000 0.000 5.740 0.000 0.000 13.152 18.892 1.542 18.500 18.500 0.000 0.000 0.000 0.000 0.000 0.000 5.826 0.000 0.000 14.830 20.656 1.583 19.000 19.000 0.000 0.000 0.000 0.000 0.000 0.000 5.912 0.000 0.000 16.574 22.485 1.625 19.500 19.500 0.000 0.000 0.000 0.000 0.000 0.000 5.995 0.000 0.000 18.381 24.376 1.667 20.000 20.000 0.000 0.000 0.000 0.000 0.000 0.000 6.078 0.000 0.000 20.249 26.327 1.708 20.500 20.500 0.000 0.000 0.000 0.000 0.000 -0.000 6.160 0.000 0.000 22.177 28.337 1.750 21.000 21.000 0.000 0.000 0.000 0.000 0.000 0.000 6.240 0.000 0.000 24.162 30.402 1.792 21.500 21.500 0.000 0.000 0.000 0.000 0.000 0.000 6.320 0.000 0.000 26.203 32.523 1.833 22.000 22.000 0.000 0.000 0.000 0.000 0.000 0.000 6.398 0.000 0.000 28.299 34.697 1.875 22.500 22.500 0.000 0.000 0.000 0.000 0.000 0.000 6.476 0.000 0.000 30.448 36.924 1.917 23.000 23.000 0.000 0.000 0.000 0.000 0.000 0.000 6.552 0.000 0.000 32.648 39.201 1.958 23.500 23.500 0.000 0.000 0.000 0.000 0.000 0.000 6.628 0.000 0.000 34.899 41.528 2.000 24.000 24.000 0.000 0.000 0.000 0.000 0.000 0.000 6.703 0.000 0.000 37.200 43.903 Outlet structure for Discharge of Biofiltration IMP 2-1 Discharge vs Elevation Table Low orifice 1.000 1, Lower slot Lower Weir Number of orif: 1 Number of slots: 4 Number of weirs: 0 Cg-low: 0.62 Invert: 1.00 ft Invert: 2.50 B 1.00 ft B: 1.00 Middle orifice 1 h 0 0.250 ft 0.381 6.15 Number of orif: 0 1 3 Cg-middle: 0.62 Upper slot Emergency weir 0.027 6.750 invert elev: 0.000 ft Number of slots: 0 Invert: 3.00 ft Invert: 2.00 ft B: 12.00 ft *Note: h = head above the invert of the B: 0.50 ft lowest surface discharge opening. hSj.t 0.167 ft h* (ft) H/D-low - HID-mid - Qiow-orif (cfs) Qiow-weir (cfs) Qtot-low (cfs) Qmid-orif (cfs) Qmid-weir (cfs) Qtot-med (cfs) qslot-low (cfs) Qslot-upp (cfs) Qweir (cfs) Qemerg (cfs) Qtot (cfs) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.083 1.000 1.000 0.006 0.005 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.005 0.167 2.000 2.000 0.010 0.013 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.250 3.000 3.000 0.012 0.014 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.012 0.333 4.000 4.000 0.015 0.024 0.015 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.417 5.000 5.000 0.017 0.095 0.017 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.017 0.500 6.000 6.000 0.018 0.184 0.018 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.018 0.583 7.000 7.000 0.020 0.200 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.020 0.667 8.000 8.000 0.021 0.215 0.021 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.021 0.750 9.000 9.000 0.023 0.228 0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.023 0.833 10.000 10.000 0.024 0.241 0.024 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.024 0.917 11.000 11.000 0.025 0.254 0.025 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.025 1.000 12.000 12.000 0.027 0.266 0.027 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.027 1.083 13.000 13.000 0.028 0.277 0.028 0.000 0.000 0.000 0.298 0.000 0.000 0.000 0.326 1.167 14.000 14.000 0.029 0.288 0.029 0.000 0.000 0.000 0.844 0.000 0.000 0.000 0.872 1.250 15.000 15.000 0.030 0.298 0.030 0.000 0.000 0.000 1.550 0.000 0.000 0.000 1.580 1.333 16.000 16.000 0.031 0.308 0.031 0.000 0.000 0.000 2.234 0.000 0.000 0.000 2.265 1.417 17.000 17.000 0.032 0.318 0.032 0.000 0.000 0.000 2.644 0.000 0.000 0.000 2.675 1.500 18.000 18.000 0.033 0.328 0.033 0.000 0.000 0.000 2.998 0.000 0.000 0.000 3.030 1.583 19.000 19.000 0.034 0.337 0.034 0.000 0.000 0.000 3.314 0.000 0.000 0.000 3.348 1.667 20.000 20.000 0.035 0.346 0.035 0.000 0.000 0.000 3.603 0.000 0.000 0.000 3.637 1.750 21.000 21.000 0.035 0.355 0.035 0.000 0.000 0.000 3.870 0.000 0.000 0.000 3.905 1.833 t22.000 22.000 0.036 0.363 0.036 0.000 0.000 0.000 4.120 0.000 0.000 0.000 4.156 h* (ft) H/D-low - H/D-mid - Qiow-orif (cfs) Qlow-weir (cfs) Qtot-low (cfs) Qmid-orif (cfs) Qmid-weir (cfs) Qtot-med (cfs) Qslot-low (cfs) Qslot-upp (cfs) Qweir (cfs) Qemerg (cfs) Qtot (cfs) 1.917 23.000 23.000 0.037 0.372 0.037 0.000 0.000 0.000 4.356 0.000 0.000 0.000 4.393 2.000 24.000 24.000 0.038 0.380 0.038 0.000 0.000 0.000 4.579 0.000 0.000 0.000 4.617 2.083 25.000 25.000 0.039 0.388 0.039 0.000 0.000 0.000 4.792 0.000 0.000 0.000 4.831 2.167 26.000 26.000 0.040 0.396 0.040 0.000 0.000 0.000 4.996 0.000 0.000 0.000 5.036 2.250 27.000 27.000 0.040 0.403 0.040 0.000 0.000 0.000 5.192 0.000 0.000 0.000 5.232 2.333 28.000 28.000 0.041 0.411 0.041 0.000 0.000 0.000 5.381 0.000 0.000 0.000 5.422 2.417 29.000 29.000 0.042 0.418 0.042 0.000 0.000 0.000 5.563 0.000 0.000 0.000 5.605 2.500 30.000 30.000 0.043 0.425 0.043 0.000 0.000 0.000 5.740 0.000 0.000 0.000 5.783 2.583 31.000 31.000 0.043 0.433 0.043 0.000 0.000 0.000 5.912 0.000 0.000 0.000 5.955 2.667 32.000 32.000 0.044 0.440 0.044 0.000 0.000 0.000 6.078 0.000 0.000 0.000 6.122 2.750 33.000 33.000 0.045 0.447 0.045 0.000 0.000 0.000 6.240 0.000 0.000 0.000 6.285 2.833 34.000 34.000 0.045 0.453 0.045 0.000 0.000 0.000 6.398 0.000 0.000 0.000 6.444 2.917 35.000 35.000 0.046 0.460 0.046 0.000 0.000 0.000 6.552 0.000 0.000 0.000 6.598 3.000 36.000 36.000 0.047 0.467 0.047 0.000 0.000 0.000 6.703 0.000 0.000 0.000 6.750 3.083 37.000 37.000 0.047 0.473 0.047 0.000 0.000 0.000 6.850 0.000 0.000 0.895 7.793 3.167 38.000 38.000 0.048 0.480 0.048 0.000 0.000 0.000 6.995 0.000 0.000 2.531 9.574 3.250 39.000 39.000 0.049 0.486 0.049 0.000 0.000 0.000 7.136 0.000 0.000 4.650 11.835 3.333 40.000 40.000 0.049 0.492 0.049 0.000 0.000 0.000 7.275 0.000 0.000 7.159 14.483 3.417 41.000 41.000 0.050 0.499 0.050 0.000 0.000 0.000 7.411 0.000 0.000 10.005 17.466 3.500 1 42.000 1 42.000 0.050 0.505 0.050 0.000 1 0.000 0.000 7.544 0.000 0.000 13.152 20.747 M1 i Outlet structure for Discharge of Biofiltration IMP 3-1 Discharge vs Elevation Table Low orifice 1.000 Lower slot Lower Weir Number of orif: 0 Number of slots: 4 Number of weirs: 0 Cg-low: 0.62 Invert: 0.00 ft Invert: 0.00 B 1.00 ft B: 1.50 Middle orifice 1 hslot 0.250 ft Number of orif: 0 Cg-middle: 0.62 Upper slot Emergency weir invert elev: 0.000 ft Number of slots: 0 Invert: 1.00 ft Invert: 0.00 ft B: 12.00 ft *Note:h= head above the invert of the B: 0.00 ft lowest surface discharge opening. hslot 0.000 ft h* (ft) H/D-low - H/D-mid - Qiow-orif (cfs) Qlow-weir (cfs) Qtot-low (cfs) Qmld-orif (cfs) Qmid-weir (cfs) Qtot-med (cfs) Qslot-low (cfs) Qslot-upp (cfs) Qweir (cfs) Qemerg (cfs) Qtot (cfs) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.042 0.500 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.105 0.000 0.000 0.000 0.105 0.083 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.298 0.000 0.000 0.000 0.298 0.125 1.500 1.500 0.000 0.000 0.000 0.000 0.000 0.000 0.548 0.000 0.000 0.000 0.548 0.167 2.000 2.000 0.000 0.000 0.000 0.000 0.000 0.000 0.844 0.000 0.000 0.000 0.844 0.208 2.500 2.500 0.000 0.000 0.000 0.000 0.000 0.000 1.179 0.000 0.000 0.000 1.179 0.250 3.000 3.000 0.000 0.000 0.000 0.000 0.000 0.000 1.550 0.000 0.000 0.000 1.550 0.292 3.500 3.500 0.000 0.000 0.000 0.000 0.000 0.000 1.953 0.000 0.000 0.000 1.953 0.333 4.000 4.000 0.000 0.000 0.000 0.000 0.000 0.000 2.234 0.000 0.000 0.000 2.234 0.375 4.500 4.500 0.000 0.000 0.000 0.000 0.000 0.000 2.448 0.000 0.000 0.000 2.448 0.417 5.000 5.000 0.000 0.000 0.000 0.000 0.000 0.000 2.644 0.000 0.000 0.000 2.644 0.458 5.500 5.500 0.000 0.000 0.000 0.000 0.000 0.000 2.826 0.000 0.000 0.000 2.826 0.500 6.000 6.000 0.000 0.000 0.000 0.000 0.000 0.000 2.998 0.000 0.000 0.000 2.998 0.542 6.500 6.500 0.000 0.000 0.000 0.000 0.000 0.000 3.160 0.000 0.000 0.000 3.160 0.583 7.000 7.000 0.000 0.000 0.000 0.000 0.000 0.000 3.314 0.000 0.000 0.000 3.314 0.625 7.500 7.500 0.000 0.000 0.000 0.000 0.000 0.000 3.461 0.000 0.000 0.000 3.461 0.667 8.000 8.000 0.000 0.000 0.000 0.000 0.000 0.000 3.603 0.000 0.000 0.000 3.603 0.708 8.500 8.500 0.000 0.000 0.000 0.000 0.000 0.000 3.739 0.000 0.000 0.000 3.739 0.750 9.000 9.000 0.000 0.000 0.000 0.000 0.000 0.000 3.870 0.000 0.000 0.000 3.870 0.792 9.500 9.500 0.000 0.000 0.000 0.000 0.000 0.000 3.997 0.000 0.000 0.000 3.997 0.833 10.000 10.000 0.000 0.000 0.000 0.000 0.000 0.000 4.120 0.000 0.000 0.000 4.120 0.875 10.500 10.500 0.000 0.000 0.000 0.000 0.000 0.000 4.239 1 1 0.000 0.000 0.000 4.239 0.917 11.000 11.000 0.000 0.000 0.000 0.000 0.000 0.000 4.356 0.000 0.000 0.000 4.356 h* (ft) H/D-low - H/D-mid - Qiow-orif (cfs) Qiow-weir (cfs) Qtot-low (cfs) Qmid-orif (cfs) Qmid-weir (cfs) Qtot-med (cfs) Qslot-low (cfs) Qslot-upp (cfs) Qweir (cfs) Qemerg (cfs) Qtot (cfs) 0.958 11.500 11.500 0.000 0.000 0.000 0.000 0.000 0.000 4.469 0.000 0.000 0.000 4.469 1.000 12.000 12.000 0.000 0.000 0.000 0.000 0.000 0.000 4.579 0.000 0.000 0.000 4.579 1.042 12.500 12.500 0.000 0.000 0.000 0.000 0.000 0.000 4.687 0.000 0.000 0.316 5.003 1.083 13.000 13.000 0.000 0.000 0.000 0.000 0.000 0.000 4.792 0.000 0.000 0.895 5.687 1.125 13.500 13.500 0.000 0.000 0.000 0.000 0.000 0.000 4.895 0.000 0.000 1.644 6.539 1.167 14.000 14.000 0.000 0.000 0.000 0.000 0.000 0.000 4.996 0.000 0.000 2.531 7.527 1.208 14.500 14.500 0.000 0.000 0.000 0.000 0.000 0.000 5.095 0.000 0.000 3.537 8.632 1.250 15.000 15.000 0.000 0.000 0.000 0.000 0.000 0.000 5.192 0.000 0.000 4.650 9.842 1.292 15.500 15.500 0.000 0.000 0.000 0.000 0.000 0.000 5.287 0.000 0.000 5.860 11.147 1.333 16.000 16.000 0.000 0.000 0.000 0.000 0.000 0.000 5.381 0.000 0.000 7.159 12.540 1.375 16.500 16.500 0.000 1 0.000 0.000 0.000 0.000 0.000 5.473 0.000 0.000 8.543 14.016 1.417 17.000 17.000 0.000 0.000 0.000 0.000 0.000 0.000 5.563 0.000 0.000 10.005 15.569 1.458 17.500 17.500 0.000 0.000 0.000 0.000 0.000 0.000 5.653 0.000 0.000 11.543 17.195 1.500 18.000 18.000 0.000 0.000 0.000 0.000 0.000 0.000 5.740 0.000 0.000 13.152 18.892 1.542 18.500 18.500 0.000 0.000 0.000 0.000 0.000 0.000 5.826 0.000 0.000 14.830 20.656 1.583 19.000 19.000 0.000 0.000 0.000 0.000 0.000 0.000 5.912 0.000 0.000 16.574 22.485 1.625 19.500 19.500 0.000 0.000 0.000 0.000 0.000 0.000 5.995 0.000 0.000 18.381 24.376 1.667 20.000 20.000 0.000 0.000 0.000 0.000 0.000 0.000 6.078 0.000 0.000 20.249 26.327 1.708 20.500 20.500 0.000 0.000 0.000 0.000 0.000 0.000 6.160 0.000 0.000 22.177 28.337 1.750 21.000 21.000 0.000 0.000 0.000 0.000 0.000 0.000 6.240 0.000 0.000 24.162 30.402 1.792 21.500 21.500 0.000 0.000 0.000 0.000 0.000 0.000 6.320 0.000 0.000 26.203 32.523 1.833 22.000 22.000 0.000 0.000 0.000 0.000 0.000 0.000 6.398 0.000 0.000 28.299 34.697 1.875 22.500 22.500 0.000 0.000 0.000 0.000 0.000 0.000 6.476 0.000 0.000 30.448 36.924 1.917 23.000 23.000 0.000 0.000 0.000 0.000 0.000 0.000 6.552 0.000 0.000 32.648 39.201 1.958 23.500 23.500 0.000 0.000 0.000 0.000 0.000 0.000 6.628 0.000 0.000 34.899 41.528 2.000 24.000 1 24.000 0.000 0.000 0.000 0.000 0.000 0.000 6.703 0.000 0.000 37.200 43.903 Outlet structure for Discharge of Biofiltration IMP 4-1 (POC-3) Discharge vs Elevation Table Low orifice 1.000 1, Lower slot Lower Weir Number of orif: 0 Number of slots: 0 Number of weirs: 1 Cg-low: 0.62 Invert: 0.00 ft Invert: 0.00 B 0.00 ft B: 1.25 Middle orifice 1 - h slot 0.000 ft Number of orif: 0 Cg-middle: 0.62 Upper slot Emergency weir invert elev: 0.000 ft Number of slots: 0 Invert: 2.00 ft Invert: 0.00 ft B: 10.75 ft *Note: h = head above the invert of the B: 0.00 ft lowest surface discharge opening. hslot 0.000 ft - h* (ft) HID-low - H/D-mid - Qiow-orif (cfs) Qiow-weir (cfs) Qtot-low (cfs) Qmid-orif (cfs) Qmid-weir (cfs) Qtot-med (cfs) Qslot-low (cfs) Qslot-upp (cfs) Qweir (cfs) Qemerg (cfs) Qtot (cfs) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.042 0.500 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.033 0.000 0.033 0.083 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.093 0.000 0.093 0.125 1.500 1.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.171 0.000 0.171 0.167 2.000 2.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.264 0.000 0.264 0.208 2.500 2.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.368 0.000 0.368 0.250 3.000 3.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.484 0.000 0.484 0.292 3.500 3.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.610 0.000 0.610 0.333 4.000 4.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.746 0.000 0.746 0.375 4.500 4.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.890 0.000 0.890 0.417 5.000 5.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.042 0.000 1.042 0.458 5.500 5.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.202 0.000 1.202 0.500 6.000 6.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.370 0.000 1.370 0.542 6.500 6.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.545 0.000 1.545 0.583 7.000 7.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.726 0.000 1.726 0.625 7.500 7.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.915 0.000 1.915 0.667 8.000 8.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.109 0.000 2.109 0.708 8.500 8.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.310 0.000 2.310 0.750 9.000 9.000 0.000 0.000 0.000 0.000 0.000 - 0.000 0.000 0.000 2.517 0.000 2.517 - 0.792 9.500 9.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.730 0.000 2.730 0.833 10.000 10.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.948 0.000 2.948 0.875 10.500 10.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3.172 0.000 3.172 0.917 11.000 11.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3.401 0.000 3.401 h* (ft) H/D-low - H/D-mid - Qiow-orif (cfs) Qiow-weir (cfs) Qtot-low (cfs) Qmid-orif (cfs) Qmid-weir (cfs) Qtot-med (cfs) Qslot-low (cfs) Qslot-upp (cfs) Qweir (cfs) Qemerg (cfs) Qtot (cfs) 0.958 11.500 11.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3.635 0.000 3.635 1.000 12.000 12.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3.875 0.000 3.875 1.042 12.500 12.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4.120 0.000 4.120 1.083 13.000 13.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4.369 0.000 4.369 1.125 13.500 13.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4.624 0.000 4.624 1.167 14.000 14.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4.883 0.000 4.883 1.208 14.500 14.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 5.147 0.000 5.147 1.250 15.000 15.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 5.415 0.000 5.415 1.292 15.500 15.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 5.688 0.000 5.688 1.333 16.000 16.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 5.966 0.000 5.966 1.375 16.500 16.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 6.248 0.000 6.248 1.417 17.000 17.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 6.534 0.000 6.534 1.458 17.500 17.500 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 6.824 0.000 6.824 1.500 18.000 18.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 7.119 0.000 7.119 1.542 18.500 18.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 7.417 0.000 7.417 1.583 19.000 19.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 7.720 0.000 7.720 1.625 19.500 19.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 8.027 0.000 8.027 1.667 20.000 20.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 8.338 0.000 8.338 1.708 20.500 20.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 8.652 0.000 8.652 1.750 21.000 21.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 8.971 0.000 8.971 1.792 21.500 21.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 9.293 0.000 9.293 1.833 22.000 22.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 9.619 0.000 9.619 1.875 22.500 22.500 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 9.949 0.000 9.949 1.917 23.000 23.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 10.282 0.000 10.282 1.958 23.500 23.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 10.619 0.000 10.619 2.000 24.000 24.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 10.960 0.000 10.960 2.042 24.500 24.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 11.304 0.283 11.588 2.083 1 25.000 25.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 11.652 0.802 12.454 2.125 25.500 25.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 12.004 1.473 13.476 2.167 26.000 26.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 12.358 2.267 14.626 2.208 26.500 26.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 12.717 3.169 15.885 2.250 27.000 27.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 13.078 4.166 17.244 2.292 27.500 27.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 13.443 5.249 18.692 2.333 28.000 28.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 13.811 6.413 20.225 2.375 28.500 28.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 14.183 7.653 21.836 2.417 29.000 29.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 14.558 8.963 23.521 2.458 29.500 29.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 14.936 10.341 25.276 h* (ft) H/D-low - H/D-mid - Qiow-orif (cfs) Qiow-weir (cfs) Qtot-low (cfs) Qmid-orif (cfs) Qmid-weir (cfs) Qtot-med (cfs) Qslot-low (cfs) Qslot-upp (cfs) Qweir (cfs) Qemerg (cfs) Qtot (cfs) 2.500 30.000 30.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 15.317 11.782 27.099 2.542 30.500 30.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 15.702 13.285 28.987 2.583 31.000 31.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 16.089 14.847 30.937 2.625 31.500 31.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 16.480 16.466 32.946 2.667 32.000 32.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 16.874 18.140 35.014 2.708 32.500 32.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 17.271 19.867 37.138 2.750 33.000 33.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 17.671 21.645 39.317 2.792 33.500 33.500 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 18.075 23.474 41.548 2.833 34.000 34.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 18.481 25.351 43.832 Outlet structure for Discharge of Biofiltration IMP 5-1 (POC-3) Discharge vs Elevation Table Low orifice 1.000 Lower slot Lower Weir Number of orif: 0 Number of slots: 0 Number of weirs: 2 Cg-low: 0.62 Invert: 0.00 ft Invert: 0.00 B 0.00 ft B: 1.50 Middle orifice 1 hslot 0.000 ft Number of orif: 0 Cg-middle: 0.62 Upper slot Emergency weir invert elev: 0.000 ft Number of slots: 0 Invert: 1.00 ft Invert: 0.00 ft B: 9.00 ft *Note. h = head above the invert of the B: 0.00 ft lowest surface discharge opening. h10, 0.000 ft h* (ft) H/D-low - HID-mid - qlow-orif (cfs) Qiow-weir (cfs) Qtot-low (cfs) Qmid-orif (cfs) Qmid-weir (cfs) Qtot-med (cfs) Qslot-low (cfs) Qslot-upp (cfs) Qweir (cfs) Qemerg (cfs) Qtot (cfs) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.042 0.500 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.079 0.000 0.079 0.083 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.224 0.000 0.224 0.125 1.500 1.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.411 0.000 0.411 0.167 2.000 2.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.633 0.000 0.633 0.208 2.500 2.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.884 0.000 0.884 0.250 3.000 3.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.163 0.000 1.163 0.292 3.500 3.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.465 0.000 1.465 0.333 4.000 4.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.790 0.000 1.790 0.375 4.500 4.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.136 0.000 2.136 0.417 5.000 5.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.501 0.000 2.501 0.458 5.500 5.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.886 0.000 2.886 0.500 6.000 6.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3.288 0.000 3.288 0.542 6.500 6.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3.707 0.000 3.707 0.583 7.000 7.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4.143 0.000 4.143 0.625 7.500 7.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4.595 0.000 4.595 0.667 8.000 8.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 5.062 0.000 5.062 0.708 8.500 8.500 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 5.544 0.000 5.544 0.750 9.000 9.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 6.041 0.000 6.041 0.792 9.500 9.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 6.551 0.000 6.551 0.833 10.000 10.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 7.075 0.000 7.075 -0.875 10.500 10.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 7.612 0.000 7.612 0.917 11.000 11.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 8.162 0.000 8.162 h* (ft) H/D-low - H/D-mid - Qiow-orif (cfs) Qiow-weir (cfs) Qtot-low (cfs) Qmid-orif (cfs) Qmid-weir (cfs) Qtot-med (cfs) Qslot-low (cfs) Qslot-upp (cfs) Qweir (cfs) Qemerg (cfs) Qtot (cf) 0.958 11.500 11.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 8.725 0.000 8.725 1.000 12.000 12.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 9.300 0.000 9.300 1.042 12.500 12.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 9.887 0.237 10.125 1.083 13.000 13.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 10.486 0.671 11.1.58 1.125 13.500 13.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 11.097 1.233 12.330 1.167 14.000 14.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 11.719 1.898 13.618 1.208 14.500 14.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 12.353 2.653 15.006 1.250 15.000 15.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 12.997 3.488 16.485 1.292 15.500 15.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 13.652 4.395 18.047 1.333 16.000 16.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 14.318 5.369 19.688 1.375 16.500 16.500 0.000 0.000 0.000 . 0.000 0.000 0.000 0.000 0.000 14.995 6.407 21.402 1.417 17.000 17.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 15.681 7.504 23.185 1.458 17.500 17.500 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 16.378 8.657 25.035 1.500 18.000 18.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 17.085 9.864 26.949 1.542 18.500 18.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 17.802 11.122 28.924 1.583 19.000 19.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 18.529 12.430 30.959 1.625 19.500 19.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 19.265 13.786 33.050 1.667 20.000 20.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 20.010 15.187 35.197 1.708 20.500 20.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 20.765 16.633 37.398 1.750 21.000 21.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 21.530 18.122 39.651 1.792 21.500 21.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 22.303 19.652 41.956 1.833 22.000 22.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 23.086 21.224 44.310 1.875 22.500 22.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 23.877 22.836 46.713 1.917 23.000 23.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 24.678 24.486 49.164 a 1.958 ] 23.500 23.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 25.487 26.175 51.661 24.000 24.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 26.304 27.900 54.204 ATTACHMENT 5 Vicinity Map, Pre & Post-Developed DMA Maps, Project Plan and Detention Section Sketches I POINSETTIA 61 Ir Oaks Way arnPrnT \ Camino Vida N - Las Palmas Or, (I 7/ Villa Loma Apartments . Project Site Aviara Community Park - / i;a J jCosR I - -. - - Daybreak tl Community Church Windsor Fan lead Ave Tadit ndsoratAvl ¶ is - Umonitect - Docena' 0e,\ eCt slu e. m t me Oriole ct T. ; Q \\ LD -- \ A IL VICINITY MAP .'CarlsbadCityUbany eb NO SCALE N Aviara - Cirmpolis Luxury Cinrn - i r,-u La Costa Paloma 18" AMENDED SOIL MIN. INF7L TRA 770N RATE 5"/HR. 4=4,497sf UI RISER OUTLET STRUCTURE BASIN TOP ELEV W- RISER TOP ELEV 50 ft AS/N INVERT BOTTOM OF AMENDED SOIL INVERT UD ORIFICE - BOTTOM OF GRAVEL GRAVEL LAYER 0=325 (in) (UNDERDRAIN ORIFICE (LID ORIFICE)) EXIST. GROUND 8I0FILTRA77ON AREA BIOFILTRATION BASIN CROSS SECTION (IMP 1-1) NOT TO SCALC 18" AMENDED SOIL MIN. INFIL TRA 770N RATE 5"/HR. H 4q,=12,332 5f - A=8,277sf - RISER OUTLET STRUCTURE ,BASIN TOP ELEV - RISER TOP ELEV ft BASIN INVERT BOTTOM OF AMENDED SOIL 00 ft INVERT UD ORIFICE - BOTTOM OF GRAVEL GRA VEL LA YER \ 25 (1/7) ) I A,..=8,277 sf 1,(UNDERDRAIN ORIFICE (uD ORIFICE)) EXIST. GROUND BIOFIL TRA 170N AREA BIOFILTRATION BASIN CROSS SECTION (IMP 2-1) NOT TO SCALE 18" AMENDED SOIL MIN. INF7L TRA 770N RATE 5 "/HR. H 4=2756sf A,-1,733 s qdwl RISER OUTLET STRUCTURE BASIN TOP ELEV RISER TOP ELEV ft "BASIN INVERT BOTTOM OF AMENDED SOIL 1.0 ft INVERT UD ORIFICE - BOTTOM OF GRAVEL GRAVEL LAYER \D=2. 75 (In) I A,.,= f, 733 sf (UNDERDRAIN ORIFICE (UD ORIFICE)) EXIST. GROUND BIOFIL TRA TION AREA BIOFILTRATION BASIN CROSS SECTION (IMP 3-1) NOT TO SCALE 18" AMENDED SOIL MIN. INFIL TRA 770N RATE 5"/HR. A,,=1O,244 sf mI A .-7T -.f RISER OUTLET STRUCTURE BASIN TOP ELEV - RISER TOP ELEV O ft "BASIN INVERT r— BOTTOM OF AMENDED SOIL INVERT UD ORIFICE - BOTTOM OF GRAVEL GRA VEL LA YER 0=4.25 (in) ) j .' (UNDERDRAIN ORIFICE (UD ORIFICE)) EXIST. GROUND BIOFILTRATION AREA BIOFILTRATION BASIN CROSS SECTION (IMP 4-1) NOT TO SCALE id" AMENDED SOIL MIN. INFIL TRA 770N RATE 5"/HR. - 4=2,204 sf •1 RISER OUTLET STh'UC77JRE BASIN TOP ELEV - RISER TOP ELEV 0 ft BASIN INVERT BOTTOM OF AMENDED SOIL INVERT UD ORIFICE - BOTTOM OF GRAVEL 0=2.00 (in) (UNDERDRAIN ORIFICE (UD ORIFICE)) EXIST. GROUND BIOFIL TRA flON AREA BIOFILTRATION BASIN CROSS SECTION (IMP 5-1) NOT TO SCALE EMERGENCY 4 '. - 44 4: . * 4 *4 •4 f*. -•. . ..:r..... -, .....-••...•. ......#.'4'..............t. .- ...... • • ). • .. .- I •*. .....-. . I — .4 , 4 •1 4 *4 I*• 4. *tt• .4— 1 4. *, S. .--* / -• , I V I - • ..-•v 4 4*... 4 *•__ 4 4* S.. 4* '4 5*_ • I . _• v - 4.4 4 '5 •q_. _.•I*4 4 5* IMP D(in) d(in) 1-1 8 3.25 2-1 8 3.25 3-1 8 2.75 4-1 12 4.25 5-1 6 2.00 CI) 7710W PIPE CONNEC7ED TO S70W DRAIN S7EM 4 . * * I * :. . .4 *4 .4 .. 4 4 *4 *4 54 , 4._S... * 4 . •. •....... -. .•s.: .•.- S. ..*.I •.......* AMLWDV SCIL LAM? : - — ._ f • r 4.... *••_4•.•• 4 . • 4 *..:_:*.._ :-. 4 :s...• . '. S C . . • — - 4. r RISER BOX WALL - • 4. .' .. * ** * I'& STORAGE LAYER RdWSRRYORA R RESmICTOR PLA J PEFORA ThD FRENCH DRAIN 0 - 0 - 0 - 0 - UNDERORAIN ORI d4 0 0 g éJ° 0 • :_•. * RISER DETAIL (TYPICAL) NOT 7V .W.4L1 - - - - - - - - - - - - - - - m - = RISER DETAIL FOR IMP 1-1 H(inv. e/ev.)= 0.50 B(inner) = J. 00 ft Bs = 12 in IHs=3in 4: ft .4 1. 4.. = 1.50 ft OUTLET STRUCTURE DE TA IL - SECTION (T)-'-P) NOT TO SCALE NO 7E: TOTAL OF 4 SL 0 73 ONE ON EACH FACE OF SQUARE RISER S77?UC77-IRE RISER DETAIL FOR IMP 2-1 B(inner) = 3.00 ft Bs = 72 in =Hs J in H(in v e/e v.)= 250 ft Q D = i in H(inv. e/ev.)= 1.50 ft 14 H = 4.50 ft OUTLETSTRL/CTURE DETAIL - SEC nON (TYP) NOT TO SCALE N0 7F.- TOTAL OF 4 SL 0 73 ONE ON EACH FACE OF SQUARE RISER STRUCTURE RISER DETAIL FOR IMP 3-1 B('inner)=J.00ft H(inv. e/ev.)= 0.50 f H = 1.50 ft OUTLETSTRUCTIJRE DETAIL - SEC TION (T),") NOT TO SCALE NO 7E: TOTAL OF 4 SL 0 7S, ONE ON EACH FACE OF SQUARE RISER STRUCTURE RISER DETAIL FOR IMP 4-1 I B(inner) = 3.00 ft I... H(inv. e/ev.)= 0.67 h' H = 2.67 ft OUTLET STRUCTURE DETAIL - SECTION (TYP) NOT TO SCALE NO Th ONE WEIR, L OCA 7FL2 ON ONE FACE OF SQUARE RISER STRUC TIJRE - - - - - - - - - - - - - - - - - H= 1.50 ft H(inv. e/ev)= 0.50 ñ' RISER DETAIL FOR IMP 5-1 B(inner) = 3.00 ft OUTLET STRUCTURE DETAIL - SECTION (TYP) NOT TO SCALE NO iF: TWO WEIRS, EACH ONE L OCA TED ON A SEPARA iF SIDE OF RISER STRUCTURE ATTACHMENT 6 SWMM Input Data in Input Format (Existing & Proposed Models) Pre-Dev Input (POC-1) [TITLE] [OPTIONS] FLOW UNITS CFS INFILTRATION GREEN ANPT FLOW ROUTING KINWAVE START_DATE 08/28/1951 START_TIME 05:00:00 REPORT START DATE 08/28/1951 REPORT START TI:'IE 05:00:00 END_DATE 05/23/2008 END—TIME 23:00:00 SWEEP START 01/01 SWEEP_END 12/31 DRY—DAYS 0 REPORT_STEP 01:00:00 WET—STEP 00:15:00 DRY_STEP 04:00:00 ROUTING—STEP 0:01:00 ALLOW PONDING NO INERTIAL DAMPING PARTIAL VARIABLE_STEP 0.75 LENGTHENING—STEP 0 NINSURFAREA 0 NORMAL—FLOW—LIMITED BOTH SKIP_STEADY_STATE NO FORCE MAIN EQUATION H-W LINK_OFFSETS DEPTH WIN_SLOPE 0 [EVAPORATION] ;;Type Parameters MONTHLY 0.060 0.080 0.110 0.150 0.170 0.190 0.190 0.180 0.1501 0.110 0.080 0.060 DRY—ONLY NO [RAINGAGES] Rain Time Snow Data ;;Name Type Intrvl Catch Source OCEANSIDE INTENSITY 1:00 1.0 TIMESERIES OCEANSIDE [SUBCATCHMENTS] Total Pcnt. ;;Name Raingage Outlet Area Impery DMA1 OCEANSIDE POC-1 11.530 0.0 Pcnt. Curb Snow Width Slope Length Pack 2093 14.6 C [SUBAREAS] ;;Subcatchment M-Impery N-Pery S-Impery S-Pery PctZero RouteTo PctRouted DMA1 .012 0.06 0.05 0.1 25 OUTLET [INFILTRATION] ;;Subcatchment Suction HydCon IMDmax DMA_i 8.6 0.040 0.30 [OUT FALLS] Invert Outfall Stage/Table Tide ;;Name Elev. Type Time Series Gate POC-1 0 FREE NO [TIMESERIES] ;;Name Date Time Value OCEANSIDE FILE "X: \Projects2\349 (Lennar) \07 Poinsettia 61\SWMN\HMP\POC-1\OsideRain.prn [REPORT] INPUT NO CONTROLS NO SUBCATCHMENTS ALL NODES ALL LINKS ALL [TAGS] SWMM 5 Page 1 Pre-Dev Input (POC-1) I [NAP] DIMENSIONS 2182.681359 6021.851375 2183.279716 6040.229030 Units Degrees [COORDINATES] ;;Node X-Coord Y-Coord POC-1 2182.708557 6022.686723 [VERTICES] ;;Link X-Coord Y-Coord [Polygons] ;;Subcatchment X-Coord Y-Coord DMA_i 2182.712596 6036.919161 [SYMBOLS] ;;Gage X-Coord Y-Coord OCEANSIDE 2178.772275 6036.698503 SWMM5 Page 2 Post-Dev Input (POC-1) (TITLE) [OPTIONS] FLOW UNITS CFS INFILTRATION GREEN ANPT FLOW ROUTING KINWAVE START DATE 08/28/1951 START TIME 05:00:00 REPORT START DATE 08/28/1951 REPORT START TIME 05:00:00 END DATE 05/23/2008 END TIME 23:00:00 SWEEP START 01/01 SWEEP_END .12/31 DRY_DAYS 0 REPORT_STEP 01:00:00 WET_STEP 00:15:00 DRY_STEP 04:00:00 ROUTING_STEP 0:01:00 ALLOW PONDING NO INERTIAL DAMPING PARTIAL VARIABLE STEP 0.75 LENGTHENING_STEP 0 MINSURFAREA 0 NORMAL FLOW LIMITED BOTH SKIP STEADY-STATE NO I FORCE MAIN EQUATION H-W LINK_OFFSETS DEPTH MIN SLOPE 0 [EVAPORATION] ;;Type Parameters MONTHLY 0.060 0.080 0.110 0.150 0.170 0.190 0.190 0.180 0.150 0.110 0.080 0.060 DRY-ONLY NO [RAINGAGES) Rain Time Snow Data ;;Name Type Intrvi Catch Source OCEANSIDE INTENSITY 1:00 1.0 TIMESERIES OCEANSIDE [SUBCATCHMENTS Total Pcnt. Pcnt. Curb Sncw ;;Name F.aingage Outlet Area Impery Width Slope Length Pack -------- DMA 1-1 OCEANSIDE IMP 1-1 2.209 58.3 1452 1.3 0 DMA 3-1 OCEANSIDE IMP 3-1 1.588 47.0 1390 2.2 0 DMA 1-BYPASS OCEANSIDE POC-i 4.447 3.1 945 17.3 0 IMP 1-1 OCEANSIDE DIV 1-i 0.057117 0 10 1 0 IMP-3-1 OCEANSIDE DIV 3-1 0.039784 0 10 1 0 [SUBAREAS] ;;Subcatchment N-Impery N-Pery S-Impery S-Pery PctZero RouteTo PctRouted DMA 1-1 0.012 0.08 0.05 0.1 25 OUTLET ---------- DMA 3-1 0.012 0.08 0.05 0.1 25 OUTLET DNA _i-BYPASS 0.012 0.08 0.05 0.1 25 OUTLET IMP 1-1 0.012 0.08 0.05 0.1 25 OUTLET IMP-3-1 0.012 0.08 0.05 0.1 25 OUTLET [INFILTRATION] ;;Subcatchment Suction NydCon IMDmax DMA_i-i 3.8 0.0240 0.30 DMA-3-1 3 0.01875 0.30 DMA 1-BYPASS :3.1 0.0445 0.30 IMP -1-1 3 0.025 0.30 IMP-3-1 3 0.025 0.30 (LID_CONTROLS) Type/Layer Parameters IMP 1-1 ---------- IMP 1-1 SURFACE 6.45 0.05 0 0 5 IMP 1-1 SOIL 18 0.4 0.2 0.1 5 5 1.5 IMP 1-1 STORAGE 12 0.67 0 0 IMP-1-1 DRAIN 1.4135 0.5 0 6 IMP 3-i BC IMP 3-1 SURFACE 6.33 0.05 0 0 5 IMP 3-1 SOIL 18 0.4 0.2 0.1 5 5 1.5 IMP 3-1 STORAGE 12 0.67 0 0 IMP-3-1 DRAIN 1.4530 0.5 0 6 (LID USAGE] ;;Subcatchment LID Process Number Area Width InitSatur Fromlmpry ToPery Report File SWMM 5 Page 1 Post-Dev Input (POC-1) IMP i-i IMP -1-1 1 2488 0 0 100 0 IMP 3-i IMP 3-i 1 1733 0 0 100 0 [OUT FALLS] Invert Outfall Stage/Table Tide ;;Name Elev. Type Time Series Gate POC-i 0 FREE NO (DIVIDERS] Invert Diverted Divider ;;Name Elev. Link Type Parameters DIV_i-i 0 BYPASS _1-1 CUTOFF 0.26484 0 0 0 0 DIV 3-i 0 BYPASS-3-1 CUTOFF 0.19189 0 0 0 0 [STORAGE] Invert Max. Init. Storage Curve Ponded Evap. ;;Name Elev. Depth Depth Curve Params Area Frac. Infiltration Parameters SURF_i-i 0 2.00 0 TABULAR SURF_i-i 0 1 SURF 3-i 0 2.00 0 TABULAR SURF 3-i 0 1 [CONDUITS] Inlet Outlet Manning Inlet Outlet Init. Max. ;;Name Node Node Length N Offset Offset Flow Flow BYPASS_i-i DIV_i-i SURF_i-i 400 0.01 0 0 0 0 DUMi-1 DIV_i-i POC-1 400 0.01 0 0 0 0 BYPASS 3-1 DIV 3-1 SURF 3-i 400 0.01 0 0 0 0 DUM3-1 DIV 3-i POC-i 400 0.01 0 0 0 0 [OUTLETS] Inlet Outlet Outflow Outlet Qcoeff/ Flap ;;Name Node Node Height Type QTable Qexpon Gate i-i SURF _1-1 POC-i 0 TABULAR/HEAD OUT_i-i NO 3-1 SURF-3-1 POC-i 0 TABULAR/HEAD OUT 3-i NO (XSECTIONS] ;;Link Shape Geomi Geom2 Geom3 Geom4 Barrels BYPASS 1-1 DUMMY 0 0 0 0 ---------- 1 DUMi-i DUMMY 0 0 0 0 i BYPASS 3-1 DUMMY 0 0 0 0 1 DUM_3-1 DUMMY 0 0 0 0 1 [LOSSES] ;;Link Inlet Outlet Average Flap Gate [CURVES] ;;Name Type X-Value Y-Value OUT i-i Rating 0.000 0.000 OUT -1-1 0.042 0.105 OUT i-i 0.083 0.298 OUT i-i 0.125 0.548 OUT i-i 0.167 0.844 OUT 1-1 0.208 1.179 OUT 1-1 0.250 1.550 OUT 1-1 0.292 1.953 OUT -1-1 0.333 2.234 OUT 1-1 0.375 2.448 OUT 1-1 0.417 2.644 OUT 1-1 0.458 2.826 OUT 1-1 0.500 2.998 OUT 1-1 0.542 3.160 OUT 1-1 0.583 3.314 OUT i-i 0.625 3.461 OUT 1-1 0.667 3.603 OUT 1-1 0.708 3.739 OUT 1-1 0.750 3.870 OUT 1-1 0.792 3.997 OUT 1-1 0.833 4.120 OUT 1-1 0.875 4.239 OUT 1-1 0.917 4.356 OUT -1-1 0.958 4.469 OUT 1-1 1.000 4.579 OUT 1-1 1.042 5.003 OUT -1-1 1.083 5.687 OUT i-i 1.125 6.539 OUT i-i 1.167 7.527 OUT 1-1 1.208 8.632 OUT 1-1 1.250 9.842 OUT-i-i 1.292 11.147 SWMM5 Page 2 Post-Dev Input (POC-1) OUT_i-i 1.333 12.540 OUT_i-i 1.375 14.016 OUT_i-i 1.417 15.569 OUT_i-i 1.458 17.195 OUT 1-1 1.500 18.892 OUT_i-i 1.542 20.656 OUT _1-1 1.583 22.485 OUT _1-1 1.625 24.376 OUT _1-1 1.667 26.327 OUT_i-i 1.708 28.337 OUT_i-i 1.750 30.402 OUT_i-i 1.792 32.523 OUT -1-1 1.833 34.697 OUT 1-1 1.875 36.924 OUT -1-1 1.917 39.201 OUT 1-1 1.958 41.528 OUT-1-1 2.000 43.903 OUT 3-i Rating 0.000 0.000 OUT -3-1 0.042 0.105 OUT 3-1 0.083 0.298 OUT-3-1 0.125 0.548 OUT 3-1 0.167 0.844 OUT-3-1 0.208 1.179 OUT 3-1 0.250 1.550 OUT-3-1 0.292 1.953 OUT 3-1 0.333 2.234 OUT -3-1 0.375 2.448 OUT 3-1 0.417 2.644 OUT -3-1 0.458 2.826 OUT 3-1 0.500 2.998 OUT-3-1 0.542 3.160 OUT 3-1 0.583 3.314 OUT-3-1 0.625 3.461 OUT 3-1 0.667 3.603 OUT -3-1 0.708 3.739 OUT 3-1 0.750 3.870 OUT 3-1 0.792 3.997 OUT-3-1 0.833 4.120 OUT 3-1 0.875 4.239 OUT 3-1 0.917 4.356 OUT-3-1 0.958 4.469 OUT 3-1 1.000 4.579 OUT-3-1 1.042 5.003 OUT 3-i 1.083 5.687 OUT -3-1 1.125 5.539 OUT 3-1 1.167 7.527 OUT 3-1 1.208 9.632 OUT-3-1 1.250 3.842 OUT_3-1 1.292 11.147 OUT -3-1 1.333 12.540 OUT 3-1 1.375 14.016 OUT -3-1 1.417 15.569 OUT 3-1 1.458 17.195 OUT 3-1 1.500 18.892 OUT-3-1 1.542 20.656 OUT 3-i 1.583 22.485 OUT 3-1 1.625 24.376 OUT 3-1 1.667 26.327 OUT 3-1 1.708 28.337 OUT-3-1 1.750 30.402 OUT 3-1 1.792 32.523 OUT 3-1 1.833 34.697 OUT 3-1 1.875 36.924 OUT -3-1 1.917 39.201 OUT 3-i 1.958 41.528 OUT-3-1 2.000 43.903 SURF-1-1 Storage 0.00 2865 SURF _1-1 0.08 2929 SURF-1-1 0.17 2993 SURF-1-1 0.25 3058 SURF 1-1 0.33 3123 SURF-1-1 0.42 3188 SURF i-i 0.50 3254 SURF-1-1 0.58 3320 SURF_i-i 0.67 3386 SURF_i-i 0.75 3453 SURF_i-i 0.83 3520 SURF_i-i 0.92 3588 SURF_i-i 1.00 3656 SURF-1-1 1.08 3724 SURF_i-i 1.17 3792 SURF-1-1 1.25 3861 SURF_i-i 1.33 3930 SURF-1-1 1.42 4000 SURF_i-i 1.50 4070 SWMM5 Page 3 Post-Dev Input (POC-1) SURF_i-i 1.58 4140 SURF_i-i 1.67 4211 SURF _1-1 1.75 4282 SURF _1-1 1.83 4353 SURF _1-1 1.92 4425 SURF 1-1 2.00 4497 SURF-3-1 Storage 0.00 1925 SURF-3-1 0.08 1958 SURF 3-1 0.17 1991 SURF-3-1 0.25 2024 SURF-3-1 0.33 2057 SURF 3-1 0.42 2090 SURF-3-1 0.50 2124 SURF 3-1 0.58 2157 SURF-3-1 0.67 2191 SURF 3-i 0.75 2225 SURF-3-1 0.83 2259 SURF 3-1 0.92 2294 SURF-3-1 1.00 2328 SURF 3-1 1.08 2363 SURF-3-1 1.17 2398 SURF 3-1 1.25 2433 SURF 3-1 1.33 2468 SURF 3-1 1.42 2503 SURF-3-1 1.50 2539 SURF 3-1 1.58 2575 SURF 3-1 1.67 2611 SURF 3-1 1.75 2647 SURF 3-1 1.83 2683 SURF-3-1 1.92 2720 SURF 3-1 2.00 2756 [TIMESERIES] ;;Name Date Time Value OCEANSIDE FILE 'X:\Projects2\349 (Lennar)\07 Poinsettia 61\SWMM\HMP\POC-1\osideRain.prn' [REPORT] INPUT NO CONTROLS NO SUBCATCHMENTS ALL NODES ALL LINKS ALL [TAGS] [NAP] DIMENSIONS 524.615 4941.240 1175.249 5719.468 Units None [COORDINATES] ;;Node X-Coord Y-Coord POC-i 859.672 4976.614 DIV_1-1 756.944 5245.370 DIV 3-1 965.041 5263.502 SURF_1-1 554.189 5245.793 SURF 3-i 1144.938 5262.943 [VERTICES] ;;Link X-Coord Y-Coord [Polygons] ;;Subcatchment X-Coord Y-Coord DMA_i-i 755.824 5684.761 DMA_1-1 755.824 5684.761 DMA 3-1 965.398 5687.431 DMA i-BYPASS 552.924 5040.020 IMP 1-1 755.824 5472.517 IMP-3-1 965.398 5479.192 [SYMBOLS] ;;Gage X-Coord Y-Coord OCEANSIDE 547.584 5680.757 SWMM5 Page 4 Pre-Dev Input (POC-2) [TITLE] [OPTIONS] FLOW UNITS CF.S INFILTRATION GREEN AMPT FLOW ROUTING KINWAVE START_DATE 08/28/1951 START_TINE 05:00:00 REPORT START DATE 08/28/1951 REPORT START TINE 05:00:00 END_DATE 05/23/2008 END_TIME 23:00:00 SWEEP_START 01/01 SWEEP_END 12/31 DRY—DAYS 0 REPORT_STEP 01:00:00 WET STEP 00:15:00 DRY STEP 04:00:00 ROUTING STEP 0:01:00 ALLOW PONDING NO INERTIAL DAMPING PARTIAL VARIABLE_STEP 0.75 LENGTHENING STEP 0 WIN SURFAREA 0 NORMAL—FLOW—LIMITED BOTH SKIP_STEADY_STATE NO FORCE—MAIN—EQUATION H-W LINK OFFSETS DEPTH MIN SLOPE 0 [EVAPORATION] ;;Type Parameters MONTHLY 0.060 0.080 0.110 0.150 0.170 0.190 0.190 0.180 0.150 0.110 0.080 0.060 DRY—ONLY NO [RAINGAGES] Rain Time Snow Data ;;Name Type Intrvl Catch Source OCEANSIDE INTENSITY 1:00 1.0 TIMESERIES OCEANSIDE [SUBCATCHMENTS] Total Pcnt. Pcnt. Curb Snow ;;Name Raingage Outlet Area Impery Width Slope Length Pack DMA_2 OCEANSIDE POC-2 7.148 0 1354 13.2 C [SUBAREAS] ;;Subcatchment N-Impery N-Pery S-Impery S-Pery PctZero RouteTo PctRouted DMA_2 0.012 0.06 0.05 0.1 25 OUTLET [INFILTRATION] ;;Subcatchment Suction HydCon IMDmax DMA_2 9 0.025 0.30 [OUT FALLS] Invert Outfall Stage/Table Tide ;;Name Elev. Type Time Series Gate POC-2 0 FREE NO [TIMESERIES] ;;Name Date Time Value OCEANSIDE FILE "X:\Projects2\349 (Lennar) \07 Poinsettia 61\SWMM\HMP\POC-2\OsideRain.prn" [REPORT] INPUT NO CONTROLS NO SUBCATCHNENTS ALL NODES ALL LINKS ALL [TAGS] SWMM5 Page 1 Pre-Dev Input (POC-2) I [MAP] DIMENSIONS 2182.681359 6021.851375 2183.279716 6040.229030 Units Degrees [COORDINATES] ;;Node X-Coord Y-Coord P00-2 2182.708557 6022.686723 [VERTICES] ;;Link X-Coord Y-Coord [Polygons] ;;Subcatchment X-Coord Y-Coord DNA2 2182.696834 6037.076774 [SYMBOLS] ;;Gage X-Coord Y-000rd OCEANSIDE 2182.822925 6038.715947 I I I SWMM5 Page 2 Post-Dev Input (POC-2) (TITLE) [OPTIONS] FLOW UNITS CFS INFILTRATION GREEN AMPT FLOW ROUTING KINWAVE START DATE 08/28/1951 START TIME 05:00:00 REPORT START DATE 08/28/1951 REPORT START TIME 05:00:00 END DATE 05/23/2008 END TIME 23:00:00 SWEEP START 01/01 SWEEP_END 12/31 DRY_DAYS 0 REPORT STEP 01:00:00 WET STEP 00:15:00 DRY STEP 04:00:00 ROUTING _STEP 0:01:00 ALLOW PONDING NO INERTIAL DAMPING PARTIAL VARIABLE STEP 0.75 LENGTHENING_STEP U WIN SURFAREA 0 NORMAL FLOW LIMITED BOTH SKIP STEADY STATE NO FORCE MAIN EQUATION H-W LINK_OFFSETS DEPTH MIN SLOPE 0 [EVAPORATION] ;;Type Parameters MONTHLY 0.060 0.080 0.110 0.150 0.170 0.190 0.190 0.180 0.150 0.110 0.080 0.060 DRY-ONLY NO [RAINGAGES] Rain Time Snow Data ;;Name Type Intrvl Catch Source OCEANSIDE INTENSITY 1:00 1.0 TIMESERIES OCEANSIDE SU B CAT CHMENTS Total Pcnt. Pcnt. Curb Snow ;;Name Paingage Outlet Area Impery Width Slope Length Pack DMA 2-1 CCEANSIDE IMP 2-1 8 ,791 60.8 6113 2 0 DMA 2-BYPASS CCEANSIDE POC-2 1.559 0 302 17.6 0 IMP-2-1 CCEANSIDE DIV 2-1 0.190014 0 10 1 0 [SUBAREAS] ;;Subcatchment N-Impery N-Pery S-Impery S-Pery PctZero RouteTo ?ctRouted DMA 2-1 1.012 0.08 3.05 0.1 25 OUTLET DMA 2-BYPASS 1.012 0.08 3.05 0.1 25 OUTLET IMP-2-1 1.012 0.08 3.05 0.1 25 OUTLET (INFILTRATION) ;;Subcatchment Suction HydCon IMDmax DMA 2-1 9 0.01875 0.30 DMA-2-BYPASS 9 0.01875 0.30 IMP 2-1 9 0.025 0.30 [LID_CONTROLS] Type/Layer Parameters IMP 2-1 BC IMP-2-1 SURFACE 19.24 0.05 0 0 5 IMP 2-1 SOIL 18 0.4 0.2 0.1 5 5 1.5 IMP 2-1 STORAGE 12 0.67 0 0 IMP-2-1 DRAIN 0.4249 0.5 0 6 [LID_USAGE] ;;Subcatchment LID Process Number Area Width InitSatur Fromlmpry ToPery Report File IMP 2-1 :MP2-1 1 8277 0 0 100 0 [OUT FALLS] Thvert Outfall Stage/Table Tide ;;Name Elev. Type Time Series Gate POC-2 I) FREE NO [DIVIDERS] Invert Diverted Divider ;;Name Slev. Link Type Parameters SWMM 5 Page 1 Post-Dev Input (POC-2) DIV 2-1 0 BYPASS 2-1 CUTOFF 0.26484 0 0 0 0 [STORAGE] Invert Max. Init. Storage Curve Ponded Evap. ;;Name Elev. Depth Depth Curve Params Area Frac. Infiltration Parameters SURF 2-1 0 3.5 0 TABULAR SURF 2-1 0 [CONDUITS] Inlet Outlet Manning Inlet Outlet Init. Max. ;;Name Node Node Length N Offset Offset Flow Flow BYPASS 2-1 DIV 2-i SURF_2-1 10 0.01 0 0 0 0 DUM2-1 DIV 2-1 POC-2 10 0.01 0 0 0 0 [OUTLETS] Inlet Outlet Outflow Outlet Qcoeff/ Flap ;;Name Node Node Height Type QTable Qexpon Gate 2-1 SURF 2-1 POC-2 0 TABULAR/HEAD OUT 2-1 NO [XSECTIONS[ ;;Link Shape Geomi Geom2 Geom3 Geom4 Barrels BYPASS 2-1 DUMMY 0 0 0 0 DUM2-1 DUMMY 0 0 0 0 [LOSSES] ;;Link Inlet Outlet Average Flap Gate [CURVES] ;;Name Type X-Value Y-Value OUT 2-1 Rating 0.000 0.000 OUT 2-1 0.083 0.005 OUT 2-1 0.167 0.010 OUT 2-1 0.250 0.012 OUT 2-1 0.333 0.015 OUT 2-1 0.417 0.017 OUT 2-1 0.500 0.018 OUT 2-1 0.583 0.020 OUT 2-1 0.667 0.021 OUT 2-1 0.750 0.023 OUT 2-1 0.833 0.024 OUT 2-1 0.917 0.025 OUT 2-1 1.000 0.027 OUT 2-1 1.083 0.326 OUT 2-1 1.167 0.872 OUT 2-1 1.250 1.580 OUT 2-1 1.333 2.265 OUT 2-1 1.417 2.675 OUT 2-1 1.500 3.030 OUT 2-1 1.583 3.348 OUT 2-1 1.667 3.637 OUT 2-1 1.750 3.905 OUT 2-1 1.833 4.156 OUT 2-1 1.917 4.393 OUT 2-1 2.000 4.617 OUT 2-1 2.083 4.831 OUT 2-1 2.167 5.036 OUT 2-1 2.250 5.232 OUT -2-1 2.333 5.422 OUT 2-1 2.417 5.605 OUT 2-1 2.500 5.783 OUT 2-1 2.583 5.955 OUT 2-1 2.667 6.122 OUT 2-1 2.750 6.285 OUT 2-1 2.833 6.444 OUT 2-1 2.917 6.598 OUT 2-1 3.000 6.750 OUT 2-1 3.083 7.793 OUT 2-1 3.167 9.574 OUT 2-1 3.250 11.835 OUT 2-1 3.333 14.483 OUT 2-1 3.417 17.466 OUT-2-1 3.500 20.747 SURF 2-i Storage 0.00 9426 SURF 2-1 0.08 9492 SURF 2-1 0.17 9558 SURF 2-1 0.25 9623 SURF 2-1 0.33 9690 SURF 2-1 0.42 9756 SURF 2-1 0.50 9822 SURF-2-1 0.58 9889 SWMM5 Page Post-Dev Input (POC-2) SURF 2-1 0.67 9956 SURF 2-1 0.75 10023 SURF 2-1 0.83 10090 SURF 2-1 0.92 10157 SURF 2-1 1.00 10225 SURF 2-1 1.08 10292 SURF 2-1 1.17 10360 SURF 2-1 1.25 10428 SURF 2-1 1.33 10496 SURF 2-1 1.42 10565 SURF 2-1 1.50 10633 SURF 2-1 1.58 10702 SURF 2-1 1.67 10771 SURF 2-1 1.75 10840 SURF 2-1 1.83 10909 SURF 2-1 1.92 10979 SURF 2-1 2.00 11048 SURF 2-1 2.06 11118 SURF-2-1 2.17 11188 SURF 2-1 2.25 11258 SURF 2-1 2.33 11329 SURF 2-1 2.42 11399 SURF 2-1 2.50 11470 SURF 2-1 2.58 11541 SURF 2-1 2.67 11612 SURF 2-1 2.75 11683 SURF 2-1 . 