Loading...
HomeMy WebLinkAboutSDP 05-04X; DKN HOTEL - SPRINGHILL SUITES HOTEL; SUPPLEMENTAL TEMPORARY SHORING DESIGN CALCULATIONS; 2017-04-190 EARTH SUPPORT SYSTE RECORD COPY - Initial Date Supplemental Temporary Shoring Design Calculations Springhill Suites Hotel Carlsbad, California Revision 2 April 19, 2017 ESSI Project # 14-125 RIECEIIVETD MAY 10 2017 LAND DEVELOPMENT ENGINEERING Table of Contents: Section ShoringPlans: ........................................................................................................................ I SoldierBeam # 1-3 (H=26'). ................................................................................................... 2 Soldier Beam # 34-37, 41-48 (H=22'). .................................................................................... 3 SoldierBeam #38-40 (H=27'). ............................................................................................... 4 Soldier Beam # 104-108,113 (H=26'). ................................................................................... 5 Soldier Beam #109-112 (H=27'). ........................................................................................... 6 SoldierBeam Schedule: ......................................................................................................... 7 Geotechnical Report (Partial Copy). ........................................................................................ 8 9685 Via Excelencia, Suite 104 1 San Diego, CA 92126 phone (760) 929-2851 1 fax (760) 929-2852 1 www.earthsupportsys.com 0 EARTH SUPPORT SYSTEMS April 19, 2017 Mr. Larry Pickell Phone (714) 427-4369 DKN Hotels 42 Corporate Park, Suite 200 Irvine, CA 92606 Re: Springhill Suites Hotel JOB #14-125 Carlsbad, California Subject: Supplemental Temporary Shoring Design Submittal Revision 2 Dear Mr. Pickell: Enclosed please find the revised temporary shoring design submittal for the above referenced project. The scope of changes in this submittal includes utilizing tieback anchors in lieu of rakers along Carlsbad Boulevard and Lincoln Street. Should you have any additional questions or comments regarding this matter, please advise. Sincerely, EARTH SUPPORT SYSTEMS, INC. an, P. E., M.S. nt I Engineering Manager End: Design Calculations 9685 Via Excelencia, Suite 104 I San Diego, CA 92126 phone (760) 929-2851 1 fax (760) 929-2852 1 www.earthsupportsys.com 0 EARTH SUPPORT SYSTEMS Supplemental Temporary Shoring Design Calculations Springhill Suites Hotel Carlsbad, California Revision 2 April 19, 2017 ESSI Project # 14-125 Table of Contents: Section ShoringPlans: ........................................................................................................................ I Soldier Beam # 1-3 (H=26'). ................................................................................................... 2 Soldier Beam # 34-37, 41-48 (H=22'). .................................................................................... 3 Soldier Beam # 38-40 (H=27'). ............................................................................................... 4 Soldier Beam #104-108, 113 (H=26'). ................................................................................... 5 Soldier Beam #109-112 (H=27'). ........................................................................................... 6 SoldierBeam Schedule: ......................................................................................................... 7 Geotechnical Report (Partial Copy) .......................................................................................8 9685 Via Excelencia, Suite 104 I San Diego, CA 92126 phone (760) 929-2851 1 fax (760) 929-2852 1 www.earthsupportsys.com SECTION 1 225-0" 3-0" -8-0"-,- B'-O"2 @800.C. 7-0" -8-2"- 7_1*7_42 @80 D.C. - 17 SPACES @8-0" O.C. = 136-0" 4-6" SURVEY MONITORING POINT AT RAKER TOP OF SOLDIER BEAM (TYP.) \ ' I I I "' \ r - I SURVEY MONITORING 60.00' -- \ ®_, (0 - °' "II ((1 , I - (0 3/h1) EXISTING (0 5'-O"() - 2 / (01 POINT ONEXIS11NG 60.00' \ I - I.. 99.9 j l'-6"--_-,('J- I • GRADE• -- J IYR)" , ' "j' "U BUILDING WALL, TYP. T.O.W,=55.00'— ____ - T.O.W.-54.00' - — T.O.W.=53100' 110 -'r-1' * -"A" 3-0 F _______ 74 50.00' 4- 12- OF 2 TIMBER TI BACK CAQ- - EI _ _ _ _ _ ACE, SEE ::: 0" = I .— -- ------- -H- -' = _. 5— 7 fy2j 3" x 12 OF #2 TIMBER - T' -- - ---- --I LAGGING (TYPICAL U N 0) 3P -. - - - - =-= — —, Ow = __ - — B.O.W.=29.00 - - - - —1 B.O. 30.00' -'-.-" -'-- —i p— --B.o.W.=2g.o0' I 10 "0' - SOLDIER BEAM,TYPICAL 20.00' lU. [S9 toe SEE SCHEDULE FOR SIZE 20.00' 'if fl tJ 'if if if11 f] IL 4 'I1 II 11 TIlT TI TI' TITh\1f @@) ®@®® @ L BOTTOM OF EXCAVATION * SOLDIER BEAM #12 ELEVATION VIEW - LOOKING NORTH - HAS BEEN OMITTED FROM PLANS. SCALE: 1" = 10 NOTES: FOR DIMENSIONS "A", "D"toe, "H" & "S", SEE SOLDIER BEAM & TIEBACK SCHEDULE ON SHEET ES1O. FIELD LOCATE EXISTING & PROPOSED STRUCTURES AND UTILITIES PRIOR TO ANY SHORING INSTALLATION. SOLDIER BEAM #12 HAS BEEN OMITTED FROM PLANS. Ril F S YA R T P.) EEIA C:5 CH(OR :44KL ill 127 LST 9 I$4E___ ___ I__ ___ ___ ___ ii ___ ___ C. PER 5" / 47 / I - - - ___ - E: 7/ STORE TO EAfAfV - ___ - ARcHILTS/ - I - PLAN _I / fill L 3 = SEE STRUCTURAL IENG1NEERS PLANS FUN I I' [S9 —- - -I ' 2 SOIL NAIL WALL __F1L ANS AND DETAILS PROPOSED TEMPORARY SHORIiG / I ON SHT 8 3 TO 150,V 3 16 (9 III 5C fa, Nv N h1F hio __=HIk \ J— ] EARTH SUPPORT SYSTEMS I I H I 92126 AKER I -j I ,4CORNER BRACE RUT %85 VIA EXCELENCIA . TEL (760) 929-2851 FAX (760) 929-2852 UITE , SAN EcA RAKER T i PL_JflL RAKER STRUT -1 7i I G IIL 'AS BUILT' LS2 __ REVIEWED BY, DATE RAKER 5-0 1'_1- __________________ INSPECTOR DATE FOOTING (4 PLAN VIEW - NORTH ____________________ SHEET ICITYOFCARLSBAD 9 _ I ENGINEERING DEPARTMENT 04/19/17 ['o'I_INITIAl, r R.C.E.68436 EXP. 9-30-17 DATE _ENGINEER OPWORK_ REVISION DESCRIPTION OTHER APPROVAL I_OTYAPPROVAL GRADING PLANS FOR SPRINOHILL SUITES HOTEL 3136 CARLSBAD BLVD CARLSBAD, CA 92008 RP 05-03 / COP 05-14 IARo.ED JASON S GELDERT I 0Th'ENONEER.RCE 63912 EXPIRES 9/30/16DAlE DWN BY: SFH PROJECT NO. DRAWING Nol CHKD BY: -04 __482-3AI _____________________________________________________________________________ 79-6" 163-1" , 3-11" 4-7" 4-0" 3 @ 6-10" O.C. 2 @ 8-0" D.C. /-4'-O" 3'-7"-- .L 7-0" 8 SPACES @8-0" D.C. = 64-0" 14 SPACES @ 8-0" O.C. = 112-0" - = 20-6" - - = 16-0' SURVEY MONITORING POINT AT & 3/EST1) TOP OF SOLDIER BEAM (TW.) - - - -- - r - 60.00' R \0( © I 2)EXI5114G— \(4)j . (4) 4 GRADE RAKER (J - SEE DO EXI CORNERBRACESEE__ i•i' GRADE 4 H j26 ::: EE :jj- • , flth 4x12#2TIMBER 5000 40.00' 1/ES1O & 5/ESTO) . =-4 zr:- —= - : = SEE 1/ES1O & L4 - LAGGING (UPPER 12' ONLY) 4000' -L --- = —su VEY-ME - .. 5/ES1O) - 1' DF TIMBER I Pt T (TYP I I c—I----- 12" DF 2 TIMBER LAGGING (TYPICAL, U.N.O.) 1=11 - - - - ---- ----- --- .---- ---- -- __j - .- - -. - =1= - —I--- —I--STRAP PEEl I_ _== =_=_ -=-._71 - - - ._ - -=- -= LAGGING (TYPICAL, U.N.O.) 1-11------- ---- —i_—— -. - - - I____ _______ _I 4/ES1O I— ______ -- 3000 - - -'-'-- - --- 3000 —1----BOW=2900—t-- —--—--1—BOW=2900 = = •. . SOLDIER BEAM,TYPICAL 11 B.O.W. e- j SOLDIER OEAM,TYPICAL SEE SCHEDULE FOR SIZE li 26.00' B.O.W 24.00 -\__, "D"t / D toe SEE SCHEDULE FOR SIZE 2000' - - --- ------.- . - 10 - - - - -- — I J -. - 20.00' TI TI TI TI TI TI TI TIES9TI TLITI TI TITITI if fj TI\TI TI/IT TI TI TLJTI TI TI TITITI BOTTOM OF EXCAVATION ELEVATION VIEW - LOOKING NORTHEAST ELEVATION VIEW - LOOKING SOUTH SCALE: 1 = 10' SCALE: 1" = TO' NOTES: FOR DIMENSIONS "A", 'D"toe, "H" & "S, SEE SOLDIER BEAM & TIEBACK SCHEDULE ON SHEET ES10. FIELD LOCATE EXISTING & PROPOSED STRUCTURES AND UTILITIES PRIOR TO ANY SHORING INSTALLATION. EARTH SUPPORT SYSTEMS 9685 VIA O(CELENCLA- surro 104, SAN DIEGO, CA 92126 TEL 17601 929-2851 FAX (760) 929-2852 ________ ES3 PLAN VIEW -SOUTH SCALE: 1 = 10' PLAN VIEW -NORTHEAST SCALE: 1" = 10' 142-10" 1-. 3-5" 5-0" - / 1-6 -0" 8-0" -8-5" -i--. -- - 6 SPACES @8-0" O.C. = 48'-0" —1 6-2" 6-8" —6 SPACES @8-0" O.C. = 40-0"— 6-8" SURVEY MONITORING POINT AT - - - - / TOP OF SOLDIER BEAM (TYP.) ----.GRADE TT /EXISTING _--_-_----- T.O.W.