2.83 11754 SURF 2-1 2.92 :1826 SURF 2-1 3.00 :1898 SURF 2-1 3.08 :1970 SURF 2-1 3.17 :2042 SURF 2-1 3.25 2114 SURF 2-1 3.33 :2187 SURF 2-1 3.42 12259 SURF-2-1 3.50 12332 (TIMESERIES) ;;Name Late Time Value OCEANSIDE FILE "X: \Projects2\349 (Lennar) \07 Poinsettia 61\SWMM\HMP\POC-2\OsideRain.prn' [REPORT] INPUT NO CONTROLS NO SUBCATCHMENTS ALL NODES ALL LINKS ALL [TAGS] [MAP] DIMENSIONS 191.92C 4920.830 1021.827 5718.627 Units None [COORDINATES] ;;Node X-Coord Y-Coord POC-2 756.717 4957.778 DIV 2-1 756.944 5245.370 SURF 2-1 239.000 5245.858 [VERTICES] ;;Link X-Coord Y-Coord [Polygons] ;;Subcatchment X-Coord Y-Coord DMA 2-1 156.717 5646.100 DMA-2-1 156.717 5646.100 DMA 2-BYPASS 228.970 5043.799 IMP-2-1 '56.717 5444.940 [SYMBOLS] ;;Gage X-Coord Y-Coord OCEANSIDE 304.006 5618.164 SWMM5 Page Pre-Dev Input (POC-3) [TITLE] [OPTIONS] FLOW UNITS CFS INFILTRATION GREEN ANPT FLOW ROUTING KINWAVE START DATE 08/28/1951 START TIME 05:00:00 REPORT START DATE 08/28/1951 REPORT START TIME 05:00:00 END_DATE 05/23/2008 END TIME 23:00:00 SWEEP_START 01/01 SWEEP_END 12/31 DRY DAYS 0 REPORT STEP 01:00:00 WET_STEP 00:15:00 DRY_STEP 04:00:00 ROUTING_STEP 0:01:00 ALLOW PONDING NO INERTIAL DAMPING PARTIAL VARIABLE STEP 0.75 LENGTHENING STEP 0 MINSURFAREA 0 NORMAL _FLOW _LIMITED BOTH SKIP_STEADY_STATE NO FORCE _MAIN _EQUATION H-N LINK_OFFSETS DEPTH MIN SLOPE 0 [EVAPORATION] ;;Type Parameters MONTHLY 0.060 0.080 0.110 0.150 0.170 0.190 0.190 0.180 0.150 0.110 0.080 0.060 DRY—ONLY NO [RAINGAGES I Rain Time Snow Data ;;Name Type Intrvl Catch Source OCEANSIDE INTENSITY 1:00 1.0 TIMESERIES OCEANSIDE [SUBCATCHMENTS] Total Pcnt. Pcnt. Curb Snow ;;Name Raingage Outlet Area Impery Width Slope Length Pack DMA_3 OCEANSIDE POC-3 34.373 0 6510 18.6 0 [SUBAREAS] ;;Subcatchment N-Impery N-Pery S-Impery S-Pery PctZero RouteTo PctRouted DMA_3 0.012 0.07 0.05 0.1 25 OUTLET [INFILTRATION] ;;Subcatchment Suction HydCon IMDmax DMA_3 9 0.025 0.3 [OUT FALLS] Invert Outfall Stage/Table Tide ;;Name Elev. Type Time Series Gate POC-3 0 FREE NO [TIMESERIES] ;;Name Date Time Value OCEANSIDE FILE "X: \Projects2\349 (Lennar) \07 Poinsettia 61\SWMM\HMP\POC-3\OsideRain.prn" [REPORT] INPUT NO CONTROLS NO SUBCATCHMENTS ALL NODES ALL LINKS ALL [TAGS] SWMM 5 Page 1 Pre-Dev Input (POC-3) [MAP] DIMENSIONS 2182.681359 6021.851375 2183.279716 6040.229030 Units Degrees [COORDINATES] ;;Node X-Coord Y-Coord POC-3 2182.708557 6022.686723 [VERTICES] ;;Link X-Coord Y-Coord [Polygons] ;;Subcatchment X-Coord Y-Coord DMA_3 2182.708276 6033.558622 [SYMBOLS] ;;Gage X-Coord Y-Coord OCEANSIDE 2182.696834 6035.279987 SWMM5 Page Post-Dev Input (POC-3) [TITLE] (OPTIONS] FLOW UNITS CFS INFILTRATION GREEN AMPT FLOW ROUTING KINWAVE START DATE 08/28/1951 START TIME 05:00:00 REPORT START DATE 08/28/1951 REPORT START TIME 05:00:00 END DATE 05/23/2008 END TINE 23:00:00 SWEEP START 01/01 SWEEP END 12/31 DRY DAYS 0 REPORT STEP 01:00:00 WET STEP 00:15:00 DRY STEP 04:00:00 ROUTING _STEP 0:01:00 ALLOW PONDING NO INERTIAL DAMPING PARTIAL VARIABLE STEP 0.75 LENGTHENING_STEP 0 MIN SURFAREA 0 NORMAL-FLOW-LIMITED BOTH SKI P_STEADY_STATE NO FORCE-MAIN-EQUATION H-W LINK_OFFSETS DEPTH MIN SLOPE 0 [EVAPORATION] ;;Type Parameters MONTHLY 0.060 0.080 0.110 0.150 0.170 0.190 0.190 0.180 0.150 0.110 0.080 0.060 DRY-ONLY NO [RAINGAGES] Rain Time Snow Data ;;Name Type Intrvl Catch Source OCEANSIDE INTENSITY 1:00 1.0 TIMESERIES OCEANSIDE [SUBCATCHMENTS] Total Pcnt. Pcnt. Curb Snow ;;Name Raingage Outlet Area Impery Width Slope Length Pack DMA 4-1 OCEANSIDE IMP 4-1 7.772 48.0 5239 1.1 0 DMA 5-1 OCEANSIDE IMP 5-1 1.399 77.3 1039 3.5 0 DMA 3-BYPASS OCEANSIDE POC-3 25.754 0 4878 18.6 0 IMP 4-1 OCEANSIDE DIV 4-1 0.166506 0 10 1 0 IMP 5-1 OCEANSIDE DIV 5-1 0.032140 0 10 1 0 DMA 3-BYPASS-S OCEANSIDE POC-3 0.858 0 623 50 0 (SUBAREAS) ;;Subcatchment N-Impery N-Pery S-Impery S-Pery Pctlero RouteTo PctRouted DMA 4-1 0.012 0.08 0.05 0.1 25 OUTLET DMA 5-1 0.012 0.08 0.05 0.1 25 OUTLET DMA 3-BYPASS 0.012 0.08 0.05 0.1 25 OUTLET IMP 4-1 0.012 0.08 0.05 0.1 25 OUTLET IMP 5-1 0.012 0.08 0.05 0.1 25 OUTLET DMA 3-BYPASS-S 0.012 0.08 0.05 0.1 25 OUTLET [INFILTRATION) ;;Subcatchment Suction HydCon IMDmax DMA 4-1 9 0.01875 0.30 DMA 5-1 9 0.01875 0.30 DMA 3-BYPASS 9 0.025 0.30 IMP 4-1 9 0.025 0.30 IMP 5-1 9 0.025 0.30 DNA 3-BYPASS-S 9 0.01875 0.30 [LID-CONTROLS] Type/Layer Parameters IMP 4-1 BC IMP 4-1 SURFACE 8.30 0.05 IMP 4-1 SOIL 18 0.4 IMP 4-1 STORAGE 18 0.67 IMP-4-1 DRAIN 0.8292 0.5 IMP 5-1 BC IMP 5-1 SURFACE 6.31 0.03 IMP 5-1 SOIL 18 0.4 IMP 5-1 STORAGE 12 0.67 IMP-5-1 DRAIN 0.9513 0.5 0 0 0.2 0.1 0 0 0 6 0 0 0.2 0.1 0 0 0 6 1.5 1.5 SWMM 5 Page 1 Post-Dev Input (POC-3) [LID USAGE] ;;Subcatchrnent LID Process Number Area Width InitSatur Froinlrnpry ToPery Report File IMP 4-1 i:iP 4-1 1 7253.00 0 0 100 0 IMP 5-1 I:1P5-1 1 1400.02 0 0 100 0 [OUT FALLS] Invert Outfall Stage/Table Tide ;;Name flee. Type Time Series Gate POC-3 0 FREE NO (DIVIDERS) Invert Diverted Divider ;;Name Elev. Link Type Parameters DIV 4-1 0 BYPASS 4-1 CUTOFF 0.56023 0 0 0 0 DIV 5-1 0 BYPASS 5-1 CUTOFF 0.10327 0 0 0 0 [STORAGE) Invert Max. Init Storage Curve Ponded Evap. ;;Name Elev. Depth Depth Curve Params Area Frac. Infiltration Parameters SURF 4-i 0 2.83 0 TABULAR SURF 4-1 0 1 SURF-5-1 0 2 0 TABULAR SURF 5-1 0 1 [CONDUITS] Inlet Outlet Manning Inlet Outlet Init. Max. ;;Name Node Node Length N Offset Offset Flow Flow BYPASS 4-1 DIV 4-i SURF-1 10 0.01 0 0 0 0 DUM4-1 CIV 4-1 POC-3 10 0.01 0 0 0 0 BYPASS_S-i CIV 5-1 SURF 5-i 10 0.01 0 0 0 0 DUN-S-i CIV 5-1 POC-3 10 0.01 0 0 0 0 (OUTLETS) Inlet Outle: Outflow Outlet Qcoeff/ Flap ;;Name Node Node Height Type QTable Qexpon Gate 4-1 SURF 4-i POC-3 0 TABULAR/HEAD OUTLET 4-1 NO 5-1 SURF_S-i POC-3 0 TABULAR/HEAD OUTLET 5-1 NO [XSECTIONS] ;;Link Shape Geoml Geom2 Geosi3 Geom4 Barrels BYPASS 4-1 DUMMY 0 0 0 0 1 DUM4-1 DUMMY 0 0 0 0 1 BYPASS 5-1 DUMMY 0 0 0 0 1 DUM5-1 DUMMY 0 0 0 0 1 [LOSSES] Link inlet Outlet Average Flap Gate [CURVES) ;;Name Type X-Value Y-Value OUTLET 4-i Rating 0.000 0.000 OUTLET 4-i 0.042 0.033 OUTLET 4-1 0.083 0.093 OUTLET 4-1 0.125 0.171 OUTLET 4-1 0.167 0.264 OUTLET 4-1 0.208 0.368 OUTLET 4-1 0.250 0.484 OUTLET 4-1 0.292 0.610 OUTLET 4-1 0.333 0.746 OUTLET 4-1 0.375 0.890 OUTLET 4-1 0.417 1.042 OUTLET 4-1 0.458 1.202 OUTLET 4-1 0.500 1.370 OUTLET 4-1 0.542 1.545 OUTLET 4-1 0.583 1.726 OUTLET 4-1 0.625 1.915 OUTLET 4-1 0.667 2.109 OUTLET 4-1 0.708 2.310 OUTLET 4-1 0.750 2.517 OUTLET 4-1 0.792 2.730 OUTLET 4-1 0.833 2.948 OUTLET 4-1 0.875 3.172 OUTLET 4-1 0.917 3.401 OUTLET 4-1 0.958 3.635 OUTLET 4-1 1.000 3.875 OUTLET 4-1 1.042 4.120 OUTLET 4-1 1.083 4.369 OUTLET 4-1 1.125 4.624 OUTLET-4-1 1.167 4.883 SWMM5 Page 2 Post-Dev Input (POC-3) OUTLET 4-1 1.208 5.147 OUTLET 4-1 1.250 5.415 OUTLET 4-1 1.292 5.688 OUTLET 4-1 1.333 5.966 OUTLET 4-1 1.375 6.248 OUTLET 4-1 1.417 6.534 OUTLET 4-1 1.458 6.824 OUTLET 4-i 1.500 7.119 OUTLET 4-1 1.542 7.417 OUTLET OUTLET 4-i 4-1 1.583 1.625 7.720 8.027 OUTLET 4-i 1.667 8.338 OUTLET_a-i 1.708 8.652 OUTLET-4-1 1.750 8.971 OUTLET 4-1 1.792 9.293 OUTLET_a-i 1.833 9.619 OUTLET 4-1 1.875 9.949 OUTLET_a-i 1.917 10.282 OUTLET_a-i 1.958 10.619 OUTLET -4-1 2.000 10.960 OUTLET 4-1 2.042 11.588 OUTLET 4-1 2.083 12.454 OUTLET -4-1 2.125 13.476 OUTLET 4-1 2.167 14.626 OUTLET 4-1 2.208 15.885 OUTLET 4-1 2.250 17.244 OUTLET 4-1 2.292 18.692 OUTLET-4-1 2.333 20.225 OUTLET 4-1 2.375 21.836 OUTLET -4-1 2.417 23.521 OUTLET 4-1 2.458 25.276 OUTLET -4-1 2.500 27.099 OUTLET 4-1 2.542 28.987 OUTLET 4-1 2.583 30.937 OUTLET 4-1 2.625 32.946 OUTLET 4-1 2.667 35.014 OUTLET -4-1 2.708 37.138 OUTLET 4-i 2.750 39.317 OUTLET -4-1 2.792 41.548 OUTLET 4-1 2.833 43.832 OUTLET_S-i Rating 0.000 0.000 OUTLET -5-1 0.042 0.079 OUTLET_S-i 0.083 0.224 OUTLET -5-1 0.125 0.411 OUTLET 5-1 0.167 0.633 OUTLET 5-1 0.208 0.884 OUTLET -5-1 0.250 1.163 OUTLETS-i 0.292 1.465 OUTLET -5-1 0.333 1.790 OUTLETS-i 0.375 2.136 OUTLET -5-1 0.417 2.501 OUTLET_S-i 0.458 2.886 OUTLET -5-1 0.500 3.288 OUTLET_S-i 0.542 3.707 OUTLET -5-1 0.583 4.143 OUTLETS-i 0.625 4.595 OUTLET -5-1 0.667 5.062 OUTLET_S-i 0.708 5.544 OUTLET -5-1 0.750 6.041 OUTLET_S-i 0.792 6551 OUTLET -5-1 0.833 7.075 OUTLET_S-i 0.875 7.612 OUTLET -5-1 0.917 8.162 OUTLET_S-i 0.958 8.725 OUTLET -5-1 1.000 9.300 OUTLETS-i 1.042 10.125 OUTLETS-i 1.083 11.158 OUTLET_S-i 1.125 12.330 OUTLET -5-1 1.167 13.618 OUTLETS-i 1.208 15.006 OUTLETS-i 1.250 16.485 OUTLET_S-i 1.292 18.047 OUTLET -5-1 1.333 19.688 OUTLET_S-i 1.375 21.402 OUTLET 5-1 1.417 23.185 OUTLET 5-1 1.458 25.035 OUTLET 5-1 1.500 26.949 OUTLET 5-1 1.542 28.924 OUTLET 5-1 1.583 30.959 OUTLET 5-1 1.625 33.050 OUTLET 5-1 1.667 35.197 OUTLET 5-1 1.708 37.398 OUTLET 5-1 1.750 39.651 OUTLET 5-1 1.792 41.956 OUTLET 5-1 1.833 44.310 OUTLET S-i 1.875 46.713 SWMM5 Page 3 Post-Dev Input (POC-3) OUTLET 5-1 1.917 49.164 OUTLET 5-1 1.958 51.661 OUTLET 5-1 2.000 54.204 SURF 4-1 Storage 0.00 7799 SURF 4-1 0.08 7868 SURF 4-1 0.17 7937 SURF 4-1 0.25 8007 SURF 4-1 0.33 8076 SURF 4-1 0.42 8146 SURF 4-1 0.50 8216 SURF-4-1 0.58 8286 SURF 4-1 0.67 8356 SURF 4-1 0.75 8426 SURF 4-1 0.83 8497 SURF 4-1 0.92 8568 SURF 4-1 1.00 8639 SURF 4-1 1.08 8710 SURF 4-1 1.17 8781 SURF 4-1 1.25 8853 SURF 4-1 1.33 8924 SURF 4-1 1.42 8996 SURF 4-1 1.50 9068 SURF 4-1 1.58 9140 SURF 4-1 1.67 9213 SURF-4-1 1.75 9285 SURF 4-1 1.83 9358 SURF 4-1 1.92 9431 SURF-4-1 2.00 9504 SURF 4-1 2.08 9577 SURF_a-i 2.17 9650 SURF 4-1 2.25 9724 SURF -4-1 2.33 9798 SURF 4-i 2.42 9872 SURF 4-1 2.50 9946 SURF 4-1 2.58 10020 SURF-4-1 2.67 10094 SURF_a-i 2.75 10169 SURF-4-1 2.83 10244 SURF 5-i Storage 0.00 1548 SURF-5-1 0.08 1573 SURF 5-1 0.17 1599 SURF 5-1 0.25 1624 SURF 5-1 0.33 1650 SURF -5-1 0.42 1676 SURF 5-i 0.50 1702 SURF -5-1 0.58 1729 SURF 5-1 0.67 1755 SURF-5-1 0.75 1782 SURF 5-1 0.83 1809 SURF-5-1 0.92 1836 SURF_S-i 1.00 1863 SURF-5-1 1.08 1891 SURF_S-i 1.17 1918 SURF-5-1 1.25 1946 SURF_S-i 1.33 1974 SURF 5-1 1.42 2002 SURF 5-1 1.50 2031 SURF -5-1 1.58 2059 SURF_S-i 1.67 2088 SURF-5-1 1.75 2117 SURF_S-i 1.83 2146 SURF_S-i 1.92 2175 SURF-5-1 2.00 2204 [TIMESERIES] ;;Name Date Time Value OCEANSIDE FILE 'X:\Projects2\349 (Lennar)\07 Poinsettia 61\SWMM\RMP\POC-3\0s:ideRain.prn [REPORT] INPUT NO CONTROLS NO SUBCATCHMENTS ALL NODES ALL LINKS ALL [TAGS] [MAP] DIMENSIONS 462.06) 4986.883 1173.589 5715.481 Units None [COORDINATES] ;;Node :<-Coord Y-Coord SWMM5 Page Post-Dev Input (POC-3) POC-3 853.473 5020.001 DIV_4-1 756.944 5245.370 DIV 5-1 968.583 5251.991 SURF_4-i 542.678 5245.793 SURF 5-i [VERTICES] 1141.247 5251.991 ;;Link X-Coord Y-Coord [Polygons] ;;Subcatchment X-Coord Y-Coord DMA 4-1 751.862 5682.363 DMA 4-1 751.862 5682.363 DMA 5-1 962.385 5677.896 DMA 3-BYPASS 516.336 5122.553 IMP 4-1 753.748 5467.442 IMP 5-1 964.156 5475.126 DMA 3-BYPASS-S 548.159 5049.693 [SYMBOLS] ;;Gage X-Coord Y-Coord OCEANSIDE 610.858 5679.667 I [1 I I SWMM5 Page ATTACHMENT 7 SWMM Screens and Explanation of Significant Variables ATTACHMENT 7 EPA SWMM FIGURES AND EXPLANATIONS Per the attached, the reader can see the screens associated with the EPA-SWMM Model in both pre-developed and post-developed conditions. Each portion, i.e., sub-catchments, outfalls, storage units, weirs and orifices as a discharge, and outfalls (points of compliance), are also shown. Variables for modeling are associated with typical recommended values by the EPA-SWMM model and the City of Carlsbad BMP Design Manual. Soil characteristics of the existing soils were determined from the site specific NRCS Soil Survey. Some values incorporated within the SWMM model have been determined from the professional experience of TRWE using conservative assumptions that have a tendency to increase the size of the needed IMP and also generate a long-term runoff as a percentage of rainfall similar to those measured in gage stations in Southern California by the USGS. PRE-DEVELOPED CONDITION (POC-1) SWMM 5 - PRE_)EV_POC-linp (Study Area Map File Edit View Project Report Tools Window Het Data FMap'] i Options i- Climatology 0 B Hydrology v H Rain Gages Subcatchmerrts i Aquifers i Snow Packs Unit Hydrographs LID Corrtrok C? Hydraulics E) Nodes Junctions Outtats. i-- Dividero T Storage Units ITt- Links Transects L.. Controls (p- Quality ITt Curves i Time Series The Patterns OCEANSIDE DMA _i + -16 * .Al Title/Notes I Poe-i Auto-LengtK- Ottsetn Depth Flew Units: CFS Jjn ZoornLevet 100Tt NY: 2187.527586,6040.197453 deg Rain Gage OCEANSIDE [utfaIIPOC 1 Property Name X-Coordinate Value tOCEANSIDE 2178.772 ,Y-Coordinate 6036.699 Description Tag Rain Format INTENSITY Time Interval 1:00 Snow Catch Fac 1.0 Data Source ii Series Name *i -File Name TIMESERIES JOCEANSIDE -Station ID -Rain Units IN ff;; g; J name of rain gage Property Name X-Coordinate LValue IPOC-i 2182.709 Y-Coordinate 6022.687 Description Tag Inflows NO Treatment NO Invert El. 0 Gate NO , Tide Type FREE Fixed Stage l] Curve Name Series Name 11 IUser-assigned name of outfall t Subc.atc:hment DMA1 Property Name X-Coordinate Value DMA_i 2182.713 Y-Coordinate 6036.919 Description Tag Rain Gage OCEANSIDE Outlet PO C-1 Area 11.530 Width 2093 Slope 14.6 Impery 0.0 N-lmpery .012 N -Fery 0.06 Dstore-lmpery 0.05 Dstore-Pery 0.1 Zero-lmpery 25 Subarea Routinc OUTLET Percent Routed 100 Infiltration GREEN_AMPT Groundwater NO Snow Pack LID Controls 0 Land Uses 0 Initial Buildup NONE Curb Length 0 Fser-assigned name of subcatchment • Infiltration Editor ___ Infiltration Method [GPIEEN_AMPT rJ Property Value Suction Head Conductivity !8.8 0.040 Initial Deficit 0.30 Auto-Length: Ott Offsets: Depth Flow Units: CFS Rain Gage OCEANSIDE . . I. Property Value Name ;OCEANSIDE X-Coordinate 547.584 Y-Coordinate 5680.757 Description Tag Rain Format INTENSITY Time Interval 1:00 Snow Catch Fad 1.0 Data Source ITIMESERIES - Series Name IOCEANSIDE POST-DEVELOPED CONDITION (POC-1) . SWMM 5- POSLDEV)OC-Linp - IStudy Area Mapj_ rj File - Edit View Proje5tReport Tools Window Help Data OCEANSIDE DMA 1-1 Lit_l I Title/Hates i-- Options Climatology 0 -- Hydrology St- Hydraulics -- Quality -- Curves I-- Time S uries I- Time Patterns Map Labels IMP 1-1 - - DMA 3-1 I IMP-3-1 I + - * . Al Title/Notes ui-sr_i- i -FileName - StationlD -Rain Units IIN User-assigned name of rain gage Zoom Level: 1005 1 XV: 546.91 7.5716.798 Property Name X-Coordinate -: Value .POC-1 859.672 Y-Coordinate 4976.614 Description Tag Inflows NO Treatment NO Invert El. 0 Tide Gate NO Type ri Fixed Stage Piir ,:e N a rite Series Name FREE 0 [User-assigned name of outFall Subcakhment DMA i-i Property Name !:DMA X-Coordinate Value 1-1 755.824 Y-Coordinate 5684.761 Description Tag Rain Gage OCEANSIDE Outlet IMP-1-1 Area 2.209 Width 1452 Slope 1.3 - Z Impery 58.3 N -Impery 0.012 N-Pery 0.08 D store-I mpery 0.05 Dstore-Pery 0.1 Zero-Impery 25 Subarea Routinc OUTLET Percent Routed 100 Infiltration GREEN_AMPT Groundwater NO Snow Pack LID Controls 0 Land Uses 0 Initial Buildup NONE Curb Length 0 U ser-assigned name of subcatchment Infiltration Editor Infiltration Method [EENAMPT vj Property Suction Head Conductivity Value 8.8 0.0240 Initial Deficit 030 SubcatcFrment DMA-3-1 Property Name X-Coordinate 1.Yae. :DMA 3-1 965.398 Y-Coordinate 5687.431 Description Tag Rain Gage Outlet OCEANSIDE IMP_3-1 Area 1.588 Width 1390 Slope 2.2 Z lmpery 47.0 N-lmpery 0.012 N-Pery 0.08 Dstore-lmpery 0.05 Dstore-Pery 0.1 Zero-I mpery 25 Subarea IRoutinc OUTLET Percent Routed 100 Infiltration GREEN_AMPT Groundwater NO Snow Pack LID Controls 0 Land Uses 0 Initial Buildup NONE Curb Length 0 User-assigned name of subcatchment Infiltration Editor Infiltration Method [REEN_AMPT "] Property Suction Head Conductivity Value 13 0.01875 Initial Deficit 0.3 11 Stxbcatchment IMP-1-1 1161111 Property Value Name FdM.P1:1 I X-Coordinate 1755.824 UI Y-Coordinate 15472.517 Description Tag Rain Gage JOCEANSIDE Outlet i Area F.O571"17 Width SIope Impery 0 N-lmpery 0.012 N -Pery 0.08 Dstore-lmpery 0.05 Dstore-Pery 0.1 2ero-Impery 25 Subarea Routinc OUTLET Percent Routed 100 Infiltration GREEN_AMPT Groundwater NO Snow Pack LID Controls 1 Land Uses 0 Initial Buildup NONE Curb Length 0 User-assigned name of subcatchmerrt Infiltration Editor Infiltration Method [GFIEEN_AMPT '] Property Suction Head Conductivity Value 0.025 Initial Deficit 0.30 Subcatchment IMP-3-1 Property 1VaI Name X-Coordinate :IMP_31 965.398 Y-Coordinate 5479.192 Description Tag Rain Gage OCEANSIDE Outlet DIV_3-i Area 0.039784 Width .10 ZSlope 1 Impery 0 N-Impery 10.012 N-Pery 0.08 D store-I mpery 0.05 D store-Pery 0.1 ZZero-I mpery 25 Subarea Routinc OUTLET Percent Routed 100 Infiltration GREEN_AMPT Groundwater NO Snow Pack LID Controls 1 Land Uses 0 Initial Buildup NONE Curb Length 0 User-assigned name of subcatchment Infiltration Editor Infiltration Method LGREEN_AMPT e] I Property Value Suction Head Conductivity ;9 0.025 Initial Deficit 0.30 Subcakhment DMA-BYPASS - Property Name X-Coordinate Value DMA_1-B'PASS 552.924 Y-Coordinate 5040. 020 Description Tag Rain Gage OCEANSIDE Outlet POC-1 Area 4.447 Width 945 Slope 17.3 Impery 3.1 N-lmpery 0.012 N -Pery 0.08 D store-I mpery 0.05 Dstore-Pery 0.1 ZZero-Impery 25 Subarea Routinc OUTLET Percent Routed 100 Infiltration GREEN_AMPT Groundwater NO Snow Pack LID Controls 0 Land Uses 0 Initial Buildup NONE Curb Length 0 User-assigned name of subcatchment Infiltration Editor Infiltration Method [EEN_AMPT U,] Property Suction Head Conductivity Value 0.0445 Initial Deficit 0.30 Auto-Length: Ott 1 Offsets: Depth Flow Units: CFS Rain Gage OCEANSIDE Fig I_Property Value Name OCEANSIDE .X-Coordinate 2182.823 Y-Coordinate 6038.716 Description Tag Rain Format INTENSITY Time Interval 1:00 ill Snow Catch Facl.O Data Source ITIMESEFIIES PRE-DEVELOPED CONDITION (POC-2) SWMM 5- PREDEV.90C-2.inp - [Study Area Map] r File Edit View Project Report Toots Window Help JD WI I?{LIt Data Fm-.P-1 i Options - Climatology 0 El Hydrology v Rain Gages Subcatchmentu 0 I Aquifers i Snow Packs i Unit Hydroaphs LID Control- 8.. Hydraulics .. Nodes -Juncliocs I Outlalls I Dividers - T Storage Units' - El Links Conduits 1- Pumps Orifices Weirs Outlets Transacts Controls + - * 4 Al Title/Notes OCEANSIDE DMA 2 U - Series Name IOCEANSIDE POC-2 $ Zoom Level: 100Z j XV: 2194.959112. BO4.964762 deg rO tfatIPOC2 -- -- Property Value Name POC-2 X-Coordinate 2182.709 Y-Coordinate 6022.687 Description Tag Inflows NO Treatment NO Invert El. 0 Gate ,,,Tide NO Type FREE Fixed Stage 10 -File Name - Station ID Curve Name I Rain Units IN Series Name lx Subcatchment DMA2 Property [Value Name X-Coordinate 2182.697 Y-Coordinate 6037. 077 Description Tag Rain Gage OCEANSIDE Outlet POC-2 Area 7.148 Width 135 4 Slope 13.2 %Impery 0 N -lmpery 0.012 N Fery 0.06 Dstore-Impery 0.05 Dstore-Pery 0.1 Zero-lmpery 25 Subarea Routinc OUTLET Percent Routed 100 Infiltration GREEN_AMPT Groundwater NO Snow Pack LID Controls 0 Land Uses 0 Initial Buildup NONE Curb Length 10 User-assigned name of subcatchment Infiltration Editor Infiltration Method [GREEN AMFT Property Value Suction Head Conductivity 9 0.025 Initial Deficit 0.30 Rain Gage OCEANSIDE Property Value Name OCEANSIDE X-Coordinate 304.006 Y-Coordinate 5618.164 Description Tag Rain Format INTENSITY Time Interval 1:00 Snow Catch Fac 1.0 Data Source ITIMESERIES POST-DEVELOPED CONDITION (POC-2) . SWMM 5- POSTDEVJ'OC-2.inp - [Study Area Mapi File Edit View Projeèt Report Tools Window Help Data Title/Notes Options OCEANSIDE H Climatology 0 Hydrology v Rain Gages Subcalchments <C> Aquifers Snow Pack: F Unit Hydrog:aphs I- LID Controls 3 Hydraulics TI Nodes F- Junctions H Outtalls '1 -Dividers T Storage Units B Links CoMu Pumps Orthces Weirs Outlets i--- Transects L. Controls + —-41 * 4 Aj Tide/Notes - DMA 2-1 I IMP 2-1 I 2-1 >2 Auto-Length: Ott Ottoeto Depth Flow Units: CFS - Zoom LeveL 100 N.?: 1002.351,5S84.416 II Series Name IOCEANSIDE -File Name - Station ID Rain Units IIN Outfall POC-2 Property Value Name POC-2 X-Coordinate 756.717 <-Coordinate 4957.778 Description Tag Inflows NO Treatment NO Invert El. 0 Tide Gate NO Type Fixed Stage LLJrVC Name Series Name FREE IJ _ F Subcatchment DMA-2-1 Property Name X-Coordinate Value DMA _2-1 756.717 Y-Coordinate 5646.100 Description Tag Rain Gage OCEANSIDE Outlet I P_2-1 Area 8.791 Width 6113 %Slope 2 lmpery 60.8 N -Impery 0.012 N-Pery 0.08 Dstore-lmpery 0.05 Dstore-Pery 0.1 2ero-Impery 25 Subarea Routinc OUTLET Percent Routed 100 Infiltration GREENAMPT Groundwater NO Snow Pack LID Controls 0 Land Uses 0 Initial Buildup NONE Curb Length 0 U ser-assigned name of subcatchment Infiltration Editor L1 Infiltration Method [GREEN_AMPT rj Property Value Suction Read Conductivity 19 0.01875 Initial Deficit 0.30 'Subcatchment IMP _2- 1 Property Name ':'IMP X-Coordinate [Value 2-1 756.717 Y-Coordinate 5444.940 Description Tag Rain Gage OCEANSIDE Outlet DIV_2-1 Area 0.190014 Width 10 Slope 1 Zlmpery 0 N-Impery 0.012 N-Pep, 0.08 Dstore-lmpery 0.05 D store-Pery 0.1 2ero-I rnpery 25 Subarea Routinc OUTLET Percent Routed 100 Infiltration GREEN_AMPT Groundwater NO Snow Pack LID Controls 1 Land Uses 0 Initial Buildup NONE Curb Length 10 User-assigned name of subcatchment Infiltration Editor Infiltration Method [ GREEN _AM PT H Property Suction Head Value 19 0.025 Conductivity Initial Deficit 0.30 Subcatchment DMA-2-BYPASS -Lai Property Name X-Coordinate Value .":DMA 2-BYPASS 228.970 Y-Coordinate 5043.799 Description Tag Rain Gage JOCEANSIDE 0 utlet POC-2 Area 1.559 Width 302 Slope 17.6 Impery 0 N-Impery 0.012 N-Pery 0.08 D store-I mpery 0.05 Dstore-Pery 0.1 ZZero-Impery 25 Subarea Routinc OUTLET Percent Routed 100 Infiltration GREEN_AMPT Groundwater NO Snow Pack LID Controls 0 Land Uses 0 Initial Buildup NONE Curb Length 0 User-assigned name of subcatchment Infiltration Editor Infiltration Method [GREEN _AM PT Property Value Suction Head Conductivity 0.01875 Initial Deficit 0.30 Rain Gage OCEANSIDE Property Value Name OCEANSIDE X-Coordinate 2182.697 Y-Coordinate 6035.280 Description Tag Rain Format INTENSITY Time Interval 1:00 Snow Catch Fac 1.0 Data Source ITIMESERIES -Series N&fie [OCEANSIDE File Name - StationlD -Rain Units IIN PRE-DEVELOPED CONDITION (POC-3) SWMM 5- PRE.DEVYOC-3.inp - [Study Area MafJI qb File Edit View Project Report Tools Window Help 1II?Q I1+®.I - Options OCEANSIDE Climatology 0 El- Hydrology v i.-- Rain Gages Subcatchments DMA _3 Aquifers I Snow Packs - I.-.- Unit Hydrographo LID Controls CP o Hydraulics 4J. Nodes Junctions Outlalls Dividers T Storage Units - Links . i.--- Conduits i- Pumps Orifices ----Weiss Outlets i--- Transects Controls L irJ' + - * .Al Title/Notes POC-3 V Auto-Length: Ott - Offsets: Depth - Flew Unite: CFS - Jill Zooss Level: 125 XV: 2177.255272.COZt.915O8deg Subcatchment DMA-3 . li Property Name X-Coordinate Value DMA3 2182.708 Y-Coordinate 6033.559 Description Tag Pain Gage JOCLANSIDE Outlet P0C3 Area 34.373 Width 6510 Slope 18.6 Impery 0 N -Impery 0.012 N -Pery 0.07 Dstore-lmpery 0.05 Dstore-Pery 0.1 2ero-Impery 25 Subarea Routinc OUTLET Percent Routed 100 Infiltration LREEN_AMPT Groundwater NO Snow Pack LID Controls 0 Land Uses 0 Initial Buildup NONE Curb Length 0 Fuse-r-- ass'gned name of subcatchment Infiltration Editor Infiltration Method [GREEN_AMPT ] Property Value .... Suction Head Conductivity 0.025 Initial Deficit 0.3 0utfa9 POC-3 Property Value Name POC-3 X-Coordinate 853.473 'f-Coordinate 5020.001 Description Tag Inflows NO Treatment NO Invert El. 0 Tide Gate NO Type FREE Fixed Stage tO Curve Name fO Series Name 1° POST-DEVELOPED CONDITION (POC-3) SWMM S -POSLDEV.POC-3.inp- (Study Area File Edit View Project Report Tools Window Help 11 D Gi; Ij a I Eb 44! 'W I ?u W M E OCEANSIDE DMA 4-1 DMA-5-1 IJ Data Title/Notes . i Options - I Climatology 0 B- Hydrology v I Rain Gages Subsatchments i Aquifers Ld i Snow Packs - Unit Hydrographs - LID Controls IMP 4-1 IMP_S-i 2- Hydraulics I 2 Nodes Junctions I Outtalts Dividers T Storage Units - S Links Conduits i Pumps ii Orifices I Weirs SURF 4-1 DIV 41 DIV S-i SURF S-i Outlets Transects Controls DMAPASS Z Al TitleMotes YP Auto-Length: Ott Offsets: Depth - Flow Units: CPS - Zoom Level: 100% 1 XX: 1080.274. 5706.7Z3 - Infiltration Editor Infiltration Method [GREEN_AMPT ] Property Value Suction Head Conductivity 9 0.01875 Initial Deficit 0.30 'UI Subcatchment DMA-4-1 - Property Value Name X-Coordinate ::DMA 4-1 751.862 Y-Coordinate 5682. 363 Description Tag Rain Gage OCEANSIDE Outlet IMP_4-1 Area 7.772 Width 5239 Slope 1.1 % Impery 48.0 N-Impery 0.012 N-Pery 0.08 D store-I mpery 0.05 Dstore-Pery 0.1 2ero-lmpery 25 Subarea Routinc OUTLET Percent Routed 100 Infiltration GREEN_AMPT Groundwater NO Snow Pack LID Controls 0 Land Uses 0 Initial Buildup NONE Curb Length ro User-assigned name of subcatchment Subcatchment DMA_5-1 f1 Property Name X-Coordinate Value !DMA_5-1 962.385 Y-Coordinate 5677.896 Description Tag OCEANSIDE Rain Gage Outlet IMP-5-1 Area 1.399 Width 1039 ZSlope 3.5 Z Impery 77.3 N-Impery 0.012 N-Pery 0.08 Dstore-lmpery 0.05 D store-Pery 0.1 2ero-I mpery 25 Subarea Routinc OUTLET Percent Routed 100 Infiltration GREEN_AMPI Groundwater NO Snow Pack LID Controls 0 Land Uses 0 Initial Buildup NONE Curb Length to User-assigned name of subcatchment Subcatchirnent IMP 4-1 Property Name X-Coordinate Value .lMP4-1 753.748 Y-Coordinate 5467.442 Description Tag Rain Gage OCEANSIDE Outlet DIV_4-1 Area 0.166506 Width 10 Slope 1 Impery 0 N lmpery 0.012 N -Pery 0.08 Dstore-Impery 0.05 Dstore-Pery 0.1 2ero-Impery 25 Subarea Routinc OUTLET Percent Routed 100 Infiltration GREEN_AMPT Groundwater NO Snow Pack LID Controls 1 Land Uses 0 Initial Buildup NONE Curb Length 0 U ser-assigned name of subcatchment Infiltration Editor Infiltration Method [GREEN_AMPT Property Suction Head Conductivity Value ............................................... 0I0.5 Initial Deficit 0.30 I.' Subcatchment L_5-1 - - Property 1Value Name 'IMP X-Coordinate . 5-1 964.156 Y-Coordinate 5475.126 Description Tag Rain Gage OCEANSIDE Outlet DIV_5-1 Area 0.032140 Width 10 Slope 1 lmpery 0 N-lmpery 0.012 N-Pery 0.08 D store-I mpery 0.05 Dstore-Pery 0.1 ZZero-I mpery 25 Subarea Routinc OUTLET Percent Routed 100 Infiltration GREEN_AMPT Groundwater NO Snow Pack LID Controls 1 Land Uses 0 Initial Buildup NONE Curb Length 0 User-assigned name of subcatchment Infiltration Editor Infiltration Method [GREEN_AM PT Property Suction Head Conductivity Value 0.025 Initial Deficit 0.30 Subcatc:hment DMA .3-BYPASS Subcatc.hment DMA 3-BYPASS-S Property Value Property Name X-Coordinate Value IDMA_3-BYPASS-S 548.159 Name X-Coordinate .DMA 3-BYPASS 516.336 Y-Coordinate 51 22.553 Y-Coordinate 5049.693 Description Description Tag Tag Rain Gage OCEANSIDE Rain Gage OCEANSIDE Outlet POC-3 Area 25.754 Width 4878 Slope 18.6 % Impery 0 N-lmpery 0.012 N-Pery 0.08 Dstore-Impery 0.05 Dstore-Pery 0.1 ZZero-Impery 25 Subarea Routing OUTLET Percent Routed 100 Infiltration GREEN_AMPT Groundwater NO Snow Pack LID Controls 0 Land Uses 0 Initial Buildup NONE Curb Length 0 User-assigned name of subcatchrnent Infiltration Editor Infiltration Method [REENAMPT ] Property Suction Head Conductivity Value Is. 0.025 Initial Deficit 0.30 Outlet POC-3 Area 0.858 Width 623 Slope 50 Zlmpery 0 N-lmpery 0.012 N-Pery 0.08 Dstore-lmpery 0.05 Dstore-Pery 0.1 ZZero-I mpery 25 Subarea Routinc OUTLET Percent Routed 100 Infiltration GREEN_AMPI Groundwater NO Snow Pack LID Controls 10 Land Uses 0 Initial Buildup NONE Curb Length 0 User-assigned name of subcatchment Infiltration Editor Infiltration Method [GREEN_AMPT 1 Property Suction Head Conductivity Value 9 0.01875 Initial Deficit 0.30 EXPLANATION OF SELECTED VARIABLES Sub Catchment Areas: Please refer to the attached diagrams that indicate the DMA and biofiltration BMP sub-areas modeled within the project site at both the pre and post developed conditions draining to each POC. Parameters for the existing and developed models include soil type D and A as determined from the NRCS Web Soil Survey (see Attachment 8). Suction head, conductivity and initial deficit correspond to average values expected for this soil type, according to sources consulted, professional experience, and approximate values obtained by the City of Carlsbad BMP Design Manual. For this particular project, area weighted values were used to model infiltration for DMA 1, DMA 1-1, and DMA 1-BYPASS, as these DMAs contain multiple soil types. The breakdown of the soil types and the weighted infiltration parameters that were used are shown below. Existing Conditions DMA Soil Type Area (sq-ft) Percent Area A 26676 5% B 0 0% C 0 0% D 475571 95% Total Area 502247 100% Green_Ampt Value Type A (1) Type B (1) Type C Type D Weighted Values Suction Head 1.5 3 6 9 8.6 Undeveloped Conductivity 0.3 0.2 0.1 0.025 0.040 Developed Conductivity 0.225 0.15 0.075 0.01875 0.0297 Initial deficit 0.33 1 0.32 0.31 0.30 0.30 (')Typical Values used for SWMM modeling. Developed Conditions DMA-1-1 Soil Type Area (sq-ft) Percent Area A 2527 3% B 0 0% C 0 0% D 96201 97% Total Area ]_ 98728 100% Green_Ampt Value Type A (1) Type B (1) Type C (1) Type D Weighted Values Suction Head 1.5 3 6 9 8.8 Undeveloped Conductivity 0.3 0.2 0.1 0.025 0.03 Developed Conductivity 0.225 0.15 0.075 0.01875 0.0240 Initial deficit 0.33 0.32 0.31 0.30 0.30 'Typical Values used for SWMM modeling. DMA-1-BYPASS Soil Type Area (sq-ft) Percent Area A 24149 12% B 0 0% C 0 0% D 169572 88% Total Area 193721 100% Green- Value Type A FType B 1 Type C (1) Type D (1) Weighted Values Suction Head 1.5 3 6 9 8.1 Undeveloped Conductivity 0.3 0.2 0.1 0.025 0.059 Developed Conductivity 0.225 0.15 0.075 0.01875 0.0445 Initial deficit 0.33 0.32 0.31 0.30 0.30 (')Typical Values used for SWMM modeling. TRWE selected infiltration values, such that the percentage of total precipitation that becomes runoff is realistic for the soil types and slightly smaller than measured values for Southern California watersheds. The pervious overland flow roughness values (N-Perv) were selected by comparing the existing surface (determined from aerial photos) and proposed surface (assumed based on plans) to the surface types and N-pery values presented in the SUMMARY ON MANNING'S "N" VALUES FOR OVERLAND FLOW USING EPA SWMM and the WHITE PAPER ON MANNING'S "N" VALUES FOR OVERLAND FLOW USING EPA SWMM. These documents have been reviewed and accepted by the Copermittee Land Development Work Group, and are available on Project Clean Water at the following link: http://www.proiectcleanwater.org/index.php?option=com content&view=article&id=250&ltemid=220 The following tables provide a summary of the surface type and corresponding N-Pery value for each DMA in existing and developed conditions: Existing Condition N-Pery Values DMA ID Surface Type Percentage of DM A N- Pen, (approximate) Area Weighted N-Pery Shrubs and bushes 50% 0.08 DMA 1 0.060 Row crops & bare dirt' 50% 0.04 Shrubs and bushes 50% 0.08 DMA 2 0.060 0.04 Row crops & bare dirt' 50% Shrubs and bushes 75% 0.08 DMA 3 0.070 0.04 Row crops & bare dirt' 25% N-Pery value tor the areas composed ot a mixture ot row crops, bare dirt, and dirt roads was conservatively estimated as 0.04 based on the SUMMARY ON MANNING'S "N" VALUES FOR OVERLAND FLOW USING EPA SWMM (available on Project Clean Water). Developed Condition N-Pen, Values DMA ID Surface Type Percentage of DMA (approximate) N- ery Area Weighted N-Pery DMA 1-1 Shrubs and bushes 100% 0.08 0.08 DMA 2-1 Shrubs and bushes 100% 0.08 0.08 DMA 3-1 Shrubs and bushes 100% 0.08 0.08 DMA 4-1 Shrubs and bushes 100% 0.08 0.08 DMA 5-1 Shrubs and bushes 100% 0.08 0.08 DMA 1-BYPASS Shrubs and bushes 100% 0.08 0.08 DMA 2-BYPASS Shrubs and bushes 100% 0.08 0.08 DMA 3-BYPASS Shrubs and bushes 100% 0.08 0.08 Selection of a Kinematic Approach: As the continuous model is based on hourly rainfall, and the time of concentration for the pre-development and post-development conditions is significantly smaller than 60 minutes, precise routing of the flows through the impervious surfaces, the underdrain pipe system, and the discharge pipe was considered unnecessary. The truncation error of the precipitation into hourly steps is much more significant than the precise routing in a system where the time of concentration is much smaller than 1 hour. Sub-catchment BMP: The subcatchment BMP is assigned the area of biofilitration, which is equal to the area of amended soil. Five (5) decimal places were given regarding the areas of the biofiltration to insure that the area used by the program for the LID subroutine corresponds exactly with this tributary. I TORY R.WALKER ENGINEERING RELIABLE SOLUTIONS IN WATER RESOURCES Manning's n Values for Overland Flow' The BMP Design Manuals within the County of San Diego allow for a land surface description other than short prairie grass to be used for hydromodification BMP design only if documentation provided is consistent with Table A.6 of the SWMM 5 User's Manual. In January 2016, the EPA released the SWMM Reference Manual Volume I - Hydrology (SWMM Hydrology Reference Manual). The SWMM Hydrology Reference Manual complements the SWMM 5 User's Manual by providing an in-depth description of the program's hydrologic components. Table 3-5 of the SWMM Hydrology Reference Manual expounds upon Table A.6 of the SWMM 5 User's Manual by providing Manning's n values for additional overland flow surfaces. Therefore, in order to provide SWMM users with a wider range of land surfaces suitable for local application and to provide Copermittees with confidence in the design parameters, we recommend using the values published by Yen and Chow in Table 3-5 of the EPA SWMM Reference Manual Volume I - Hydrology. The values are provided in the table below: Overland Surface Manning value (n) Smooth asphalt pavement 0.010 Smooth impervious surface 0.011 Tar and sand pavement 0.012 Concrete pavement 0.014 Rough impervious surface 0.015 Smooth bare packed soil 0.017 Moderate bare packed soil 0.025 Rough bare packed soil 0.032 Gravel soil 0.025 Mowed poor grass 0.030 Average grass, closely clipped sod 0.040 Pasture 0.040 Timberland 0.060 Dense grass 0.060 Shrubs and bushes 0.080 Land Use Business 0.014 Semibusiness 0.022 Industrial 0.020 Dense residential 0.025 Suburban residential 0.030 Parks and lawns 0.040 1Content summarized from Improving Accuracy in Continuous Simulation Modeling: Guidance for Selecting Pervious Overland Flow Manning's n Values in the San Diego Region (TRWE, 2016). WATERSHED, FLOODPLAIN e STORM WATER MA NAG EM ENT • RIVER RESTORATION FLOOD FACILITIES DESIGN SEDIMENT & EROSION 122 CIVIC CENTER DRIVE, SUITE 206, VISTA CA 92084 . 760-414-9212 . TRWENGINEERING.COM LID Usage Editor Control Name IMP-2-1 Number of Replicate Units rl LID Occupies Full Subcatchment Area of Each Unit (sq It or sq m) X of Subcatchment Occupied Top Width of Overland Flow Surface of Each Unit (ft or m) Initially Saturated of Impervious Area Treated LID Usage Editor Control Name IMP-4-1 Number of Replicate Units EJ LID Occupies Full Subcatchment Area of Each Unit (sq It or sq m) X of Subcatchment Occupied Top Width of Overland Flow Surface of Each Unit (ft or m) 2 Initially Saturated of Impervious Area Treated 8277 100.0 0 0 100 7253.00 100.0 0 0 100 LID Usage Editor I zS Control Name IMP-1 -1 Number of Replicate Units 1 El i1 LID Occupies Full Subcatchment Area of Each Unit (sq It or sq m) 2488 Z of Subcatchment Occupied 100.0 Top Width of Overland Flow o Surface of Each Unit (It or m) Initially Saturated 0 of Impervious Area Treated 100 LID Usage Editor Control Name IMP_3-1 Number of Replicate Units 1 LID Occupies Full Subcatchment Area of Each Unit (sq It or sq m) 1733 of Subcatchment Occupied 100.0 Top Width of Overland Flow o Surface of Each Unit (ft or m) Initially Saturated 0 of Impervious Area Treated 100 UDiisageEditor Control Name IMP-5-1 Number of Replicate Units 1 LID Occupies Full Subcatchment Area of Each Unit (sq It or sq m) 1400.02 X of Subcatchment Occupied 100.0 Top Width of Overland Flow o Surface of Each Unit (It or m) X Initially Saturated 0 Z of Impervious Area Treated 100 LlDControl Editor Control Name: IMP 1-1 LID Type: [Bio-Retention Cell Process Layers: LID Control Ed itor Control Name: IMP-1-1 LID Type: [8io-Retention Cell Process Layers: Surface Soil Storage I Underdrain Storage Depth 545 (in. or mm) Vegetation Volume 0.05 Fraction Surface Roughness (Mannings n) Surface Slope o (percent) Sur -fa cej Soil LS t Underdrain Thickness 18 (in. or mm) Porosity 0.4 (volume fraction) Field Capacity 0.2 (volume fraction) Wilting Point 0.1 (volume fraction) Conductivity 5 (in/hr or mm/hr) Conductivity Slope 5 Suction Head 1.5 (in. or mm) UD Control Editor Control Name: IMP 1-1 LID Type: [Bio-Retention Cell Process Layers: Surface I Soil Storage [Underdrainl Height 12 (in. or mm) Void Ratio 0.67 (Voids / Solids) Conductivity o (in/hr or mmlhr) Clogging Factor 0 Note: use a Conductivity of Oil the LID unit f-as an impermeable bottom. LID Control Editor 44 Control Name: -IMP-1-1 LID Type: Bio-Retention Cell Process Layers: Surface I Soil Storage Underdrain L Drain Coefficient 1.4135 (in/hr or mm/hr) Drain Exponent 0.5 Drain Offset Height o (in. or mm) Note: use a Drain Coefficient of Oil the LID unit has no underdrain. LID Control Editor - Control Name: IMP-2-1 LID Type: [810-Retention Cell Process Layers: Surface 1 Soil Storage I Underdrain Storage Depth 19.24 (in. or mm) Vegetation Volume 0.05 Fraction - - - Surface Roughness o (Mannings n) Surface Slope o (percent) 11 Ut) Control Editor _____41 Control Name: IMP-2-1 LID Type: [Bio-Retention Cell v] Process Layers: Surface I Soil Storage Underdrain Height 12 (in. or mm) Void Ratio 0.67 [Voids / Solids) Conductivity o (in/hr or mm/hr) Clogging Factor 0 LID Control Editor A Control Name: IMP-2-1 LID Type: Bio-Retention Cell Process Layers: Surface Soil [orage I Underdrainl Thickness 18 (in. or mm) - Porosity 0.4 (volume fraction) Field Capacity 0.2 (volume fraction) Wilting Point iii (volume fraction) . Conductivity 5 (in/hr or mm/hr) Conductivity Slope Suction Head 1.5 (in. or mm) ruoControl Editor Control Name: IMP-2-1 LID Type: [Bio-Retention Cell vi Process Layers: Underdrain Drain Coefficient 0.4249 (in/hr or mm/hr) Drain Exponent 0.5 Drain Offset Height 0 (in. or mm) Note: use a Conductivity of 0 if the LID 1 Note: use a Drain Coefficient of Oil the Ii unit has an impermeable bottom. LID unit has no underdrain. LID Control Editor Control Name: 'IMP-3-1 LID Type: [Bio-Retention Cell vi Process Layers: Surface I.Soil I Storage Underdrainl Height 12 (in. or mm) Void Ratio . 0.67 (Voids / Solids) Conductivity o (in/hr or mm/hi) Clogging Factor 0 Note: use a Conductivity of 0 if the LID unit has an impermeable bottom. LID Control Editor Control Name: IMP 3-1 LID Type: [Bio.Retention Cell vi Process Layers: Surface Soil Storage IJnderdrain Thickness 18 (in. or mm) Porosity 0.4 (volume Fraction) Field Capacity 0.2 (volume fraction) Wilting Point 0.1 (volume fraction) Conductivity 5 (in/hr or mm/hr) Conductivity Slope Suction Head 1.5 (in. or mm) OK E Cancel L Help ] LID Control Editor Control Name IMP-3-1 LID Type: [Bio-Retention Cell Process Layers: Underdrain Drain Coefficient 1.4530 (in/hr or mm/hr) Drain Exponent 10.5 Drain Offset Height 0 (in. or mm) Note: use a Drain Coefficient of 0 if the LID unit has no underdrain. LID Control Editor Control Name: IMP 3-1 LID Type: LB jo-Retention Cell v) Process Layers: Storage Depth 6.33 (in. or mm) Vegetation Volume 0 05 Fraction Surface Roughness (Mannings n) Surface Slope 0 (percent) [oK] Cancel J [ HeJJ OK ] [_Cancel [ Help UD Control Editor Control Name: AMP 4-1 -. - - LID Type: [Bio-Retention Cell Process Layers: Surface] Soil [age f Underdrain Thickness 18 (in. or mm) Porosity 0.4 (volume fraction) Field Capacity 0.2 (volume fraction) Wilting Point 0.1 (volume fraction) -- Conductivity 5 (in/hr or mm/hr) Conductivity Slope Suction Head 1.5 (in. or mm) LID Control Editor - - Control Name: [IMP_4.1 - LID Type: [810-Retention Cell Process Layers: Surface Soil Storage] Underdrain Storage Depth 8.30 (in. or mm) Vegetation Volume 005 Fraction Surface Roughness (Mannings n) Surface Slope o (percent) LID Control Editor LID Control Editor Lanl Control Name: lMP_4-1 Control Name: 'IMP-4-1 i LID Type: [Bio-Retention Cell u] LID Type: [Bio-Retention Cell Process Layers: Process Layers: Surface I Soil Storage [Underdrain Height 18 (in. or mm) Void Ratio 0.67 Voids / Solids) Conductivity o (in/hr or mm/hi) Clogging Factor 0 Note: use a Conductivity of 0 if the LID unit has an impermeable bottom. Drain Coefficient (in/hr or mm/hr) Drain Exponent Drain Offset Height (in. or mm) Underdrain 0.8292 0.5 0 Note: use a Drain Coefficient of 0 if the LID unit has no underdrain. LID Control Editor - Control Name: IMP-5-1 - LID Type: [810-Retention Cell vi Process Layers: Surface Soil Storage I lJnderdrain Storage Depth 6.31 (in. or mm) Vegetation Volume 0.05 Fraction Surface Roughness a (Mannings n) Surface Slope 0 (percent) LID Control Editor Control Name: LIMP-5-1 J LID Type: [810-Retention Cell vi Process Layers: I_Surface Soil Storage Unclerdrainl Height 12 (in. or mm) Void Ratio 0.67 (Voids / Solids) Conductivit 0 (in/hr or mmlhr) Clogging Factor 0 Note: use a Conductivity of Oil the LID unit has an impermeable bottom. UD Control Editor Control Name: 1lMP_5-1 LID Type: [Bio.Retention Cell v] Process Layers: Surface j Soil Storage Underdrain Thickness lB (in. or mm) Porosity 0.4 (volume fraction) Field Capacity 0.2 (volume fraction) Wilting Point 0.1 (volume fraction) Conductivity 5 (in/hr or mm/hr) Conductivity Slope Suction Head 1.5 (in. or mm) LID Control Editor Control Name: IMP-5-1 LID Type: [Bio-Retention Cell vi Process Layers: Drain Coefficient (in/hr or mm/hr) Drain Exponent Drain Offset Height (in. or mm) Note: use a Drain Coefficient of Oil the LID unit has no underdrain. Underdrain 13 J 0.5 0 LID Control Editor: Explanation of Significant Variables Storage Depth: The storage depth variable within the SWMM model is representative of the storage volume provided beneath the lowest surface outlet within the biofiltration basin. This is the volume that can only discharge from the facility via the LID portion of the basin. In those cases where the surface storage has a variable area that is also different to the area of the gravel and amended soil, the SWMM model needs to be calibrated as the LID module will use the storage depth multiplied by the IMP area as the amount of volume stored at the surface. Let AIMP be the area of the IMP (area of amended soil and area of gravel). The proper value of the storage depth SD to be included in the LID module can be calculated by using geometric properties of the surface volume. Let A0 be the surface area at the bottom of the surface pond, and let A1 be the surface area at the elevation of the invert of the first row of orifices (or at the invert of the riser if not surface orifices are included). Finally, let h1 be the difference in elevation between A0 and A. By volumetric definition: AJMP•SD= (A0 +A ) hi (1) Equation (1) allows the determination of 5D to be included as Storage Depth in the LID module Porosity: A porosity value of 0.4 has been selected for the model. The amended soil is to be highly sandy in content in order to have a saturated hydraulic conductivity of approximately 5 in/hr. IRWE considers such a value to be slightly high; however, in order to comply with the HMP Permit, the value recommended by the Copermittees for the porosity of amended soil is 0.4, per the City of Carlsbad BMPDM. Such porosity is equal to the porosity of the gravel per the same document. Void Ratio: The ratio of the void volume divided by the soil volume is directly related to porosity as n/(1-n). As the underdrain layer is composed of gravel, a porosity value of 0.4 has been selected (per the City of Carlsbad BMP Design Manual), which results in a void ratio of 0.4/(1-0.4) = 0.67 for the gravel detention layer. Conductivity: Due to the natural soil and geotechnical conditions existing on site, infiltration may not be a viable addition to the LID design. As the IMP's are to be lined, the conductivity value was set to 0 to represent zero infiltration. Clogging factor: A clogging factor was not used (0 indicates that there is no clogging assumed within the model). The reason for this is related to the fairness of a comparison with the SDHM model and the HMP sizing tables: a clogging factor was not considered. — Drain (Flow) coefficient: The flow coefficient in the SWMM Model is the coefficient needed to transform the orifice equation into a general power law equation of the form: q = C(H -,HD)' (2) where q is the peak flow in in/hr, n is the exponent (typically 0.5 for orifice equation), H0 is the elevation of the centroid of the orifice in inches (assumed equal to the invert of the orifice for small orifices and in our design equal to 0) and H is the depth of the water in inches. The general orifice equation can be expressed as: it D2 I (H-HD) Qcg t2g 144 12 where Q is the peak flow in cfs, D is the diameter in inches, cg is the typical discharge coefficient for orifices (0.61-0.63 for thin walls and around 0.75-0.8 for thick walls), g is the acceleration of gravity in ft1s2, and H and H0 are defined above and are also used in inches in Equation (3). It is clear that: q ( j\ ) AIMp —X - - (cfs) hr/ 12X3600 (4) Cut-Off Flow: 0 (cfs) and q (in/hr) are also the cutoff flow. For numerical reasons to insure the LID is full, the model uses cut-off = 1.01 Q. (3) Drain (Flow) coefficient calculations: limp 1-1 IIMP_3-1 I AIM 2488.0 sq-ft AIMP 1733.0 sq-ft C9 0.61 C9 0.61 Dorif 3.25 in Dorif 2.75 in Aorifice 0.05761 sq-ft AoriiIce 0.04125 sq-ft CrvjmN1 rlAi 5l -- -- I c DL~ IMP _2-1 AIM 8277 sq-ft C9 0.61 Dorif 3.25 in Aorifice 0.05761 sq-ft CSVM : IMP 44 IIMP_5-1 I AIM P 7253 sq-ft AIM P 1400 sq-ft C9 0.61 cg 0.61 Dorif 4.25 in Dorif 2 in Acrifice 0.09852 sq-ft Aoritice 0.02182 sq-ft C v [08292 0.95-13 Surface Detention and Discharge for IMP-1-1 Storage Curve Editor Curve Name SURF-1 -1 - Description Rating Curve Editor T;J Curve Name OUT _i -1 Description Storage Unit SURF 1-1 Property Value Name SURF-1 -1 X-Coordinate 554.189 Y-Coordinate 5245.793 Description Tag Inflows NO Treatment NO Invert El. 0 Max. Depth 2.00 Initial Depth 0 0 Ponded Area Evap. Factor 1 Infiltration NO Storage Curve Coefficient TABULAR 1000 Exponent 0 Constant 0 Curve Name SURF-i-i Depth (it) Area (1(2) fl 1 0.00 2865 2 0.08 2929 3 0.17 2993 4 0.25 3058 5 0.33 3123 6 0.42 3188 7 0.50 3254 8 0.58 3320 9 0.67 3386 Outlet i-i Property Value Name 1-1 Inlet Node [SURF-1-1 Outlet Node POC-1 Description Tag Inlet Offset 0 Flap Gate NO Rating Curve Coefficient TABULAR/HEAD 10.0 Exponent Curve Name Name 0.5 OUT_i-i Head l Out ow (it) ICES) f 0.042 10.105 1 0.000 0.000 2 3 0.083 0.298 4 0.125 0.548 5 0.167 0.844 6 0.208 1.179 7 0.250 1.550 9 0.292 1.953 9 0.333 2.234 - - Head 1 (It) Outflow (CFS) 1 0.000 0.000 2 0.083 0.005 3 0.167 0.010 4 0.250 0.012 5 0.333 0.015 6 0.417 0.017 0.500 0.018 8 0.583 0.020 9 1 0.667 0.021 Surface Detention and Discharge for IMP-2-1 Storage Unit SURF-2-1 Property Value Name SURF-2-1 X-Coordinate 239.000 Y-Coordinate 5245. 858 Description Tag Inflows NO Treatment NO InvertEl. 0 Max. Depth 3.5 Initial Depth 0 Ponded Area 0 Evap. Factor 1 Infiltration NO Storage Curve TABULAR Coefficient 1000 Exponent 0 Constant 10 Curve Name I SURF_2-1 IH .. . .... Storage Curve Editor Curve Name SURF-2-1 Description Depth (ft) Area (112) 1 0.00 9426 2 0.08 9492 3 0.17 9558 4 0.25 9623 5 0.33 9690 6 0.42 9756 7 0.50 8822 0.58 9889 0.67 9956 Surface Detention and Discharge for IMP-3-1 Storage Curve Editor c... J. Curve Name SURF-3-1 Description .................. Storage Unit SURF_3-1 Property Value Name SURF-3-1 X-Coordinate 1144.938 Y-Coordinate 5262. 943 Description Tag Inflows NO Treatment NO Invert El. 0 Max. Depth 2.00 Initial Depth 0 Ponded Area 0 Evap. Factor 1 Infiltration NO Storage Curve TABULAR Coefficient *i 1000 Exponent 0 Constant - Curve Name 0 1SURF-3-1 Depth (it) Area (1(2) 1 0.00 1325 2 0.08 1958 3 0.17 1991 4 0.25 2024 0.33 2057 6 042 2090 7 0.50 2124 8 0.58 2157 9 0.67 2191 Outlet 3-1 Property I Value Name 3-1 Inlet Node SURF-3-1 Outlet Node POC-1 Description Tag Inlet Offset 0 Flap Gate NO Rating Curve TABULAR/HEAD Coefficient 10.0 Exponent 0.5 Curve Name IOUT_3-1 - Rating Curve Editor Curve Name OUT-3-1 Description - Head (It) Outflow (CFS) fl 1 0.000 0.000 2 0.042 0.105 3 0.083 0.298 4 0.125 0.548 5 0.167 0.844 8 0.208 1.179 7 0.250 1.550 8 0.292 1.953 9 0.333 2.234 Surface Detention and Discharge for IMP-4-1 Surface Detention and Discharge for IMP-5-1 Storage Unit SURF _5-1 Property Value I Name SURF-5-1 X-Coordinate 1141.247 Y-Coordinate 5251.991 Description Tag Inflows NO Treatment NO Invert EL 0 Max. Depth 2 Initial Depth 0 Ponded Area 0 Evap. Factor 1 Infiltration NO Storage Curve TABULAR Coefficient 1000 Exponent 0 Constant 0 Curve Name SURF 5-1 Storage Curve Editor Curve Name SURF 5-1 Description L Outlet 5-i Property Value Name 5-1 Inlet Node SURF 5-1 Outlet Node POC-3 Description Tag Inlet Offset 0 Flap Gate NO Rating Curve TABU A R/HEAD Coefficient 10.0 L IS Exponent 0.5 Curve Name OUTLET-5-1 UP Rating Curve Editor 4. Curve Name OUTLET_5-1 Description j r - - - Head Outflow (it) (CFS) fl 0.000 0.000 2 0.042 0.079 3 0.083 0.224 4 0.125 0.411 5 0.167 0.633 6 0.208 0.884 7 0.250 1.163 8 0.292 1.465 9 0.333 1.790 - Depth Area (it) (1t2) D 1 0.00 1548 2 0.08 1573 3 0.17 1599 4 0.25 1624 5 0.33 1650 6 0.42 1676 7 0.50 1702 8 0.58 1729 9 0.67 1755 ATTACHMENT 8 Soil Map I Hydrologic Soil Group—San Diego County Area, California (Poinsettia 61) I 473900 474000 474100 474200 474300 4700 474500 474600 4740 33651N AL !' NQ , 7 / I I I •.'* T; __ I I L / I : 33616 N 33 6 16 N 473900 44000 474100 474200 1/4300 4 4400 474500 4746C0 474700 6 6 Map Scale: 1:5,270f printed onAortit(8.5"x11")sheet. I A 1000 1 300 Feet 250 100 200 Map pmjection: Web Mercator Comer coordinates: WGS64 Edge tics: UTM Zone uN WG584 I USDA Natural Resources Web Soil Survey 4113/2015 Conservation Service National Cooperative Soil Survey Page 1 of 4 Hydrologic Soil Group—San Diego County Area, California (Poinsettia 61) MAP LEGEND MAP INFORMATION Area of Interest (AOl) Area of Interest (AOl) Soils Soil Rating Polygons LJA jJ ND LJ BID EJc C/D EJO Not rated or not available Soil Rating Lines A . ND B BID - C — CID D 0 0 Not rated or not available Soil Rating Points • A • ND • B • BID C The soil surveys that comprise your AOl were mapped at 1:24000. CID Warning: Soil Map may not be valid at this scale. D Enlargement of maps beyond the scale of mapping can cause D Not rated or not available misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting Water Features soils that could have been shown at a more detailed scale. Streams and Canals Transportation Please rely on the bar scale on each map sheet for map +44 Rails measurements. Interstate Highways Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov US Routes Coordinate System: Web Mercator (EPSG:3857) Major Roads Maps from the Web Soil Survey are based on the Web Mercator Local Roads projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Background Albers equal-area conic projection, should be used if more accurate Aerial Photography calculations of distance or area are required. This product is generated from the USDA-N RCS certified data as of the version date(s) listed below. Soil Survey Area: San Diego County Area, California Survey Area Data: Version 8, Sep 17, 2014 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Data not available. The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. DA Natural Resources Web Soil Survey 4/13/2015 Conservation Service National Cooperative Soil Survey Page 2 of 4 - - - - - - - - - - - - - - - = - - - Hydrologic Soil Group—San Diego County Area, California Poinsettia 61 Hydrologic Soil Group Hydrologic Soil Group— Summary by Map Unit - San Diego County Area, California (CA638) Map unit symbol Map unit name Rating Acres in AOl Percent of AOl CfD2 Chesterton fine sandy D 0.7 0.7% loam, 9 to 15 percent slopes, ero ded CsB Corralitos loamy sand, 0 A 4.1 4.3% to 5 percent slopes CSC Corralitos loamy sand, 5 A 3.8 3.9% to 9 percent slopes HrC Huerhuero loam, 2 to 9 D 5.3 5.5% percent slopes LvF3 Loamy alluvial land- D 82.5 85.6% Huerhuero complex, 9 to 50 percent slopes, severely eroded Totals for Area of Interest 96.4 100.0% USDA Natural Resources Web Soil Survey 4/13/2015 Conservation Service National Cooperative Soil Survey Page 3 of 4 Hydrologic Soil Group—San Diego County Area, California Poinsettia 61 Description Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms. The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (AID, BID, and CID). The groups are defined as follows: Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission. Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission. Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission. Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission. If a soil is assigned to a dual hydrologic group (AID, BID, or CID), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes. Rating Options Aggregation Method: Dominant Condition Component Percent Cutoff. None Specified Tie-break Rule: Higher USDA Natural Resources Web Soil Survey 4/13/2015 Conservation Service National Cooperative Soil Survey Page 4 of 4 ATTACHMENT 9 Summary Files from the SWMM Model Pre-Dev Output (POC-1) EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.022) -------------------------------------------------------------- NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. Analysis Options Flow Units ...............CFS Process Models: Rainfall/Runoff ........YES Snowmelt ...............NO Groundwater ............NO Flow Routing ...........NO Water Quality ..........NO Infiltration Method ......GREEN AMPT Starting Date ............AUG-28-1951 05:00:00 Ending Date ..............MAY-23-2008 23:00:00 Antecedent Dry Days ......0.0 Report Time Step .........01:00:00 Wet Time Step ............00:15:00 Dry Time Step ............04:00:00 Volume Depth Runoff Quantity Continuity acre-feet inches Total Precipitation 648.812 675.260 Evaporation Loss 16.536 17.210 Infiltration Loss 534.142 555.915 Surface Runoff ...........108.842 113.278 Final Surface Storage . . . 0.000 0.000 Continuity Error )%( -1.650 ************* ****** Volume Volume Flow Routing Continuity acre-feet 10*6 gal Dry Weather Inflow 0.000 0.000 Wet Weather Inflow 108.842 35.468 Groundwater Inflow 0.000 0.000 ROIl Inflow ..............0.000 0.000 External Inflow 0.000 0.000 External Outflow 108.842 35.468 Internal Outflow 0.000 0.000 Storage Losses 0.000 0.000 Initial Stored Volume . . . 0.000 0.000 Final Stored Volume 0.000 0.000 Continuity Error (%) 0.000 Subcatchment Runoff Summary Total Total Total Total Total Total Peak Runoff Precip Runon Evap Infil Runoff Runoff Runoff Coeff Subcatchment in in in in in 10*6 gal CFS DMA 1 675.26 0.00 -------------------------------------------------------------------------------------------------------- 17.21 555.92 113.28 35.47 12.56 0.168 I SWMM 5 Page 1 Post-Dev Output (POC-1) EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.022) -------------------------------------------------------------- NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. Analysis Options Flow Units ...............CFS Process Models: Rainfall/Runoff ........YES Snowmelt ...............NO Groundwater ............NO Flow Routing ...........YES Ponding Allowed ........NO Water Quality ..........NO Infiltration Method ......GREEN ANPT Flow Routing Method ......KINWAVE Starting Date ............AUG-28-1951 05:00:00 Ending Date ..............MAY -23-2008 23:00:00 Antecedent Dry Days ......0.0 Report Time Step .........01:00:00 Wet Time Step ............00:15:00 Dry Time Step ............04:00:00 Routing Time Step ........60.00 sec WARNING 04: minimum elevation drop used for Conduit BYPASS-1-1 WARNING 04: minimum elevation drop used for Conduit 0DM 1-1 WARNING 04: minimum elevation drop used for Conduit BYPASS-3-1 WARNING 04: minimum elevation drop used for Conduit DUM_3-1 ** ******************Volume Depth Runoff Quantity Continuity acre-feet inches Total Precipitation 469.356 675.260 Evaporation Loss 32.525 46.793 Infiltration Loss 273.758 393.854 Surface Runoff ...........169.622 244.035 Final Surface Storage . . . 0.015 0.022 Continuity Error (%) -1.398 Volume Volume Flow Routing Continuity acre-feet 106 gal Dry Weather Inflow 0.000 0.000 Wet Weather Inflow 169.618 55.273 Groundwater Inflow 0.000 0.000 ROIl Inflow ..............0.000 0.000 External Inflow 0.000 0.000 External Outflow 169.580 55.260 Internal Outflow 0.000 0.000 Storage Losses 0.017 0.006 Initial Stored Volume . . . 0.000 0.000 Final Stored Volume 0.000 0.000 Continuity Error (%) 0.012 Highest Flow Instability Indexes All links are stable. Routing Time Step Summary Minimum Time Step : 60.00 sec Average Time Step : 60.00 sec Maximum Time Step : 60.00 sec Percent in Steady State : 0.00 Average Iterations per Step : 1.00 Subcatchment Runoff Summary SWMM 5 Page 1 Post-Dev Output (POC-1) Total Total -------------------------------------------------------------------------------------------------------- Total Total Total Total Peak Runoff Precip Runon Evap Infil Runoff Runoff Runoff Coeff Subcatchment in in in in in 106 gal CE'S DMA_i-i 675.26 0.00 -------------------------------------------------------------------------------------------------------- 66.50 208.57 409.88 24.59 2.59 0.607 DMA -3-1 675.26 0.00 58.96 250.84 375.90 16.21 1.86 0.557 DMA 1-BYPASS 675.26 0.00 13.55 545.54 120.51 14.55 4.83 0.178 IMP -1-1 675.26 15852.08 931.59 0.00 15817.17 24.53 2.65 0.957 IMP 3-1 675.26 15004.11 912.68 0.00 14984.47 16.19 1.90 0.956 LID Performance Summary ------------------------------------------------------------------------------------------------------------------ Total Evap Infil Surface Drain Init. Final Pcnt. Inflow Loss Loss Outflow Outflow Storage Storage Error Subcatchment LID Control in in in in in in in IMP 1-1 IMP 1-1 16527.34 931.63 0.00 1957.87 13859.98 0.00 0.99 -1.35 IMP 3-i IMP-3-1 15679.37 912.71 0.00 2105.82 12879.12 0.00 0.84 -1.40 Node Depth Summary --------------------------------------------------------------------- Average Maximum Maximum Time of Max Depth Depth HGL Occurrence Node Type --------------------------------------------------------------------- Feet Feet Feet days hr:min POC-1 OUTFALL 0.00 0.00 0.00 0 00:00 DIV_i-i DIVIDER 0.00 0.00 0.00 0 00:00 DIV 3-i DIVIDER 0.00 0.00 0.00 0 00:00 SURF 1-1 STORAGE 0.00 0.36 0.36 18857 12:14 SURF-3-1 STORAGE 0.00 0.27 0.27 18857 12:00 Node Inflow Summary Maximum ------------------------------------------------------------------------------------- Maximum Lateral Total Lateral Total Time of Max Inflow Inflow Inflow Inflow Occurrence Volume Volume Node Type CE'S ------------------------------------------------------------------------------------- CE'S days hr:min 106 gal 106 gal POC-i OUTFALL 4.83 9.32 18857 12:00 14.551 55.256 DIV_i-i DIVIDER 2.65 2.65 18857 12:00 24.530 24.530 DIV 3-i DIVIDER 1.90 1.90 18857 12:00 16.187 16.187 SURF 1-1 STORAGE 0.00 2.38 18857 12:00 0.000 2.443 SURF-3-1 STORAGE 0.00 1.71 18857 12:00 0.000 1.788 Node Surcharge Summary Surcharging occurs when water rises above the top of the highest conduit. Max. Height Mm. Depth Hours Above Crown Below Rim Node Type Surcharged Feet Feet DIV i-i DIVIDER --------------------------------------------------------------------- 497370.02 0.000 0.000 DIV 3-1 DIVIDER 497370.02 0.000 0.000 SURF 1-1 STORAGE 497370.02 0.357 1.643 SURF-3-1 STORAGE 497370.02 0.266 1.734 Node Flooding Summary No nodes were flooded. Storage Volume Summary -------------------------------------------------------------------------------------------- Average Avg E&I Maximum Max Time of Max Maximum SWMM5 Page Post-Dev Output (POC-1) Volume Pcnt Pcnt Volume Pcnt Occurrence Outflow Storage Unit 1000 ft3 Full Loss 1000 ft3 Full days hr:min CFS SURF 1-1 0.000 0 -------------------------------------------------------------------------------------------- 0 1.073 15 18857 12:13 2.36 SURF 3-1 0.000 0 0 0.527 11 18857 11:56 1.71 Outfall Loading Summary Flow Avg. Max. Total Freq. Flow Flow Volume Outfall Node Pcnt. ----------------------------------------------------------- CFS CFS 106 gal POC-1 2.59 0.16 9.32 55.256 ----------------------------------------------------------- System 2.59 0.16 9.32 55.256 Link Flow Summary --------------------------------------- Maximum I Flow I Link --------------------------------------- Type CFS BYPASS 1-1 DUMMY 2.38 DUM1-1 DUMMY 0.26 BYPASS -3-1 DUMMY 3.71 DUN 3-1 DUMMY 0.19 1-1 DUMMY 2.36 3-1 DUMMY 1.71 ------------------------------------- Time of Max Maximum Max! Max! Occurrence Ivelocl Full Full days hr:min ft/sec Flow Depth ------------------------------------- 18857 12:00 141 06:35 18857 12:00 2351 22:02 18857 12:14 18857 12:00 Conduit Surcharge Summary ---------------------------------------------------------------------------- Hours Hours Hours Full --------Above Full Capacity Conduit Both Ends ---------------------------------------------------------------------------- Upstream Dnstream Normal Flow Limited BYPASS 1-1 0.01 0.01 0.01 497370.02 0.01 DUM1-1 0.01 0.01 0.01 497370.02 0.01 BYPASS 3-1 0.01 0.01 0.01 497370.02 0.01 DUM3-1 0.01 0.01 0.01 497370.02 0.01 SWMM5 Page 3 Pre-Dev Output (POC-2) EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.022) -------------------------------------------------------------- NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. Analysis Options Flow Units ...............CFS Process Models: Rainfall/Runoff ........YES Snowmelt ...............NO Groundwater ............NO Flow Routing ...........NO Water Quality ..........NO Infiltration Method ......GREEN AMPT Starting Date ............AUG-28-1951 05:00:00 Ending Date ..............MAY -23-2008 23:00:00 Antecedent Dry Days ......0.0 Report Time Step .........01:00:00 Wet Time Step ............00:15:00 Dry Time Step ............04:00:00 *** ************* **********Volume Depth Runoff Quantity continuity acre-feet inches Total Precipitation 402.230 675.260 Evaporation Loss 14.697 24.674 Infiltration Loss 304.936 511.924 Surface Runoff 91.517 153.638 Final Surface Storage . . . 0.000 0.000 Continuity Error )%) -2.218 ***** Volume Volume Flow Routing Continuity acre-feet 10*6 gal Dry Weather Inflow 0.000 0.000 Wet Weather Inflow 91.517 29.822 Groundwater Inflow 0.000 0.000 RDII Inflow ..............0.000 0.000 External Inflow 0.000 0.000 External Outflow 91.517 29.822 Internal Outflow 0.000 0.000 Storage Losses 0.000 0.000 Initial Stored Volume . . . 0.000 0.000 Final Stored Volume 0.000 0.000 Continuity Error (8) 0.000 Subcatchment Runoff Summary Total Total -------------------------------------------------------------------------------------------------------- Total Total Total Total Peak Runoff Precip Runon Evap Infil Runoff Runoff Runoff Coeff Subcatchment in in in in in 10*6 gal CFS DMA_2 675.26 0.00 -------------------------------------------------------------------------------------------------------- 24.67 511.92 153.64 29.82 8.03 0.228 SWMM5 Page 1 Post-Dev Output (POC-2) EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.022) --------------------------------------------------------------- NOTE: The summary statistics displayed in this report are based on results found at every compuational time step, not just on results from each reporting time step. Analysis Options Flow Units ...............CFS Process Models: Rainfall/Runoff ........YES Snowmelt ...............NO Groundwater ............NO Flow Routing ............YES Ponding Allowed ........NO Water Quality ..........NO Infiltration Method ......GREEN AMPT Flow Routing Method .... KINWAVE Starting Date ............AUG-28-1951 05:00:00 Ending Date ..............MAY -23-2003 23:00:00 Antecedent Dry Days ......0.0 Report Time Step. ......... 01:00:00 Wet Time Step ............00:15:00 Dry Time Step ............04:00:00 Routing Time Step ........60.00 sec WARNING 04: minimum elevation drop used for Conduit BYPASS-2-1 WARNING 04: minimum elevation drop used for Conduit DUM2-1 Volume Depth Runoff Quantity Continuity acre-feet inches Total Precipitation 593.104 675.260 Evaporation Loss 69.068 78.635 Infiltration Loss 197.962 225.270 Surface Runoff ...........336.634 383.264 Final Surface Storage . . . 0:037 0.043 Continuity Error (%( -1.770 Volume Volume Flow Routing Continuity acre-feet 10*6 gal Dry Weather Infow 0.000 0.000 Wet Weather Inf..ow 336.616 109.691 Groundwater Infow ....... 0.000 0.000 RDII Inflow ..............0.000 0.000 External Inflow 0.000 0.000 External Outflow 334.080 108.865 Internal Outflow 0.000 0.000 Storage Losses 2.503 0.816 Initial Stored Volume . . . 0.000 0.000 Final Stored Voume 0.000 0.000 Continuity Error (8) 0.010 Highest Flow Instability Indexes All links are stable. Routing Time Step Summary Minimum Time Step : 60.10 sec Average Time Step : 60.çO sec Maximum Time Step : 60.10 sec Percent in Steady State : 0.10 Average Iterations per Step : 1.10 Subcatchment Rufloff Summary -------------------------------------------------------------------------------------------------------- Total Total Total Total Total Total Peak Runoff Precip Runon Evap Infil Runoff Runoff Runoff Coeff SWMM 5 Page 1 Post-Dev Output (POC-2) Subcatchment in in in in in 10"6 gal CFS DNA 2-1 675.26 0.00 -------------------------------------------------------------------------------------------------------- 69.55 185.48 430.47 102.75 10.37 0.637 DMA 2-BYPASS 675.26 0.00 22.89 477.12 180.58 7.64 1.78 0.267 IMP 2-1 675.26 19915.27 956.48 0.00 19777.92 102.04 10.59 0.961 LID Performance Summary ------------------------------------------------------------------------------------------------------------------ Total Evap Infil Surface Drain Init. Final Pcnt. Inflow Loss Loss Outflow Outflow Storage Storage Error Subcatchment LID Control in in in in in in in IMP 2-1 IMP 2-1 20590.53 956.51 0.00 3001.19 16777.47 0.00 1.20 -0.71 Node Depth Summary --------------------------------------------------------------------- Average Maximum Maximum Time of Max Depth Depth HGL Occurrence Node Type --------------------------------------------------------------------- Feet Feet Feet days hr:min POC-2 OUTFALL 0.00 0.00 0.00 0 00:00 DIV 2-1 DIVIDER 0.00 0.00 0.00 0 00:00 SURF 2-1 STORAGE 0.02 2.80 2.80 15835 16:22 Node Inflow Summary Maximum Maximum Lateral Total Lateral Total Time of Max Inflow Inflow Inflow Inflow Occurrence Volume Volume Node Type CFS CFS ------------------------------------------------------------------------------------- days hr:min 106 gal 106 gal POC-2 OUTFALL 1.78 7.70 15835 16:00 7.644 108.857 DIV 2-1 DIVIDER 10.59 10.59 18857 12:00 102.039 102.039 SURF-2-1 STORAGE 0.00 10.33 18857 12:00 0.000 16.661 Node Surcharge Summary Surcharging occurs when water rises above the top of the highest conduit. Max. Height Mm. Depth Hours Above Crown Below Rim Node Type Surcharged --------------------------------------------------------------------- Feet Feet DIV 2-1 DIVIDER 497370.02 0.000 0.000 SURF 2-1 STORAGE 497370.02 2.796 0.704 Node Flooding Summary No nodes were flooded. Storage Volume Summary Average Avg -------------------------------------------------------------------------------------------- ElI Maximum Max Time of Max Maximum Volume Pcnt Pcnt Volume Pcnt Occurrence Outflow Storage Unit 1000 ft3 Full Loss -------------------------------------------------------------------------------------------- 1000 ft3 Full days hr:min CFS SURF 2-1 0.152 0 5 29.534 78 15835 16:21 6.37 Outfall Loading Summary ----------------------------------------------------------- Flow Avg. Max. Total Freq. Flow Flow Volume SWMM5 Page 2 Post-Dev Output (POC-2) Outfall Node Pcnt. CFS CFS 106 gal POC-2 7.29 0.11 7.70 108.857 System ----------------------------------------------------------- 7.29 0.11 7.70 108.857 Link Flow Summery ----------------------------------------------------------------------------- Maximum Time of Max Maximum Max! Max/ IFlowl Occurrence IVelocl Full Full Link Type CFS days hr:min ft/sec Flow Depth BYPASS 2-1 DUMMY ----------------------------------------------------------------------------- 10.33 18857 12:00 DUM2-1 DUMMY 0.25 141 06:36 2-1 DUMMY 6.37 15835 16:22 Conduit Surcharge Summary ---------------------------------------------------------------------------- Hours Hours Hours Full --------Above Full Capacity Conduit Both Ends Upstream Dnstream Normal Flow Limited ---------------------------------------------------------------------------- BYPASS 2-1 0.01 0.01 0.01 497370.02 0.01 DUM2-1 0.01 0.01 0.01 497370.02 0.01 SWMM5 Page 3 Pre-Dev Output (POC-3) EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 )Build 5.0.022) -------------------------------------------------------------- NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. Analysis Options Flow Units ...............CFS Process Models: Rainfall/Runoff ........YES Snowmelt ...............NO Groundwater ............NO Flow Routing ...........NO Water Quality ..........NO Infiltration Method ......GREEN AMPT Starting Date ............AUG-28-1951 05:00:00 Ending Date ..............MAY -23-2008 23:00:00 Antecedent Dry Days ......0.0 Report Time Step .........01:00:00 Wet Time Step ............00:15:00 Dry Time Step ............04:00:00 * *********** **************Volume Depth Runoff Quantity Continuity acre-feet inches Total Precipitation 1934.226 675.260 Evaporation Loss 70.660 24.668 Infiltration Loss 1466.176 511.859 Surface Runoff ...........440.342 153.728 Final Surface Storage . . . 0.000 0.000 Continuity Error )%) -2.221 * *************************Volume Volume Flow Routing Continuity acre-feet 106 gal Dry Weather Inflow 0.000 0.000 Wet Weather Inflow 440.342 143.492 Groundwater Inflow 0.000 0.000 ROIl Inflow ..............0.000 0.000 External Inflow 0.000 0.000 External Outflow 440.342 143.492 Internal Outflow 0.000 0.000 Storage Losses 0.000 0.000 Initial Stored Volume . . . 