=55.00'— -- = -j-' - - . - T.O.W.=55.00' 50.00' -: .. 000 - __ I - TIEBACK (TYPICAL)-' - - - - ---- -- - --- ---- - - ---- -- - ------ - ------------- - ---- -- m2t ORTRG :' :2. . -" =1= P-) T:çtyll - - - 3" x 12" OF #2 TIMBER LAGGING (TYPICAL U N 0) 30.00' ;- - - - - 30.00' -d.W2900 - -- - B O.W.- D toe SOLDIER BEAM,TYPICAL SEE SCHEDULE FOR SIZE 11 If TrIf If7If If If IL1IfTrIf If If If If If\If - - -------- - 24.00' (10'\ ------------------------------------ -- -. ______________ L BOTTOM OF EXCAVATION NOTES: ELEVATION VIEW - LOOKING WEST 1. FOR DIMENSIONS "A, "D"toe, "H" & "S", SEE SOLDIER BEAM & TIEBACK SCHEDULE ON SHEET ES1 0. SCALE 1" = 10' Z. FIELD LOCATE EXISTING & PROPOSED STRUCTURES AND UTIUllES PRIOR TO ANY SHORING INSTALLATION. JRLN 1E -. 1106 5' _5------------J ----------------- /I1i'\ J\T, n 1 —TIEBACK (TYP.) PROTY PROPOSED STRUCTURE 0 EARTH SUPPORT SYSTEMS 9685 VIA EXCELENCLA - SUITE 104, SAN DIEGO, CA 92126 TEL (760) 929-2951 FAX (760)929-2852 ES5 PLAN VIEW -WEST SCALE: 1" = 10' SHEET CITY OF CARLSBAD SHEE 12 j ENGINEERING DEPARTMENT 1 9 GRADING PLANS FOR SPRJNGHILL SUITES HOTEL 3136 CARLSBAD BLVD CARLSBAD, CA 92008 RP 05-03 / COP 05-14 APPROVED: JASON S GELOERT IOTE ENGINEER, RtE 63912 EXPIRES 9/30/16 DATE DWN BY: SFH PROJECT NO. 15[NG NO. SDP 05-04 I482-3A1 SCHEDULE WALER WELD WELD SECTION SIZE LENGTH "A -B-(IN.) -C-(IN.) W21x73 lit 30 ~ - 18 MAX. SOLDIER BEAM WALER (SEE SCHEDULE (SEE 2/ES1O FOR SIZE) FOR SIZE) STAND-OFF (SEGMENT OF BEAM, TYP. AT EACH SOLDIER BEAM) CUT TO MATCH WALER ANGLE & SIZE (T"\ WALER/SOLDIER BEAM CONNECTION DETAIL N.T.S SAFETY CABLE RAILING (TYPICAL AROUND ENTIRE 2" SHORING PROJECT, IN COMPLIANCE WITH CAL-OSHA STANDARDS, BY OTHERS) ________ 42" EXISTING - t EQ./GRADE - -TIMBER LAGGING SEE ELEVATION -1 1/2 SACK SLURRY S. 45"-60± (SEE ELEVATION) SOLDIER BEAM (SEE SCHEDULE FOR SIZE) L=15" MIN. W. 6" FLAT BAR STRAPPING STRAPPING DETAIL N.T.S. .- SOLDIER BEAM (SEE SCHEDULE FOR SIZE) =141 MIN. W'x 6" FLAT BAR STRAPPING CORNER STRAPPING DETAIL BOTTOM OF EXCAVATION J : SOLDIER BEAM (SEE SCHEDULE FOR SIZE) - 1 1/2 SACK SLURRY TOE --SHAFT DIAMETER (SEE SCHEDULE FOR SIZE) NOTES: 1. NEW STRUCTURE WALL NOT SHOWN FOR CLARITY. 2. FOR DIMENSIONS "A". "D"toe, "H & S", SEE SOLDIER BEAM SCHEDULE ON SHEET ESTO. 5 SOLDIER BEAM SECTION - N.T.S. SCHEDULE I DIA. STEEL PLATE I WELD 1 STIFFENER PLATES "F' & "G" (THICK x WIDTH) PRELOAD* LOCKOFF I (KIPS) " C" "" "E" I PIPE IN. AN.1 N. IN. IN. 12 6 10 10 ½ x 4" 75 * NOTE: PRELOAD MAX. TO THE INDICATED LOAD OR UNTIL SHORING WALL MOVEMENT IS DETECTED. STRUT TOP "A"ø, S. LL PIPE BOTH IDES "B" THICK PLATE 45± C. BOTTOM OF PLATE E" "F"x"C" zz L MIS. FLAT BAR STIFFENERS, TOP AND BOTTOM 15/2" MAX. (THICK & WIDTH) ff t FILLET 6LLU uL5) I 2 WALER CORNER DETAIL W18X55 WALER - N.T.S. 1 STRUT/WALER CONNECTION DETAIL - N.T.S. SOLDIER BEAM & TIEBACK SCHEDULE Shore I Too Totol 1 Too Tiobeok No. of Diotenee Diotonto T.B. I Rethoint N.t,.nd." Look-off Toot Unbonded Bonded Totol Front To Sold. Uth Height Depth Drill Dlontoto Diameter TB or front T.O.Boant IOotTB Anglo • Load Load Lonth Length Length B oi" ----iAo.rr 'jf'" Qty H DOe. HDto. 0 d0 Levols * S TB#1 TB #1 Th#1 TB #1 1851 To 01 T13 01 '0 ----O"4 1T ITS 'T0Wo _---------- 137 ..........8' - 3 -'3 W18e501 26.0 12.5 8.50 17.50 - 30 4 ' 137 178 15 12 4 4 1 I W 16045 28.0 r 13.0 39.0 24 6 1 TB 6.00 20.00 30 4 120 156 15 1 22 37 5 6 2 W16 45 200 130 390 24 54 6 1 TB+WALER 5001800 §bt 2000 4010 3 -4..............'12 126 ,j 15 I 32 9111 3W18 x. 6O 260116 37524 1WArER 600 2000 0 ' -- -4 - H 12 ---4T USED -- w18,06o 2.O :1f. 37.5 24 -------- -----09 --IRAKER zo.00' ----------------------------------I------------------- - 1616 1 W18 do_:_ 0 250 120 370 24 1RAKER 250 2250 39 ------- - -------: - W --x60 -5.o 34.0 -------24 550 .---.-- '9"'' ----------- ----- ----- IBXSOr-----230 T110-----o:o-------'54' -----------------.50 22 22 1 W lax 80 23.0 10.5 33.5 ----"iiAkR - I RAKER 6.00 .ó'0O 3ji860 -o' fo6---.4J 17.00 M 26 -----------RAKER -------.ob'----- is. 00 -I - 26 - 27 2 lw 180 80 22.0 10.5 I 32.5 24 - 1 RAKER 4.00 -4- IWALER 18.00 39 1 --" 13 --- 28 30 34 37 3 4 W16 45 O lit W18o36 5t i1TH W 16.38 22.0 11.0 330 "55W 24 j - I WALER ThTh' 6 1 TB 7.00 -21.50 'TBb' ._...i.P° 30 : 3 1600 93 121 15 - 20 35 33.0 24 - 38 40 -1 3 W 18055 27.0 12.5 j--i2.6-+-1 39.0 24 6 1 TB 8.00 19.00 30 4 30 3 133 93 173 121 15 15 25 20 40 35 41 48 -49- 51 8 3 W 1.0 W 16 o 50 22.0 12.5 33.0 34.5 24 24 6 116 7.00 - - - I WALER 3.50 - 1500 18.50 0 - - - - - - - 17 ----2 1'2..'3 52 54 55 56 3 'i' W 18-X56=23.0 12.5 V 16 0 50 230 WX 1 - - 1 RAKER 3.50 19.50 - I WALER 39 - .:----------------"'""-------------------------------------:------- - - 35.5 35.5 24 5759 '3 Rx504.0l2.S BX 4 - iER 4& 3 - - ISTRUT - - 60 . 67 8 W 16 0 50 24.0 L 12.5 W 16050 24.0 i 17.5 36.5 24 68 76 9 41.5 24 6 1 TB 4.00 20,00 40 3 93 121 15 17 32 W lOt 87 24.0 I 11.5 77 79 3 35.5 24 IRAKER 4.00 80 8 J WI6o67'20 r ii"" - I RAKE 565 '20.0O 88 92 6 4W16x87 28.0 15 -37.5 24 -.I RAKER -------600 -0.00 9395 3 W 16057 26.0 - 12.5 " 'TE4' - i STRUT '66' i6o o" -- 96 98 3 W 160 45 26.0 13.0 39.0 24 6 1 TB 6.00 2000 -39 35 4 120 156 15 22 37 99 95 1 W 18x50 26.0 12.5 3&5 24 --ISTRUT 6.00 20.00 0 - - - J - 10 103 - -- V1'x'831.Ol6.0 W16t4526O 13.0 -----24 l' 4 ---04-------'l5 L.i: J ' 29 22 - 104 104 1 W21088 26,012,5 35,5 24 ------Q) 6 950 30 "''i -----------' 4 140 182 15 243 - 'ibo -13i ---2 105 108 -2 4 W21088 28.0 12.5 .4i0 38.5 04 .....8ITB ......Ô0--------.00" 6 lIE 950 ' 16.50 32 4 - -- 2---'fSi" 140 I 182 't I 15" 26 .37 41 109 112 4 W18 86 270 125 -39.0 355 24 1 6 115 6 50 -35 1750 30 4 144 188 15 27 42 113 113 1 68 28,012,5 385 ....241 '6 118 - - - ------9.50 -32 -- -" --------------" ----' ' I----------------------- - --- - --- -41 -........ -16.50 t 'W'otopt-S'Ab1S SHOWN, ThE ALCBE'b'S'EAGEb' SHORING I LONGER --------------------------------- REQUiREb. PRELOAD & LOCK OFF CORNER STRUTS & RAKERS TO THE VALUES INDICATED IN THE DETAILS. SECTION 2 Section 2 Page 1 RCJ jJo' No . Name Date 04/19/2017 14-125 ISheet of Checked By 1Client DKN Hotels EARTH SUPPORT SYSTEMS Job Description Springhill Suites Hotel - Carlsbad X2 - Xi ORIGINAL GRADE t y Si _________ H / __________ IEBACK Ti H ANCHOR / S2 FAILURE ______ Psurch) / PLANE / Psoii(y) BOTTOM OF 0 EXCAVATION I *Psmaxum. I I Doe f ftoe i i __ $Jqb P05(d) I "__ dshaft LOADING DIAGRAM FOR SHORING SYSTEM WITH 1 TIEBACK NO HYDROSTATIC PRESSURE N.T.S. - Section 2 Page 2 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of One Level of Tiebacks Sb_Number := "1-3" Wall Geometry H:= 26-ft = Height of excavated face N:= I = Number of tiebacks S1 := 9.5-ft = Distance between grade and tieback I S2:= H - si = Distance between tieback 1 and subgrade S2 = 16.50ft xSb 8.00ft = Tributary width of soldier beams dshaft: 19.50. in = Effective shaft diameter dtriai: 15-ft = Assumed toe embedment Soil Parameters := 25.0. pcf = Active pressure (Neglecting soil cohesion) a1 := 0.001-H = Soil trapazodial dimension - Top a2 := 0.001H = Soil trapazodial dimension - Bottom a3 := H - a1 - a2 = Soil trapazodial dimension - Middle := 350. pcf = Passive pressure (Neglecting soil cohesion) P 0:= 0psf = Passive pressure at subgrade := 2 = Isolated pole factor (For arching) I= 0. deg = Internal soil friction angle (Not Used) FSd := 1.30 = Embedment depth factor of safety l dsat ( ( ' f:= I mini I = Arching ratio l\ xSb )) f=0.406 ltb h = 26 sb 1-3 (rev 2).xmcd — Earth Support Systems, Inc. 9685 Via Excelencia, Suite 104 San Diego, CA 92126 Soil Parameters (Continued) ftoe := 600• psf 11= 0.35 q:= 0•ksf Section 2 Page 3 Springhill Suites Carlsbad Engr: RCJ Date: 04/17/17 Sheet: of = Allowable skin friction capacity = Coefficient of friction between bulkhead and retained soil = Allowable soil bearing capacity = Allowable bond capacity for post grouted anchors = Angle of failure plane with vertical = Horizontal failure plane offset = Angle of tieback 1 with horizontal = Shaft diameter of drilled tieback = Tieback test load = Steel yield stress (Grade 50) = Elastic modulus of steel = Temporary overstress for short duration loading = Allowable strength safety factor - ASD, AlSC F.1 & El = Allowable flexural stress at fully braced maximum moment location - AISC F2-1 Tieback Design Parameters := 3500 psf 3= 35- deg Offset := CI.ft tb:= 30 deg dtb:= 6- in FStb:= 1.30 Steel Parameters F:= 50-ksi E:= 29000. ksi OS:= 1.33 := 1.67 Fb FY, OS Fb = 40 ksi Axial Loading & Eccentric Moments evert 0-in = Eccentricity of vertical load Pver.t: 0- kip = Vertical axial load per beam Mvert := vert' evet.t = Eccentric moment xSb ft Mveri = Okip. — 1tb h = 26' sb 1-3 (rev 2).xmcd Section 2 Page 4 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Load Development Active soil load above subgrade y:= 0.ft,0.10.ft.. H Psgrade: 0•psf = Soil pressure at top of bulkhead Psmin: 0•psf = Soil pressure at subgrade Psmax: Pa H = Maximum active soil pressure smax = 650 psf smax - sgrade y + Psgrade if i < a1 a1 smax if a1 !