0.000 0.000 Final Stored Volume 0.000 0.000 Continuity Error (8) 0.000 Subcatchment Runoff Summary Total Total Total Total Total Total Peak Runoff Precip Runon Evap Infil Runoff Runoff Runoff Coeff Subcatchment in in in in in 10*6 gal CFS DMA3 675.26 0.00 -------------------------------------------------------------------------------------------------------- 24.67 511.86 153.73 143.48 38.61 0.228 I SWMM5 Page 1 Post-Dev Output (POC-3) EPA STORM WATER MANAGEMENT MODEL - VERSION 5.0 (Build 5.0.022) -------------------------------------------------------------- NOTE: The summary statistics displayed in this report are based on results found at every computational time step, not just on results from each reporting time step. Analysis Options Flow Units ................CFS Process Models: Rainfall/Runoff ........YES Snowmelt ................NO Groundwater ............NO Flow Routing ............YES Ponding Allowed ........NO Water Quality ..........NO Infiltration Method ......GREEN A1PT Flow Routing Method ......KINWAVE Starting Date ............AUG-28-1956 05:00:00 Ending Date ..............MAY -23-2003 23:00:00 Antecedent Dry Days ......0.0 Report Time Step .........01:00:00 Wet Time Step .............00:15:00 Dry Time Step ............04:00:00 Routing Time Step ........60.00 sec WARNING 04: minimum elevation drop used for Conduit BYPASS-4-1 WARNING 04: minimum elevation drop used for Conduit DUM4-1 WARNING 04: minimum elevation drop used for Conduit BYPASS-5-1 WARNING 04: minimum elevation drop used for Conduit DUN 5-1 Volume Depth Runoff Quantity Continuity acre-feet inches Total Precipitation 2024.747 675.260 Evaporation Loss 104.674 34.909 Infiltration Loss 1299.933 433.532 Surface Runoff ...........642.689 214.339 Final Surface Storage . . . 0.034 0.011 Continuity Error (%) -1.115 Volume Volume Flow Routing Continuity acre-feet 10*6 gal Dry Weather inflow 0.000 0.000 Wet Weather Inflow 642.685 209.428 Groundwater Inflow 0.000 0.000 RDII Inflow ..............0.000 0.000 External Inflow 0.000 0.000 External Outflow 642.461 209.355 Internal Outflow 0.000 0.000 Storage Losses 0.162 0.053 Initial Stored Volume . . . 0.000 0.000 Final Stored Volume 0.000 0.000 Continuity Error (8) 0.010 Highest Flow Instability Indexes All links are stable. Routing Time Step Summary Minimum Time Step : 60.00 sec Average Time Step : 60.00 sec Maximum Time Step 60.00 sec Percent in Steady State : 0.00 Average Iterations per Step : 1.00 Subcatchment Runoff Summary SWMM5 Page 1 Post-Dev Output (POC-3) Total Total -------------------------------------------------------------------------------------------------------- Total Total Total Total Peak Runoff Precip Runon Evap Infil Runoff Runoff Runoff Coeff Subcatchment in in in in in 106 gal CFS Dt.1A4-i 675.26 0.00 -------------------------------------------------------------------------------------------------------- 59.95 246.98 377.42 79.65 9.10 0.559 DMA 5-1 675.26 0.00 82.20 107.07 497.54 18.90 1.66 0.737 DMA -BYPASS -3 675.26 0.00 18.25 509.63 152.35 106.54 28.93 0.226 IMP 4-1 675.26 17616.50 930.55 0.00 17590.98 79.53 9.19 0.962 IMP5-1 675.26 21656.96 962.30 0.00 21638.81 18.88 1.70 0.969 DMA 3-BYPASS-S 675.26 0.00 22.48 471.90 191.42 4.46 0.98 0.283 LID Performance Summary Total Evap ------------------------------------------------------------------------------------------------------------------ Infil Surface Drain Init. Final Pont. Inflow Loss Loss Outflow Outflow Storage Storage Error Subcatchment LID Control in in in in in in in IMP 4-1 IMP 4-1 18291.76 930.58 ------------------------------------------------------------------------------------------------------------------ 0.00 2753.95 14837.68 0.00 0.97 -1.27 IMP5-1 IMP-5-1 22332.22 962.33 0.00 3796.02 17843.56 0.00 1.42 -1.21 Mode Depth Summary --------------------------------------------------------------------- Average Maximum Maximum Time of Max Depth Depth NGL Occurrence Node Type --------------------------------------------------------------------- Feet Feet Feet days hr:min POC-3 OUTFALL 0.00 0.00 0.00 0 00:00 DIV 4-1 DIVIDER 0.00 0.00 0.00 0 00:00 DIV 5-1 DIVIDER 0.00 0.00 0.00 0 00:00 SURF 4-1 STORAGE 0.00 1.56 1.56 18857 12:20 SURF-5-1 STORAGE 0.00 0.31 0.31 18857 ii:SS Node Inflow Summary Maximum ------------------------------------------------------------------------------------- Maximum Lateral Total Lateral Total Time of Max Inflow Inflow Inflow Inflow Occurrence Volume Volume Node Type CFS CFS days hr:min 106 gal 106 gal POC-3 OUTFALL 29.91 ------------------------------------------------------------------------------------- 38.36 18857 12:00 110.997 209.340 DIV 4-1 DIVIDER 9.19 9.19 18857 12:00 79.532 79.532 DIV 5-1 DIVIDER 1.70 1.70 18857 12:00 18.884 18.884 SURF 4-i STORAGE 0.00 8.63 18857 12:00 0.000 11.477 SURF _5-1 STORAGE 0.00 1.60 18857 12:00 0.000 3.094 Node Surcharge Summary Surcharging occurs when water rises above the top of the highest conduit. Max. Height Mm. Depth Hours Above Crown Below Rim Node Type Surcharged Feet Feet DIV 4-i DIVIDER --------------------------------------------------------------------- 497370.02 0.000 0.000 DIV _5-1 DIVIDER 497370.02 0.000 0.000 SURF 4-i STORAGE 497370.02 1.557 1.273 SURF-5-1 STORAGE 497370.02 0.309 1.691 Node Flooding Summary No nodes were flooded. Storage Volume Summary SWMM5 Page 2 Post-Dev Output (POC-3) Average Avg E&I Maximum Max Time of Max Maximum Volume Pcnt Pcnt Volume Pcnt Occurrence Outflow Storage Unit 1000 ft3 Full Loss 1000 ft3 Full days hr:rnin CFS SURF 4-1 0.004 0 -------------------------------------------------------------------------------------------- 0 13.172 52 18857 12:19 7.53 SURF 5-1 0.000 0 0 0.493 13 18857 11:54 1.60 Outfall Loading Summary ----------------------------------------------------------- Flow Avg. Max. Total Freq. Flow Flow Volume Outfall Node Pcnt. ----------------------------------------------------------- CFS CFS 106 gal POC-3 2.78 ----------------------------------------------------------- 0.56 38.36 209.340 System 2.78 0.56 38.36 209.340 Link Flow Summary ----------------------------------------------------------------------------- Maximum Time of Max Maximum Max! Max! IFlowl Occurrence lVelocl Full Full Link Type ----------------------------------------------------------------------------- CFS days hr:min ft/sec Flow Depth BYPASS 4-i DUMMY 8.63 18857 12:00 DUM4-1 DUMMY 0.56 18857 11:43 BYPASS-5-1 DUMMY 1.60 18857 12:00 DUN 5-1 DUMMY 0.10 141 06:22 4-1 DUMMY 7.53 18857 12:20 5-1 DUMMY 1.60 18857 11:55 Conduit Surcharge Summary ---------------------------------------------------------------------------- Hours Hours Hours Full --------Above Full Capacity Conduit Both Ends Upstream Dnstream Normal Flow Limited BYPASS 4-1 0.01 ---------------------------------------------------------------------------- 0.01 0.01 497370.02 0.01 DUM4-1 0.01 0.01 0.01 497370.02 0.01 BYPASS-5-1 0.01 0.01 0.01 497370.02 0.01 DUN 5-1 - 0.01 0.01 0.01 497370.02 0.01 SWMM5 Page 3 ATTACHMENT 10 Drawdown Calculations L. I TORY R.WALKER ENGINEERING Project Name ....... POINSETTIA RELIABLE SOLUTIONS IN WATER RESOURCES Date ....................... .8/09/2017 Drawdown Calculation for IMP_i-i (POC-1) I Total Drawdown Time: 0.8 hours Note: Drawdown time is calculated assuming an initial water surface depth equal to the invert of the lowest surface Underdrain Orifice Diameter: S.25 in discharge opening in the basin outlet structure. C: 0.61 Amended Soil Depth: 1.50 ft Gravel Depth: 1.00 ft Surface Depth (ft) Volume (:f) I Qorifice (cfs) AT (hr) Total Time (hr) 0.50 1338 0.477 0.000 0.0 0.42 1102 0.470 0.138 0.1 0.33 871 0.463 0.137 0.3 0.25 645 0.456 0.136 0.4 0.17 425 0.449 0.135 0.5 0.08 210 0.441 0.134 0.7 0.00 0 0.434 0.133 0.8 I TORY R.WALKER ENGINEERING RELIABLE SOLUTIONS IN WATER RESOURCES Drawdown Calculation for IMP_2-1 (POC-2) Project Name POINSETTIA Project No 349-11 Date ....................... 8/09/2017 I Total Drawdown Time: 12.1 hours Underdrain Orifice Diameter: 3.25 in C: 0.61 Amended Soil Depth: 1.50 ft Gravel Depth: 1.00 ft Note: Drawdown time is calculated assuming an initial water surface depth equal to the invert of the slot orifice in the basin outlet structure. Discharge is calculated based on underdrain orifice only. The 1.0 orifice in the riser structure is ignored (conservative). Surface Depth (ft) Volume (cf) Qorifice (cfs) AT (hr) Total Time (hr) 2.50 23094 0.622 0.000 0.0 2.42 22244 0.617 0.381 0.4 2.33 21401 0.611 0.382 0.8 2.25 20563 0.606 0.383 1.1 2.17 19730 0.600 0.383 1.5 2.08 18903 0.595 0.384 1.9 2.00 18082 0.589 0.385 2.3 1.92 17266 0.584 0.386 2.7 1.83 16456 0.578 0.388 3.1 1.75 15651 0.572 0.389 3.5 1.67 14852 0.566 0.390 3.9 1.58 14059 0.560 0.391 4.2 1.50 13270 0.554 0.393 4.6 1.42 12487 0.548 0.394 5.0 1.33 11710 0.542 0.396 5.4 1.25 10938 0.536 0.398 5.8 1.17 10172 0.530 0.399 6.2 1.08 9411 0.524 0.401 6.6 1.00 8655 0.517 0.403 7.0 0.92 7904 0.511 0.405 7.4 0.83 7159 0.504 0.408 7.8 0.75 6420 0.498 0.410 8.3 0.67 5685 0.491 0.413 8.7 0.58 4956 0.484 0.415 9.1 0.50 4232 0.477 0.418 9.5 0.42 3514 0.470 0.421 9.9 0.33 2801 0.463 0.424 10.3 0.25 2093 0.456 0.428 10.8 0.17 1390 0.449 0.432 11.2 0.08 692 0.441 0.435 11.6 0.00 0 0.434 0.440 12.1 TORY R.WALKER ENGINEERING RELIABLE SOLUTIONS IN WATER RESOURCES Project Name POINSETTIA Project No 349-11 Date ....................... 8/09/2017 Drawdown Calculation for IMP_3-1 (POC-1) Total Drawdown Time: 0.8 hours Note: Drawdown time is calculated assuming an initial water surface depth equal to the invert of the lowest surface Underdrain Orifice Diameter: 2.75 in discharge opening in the basin outlet structure. C: 061 Amended Soil Depth: 1.50 ft Gravel Depth: 1.00 ft Surface Depth (ft) Volume (cf) 0o15ce (cfs) AT (hr) Total Time (hr) 0.50 914 0.343 0.000 0.0 0.42 755 0.338 0.130 0.1 0.33 599 0.333 0.129 0.3 0.25 445 0.328 0.129 0.4 0.17 294 0.323 0.129 0.5 0.08 146 0.317 0.129 0.6 0.00 0 0.312 0.129 0.8 TORY R. WALKER EN CI N E ER I NC Project Name....... POINSETTIA Project No 349-11 RELIABLE SOLUTIONS IN WATER RESOURCES Date.......................8/09/2017 Drawdown Calculation for IMP 4-1 (POC-3) I Total Drawdown Time: 1.6 hours Note: Drawdown time is calculated assuming an initial water surface depth equal to the invert of the lowest surface Underdrain Orifice Diameter: 4.25 in discharge opening in the basin outlet structure. C: 0.61 Amended Soil Depth: 1.50 ft Gravel Depth: 1.50 ft Surface Depth (ft) Volume (cf) Qorifice (cfs) £T (hr) Total Time (hr) 0.67 5017 0.901 0.000 0.0 0.58 4370 0.890 0.201 0.2 0.50 3728 0.879 0.202 0.4 0.42 3093 0.868 0.202 0.6 0.33 2463 0.856 0.203 0.8 0.25 1839 0.845 0.204 1.0 0.17 1220 0.834 0.205 1.2 0.08 607 0.822 0.206 1.4 0.00 0 0.810 0.207 1.6 I TORY R. WA LKE R EN CI N E ER I N G Project Name POINSETTIA Project No 349-11 RELIABLE SOLUTIONS IN WATER RESOURCES Date.......................8/09/2017 Drawdown Calculation for IMP 5-1 (POC-3) I Total Drawdown Time: 1.2 hours Note: Drawdown time is calculated assuming an initial water surface depth equal to the invert of the lowest surface Underdrain Orifice Diameter: 2.00 in discharge opening in the basin outlet structure. C: 0.61 Amended Soil Depth: 1.50 ft Gravel Depth: 1.00 ft Surface Depth (ft) Volume (cf) I Qorifice (cfs) I AT (hr) I Total Time (hr) 0.50 737 0.182 0.000 0.0 0.42 609 0.180 0.196 0.2 0.33 483 0.177 0.196 0.4 0.25 359 0.174 0.196 0.6 0.17 237 0.172 0.196 0.8 0.08 118 0.169 0.194 1.0 0.00 0 0.166 0.196 1.2 1 TECHNICAL MEMORANDUM: 7 Determination of Potential Critical Coarse Sediment Yield Areas for: Poinsettia (CT 14-10) City of Carlsbad, CA Prepared for: Lennar Homes of California, Inc. September 29, 2016. Revised October 9, 2017. Revised December 27, 2017. No. 45005 ) V \\*\,Ec. 3-31- 4111 2o1y Tor. Walker, R.C. E. 45005 President TORY R.WALKERENGINEERING RELIABLE SOLUTIONS IN WATER RESOURCES 2 CIVIC CENTER DR, STE 206,, VISTA, CA 92084 . 760-414-9212 TORY R.WALKERENGINEERING RELIABLE SOLUTIONS IN WATER RESOURCES I TECHNICAL MEMORANDUM I TO: Lennar Homes of California, Inc. 25 Enterprise, Suite 300 Aliso Viejo, CA 92656 FROM: Tory Walker, PE, CFM, LEED GA I DATE: September 29, 2016. Revised October 9, 2017. Revised December 27, 2017. RE: Summary of Determination of Potential Critical Coarse Sediment Yield Areas for Poinsettia, City of Carlsbad, CA. INTRODUCTION According to the Potential Critical Coarse Sediment Yield Area (PCCSYA) maps given in the Watershed Management Area Analysis (WMAA), PCCSYAs exist within the project's drainage boundaries. In addition, according to the grading plans for Poinsettia, the project discharges storm water runoff to an existing un-lined channel that runs roughly north to south through the project site. The unlined channel conveys flows to a hardened MS4 system, which eventually discharges into Batiquitos Lagoon. Based on the requirements of the City of Carlsbad BMP Design Manual' (BMPDM), projects in PCCSYAs must determine whether or not un-lined receiving streams warrant preservation of on-site coarse sediment supply (see Figure 6-1 and Form 1-10 section below). Therefore, this technical memorandum seeks to investigate the downstream receiving system's susceptibility to changes in onsite PCCSYAs, per Figure 6-1 and Form 1-10. The site investigation and GIS analysis resulted in the exemption of a portion of the project site (Drainage Management Area 1 (DMA 1) - see Figure 1 in Appendix 1) from the critical coarse sediment yield requirements. The PCCSYAs within DMA 1 drain directly to a hardened MS4 system that drains to Batiquitos Lagoon, which for the purpose of this study is considered as a bay that sinks sediment (Batiquitos Lagoon is impacted by sediment deposition, and is dredged on a regular basis - see maintenance dredging report included in Appendix 3). Per Node 3 and Node 7 of Figure 6-1 of the BMPDM (see Figure 6-1 and Form 1-10 section below), preservation of onsite PCCSYAs within DMA 1 is not required. The remaining DMAs (DMAs 2 and 3) drain to an unlined channel which drains to a hardened MS4 (concrete lined channel), and thus TRWE investigated the unlined channel and receiving MS4 in order to determine if onsite PCCSYAs require preservation. Based on the site visit, both the un-lined receiving channel and receiving MS4 are impacted by deposition of sediment; therefore no measures for protection of PCCSYAs onsite are necessary (see Figure 6-1 and Form 1-10 below). A summary of the findings of the site investigation, as well as Figure 6-1 and Form 1-10, are presented in the following sections, concluded by the final determination that preservation of onsite PCCSYAs is unnecessary. WATERSHED, FLOODPLAIN E-STORM WATER MA NAG EMENT RIVER RESTORATION FLOOD FACILITIES DESIGN SEDIMENT 6 EROSION 122 Civic CENTER DRIVE, SUITE 206, VISTA CA 92084 . 760-414-9212 . TRWENGINEERING.COM liii..... I Poinsettia PCCSYA Study December 27, 2017 —TRWE— FIGURE 6-1 & FORM 1-10 Figure 6-1 and Form 1-10 from the BMPDM are presented below as applied to the Poinsettia project. Chapter 6: Hydrornodificaon Management Requirements for PDPs LEGEND DMA DMA 2 & DMA Un-lined Channel 3. \MrattypeofreceMng water does the hardened MS4 system discharge to? Lagoonoc0cean 6. Provide measures to preservecoarse sedimentsupply HardenedMS4 ? System Reservoir, e existing MM system slnkcoarse ment? Sink 1. WIlt the project discharge runoifdirectly loan existing hardened MS4 system or to an unlined channel? 4. Is the un-Iedchann directly downsfremn of the proctorexisting hardened MM system impacted by No 5. Provide mitigation measures to preserve coarse sediment supplyto theunlinedclinenel,orprcvide addittcnal analysis to determine if sedimelfrorn the project site is not a source of bed sedimentsupplyto the channel, Yes 7. Downstream system does not warrant preservwi of cease sediment supply. No measures for preservation of coarse sediment supply from the project site are necessary. FIGURE 6-1. Evaluation of Downstream Systems Requirements for Preservation of Coarse Sediment Supply 6-6 2 Job #349-11 iii Poinsettia PCCSYA Study ______ December 27, 2017 —TRWE— Appendix I: Forms and Checklists I When it has been determined that potential critical coarse sediment yield areas exist within the project site, the next step is to determine whether downstream systems would be sensitive to reduction of coarse sediment yield from the project site. Use this form to document the evaluation of downstream systems requirements for preservation of coarse sediment supply. Project Name: Poinsettia (DMA 1) Project ID: I Will the project discharge runoff to a hardened DI-lardened MS4 system Go to 2 MS4 system (pipe or lined channel) or an un- lined channel? El Un-lined channel Go to 4 2 Will the hardened MS4 system convey DConvev Go to 3 sediment (e.g., a concrete-lined channel with steep slope and cleansing velocity) or sink sediment (e.g., flat slopes, constrictions, treatment BI{Ps, or ponds with restricted U Sink Go to 7 outlets within the system will trap sediment and not allow conveyance of coarse sediment from the project site to an un-lined system)- 3 What kind of receiving water will the hardened El Un-lined channel Go to 4 MS4 system convey the sediment to? 11 Lake Goto7 El Reservoir OBay El Lagoon Go to 6 El Ocean 4 Is the un-lined channel impacted by deposition U Yes Go to 7 of sediment? This condition must be documented by the City. No Go to 5 1-8 February 2016 I I 3 Job # 349-11 I tiiri.... I Poinsettia PCCSYA Study December 27, 2017 —TRWE— Appendix I: Forms and Checklists 5 End - Preserve coarse sediment supply to protect un-lined channels from accelerated erosion due to reduction of coarse sediment yield from the project site unless further investigation determines the sediment is not critical to the receiving stream. Sediment that is critical to receiving streams is the sediment that is a significant source of bed material to the receiving stream (bed sediment supply) (see Section 6.2.3 and Appendix H.2 of the manual). 6 End - Provide management measures for preservation of coarse sediment supply (protect beach sand supply). 7 FEndi— Downstream system does not warrant preservation of coarse sediment supply, no measures for protection of critical coarse sediment yield areas onsite are necessary. Use the space below to describe the basis for this finding for the project. 1-9 February 2016 Job # 349-11 iii —TRWE— Poinsettia PCCSYA Study December 27, 2017 Appendix I: Forms and Checklists I When it has been determined that potential critical coarse sediment yield areas exist within the project site, the next step is to determine whether downstream systems would be sensitive to reduction of coarse sediment yield from the project site. Use this form to document the evaluation of downstream systems requirements for preservation of coarse sediment supply. Project Name: Poinsettia (DMA 2 & DMA 3) Project ID: I Will the project discharge runoff to a hardened D Hardened MS4 system Go to 2 MS4 system (pipe or lined channel) or an un- lined channel? DUn-lined channel Go to 4 2 Will the hardened MS4 system convey D Convey Go to 3 sediment (e.g., a concrete-lined channel with steep slope and cleansing velocity) or sink sediment (e.g., flat slopes, constrictions, treatment BMPs, or ponds with restricted U Sink Go to 7 outlets within the system will trap sediment and not allow conveyance of coarse sediment from the project site to an un-lined system). 3 What kind of receiving water will the hardened U Un-lined channel Go to 4 MS4 system convey the sediment to? fl Lake Goto7 o Reservoir O Bay O Lagoon Go to 6 U Ocean 4 Is the un-lined channel impacted by deposition Dyes Go to 7 of sediment? This condition must be documented by the City. 0 No Go to 5 1-8 February 2016 5 Job #349-11 iiiiiir.,.. I Poinsettia PCCSYA Study ______ December 27, 2017 —TRWE— Appendix I: Forms and Checklists 5 End - Preserve coarse sediment supply to protect un-lined channels from accelerated erosion due to reduction of coarse sediment yield from the project site unless further investigation determines the sediment is not critical to the receiving stream. Sediment that is critical to receiving streams is the sediment that is a significant source of bed material to the receiving stream (bed sediment supply) (see Section 6.2.3 and Appendix H.2 of the manual). 6 End - Provide management measures for preservation of coarse sediment supply (protect beach sand supply). 7 End I- Downstream system does not warrant preservation of coarse sediment supply, no measures for protection of critical coarse sediment yield areas onsite are necessary. Use the space below to describe the basis for this finding for the project. 1-9 February 2016 Job # 349-11 Liiiiiir... I Poinsettia PCCSYA Study ______ December 27, 2017 —TRWE— SITE INVESTIGATION For DMAs 2 and 3, the site investigation sought to determine whether or not the receiving channel and MS4 are impacted by deposition of sediment. This was achieved by an in-stream analysis that evaluated the potential for an adverse reaction in the receiving channel due to changes in bed sediment supply, based on the present and potential future condition of the receiving channel. The receiving channel in its current condition is characterized by stable banks and a low angle of incision. As can be seen in the Topography Exhibit and Figures 1 through 4, the channel has a high width to depth ratio with gradual side slopes. The channel bottom width is on the order of 30-70 feet, and bank side slopes are approximately 16 percent (6 H : 1 V). Substantial vegetation is already present along the bottom and banks of the entire reach studied, even though the area burned in the Poinsettia fire just over one year prior to the site visit. Vegetation is primarily coastal sage scrub, including large shrubs with extensive root systems that extend into the bank toes and fortify the banks against potential scour and undermining. The channel was burned in the Poinsettia Fire in May 20142, thus the future condition of the channel is anticipated to be more stable than the present state due to recovery of vegetation. The Poinsettia fire burned almost the entire Poinsettia project area, leaving behind very little vegetation. At the time of the site visit 1 year and 4 months later, regrowth of vegetation was observed as seen in Figures 1 through 9, but at levels below pre-fire conditions. Even with immature vegetation, no significant erosion or evidence of sediment transport was observed after relatively heavy rain fell on the project site from a storm that ended 2 days prior to the site visit on September 16, 2015. The 24-hour rainfall total for this storm event at the project site is estimated to be over 1.3 inches, based on daily total precipitation records from the Encinitas (US1CASDO011) and Carlsbad (US1CASDO086) rain gages obtained from the National Climatic Data Center (excerpts from gages are included in Appendix 2). Given the severity of the fire and the current drought conditions which are slowing plant re- establishment, it is reasonable to assume that the vegetation observed during the site visit is significantly less dense than before the fire. This means that the historical condition representing the pre-fire site for at least the past 20 years had an even lower sediment transport potential than the currently low condition discussed in this study. The same is true for the future condition: sediment transport capacity will continue to diminish as vegetation continues to re-grow over the area. Vegetation is already becoming re-established (see Figures 1 through 4), and it will continue to increase in density and coverage to levels at least equivalent to pre-fire conditions. Assuming that the proposed Poinsettia project is built, the volume of wet weather and dry weather runoff received by the channel will increase, allowing higher vegetation growth within the channel and banks relative to pre-fire conditions. The increase in vegetation seen in natural channels receiving runoff from urban areas is a well documented phenomenon. Whether the receiving channel is transport or supply limited is one of the most important factors in determining the channel's susceptibility to changes in bed sediment supply. If the channel is transport limited, then it is by definition impacted by deposition of sediment. There is strong evidence from the site visit that the Poinsettia receiving channel is transport-limited: 7 Job #349-11 1 I Poinsettia PCCSYA Study I December 27, 2017 TRW E I . The channel geometry is conducive tc trapping sediment. The charnel bottom wicth is on the order of 30-70 feet, and oank side sloaes are approximately 16 percent (6 H : lv). Such a large width to depth ratio resLlts in broad, shallow flow with limited ability to transport sediment. I The flow is shallow relative to the high channel roughness from vegetation and debri; (see Figures 1 through 4). While the channel profile slope is approximately 2-4%, this is greatly outweighed by the wide channel bottom and shallow flow depth. I-i support of this, a normal I depth calculation using Manning's eqjation for the 2-year peak flow is provided in Appendix 2. Based on the statistical analysis presented in the HMP Study3, the 2-year peak flow was I determined by adding the 2-year pea< flows from POC-1 (5.92 cfs) and POC-2 (3.83 cfs) to arrive at a total peak flow of approximately 10 cfs. This peak flow approxmation is appropriate, considering that flow is being estimated for the sole purpose of justifying what is intuitively and I empirically observed. TFe wide and flat channel bottom was approximated by ass ming a triangular channel with 20:1 side slopes. A Manning's n value of 0.2 was assumed to represent I the high roughness produced from dense vegetation and a relatively shallow flow depth of less than 1 foot (typical for shallow flow in floodplain areas where vegetation is dense Dv2r the entire depth of flow). An average channel slope of 3% was also assumed. The resulting flow I depth is 0.8 feet and the velocity is 0.7 fps, which is well below the typical 3 fps ye ocity criteria recommended for self-cleansing charnels. . Current heavy vegetation in the channel and on the channel banks traps sediment The I vegetation will impede f ow in the channel and cause it to spread out, leading to deposition of seJment. Dense vegetation, debris, and sediment deposits were cbserved in the channel as I shown in Figures 1 throLgh 4. As discussed above, the vegetation in the channel will get progressively thicker and more estab ished with time. Therefore, the future conditicn of the channel is projected to be even more transport limited than the current state. I . Deep sediment deposition was observed in the concrete lined section of the downstream end of the receiving channel (4 foot deep trapezoidal channel (beginning of hardened M4) - see Figures 5 through 9). More than 7091c of the length of the hardened channel secticn has a 12 to I 24 inch layer of material deposited on the channel bottom. Figure 7 shows a black top layer urcerlain by the light brown silty sand found along the top of bank of the hardened :hannel. I The black layer is from more recent washoff of organics from adjacent burned areas, whereas the bottom light brown sediment Iayr pre-dates the Poinsettia fire. The sediment layer is up to 24 inches deep in some places, and as seen in Figure 9, vegetation over 6 feet tall s established I in tie sediment layer. This is evidence that from a maintenance ard flood control standpoint, the hardened channel reach has been experiencing negative impacts from sediment deposition I well before the occurrence of the Poinsettia fire. In other words, sediment is trapoed within the hardened channel and is not effectively transported downstream. I Based on the observations above, the receiving system is transport-limited and will nct respond adversely to a reduction in coarse sediment supply (if any such reduction should occur due to onsite development). Furthermore, both the receiving unlined channel and concrete lined MS4 channel I are impacted by deposition of sediment, thus per Node 4 and Node 7 of Figure 6-1, the receiving system does not warrant preservation of onsite coarse sediment supply. 8 Job #349-11 Li..... I Poinsettia PCCSYA Study ________ December 27, 2017 --TRWE--- i' 2 2 p figure 1. Looking coit I o i the receiving channel near PDint t Note the high width to depth ratio and dense vegetation. 9 Job # 349-11 Poinsettia PCCSYA Study iii December 27, 2017 - -TRWE - P 1 rj 4r - .v. kJ :F 14 LI NR : 14 V , 44 - • - - . '-4C.-- . ..- pp rJ4 Figure -- =-- - - - 0h width to cepth ratio and dense vegetation. Gradually s oped channel banks seen towards the upper left of the pic:ure are characteristic of the receiving channel. H gure 15 . L Hig cu crem middle section of me receiving cnannel oetvieen Points 14 11 and 42. The channel has a low degree of incision and channel banks are stable. Vegetation is still re-establishing after the Pa nsettia Fire, but is already relatively dense within the channel. 10 Job #349-11 ii Poinsettia PCCSYA Study December 27, 2017 ---RWE - ;..'.' fl.'-. N. jS - :- Figure 4. Looking upstream in the receiving channel from the dirt service road that crosses the receiving chanr:el rear Point #2. Due to the wide channel bottom, water sheet flows across the service road in this location. Vegetation is dense, including shrubs and oak trees with extensive root systems. Many of the oak trees and shubs sury ved the fire and are sprouting new growth. 11 Job #34c-11 Iitirir.. I Poinsettia PCCSYA S:udy _____ December 27, 2017 - T P WE :P H Figure 5. Looking downstream at the sediment deposition in the concrete lined portion of the receilirbg channel (4' deep, hardened channel), located at the downstream end of the study reach. 12 Job #349-11 Poinsettia PCCSYA Study ii December 27, 2017 —TRWE 'p 4 4; it 4•-.k -k- . IiI, Irk, : 4 j4 Figure 6. Looking downstream at the sediment deposition in the hardened portion of the channel. Sedimeit is roughly 2' deep (total channel depth is 4'). 13 Job #349-11 ii Poinsettia PCCSYA Study December 27, 2017 - TRWE— 4 Figure ]. Cross section view of tLnnt layers in the hardened channel. The black layer is the -ecent washoff of crganics from adjacent burned areas and the light brown layer is the characteristic silty sand found along the top of bank of the hardened channel. 14 Job #349-11 I iiir... I Poinsettia PCCSYA Study ______ December 27, 2017 --TRWE - 7;V :: I J (p Figure 8. Looking upstream in the hardened channel. Watei is ponded due to sediment bulicup just downstream 15 Job #349-11 ' . . 4 V. ' . W"', 40' - •_\ ' * IIiiiri..... I Poinsettia PCCSYA Study ______ December 27, 2017 -TWE - INK figure 9. _ooking upstram at the upstream end of the hardened chnrel. Large, well established vegetation (ovec 6' tall) is growing out of the sediment deposited in the channel, indicating that the channel was impacted by sediment deposition prior to the Poinsettia fire in May 2014. 16 Job # 349-11 Iiiii.... I Poinsettia PCCSYA Study ______ December 27, 2017 - -TRWE--- CONCLUSION As demonstrated by the site investigation and application of Figure 6-1, the Poinsettia pro ect's DMAs drain to receiving systems that trap and/or sink sediment (impacted by deposition of sediment). Therefore, no measures for protection of onsite potential critical coarse sediment yield areas are necessary. REFERENCES "City of Carlsbad Engineering Standards Volume 5 Carlsbad BMP Design Manual —2016 Edition," February 16, 2016, City of Carlsbad. "Poinsettia Fire Incident Information," CALFIRE, http://cdfdata.fire.ca.gov/incidents/incidentsdetails_info?incident_id=956 "Technical Memorandum: SWMM Modeling for Hydromod,fication Compliance of Poinsettia, City of Carlsbad, CA," August 9, 2017, Tory R. Walker Engineering. Order R9-2013-001, California Regional Water Quality Control Board San Diego Region (SD RWQCB). APPENDICES Figure 1 - Site Investigation Map, Project Site Topography Exhibit Normal Depth Calculation for Receiving Channel, Rain Gage Data Maintenance Dredging Report (Batiquitos Lagoon) 17 Job #349-11 APPENDIX 1 Site Investigation Map (Figure 1), Project Site Topography Exhibit 1 LIIPP' ' 44,W dft t RUNOFF FROM DMA I RECEIVED BY STORM DRAIN (MS4) SUMP (PONDING AREA TRAPS SEDIMENT) DIRT SERVICE ROAD frj UNLINED RECEIVING CHANNEL IMPACTED BY SEDIMENT DEPOSITION • I Feet o ioo 200 400 600 FIGURE 1 CONCRETE CHANNEL (MS4) IMPACTED BY SEDIMENT DEPOSITION 4 D. PCCSYA SITE INVESTIGATION MAP Legend DMA BOUNDARY SUBBASIN - BOUNDARY PCCSYA RECEIVING CHANNEL FLOWLINE STORM DRAIN FLOW DIRECTION REFERENCE POINT Ar /\ —BAs//v BouA PROJECT SITE A / TOPOGRAPHY \08y POINSETTIA N BASIN A \ () / •S ( \ A_2F) ç 10 - BASUN/ 0.63 AC ' 20 Z84 60 . B- 1A20 - 11 BASIN FLOHUNE k. < / 1 410 AC , F J 2 - N 4o / I I '.' -' • jç-- - DMA3 / NEGLIGIBLE SEDIMENT DELIVERY ' FROM AREA DRAINING TO SUMP / I BASIN &1tJNDAR' Poc-1 ' D M A 1 DING AREA I BASIN -5- / ' BASIN B 1- FLO1VNE •:- _•S . - -. 1••\ / .EVE .uI_ - -- _-,w- k - - ----. ' / '"v' / •_\ _ SUB-BASIN - - - --------- - -' BOUNDARY .--., •.-.-..... -,- ..... '•S_,.... DMA2 / CHANNEL 194 511V FLOVAJNE POC-3 'I . BOUNDARY r \ ........ •-•--- . ,..-t • S ., -, -- '_5 5. APPENDIX 2 Normal Depth Calculation for Receiving Channel, Rain Gage Data Channel Report I Hydraflow Express Extension for AutoCAD® Civil 3D® 2013 by Autodesk, Inc. Tuesday, Oct 32017 I Receiving Channel for DMA 2 and DMA 3 (2-year Peak Flow) Triangular Highlighted Side Slopes (z:1) = 20.00, 20.00 Depth (ft) Total Depth (ft) = 1.00 Q (cfs) Area (sqft) Invert Elev (ft) = 10.00 Velocity (ft/s) Slope (%) = 3.00 Wetted Perim (ft) N-Value = 0.200 Grit Depth, Yc (ft) Top Width (ft) Calculations EGL (ft) Compute by: Known Q Known Q(cfs) = 10.00 = 0.84 = 10.00 = 14.11 = 0.71 = 33.64 = 0.44 = 33.60 = 0.85 Elev (ft) Section 12.00 11.50 11.00- 10.50 10.00 9.50- - 0 5 10 15 20 25 30 35 40 45 50 Reach (ft) CARLSBAD RAIN GAGE STATION STATION-NAME ELEVATION LATITUDE LONGITUDE DATE PRCP (1/10 mm) Measurement Flag Quality Flag Source Flag Time of Observation PRCP (in) GHCND:US1CASDO086 CARLSBAD 1.3ENE CA US 59.1 33.1658 -117.3307 20150901 0 N 9999 GHCND:US1CASD0086 CARLSBAD 1.3ENE CA US 59.1 33.1658 -117.3307 20150902 0 N 9999 GHCND:US1CASD0086 GHCND:US1CASDO086 CARLSBAD 1.3ENE CA US CARLSBAD 1.3ENE CA US 59.1 33.1658 -117.3307 20150903 0 N 9999 59.1 33.1658 -117.3307 20150904 0 N 9999 GHCND:U51CASD0086 CARLSBAD 1.3ENE CA US 59.1 33.1658 -117.3307 20150905 0 N 9999 GHCND:US1CASDO086 CARLSBAD 1.3ENE CA US 59.1 33.1658 -117.3307 20150906 0 N 9999 GHCND:US1CASD0086 CARLSBAD 1.3ENE CA US 59.1 33.1658 -117.3307 20150907 0 N 9999 GFICND:US1CASDO086 CARLSBAD 1.3ENE CA US 59.1 33.1658 -117.3307 20150908 0 N 9999 GHCND:US1CASD0086 CARLSBAD 1.3ENE CA US 59.1 33.1658 -117.3307 20150909 0 N 9999 GHCND:US1CASD0086 CARLSBAD 1.3ENE CA US 59.1 33.1658 -117.3307 20150910 0 N 9999 GHCND:US1CASD0086 CARLSBAD 1.3ENE CA US 59.1 59.1 33.1658 33.1658 -117.3307 20150911 0 N 9999 GHCND:US1CASD0086 CARLSBAD 1.3ENE CA US -117.3307 20150912 0 N 9999 GHCND:US1CASD0086 CARLSBAD 1.3ENE CA US 59.1 33.1658 -117.3307 20150913 0 N 9999 GHCND:US1CASDO086 CARLSBAD 1.3ENE CA US 59.1 33.1658 -117.3307 20150914 0 N 9999 GHCND:US1CASDO086 CARLSBAD 1.3ENE CA US 59.1 33.1658 -117.3307 20150915 0 N 9999 ________ GHCND:US1CASDO086 CARLSBAD 1.3ENE CA US 59.1 33.1658 -117.3307 20150916 406 N 9999 1.598 GHCND:US1CASD0086 CARLSBAD 1.3ENE CA US 59.1 33.1658 -117.3307 20150917 0 - N 9999 GHCND:US1CASDO086 CARLSBAD 1.3ENE CA US 59.1 33.1658 -117.3307 20150918 0 N 9999 GHCND:US1CASD0086 CARLSBAD 1.3ENE CA US 59.1 33.1658 -117.3307 20150919 0 N 9999 GHCND:US1CAS00086 CARLSBAD 1.3ENE CA US 59.1 33.1658 -117.3307 20150920 0 N 9999 GHCND:US1CASD0086 CARLSBAD 1.3ENE CA US 59.1 33.1658 -117.3307 20150922 0 N 9999 GHCND:US1CA5D0086 CARLSBAD 1.3ENE CA US 59.1 33.1658 -117.3307 20150923 0 N 9999 GHCND:US1CASD0086 CARLSBAD 1.3ENE CA US 59.1 33.1658 -117.3307 20150924 0 N 9999 GHCND:US1CASDO086 CARLSBAD 1.3ENE CA US 59.1 33.1658 -117.3307 20150925 0 N 9999 GHCND:US1CASDO086 CARLSBAD 1.3ENE CA US 59.1 33.1658 -117.3307 20150926 0 N 9999 GHCND:US1CASDO086 CARLSBAD 1.3ENE CA US 59.1 33.1658 -117.3307 20150928 0 N 9999 GHCND:US1CASDO086 CARLSBAD 1.3ENE CA US 59.1 33.1658 -117.3307 120150930 0 N 1 9999 1 ENCINITAS RAIN GAGE STATION STATION-NAME ELEVATION LATITUDE LONGITUDE DATE PRCP (1/10 mm) Measurement Flag Quality Flag Source Flag Time of Observation PRCP (in) GHCND:US1CASD0011 ENCINITAS 2.7N CA US 57.3 33.0757 -117.292 20150901 0 N 9999 GHCND:US1CASD0011 ENCINITAS 2.7N CA US 57.3 33.0757 -117.292 20150902 0 N 9999 GHCND:US1CASD0011 ENCINITAS 2.7N CA US 57.3 33.0757 -117.292 20150903 0 N 9999 GHCND:US1CASD0011 ENCINITAS 2.7N CA US 57.3 33.0757 -117.292 20150904 0 N 9999 GHCND:US1CASD0011 ENCINITAS 2.7N CA US 57.3 33.0757 -117.292 20150905 0 N 9999 GHCND:US1CASD0011 ENCINITAS 2.7N CA US 57.3 33.0757 -117.292 20150906 0 N 9999 GHCND:US1CASD0011 ENCINITAS 2.7N CA US 57.3 33.0757 -117.292 20150907 0 N 9999 GHCND:US1CASD0011 ENCINITAS 2.7N CA US 57.3 33.0757 -117.292 20150908 0 N 9999 GHCND:US1CASD0011 ENCINITAS 2.7N CA US 57.3 33.0757 -117.292 20150909 0 N 9999 GHCND:US1CASD0011 ENCINITAS 2.7N CA US 57.3 33.0757 -117.292 20150910 0 N 9999 GHCND:US1CASD0011 ENCINITAS 2.7N CA US 57.3 33.0757 -117.292 20150911 0 N 9999 GHCND:US1CASD0011 ENCINITAS 2.7N CA US 57.3 33.0757 -117.292 20150912 0 N 9999 GHCND:US1CASD0011 ENCINITAS 2.7N CA US 57.3 33.0757 -117.292 20150913 0 N 9999 GHCND:US1CASD0011 ENCINITAS 2.7N CA US 57.3 33.0757 -117.292 20150914 0 N 9999 GHCND:US1CASD0011 ENCINITAS 2.7N CA US 57.3 33.0757 -117.292 20150915 3 340 [ N 9999 0.012 1.339 GHCND:US1CASD0011 ENCINITAS 2.7N CA US 57.3 33.0757 -117.292 20150916 N 9999 GHCND:US1CASD0011 ENCINITAS 2.7N CA US 57.3 33.0757 -117.292 20150917 0 N 9999 GHCND:US1CASD0011 ENCINITAS 2.7N CA US 57.3 33.0757 -117.292 20150918 0 N 9999 GHCND:US1CASD0011 ENCINITAS 2.7N CA US 57.3 33.0757 -117.292 20150919 0 N 9999 GHCND:US1CASD0011 ENCINITAS 2.7N CA US 57.3 33.0757 -117.292 20150920 0 N 9999 GHCND:US1CASD0011 ENCINITAS 2.7N CA US 57.3 33.0757 -117.292 20150921 0 N 9999 GHCND:US1CASD0011 ENCINITAS 2.7N CA US 57.3 33.0757 -117.292 20150922 0 N 9999 GHCND:US1CASD0011 ENCINITAS 2.7N CA US 57.3 33.0757 -117.292 20150923 0 N 9999 GHCND:US1CASD0011 ENCINITAS 2.7N CA US 57.3 33.0757 -117.292 20150924 0 N 9999 GHCND:US1CASD0011 ENCINITAS 2.7N CA US 57.3 33.0757 -117.292 20150925 0 N 9999 GHCND:US1CASD0011 ENCINITAS 2.7N CA US 57.3 33.0757 -117.292 20150926 0 N 9999 GHCND:US1CASD0011 ENCINITAS 2.7N CA US 57.3 33.0757 -117.292 20150927 0 N 9999 GHCND:US1CASD0011 ENCINITAS 2.7N CA US 57.3 33.0757 -117.292 20150928 0 N 9999 GHCND:US1CASD0011 ENCINITAS 2.7N CA US 57.3 33.0757 -117.292 20150929 0 N 9999 GHCND:US1CASD0011 ENCINITAS 2.7N CA US 57.3 33.0757 -117.292 20150930 0 N 9999 - - - - - - - - - - - - - - - - = APPENDIX 3 Maintenance Dredging Report (Batiquitos Lagoon) I STATE OF CALIFORNIA—THE NATURAL RESOURCES AGENCY EDMUND G. BROWN, JR., Governor CALIFORNIA COASTAL COMMISSION SAN DIEGO AREA 7575 METROPOLITAN DRIVE, SUITE 103 SAN DIEGO, CA 92108-4421 (619) 767-2370 1 F20c Filed: 180th Day: 270th Day: Staff: Staff Report: Hearing Date: 7/13/16 1/9/17 4/9/17 T.Ross-SD 12/22/17 1/11-13/17 STAFF REPORT: REGULAR CALENDAR Application No.: 6-16-0528 Applicant: CA Department of Fish and Wildlife Agent: Tim Dillingham Location: Batiquitos Lagoon between the ocean and El Camino Real and the beach area south of the lagoon inlet, Carlsbad, San Diego County. Project Description: Maintenance dredging including removal of up to 118,000 cubic yards of beach sand from the central basin to be deposited on beach area south of the lagoon inlet. Staff Recommendation: Approval with Conditions SUMMARY OF STAFF RECOMMENDATION Staff is recommending approval of the proposed project with conditions to allow dredging of up to 118,000 cubic yards of beach quality sand from the central basin of Batiquitos Lagoon to be deposited south of the lagoon inlet at South Ponto State Beach. Sand is constantly being brought into the lagoon through tidal action and continually accumulates in the lagoon. This increased sediment results in a reduced tidal prism that 6-16-0528 (CA Department of Fish and Wildlife) introduces stresses on the natural resources within the lagoon, and the proposed dredging is required to assure the continued health of the lagoon. In order to maintain a permanently open lagoon mouth and healthy lagoon ecosystem, periodic maintenance dredging of the lagoon bottom has occurred since the completion of the initial lagoon restoration plan approved in CDP 6-90-219. Over the past 20 years, five maintenance dredging proposals have previously been approved by the Commission in the form of amendments to CDP 6-90-219 and have involved the dredging of up to 100,000 cubic yards of beach quality sand per dredge event, that was subsequently deposited on nearby Carlsbad State Beach areas or existing nesting sites within the Lagoon's Ecological Reserve boundary. The proposed project will occur within Batiquitos Lagoon, where the Commission retains jurisdiction. As such, the standard of review is the Chapter 3 policies of the Coastal Act. The current application proposes the removal of the same amount of sediment approved by the Commission in 2010 (118,000 cubic yards). In addition, the proposed location for sand deposition has been the same for all six previous dredge cycles. CDFW has incorporated all previous project modifications required by the Commission regarding timing, staging locations, and dredging practices into the proposed project. The primary concerns associated with the proposed development are potential impacts to marine resources and public access. The potential impacts to marine resources identified include the disruption of nesting birds and/or grunion spawning activities, the removal of eel grass, and/or the uncovering and potential spread of the invasive algae species Caulpera during construction. Public access impacts identified include loss of beach use during sand placement, and the need to determine what the long-term benefits of sand placement are to public access. In order to address these concerns staff is recommending approval of the project with the inclusion of eight (8) Special Conditions. The attached conditions of approval require final plans which indicate appropriate staging areas (Special Condition No. 1) and that dredging can only occur between September 115 and February 15 to avoid potential disturbance of California least terns and western snowy plovers during their breeding periods as well as grunion spawning season (Special Condition No. 4). To prevent the spread of non-native invasive species, Special Condition No. 5 requires a Caulerpa taxifolia survey will be required to occur between 30 to 90 days prior to dredging commencement. The reuse of excavated material on nearby beaches will increase the amount of available recreational area for public use. Special Condition No. 2 requires a shoreline monitoring plan to be developed and implemented to determine the results of beach nourishment over five years. Special Condition No. 4 further requires that beach nourishment activities take place outside of the busy summer season from Memorial Day weekend through Labor Day so that public access is not negatively impacted. Because surfing resources could potentially be impacted by the project, Special Condition No. 3 requires the applicant to monitor surfing conditions prior to and following nourishment activities and submit monitoring reports. 2 I 6-16-0528 (CA Department of Fish and Wildlife) I Finally, Special Condition No. 8 requires the applicant to acknowledge and assume all risks and liabilities from conducting development in a hazardous location. To ensure that all development is undertaken as proposed, Special Condition No. 6 requires the applicant to submit Post-Dredging plans, that are in substantial conformance to those originally submitted, within 60 days of project completion. Additionally, this project, as proposed, was developed in conjunction with the Army Corps of Engineers and the U.S. Fish and Wildlife Service and Special Condition No. 7 1 requires the applicant to submit copies of all other required state or federal discretionary permits to the commission prior to the commencement of dredging activities. As conditioned, all potential adverse impacts on coastal resources are addressed to assure I consistency of the development with Chapter 3 policies of the Coastal Act. Therefore, Commission staff recommends approval of coastal development permit I application 6-16-0528 as conditioned herein. 6-16-0528 (CA Department of Fish and Wildlife) TABLE OF CONTENTS MOTION AND 1ISOIAIJn1hIOr ........ 5 STANDARD CONDITIONS ............................................................................ 5 SPECIAL CONDITIONS .............................. 6 FINDINGS AND DECLARATIONS ............................................................ 10 PROJECT DESCRIPTION .................................................................................................10 MARINE RESOURCES ....................................................................................................11 PUBLIC ACCESS/BEACH REPLENISHMENT ....................................................................17 LAND RESOURCES ........................................................................................................20 LOCAL COASTAL PLANNING..........................................................................................21 CALIFORNIA ENVIRONMENTAL QUALITY ACT .............................................................21 APPENDICES Appendix A - Substantive File Documents EXHIBITS Exhibit 1 - Project Location Exhibit 2 - Aerial of Project Site 4 6-16-0528 (CA Department of Fish and Wildlife) MOTION AND RESOLUTION Motion: I move that the Commission approve Coastal Development Permit Application No. 6-16-0528 subject to the conditions set forth in the staff recommendation. Staff recommends a YES vote on the foregoing motion. Passage of this motion will result in conditional approval of the permit and adoption of the following resolution and findings. The motion passes only by affirmative vote of a majority of the Commissioners present. Resolution: The Commission hereby approves coastal development permit 6-16-0528 and adopts the findings set forth below on grounds that the development as conditioned will be in conformity with the policies of Chapter 3 of the Coastal Act and will not prejudice the ability of the local government having jurisdiction over the area to prepare a Local Coastal Program conforming to the provisions of Chapter 3. Approval of the permit complies with the California Environmental Quality Act because either ])feasible mitigation measures and/or alternatives have been incorporated to substantially lessen any significant adverse effects of the development on the environment, or 2) there are nofurtherfeasible mitigation measures or alternatives that would substantially lessen any significant adverse impacts of the development on the environment. STANDARD CONDITIONS This permit is granted subject to the following standard conditions: Notice of Receipt and Acknowledgment. The permit is not valid and development shall not commence until a copy of the permit, signed by the permittee or authorized agent, acknowledging receipt of the permit and acceptance of the terms and conditions, is returned to the Commission office. 2. Expiration. If development has not commenced, the permit will expire two years from the date on which the Commission voted on the application. Development shall be pursued in a diligent manner and completed in a reasonable period of time. Application for extension of the permit must be made prior to the expiration date. Interpretation. Any questions of intent of interpretation of any condition will be resolved by the Executive Director or the Commission. 6-16-0528 (CA Department of Fish and Wildlife) Assignment. The permit may be assigned to any qualified person, provided assignee files with the Commission an affidavit accepting all terms and conditions of the permit. Terms and Conditions Run with the Land. These terms and conditions shall be perpetual, and it is the intention of the Commission and the permittee to bind all future owners and possessors of the subject property to the terms and conditions. III. SPECIAL CONDITIONS This permit is granted subject to the following special conditions: Final Plans. PRIOR TO ISSUANCE OF THE COASTAL DEVELOPMENT PERMIT, the applicant shall submit, for the review and written approval of the Executive Director, one full-size set of the following final plans: (a) Dredge and Sand Placement Plans that substantially conform with the plan submitted to the Commission by California Department of Fish and Wildlife dated May 2016. The Plans shall show that the location of all staging is limited to Nesting Site El. The permittee shall undertake development in conformance with the approved final plans unless the Commission amends this permit or the Executive Director determines that no amendment is legally required for any proposed minor deviations. 2. Beach Sand Monitoring. PRIOR TO ISSUANCE OF THE COASTAL DEVELOPMENT PERMIT, the applicant shall submit to the Executive Director for review and written approval, a detailed beach sand monitoring program for shore and nearshore monitoring at and near the receiver site (South Ponto Beach, directly south of the mouth of Batiquitos Lagoon). Monitoring at and adjacent to the receiver sites shall address the following concerns: (a) Monitoring at and adjacent to the receiver sites shall address the following concerns: Confm as-built project plans for location and deposition amounts and document any plan revisions; Seasonal and inter-annual changes to the receiver sites, in width of dry beach, subaerial and nearshore slope, offshore extent of nourished toe, and overall volume of sand in the profile; Extent of transport of material up- and down-coast from the receiver sites; and Time period over which the beach benefits related to the project can be identified as distinct from background conditions. (b) The plan shall be prepared by a qualified engineer with experience in coastal engineering and include, at a minimum, the following: 6-16-0528 (CA Department of Fish and Wildlife) Field surveys of the receiver sites and adjacent areas. Unless otherwise indicated, all profiles shall extend from an upland fixed location or monument, across the beach, through the nearshore, to closure depth. Profiles shall be prepared within six months prior to sand placement, promptly upon completion of sand placement (this survey may be terminated offshore at the toe of the project rather than going to closure), and 3 months after completion of sand placement. In addition, beach profile monitoring shall be conducted on a semi-annual basis each spring and fall for five (5) years following completion of sand placement. There shall be a minimum of one profile through the South Ponto Beach receiver site, and at least one profile up-coast and two profiles down-coast of this receiver site. Monitoring information shall be analyzed regularly for any changes that have occurred at the receiver sites. To the extent practicable, these reports shall incorporate information from the San Diego Regional Monitoring Program on both historic changes at the receiver sites and on-going regional shoreline trends. A site specific determination of the current location of the Mean High Tide Line (MHTL) shall be conducted at the receiver site prior to beach nourishment, with the consultation and written confirmation of the State Lands Commission. V. Oblique aerial photographs of the receiver sites shall be taken semi-annually during the first two years following the completion of sand placement, and annually during Year 3 and Year 4 following completion of sand placement. vi. Annual monitoring reports and a final report evaluating long-term effects of the sand placement shall be submitted to the Executive Director, NMFS, CDFW, and USACE. The permittee shall undertake development in conformance with the approved final plan unless the Commission amends this permit or the Executive Director provides a written determination that no amendment is legally required for any proposed minor deviations. 3. Surf Monitoring Plan. PRIOR TO ISSUANCE OF THE COASTAL DEVELOPMENT PERMIT, the applicant shall submit to the Executive Director, for review and written approval, a Surf Monitoring Plan to visually monitor surfing conditions at and adjacent to South Ponto Beach before and after sand placement. The Surf Monitoring Plan shall include, at a minimum, the following: Identify the major surfing breaks at and adjacent to South Ponto Beach and determine appropriate monitoring sites; Document morning conditions using a standardized data sheet, with video recording as appropriate, as follows: Pre-construction monitoring shall begin two weeks prior to sand placement, and take place 3 times per week over 14 days; and Post-construction monitoring shall begin within two weeks following completion of sand placement, and take place 3 times per week over 30 days. 6-16-0528 (CA Department of Fish and Wildlife) Surf monitoring shall include estimates of wave height, type of wave (hollow or mushy), breaker distance from shore, length of peel, and existence of backwash; Conduct standardized interviews with surfers using a questionnaire; Estimate the density of surfers at each site surfing site during monitoring; and A final report that includes the monitoring results and an analysis of any change in surfing conditions, which shall be submitted to the Executive Director within 90 days of the final survey. The permittee shall undertake development in conformance with the approved final plan unless the Commission amends this permit or the Executive Director provides a written determination that no amendment is legally required for any proposed minor deviations. 4. Timing of Dredging and Beach Deposition. PRIOR TO THE ISSUANCE OF THE COASTAL DEVELOPMENT PERMIT, the applicant shall submit to the Executive Director for review and written approval, final plans which incorporate the following: Public Access/Timing. Placement of sand on Carlsbad State Beach shall occur outside of the summer season of any year (Memorial Day weekend through Labor Day). Sensitive Bird Species/Timing. To avoid potential impacts to the California least tern and western snowy plover breeding period, construction will not be permitted between the dates of March 1 to August 31 of any year. California Grunion/Timing. To avoid potential impacts to the California grunion no placement of sand shall occur during the grunion spawning period of March 1 through August 31 of any year. The permittee shall undertake development in accordance with the approved final plans. Any proposed changes to the approved final plans shall be reported to the Executive Director. No changes to the approved final plans shall occur without an amendment to this coastal development permit unless the Executive Director determines that no amendment is legally required. 5. Invasive Species. PRIOR TO THE COMMENCEMENT OF DREDGING, the applicant shall provide evidence that dredging of Batiquitos Lagoon can occur without the risk of spreading the invasive green alga Caulerpa taxifolia as follows. (a) Not earlier than 90 days nor later than 30 days prior to commencement or re- commencement of any dredging authorized under this coastal development permit, the applicant shall undertake a survey of the project area dredged area, anchoring areas, and any other areas where the bottom could be disturbed by project activities) and a buffer area at least 10 meters beyond the project area to determine the presence of the invasive alga Caulerpa taxfolia. The survey shall include a visual examination of the substrate. 6-16-0528 (CA Department of Fish and Wildlife) (b) The survey protocol shall be prepared in consultation with the Regional Water Quality Control Board, the California Department of Fish and Wildlife, and the National Marine Fisheries Service. (c) Within five (5) business days of completion of the survey, the applicant shall submit the survey: For the review and written approval of the Executive Director; and To the Surveillance Subcommittee of the Southern California Caulerpa Action Team (SCCAT). If Caulerpa is found, then the NMFS and DFW contacts shall be notified within 24 hours of the discovery. (d) If Caulerpa is found, the applicant shall, prior to the commencement of dredging, provide evidence to the Executive Director for review and written approval either that the all Caulerpa discovered within the project and buffer areas have been eradicated or that the dredging project has been revised to avoid any contact with Caulerpa. No changes to the dredging project shall occur without a Coastal Commission approved amendment to this coastal development permit unless the Executive Director determines that no amendment is required. 6. Post Dredging Plans. Within 60 days of the dredging of the lagoon, final dredging and deposition plans shall be submitted which indicate: The lagoon has been dredged consistent with the preliminary plans submitted with the application. The South Ponto portion of Carlsbad State Beach has been nourished consistent with the preliminary beach profiles submitted with the application. 7. Other Permits. PRIOR TO THE COMMENCEMENT OF DREDGING, the applicant shall submit copies of all other required state or federal discretionary permits form the U.S. Fish and Wildlife Service and the Army Corps of Engineers for the proposed project. Any mitigation measures or other changes for the project required through said permits shall be reported to the Executive Director and shall become part of the project. No changes to the project shall occur without a Coastal Commission approved amendment to this coastal development permit unless the Executive Director determined that no amendment is legally required. 8. Assumption of Risk, Waiver of Liability and Indemnity Agreement. By acceptance of this permit, the applicant acknowledges and agrees (i) that the site may be subject to hazards from wave action; (ii) to assume the risks to the applicant and the 6-16-0528 (CA Department of Fish and Wildlife) property that is the subject of this permit of injury and damage from such hazards in connection with this permitted development; (iii) to unconditionally waive any claim of damage or liability against the Commission, its officers, agents, and employees for injury or damage from such hazards; and (iv) to indemnify and hold harmless the Commission, its cfficers, agents, and employees with respect to the Commission's approval of the project against any and all liability, claims, demands, damages, costs (including costs and fees incurred in defense of such claims), expenses, and amounts paid in settlement arising from any injury or damage due to such hazards. IV. FINDINGS AND DECLARATIONS A. PROJECT HISTORY/PROJECT DESCRIPTION Project History Batiquitos Lagoon was restored to tidal influence in 1997 by the Port of Los Angeles to mitgate impacts of a wetlands fill project (ref. CDP No. 6-90-219). The restoration of Batiquitos Lagoon was designed to create a lagoon with large/deep basins, and to primarily provide fish nursery habitat area. In order to provide such habitat, the restoration also included introduction of eelgrass and cordgrass, both of which rely on good water quality and the tidal action of an open lagoon mouth. However, the combination of large/deep basins and the open condition of the mouth allows sand passing in front of the mouth (through natural sand migration within the littoral cell) to be drawn into the lagoon and deposited in the shoals around Carlsbad Boulevard Bridge and the railroad trestles. If left unmaintained, this leads to the closure of the lagoon mouth and deteriorated water quality and the potential loss of both eelgrass and cordgrass habitats. It was therefore anticipated in the original approval that maintenance dredging would be required to maintain lagoon health. Further, removal of the material trapped in the lagoon and subsequent replacing in the nearshore area will allow that material to continue its natural transport south along the coast. Since the time of restoration, the Department has performed five maintenance dredge events, all of which have received approval by the Commission (ref. CDP No. 6-90-219 including amendments; CDP 6-10-020). The subject permit application is the sixth maintenance dredge project request. Project Description CDFW is proposing to perform maintenance dredging of the Lagoon's Central Basin that would remove 118,000 cubic yards of beach quality sand to be placed south of the lagoon inlet. The project, as proposed, will serve to maintain the tidal lagoon opening and restore the necessary tidal prism. The dredging of sand will be accomplished by an air- quality certified suction dredge (diesel dredge with certification of emissions as required by the Air Resouces Board) that will remove sand from the central lagoon basin and pump it via pipe to South Ponto Beach, a part of Carlsbad State Beach, which is owned by the California Department of Parks and Recreation (CDPR). This pipe would be 10 6-16-0528 (CA Department of Fish and Wildlife) placed along the upper section of the beach, then along the edge of the bluff to the discharge point to minimize crossings of the beach. Sections of the exposed pipe will be buried to allow crossings for emergency vehicles. Grain size has been tested and the grain size of the shoal material at the proposed dredge site has been determined to be at least 97.5% consistent with that found at the beach placement site. Additional samples were taken throughout the central basin and in no case were samples found to be less than 80% consistent with beach samples. All work will be completed between September 15 and March 1 to avoid the California least tern and Western snowy plover nesting seasons. This timing will also avoid grunion spawning season as well as the high recreational use periods on the beaches (Memorial Day weekend to Labor Day). All staging is proposed within the perimeters of the project itself and the dredge methodology and sand replenishment operations will comply with all applicable Chapter 3 Coastal Act policies. The current application proposes the removal of the same amount of sediment approved by the Commission in 2010 (118,000 cubic yards). In addition, the proposed location for sand deposition has been the same for all five previous proposals. CDFW has incorporated all previous project modifications required by the Commission regarding timing, staging locations, and dredging practices into the proposed project. B. MARINE RESOURCES Section 30230 of the Coastal Act states: Marine resources shall be maintained, enhanced, and where feasible, restored Special protection shall be given to areas and species of special biological or economic significance. Uses of the marine environment shall be carried out in a manner that will sustain the biological productivity of coastal waters and that will maintain healthy populations of all species of marine organisms adequate for long- term commercial, recreational, scientific, and educational purposes. Section 30231 of the Coastal Act states: The biological productivity and the quality of coastal waters, streams, wetlands, estuaries, and lakes appropriate to maintain optimum populations of marine organisms and for the protection of human health shall be maintained and, where feasible, restored through, among other means, minimizing adverse effects of waste water discharges and entrainment, controlling runoff, preventing depletion of ground water supplies and substantial interference with surface water flow, encouraging waste water reclamation, maintaining natural vegetation buffer areas that protect riparian habitats, and minimizing alteration of natural streams. 11 6-16-0528 (CA Department of Fish and Wildlife) Section 30233 of the Coastal Act states: (a) The diking, filling, or dredging of open coastal waters, wetlands, estuaries, and lakes shall be permitted in accordance with other applicable provisions of this division, where there is no feasible less environmentally damaging alternative, and where feasible mitigation measures have been provided to minimize adverse environmental effects, and shall be limited to the following: New or expanded port, energy, and coastal-dependent industrial facilities, including commercial fishing facilities. Maintaining existing, or restoring previously dredged, depths in existing navigational channels, turning basins, vessel berthing and mooring areas, and boat launching ramps. In wetland areas only, entrance channels for new or expanded boating facilities; and in a degraded wetland, identified by the Department of Fish and Game pursuant to subdivision ('b) of Section 30411, for boating facilities if, in conjunction with such boating facilities, a substantial portion of the degraded wetland is restored and maintained as a biologically productive wetland. The size of the wetland area used for boating facilities, including berthing space, turning basins, necessary navigation channels, and any necessary support service facilities, shall not exceed 25 percent of the degraded wetland. In open coastal waters, other than wetlands, including streams, estuaries, and lakes, new or expanded boating facilities and the placement of structural pilings for public recreational piers that provide public access and recreational opportunities. Incidental public service purposes, including but not limited to, burying cables and pipes or inspection ofpiers and maintenance of existing intake and outfall lines. Mineral extraction, including sand for restoring beaches, except in environmentally sensitive areas. Restoration purposes. Nature study, aquaculture, or similar resource dependent activities. (b) Dredging and spoils disposal shall be planned and carried out to avoid significant disruption to marine and wildlife habitats and water circulation. Dredge spoils suitable for beach replenishment should be transported for such purposes to appropriate beaches or into suitable long shore current systems. (c) In addition to the other provisions of this section, diking, filling, or dredging in existing estuaries and wetlands shall maintain or enhance the functional capacity 12 6-16-0528 (CA Department of Fish and Wildlife) of the wetland or estuary. Any alteration of coastal wetlands identified by the Department of Fish and Game, including, but not limited to, the 19 coastal wetlands identified in its report entitled, "Acquisition Priorities for the Coastal Wetlands of California", shall be limited to very minor incidental public facilities, restorative measures, nature study, commercial fishing facilities in Bodega Bay, and development in already developed parts of south San Diego Bay, if otherwise in accordance with this division. Section 30230 and 30231 state, in part, that marine resources shall be maintained and restored where possible and shall promote the highest feasible level of biological productivity. The dredging is designed to allow for the tidal flushing of the lagoon, a necessary action to maintain lagoon health, and to promote ecological productivity. The current levels of sand in the lagoon basin mute tidal influence, which will eventually lead to stagnation, anoxia (lack of oxygen), associated fish kills, and the emigration of protected shorebirds. The dredging of the central basin will restore the core functions of the lagoon, thus promoting a healthier ecosystem. As noted, a number of marine resources are present in and adjacent to the lagoon. These include endangered bird species, including California least terns and western snowy plovers, as well as California grunion and eel grass beds. Impacts to such resources can occur during construction, as the noise and general activity can cause birds to move out of the area and can prevent grunion from spawning. In addition, dredging can result in the removal of eelgrass. Furthermore, the highly-invasive tropical species Caulerpa taxfolia has been found in Agua Hedionda (nearby lagoon to the north), thus the potential spread of Caulerpa is an additional marine resource impact concern. Finally, sand nourishment at beaches can impact the diversity and abundance of invertebrates, plants, and birds present on the sandy beaches proposed for nourishment as well as adjacent beaches and intertidal/subtidal areas. As such, protection of these various resources needs to be assured. To address the potential impacts to endangered birds and the spawning of grunion, the applicant is proposing to limit dredging and sand placement activities to between September 15 and March ito avoid the nesting seasons of the California least tern and Western snowy plover. This timing will also avoid the California grunion spawning season. To assure that no dredging or sand placement activities occur during this period, Special Condition No. 4 addresses the timing of construction to assure that impacts to avian and grunion species do not occur. In addition, Special Condition No. 7 requires that the applicant provide evidence of obtaining all other State and Federal permits that may be necessary for all aspects of the proposed project because the proposed project includes work within wetlands and tidally influenced areas. Eelgrass beds currently occupy a large part of the eastern lagoon basin and small sections of the western and central basins, and provide habitat for many fish and invertebrates. However, the existing eelgrass beds in the central basin lie outside of the proposed dredging parameters and no impacts to existing eelgrass habitats are expected as part of this proposed project. Eelgrass was planted as a part of the restoration efforts with the understanding that the lagoon would require occasional dredging, and the specifications 13 6-16-0528 (CA Department of Fish and Wildlife) of the original permit regarding dredging authorized the occasional removal of eel grass beds. Additionally, when the lagoon is fully functional, the sheer velocity of the current deters the growth of eel grass in the proposed dredging zone; thus, even if the dredging were designed to avoid the eel grass beds, once dredged, the conditions would not allow for the persistence of the eel grass population in that area of the lagoon. Regarding the invasive species Calupera taxfolia, these organisms have proven to be detrimental to native habitats; and, in 1999, Caulerpa was designated a prohibited species in the United States under the Federal Noxious Weed Act. AB 1334, enacted in 2001 and codified at California Fish and Wildlife Code Section 2300, forbids possession of Caulerpa. In June 2000, Caulerpa was discovered in Aqua Hedionda Lagoon in San Diego County and in August of that year, an infestation was discovered in Huntington Harbor in Orange County. Other infestations are likely. Although a tropical species, Caulerpa has been shown to tolerate water temperatures down to at least 50° F and will rapidly expand in lagoon environments until endemic species become displaced. Although warmer southern California habitats are most vulnerable, until better information is available, it must be assumed that the whole California coast is at risk. All shallow marine habitats could be impacted. In response to the threat that Caulerpa poses to California's marine environment, the Southern California Caulerpa Action Team, SCCAT, was established to respond quickly and effectively to the discovery of Caulerpa infestations in Southern California. The group consists of representatives from several state, federal, local and private entities. The goal of SCCAT is to completely eradicate all Caulerpa infestations. If Caulerpa were allowed to reproduce unchecked within area lagoons, sensitive eelgrass beds and the wildlife that depend upon them would be adversely impacted. Therefore, eradication of Caulerpa would be beneficial for native habitat and wildlife. To date, Caulerpa has not been found in Batiquitos Lagoon. However, in order to assure that the proposed project does not cause the dispersal of Caulerpa, the Commission requires Special Condition No. 5, which requires the applicant, prior to dredging, to survey the project area (which includes the dredged area, anchoring areas, and any other areas where the bottom could be disturbed by project activities) for the presence of Caulerpa. If Caulerpa is found in the project area or buffer areas, then prior to commencement of any dredging, the applicant must provide evidence that the Caulerpa within the project or buffer areas has been eradicated (the applicant could seek an emergency permit from the Executive Director to authorize the eradication) or that the dredging project has been revised to avoid any disturbance of Caulerpa. If revisions to the project are proposed to avoid contact with Caulerpa, then the applicant shall consult with the local Coastal Commission office to determine if an amendment to this permit is required. The dredging of the lagoon mouth will result in the removal of approximately 118,000 cubic yards of material. CDFW has submitted sand grain analyses that indicate this material has been determined to be at least 97.5% consistent with that found at the beach placement site. Therefore, it is proposed, and appropriate, to place this beach-quality sand on adjacent beach area. CDFW is proposing to place the dredged sand material onto South Ponto State Beach, an existing sandy beach area located directly south of the lagoon inlet. This sediment will help nourish this beach temporarily, but will ultimately 14 6-16-0528 (CA Department of Fish and Wildlife) return to the littoral cell and will be transported down shore. Such activities, while a benefit to public access and recreation, can result in impacts to marine resources. Specifically, nourishment at beaches can impact the diversity and abundance of invertebrates, plants, and birds present on sandy beaches and intertidal areas. Beach nourishment can bury kelp wrack washed ashore during high tides as well as disturb plants and invertebrates colonizing the sand. As such, sand replenishment must be carried out in a manner that sustains the biological productivity of coastal waters. Thus, to better address these concerns, the Commission has included ecological monitoring as a condition of approval for recent projects that include deposition of sand on the beach (ref. CDP Nos. 6-16-0275/San Elijo Lagoon Restoration; 4-15-0390/Broad Beach GHAD). However, in this particular case, the