~y!~a1 + a3 smax [P smax - smin " a2 a1 a3) if y>a1 +a3 = Soil pressure geometry Soil Loading Diagram 0 200 400 600 800 Pressure (psi) ltb h = 26' sb 1-3 (rev 2).xmcd Section 2 Page 5 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Boussinesq Surcharge Analysis q:= 0ksf z':= 0-ft x1 := 6.5-ft X2 := x1 + 2-ft K:= 0.75 (Xi 01 (y):= atani - (y):= 92 y) - ()l (Y) = Strip load intensity = Distance from grade to application of strip load = Distance to closest edge of surcharge loading = Distance to furthest edge of surcharge loading = Rigidity coefficient for relative yielding K = 1.00 (Rigid) K = 0.75 (Semi-Rigid) K = 0.50 (Flexible) (x2 02(y):= atani - c(y):= 01(y) + Ps(Y): I0psf if 0:~y<z' 2.q•K ((y - z') - sin((y - z'). cos(2i(y - z')))) if z' < y :~ H Tr 0•psf if y>H Hmin := p(H) Boussinesq Loading Diagram Total Boussinesq Load: (H Ph:=I p(y)dy Jo. ft Ph = 0' Of Centroid (From bottom of excavation) (H p5(y)(H—y)dy R:= Oft Ph 100 200 300 400 R=0 ltb h = 26' sb 1-3 (rev 2).xmcd Section 2 Page 6 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Uniform Surcharge Loading fuI := 75. psf = Surcharge pressure full height Ppar := 0-psf = Surcharge pressure partial height Hpar := 0.fi = Height of partial surcharge pressure 15(y) spar + full if y:5 Hpar full if Hpar <y :~ H = Surcharge pressure per depth 0. psf if y > H Seismic Loading (Not Applicable) eq 0• pcf = Equivalent seismic fluid pressure seis eq H seis = 0. psf = Maximum surcharge pressure seis Peq(y): seis Y if y!5 H H 10 if y>H Uniform / Seismic Loading Diagram 101 50 100 Pressure (psf) ltb h = 26' sb 1-3 (rev 2).xmcd = Inverse triangular distribution Section 2 Page 7 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Define total load, shear & moment along pile length as a function of depth "y" P(y) := P0(y) + Ps(Y) + P(y) + Peq(Y) fY V(y):=I P(y)dy JO ' V(y)dy 0 Solve For Tieback Forces by Taking Moments About Each Level i:=1,2..N Le1 := Si = Moment lever arm for tieback 1 Le(+i) := S(i+1) + Lei = Moment lever arms for remaining tiebacks Summing Moments M(Le2) T1 := = First level tieback load per foot width T1 = 14.8. klf Tieback Lock Off & Test Loads lxi := TiXsb = Tieback horizontal reactions T T10 ' = Tieback lock off loads I cos(o) 1test : = T10 . FStb = Tieback test loads I I T10 = 137. kip Ttest = 178. kip 1tb h = 26' sb 1-3 (rev 2).xmcd Section 2 Page 8 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Solve for location of zero shears between levels (Assume initial value and iterate) - 0-ft a - V(Lej + - T whie a<0 - c + 0.10-ft = Distance to point of zero shear between tieback levels T return E qi = 11-ft = Distance to point of zero shear between levels Calculate Maximum Moments Along The length of Beam M1 kM(ei)I = Maximum cantilevered moment M2 := I LM(Lel + qi) - = Maximum moment between tieback level I & 2 M1 = 32.6ft. kip — ft M2= 11.1ft- ft Maximum moments along beam 261.1 M.xsb= 8kiP.ft 8.5 j Mmax: max(M, Mve,.).xsb = Governing moment Mn,ax = 261.08. kip. ft 1tb h = 26 sb 1-3 (rev 2).xmcd Section 2 Page 9 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Required Modulus: Beam "W18 x 50" A=14.7•in2 bf =7.5.in d=18in tf =0.57.in t = 0.355. in k = 0.972. in F Check Axial Stresses: X:= Fe max 3 Zr := Plastic modulus, Lb :!~ L Zr = 78.7. in Fb Fb = 40ksi = 101. in r, = 7.38. in Minor axis con tinously braced l=800•in4 L:= max(s) K:= 1 Fe := S=88.9•in3 = 26.8 4.71. F = 113.4 r j y ) K. L [E— Fcr:= 0.658> F if - ~ 4.71 rx 0.877. Fe otherwise Fcr A Ma : Zx•Fb = Nominal compressive stress - AISC E.3-2 & E3-3 = Allowable compressive force - AISC E.3-1 = Allowable moment - AISC F.2-1 n:=1,2..N+1 Prn overt if n1 max[xSb.[(T1.tan(tb)) - L Till + 0.kip otherwise Combined Axial & Bending: r 8 (Mfl.XSb ' if Prn ~ 0.2 Unity:= PC 9 Ma ) 1Dc Pr Mn.xsb otherwise max(Unity) = 0.78 Ma Check := if(max(Unity) :!~ 1.00, "Ok!" , "No Good") = Axial force at cantilevered top Ma = 335.2. kip .ft Mmax = 261.1. kip. ft Check = "Ok!" itb h = 26' sb 1-3 (rev 2).xmcd Section 2 Page 10 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Maximum Theoretical Deflections a:= S1 L:= s2 = Cantilevered free end = Simply supported span no.1 length Maximum Cantilevered Deflection L+a 1 a M'(y).(L+ a — y) dy M'(y)•(L+ a — y) d a M'i:y).ydy + L(- + E. Ix E. Ix ] L) E- Ix Maximum Deflection in Middle Span a+q1 Le2 M'(y).[(a + q ) - y dy M'(y). (L + a - y) dy a q - E. Ix E. Ix L as_max := max(z) 0.69 in Maximum Cantilevered Deflection: As-max = Olin Maximum Deflection in Spans: Tieback Lengths I ( T10. ' Lb := Ceill maxi fvrdtb , 20. ft , ft L ) ) sin ( 3) L 1:= (H - Lej). sin [180.deg —(90.deg - b) - Lu := Ceil(max(L+ Offset, l5.ft)ft) Lj := L+ Lb = Minimum bond length = Unbonded length per active wedge = Governing unbonded length = Total tieback length 1tb h = 26' sb 1-3 (rev 2).xmcd Section 2 Page 11 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Number of Tieback Strands Fu:= 270•ksi Astrand := 0.217. in TIO. ceil ( 0.6. Astrand * Fu Nstrand := max ( Ttest I ceil L 0.8. Astrand F))) Minimum Lateral Embedment Depth Ppass(d): _f.(P 0 + P.d) Boussinesq surcharge below subgrade (As applicable) Hmin Psurch'(d) Hmin-f - --d dtriai Solve for embedment depth (Sum of forces = 0) P'(y) := P:surh (y) ry V'(y) := I surch(Y) dy Jo Vpass(Y) l Ppass(Y) dy 0 Initial embedment depth guess d : dtriai Given = P'(y) dy+ Ppass(y) dy+ V(H) -L1 [(T,.. cos( 01 1 xsb.ij Dh := Find(d) Dh = 75 ft Dh:= Round(Fsd.Dh,o.5. ft) Dh=10.ft ltb h = 26 sb 1-3 (rev 2).xmcd Section 2 Page 12 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Check Embedment Depth Due to Axial Loading Dv : 15-ft Given dshaft it D toe N N 1 21 - vert + (TIO.sin(ctb)) - (Tio.cos(c t )j 7t'dshaft 1=1 1=1 ] - D:= Round(Find(DV).FSd, 0.5.ft)= Minimum embedment depth for axial loading D= 11.5-ft Dtoe: max(Dh, D) = Governing toe depth Dtoe = 11.5- ft DESIGN SUMMARY Sb_Number= "1-3" Beam = "W18 x 50" H = 26-ft = Height of excavated face Si = 9.50. ft = Distance from grade to tieback 1 = 16.50.ft = Distance from tieback 1 to subgrade Dtoe = 11.5- ft = Minimum embedment depth H + Dtoe = 37.5. ft = Total soldier beam length xSb = 8ft = Soldier beam tributary width dshaft = 19:5. in = Effective shaft diameter TIEBACK #1 tb = 30. deg = Tieback no. 1 angle from horizontal Nstrand = 4 = Tieback no. I number of strands T10 = 137. kip = Tieback no. 1 lock off load 1test1 = 178 kip = Tieback no. 1 test load Lul = 15-ft = Tieback no. I unbonded length Lb = 25-ft = Tieback no. 1 bonded length L1 = 40. ft = Tieback no. I total length itb h = 26' Sb 1-3 (rev 2).xmcd SECTION 3 Section 3 Pagel /-Iuul\ Name RCJ Date 04/19/2017 Job No 14-125 Sheet of Checked By Client DKN Hotels EARTH SUPPORT SYSTEMS Job Description Springhill Suites HoteL - Carlsbad X2 Xi q ORIGINAL GRADE L y Ui Si HS -Ps(y) IEBACK Ti H ANCHOR / S2 FAILURE Psurch(y) / PLANE Psoii(y) 7 - BOTTOM OF 02 EXCAVATION I t I Psrnox / II Dtoe H fftoe _ __Ljqb - Ppass(d) I I dshoit LOADING DIAGRAM FOR SHORING SYSTEM WITH 1 TIEBACK NO HYDROSTATIC PRESSURE N.T.S. Section 3 Page 2 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of One Level of Tiebacks Sb_Number:= '34-37, 41-48" Wall Geometry H 22-ft = Height of excavated face N:= I = Number of tiebacks Si := 7.0-ft = Distance between grade and tieback I S2:= H - si = Distance between tieback I and subgrade = 15.00ft xSb := 8.00ft = Tributary width of soldier beams dshaft: 17.37. in = Effective shaft diameter dtriai:= 15ft = Assumed toe embedment Soil Parameters 25.0 pcf = Active pressure (Neglecting soil cohesion) a1 := 0.001. H = Soil trapazodial dimension - lop a2 := 0.001.H = Soil trapazodial dimension - Bottom a3:= H - a1 - a2 = Soil trapazodial dimension - Middle P := 350. pcf = Passive pressure (Neglecting soil cohesion) P 0:= 0.psf = Passive pressure at subgrade := 2 = Isolated pole factor (For arching) := 0- deg = Internal soil friction angle (Not Used) FSd := 1.30 = Embedment depth factor of safety ( ( I mini I = Arching ratio xSb )) f=0.362 1tb h = 22' sb 34-37, 4148 (rev 2).xmcd Section 3 Page 3 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Soil Parameters (Continued) toe := 600 psf = Allowable skin friction capacity p:= 0.35 = Coefficient of friction between bulkhead and retained soil := 0• ksf = Allowable soil bearing capacity Tieback Design Parameters f1 := 3500 psf = Allowable bond capacity for post grouted anchors 3= 35 deg = Angle of failure plane with vertical Offset := 0-ft = Horizontal failure plane offset tb 30 deg = Angle of tieback 1 with horizontal dtb 6. in = Shaft diameter of drilled tieback FStb:= 1.30 = Tieback test load Steel Parameters F:= 50ksi = Steel yield stress (Grade 50) E: = 29000. ksi = Elastic modulus of steel OS := 1.33 = Temporary overstress for short duration loading := 1.67 = Allowable strength safety factor - ASD, AISC F.l & El FY' 0S Fb := = Allowable flexural stress at fully braced maximum moment location - AISC F2-1 Fb = 40•ksi Axial Loading & Eccentric Moments evert := 0 in = Eccentricity of vertical load Pver.t: G. kip = Vertical axial load per beam Mver i := verr evert = Eccentric moment xSb Mvert = 0. kip :ft— ft ltb h = 22' sb 34-37, 4148 (rev 2).xmcd Section 3 Page 4 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Load Development Active soil load above subgrade y:=0.ft,0.10.ft.. H Psgrade: O.psf = Soil pressure at top of bulkhead Psmin:= 0psf = Soil pressure at subgrade Psmax: Pa•H = Maximum active soil pressure P 0 (y) := smax = 550 psf smax - sgrade y + Psgrace if Y < a1 a1 smax if a1!~y!~a1 +a3 smax smax - smin - a1 - a3) if y> a1 + a3 a2 = Soil pressure geometry Soil Loading Diagram Hi 0 200 400 600 800 Pressure (psi) ltb h = 22' sb 34-37, 4148 (rev 2).xmcd Section 3 Page 5 - Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Boussinesq Surcharge Analysis q:= 0•ksf = Strip load intensity z':= 0-ft = Distance from grade to application of strip load x1 := 6.5. ft. = Distance to closest edge of surcharge loading X2:= x1 + 2-ft = Distance to furthest edge of surcharge loading K:= 0.75 = Rigidity coefficient for relative yielding K = 1.00 (Rigid) K = 0.75 (Semi-Rigid) K = 0.50 (Flexible) (x1 01(y):= atani - 02(y):= atani - y) y) NW= 02(y) - ()l (Y) c(y) := 01 (Y) + ps(y): I0psf if 0!~y<z' z') - sin((y— z').cos(2(y— z')))) if z' < y!~ H 0.psf if y>H PHmin : p(H) Boussinesq Loading Diagram Total Boussinesq Load: p(y) dy Jo. ft Centroid (From bottom of excavation) I p(y).(H—y)dy Jo. ft R= Ph 100 200 300 400 R=0 ltb h = 22' sb 34-37, 41-48 (rev 2).xmcd Section 3 Page 6 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Uniform Surcharge Loading fuII 75 = Surcharge pressure full height par := 0. psf = Surcharge pressure partial height Hpar := .ft = Height of partial surcharge pressure P5(y) Ppar + full if y ~ Hpar full if Hpar <y :~ H = Surcharge pressure per depth 0. psf if y > H Seismic Loading (Not Applicable) Peq: = 0.pcf = Equivalent seismic fluid pressure seis:= Peq H seis = 0 psf = Maximum surcharge pressure seis Peq(y) := Pseis - . y if y :~ H H 0 if y>H Uniform / Seismic Loading Diagram 0 50 100 Pressure (psf) ltb h = 22 sb 34-37, 41-48 (rev 2).xmcd = Inverse triangular distribution Section 3 Page 7 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Define total load, shear & moment along pile length as a function of depth "y" P(y) := P01(y) + Ps(Y) + P(y) + Peq(Y) V(y):=I P(y)dy Jo y V(y)dy Solve For Tieback Forces by Taking Moments About Each Level i:=1,2..N Le1 := s1 = Moment lever arm for tieback I Le(+l) := S(j+l) + Lei = Moment lever arms for remaining tiebacks Summing Moments M( Le2) T1 = First level tieback load per foot width S2 T1 = 10.1.klf Tieback Lock Off & Test Loads l:= li•Xsb = Tieback horizontal reactions lxi T10 = Tieback lock off loads I co3(o) Ttest : = T10 . FStb = Tieback test loads I I T10 = 93• kip Ttest = 121 kip 1tb h = 22' sb 34-37, 41-48 (rev 2).xmcd Section 3 Page 8 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Solve for location of zero shears between levels (Assume initial value and iterate) E - 0.ft a—V(Le1+ )_ T while a<0 E - E + 0.10-ft = Distance to point of zero shear between tieback levels a_V(LeI+E)_ T return qi = 9.2-ft = Distance to point of zero shear between levels Calculate Maximum Moments Along The length of Beam M1 IM(Lei)I = Maximum cantilevered moment M2:= IM(Lei + qi)_Ti.qi I = Maximum moment between tieback level I & 2 M1 = 15.3ft. kip — ft M2 = 10.8ft. kip — ft Maximum moments along beam M'xSb = (122.2"\ 86.2 Mmax: max(M, Mver.t).xsb = Governing moment Mmax = 122.16. kip. ft 1tb h = 22 sb 34-37, 41-48 (rev 2).xmcd Earth Support Systems, Inc. 9685 Via Excelencia, Suite 104 San Diego, CA 92126 Required Modulus: Beam "W16 x 36" A=10.6•in2 bf =6.99.in d= 15.9. in tf =O.431fl t, = 0.295. in k = 0.832. in Section 3 Page 9 Springhill Suites Carlsbad Engr: RCJ Date: 04/17/17 Sheet: of Mmax Zr := 3 Plastic modulus, Lb ~ L Zr = 36.8. in Fb Fb = 40 ksi Z, = 64. in rx = 6.51. in Minor axis continously braced l=448.in4 L:= max(s) K:= I 7rE Fe S = 56.5. in K L K- L ) ( —= 27.6 471 = 113.4 rrX Check Axial Stresses: X:= F - Fe K• L J Fcr := 0.658> F if - < 4.71 rx 0.377. Fe otherwise Fcr A ID = Nominal compressive stress - AISC E.3-2 & E3-3 = Allowable compressive force - AISC E.3-1 Ma := Zx Fb = Allowable moment - AISC F.2-1 n:=1,2..N+1 Pr : vert if n1 max[xSb.[(T1 tan(tb)) - .thij] + vert, 0. kip otherwise = Axial force at cantilevered top Combined Axial & Bending: Uflityn: " 8 (Mfl.xSb ) Prn > 0.2 PC 9 Ma if — _ PC r Mfl.xsb otherwise max(Unity) = 0.58 Ma Ma = 212.4. kip. ft Mmax = 122.2. kip. ft Check := if(max(Unity) !~ 1.00, "Ok!" ,"No Good") Check = "Ok!" ltb h = 22' sb 34-37, 41-48 (rev 2).xmcd Earth Support Systems, Inc. 9685 Via Excelencia, Suite 104 San Diego, CA 92126 Maximum Theoretical Deflections a:= S1 L:= S2 Section 3 Page 10 Springhill Suites Carlsbad Engr: RCJ Date: 04/17/17 Sheet: of = Cantilevered free end = Simply supported span no.1 length Maximum Cantilevered Deflection (L-1-a 1 I M'(y).(L+ a — y)dy M'(y).(L+ a — y)d I M'(y).ydy Ji (a 'o + •1— E. IX E- Ix ] L) + E. Ix Maximum Deflection in Middle Span I a+q1 Le2 M'(y).[(a + q) - y dy M'(y).(L + a - y) dy a qi - E. IX E. IX L is_max := max(z) = 3.11 -in Maximum Cantilevered Deflection: s_max = 0.21. in Maximum Deflection in Spans: Tieback Lengths ( T10. Lb := Ceil[max 'dtb 20.ft ft , Lpi (H - Lei) sin (0) := . sin[180. deg - (so. deg - tb) - L := CeiI(max(Lç + Offset, 15.ft) ft) Li L Lb = Minimum bond length = Unbonded length per active wedge = Governing unbonded length = Total tieback length ltb h = 22' sb 34-37, 4148 (rev 2).xmcd Section 3 Page 11 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Number of Tieback Strands - Fu :270'ksi Astrand 0.217. in Nstrand:= max ( Ttest ceilL F))) Minimum Lateral Embedment Depth Ppass(d): _f.