Commission's ecologist has determined that detailed ecological monitoring in not necessary to evaluate impacts associated with the proposed sand deposition, because the 118,000 cubic yards of replenishment material slated for South Ponto Beach, while not an insignificant volume, is unlikely to result in any significant ecological impacts. The amount currently proposed to be placed on South Ponto Beach is a similar amount to that placed there numerous times before, including in 2001 (118,000 cubic yards) associated with the Regional Beach Sand Project I (ref. CDP No. 6-00-038); in 2011(112,000 cubic yards) associated with a previous CDFW maintenance dredging project (ref. CDP No. 6-10-020), and less than the volume placed in 2012 (140,000 cubic yards) associated with the Regional Beach Sand Project II (Ref. CDP No. 6-11-018). Thus, the beach in this location has a long history of receiving dredged sand in the amount proposed. The advantage to continuing to place sand at this receiver beach is that any impacts to marine species at and around the site have previously occurred here, and no new or additional impacts are expected to result from the current project. In addition, the sand being proposed to be placed on the beach is being brought into the lagoon directly from the littoral cell. Specifically, during high tides sand is sucked into the lagoon and then becomes trapped by the bridge overcrossings of Carlsbad Boulevard and the NCTD rail corridor (ref. Exhibit Nos. 1, 2). This sand would otherwise continue along downshore through normal sand transportation processes. As such, the sand being deposited is not a new source of sand into the littoral cell, but rather replacement of sand that was already within the littoral cell that has become trapped by tidal activity and the presence of infrastructure within the restored lagoon. In other words, the project mimics the sand placement that would occur naturally in this location were it not for the artificial development of a permanent lagoon inlet, necessary to support the restoration efforts within the lagoon. This type of sand bypass activity is further less likely to result in significant, long-term ecological impacts because the dredged sand originated from the littoral cell and so therefore is similar to the native beach sand already present on the receiver beach. It is important to note that while maintenance dredging is considered a necessary part of maintaining a healthy and functioning restored lagoon system, as originally designed, the maintenance dredging was anticipated to occur every one or two years. The last two dredging proposals by CDFW have been after a number of years without maintenance, 15 6-16-0528 (CA Department of Fish and Wildlife) and in this case, dredging has not occurred since 2012. This delay in maintenance dredging has resulted in a larger amount of sand that needs to be removed, which also increases the amount of sand proposed to be deposited on South Ponto Beach. Ideally, CDFW would continue maintenance activities on a more frequent basis, which would reduce the amount of sand placed on the beach during each event and would minimize the amount and duration of tidal muting that would occur within the lagoon. Historically, CDFW has been the sole entity responsible for such maintenance activities, through the establishment of an endowment as a part of the original lagoon restoration. Unfortunately, this endowment has proven to be insufficient to fund adequate ongoing maintenance of the lagoon. As such, maintenance dredging has been postponed until the there was enough funding to pay for the dredging. However, this dredging and future ongoing inlet maintenance of Batiquitos Lagoon will now be wholly funded by Caltrans and the San Diego Association of Governments (SANDAG) as a part of a larger, regional mitigation package (REMP) to address impacts resulting from implementation of the highway, rail, and community enhancement projects in the North Coast Corridor Public Works Plan and Transportation and Resource Enhancement Program (NCC PWP/TREP). As such, it is anticipated that CDFW will now have funding adequate to facilitate future maintenance activities on a smaller-scale and more frequent basis. This will not only reduce any potential impacts on marine resources associated with high volume of sand placement, but will also decrease the amount of tidal muting between dredge cycles. As such, in this case, the Commission has determined that because of the specific set of circumstances discussed above, requiring ecological monitoring for this specific project is not appropriate at this time. However, in the future, when additional maintenance dredging at Batiquitos Lagoon is proposed, if the potential for new or additional impacts to ecological resources is identified, ecological monitoring similar to other projects approved by the Commission may be required. Finally, Section 30233 requires that dredging of open coastal waters shall only be permitted when there is no feasible less environmentally-damaging alternative, where feasible mitigation measures have been provided to minimize adverse environmental effects, where such dredging is one of the permitted uses cited, and where fuctional capacity of the wetland is maintained or enchanced. In the case of the subject proposal, the Commission has previously found that the Batiquitos Lagoon Enhancement Plan represented a restoration project for the lagoon and was consistent with Section 30233. The proposed project will enhance the functional capacity of the lagoon. Because the proposed maintenance dredging was anticipated to assure the continued success of the restoration of Batiquitos Lagoon, it can also be found a permitted use under Section 30233 and is proposed as the least environmentally damaging alternative. Special Condition No. 1 requires that the applicant be restricted to the use of the one designated staging area in order to minimize the impact to marine resources. With respect to the proposed dredging of the lagoon in this application, no new impacts will occur to sensitive habitat areas covered by the restoration plan. In summary, the proposed dredging is necessary to restore tidal prism to Batiquitos Lagoon to assure success of previously approved restoration efforts. The proposed dredging is a permitted use under Section 30233 of the Coastal Act and as conditioned; 16 6-16-0528 (CA Department of Fish and Wildlife) no adverse impacts to sensitive coastal resources are anticipated. Therefore, the Commission finds the proposed work, as conditioned, is consistent with Section 30230, 30231 and 30233 of the Coastal Act. C. PUBLIC ACCESS/BEACH REPLENISHMENT Section 30604(c) of the Coastal Act states: Every coastal development permit issued for any development between the nearest public road and the sea or the shoreline of any body of water located within the coastal zone shall include a specific finding that the development is in conformity, with the public access and public recreation policies of Chapter. Section 30210 of the Coastal Act states: In carrying out the requirement of Section 4 ofArticle X of the California Constitution, maximum access, which shall be conspicuously posted, and recreational opportunities shall be provided for all the people consistent with public safety needs and the need to protect public rights, rights ofprivate property owners, and natural resource areas from overuse Section 30211 of the Coastal Act states: Development shall not interfere with the public right of access to the sea where acquired through use or legislative authorization, including, but not limited to, the use of dry sand and rocky coastal beaches to the first line of terrestrial vegetation. Section 30221 of the Coastal Act states: Oceanfront land suitable for recreational use shall be protected for recreational use and development unless present and foreseeable future demand for public or commercial recreational activities that could be accommodated on the property is already adequately provided for in the area. Section 30233(b) of the Coastal Act states: Dredging and spoils disposal shall be planned and carried out to avoid significant disruption to marine and wildlife habitats and water circulation. Dredge spoils suitable for beach replenishment should be transported for such purposes to appropriate beaches or into suitable long shore current systems. The subject proposal involves dredging the Central basin of Batiquitos Lagoon, including placement of dredged spoils on the adjacent South Ponto Beach. There are several provisions of the Coastal Act that are applicable to the proposed project and encourage use of suitable dredged material to supply the region's littoral zones with sand. Such deposition of beach quality material on the region's shoreline will create and protect 17 6-16-0528 (CA Department of Fish and Wildlife) coastal recreational areas for use by the general public, consistent with the cited Coastal Act policies. The above language in Section 30233(b) clearly suggests the benefit of restoring the region's beaches through use of material that would otherwise reach the shoreline, but for human intervention by development and flood control projects. Therefore, the Commission finds that when dredged material is compatible with and suitable for use as beach sand along the region's shoreline, it should be transported to the shoreline for such use, as is proposed herein, to support the public access and recreation policies of the Act. Sand grain analyses were completed on the lagoon sediment and determined that the grain size of the lagoon sediment is at least 97.5% consistent with the sand on South Ponto Beach. As such, the sand proposed for removal is considered beach quality and should be placed on the adjacent beach area, consistent with Sections 30233(b) and 30235 of the Coastal Act. Special Condition No. 6 requires that the applicant submit a report within 60 days of completion verifying Carlsbad State Beach has been nourished consistent with the preliminary beach profiles submitted with the application. It is difficult to estimate precisely how long the fill sand will remain on the beach; and therefore, how long the public will have the benefit of wider sandy beaches. Historically, sand has been placed on beaches with very little or no monitoring of the sand profile over time. To date, all previous sand placement projects on South Ponto Beach by CDFW have been approved by the Commission absent any requirement for monitoring. It is only recently that the Commission, as well as numerous other stakeholders, have identified the value and need to include monitoring to help stakeholders better predict and determine how long the sand is retained on beaches and where it moves post- nourishment. As such, Special Condition No. 2 requires the applicant to submit a Shoreline Monitoring Plan for review and approval by the Commission. This condition further requires the applicant to submit reports to the Commission annually. The required monitoring would be similar to the Regional Shoreline Monitoring Program initiated by SANDAG in 1996, which measures the beach width over time at beaches in San Diego County and includes a number of transects at South Ponto State Beach. Using a similar methodology in this case would allow the data collected following the proposed project to be compared to the historic results collected through SANDAG's Regional Shoreline Monitoring Program. In addition, SANDAG recently approved the continuation of the Regional Shoreline Monitoring Program. And, because SANDAG is now a partner to the maintenance of Batiquitos Lagoon, there is an opportunity for CDFW to use the monitoring already being conducted by SANDAG to meet the requirements of Special Condition No. 2. The significant public access and recreation benefits associated with the proposed beach nourishment activities would be accompanied by potential adverse effects on public access and recreation, including temporary closure of portions of the beach, construction equipment on the beach at and near the point of sand discharge, and potential changes to surfing conditions due to the introduction of a large quantity of sand and its migration into the littoral system over time. Therefore, measures need to be included to eliminate and minimize any such impacts to the extent feasible. W1. 6-16-0528 (CA Department of Fish and Wildlife) Section 30604(c) of the Coastal Act requires a public access finding to be made for projects located between the sea and the first coastal road; in this case, such a finding can be made for the proposed development, with the inclusion of Special Condition No. 4. This condition requires that the sand replenishment component of the permit be completed during the winter months, when the least number of visitors are present, to reduce the impact on public access, as required by Sections 30210, 30211, 30221, and 30233(b). Section 30210 of the Coastal Act requires that access to the shoreline be provided consistent with public safety needs. The Department of Fish and Wildlife is proposing to implement a public safety and access program consisting of signs, flagging and sand bridges over discharge pipes in the project area to ensure that people walking, as well as beach maintenance and emergency vehicles, have safe access to and along the beach during replenishment operations. At no point is closure of the entire beach anticipated, however, public access will be restricted to portions of the beach throughout the dredging and sand replenishment process. Section 30211 requires that development not interfere with the public's access to coastal resources including the use of dry sand. While the sand replenishment on South Ponto Beach will restrict the public's access to the immediate coastal resources temporarily, the sand placement activities will result in benefits to public access in the long term. The beach area south of the lagoon inlet is subject to consistent wave action and is classified as an eroding beach. Thus, sand replenishment will enlarge both the depth and breadth of the shoreline on South Ponto Beach, providing for increased public access and beach recreation opportunities. Therefore, it is consistent with section 30211 of the Coastal Act. Section 30221 protects shoreline suitable for recreational use. The project area is within a State Park Region, frequented by numerous visitors. There is a sand volley ball court located within the portion of the beach where sand replenishment will take place. The volleyball court will be removed temporarily; however, without the additional sand, the beach would be comprised of cobble stone and rock, which is not conducive for sand volleyball. While the sand placement will temporarily interrupt the recreational use outside the summer months, the increased amount of sand will add to the longevity of this recreational component. The main users of the sand court are aware of the proposal and are in favor of the sand replenishment. [exhibit supportive comment] Another recreational activity that is at risk from proposed beach nourishment is surfing. There are several surf sites at or downcoast from the receiver site, including South Ponto, Leucadia (Beacons) and Grandview. As such, Special Condition No. 3 requires the applicant to monitor the surf zone at South Ponto prior to commencement of nourishment activities and immediately following nourishment activities and to submit a monitoring report to the Commission. In summary, the proposed project will have short-term impacts on public access and recreation, which have been minimized by conditions requiring that beach nourishment activities be conducted outside the summer season and that staging be designed to have 19 6-16-0528 (CA Department of Fish and Wildlife) the least impact on public access. Overall, the project will have a positive impact on public access and recreational opportunities at South Ponto Beach, and the required monitoring program will provide valuable information on the movement of sand along the shoreline that will be useful in planning and designing future sand replenishment projects. Therefore, as conditioned, the proposed project is consistent with the public access and recreation policies of the Coastal Act. D. LAND RESOURCES Section 30240 of the Coastal Act states: Environmentally sensitive habitat areas shall be protected against any significant disruption of habitat values, and only uses dependent on those resources shall be allowed within those areas. Development in areas adjacent to environmentally sensitive habitat areas and parks and recreation areas shall be sited and designed to prevent impacts which would significantly degrade those areas, and shall be compatible with the continuance of those habitat and recreation areas. While the lagoon dredging itself does not pose major issues to any upland based environmentally sensitive habitat, the set-up/break down of equipment and sand replenishment operations have potential concerns. The staging areas to be used for dredging operations are limited by Special Condition No. 1 to the El least tern nesting island in the western basin, a sandy island constructed during the initial restoration of Batiquitos Lagoon to provide safe nesting area(s) for protected bird species. Pursuant to this condition, the loading and launching of the dredge will be from one of the shorebird nesting islands. The least terns require habitat free of vegetation, thus the stewards of the lagoon often remove any vegetation from these islands to allow for nesting. As a result, the placement of equipment will not disturb vegetation required for nesting. Further, as required by Special Condition No. 4, dredging will start and finish outside the breeding season, hence the nesting islands will not be in active use. Thus, no environmentally sensitive habitats will be negatively impacted during set up or break down of the dredging equipment. Dredging activities will direct the lagoon sand through High Density Polyethylene (HDPE) piping to be deposited directly on the designated southern beach placement site. As such, no transportation of the sand over sensitive habitat is necessary. There is an environmentally sensitive habitat located just east of the replenishment area on South Ponto beach. This region is separated by a barrier, and design plans show that the project will take place a safe distance from this area. No negative impacts to the surrounding sensitive habitats are expected. The project has been designed to minimize negative impacts and the grain size is well suited for the replenishment site. The proposed project is thus found to be in conformance with the Chapter 3 policies of the Coastal Act, as conditioned. 20 6-16-0528 (CA Department of Fish and Wildlife) LOCAL COASTAL PLANNING Section 30604 (a) requires that a coastal development permit shall be issued only if the Commission finds that the permitted development will not prejudice the ability of the local government to prepare a Local Coastal Program (LCP) in conformity with the provisions of Chapter 3 of the Coastal Act. In this case, such a finding can be made for the proposed development, with the inclusion of the attached conditions. The project is located in the City of Carlsbad, which has a certified LCP. However, this project is located within Batiquitos Lagoon and thus is within the Commission's original jurisdiction. In 1992, the Commission approved CDP #6-90-219 for enhancement of Batiquitos Lagoon. A critical key to success of the approved enhancement plan is to maintain an open lagoon mouth and specified tidal prism. Beach sands and sediments have accumulated within the central basin, which now threaten the enhancement efforts due to the reduction in the tidal prism. Approval of the proposed project to remove these sediments/sands is consistent with previous Commission action on the original project. Therefore, approval of the proposed dredging, as conditioned, is consistent with Chapter 3 policies of the Coastal Act and will not prejudice the ability of the City of Carlsbad to continue implementing its certified LCP. CALIFORNIA ENVIRONMENTAL QUALITY ACT Section 13096 of the Commission's administrative regulations requires Commission approval of a coastal development permit to be supported by a finding showing the permit, to be consistent with any applicable requirements of the California Environmental Quality Act (CEQA). Section 21080.5(d)(2)(A) of CEQA prohibits a proposed development from being approved if there are feasible alternatives or feasible mitigation measures available which would substantially lessen any significant adverse effect which the activity may have on the environment. The project is located within Sovereign Lands of the State and California and is considered to be Categorically Exempt under CEQA because CDFW found the project exempt as a restoration activity . As conditioned, the proposed project is consistent with the resource protection policies of the Coastal Act. Mitigation measures, in the form of seasonal restrictions, monitoring requirements and a requirement to survey for caulerpa taxfolia prior to dredging, will avoid all adverse environmental impacts. As conditioned, there are no feasible alternatives or feasible mitigation measures available which would substantially lessen any significant adverse impact which the activity may have on the environment. Therefore, the Commission finds that the proposed project, as conditioned to mitigate the identified impacts, is the least environmentally damaging feasible alternative and can be found consistent with the requirements of the Coastal Act to conform to CEQA. (G:\San Diego\Digital Permit Files\2016\6-16-0528 Batiquitos Maintenance Dredging\STAFF REPORTS\6-16-0528 Department of Fish and Wildlife Batiquitos Maintenance Dredging.docx) 21 6-16-0528 (CA Department of Fish and Wildlife) APPENDIX A - SUBSTANTIVE FILE DOCUMENTS City of Carlsbad Certified East Batiquitos Lagoon/Hunt Properties segment Batiquitos Lagoon Enhancement Project Final EIR/EIS (City of Carlsbad and U.S. Army Corps of Engineers) Batiquitos Lagoon Enhancement Project Draft Preliminary Design Report (February, 1988) 2015 Batiquitos Lagoon Sediment Survey prepared by Marine Taxonomic Services and dated March, 2015 Coastal Commission CDP No. 6-90-219 with amendments A-i through A-10; Coastal Commission CDP No. 6-10-020 22 I EXHIBIT NO APPLICATION N 6-16-0528 Project Locati California CoatalConi I \\T1e Crosis at Carlsbad MeCIe-Palórnar Palo *Pcrt LEGOLAND Cahforrna Arprt 0' BESSI I T \ I I ei u Project Location I ' r 'cF i 'I I% fl !'L a \Re 0 - Ift:: Spa I I La Costa M \' \\ LevanlP, S HYDRAULIC ANALYSIS FOR POINSETTIA 61 C.T. 14-10 August 18, 2017 Prepared for: Lennar Homes 25 Enterprise, Suite 300 Aliso Viejo, CA 92656 Prepared by: O'DAY CONSULTANTS, INC 2710 Laker Avenue West, Suite 100 Carlsbad, CA. 92010 J.N. 14-1018-05 Prepared by O'DAY CONSULTANTS, INC.,, 2710 Loker Avenue West, Suite 100 Carlsbad California, 92010 Tel: (760) 931-7700 Fax: (760) 931-8680 Timothy 0. Carroll RCE 55381 Date PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) 1 (c) Copyright 1982-2012 Advanced Engineering Software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'Day Consultants, Inc STORM DRAIN "A" FILE NAME: 141018-A.DAT FILE NAME: 141018-A.DAT TIME/DATE OF STUDY: 13:10 08/18/2017 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH (PT) MOMENTUM(POUNDS) 330.00- 1.50* 219.53 1.28 Dc 209.87 FRICTION 270.05- 1.69* 240.47 1.28 Dc 209.87 JUNCTION 270.10- 2.38* 195.54 0.67 50.17 FRICTION 140.00- 1.50* 98.68 0.75 Dc 49.22 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 330.00 FLOWLINE ELEVATION = 231.00 PIPE FLOW = 11.17 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 232.500 FEET NODE 330.00 : HGL = < 232.500>;EGL= < 233.120>;FLOWLINE= < 231.000> ****************************************************************************** FLOW PROCESS FROM NODE 330.00 TO NODE 270.05 IS CODE = 1 UPSTREAM NODE 270.05 ELEVATION = 232.47 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES (LACFCD) PIPE FLOW = 11.17 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 146.80 FEET MANNINGtS N = 0.01300 SF=(Q/K)**2 = (( 11.17)/( 105.044))**2 = 0.01131 HF=L*SF = ( 146.80)*(0.01131) = 1.660 NODE 270.05 : HGL = < 234.160>;EGL= < 234.780>;FLOWLINE= < 232.470> ****************************************************************************** FLOW PROCESS FROM NODE 270.05 TO NODE 270.10 IS CODE = 5 UPSTREAM NODE 270.10 ELEVATION = 232.80 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 3.80 18.00 0.00 232.80 0 75 2.150 DOWNSTREAM 11.17 18.00 - 232.47 1.28 6.321 LATERAL #1 3.74 18.00 77.00 232.80 0 74 2.116 LATERAL #2 3.63 18.00- 57.00 232.80 073 2.054 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*V1*COS (DELTA1)_Q3*V3*COS (DELTA3)- Q4*V4*COS(DELTA4))/((A1+A2)*161)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.0031 DCWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01.31 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00631 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.025 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.471)+( 0.000) = 0.471 NODE 270.10 : HGL = < 235.180>;EGL= < 235.252>;FLOWLIN= < 232.800> FLOW PROCESS FROM NODE 270.10 TO NODE 140.00 IS CODE = 1 UPSTREAM NODE 140.00 ELEVATION = 233.85 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES (LACFCD) PIPE FLOW = 3.80 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 131.10 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 3.80)/( 105.042))**2 = 0.00131 HF=L*SF = ( 131.10)*(0.00131) = 0.172 NODE 140.00 : HGL = < 235.351>;EGL= < 235.423>;FLOWLINE= < 233.850> **** *************** ***************************************** ****************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 140.00 FLOWLINE ELEVATION = 233.85 ASSUMED UPSTREAM CONTROL HGL = 234.60 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS 3 ------------ NORMAL DEPTH(FT) = 0.62 CRITICAL DEPTH(FT) = 0.74 UPSTREAM CONTROL ASSUMED FLOW DEPTH(FT) = 0.74 GRADUALLY VARIED FLOW PROFILE ------------------------------------------------------------------------------ COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.739 4.313 1.028 48.21 0.087 0.727 4.405 1.028 48.23 0.375 0.715 4.501 1.030 48.30 0.921 0.703 4.602 1.032 48.40 1.805 0.690 4.707 1.035 48.56 3.154 0.678 4.817 1.039 48.76 5.178 0.666 4.932 1.044 49.01 8.274 0.654 5.052 1.051 49.32 13.332 0.642 5.178 1.059 49.68 23.208 0.630 5.310 1.068 50.10 101.600 0.628 ------------------------------------------------------------------------------ 5.328 1.069 50.16 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH ------------------------------------------------------------------------------ VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.500 2.116 1.570 98.04 8.262 1.424 2.157 1.496 90.01 16.185 1.348 2.235 1.425 82.48 23.902 1.272 2.341 1.357 75.48 31.421 1.196 2.476 1.291 69.07 38.715 1.119 2.643 1.228 63.34 45.715 1.043 2.850 1.169 58.36 52.293 0.967 3.103 1.117 54.22 58.206 0.891 3.418 1.073 51.04 62.942 0.815 3.811 1.041 48.96 65.181 0.739 4.313 1.028 48.21 101.600 0.739 4.313 1.028 48.21 -------------END OF HYDRAULIC JUMP ANALYSIS------------------------ I PRESSURE+MOMENTUM BALANCE OCCURS AT 60.32 FEET UPSTREAM OF NODE 270.10 DOWNSTREAM DEPTH = 0.857 FEET, UPSTREAM CONJUGATE DEPTH = 0.629 FEET NODE 40.00 : HGL = < 234.559>;EGL= ------------------------------------------------------------------------------ < 234.848>;FLOWLINE= < 233.820> UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 40.00 FLOWLINE ELEVATION = 233.82 ASSUMED UPSTREAM CONTROL HGL = 234.56 FOR DOWNSTREAM RUN ANALYSIS STORM DRAIN "A-2": 4 FIL NAME: 141018A2.DAT TIME/DATE OF STUDY: 14:01 07/10/2017 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: tt*1 indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 270.10- 1.50* 98.04 0.63 50.16 FRICTION } HYDRAULIC JUMP 4:0.00 0.74*Dc 48.21 0.74*Dc 48.21 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 10 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 270.10 FLOWLINE ELEVATION = 232.80 PIPE FLOW = 3.74 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 234.300 FEET ------------------------------------------------------------------------------ NODE 270.10 : HGL = < 234.300>;EGL= < 234.370>;FLOWLINE= < 232.800> ****************************************************************************** FLOW PROCESS FROM NODE 270.10 TO NODE 40.00 IS CODE = 1 UPSTREAM NODE 40.00 ELEVATION = 233.82 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES (LACFCD) ------------------------------------------------------------------------------ PIPE FLOW = 3.74 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 101.60 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ------------------------------------------------------------------------------ ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.62 ------------------------------------------------------------------------------ CRITICAL DEPTH(FT) = 0.74 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.74 GRADUALLY VARIED FLOW PROFILE COMPUTED ------------------------------------------------------------------------------ INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.739 4.313 1.028 48.21 0.087 0.727 4.405 1.028 48.23 0.375 0.715 4.501 1.030 48.30 0.921 0.703 4.602 1.032 48.40 1.805 0.690 4.707 1.035 48.56 3.154 0.678 4.817 1.039 48.76 5.178 0.666 4.932 1.044 49.01 8.274 0.654 5.052 1.051 49.32 13.332 0.642 5.178 1.059 49.68 23.208 0.630 5.310 1.068 50.10 101.600 0.628 ------------------------------------------------------------------------------ 5.328 1.069 50.16 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS 5 DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH ------------------------------------------------------------------------------ VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.500 2.116 1.570 98.04 8.262 1.424 2.157 1.496 90.01 16.185 1.348 2.235 1.425 82.48 23.902 1.272 2.341 1.357 75.48 31.421 1.196 2.476 1.291 69.07 38.715 1.119 2.643 1.228 63.34 45.715 1.043 2.850 1.169 58.36 52.293 0.967 3.103 1.117 54.22 58.206 0.891 3.418 1.073 51.04 62.942 0.815 3.811 1.041 48.96 65.181 0.739 4.313 1.028 48.21 101.600 0.739 4.313 1.028 48.21 -------------END OF HYDRAULIC JUMP ANALYSIS------------------------ I PRESSURE+MOMENTUM BALANCE OCCURS AT 60.32 FEET UPSTREAM OF NODE 270.10 I DOWNSTREAM DEPTH = 0.857 ------------------------------------------------------------------------------ FEET, UPSTREAM CONJUGATE DEPTH = 0.629 FEET NODE 40.00 : HGL = < 234.559>;EGL= < 234.848>;FLOWLINE= < 233.820> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 40.00 FLOWLINE ELEVATION = 233.82 ASSUMED UPSTREAM CONTROL HGL = 234.56 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS FILE NAME: 141018A2.DAT TIME/DATE OF STUDY: 14:01 07/10/2017 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: 11* indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH (FT) MOMENTUM(POUNDS) 270.10- 1.50* 98.04 0.63 50.16 FRICTION } HYDRAULIC JUMP 40.00- 0.74*Dc 48.21 0.74*Dc 48.21 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 10 I ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 270.10 FLOWLINE ELEVATION = 232.80 PIPE FLOW = 3.74 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 234.300 FEET 6 NODE 270.10 : ------------------------------------------------------------------------------ HC-L = < 234.300>;EGL= < 234.370>;FLOWLINE= < 232.800> **** ******************************************************* ******************* FLOW PROCESS FROM NODE 270.10 TO NODE 40.00 IS CODE = 1 UPSTREAM NODE 40.00 ELEVATION ------------------------------------------------------------------------------ = 233.82 (HYDRAULIC. JUMP OCCURS) CALCULATE FRICTION LOSSES (LACFCD) PIPE FLOW = 3.74 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 101.60 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ------------------------------------------------------------------------------ ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.62 ------------------------------------------------------------------------------- CRITICAL DEPTH(FT) = 0.74 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.74 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH ------------------------------------------------------------------------------ VELOCITY SPECIFIC PRESSURE+ CCNTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.739 4.313 1.028 48.21 0.087 0.727 4.405 1.028 48.23 0.375 0.715 4.501 1.030 48.30 0.921 0.703 4.602 1.032 48.40 1.805 0.690 4.707 1.035 48.56 3.154 0.678 4.817 1.039 48.76 5.178 0.666 4.932 1.044 49.01 8.274 0.654 5.052 1.051 49.32 13.332 0.642 5.178 1.059 49.68 23.208 0.630 5.310 1.068 50.10 101.600 0.628 5.328 1.069 50.16 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS ------------------------------------------------------------------------------ RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH ------------------------------------------------------------------------------ VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (PT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.500 2.116 1.570 98.04 8.262 1.424 2.157 1.496 90.01 16.185 1.348 2.235 1.425 82.48 23.902 1.272 2.341 1.357 75.48 31.421 1.196 2.476 1.291 69.07 38.715 1.119 2.643 1.228 63.34 45.715 1.043 2.850 1.169 58.36 52.293 0.967 3.103 1.117 54.22 58.206 0.891 3.418 1.073 51.04 62.942 0.815 3.811 1.041 48.96 65.181 0.739 4.313 1.028 48.21 101.600 0.739 4.313 1.028 48.21 --------------END OF HYDRAULIC JUMP ANALYSIS------------------------ I PRESSURE+MOMENTUM BALANCE OCCURS AT 60.32 FEET UPSTREAM OF NODE 270.10 DOWNSTREAM DEPTH = 0.857 FEET, UPSTREAM CONJUGATE DEPTH = 0.629 FEET NODE 40.00 : I-IGL = < 234.559>;EGL= ------------------------------------------------------------------------------ < 234.848>;FLOWLINE= < 233.820> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 40.00 FLOWLINE ELEVATION = 233.82 ASSUMED UPSTREAM CONTROL HGL = 234.56 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS STORM DRAIN "B": FILE NAME: 141018-B.DAT TIME/DATE OF STUDY: 12:02 07/10/2017 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: *U indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 860.30- 1.66* 270.46 1.17 261.98 FRICTION } HYDRAULIC JUMP 860.25- 1.35*Dc 253.99 1.35*Dc 253.99 JUNCTION 860.20- 1.66* 187.49 0.93 162.03 FRICTION } HYDRAULIC JUMP 830.00- 1.15*Dc 152.26 1.15*Dc 152.26 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 20 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 860.30 FLOWLINE ELEVATION = 223.80 PIPE FLOW = 14.09 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 225.460 FEET ------------------------------------------------------------------------------ NODE 860.30 : HGL = < 225.460>;EGL= < 225.857>;FLOWLINE= < 223.800> FLOW PROCESS FROM NODE 860.30 TO NODE 860.25 IS CODE = 1 UPSTREAM NODE 860.25 ELEVATION = 224.22 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES (LACFCD) PIPE FLOW = 14.09 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 41.70 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 1.14 CRITICAL DEPTH(FT) = 1.35 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.35 8 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.352 6.233 1.956 253.99 0.042 1.341 6.288 1.956 254.01 0.173 1.331 6.344 1.956 254.08 0.405 1.320 6.402 1.957 254.20 0.750 1.310 6.461 1.958 254.36 1.221 1.299 6.521 1.960 254.58 1.838 1.289 6.583 1.962 254.84 2.622 1.278 6.646 1.964 255.16 3.600 1.267 6.710 1.967 255.52 4.805 1.257 6.776 1.970 255.94 6.283 1.246 6.844 1.974 256.42 8.091 1.236 6.913 1.978 256.95 10.306 1.225 6.983 1.983 257.54 13.040 1.214 7.055 1.988 258.19 16.454 1.204 7.129 1.994 258.89 20.796 1.193 7.205 2.000 259.66 26.485 1.183 7.282 2.007 260.49 34.307 1.172 7.361 2.014 261.39 41.700 1.165 7.412 2.019 261.98 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DCKNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.66 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.660 5.053 2.057 270.46 1.388 1.645 5.096 2.048 268.96 2.743 1.629 5.140 2.040 267.52 4.064 1.614 5.186 2.032 266.14 5.349 1.598 5.233 2.024 264.83 6.595 1.583 5.282 2.016 263.59 7.801 1.568 5.332 2.009 262.41 8.964 1.552 5.384 2.003 261.31 10.081 1.537 5.438 1.996 260.27 11.149 1.521 5.493 1.990 259.31 12.164 1.506 5.550 1.985 258.42 13.121 1.491 5.609 1.979 257.61 14.017 1.475 5.670 1.975 256.87 14.844 1.460 5.733 1.970 256.21 15.596 1.444 5.798 1.967 255.64 16.266 1.429 5.865 1.963 255.14 16.844 1.414 5.934 1.961 254.73 17.320 1.398 6.005 1.958 254.41 17.681 1.383 6.079 1.957 254.18 17.912 1.367 6.155 1.956 254.04 17.994 1.352 6.233 1.956 253.99 41.700 1.352 6.233 1.956 253.99 ------------END OF HYDRAULIC JUMP ANALYSIS------------------------ I PRESSURE+MOMENTUM BALANCE OCCURS AT 9.09 FEET UPSTREAM OF NODE 860.30 I DOWNSTREAM DEPTH = 1.550 FEET, UPSTREAM CONJUGATE DEPTH = 1.174 FEET I NODE 860.25 : HGL = < 225.572>;EGL= < 226.176>;FLOWLINE= < 224.220> FLOW PROCESS FROM NODE 860.25 TO NODE 860.20 IS CODE = 5 UPSTREAM NODE 860.20 ELEVATION = ------------------------------------------------------------------------------ 224.72 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 8.89 18.00 0.00 224.72 1.15 5.031 DOWNSTREAM 14.09 24.00 - 224.22 1.35 6.235 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 