(P 0 + P.d) Boussinesq surcharge below subgrade (As applicable) Hmin f Psurch'(d) Hmin-f - d dtriai Solve for embedment depth (Sum of forces = 0) P'(y) Psurch (y) (y V'(y) I surch(Y) dy J3 (y Vpass(y): Ii pass(Y) dy Initial embedment depth guess d:= dtriai Given P'(y) dy+ Ppass(Y) dy+ V(H) -L1 [(T,O-COS(Oltb#~ ], =0 Dh:= Find(d) Dh=7.6'ft Dh:= Round(FSd.Dh,0.5.ft) Dh=10.ft ltb h = 22 sb 34-37, 41-48 (rev 2).xmcd Section 3 Page 12 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Check Embedment Depth Due to Axial Loading Dv: 15-ft Given dshaft'7t Dv, ftoe =1 N it• d-a1 EN 1 2 vert + (Tio . SIfl(Otb)) - (Tie. cos(cxtb)j - qb. D:= Round(Find(DV).FSd, 0.5.ft)= Minimum embedment depth for axial loading D=8.5.ft Dtoe: max(Dh, D) = Governing toe depth Dtoe = 10' ft DESIGN SUMMARY Sb_Number= "34-37, 41-48' Beam = "W16 x 36" H = 22-ft = Height of excavated face Si = 7.00. ft = Distance from grade to tieback 1 S2 = 15.00.ft = Distance from tieback 1 t subgrade Dtoe = 10' ft = Minimum embedment depth H + Dtoe = 32. ft = Total soldier beam length xSb = 8ft = Soldier beam tributary width dshaft = 17.37. in = Effective shaft diameter TIEBACK #1 tb = 30 deg = Tieback no. I angle from horizontal Nstrand = 3 = Tieback no. I number of strands 1101 = 93 kip = Tieback no. I lock off load Ttest = 121 -kip = Tieback no. 1 test load L = 15-ft = Tieback no. I unbonded length Lb = 20-ft = Tieback no. I bonded length L1 = 35-ft = Tieback no. I total length ltb h = 22' sb 34-37, 41-48 (rev 2).xmcd SECTION 4 Section 4 Page 1 1Date 1'0' No Name RCJ 04/19/2017 14-125 ISheet of Checked By 1Client DKN Hotels EARTH SUPPORT SYSTEMS Job Description Springhill Suites Hotel - Carlsbad X2 Xi 0. iq L_ __Ljqb Ppass(d) I LOADING DIAGRAM FOR SHORING SYSTEM WITH 1 TIEBACK NO HYDROSTATIC PRESSURE N. T. S. Section 4 Page 2 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of One Level of Tiebacks Sb_Number:= '38.40" Wall Geometry H:= 27-ft = Height of excavated face N:= I = Number of tiebacks sl := 8-ft = Distance between grade and tieback 1 := H - si Distance between tieback 1 and subgrade = 19.00ft Xsb := 8.00ft = Tributary width of soldier beams dshaft: 19.60. in = Effective shaft diameter dtriai := 15-ft = Assumed toe embedment Soil Parameters 25.0 pcf = Active pressure (Neglecting soil cohesion) a1 := 0.001. H = Soil trapazodial dimension - lop a2:= 0.001-H = Soil trapazodial dimension - Bottom a3:= H - a1 - a2 = Soil trapazodial dimension - Middle PP : = 350. pcf = Passive pressure (Neglecting soil cohesion) P 0:= 0psf = Passive pressure at subgrade := 2 = Isolated pole factor (For arching) := 0- deg = Internal soil friction angle (Not Used) FSd := 1.30 = Embedment depth factor of safety ( ( ldsj,at" f:= I mini 1, = Arching ratio Xsb )) f=0.408 ltb h = 27' sb 38-40 (rev 2).xmcd Section 4 Page 3 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Soil Parameters (Continued) toe := 600. 3sf = Allowable skin friction capacity t= 0.35 = Coefficient of friction between bulkhead and retained soil q 0 ksf = Allowable soil bearing capacity Tieback Design Parameters f1 := 3500. psf = Allowable bond capacity for post grouted anchors 13= 35• deg = Angle of failure plane with vertical Offset:= Oft = Horizontal failure plane offset tb= 30-deg = Angle of tieback 1 with horizontal dtb := 6 in = Shaft diameter of drilled tieback FStb:= 1.30 = Tieback test load Steel Parameters F:= 50•ksi = Steel yield stress (Grade 50) E:= 29000. ksi = Elastic modulus of steel OS := 1.33 = Temporary overstress for short duration loading 11= 1.67 = Allowable strength safety factor - ASD, AISC F.1 & El FY' OS Fb := = Allowable flexural stress at fully braced maximum moment location - AISC F2-1 Fb = 40.ksi Axial Loading & Eccentric Moments evert 0.;n = Eccentricity of vertical load Pver.t: 0- kip = Vertical axial load per beam Mvert := vert evert = Eccentric moment Xsb ft Mvert = 0. kip ft — 1tb h = 27 sb 38-40 (rev 2).xmcd Section 4 Page 4 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Load Development Active soil load above subgrade y:= 0. ft, 0.10. ft.. H Psgrade := 0. psf = Soil pressure at top of bulkhead Psmin : = 0• psf = Soil pressure at subgrade Psmax: P.H = Maximum active soil pressure ,max = 675. psf smax - sgrade Y + Psgraje if y < a1 01 'smax if a1 !~y:!~a1 +a3 smax - [Psmax - Psmin( a1 - a3) if y> a1 + a3 a2 = Soil pressure geometry Soil Loading Diagram 0 200 400 600 800 Pressure (psf) tb h = 27 sb 38-40 (rev 2).xmcd Section 4 Page 5 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Boussinesq Surcharge Analysis q:= 0.ksf = Strip load intensity := 0-ft = Distance from grade to application of strip load x1 := 6.5 ft = Distance to closest edge of surcharge loading X2 := x1 + 2. ft = Distance to furthest edge of surcharge loading K:= 0.75 = Riqidity coefficient for relative vieldina K = 1.00 (Rigid) K = 0.75 (Semi-Rigid) xi x2 K = 0.50 (Flexible) ( ( 01(y):= atani - 02(y):= atanj - y) y) ö(y):= (2(Y)-01(Y) ot(y):= Ps(Y): I0psf if 0:~y<z' 2•q.K ((y - z') - sin((y - z').cos(2o(y - z')))) if z' < y !~ H 7r 0.psf if y>H Hmin p(H) Total Boussinesq Load: (H Ph:=I1 p(y)dy .10. ft Ph = 0' Of Centroid (From bottom of excavation) [ ps(y). (H - y) dy JO. ft Ph R= 0 Boussinesq Loading Diagram 20 10 U 100 200 300 400 ltb h = 27 sb 38-40 (rev 2).xmcd Section 4 Page 6 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Uniform Surcharge Loading full := 75 psf = Surcharge pressure full height par : 0. psf = Surcharge pressure partial height Hpar 0-ft = Height of partial surcharge pressure P5(y) := Ppar + Pfull if y ~ Hpar fuII if Hpar <y !~ H = Surcharge pressure per depth 0. psf if y > H Seismic Loading (Not Applicable) Peq:= 0•pcf = Equivalent seismic fluid pressure seis eq H 1SjS = 0. psf = Maximum surcharge pressure seis Peq(Y) := Pseis - . i if i :~ H H 10 if y>H Uniform / Seismic Loading Diagram lot 50 100 Pressure (psf) ltb h = 27' sb 38-40 (rev 2).xmcd = Inverse triangular distribution Section 4 Page 7 Earth Support. Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Define total load, shear & moment along pile length as a function of depth "y" P(y) := P011(y) + Ps(Y) + P(y) + Peq(y) (y V(y):=I P(y)dy Jo LM(Y):=l V(y)dy Jo Solve For Tieback Forces by Taking Moments About Each Level - i:=1,2..N Le1 Si Le(j+l):= S(i+1) + Lei Summing Moments := iM(Le2) T1 = 14.4. klf Tieback Lock Off & Test Loads Txi TI.xsb T T10 X. I cos(o) Ttest := T10 . FStb = Moment lever arm for tieback I = Moment lever arms for remaining tiebacks = First level tieback load per foot width = Tieback horizontal reactions = Tieback lock off loads = Tieback test loads T10 = 133. kip Ttest = 173 kip ltb h = 27' sb 38-40 (rev 2).xmcd Section 4 Page 8 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Solve for location of zero shears between levels (Assume initial value and iterate) S E 4— 0ft T while a<0 + 0.10-ft = Distance to point of zero shear between tieback levels ia+-V(Lei+€)- Ti return E qi = 11.2. ft = Distance to point of zero shear between levels Calculate Maximum Moments Along The length of Beam M1 := LM(Lei)J = Maximum cantilevered moment M2:= IM(Lei + qi)- Ti.qi = Maximum moment between tieback level I & 2 M1 = 23.9ff kip — ft M2 = 23ff kip — ft Maximum moments along beam 191.4" M.xSb= •kip-ft 183.7) Mmax : max(M, MVe).XSb = Governing moment Mmax = 191.42. kip-ft ltb h = 27' sb 38-40 (rev 2).xmcd Earth Support Systems, Inc. 9685 Via Excelencia, Suite 104 San Diego, CA 92126 Required Modulus: Mmax r Fb Beam "W18 x 55" A= 16.2•ir2 bf =7.53.in Z= 112. in d = 18.1 in tf = 0.63. in I = 890. in t = 0.39. in k = 1.03. in S = 98.3 in Section 4 Page 9 Springhill Suites Carlsbad Engr: RCJ Date: 04/17/17 Sheet: of Plastic modulus, Lb :!~ L Zr = 5773 Fb = 40ksi r, = 7.41. in Minor axis continously braced L:=rnax(s) K:=i Fe : —=30.8 4.71. !—= 113.4 r IFy r) F Check Axial Stresses: X:= - Fe K. L J Fcr := 0.658> F if - ~ 4.71 rx 0.877. Fe otherwise Fcr A cz Ma := Z,,. Fb = Nominal compressive stress - AISC E.3-2 & E3-3 = Allowable compressive force - AISC E.3-1 = Allowable moment - AISC F.2-1 n:=1,2..N+1 1vert if n1 n nax[xSb.[(T1.tan(cb)) - .Ti] + v.,, 0. kip] otherwise = Axial force at cantilevered top Combined Axial & Bending: Uflity := Prn 8 Mn Xsb 'I if Prn ~ 0.2 PC 9 Ma PC - Pr Mn.xsb otherwise max(Unity) = 0.52 Ma Ma = 371.7. kip. ft Mmax = 191.4.kip.ft Check:=: if(max(Unity) :!~ 1.00, 'Ok!" ,"No Good") Check= "Ok!' 1tb h = 27' sb 38-40 (rev 2).xmcd Earth Support Systems, Inc. 9685 Via Excelencia, Suite 104 San Diego, CA 92126 Maximum Theoretical Deflections a:= S1 L:= S2 Section 4 Page 10 Springhill Suites Carlsbad Engr: RCJ Date: 04/17/17 Sheet: of = Cantilevered free end = Simply supported span no.1 length Maximum Cantilevered Deflection [ 1 i M'(y).(L+ a - y L+a ) dy M'(y).(L+ a- y) d a M'(y).ydy 11 Ia 0 E. IX El ] L) E. Ix Maximum Deflection in Middle Span a+q1 Le2 M'(y).[(a + q) - y dy I M'(y). (L + a - y) dy a qi - E. IX E. IX L as_max := max() AC = -0.06. in Maximum Cantilevered Deflection. as_max = 0.39. in Maximum Deflection in Spans.' Tieback Lengths i ( T10. Lb := Ceill L maxi fl•mdtb , 20. ft ft ) ) sin ( 13) L 1 := (H - Lej). sin[180.deg -(90.deg - ctb) — Lu: Cel( max( L+ Offset, 15.ft)ft) L := L - Lb = Minimum bond length = Unbonded length per active wedge = Governing unbonded length = Total tieback length itb h = 27' sb 3840 (rev 2).xmcd Section 4 Page 11 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Number of Tieback Strands Fu := 270. ksi Astrand := 0.217. in Ti Vi Nstrand max ( Ttest. ceilL0. 8. Astrand Fe ))) Minimum Lateral Embedment Depth Ppass(d):= _f.(P0+ PP' d) Boussinesq surcharge below subgrade (As applicable) Hmin Psurch(d) := Hmin - d dtriai Solve for embedment depth (Sum of forces = 0) P'(y) := Psurch(Y) I surch(Y) dy Jo (y Vpass(y): Ppass(Y) dy o Initial embedment depth guess d:= dtrjai Given P'(y) dy+ I Ppass(Y) dy+ V(H) -L1 [(T,O-cos(%))-~f =0 JO JO Dh:= Find(d) Dh=9.1.ft Dh:= Round(FSd.Dh,0.5.ft) Dh= 12-ft ltb h = 27' sb 38-40 (rev 2).xmcd Section 4 Page 12 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Check Embedment Depth Due to Axial Loading Dv:" 15-ft Given dshaft 1T D. ftoe =1 N EN 1 2 rc dShft overt + (Tio Sfl(1tb)) - TIO cos(ctb)j - qb ] 4 Dv:= Round(Find(DV).FSd, 0.5.ft)= Minimum embedment depth for axial loading D= 11.ft Dtoe: max(Dh, D) = Governing toe depth Dtoe 12- ft DESIGN SUMMARY Sb_Number = "38.40" Beam = "W18 x 55" H = 27. ft = Height of excavated face S1 = 8.00-ft = Distance from grade to tieback 1 S2 = 19-00-ft = Distance from tieback I to subgrade Dtoe = 12-ft = Minimum embedment depth H + Dtoe = 39. ft = Total soldier beam length xSb = 8ft = Soldier beam tributary width dshaft = 19.6. in = Effective shaft diameter TIEBACK #1 tb = 30. deg = Tieback no. I angle from horizontal Nstrand = 4 = Tieback no. I number of strands T10 = 133. kip = Tieback no. I lock off load 1test1 = 173. kip = Tieback no. I test load L = 15-ft = Tieback no. I unbonded length Lb = 25--ft = Tieback no. 1 bonded length L1 = 40-ft = Tieback no. 1 total length ltb h = 27 sb 38-40 (rev 2).xmcd SECTION 5 Section 5 Page 1 1 I Name RCJ Job No Date 04/19/2017 14-125 ISheet, of () Checked By 1Client DKN Hotels EARTH SUPPORT SYSTEMS Job Description Springhill Suites Hotel - Carlsbad X2 Xi q tj _ __q, b I I dshaft LOADING DIAGRAM FOR SHORING SYSTEM WITH 1 TIEBACK NO HYDROSTATIC PRESSURE N.T.S. Section 5 Page 2 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of One Level of Tiebacks Sb_Number:= "104-108,113" Wall Geometry H:= 26-ft = Height of excavated face N:= I = Number of tiebacks s := 9.5. ft = Distance between grade and tieback 1 := H - si = Distance between tieback 1 and subgrade = 16.50ft Xsb := 8.00ft = Tributary width of soldier beams dshaft := 22.66. in = Effective shaft diameter dtriai: 15-ft = Assumed toe embedment Soil Parameters := 25.0. pcf = Active pressure (Neglecting soil cohesion) a1 := 0.001-H = Soil trapazodial dimension - Top a2 := 0.001-H = Soil trapazodial dimension - Bottom a3 := H - a1 - a2 = Soil trapazodial dimension - Middle P := 350. pcf = Passive pressure (Neglecting soil cohesion) P 0:= 0-psf = Passive pressure at subgrade := 2 = Isolated pole factor (For arching) 4= 0. deg = Internal soil friction angle (Not Used) FSd := 1.30 = Embedment depth factor of safety ( ( ldsa' I min 1, = Arching ratio 1, xSb )) f=0.472 ltb h = 26' sb 104-108, 113 (rev 2).xmcd Section 5 Page 3 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Soil Parameters (Continued) toe := 600 psf = Allowable skin friction capacity 1= 0.35 = Coefficient of friction between bulkhead and retained soil q := 0. ksf = Allowable soil bearing capacity Tieback Design Parameters f1 := 3500 psf = Allowable bond capacity for post grouted anchors 13= 35- deg = Angle of failure plane with vertical Offset := Cl-ft = Horizontal failure plane offset tb 32. deg = Angle of tieback 1 with horizontal dtb:= 6. in = Shaft diameter of drilled tieback FStb := 1.30 = Tieback test load Steel Parameters F:= 50ksi = Steel yield stress (Grade 50) E := 29000. ksi = Elastic modulus of steel OS := 1.33 = Temporary overstress for short duration loading := 1.67 = Allowable strength safety factor - ASD, AISC F.1 & El FY, OS Fb := = Allowable flexural stress at fully braced maximum moment location - AISC F2-1 Fb = 40. ksi Axial Loading & Eccentric Moments evert: 0-in = Eccentricity of vertical load Pvet.t: 0. kip = Vertical axial load per beam Mvert := vert evei.t = Eccentric moment Xsb ft Mvert = 0- kip ft ltb h = 26' sb 104-108, 113 (rev 2).xmcd Section 5 Page 4 - Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Load Development Active soil load above subgrade y:= 0-ft, 0.10•ft.. H sgrade := 0 psf = Soil pressure at top of bulkhead Psmin: 0•psf = Soil pressure at subgrade Psmax: PaH = Maximum active soil pressure smax = 650. psf smax - sgrade y - Psgrade if y < a1 smax if a1!~y!~a1 +a3 smax - smax - smin "\ a2 if y>a1 +a3 = Soil pressure geometry Soil Loading Diagram Hi 0 200 400 600 800 Pressure (ps 1tb h = 26' sb 104-108, 113 (rev 2).xmcd Earth Support Systems, Inc. 9685 Via Excelencia, Suite 104 San Diego, CA 92126 Boussinesq Surcharge Analysis q:= 0ksf z':= 0-ft x1 := 6.5-ft X2:= x1 + 2-ft Section 5 Page 5 Springhill Suites Carlsbad Engr: RCJ Date: 04/17/17 Sheet: of = Strip load intensity = Distance from grade to application of strip load = Distance to closest edge of surcharge loading = Distance to furthest edge of surcharge loading K:= 0.75 = Rigidity coefficient for relative yielding K = 1.00 (Rigid) K = 0.75 (Semi-Rigid) Xi x2 K = 0.50 (Flexible) (" ( 01(y):= atan) 02(y):= atan_) (y) := 02(y) - 91(y) a(y) := 01(y) + Ps(Y): = 10.psf if 0:!~y<z 2.q.K .(ö(y z') - sin((y— z').cos(2o(y— z')))) if z' < y:~ H 7r 0psf if y> H PHmin: p(H) Boussinesq Loading Diagram Total Boussinesq Load: Ph :=I p(y)dy Jo. ft Ph = 0 plf Centroid (From bottom of excavation) (H p(y).(H_y)dy Jo. ft R:= Ph ) 100 200 300 400 R=0 ltb h = 26' sb 104-108, 113 (rev 2).xmcd Section 5 Page 6 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Uniform Surcharge Loading full := 75• psf = Surcharge pressure full height Ppar := 0psf = Surcharge pressure partial height Hpar := Oft = Height of partial surcharge pressure P(y) par + full if y :~, Hpar full if Hpar <y !~ H = Surcharge pressure per deDth 0.psf if y > H Seismic Loading (Not Applicable) Peq: 0.pcf = Equivalent seismic fluid pressure seis:= Peq H seis = 0. psf = Maximum surcharge pressure seis Peq(y) seis - --Y if y !