5.20===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*V1*COS (DELTA1)_Q3*V3*COS(DELTA3) Q4*V4*COS(DELTA4))/((A1+A2)*161)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00716 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00608 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00662 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.026 FEET ENTRANCE LOSSES = 0.121 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.481)+( 0.121) = 0.602 NODE 860.20 : ------------------------------------------------------------------------------ HGL = < 226.384>;EGL= < 226.777>;FLOWLINE= < 224.720> FLOW PROCESS FROM NODE 860.20 TO NODE 830.00 IS CODE = 1 UPSTREAM NODE 830.00 ELEVATION = 225.95 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES (LACFCD) PIPE FLOW = 8.89 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 82.50 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: ------------------------------------------------------------------------------ DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) ------------------------------------------------------------------------------ = 0.92 CRITICAL DEPTH(FT) = 1.15 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.15 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM ------------------------------------------------------------------------------ FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.154 6.093 1.731 152.26 0.038 1.142 6.156 1.731 152.28 0.158 1.130 6.222 1.732 152.35 0.368 1.118 6.289 1.733 152.47 0.680 1.107 6.358 1.735 152.63 1.107 1.095 6.430 1.737 152.85 1.664 1.083 6.504 1.740 153.12 2.372 1.071 6.580 1.744 153.44 3.253 1.060 6.659 1.749 153.81 4.340 1.048 6.741 1.754 154.24 5.671 1.036 6.825 1.760 154.73 7.298 1.024 6.911 1.767 155.27 10 9.293 1.013 7.001 1.774 155.88 11.753 1.001 7.094 1.783 156.55 14.824 0.989 7.189 1.792 157.29 18.730 0.977 7.288 1.803 158.09 23.849 0.966 7.390 1.814 158.96 30.888 0.954 7.496 1.827 159.90 41.435 0.942 7.605 1.841 160.92 60.587 0.930 7.718 1.856 162.01 82.500 0.930 7.719 1.856 162.03 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS ------------------------------------------------------------------------------ RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.66 PRESSURE FLOW PROFILE COMPUTED ------------------------------------------------------------------------------ INFORMATION: DISTANCE FROM PRESSURE VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.664 5.031 2.057 187.49 21.210 1.500 5.031 1.893 169.37 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH ------------------------------------------------------------------------------ VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 21.210 1.500 5.029 1.893 169.37 23.145 1.483 5.040 1.877 167.65 24.835 1.465 5.059 1.863 166.08 26.390 1.448 5.084 1.850 164.62 27.840 1.431 5.114 1.837 163.25 29.203 1.413 5.148 1.825 161.97 30.489 1.396 5.186 1.814 160.76 31.702 1.379 5.228 1.803 159.64 32.847 1.361 5.273 1.794 158.59 33.925 1.344 5.322 1.784 157.62 34.935 1.327 5.374 1.776 156.72 '35.878 1.310 5.430 1.768 155.90 36.751 1.292 5.489 1.760 155.16 37.550 1.275 5.552 1.754 154.50 38.272 1.258 5.618 1.748 153.92 38.911 1.240 5.687 1.743 153.42 39.459 1.223 5.761 1.739 153.01 39.908 1.206 5.838 1.735 152.69 40.247 1.188 5.919 1.733 152.45 40.463 1.171 6.004 1.731 152.31 40.539 1.154 6.093 1.731 152.26 82.500 1.154 6.093 1.731 152.26 -------------END OF HYDRAULIC JUMP ANALYSIS------------------------ PRESSURE+MOMENTUM BALANCE OCCURS AT 29.63 FEET UPSTREAM OF NODE 860.20 DOWNSTREAM DEPTH = 1.408 FEET, UPSTREAM CONJUGATE DEPTH = 0.935 FEET I NODE 830.00 : HGL = < 227.104>;EGL= ------------------------------------------------------------------------------ < 227.681>;FLOWLINE= < 225.950> UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 830.00 FLOWLINE ELEVATION = 225.95 11 I ASSUMED UPSTREAM CONTROL HGL = 227.10 FOR DOWNSTREAM RUN ANALYSIS I END OF GRADUALLY VARIED FLOW ANALYSIS STORM DRAINS "C" & "C-i": FILE NAME: 141018-C.DAT (includes SD-C-1) TIME/DATE OF STUDY: 14:44 07/10/2017 ** **** ***** *** **** * ******** **** **** ***** **** **** **** ******* ************ ** 0+2* ** ** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: *11 indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 780.30- 1.85* 175.49 0.91 113.13 FRICTION } HYDRAULIC JUMP 780.25- 1.03 Dc 110.65 0.98* 110.96 JUNCTION 780.20- 1.03 Dc 110.65 0.91* 112.96 FRICTION 780.15- 1.03*Dc 110.65 1.03*Dc 110.65 JUNCTION 780.10- 1.49* 96.02 0.62 47.54 FRICTION 750.00- 0.90* 49.48 0.72 Dc 45.72 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 10 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 780.30 FLOWLINE ELEVATION = 229.30 PIPE FLOW = 7.03 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 231.150 FEET ------------------------------------------------------------------------------ NODE 780.30 : HGL = < 231.150>;EGL= < 231.396>;FLOWLINE= < 229.300> FLOW PROCESS FROM NODE 780.30 TO NODE 780.25 IS CODE = 1 UPSTREAM NODE 780.25 ELEVATION = 230.45 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES (LACFCD) PIPE FLOW = 7.03 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 115.20 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS --------------------------------------------------------------------- NORMAL DEPTH(FT) = 0.90 CRITICAL DEPTH(FT) = 1.03 12 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.98 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH ------------------------------------------------------------------------------ VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.982 5.730 1.493 110.96 0.781 0.974 5.786 1.494 111.09 1.806 0.966 5.845 1.496 111.24 3.143 0.957 5.904 1.499 111.43 4.886 0.949 5.965 1.502 111.63 7.187 0.940 6.027 1.505 111.87 10.295 0.932 6.091 1.508 112.13 14.680 0.923 6.157 1.512 112.42 21.399 0.915 6.224 1.517 112.74 33.841 0.907 6.293 1.522 113.08 115.200 0.906 ------------------------------------------------------------------------------ 6.300 1.522 113.13 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED PRESSURE HEAD(FT) = 1.85 PRESSURE FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM PRESSURE ------------------------------------------------------------------------------ VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) HEAD(FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.850 3.978 2.096 175.49 63.592 1.500 3.978 1.746 136.90 ASSUMED DOWNSTREAM PRESSURE HEAD(FT) = 1.50 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH ------------------------------------------------------------------------------ VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 63.592 1.500 3.977 1.746 136.90 70.899 1.453 4.015 1.703 132.21 77.225 1.405 4.085 1.665 128.04 83.041 1.358 4.178 1.629 124.27 88.449 1.311 4.291 1.597 120.91 93.470 1.263 4.425 1.567 117.97 98.078 1.216 4.580 1.542 115.47 102.195 1.169 4.758 1.520 113.44 105.674 1.121 4.961 1.504 111.93 108.236 1.074 5.191 1.493 110.98 109.314 1.026 5.454 1.489 110.65 115.200 1.026 5.454 1.489 110.65 -------------END OF HYDRAULIC JUMP ANALYSIS------------------------ PRESSURE+MOMENTUM BALANCE OCCURS AT 105.29 FEET UPSTREAM OF NODE 780.30 DOWNSTREAM DEPTH = 1.126 FEET, UPSTREAM CONJUGATE DEPTH = 0.933 FEET NODE 780.25 : HL = < 231.432>;EGL= ------------------------------------------------------------------------------ < 231.943>;FLOWLINE= < 230.450> FLOW PROCESS FROM NODE 780.25 TO NODE 780.20 IS CODE = 5 UPSTREAM NODE 780.20 ELEVATION ------------------------------------------------------------------------------ = 230.78 (FLOW IS SUPERCRITICAL) 13 CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CES) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 7.03 18.00 42.00 230.78 1.03 6.271 DOWNSTREAM 7.03 18.00 - 230.45 1.03 5.731 LATERAL 41 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*V1*COS (DELTA1) _Q3*V3*COS (DELTA3) - Q4*V4*COS(DELTA4))/((A1+A2)*161)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00961 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00766 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00864 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.035 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.358)+( 0.000) = 0.358 NODE 780.20 : HGL = < 231.690>;EGL= < 232.300>;FLOWLINE= < 230.780> ****************************************************************************** FLOW PROCESS FROM NODE 780.20 TO NODE 780.15 IS CODE = 1 UPSTREAM NODE 780.15 ELEVATION = 231.44 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES (LACFCD) PIPE FLOW = 7.03 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 65.90 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.90 CRITICAL DEPTH(FT) = 1.03 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.03 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (PT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.026 5.454 1.489 110.65 0.106 1.014 5.531 1.489 110.67 0.457 1.001 5.612 1.490 110.75 1.119 0.988 5.695 1.492 110.88 2.189 0.975 5.781 1.494 111.07 3.817 0.962 5.871 1.497 111.32 6.255 0.949 5.964 1.502 111.63 9.975 0.936 6.060 1.507 112.00 16.038 0.923 6.160 1.513 112.43 27.851 0.910 6.263 1.520 112.94 65.900 0.910 6.269 1.520 112.96 ------------------------------------------------------------------------------ NODE 780.15 : HGL = < 232.466>;EGL= < 232.929>;FLOWLINE= < 231.440> FLOW PROCESS FROM NODE 780.15 TO NODE 780.10 IS CODE = 5 UPSTREAM NODE 780.10 ELEVATION = 231.79 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY 14 (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 3.59 18.00 90.00 231.79 0.72 2.033 DOWNSTREAM 7.03 18.00 - 231.44 1.J3 5.455 LATERAL #1 3.44 18.00 90.00 231.79 0.71 2.514 LATERAL #2 0.00 0.00 0.00 0.00 0.JO 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*V1*COS(DELTA1)_Q3*V3*COS(DELTA3) Q4*V4*COS(DELTA4))/((A1+A2)*161)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00110 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00679 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00394 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.016 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.418)+( 0.000) = 0.418 NODE 780.10 : HGL ------------------------------------------------------------------------------ = < 233.282>;EGL= < 233.347>;FLOWLINE= < 231.790> * * ** * * * * * * * * * * * * ** * * * * * * * * * * * * * ** * * * * * * * * * * * ** * * ** * * * * * * * * * * ** * * * * * * * * * * * * * * * * FLOW PROCESS FROM NODE 780.10 TO NODE 750.00 IS CODE UPSTREAM NODE 750.00 ELEVATION = 232.36 (FLOW IS SUBCRITICAL) CALCULATE FRICTION ------------------------------------------------------------------------------ LOSSES (LACFCD) PIPE FLOW = 3.59 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 57.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = ------------------------------------------------------------------------------ 0.60 CRITICAL DEPTH(FT) = 0.72 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.49 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM ------------------------------------------------------------------------------ FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) 1iOMENTUM(POUNDS) 0.000 1.492 2.032 1.557 96.02 8.263 1.416 2.077 1.483 87.93 16.252 1.339 2.156 1.411 80.33 24.051 1.262 2.262 1.341 73.26 31.664 1.185 2.397 1.274 66.79 39.062 1.108 2.565 1.210 61.01 46.173 1.031 2.772 1.150 55.98 52.871 0.954 3.027 1.096 51.80 57.000 0.901 3.236 1.064 49.48 NODE 750.00 : HGL ------------------------------------------------------------------------------ = < 233.261>;EGL= < 233.424>;FLOWLINE= < 232.360> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 750.00 FLOWLINE ELEVATION = 232.36 ASSUMED UPSTREAM CONTROL HGL = 233.08 FOR DOWNSTREAM RUN ANALYSIS STORM DRAIN "C-2": 15 FILE NAME: 141018C2 TIME/DATE OF STUDY: 15:01 07/10/2017 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 780.10- 1.49* 95.03 0.60 45.56 FRICTION 780.00- 1.28* 73.88 0.71 Dc 43.75 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 10 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 780.10 FLOWLINE ELEVATION = 231.79 PIPE FLOW = 3.47 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 233.282 FEET ------------------------------------------------------------------------------ NODE 780.10 : HGL = < 233.282>;EGL= < 233.342>;FLOWLINE= < 231.790> ** ** ***** * * ******* ** ******* *************** ********** ** *** ** ********* ********* * FLOW PROCESS FROM NODE 780.10 TO NODE 780.00 IS CODE = 1 UPSTREAM NODE 780.00 ELEVATION = 232.01 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD) PIPE FLOW = 3.47 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 21.50 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.59 CRITICAL DEPTH(FT) = 0.71 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.49 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.492 1.964 1.552 95.03 8.138 1.414 2.009 1.477 86.81 16.024 1.336 2.087 1.403 79.06 21.500 1.280 2.159 1.353 73.88 ------------------------------------------------------------------------------ NODE 780.00 : HGL = < 233.290>;EGL= < 233.363>;FLOWLINE= < 232.010> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 780.00 FLOWLINE ELEVATION = 232.01 ASSUMED UPSTREAM CONTROL HGL = 232.72 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS 16 1 HYDRAULIC ANALYSIS FOR POINSETTIA 61 (PRIVATE STORM DRAINS, 18" & OVER ONLY) C.T. 14-10 October 26, 2017 Prepared for: Lennar Homes 25 Enterprise, Suite 300 Aliso Viejo, CA 92656 Prepared by: O'DAY CONSULTANTS, INC 2710 Loker Avenue West, Suite 100 Carlsbad, CA. 92010 J.N. 14-1018-05 Prepared by O'DAY CONSULTANTS, INC., 2710 Loker Avenue West, Suite 100 Carlsbad California, 92010 Tel: (760) 931-7700 Fax: (760) 931-8680 Timothy 0. Carroll RCE 55381 Date PIPE-FLOW HYDRAULICS COMPUTER PROGRAM PACKAGE (Reference: LACFCD,LACRD, AND OCEMA HYDRAULICS CRITERION) (C) Copyright 1982-2012 Advanced Engineering Software (aes) Ver. 19.0 Release Date: 06/01/2012 License ID 1423 Analysis prepared by: O'Day Consultants, Inc 17 STORM DRAIN: PRIVATE SD-"A" FILE NAME: PVTA.DAT TIME/DATE OF STUDY: 14:45 10/26/2017 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: t1* indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 540.40- 1.18 Dc 178.01 0.39* 523.17 FRICTION 540.33- 1.18 Dc 178.01 0.85* 205.01 MANHOLE 540.32- 1.18 Dc 178.01 1.11* 178.90 FRICTION 540.31- 1.20 Dc 178.12 0.85* 204.55 MANHOLE 540.30- 1.18*Dc 178.01 1.18*Dc 178.01 FRICTION } HYDRAULIC JUMP 540.20- 1.20 Dc 178.13 0.71* 244.23 MANHOLE 540.21- 1.18 Dc 178.01 0.76* 228.21 FRICTION 540.13- 1.18 Dc 178.01 0.85* 204.55 MANHOLE 540.12- 1.18*Dc 178.01 1.18*Dc 178.01 FRICTION 540.10- 1.18*Dc 178.01 1.18*Dc 178.01 JUNCTION 540.11- 1.46* 176.91 1.12 Dc 158.76 FRICTION } HYDRAULIC JUMP 540.00- 1.12*Dc 158.75 1.12*Dc 158.75 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 540.40 FLOWLINE ELEVATION = 208.25 PIPE FLOW = 10.78 CFS PIPE DIAMETER = 24.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 209.250 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 1.00 FT.) IS LESS THAN CRITICAL DEPTH( 1.18 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS ------------------------------------------------------------------------------ NODE 540.40 : HGL = < 208.642>;EGL= < 218.220>;FLOWLINE= < 208.250> ******************************************************************* *********** FLOW PROCESS FROM NODE 540.40 TO NODE 540.33 IS CODE = 1 UPSTREAM NODE 540.33 ELEVATION = 236.00 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES (LACFCD) PIPE FLOW = 10.78 CFS PIPE DIAMETER = 24.00 INCHES 18 I PIPE LENGTH = 70.80 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.37 ------------------------------------------------------------------------------ CRITICAL DEPTH(FT) = 1.18 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.85 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH ------------------------------------------------------------------------------- VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.852 8.449 1.961 205.01 0.132 0.833 8.707 2.011 208.90 0.282 0.813 8.981 2.067 213.15 0.452 0.794 9.271 2.130 217.80 0.643 0.775 9.579 2.201 222.87 0.861 0.756 9.906 2.281 228.40 1.107 0.737 10.255 2.371 234.42 1.387 0.718 10.628 2.473 240.97 1.705 0.699 11.026 2.588 248.10 2.069 0.680 11.452 2.717 255.86 2.485 0.660 11.910 2.864 264.31 2.963 0.641 12.401 3.031 273.53 3.514 0.622 12.931 3.220 283.58 4.154 0.603 13.502 3.436 294.55 4.900 0.584 14.121 3.682 306.55 5.779 0.565 14.792 3.965 319.68 6.821 0.546 15.523 4.290 334.10 8.073 0.526 16.320 4.665 349.94 9.598 0.507 17.192 5.100 367.41 11.489 0.488 18.151 5.607 386.71 13.892 0.469 19.208 6.201 408.10 17.054 0.450 20.377 6.901 431.89 21.435 0.431 21.677 7.732 458.44 28.077 0.412 23.129 8.724 488.21 40.323 0.392 24.760 9.918 521.74 70.800 0.392 24.829 9.970 523.17 NODE 540.33 HGL = < 236.852>;EGL= ------------------------------------------------------------------------------- < 237.961>;FLOWLINE= < 236.000> FLCW PROCESS FROM NODE 540.33 TO NODE 540.32 IS CODE = 2 UPSTREAM NODE 540.32 ELEVATION = 236.33 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES (LACFCD) ------------------------------------------------------------------------------ PIPE FLOW = 10.78 CFS PIPE DIAMETER = 24.00 INCHES AVERAGED VELOCITY HEAD = 0.836 FEET HMN = .05* (AVERAGED VELOCITY HEAD) = .05*( 0.836) = 0.042 NODE 540.32 : HGL = < 237.441>;EGL= ------------------------------------------------------------------------------ < 238.003>;FLOWLINE= < 236.330> FLOW PROCESS FROM NODE 540.32 TO NODE 540.31 IS CODE = 1 UPSTREAM NODE 540.31 ELEVATION ------------------------------------------------------------------------------ = 236.60 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) PIPE FLOW = 10.78 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 53.90 FEET ------------------------------------------------------------------------------ MANNING'S N = 0.01300 19 NORMAL DEPTH(FT) = 1.20 CRITICAL DEPTH(FT) = 1.18 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.85 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM ------------------------------------------------------------------------------ FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (PT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.854 8.419 1.955 204.55 2.879 0.867 8.254 1.926 202.15 5.751 0.880 8.095 1.898 199.89 8.614 0.893 7.942 1.873 197.78 11.468 0.906 7.795 1.850 195.80 14.311 0.919 7.652 1.829 193.95 17.142 0.932 7.515 1.809 192.22 19.960 0.944 7.382 1.791 190.62 22.764 0.957 7.254 1.775 189.13 25.553 0.970 7.131 1.760 187.75 28.323 0.983 7.011 1.747 186.47 31.073 0.996 6.895 1.735 185.30 33.799 1.009 6.783 1.724 184.23 36.500 1.022 6.675 1.714 183.26 39.170 1.035 6.570 1.705 182.37 41.805 1.048 6.468 1.698 181.58 44.398 1.061 6.370 1.691 180.87 46.941 1.073 6.274 1.685 180.25 49.423 1.086 6.182 1.680 179.71 51.830 1.099 6.092 1.676 179.25 53.900 1.111 6.014 1.673 178.90 NODE 540.31 : ------------------------------------------------------------------------------ HGL = < 237.454>;EGL= < 238.555>;FLOWLINE= < 236.600> FLOW PROCESS FROM NODE 540.31 TO NODE 540.30 IS CODE = 2 UPSTREAM NODE 540.30 ELEVATION = 236.93 (FLOW IS AT CRITICAL DEPTH) CALCULATE MANHOLE ------------------------------------------------------------------------------ LOSSES (LACFCD) PIPE FLOW = 10.78 CFS PIPE DIAMETER = 24.00 INCHES AVERAGED VELOCITY HEAD = 0.477 FEET HMN = .05* (AVERAGED VELOCITY HEAD) = .05*( 0.477) = 0.024 NOTE: ENERGY GRADE LINE HAS BEEN ADJUSTED DUE TO CHANGING IN FLOW LINE ELEVATIONS NODE 540.30 : ------------------------------------------------------------------------------ HGL = < 238.107>;EGL= < 238.595>;FLOWLINE= < 236.930> ** **** ******** ****** *** **** * **** * ****** ******** ******************** ****** **** * FLOW PROCESS FROM NODE 540.30 TO NODE 540.20 IS CODE = 1 UPSTREAM NODE 540.20 ELEVATION = 238.24 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION ------------------------------------------------------------------------------ LOSSES (LACFCD) : PIPE FLOW = 10.78 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 261.40 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: ------------------------------------------------------------------------------ DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) ------------------------------------------------------------------------------ = 1.20 CRITICAL DEPTH(FT) = 1.18 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.71 20 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.709 10.811 2.525 244.23 4.245 0.728 10.435 2.419 237.56 8.486 0.746 10.082 2.326 231.42 12.722 0.765 9.751 2.242 225.77 16.951 0.784 9.440 2.168 220.57 21.172 0.802 9.146 2.102 215.79 25.383 0.821 8.870 2.044 211.41 29.582 0.840 8.608 1.991 207.39 33.768 0.859 8.361 1.945 203.71 37.939 0.877 8.127 1.904 200.35 42.092 0.896 7.906 1.867 197.28 46.224 0.915 7.695 1.835 194.50 50.334 0.933 7.495 1.806 191.98 54.415 0.952 7.306 1.781 189.72 58.465 0.971 7.125 1.760 187.69 62.476 0.990 6.953 1.741 185.88 66.443 1.008 6.789 1.724 184.29 70.355 1.027 6.633 1.711 182.89 74.199 1.046 6.483 1.699 181.69 77.957 1.064 6.341 1.689 180.68 81.604 1.083 6.205 1.681 179.84 85.101 1.102 6.074 1.675 179.16 88.385 1.121 5.949 1.671 178.65 91.340 1.139 5.830 1.667 178.29 93.727 1.158 5.716 1.666 178.08 94.882 1.177 5.606 1.665 178.01 261.400 1.177 ------------------------------------------------------------------------------ 5.606 1.665 178.01 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.18 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH ------------------------------------------------------------------------------ VELOCITY SPECIFIC PRESSURE+ CCNTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.177 5.606 1.665 178.01 0.005 1.178 5.600 1.665 178.01 0.020 1.179 5.595 1.665 178.01 0.047 1.180 5.589 1.665 178.01 0.086 1.181 5.583 1.665 178.01 0.139 1.182 5.578 1.665 178.02 0.207 1.183 5.572 1.665 178.02 0.292 1.184 5.566 1.665 178.02 0.395 1.185 5.561 1.665 178.02 0.519 1.186 5.555 1.665 178.03 0.666 1.187 5.550 1.665 178.03 0.840 1.188 5.544 1.665 178.03 1.046 1.189 5.539 1.665 178.04 1.286 1.190 5.533 1.665 178.04 1.569 1.191 5.527 1.665 178.05 1.901 1.192 5.522 1.665 178.05 2.294 1.193 5.516 1.665 178.06 2.762 1.194 5.511 1.665 178.07 21 3.325 1.195 5.505 1.666 178.07 4.011 1.196 5.500 1.666 178.08 4.867 1.197 5.495 1.666 178.09 5.968 1.198 5.489 1.666 178.09 7.458 1.199 5.484 1.666 178.10 9.656 1.200 5.478 1.666 178.11 13.592 1.200 5.473 1.666 178.12 220.713 1.201 5.468 1.666 178.13 261.400 1.201 5.468 1.666 178.13 -------------END OF HYDRAULIC JUMP ANALYSIS------------------------ I PRESSURE+MOMENTUM BALANCE OCCURS AT 168.18 FEET UPSTREAM OF NODE 540.30 I DOWNSTREAM DEPTH = 1.201 FEET, UPSTREAM CONJUGATE DEPTH = 1.154 FEET NODE 540.20 HGL = < 238.949>;EGL= ------------------------------------------------------------------------------ < 240.765>;FLOWLINE= < 238.240> ****************************************************************************** FLOW PROCESS FROM NODE 540.20 TO NODE 540.21 IS CODE = 2 UPSTREAM NODE 540.21 ELEVATION = 238.57 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES (LACFCD) ------------------------------------------------------------------------------ PIPE FLOW = 10.78 CF'S PIPE DIAMETER = 24.00 INCHES AVERAGED VELOCITY HEAD = 1.669 FEET HMN = .05* (AVERAGED VELOCITY HEAD) = •05*( 1.669) = 0.083 NODE 540.21 : HGL = < 239.327>;EGL= ------------------------------------------------------------------------------ < 240.848>;FLOWLINE= < 238.570> ****************************************************************************** FLOW PROCESS FROM NODE 540.21 TO NODE 540.13 IS CODE = 1 UPSTREAM NODE 540.13 ------------------------------------------------------------------------------ELEVATION = 240.82 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) PIPE FLOW = 10.78 CF'S PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 88.40 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.75 ------------------------------------------------------------------------------ CRITICAL DEPTH(FT) = 1.18 UPSTREAM CONTROL ASSUMED FLOWDEPTH(F'T) = 0.85 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH ------------------------------------------------------------------------------ VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.854 8.419 1.955 204.55 1.071 0.850 8.474 1.966 205.36 2.204 0.846 8.529 1.976 206.19 3.405 0.842 8.585 1.987 207.04 4.682 0.837 8.642 1.998 207.90 6.040 0.833 8.700 2.009 208.78 7.489 0.829 8.758 2.021 209.68 9.039 0.825 8.818 2.033 210.60 10.701 0.821 8.878 2.045 211.53 12.489 0.816 8.938 2.058 212.48 14.420 0.812 9.000 2.071 213.46 16.513 0.808 9.062 2.084 214.45 18.792 0.804 9.125 2.098 215.45 21.288 0.800 9.189 2.112 216.48 24.038 0.795 9.254 2.126 217.53 27.091 0.791 9.320 2.141 218.60 22 30.512 0.787 9.386 2.156 219.69 34.387 0.783 9.454 2.171 220.80 38.839 0.779 9.522 2.187 221.93 44.045 0.774 9.591 2.204 223.08 50.284 0.770 9.661 2.221 224.25 58.018 0.766 9.733 2.238 225.45 68.118 0.762 9.805 2.256 226.67 82.538 0.758 9.878 2.274 227.91 88.400 0.757 9.895 2.278 228.21 NODE 540.13 : HGL = < 241.674>;EGL= ------------------------------------------------------------------------------ < 242.775>;FLOWLINE= < 240.820> FLOW PROCESS FROM NODE 540.13 TO NODE 540.12 IS CODE = 2 UPSTREAM NODE 540.12 ELEVATION = 241.15 (FLOW IS AT CRITICAL DEPTH) CALCULATE MANHOLE LOSSES (LACFCD) ------------------------------------------------------------------------------ PIPE FLOW = 10.78 CFS PIPE DIAMETER = 24.00 INCHES AVERAGED VELOCITY HEAD = 0.488 FEET HMN = .05* (AVERAGED VELOCITY HEAD) = .05*( 0.488) = 0.024 NOTE: ENERGY GRADE LINE HAS BEEN ADJUSTED DUE TO CHANGING IN FLOW LINE ELEVATIONS NODE 540.12 : HGL = < 242.327>;EGL= ------------------------------------------------------------------------------ < 242.815>;FLOWLINE= < 241.150> ****************************************************************************** FLOW PROCESS FROM NODE 540.12 TO NODE 540.10 IS CODE = 1 UPSTREAM NODE 540.10 ------------------------------------------------------------------------------ ELEVATION = 241.37 (FLOW IS SUBCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) PIPE FLOW = 10.78 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 41.59 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 1.18 ------------------------------------------------------------------------------ CRITICAL DEPTH(FT) = 1.18 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.18 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH ------------------------------------------------------------------------------ VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.177 5.606 1.665 178.01 0.001 1.177 5.605 1.665 178.01 0.003 1.177 5.604 1.665 178.01 0.007 1.177 5.603 1.665 178.01 0.013 1.177 5.602 1.665 178.01 0.021 1.177 5.601 1.665 178.01 0.031 1.178 5.601 1.665 178.01 0.044 1.178 5.600 1.665 178.01 0.059 1.178 5.599 1.665 178.01 0.078 1.178 5.598 1.665 178.01 0.100 1.178 5.597 1.665 178.01 0.126 1.178 5.596 1.665 178.01 0.156 1.179 5.595 1.665 178.01 0.192 1.179 5.594 1.665 178.01 0.235 1.179 5.593 1.665 178.01 0.284 1.179 5.593 1.665 178.01 0.343 1.179 5.592 1.665 178.01 23 0.413 1.179 5.591 1.665 178.01 0.497 1.180 5.590 1.665 178.01 0.600 1.180 5.589 1.665 178.01 0.728 1.180 5.588 1.665 178.01 0.892 1.180 5.587 1.665 178.01 1.115 1.180 5.586 1.665 178.01 1.444 1.180 5.586 1.665 178.01 2.032 1.180 5.585 1.665 178.01 31.987 1.181 5.584 1.665 178.01 41.590 1.181 5.584 1.665 178.01 NODE 540.10 : HGL = < 242.551>;EGL= ------------------------------------------------------------------------------ < 243.035>;FLOWLINE= < 241.370> FLOW PROCESS FROM NODE 540.10 TO NODE 540.11 IS CODE = 5 UPSTREAM NODE 540.11 ELEVATION = 241.37 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: ------------------------------------------------------------------------------ PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 9.88 24.00 0.00 241.37 1.12 4.013 DOWNSTREAM 10.78 24.00 - 241.37 1.18 5.585 LATERAL #1 0.90 8.00 60.00 242.04 0.45 2.593 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.00===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY= (Q2*V2_Q1*V1*COS (DELTA1) _Q3*V3*COS (DELTA3) - Q4*V4*COS(DELTA4))/((A1+A2)*161)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00244 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00529 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00386 JUNCTION LENGTH = 1.00 FEET FRICTION LOSSES = 0.004 FEET ENTRANCE LOSSES = 0.000 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.048)+( 0.000) = 0.048 NODE 540.11 : HGL = < 242.833>;EGL= < 243.083>;FLOWLINE= < 241.370> FLOW PROCESS FROM NODE 540.11 TO NODE 540.00 IS CODE = 1 UPSTREAM NODE 540.00 ELEVATION = 242.00 (HYDRAULIC JUMP OCCURS) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES (LACFCD): PIPE FLOW = 9.88 CFS PIPE DIAMETER = 24.00 INCHES PIPE LENGTH = 121.13 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 1.12 CRITICAL DEPTH(FT) = 1.12 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.12 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.124 5.431 1.583 158.75 24 0.000 1.124 5.431 1.583 158.75 0.001 1.124 5.431 1.583 158.75 0.002 1.124 5.432 1.583 158.75 0.004 1.124 5.432 1.583 158.75 0.007 1.124 5.432 1.583 158.75 0.010 1.124 5.432 1.583 158.75 0.014 1.124 5.433 1.583 158.75 0.019 1.124 5.433 1.583 158.75 0.025 1.124 5.433 1.583 158.75 0.032 1.124 5.434 1.583 158.75 0.041 1.124 5.434 1.583 158.75 0.051 1.124 5.434 1.583 158.75 0.062 1.124 5.435 1.583 158.75 0.076 1.124 5.435 1.583 158.75 0.092 1.124 5.435 1.583 158.76 0.111 1.123 5.435 1.583 158.76 0.134 1.123 5.436 1.583 158.76 0.161 1.123 5.436 1.583 158.76 0.194 1.123 5.436 1.583 158.76 0.235 1.123 5.437 1.583 158.76 0.289 1.123 5.437 1.583 158.76 0.361 1.123 5.437 1.583 158.76 0.467 1.123 5.438 1.583 158.76 0.658 1.123 5.438 1.583 158.76 47.662 1.123 5.438 1.583 158.76 121.130 1.123 ------------------------------------------------------------------------------ 5.438 1.583 158.76 HYDRAULIC JUMP: UPSTREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.46 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH ------------------------------------------------------------------------------ VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.463 4.011 1.713 176.91 3.131 1.449 4.051 1.704 175.60 6.259 1.436 4.092 1.696 174.33 9.384 1.422 4.134 1.688 173.11 12.507 1.409 4.177 1.680 171.92 15.626 1.395 4.221 1.672 170.78 18.742 1.382 4.267 1.664 169.69 21.856 1.368 4.313 1.657 168.64 24.967 1.354 4.361 1.650 167.63 28.076 1.341 4.411 1.643 166.68 31.182 1.327 4.462 1.637 165.77 34.285 1.314 4.514 1.630 164.91 37.386 1.300 4.568 1.625 164.11 40.484 1.287 4.623 1.619 163.35 43.578 1.273 4.680 1.614 162.65 46.670 1.260 4.739 1.609 162.00 49.758 1.246 4.799 1.604 161.40 52.841 1.233 4.861 1.600 160.86 55.920 1.219 4.925 1.596 160.38 58.992 1.206 4.991 1.593 159.96 62.055 1.192 5.059 1.590 159.60 65.107 1.178 5.129 1.587 159.30 68.141 1.165 5.201 1.585 159.06 25 71.142 1.151 5.275 1.584 158.89 74.067 1.138 5.352 1.583 158.79 76.292 1.124 5.431 1.583 158.75 121.130 1.124 5.431 1.583 158.75 -------------END OF HYDRAULIC JUMP ANALYSIS------------------------ I PRESSURE+MOMENTUM BALANCE OCCURS AT 120.89 FEET UPSTREAM OF NODE 540.11 I DOWNSTREAM DEPTH = 1.124 FEET, UPSTREAM CONJUGATE DEPTH = 1.123 FEET I NODE 540.00 HGL = ------------------------------------------------------------------------------ < 243.124>;EGL= < 243.583>;FLOWLINE= < 242.000> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 540.00 FLOWLINE ELEVATION = 242.00 ASSUMED UPSTREAM CONTROL HGL = 243.12 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS STORM DRAIN: PRIVATE SD-"B" FILE NAME: PVTB.DAT TIME/DATE OF STUDY: 14:44 10/26/2017 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 620.10- 1.31 Dc 228.03 1.00* 251.65 FRICTION 610.10- 1.31*Dc 228.03 1.31*Dc 228.03 JUNCTION 610.00- 1.79* 185.48 0.98 Dc 146.39 FRICTION 580.00- 2.48* 219.15 0.98 Dc 146.39 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 620.10 FLOWLINE ELEVATION = 234.67 PIPE FLOW = 11.83 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 234.900 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.23 FT.) IS LESS THAN CRITICAL DEPTH( 1.31 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS ------------------------------------------------------------------------------ NODE 620.10 : HGL = < 235.666>;EGL= < 237.067>;FLOWLINE= < 234.670> FLOW PROCESS FROM NODE 620.10 TO NODE 610.10 IS CODE = 1 UPSTREAM NODE 610.10 ELEVATION = 239.48 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ 26 CALCULATE FRICTION LOSSES (LACFCD) PIPE FLOW = 11.83 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 222.80 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.98 ------------------------------------------------------------------------------ CRITICAL DEPTH(FT) = 1.31 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.31 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISIANCE FROM FLOW DEPTH VELOCITY ------------------------------------------------------------------------------ SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.307 7.236 2.121 228.03 0.034 1.294 7.295 2.121 228.06 0.140 1.281 7.357 2.122 228.17 0.322 1.268 7.420 2.124 228.34 0.586 1.255 7.487 2.126 228.59 0.938 1.243 7.556 2.130 228.91 1.387 1.230 7.628 2.134 229.30 1.942 1.217 7.703 2.139 229.77 2.615 1.204 7.780 2.144 230.32 3.419 1.191 7.861 2.151 230.94 4.370 1.178 7.944 2.158 231.65 5.488 1.165 8.031 2.167 232.44 6.798 1.152 8.120 2.177 233.31 8.330 1.139 8.213 2.187 234.28 10.122 1.126 8.309 2.199 235.33 12.224 1.113 8.409 2.212 236.47235.01+241.80 14.703 1.100 8.512 2.226 237.71 17.646 1.087 8.619 2.242 239.05 21.178 1.075 8.730 2.259 240.48 25.484 1.062 8.844 2.277 242.03 30.846 1.049 8.963 2.297 243.68 - 37.742 1.036 9.086 2.318 245.44 47.064 1.023 9.213 2.342 247.32 60.820 1.010 9.345 2.367 249.31 85.450 0.997 9.482 2.394 251.43 222.800 0.996 9.495 2.397 251.65 NODE 610.10 : HGL = < 240.787>;EGL= ------------------------------------------------------------------------------ < 241.601>;FLOWLINE= < 239.480> FLOW PROCESS FROM NODE 610.10 TO NODE 610.00 IS CODE = 5 UPSTREAM NODE 610.00 ELEVATION ------------------------------------------------------------------------------ = 239.84 (FLOW UNSEALS IN REACH) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 7.04 12.00 0.00 239.84 0.98 8.964 DOWNSTREAM 11.83 18.00 - 239.48 1.31 7.239 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL 42 0.00 0.00 0.00 0.00 0.00 0.000 Q5 4.79===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY= (Q2*V2_Q1*V1*COS (DELTA1) _Q3*V3*COS (DELTA3) - 27 Q4*V4*COS(DELTA4))/((A1+A2)*161)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.03904 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01155 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.02530 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.101 FEET ENTRANCE LOSSES = 0.163 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 1.113)+( 0.163) = 1.276 NODE 610.00 : HGL = < 241.629>;EGL= < 242.877>;FLOWLINE= < 239.840> ****************************************************************************** FLOW PROCESS FROM NODE 610.00 TO NODE 580.00 IS CODE = 1 UPSTREAM NODE 580.00 ELEVATION = 240.50 (FLOW IS UNDER PRESSURE) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES(LACFCD) PIPE FLOW = 7.04 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 34.50 FEET MANNING'S N = 0.01300 SF=(Q/K)**2 = (( 7.04)/( 35.628))**2 = 0.03904 HF=L*SF = ( 34.50)*(0.03904) = 1.347 NODE 580.00 : HGL = < 242.976>;EGL= < 244.224>;FLOWLINE= < 240.500> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 580.00 FLOWLINE ELEVATION = 240.50 ASSUMED UPSTREAM CONTROL HGL = 241.48 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS STORM DRAIN: PRIVATE SD-"D" FILE NAME: PVTD.DAT TIME/DATE OF STUDY: 14:43 10/26/2017 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: hI*' indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM (POUNDS) DEPTH (FT) MOMENTUM(POUNDS) 710.00- 1.00* 58.88 0.76 Dc 52.44 FRICTION } HYDRAULIC JUMP 680.10- 0.76*Dc 52.44 0.76*Dc 52.44 JUNCTION 680.00- 0.87* 32.26 0.65 Dc 28.21 FRICTION 670.00- 0.82* 30.72 0.65 Dc 28.21 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS. BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 710.00 FLOWLINE ELEVATION = 234.00 28 PIPE FLOW = ..99 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 235.000 FEET NODE 710.00 : HGL = < 235.000>;EGL= ------------------------------------------------------------------------------ < 235.158>;FLOWLINE= < 234.000> FLOW PROCESS FROM NODE 1.00 TO NODE 680.10 IS CODE = 1 UPSTREAM NODE 680.10 ELEVATION = 235.20 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES (LACFCD) ------------------------------------------------------------------------------ PIPE FLOW = 3.99 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 218.50 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ HYDRAULIC JUMP: DOWNSTREAM RUN ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.76 ------------------------------------------------------------------------------ CRITICAL DEPTH(FT) = 0.76 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.76 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH ------------------------------------------------------------------------------ VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.764 4.407 1.066 52.44 0.001 0.764 