~ H H 0 if y>H Uniform / Seismic Loading Diagram ) 50 100 Pressure (psf) ltb h = 26' Sb 104-108, 113 (rev 2).xmcd = Inverse triangular distribut on Section 5 Page 7 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Define total load, shear & moment along pile length as a function of depth "y" P(y):= Pi(y)+ Ps(Y)+ Ps(Y) + Peq(Y) ly V(y):=I1 P(y)dy (y M(y):=I1 V(y)dy Solve For Tieback Forces by Taking Moments About Each Level 1,2.. N Le1 := SI = Moment lever arm for tieback 1 Le(I+l) := S(i+1) + Lei = Moment lever arms for remaining tiebacks Summing Moments LM( Le2) 11 := = First level tieback load per foot width T1 = 14.8 klf Tieback Lock Off & Test Loads I:= TI XSb = Tieback horizontal reactions TX. T10 := = Tieback lock off loads I cos(o) Ttest. : = T0 • FStb = Tieback test loads I I T10 = 140. kip Ttest = 182 kip 1tb h = 26' sb 104-108, 113 (rev 2).xmcd Section 5 Page 8 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Solve for location of zero shears between levels (Assume initial value and iterate) E - 0.ft a4_V(Lei+E)- Ti while a<0 E - E + 0.10-ft = Distance to point of zero shear between tieback levels a_V(Lej+)_- Ti return qi = 11-ft = Distance to point of zero shear between levels Calculate Maximum Moments Along The length of Beam Mi := IzM(Lei'I = Maximum cantilevered moment I '/1 M,):= IAM(Lei + al) - Ti.ail = Maximum moment between tieback level 1 & 2 M1 = 32.6ft kip — ft M2= 11.1 ft. kip — ft Maximum moments along beam M.xsb = (88.5 261.1)kiP.ft Mmax: max(M, MveI.t)•Xsb = Governing moment Mmax = 261.08. kip .ft ltb h = 26' sb 104-108, 113 (rev 2).xmcd Earth Support Systems, Inc. 9685 Via Excelencia, Suite 104 San Diego, CA 92126 Required Modulus: Mmax Beam "W21 x 68" Fb A=20•in2 bf =8.27.in Z=160.in3 d = 21.1. in tf = 0.685. in l = 1480. in t=0.43in k= 1.19. in S,= 140. in Section 5 Page 9 Springhill Suites Carlsbad Engr: RCJ Date: 04/17/17 Sheet: of Plastic modulus, Lb :~ L Zr = 78.7 in Fb = 40 ksi r = 8.6. in Minor axis continously braced L:= max(s) K:= 1 ______ Fe := ( K. L —=23 471 r . ,,/ K. L i1 = 113.4 Lrx F Check Axial Stresses: X:= - Fe Fcr : 0.658F KW 4J1•[E 0.877. Fe otherwise Fcr A C.— = Nominal compressive stress - AISC E.3-2 & E3-3 = Allowable compressive force - AISC E.3-1 Ma := Z• Fb = Allowable moment - AISC F.2-1 n:=1,2..N+1 Prn overt if n1 max[xSb.[(T1.tan(tb)) - PTij1 + overt, 0.kip otherwise = Axial force at cantilevered top Combined Axial & Bending: Unity := Prn 8 (Mfl.XSb ' if -a ~ 0.2 PC +9 Ma PC Pr Mfl.xSb otherwise max(Unity) = 0.49 Ma Ma = 530.9. kip •ft Mmax = 261.1. kip. ft Check := if(max(Unity) :~ 1.00, "Ok!" , "No Good') Check = "Ok!" ltb h = 26' sb 104-108, 113 (rev 2).xmcd Section 5 Page 10 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Maximum Theoretical Deflections a:= S1 L:= S2 = Cantilevered free end = Simply supported span no.1 length Maximum Cantilevered Deflection L+a 1 a M'(y). (L + a - y) dy M'(y). (L + a - y) d a M'(y). y dy a T1+ if- E. Ix E. Ix ] L)+ E. Ix Maximum Deflection in Middle Span a-i-q1 (y) Le2 M'.[(a + qi) - y dy M'(y).(L + a - y) dy Ja a qj - E. Ix E. Ix L smax : = max(z) Lc = 0.37. in Maximum Cantilevered Deflection: As-max = 0.05. in Maximum Deflection in Spans: Tieback Lengths i ( 110. Lb := Ceill maxi 20.ft ft L flrrdtb ) ) sin ( 13) L:= (H - Lei). sin[180.deg -(90.deg —tb)— Lu := Ceil(max(L+ Offset, 15.ft)ft) L1 := L - Lb = Minimum bond length = Unbonded length per active wedge = Governing unbonded length = Total tieback length 1tb h = 26' sb 104-108, 113 (rev 2).xmcd Section 5 Page 11 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Number of Tieback Strands F,:= 270ksi Astrand: 0.217• in 2 I Tio ceill 0.6Astrand Fu ) Nstrand : = max I ( Ttest " ceill O.&Astrand Fe ))) Minimum Lateral Embedment Depth Ppass(d):= _f-(P 0 + P.d) Boussinesq surcharge below subgrade (As applicable) Hmin Psurch'(d) Hmin-f - dtriai Solve for embedment depth (Sum of forces = 0) P'(y) := Psurch'(Y) y V'(y) := r surch'(Y) dy JO ry Vpass(y): Ii Ppass(y) dy Initial embedment depth guess d:= dtriai Given 1. = P'(y) dy + Ppass(y) dy + V(H) - [t ' [(T 0. cos( 0 JO 1 1 xsb]j Dh := Find(d) Dh = 7-ft Dh:= Round(FSd'Dh,0.5.ft) Dh=9ft 1tb h = 26' sb 104-108, 113 (rev 2).xmcd Section 5 Page 12 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Check Embedment Depth Due to Axial Loading D:= 15-ft Given dshaft it D toe =1 N N 1 7r•d1haft2 vert + (Tie . Sifl(ctb)) - TIO COS(ctb)j - qb. 4 D:= Rourid(Find(D). FSd, 0.5.ft)= Minimum embedment depth for axial loading D= 12 ft Dtoe:= max(Dh, D) = Governing toe depth Dtoe = 12- ft DESIGN SUMMARY Sb_Number= "104-108, 113" Beam = "W21 x 68" H = 26. ft = Height of excavated face s = 9.50. ft = Distance from grade to tieback 1 = 16.50-ft = Distance from tieback 1 to subgrade Dtoe = 12- ft = Minimum embedment depth H + Dtoe = 38. ft = Total soldier beam length Xsb = 8ft = Soldier beam tributary width dshaft = 22.66. in = Effective shaft diameter TIEBACK #1 atb = 32. deg = Tieback no. I angle from horizontal Nstrand = 4 1 = Tieback no. I number of strands T10 = 140. kip = Tieback no. 1 lock off load Ttest = 182. kip = Tieback no. 1 test load L = 15-ft = Tieback no. 1 unbonded length Lb = 26-ft = Tieback no. 1 bonded length L1 = 41.ft = Tieback no. I total length ltb h = 26' sb 104-108, 113 (rev 2).xmcd SECTION 6 Section 6 Page 1 O I Name RCJ Job No Date 04/19/2017 14-125 ISheet of Checked By 1Client DKN Hotels EARTH SUPPORT SYSTEMS Job Description Springhill Suites Hotel - Carlsbad X2 I_I Xi q ORIGINAL GRADE t y / Si H KTiIEBAC H ANCHOR / S2 FAILURE _______ Psurch) / PLANE / Psoii(y) BOTTOM L BOTTOM OF - 0 / Doe ' / I I - : smax I I fftoe _ __LJqb - Pposs(d) I dshatt LOADING DIAGRAM FOR SHORING SYSTEM WITH 1 TIEBACK NO HYDROSTATIC PRESSURE N.T.S. Section 6 Page 2 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of One Level of Tiebacks Sb_Number:= "109-112" Wall Geometry H:= 27-ft = Height of excavated face N:= 1 = Number of tiebacks Si := 9.5-ft = Distance between grade and tieback I S2:= H - = Distance between tieback I and subgrade S2 = 17.501t xSb := 8.00ft = Tributary width of soldier beams dshaft := 2-.49- in = Effective shaft diameter dtriai := 15-ft = Assumed toe embedment Soil Parameters := 25.0 pcf = Active pressure (Neglecting soil cohesion) a1:= 0.001.H = Soil trapazodial dimension -Top a2:= 0.001-H = Soil trapazodial dimension - Bottom a3:= H - a1 - a2 = Soil trapazodial dimension - Middle := 350 pcf = Passive pressure (Neglecting soil cohesion) Ppo := 0• psf = Passive pressure at subgrade := 2 = Isolated pole factor (For arching) 4= 0- deg = Internal soil friction angle (Not Used) FSd 1.30 = Embedment depth factor of safety ( ldsht" f:= I mm 1, Arching ratio xSb )) f=0.448 itb h = 27 Sb 109-112 (rev 2).xmcd Section 6 Page 3 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Soil Parameters (Continued) toe := 600 psf = Allowable skin friction capacity p:= 0.35 = Coefficient of friction between bulkhead and retained soil qb := 0. ksf = Allowable soil bearing capacity Tieback Design Parameters 3500. psf = Allowable bond capacity for post grouted anchors 13= 35- deg = Angle of failure plane with vertical Offset:= Oft = Horizontal failure plane offset tb:= 30. deg = Angle of tieback 1 with horizontal dtb := 6. in = Shaft diameter of drilled tieback FStb:= 1.30 = Tieback test load Steel Parameters F:= 50 ksi = Steel yield stress (Grade 50) E:= 290C0ksi = Elastic modulus of steel OS := 1.33 = Temporary overstress for short duration loading := 1.67 = Allowable strength safety factor - ASD, AISC F.1 & El F . OS Fb := = Allowable flexural stress at fully braced maximum moment location - AISC F2-1 Fb = 40ksi Axial Loading & Eccentric Moments evert 0. in = Eccentricity of vertical load Pvert: = 0. kip = Vertical axial load per beam Mver.t := 1vert evert = Eccentric moment Xsb ft Mvert = 0. kip. ft — I tb h = 27' sb 109-112 (rev 2).xmcd Section 6 Page 4 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Load Development Active soil load above subgrade y:=0.ft,C.10ft.. H Psgrade := 0• psf = Soil pressure at top of bulkhead Psmin: 0psf = Soil pressure at subgrade Psmax : Pa•H = Maximum active soil pressure smax = 675. psf P5011(y) := smax - sgrade y + Psgrade if y < a1 smax if a1 !~y:~a1 + a3 smax - [Psmax - smin ' a2 )(Y_al_a3) if y>a1 +a3 = Soil pressure geometry Soil Loading Diagram 0 200 400 600 800 Pressure (psf) 1tb h = 27' sb 109-112 (rev 2).xmcd Section 6 Page 5 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of = Strip load intensity = Distance from grade to application of strip load = Distance to closest edge of surcharge loading = Distance to furthest edge of surcharge loading = Rigidity coefficient for relative yielding K = 1.00 (Rigid) K = 0.75 (Semi-Rigid) K = 0.50 (Flexible) (x2 ' Oi(y):= atani - 02(y):= atani - y) y) 6(Y):= 82(y) - 8 (y) a(y) 81 (Y) + Ps(Y): I0psf if 0!~y<z' z') - sin((y— z').cos(2a(y— z')))) if z' < y!!