4.408 1.066 52.44 0.002 0.764 4.409 1.066 52.44 0.005 0.764 4.410 1.066 52.44 0.010 0.764 4.411 1.066 52.44 0.016 0.764 4.412 1.066 52.44 0.024 0.764 4.413 1.066 52.44 0.033 0.763 4.414 1.066 52.44 0.045 0.763 4.415 1.066 52.44 0.059 0.763 4.416 1.066 52.44 0.076 0.763 4.417 1.066 52.44 0.095 0.763 4.418 1.066 52.44 0.119 0.763 4.419 1.066 52.44 0.146 0.763 4.419 1.066 52.44 0.178 0.763 4.420 1.066 52.44 0.216 0.762 4.421 1.066 52.44 0.261 0.762 4.422 1.066 52.44 0.314 0.762 4.423 1.066 52.44 0.378 0.762 4.424 1.066 52.44 0.456 0.762 4.425 1.066 52.44 0.553 0.762 4.426 1.066 52.44 0.678 0.762 4.427 1.066 52.44 0.847 0.761 4.428 1.066 52.44 1.097 0.761 4.429 1.066 52.44 1.544 0.761 4.430 1.066 52.44 27.226 0.761 4.431 1.066 52.44 218.500 0.761 4.431 1.066 52.44 HYDRAULIC JUMP: ------------------------------------------------------------------------------ U?STREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTJ-I(FT) = 1.00 GRADUALLY VARIED FLOW PROFILE ------------------------------------------------------------------------------ COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ 29 CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.000 3.187 1.158 58.88 1.928 0.991 3.222 1.152 58.42 3.854 0.981 3.257 1.146 57.97 5.779 0.972 3.293 1.140 57.53 7.702 0.962 3.330 1.135 57.11 9.623 0.953 3.369 1.129 56.70 11.543 0.943 3.408 1.124 56.31 13.461 0.934 3.448 1.119 55.94 15.376 0.925 3.489 1.114 55.59 17.289 0.915 3.532 1.109 55.25 19.199 0.906 3.576 1.104 54.93 21.107 0.896 3.621 1.100 54.62 23.011 0.887 3.667 1.096 54.33 24.911 0.877 3.714 1.092 54.07 26.807 0.868 3.763 1.088 53.82 28.697 0.859 3.814 1.085 53.59 30.581 0.849 3.865 1.081 53.38 32.458 0.840 3.919 1.078 53.18 34.324 0.830 3.973 1.076 53.01 36.178 0.821 4.030 1.073 52.86 38.015 0.811 4.088 1.071 52.74 39.828 0.802 4.148 1.069 52.63 41.604 0.793 4.210 1.068 52.55 43.316 0.783 4.274 1.067 52.49 44.892 0.774 4.339 1.066 52.45 45.900 0.764 4.407 1.066 52.44 218.500 0.764 4.407 1.066 52.44 -------------END OF HYDRAULIC JUMP ANALYSIS------------------------ I PRESSURE+MOMENTUM BALANCE OCCURS AT 198.60 FEET UPSTREAM OF NODE 1.00 I DOWNSTREAM DEPTH = 0.765 FEET, UPSTREAM CONJUGATE DEPTH = 0.761 FEET NODE 680.10 : HGL = < 235.964>;EGL= ------------------------------------------------------------------------------ < 236.266>;FLOWLINE= < 235.200> FLOW PROCESS FROM NODE 680.10 TO NODE 680.00 IS CODE = 5 UPSTREAM NODE 680.00 ELEVATION ------------------------------------------------------------------------------ = 235.61 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 2.28 12.00 0.00 235.61 0.65 3.139 DOWNSTREAM 3.99 18.00 - 235.20 0.76 4.408 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 1.71===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*V1*COS (DELTA1) _03*V3*COS (DELTA3) - Q4*V4*COS(DELTA4))/((A1+A2)*161)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00373 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00541 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00457 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.018 FEET ENTRANCE LOSSES = 0.060 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.308)+( 0.060) = 0.368 ------------------------------------------------------------------------------ 30 NODE 680.00 : HGL = < 236.481>;EGL= < 236.634>;FLOWLINE= < 235.610> FLOW PROCESS FROM NODE 680.00 TO NODE 670.00 IS CODE = 1 UPSTREAM NODE 670.00 ELEVATION = 235.78 (FLOW IS SUBCRITICAL) CALCULATE FRICTION ------------------------------------------------------------------------------ LOSSES (LACFCD) PIPE FLOW = 2.28 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 34.60 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.75 ------------------------------------------------------------------------------ CRITICAL DEPTH(FT) = 0.65 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) 0.87 GRADUALLY VARIED FLOW PROFILE ------------------------------------------------------------------------------ COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.871 3.138 1.024 32.26 2.937 0.867 3.152 1.021 32.11 5.908 0.862 3.167 1.018 31.95 8.918 0.857 3.182 1.014 31.80 11.974 0.852 3.197 1.011 31.65 15.083 0.847 3.212 1.008 31.51 18.251 0.842 3.228 1.004 31.37 21.488 0.838 3.245 1.001 31.23 24.803 0.833 3.261 0.998 31.09 28.208 0.828 3.278 0.995 30.95 31.717 0.823 3.295 0.992 30.82 34.600 0.819 3.310 0.989 30.72 NODE 670.00 : ------------------------------------------------------------------------------ HGL = < 236.599>;EGL= < 236.769>;FLOWLINE= < 235.780> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 670.00 FLOWLINE ELEVATION = 235.78 ASSUMED UPSTREAM CONTROL HGL = 236.43 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS STORM DRAIN: PRIVATE SD-"E" FILE NNE: PVTE.DAT TIME/DATE OF STUDY: 14:39 10/26/2017 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: 1*1 indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 800.00- 1.04 Dc 114.90 0.52* 192.16 FRICTION 800.10- 1.04*Dc 114.90 1.04*Dc 114.90 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ 31 NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER 800.00 FLOWLINE ELEVATION = 200.30 PIPE FLOW = 7.23 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 201.300 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 1.00 FT.) IS LESS THAN CRITICAL DEPTH( 1.04 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS ------------------------------------------------------------------------------ NODE 800.00 : HGL = < 200.823>;EGL= < 203.522>;FLOWLINE= < 200.300> ****************************************************************************** FLOW PROCESS FROM NODE 800.00 TO NODE 800.10 IS CODE = 1 UPSTREAM NODE ------------------------------------------------------------------------------ 800.10 ELEVATION = 211.10 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) PIPE FLOW = 7.23 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 134.50 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.50 ------------------------------------------------------------------------------ CRITICAL DEPTH(FT) = 1.04 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.04 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH ------------------------------------------------------------------------------ VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.041 5.521 1.515 114.90 0.012 1.020 5.650 1.516 114.97 0.051 0.998 5.787 1.519 115.20 0.120 0.977 5.932 1.524 115.58 0.222 0.955 6.087 1.531 116.13 0.361 0.934 6.251 1.541 116.85 0.543 0.912 6.425 1.554 117.77 0.774 0.891 6.611 1.570 118.88 1.060 0.869 6.809 1.589 120.21 1.410 0.848 7.020 1.613 121.76 1.835 0.826 7.245 1.642 123.56 2.346 0.805 7.487 1.675 125.63 2.960 0.783 7.745 1.715 127.97 3.695 0.762 8.022 1.762 130.63 4.577 0.740 8.320 1.816 133.62 5.638 0.719 8.641 1.879 136.97 6.922 0.697 8.987 1.952 140.72 8.485 0.676 9.361 2.037 144.91 10.412 0.654 9.767 2.136 149.58 12.823 0.633 10.208 2.251 154.78 15.908 0.611 10.687 2.386 160.57 19.984 0.590 11.211 2.543 167.03 25.650 0.568 11.786 2.726 174.24 34.250 0.546 12.417 2.942 182.29 50.102 0.525 13.114 3.197 191.29 134.500 0.523 ------------------------------------------------------------------------------ 13.181 3.222 192.16 32 NODE 800.10 HGL = < 212.141>;EGL= < 212.615>;FLOWLINE= < 211.100> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 800.10 FLOWLINE ELEVATION = 211.10 ASSUMED UPSTREAM CONTROL HGL = 212.14 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS STORM DRAIN: PRIVATE SD-"F" FILE NAME: PVTF.DAT TIME/DATE OF STUDY: 14:38 10/26/2017 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: *U indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 100.10- 1.00* 45.27 0.62 Dc 31.21 FRICTION 100.00- 0.66* 31.44 0.62 Dc 31.21 JUNCTION 103.10- 0.64* 17.32 0.48 16.28 FRICTION } HYDRAULIC JUMP 70.00- 0.52*Dc 16.13 0.52*Dc 16.13 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. *** ********* **** *** *** * **** ****** ************** * *** ******** **** ********* * * DOWNSTREAM PIPE FLOW CONTROL DATA: NOCE NUMBER = 100.10 FLOWLINE ELEVATION = 240.80 PIPE FLOW = 2.67 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 241.800 FEET ------------------------------------------------------------------------------ NODE 100.10 : HGL = < 241.800>;EGL= < 241.871>;FLOWLINE= < 240.800> ***** ************************************************************************* FLOW PROCESS FROM NODE 100.10 TO NODE 100.00 IS CODE = 1 UPSTREAM NODE 100.00 ELEVATION = 241.30 (FLOW IS SUBCRITICAL) ------------------------------------------------------------------------------ CALCULATE FRICTION LOSSES (LACFCD) PIPE FLOW = 2.67 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 116.70 FEET MANNING'S N = 0.01300 ------------------------------------------------------------------------------ NORMAL DEPTH(FT) = 0.65 CRITICAL DEPTH(FT) = 0.62 DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.00 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: ------------------------------------------------------------------------------ DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 33 0.000 1.000 2.133 1.071 45.27 3.654 0.986 2.167 1.059 44.36 7.318 0.972 2.203 1.047 43.48 10.993 0.958 2.240 1.036 42.62 14.679 0.944 2.279 1.025 41.78 18.378 0.930 2.320 1.013 40.97 22.092 0.916 2.362 1.002 40.19 25.823 0.902 2.406 0.992 39.44 29.572 0.888 2.451 0.981 38.71 33.343 0.874 2.499 0.971 38.01 37.138 0.860 2.549 0.960 37.34 40.961 0.846 2.600 0.951 36.70 44.817 0.831 2.654 0.941 36.09 48.711 0.817 2.711 0.932 35.51 52.650 0.803 2.770 0.923 34.96 56.644 0.789 2.832 0.914 34.45 60.703 0.775 2.897 0.906 33.97 64.846 0.761 2.964 0.898 33.52 69.093 0.747 3.035 0.890 33.11 73.479 0.733 3.110 0.883 32.73 78.055 0.719 3.188 0.877 32.39 82.909 0.705 3.270 0.871 32.09 88.202 0.691 3.357 0.866 31.83 94.301 0.677 3.448 0.862 31.62 102.382 0.663 3.543 0.858 31.44 116.700 0.662 3.549 0.858 31.44 NODE 100.00 : HGL = < 241.962>;EGL= ------------------------------------------------------------------------------ < 242.158>;FLOWLINE= < 241.300> 1+20.98229896 ****************************************************************************** FLOW PROCESS FROM NODE 100.00 TO NODE 100.10 IS CODE = 5 UPSTREAM NODE 100.10 ELEVATION ------------------------------------------------------------------------------ = 241.80 (FLOW IS SUBCRITICAL) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 1.49 12.00 0.00 241.80 0.52 2.814 DOWNSTREAM 2.67 18.00 - 241.30 0.62 3.550 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 1.18===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*V1*COS (DELTA1)_Q3*V3*COS(DELTA3)_ Q4*V4*COS(DELTA4))/((A1+A2)*161)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00322 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00399 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00360 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.014 FEET ENTRANCE LOSSES = 0.039 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.365)+( 0.039) = 0.404 NODE 100.10 : HGL = < 242.439>;EGL= < 242.562>;FLOWLINE= < 241.800> ****************************************************************************** FLOW PROCESS FROM NODE 100.10 TO NODE 70.00 IS CODE = 1 34 UPSTREAM NODE 70.00 ELEVATION = 242.00 (HYDRAULIC JUMP OCCURS) CALCULATE FRICTION LOSSES (LACFCD) ------------------------------------------------------------------------------ PIPE FLOW = 1.49 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 24.30 FEET MANNING'S N = 0.01300 HYDRAULIC JUMP: DOWNSTREAM RUN ------------------------------------------------------------------------------ ANALYSIS RESULTS NORMAL DEPTH(FT) = 0.48 ------------------------------------------------------------------------------ CRITICAL DEPTH(FT) = 0.52 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.52 GRADUALLY VARIED FLOW PROFILE ------------------------------------------------------------------------------ COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.517 3.633 0.722 16.13 0.005 0.516 3.648 0.722 16.13 0.020 0.514 3.662 0.722 16.13 0.047 0.512 3.677 0.722 16.13 0.087 0.511 3.691 0.723 16.13 0.140 0.509 3.706 0.723 16.13 0.209 0.508 3.721 0.723 16.14 0.294 0.506 3.736 0.723 16.14 0.398 0.504 3.752 0.723 16.14 0.524 0.503 3.767 0.723 16.15 0.673 0.501 3.782 0.723 16.15 0.849 0.499 3.798 0.724 16.16 1.056 0.498 3.814 0.724 16.16 1.300 0.496 3.830 0.724 16.17 1.586 0.495 3.846 0.724 16.18 1.922 0.493 3.862 0.725 16.18 2.320 0.491 3.878 0.725 16.19 2.793 0.490 3.894 0.725 16.20 3.363 0.488 3.911 0.726 16.21 4.058 0.487 3.928 0.726 16.22 4.925 0.485 3.944 0.727 16.23 6.041 0.483 3.961 0.727 16.24 7.551 0.482 3.978 0.728 16.25 9.780 0.480 3.996 0.728 16.27 13.772 0.478 4.013 0.729 16.28 24.300 0.478 ------------------------------------------------------------------------------ 4.014 0.729 16.28 HYDRAULIC JUMP: U--"STREAM RUN ANALYSIS RESULTS DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.64 GRADUALLY VARIED PLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH ------------------------------------------------------------------------------ VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.639 2.813 0.762 17.32 0.533 0.634 2.838 0.759 17.23 1.061 0.629 2.864 0.756 17.14 1.583 0.624 2.890 0.754 17.06 2.098 0.619 2.917 0.751 16.98 2.607 0.614 2.944 0.749 16.91 3.109 0.609 2.972 0.747 16.84 35 3.603 0.605 3.000 0.744 16.77 4.089 0.600 3.029 0.742 16.70 4.566 0.595 3.059 0.740 16.64 5.033 0.590 3.089 0.738 16.58 5.490 0.585 3.120 0.736 16.52 5.934 0.580 3.151 0.735 16.47 6.366 0.575 3.184 0.733 16.42 6.784 0.571 3.217 0.731 16.38 7.185 0.566 3.250 0.730 16.33 7.570 0.561 3.285 0.729 16.30 7.934 0.556 3.320 0.727 16.26 8.276 0.551 3.356 0.726 16.23 8.593 0.546 3.393 0.725 16.20 8.880 0.542 3.431 0.724 16.18 9.134 0.537 3.469 0.724 16.16 9.348 0.532 3.509 0.723 16.15 9.515 0.527 3.549 0.723 16.14 9.625 0.522 3.591 0.722 16.13 9.665 0.517 3.633 0.722 16.13 24.300 0.517 3.633 0.722 16.13 -------------END OF HYDRAULIC JUMP ANALYSIS------------------------ I PRESSURE+MOMENTUM BALANCE OCCURS AT 7.76 FEET UPSTREAM OF NODE 100.10 I DOWNSTREAM DEPTH = 0.558 FEET, UPSTREAM CONJUGATE DEPTH = 0.478 FEET NODE 70.00 : ------------------------------------------------------------------------------ HGL = < 242.517>;EGL= < 242.722>;FLOWLINE= < 242.000> UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 70.00 FLOWLINE ELEVATION = 242.00 ASSUMED UPSTREAM CONTROL HGL = 242.52 FOR DOWNSTREAM RUN ANALYSIS STORM DRAIN: PRIVATE SD-"L" FILE NAME: PVTL.DAT TIME/DATE OF STUDY: 14:34 10/26/2017 ****************************************************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: *" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 910.10- 0.83 Dc 63.66 0 •45* 99.51 FRICTION 910.00- 0.83 Dc 63.66 0.68* 67.04 JUNCTION 909.90- 0.82*Dc 54.40 0.82*Dc 54.40 FRICTION 880.00- 0.85* 54.51 0.82 Dc 54.40 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ****************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 910.10 FLOWLINE ELEVATION = 223.80 36 PIPE FLOW = 4.63 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 224.600 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 0.80 FT.) IS LESS THAN CRITICAL DEPTH( 0.83 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS ------------------------------------------------------------------------------ NODE 910.10 : HGL = < 224.246>;EGL= < 225.967>;FLOWLINE= < 223.800> ******************** ********************************************************** FLOW PROCESS FROM NODE 910.10 TO NODE 910.00 IS CODE = 1 UPSTREAM NODE 910.00 ELEVATION = ------------------------------------------------------------------------------ 232.00 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) PIPE FLOW = 4.63 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 144.30 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.44 ------------------------------------------------------------------------------- CRITICAL DEPTH(FT) = 0.83 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.68 GRADUALLY VARIED FLOW PROFILE ------------------------------------------------------------------------------ COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.684 5.895 1.224 67.04 0.240 0.674 6.008 1.235 67.57 0.510 0.665 6.125 1.247 68.15 0.813 0.655 6.247 1.261 68.79 1.152 0.645 6.374 1.276 69.47 1.532 0.635 6.505 1.292 70.21 1.957 0.625 6.642 1.310 71.00 2.432 0.615 6.784 1.330 71.85 2.965 0.605 6.933 1.352 72.76 3.563 0.595 7.087 1.376 73.74 4.234 0.585 7.248 1.402 74.79 4.991 0.575 7.416 1.430 75.91 5.847 0.566 7.591 1.461 77.10 6.819 0.556 7.774 1.495 78.37 7.927 0.546 7.966 1.532 79.73 9.201 0.536 8.166 1.572 81.17 10.677 0.526 8.376 1.616 82.71 12.403 0.516 8.596 1.664 84.35 14.449 0.506 8.827 1.717 86.09 16.918 0.496 9.069 1.774 87.94 19.966 0.486 9.324 1.837 89.92 23.858 0.476 9.592 1.906 92.02 29.092 0.467 9.874 1.981 94.26 36.780 0.457 10.171 2.064 96.64 50.502 0.447 10.485 2.155 99.18 144.300 0.446 10.525 2.167 99.51 NODE 910.00 : ------------------------------------------------------------------------------ HGL = < 232.684>;EGL= < 233.224>;FLOWLINE= < 232.000> ****************************************************************************** FLOW PROCESS FROM NODE 910.00 TO NODE 909.90 IS CODE = 5 UPSTREAM NODE ------------------------------------------------------------------------------- 939.90 ELEVATION = 232.50 (FLOW IS AT CRITICAL DEPTH) 37 CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 3.69 12.00 0.00 232.50 0.82 5.362 DOWNSTREAM 4.63 18.00 - 232.00 0.83 4.640 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 0.94===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY=(Q2*V2_Q1*V1*COS(DELTA1)_Q3*V3*COS(DELTA3) Q4*V4*COS(DELTA4))/((A1+A2)*161)+FRICTION LOSSES UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.01075 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00563 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.00819 JUNCTION LENGTH = 4.00 FEET FRICTION LOSSES = 0.033 FEET ENTRANCE LOSSES = 0.067 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.538)+( 0.067) = 0.604 NODE 909.90 : HGL ------------------------------------------------------------------------------ = < 233.319>;EGL= < 233.765>;FLOWLINE= < 232.500> FLOW PROCESS FROM NODE 909.90 TO NODE 880.00 IS CODE = 1 UPSTREAM NODE 880.00 ELEVATION = 232.88 (FLOW IS SUBCRITICAL) CALCULATE FRICTION ------------------------------------------------------------------------------ LOSSES (LACFCD) PIPE FLOW = 3.69 CFS PIPE DIAMETER = 12.00 INCHES PIPE LENGTH = 37.60 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = ------------------------------------------------------------------------------ 0.85 & 0.99 CRITICAL DEPTH(FT) = 0.82 NOTE: SUGGEST CONSIDERATION OF WAVE ACTION, UNCERTAINTY, ETC. DOWNSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.82 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM ------------------------------------------------------------------------------ FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.819 5.360 1.265 54.40 0.007 0.820 5.353 1.265 54.40 0.028 0.821 5.345 1.265 54.40 0.065 0.822 5.338 1.265 54.41 0.120 0.824 5.331 1.265 54.41 0.194 0.825 5.323 1.265 54.41 0.289 0.826 5.316 1.265 54.41 0.408 0.827 5.309 1.265 54.41 0.554 0.829 5.302 1.265 54.42 0.729 0.830 5.295 1.265 54.42 0.939 0.831 5.288 1.265 54.42 1.187 0.832 5.280 1.266 54.43 1.481 0.834 5.273 1.266 54.43 1.826 0.835 5.266 1.266 54.43 2.233 0.836 5.260 1.266 54.44 2.714 0.837 5.253 1.266 54.44 3.283 0.839 5.246 1.266 54.45 3.964 0.840 5.239 1.266 54.46 4.785 0.841 5.232 1.266 54.46 38 5.791 0.842 5.225 1.267 54.47 7.050 0.844 5.219 1.267 54.48 8.675 0.845 5.212 1.267 54.48 10.882 0.846 5.205 1.267 54.49 14.152 0.847 5.199 1.267 54.50 20.029 0.848 5.192 1.267 54.51 37.600 0.849 5.192 1.267 54.51 NODE 880.00 : HGL = < 233.729>;EGL= ------------------------------------------------------------------------------ < 234.147>;FLOWLINE= < 232.880> ****************************************************************************** UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 880.00 FLOWLINE ELEVATION = 232.88 ASSUMED UPSTREAM CONTROL HGL = 233.70 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS STORM DRAIN: PRIVATE SD-"M" FILE NAME: PVTM.DAT TIME/DATE OF STUDY: 14:34 10/26/2017 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: "*" indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH (FT) MOMENTUM(POUNDS) 950.10- 1.19 Dc 168.40 0.62* 270.28 FRICTION 950.01- 1.19*Dc 168.40 1.19*Dc 168.40 JUNCTION 950.00- 1.45 154.11 0.82* 158.95 FRICTION 940.00- 1.12*Dc 139.70 1.12*Dc 139.70 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. ************************************************************ ***************** DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 950.10 FLOWLINE ELEVATION = 223.80 PIPE FLOW = 9.56 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 224.800 FEET *NOTE: ASSUMED DOWNSTREAM CONTROL DEPTH( 1.00 FT.) IS LESS THAN CRITICAL DEPTH( 1.19 FT.) ===> CRITICAL DEPTH IS ASSUMED AS DOWNSTREAM CONTROL DEPTH FOR UPSTREAM RUN ANALYSIS ------------------------------------------------------------------------------ NODE 950.10 : HGL = < 224.416>;EGL= < 227.457>;FLOWLINE= < 223.800> ****** **** **** **** ******** * *** * *** **** **** **** ***** * * FLOW PROCESS FROM NODE 950.10 TO NODE 950.01 IS CODE = 1 UPSTREAM NODE 950.01 ELEVATION = 228.75 (FLOW IS SUPERCRITICAL) ------------------------------------------------------------------------------ 39 CALCULATE FRICTION LOSSES (LACFCD) PIPE FLOW = 9.56 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 64.40 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.59 ------------------------------------------------------------------------------ CRITICAL DEPTH(FT) = 1.19 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.19 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH VELOCITY ------------------------------------------------------------------------------ SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.194 6.336 1.818 168.40 0.016 1.170 6.463 1.819 168.50 0.066 1.146 6.598 1.822 168.81 0.153 1.122 6.743 1.828 169.33 0.283 1.098 6.897 1.837 170.08 0.459 1.073 7.062 1.848 171.08 0.688 1.049 7.238 1.863 172.33 0.977 1.025 7.426 1.882 173.85 1.335 1.001 7.626 1.905 175.65 1.770 0.977 7.841 1.932 177.77 2.296 0.953 8.070 1.965 180.21 2.928 0.929 8.315 2.003 183.00 3.683 0.905 8.578 2.048 186.18 4.586 0.881 8.861 2.101 189.76 5.666 0.857 9.164 2.161 193.78 6.961 0.832 9.490 2.232 198.29 8.522 0.808 9.842 2.313 203.32 10.420 0.784 10.222 2.408 208.92 12.751 0.760 10.633 2.517 215.16 15.662 0.736 11.078 2.643 222.09 19.377 0.712 11.562 2.789 229.80 24.274 0.688 12.090 2.959 238.36 31.063 0.664 12.666 3.157 247.88 41.345 0.640 13.298 3.387 258.47 60.251 0.616 13.992 3.658 270.29 64.400 0.616 13.992 3.657 270.28 NODE 950.01 : HGL = < 229.944>;EGL= ------------------------------------------------------------------------------ < 230.568>;FLOWLINE= < 228.750> FLOW PROCESS FROM NODE 950.01 TO NODE 950.00 IS CODE = 5 UPSTREAM NODE 950.00 ELEVATION = 229.08 (FLOW IS SUBCRITICAL) (NOTE: POSSIBLE JUMP IN OR UPSTREAM ------------------------------------------------------------------------------ OF STRUCTURE) CALCULATE JUNCTION LOSSES: PIPE FLOW DIAMETER ANGLE FLOWLINE CRITICAL VELOCITY (CFS) (INCHES) (DEGREES) ELEVATION DEPTH(FT.) (FT/SEC) UPSTREAM 8.35 18.00 0.00 229.08 1.12 8.501 DOWNSTREAM 9.56 18.00 - 228.75 1.19 6.338 LATERAL #1 0.00 0.00 0.00 0.00 0.00 0.000 LATERAL #2 0.00 0.00 0.00 0.00 0.00 0.000 Q5 1.21===Q5 EQUALS BASIN INPUT=== LACFCD AND OCEMA FLOW JUNCTION FORMULAE USED: DY= (Q2*V2_Q1*V1*COS (DELTA1) _Q3*V3*COS (DELTA3) - Q4*V4*COS(DELTA4))/((A1+A2)*161)+FRICTION LOSSES 40 UPSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.0190 DOWNSTREAM: MANNING'S N = 0.01300; FRICTION SLOPE = 0.00876 AVERAGED FRICTION SLOPE IN JUNCTION ASSUMED AS 0.01393 JUNCTION LENGTH = 3.00 FEET FRICTION LOSSES = 0.042 FEET ENTRANCE LOSSES = 0.125 FEET JUNCTION LOSSES = (DY+HV1-HV2)+(ENTRANCE LOSSES) JUNCTION LOSSES = ( 0.326)+( 0.125) = 0.450 NODE 950.00 : HGL = < 229.896>;EGL= ------------------------------------------------------------------------------ < 231.018>;FLOWLINE,= < 229.080> *** ** *********** * * ******** ********** * FLOW PROCESS FROM NODE 950.00 TO NODE 940.00 IS CODE = 1 UPSTREAM NODE 940.00 ELEVATION = 232.70 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) ------------------------------------------------------------------------------ PIPE FLOW = 8.35 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 181.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.80 ------------------------------------------------------------------------------ CRITICAL DEPTH(FT) = 1.12 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 1.12 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH ------------------------------------------------------------------------------- VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 1.119 5.903 1.661 139.70 0.024 1.107 5.973 1.661 139.73 0.099 1.094 6.045 1.662 139.80 0.230 1.081 6.120 1.663 139.94 0.422 1.069 6.197 1.666 140.12 0.681 1.056 6.277 1.668 140.37 1.015 1.044 6.360 1.672 140.67 1.432 1.031 6.446 1.677 141.03 1.942 1.018 6.534 1.682 141.45 2.557 1.006 6.626 1.688 141.94 3.290 0.993 6.721 1.695 142.50 4.160 0.981 6.820 1.703 143.12 5.186 0.968 6.921 1.712 143.82 6.395 0.955 7.027 1.723 144.59 7.820 0.943 7.136 1.734 145.43 9.502 0.930 7.250 1.747 146.35 11.498 0.918 7.367 1.761 147.36 13.883 0.905 7.489 1.777 148.45 16.762 0.893 7.616 1.794 149.63 20.292 0.880 7.747 1.812 150.90 24.712 0.867 7.883 1.833 152.26 30.426 0.855 8.025 1.855 153.73 38.190 0.842 8.172 1.880 155.30 49.704 0.830 8.324 1.906 156.98 70.421 0.817 8.483 1.935 158.77 181.000 0.816 8.499 1.938 158.95 NODE 940.00 : HGL = < 233.819>;EGL= ------------------------------------------------------------------------------ < 234.361>;FLOWLINE= < 232.700> UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 940.00 FLOWLINE ELEVATION = 232.70 41 ASSUMED UPSTREAM CONTROL HGL = 233.82 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS STORM DRAIN: PRIVATE SD-"N" FILE NAME: PVTN.DAT TIME/DATE OF STUDY: 14:33 10/26/2017 ******************************* *********************************************** GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: 11*11 indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH(FT) MOMENTUM(POUNDS) 960.10- 1.00 45.11 0.24* 74.13 FRICTION 960.00- 0.62*Dc 30.91 0.62*Dc 30.91 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND OCEMA DESIGN MANUALS. DOWNSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 960.10 FLOWLINE ELEVATION = 194.00 PIPE FLOW = 2.65 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 195.000 FEET ------------------------------------------------------------------------------ NODE 960.10 : HGL = < 194.244>;EGL= < 197.380>;FLOWLINE= < 194.000> ****************************************************************************** FLOW PROCESS FROM NODE 960.10 TO NODE 960.00 IS CODE = 1 UPSTREAM NODE ------------------------------------------------------------------------------ 960.00 ELEVATION = 217.65 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION LOSSES (LACFCD) PIPE FLOW = 2.65 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 92.80 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.23 ------------------------------------------------------------------------------ CRITICAL DEPTH(FT) = 0.62 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.62 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH ------------------------------------------------------------------------------ VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.617 3.865 0.849 30.91 0.003 0.602 3.999 0.850 30.94 0.013 0.586 4.142 0.853 31.04 0.031 0.570 4.294 0.857 31.21 0.058 0.555 4.458 0.864 31.46 0.095 0.539 4.633 0.873 31.80 0.144 0.524 4.821 0.885 32.22 0.207 0.508 5.024 0.900 32.74 0.287 0.493 5.243 0.920 33.36 42 0.385 0.477 5.480 0.944 34.10 0.507 0.462 5.737 0.973 34.96 0.655 0.446 6.016 1.008 35.96 0.837 0.430 6.321 1.051 37.11 1.058 0.415 6.655 1.103 38.42 1.328 0.399 7.021 1.165 39.93 1.660 0.384 7.425 1.240 41.65 2.070 0.368 7.871 1.331 43.60 2.579 0.353 8.367 1.440 45.83 3.222 0.337 8.920 1.573 48.38 4.045 0.321 9.541 1.736 51.29 5.124 0.306 10.242 1.936 54.63 6.588 0.290 11.037 2.183 58.47 8.676 0.275 11.945 2.492 62.91 11.935 0.259 12.992 2.882 68.08 18.114 0.244 14.207 3.380 74.13 92.800 0.244 14.207 3.380 74.13 N005 960.00 ------------------------------------------------------------------------------ : HGL = < 218.267>;EGL= < 218.499>;FLOWLINE= < 217.650> **** k************************************************************************* UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 960.00 FLOWLINE ELEVATION = 217.65 ASSUMED UPSTREAM CONTROL HGL = 218.27 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS STORM DRAIN: PRIVATE SD-"P" FILE IThNE: PVTP.DAT TIME/DATE OF STUDY: 14:32 10/26/2017 GRADUALLY VARIED FLOW ANALYSIS FOR PIPE SYSTEM NODAL POINT STATUS TABLE (Note: U* indicates nodal point data used.) UPSTREAM RUN DOWNSTREAM RUN NODE MODEL PRESSURE PRESSURE+ FLOW PRESSURE+ NUMBER PROCESS HEAD(FT) MOMENTUM(POUNDS) DEPTH (FT) MOMENTUM(POUNDS) 790.10- 1.00 Dc 101.68 0•54* 156.23 FRICTION 790.09- 0.99 Dc 101.68 0.42* 210.83 MANHOLE 790.08- 0.99 Dc 101.68 0.43* 206.12 FRICTION 790.07- 0.99 Dc 101.68 0.62* 134.34 MANHOLE 790.06- 0.99 Dc 101.68 0.68* 122.24 FRICTION 790.00- 0.99*Dc 101.68 0.99*Dc 101.68 ------------------------------------------------------------------------------ MAXIMUM NUMBER OF ENERGY BALANCES USED IN EACH PROFILE = 25 ------------------------------------------------------------------------------ NOTE: STEADY FLOW HYDRAULIC HEAD-LOSS COMPUTATIONS BASED ON THE MOST CONSERVATIVE FORMULAE FROM THE CURRENT LACRD,LACFCD, AND CCEMA DESIGN MANUALS. ***************************************************************************** DOWNSTREAM PIPE FLOW CONTROL DATA: 43 NODE NUMBER = 790.10 FLOWLINE ELEVATION = 201.03 PIPE FLOW = 6.60 CFS PIPE DIAMETER = 18.00 INCHES ASSUMED DOWNSTREAM CONTROL HGL = 202.030 FEET NODE 790.10 ------------------------------------------------------------------------------ HGL = < 201.568>;EGL= < 203.655>;FLOWLINE= < 201.030> ****************************************************************************** FLOW PROCESS FROM NODE 790.10 TO NODE 790.09 IS CODE = 1 UPSTREAM NODE 790.09 ELEVATION = 202.94 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION ------------------------------------------------------------------------------ LOSSES (LACFCD) PIPE FLOW = 6.60 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 48.10 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) ------------------------------------------------------------------------------ = 0.58 CRITICAL DEPTH(FT) = 0.99 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.42 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM ------------------------------------------------------------------------------ FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.423 16.132 4.466 210.83 1.773 0.429 15.806 4.311 206.83 3.591 0.435 15.492 4.164 202.97 5.457 0.442 15.189 4.026 199.26 7.377 0.448 14.896 3.896 195.69 9.355 0.454 14.614 3.772 192.24 11.398 0.460 14.340 3.656 188.93 13.514 0.467 14.076 3.545 185.73 15.712 0.473 13.821 3.441 182.64 18.001 0.479 13.573 3.342 179.66 20.394 0.485 13.334 3.248 176.79 22.905 0.491 13.102 3.159 174.02 25.553 0.498 12.877 3.074 171.34 28.361 0.504 12.660 2.994 168.76 31.356 0.510 12.449 2.918 166.26 34.576 0.516 12.244 2.846 163.85 38.067 0.523 12.045 2.777 161.52 41.896 0.529 11.852 2.711 159.26 46.153 0.535 11.665 2.649 157.09 48.100 0.538 11.591 ------------------------------------------------------------------------------ 2.625 156.23 NODE 790.09 : HGL = < 203.363>;EGL= < 207.406>;FLOWLINE= < 202.940> ****************************************************************************** FLOW PROCESS FROM NODE 790.09 TO NODE 790.08 IS CODE = 2 UPSTREAM NODE 790.08 ELEVATION = ------------------------------------------------------------------------------ 203.32 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES (LACFCD) PIPE FLOW = 6.60 CFS PIPE DIAMETER = 18.00 INCHES AVERAGED VELOCITY HEAD = 3.948 FEET HMN = .05* (AVERAGED VELOCITY HEAD) = .05*( 3.948) = 0.197 NODE 790.08 : ------------------------------------------------------------------------------ HGL = < 203.750>;EGL= < 207.604>;FLOWLINE= < 203.320> ****************************************************************************** FLOW PROCESS FROM NODE 790.08 TO NODE 790.07 IS CODE = 1 44 UPSTREAM NODE 790.07 ELEVATION = 223.64 (FLOW IS SUPERCRITICAL) CALCULATE FRICTION ------------------------------------------------------------------------------ LOSSES (LACFCD) PIPE FLOW = 6.60 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 156.00 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.42 ------------------------------------------------------------------------------ CRITICAL DEPTH(FT) = 0.99 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.62 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM ------------------------------------------------------------------------------ FLOW DEPTH VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.617 9.638 2.060 134.34 0.423 0.609 9.801 2.101 136.10 0.879 0.601 9.969 2.145 137.93 1.370 0.593 10.143 2.192 139.83 1.900 0.586 10.323 2.241 141.82 2.473 0.578 10.508 2.294 143.89 3.094 0.570 10.700 2.349 146.05 3.769 0.563 10.899 2.408 148.29 4.505 0.555 11.104 2.471 150.63 5.308 0.547 11.317 2.537 153.07 6.190 0.539 11.537 2.608 155.61 7.160 0.532 11.766 2.683 158.26 8.234 0.524 12.002 2.762 161.02 9.428 0.516 12.248 2.847 163.90 10.764 0.509 12.503 2.937 166.91 12.271 0.501 12.768 3.034 170.04 13.985 0.493 13.043 3.136 173.32 15.957 0.485 13.329 3.246 176.74 18.258 0.478 13.627 3.363 180.31 20.991 0.470 13.937 3.488 184.05 24.317 0.462 14.260 3.622 187.95 28.504 0.454 14.597 3.765 192.04 34.056 0.447 14.948 3.918 196.32 42.108 0.439 15.315 4.083 200.80 56.295 0.431 15.698 4.260 205.49 156.000 0.430 15.748 4.284 206.12 NODE 790.07 : HGL = < 224.257>;EGL= ------------------------------------------------------------------------------ < 225.700>;FLOWLINE= < 223.640> ***** ************************************************************************* FLOW PROCESS FROM NODE 790.07 TO NODE 790.06 IS CODE = 2 UPSTREAM NODE 70.06 ELEVATION = 223.97 (FLOW IS SUPERCRITICAL) CALCULATE MANHOLE LOSSES (LACFCD): ------------------------------------------------------------------------------ PIPE FLOW = 6.60 CFS PIPE DIAMETER = 18.00 INCHES AVERAGED VELOCITY HEAD = 1.278 FEET HMN = .05-(AVERAGED VELOCITY HEAD) = .05*( 1.278) = 0.064 NODE 790.06 : H3L = < 224.651>;EGL= ------------------------------------------------------------------------------ < 225.764>;FLOWLINE= < 223.970> ************************************************************** **** *********** FLOW PROCESS FROM NODE 790.06 TO NODE 790.00 IS CODE = 1 UPSTREAM NODE ------------------------------------------------------------------------------ 790.00 ELEVATION = 225.00 (FLOW IS SUPERCRITICAL) 45 CALCULATE FRICTION LOSSES (LACFCD) PIPE FLOW = 6.60 CFS PIPE DIAMETER = 18.00 INCHES PIPE LENGTH = 38.90 FEET MANNING'S N = 0.01300 NORMAL DEPTH(FT) = 0.65 ------------------------------------------------------------------------------ CRITICAL DEPTH(FT) = 0.99 UPSTREAM CONTROL ASSUMED FLOWDEPTH(FT) = 0.99 GRADUALLY VARIED FLOW PROFILE COMPUTED INFORMATION: DISTANCE FROM FLOW DEPTH ------------------------------------------------------------------------------ VELOCITY SPECIFIC PRESSURE+ CONTROL(FT) (FT) (FT/SEC) ENERGY(FT) MOMENTUM(POUNDS) 0.000 0.994 5.309 1.432 101.68 0.019 0.980 5.395 1.432 101.71 0.080 0.966 5.484 1.433 101.80 0.187 0.952 5.577 1.435 101.95 0.344 0.938 5.673 1.438 102.16 0.557 0.924 5.774 1.442 102.45 0.832 0.911 5.878 1.447 102.80 1.178 0.897 5.987 1.453 103.23 1.601 0.883 6.100 1.461 103.73 2.114 0.869 6.218 1.470 104.32 2.729 0.855 6.341 1.480 104.98 3.461 0.841 6.469 1.491 105.73 4.328 0.827 6.603 1.505 106.57 5.353 0.813 6.743 1.520 107.50 6.567 0.799 6.889 1.537 108.53 8.005 0.786 7.042 1.556 109.67 9.719 0.772 7.202 1.578 110.91 11.776 0.758 7.369 1.602 112.27 14.269 0.744 7.544 1.628 113.74 17.339 0.730 7.728 1.658 115.35 21.199 0.716 7.921 1.691 117.09 26.211 0.702 8.124 1.728 118.97 33.050 0.688 8.337 1.768 121.00 38.900 0.681 8.465 1.794 122.24 NODE 790.00 : ------------------------------------------------------------------------------ HGL = < 225.994>;EGL= < 226.432>;FLOWLINE= < 225.000> UPSTREAM PIPE FLOW CONTROL DATA: NODE NUMBER = 790.00 FLOWLINE ELEVATION = 225.00 ASSUMED UPSTREAM CONTROL HGL = 225.99 FOR DOWNSTREAM RUN ANALYSIS END OF GRADUALLY VARIED FLOW ANALYSIS 46 CURB INLET CALCULATIONS Per City of Carlsbad formula: Q=0.7L (a+y)A3/2 APPROACH REQUIRED LENGTH INLET NODE CFS DEPTH LENGTH PROVIDED (Fl) (Fl) (FT) STREET "A" 12+70.00 17.00' LT(SUMP) 880 3.689 N/A 1.84 4.0 12+85.00 17.00' RT 910 1.904 0.164 7.83 8.0 STREET "B' 9+62.00 (CDS)(SUMP) 940 8.351 N/A 4.18 6.0 15+85.49 17.00 LT 170 3.553 0.261 11.17 12.0 15+81.49 :17.00' RT 200.1 0.48 0.185 1.86 4.0 STREET "C" 10+84.00 17.00' LT 670 2.279 0.235 7.67 8.0 10+84.00 17.00' RT 680 1.702 0.222 5.93 8.0 14+35.67 17.00' LT (SUMP) 580 7.045 N/A 3.52 4.0 14+35.76 .17.00' RT (SUMP) 610 4.185 N/A 2.09 4.0 AISLE "Z" 10+73.77 12.00' LT 100 0.75 0.178 2.96 4,0 10+73.77 12.00' RI 70 0.908 0.198 3.38 4.0