~ H 0.psf if y > H Hmin := p(H) Boussinesq Loading Diagram Total Boussinesq Load: 1H Ph:=1 p(y)dy JO. ft Ph = 0. Of Centroid (From bottom of excavation) rH II p(y)(H-y)dy Jo. ft R:= Ph 100 200 300 R= 0 1 tb h = 27' sb 109-112 (rev 2).xmcd Boussinesq Surcharge Analysis q:= 0•ksf z':= 0ft := 6.5-ft X2:= x1 + 2-ft K:= 0.75 "ii Earth Support Systems, Inc. 9685 Via Excelencia, Suite 104 San Diego, CA 92126 Uniform Surcharge Loading full : = 75• psf Ppar : 0psf Hpar := 0-ft Section 6 Page 6 Springhill Suites Carlsbad Engr: RCJ Date: 04/17/17 Sheet: of = Surcharge pressure full height = Surcharge pressure partial height = Height of partial surcharge pressure par + 'full if y :!~ Hpar fuII if Hpar <y !~ H = Surcharge pressure per depth 0•psf if y > H Seismic Loading (Not Applicable) eq 0 pcf = Equivalent seismic fluid pressure seis:= Peq H seis = 0. psf = Maximum surcharge pressure seis Peq(y) := seis - _____ . y if y !~ H H lo if y>H Uniform I Seismic Loading Diagram lot 50 100 Pressure (psf) = Inverse triangular distribution ltb h = 27 sb 109-112 (rev 2).xmcd Section 6 Page 7 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Define total load, shear & moment along pile length as a function of depth "y" P(y) := P01(y) + Ps(Y) + P(y) + Peq(Y) C Y V(y):=I1 P(y)dy .1 Cy LM(y):=I1 V(y)dy .10 Solve For Tieback Forces by Taking Moments About Each Level i:=1,2..N Le1 := sl = Moment lever arm for tieback I Le(+l) := S(j+l) + Lei = Moment lever arms for remaining tiebacks Summing Moments M(Le2) ________ = First level tieback load per foot width S2 T1 = 15.6. klf Tieback Lock Off & Test Loads T:= TI.xsb = Tieback horizontal reactions T T10 := xi = Tieback lock off loads I COS(a) Ttest = FStb = Tieback test loads I I 1101 = 144. kip Ttest = 188- kip 1 tb h = 27' sb 109-112 (rev 2).xmcd Section 6 Page 8 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Solve for location of zero shears between levels (Assume initial value and iterate) - 0ft a+_v(Lej+E)_ T while a<0 I : + 0.10-ft = Distance to point of zero shear between tieback levels a_V(Lej+E)_ Ti return E qj = 11.4. ft = Distance to point of zero shear between levels Calculate Maximum Moments Along The length of Beam M1 kM(ei)I = Maximum cantilevered moment M2:= kM(ei + cii)— Ti.qi I = Maximum moment between tieback level 1 & 2 M1 = 33.8ft• kip — ft M2 = 14.3ff kip — ft Maximum moments along beam (114.6 ) 270.1 \\ M.xsb = kiP.ft Mmax: max(M, Mve,.t).xsb = Governing moment Mmax = 270.06. kip. ft itb h = 27 sb 109-112 (rev 2).xmcd Earth Support Systems, Inc. 9685 Via Excelencia, Suite 104 San Diego, CA 92126 Required Modulus: Mmax Fb Beam 'W18 x 86" A= 25.3•in2 bf = 11.1-in Z= 186. in d= 18.4. in tf =O.77.Ifl l= 1530. in t=0.48.in k= 1.17. in S,= 166.in3 Section 6 Page 9 Springhill Suites Carlsbad Engr: RCJ Date: 04/17/17 Sheet: of Plastic modulus, Lb ~ L Zr = 81.4. in Fb = 40•ksi r), = 7.77. in Minor axis continously braced L:= max(s) K:= 1 TtE Fe := ("2 K.L K.L —=27 471 . = 113.4 rX r Check Axial Stresses: X:= F Fe K L f Fcr := 0.658> F if - < 4.71 rx 0.877. Fe otherwise p . F 1.A ci Ma : ZX.Fb = Nominal compressive stress - AISC E.3-2 & E3-3 = Allowable compressive force - AISC E.3-1 = Allowable moment - AISC F.2-1 n:=1,2..N+1 Pr := vert if n1 max[xSb.[(T1.tan(tb)) - Ti1 + 0.kip otherwise = Axial force at cantilevered top Combined Axial & Bending: Unity := Prn 8 MflxSb" if —~0.2 Prn + Ma ) c C Prn Mfl.xSb Ma otherwise max(Unity) = 0.44 Ma = 617.2. kip. ft Mmax = 270.1. kip. ft Check:= if(max(Unity) :~- 1.00, "Ok!" ,"No Good") Check = "Ok!" ltb h = 27' sb 109-112 (rev 2).xmcd Section 6 Page 10 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Maximum Theoretical Deflections a:= S1 L:= s2 Maximum Cantilevered Deflection = Cantilevered free end = Simply supported span no.1 length L+a 1 a M'(y).(L+ a - y) dy M'(y).(L+ a - y) d 1 M'(y)•ydy a T1 .1 0 + - + E. Ix E. Ix ] L) E. Ix Maximum Deflection in Middle Span a+q1 Le2 M'(y).[(a+ qi)_ydy M(y).(L+ a — y)dy a qi - E. Ix E. Ix L as_max := max(z) AC = 0.33. in Maximum Can tilevered Deflection.' As-max = 0.09. in Maximum Deflection in Spans: Tieback Lengths I I T1, I Lb := Ceil max , 20. ft ft f, .7r. )' ) sin() L 1:= (H - Lei). sin[180.deg —(90.deg - tb) - Lu := Ceil(max(L+ Offset, 15.ft)ft) L1:= Lu. Lb = Minimum bond length = Unbonded length per active wedge = Governing unbonded length = Total tieback length ltb h = 27' sb 109-112 (rev 2).xmcd Section 6 Page 11 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Number of Tieback Strands F:= 270.ksi Astrand := 0.217. in Nstrand := max (Ttest.'\ ceil 0.8• Astrand Fe ))) Minimum Lateral Embedment Depth Ppass(d):= _f-(P 0 + P.d) Boussinesq surcharge below subgrade (As applicable) Hmin Psurch'(d) Hmin-f - dtriai Solve for embedment depth (Sum of forces = 0) P'(y) := Psurch'(Y) V'(y) := surch(Y) dy Jo (y Vpass(Y) pass(Y) dy 0 Initial embedment depth guess d:= dt.jai Given = P(y) dy+ P pass (Y) dy+ V(H) _[ [(TI,-cos( 0 0 JO ~fj Dh := Find(d) Dh = Dh := Round(FSd. Dh, 0.5-ft) Dh = lOft 1 tb h = 27 sb 109-112 (rev 2).xmcd Section 6 Page 12 Earth Support Systems, Inc. Springhill Suites Carlsbad 9685 Via Excelencia, Suite 104 Engr: RCJ Date: 04/17/17 San Diego, CA 92126 Sheet: of Check Embedment Depth Due to Axial Loading D:= 15-ft Given dshaft Tt toe =1 N rN 2 7T. overt + Tio sin(c tb)) - TIO COS(Otb) - 1=1 L=i J 4 D:= Round(Find(DV).FSd, 0.5ft)= Minimum embedment depth for axial loading D= 11-ft Dtoe: max(Dh, D) = Governing toe depth Dtoe = 11.ft DESIGN SUMMARY Sb Number= '109-112" Beam = "N18 x 86" H = 27-ft = Height of excavated face Si = 9.50 ft = Distance from grade to tieback 1 S2 = 17.50-ft = Distance from tieback 1 t subgrade Dtoe = 11.ft = Minimum embedment depth H + Dtoe = 38. ft = Total soldier beam length Xsb = 8ft = Soldier beam tributary width dshaft = 21.49. in = Effective shaft diameter TIEBACK #1 Oct = 30. deg = Tieback no. I angle from horizontal Nstrand = 5 = Tieback no. 1 number of strands T10 = 144 kip = Tieback no. 1 lock off load Ttest = 188. kip = Tieback no. I test load L = 15-ft = Tieback no. I unbonded length Lb = 27-ft - = Tieback no. I bonded length L1 = 42. ft = Tieback no. 1 total length 1 tb h = 27 sb 109-112 (rev 2).xmcd SECTION 7 EARTH SUPPORT SYSTEMS, INC. SPRINGHILL SUITES - CARLSBAD SOLDIER BEAM & TIEBACK SCHEDULE APRIL 18, 2017 REVISION 2 From SIB To SIB Sold. Bm. QtY Use Section Shore Height H Toe Depth Dto* Total Drill H+Dtoo Toe Diameter D Tieback Diameter dth No. of TB or Restraint Levels Distance from T.O.Beam to TB #1 A Distance last TB to Subgr. s T.B. I Restraint Angle * TB #1 Nstiands * TB #1 Lock-off Load TB #1 Test Load TB #1 Unbonded Length TB #1 Bonded Length TB #1 Total Length TB #1 ft It ft in In It It dog in kips kips ft ft ft 1 2 2 W 18x 50 26.0 12.5 38.5 24 6 1 TB 9.50 16.50 30 4 137 178 15 25 40 3 3 1 W 18 x 50 26.0 12.5 38.5 24 6 1 TB 8.50 17.50 30 4 137 178 15 25 40 4 4 1 W 16 x45 26.0 13.0 39.0 24 6 1 TB 6.00 20.00 30 4 120 156 15 22 37 5 6 2 W 16 x45 26.0 13.0 39.0 24 6 1 TB + WALER 5.00/6.00 20.00 40/0 3 97 126 15 17 32 7 8 2 W 16 x45 26.0 13.0 39.0 24 6 1 TB 6.00 20.00 35 4 120 156 15 22 37 9 11 3 W 18x60 26.0 11.5 37.5 24 - 1 WALER 6.00 20.00 0 - - - - - 12 12 NOT USED 13 15 3 W 18x60 26.0 11.5 37.5 24 - 1 RAKER 6.00 20.00 39 - - - - - 16 16 1 W 18 x 60 25.0 12.0 37.0 24 - 1 RAKER 2.50 22.50 39 17 18 2 W 18x60 22.0 12.0 34.0 24 - 1 RAKER 2.50 19.50 39 19 21 3 W 18x60 23.0 12.0 35.0 24 - 1 RAKER 1.50 21.50 39 22 22 1 W 18 x 60 23.0 10.5 33.5 24 - 1 RAKER 6.00 17.00 39 - - - - - 23 25 3 W 18x60 23.0 10.5 33.5 24 - 1 RAKER 5.00 18.00 39 - - - - - 26 27 2 W 18 x 60 22.0 10.5 32.5 24 - 1 RAKER 4.00 18.00 39 28 30 3 W 16x45 22.0 11.0 33.0 24 - 1 WALER 4.00 18.00 0 31 33 3 W 16x36 21.0 11.0 32.0 24 - 1 WALER 3.00 18.00 0 - - - - 34 37 4 W 16x36 22.0 11.0 33.0 24 6 1 TB 7.00 15.00 30 3 93 121 15 20 35 38 40 3 W 18x55 27.0 12.5 39.5 24 6 1 TB 8.00 19.00 30 4 133 173 15 25 40 41 48 8 W 16x36 22.0 11.0 33.0 24 6 1 TB 7.00 15.00 30 3 93 121 15 20 35 49 51 3 W 16x50 22.0 12.5 34.5 24 - I WALER 3.50 18.50 0 - ** - - - - 52 54 3 W 16 x 50 23.0 12.5 35.5 24 - 1 WALER 4.50 18.50 0 - - - - - 55 56 2 W 16 x 50 23.0 12.5 35.5 24 . 1 RAKER 3.50 19.50 39 - - - - - 57 59 3 W 16 x 50 24.0 12.5 36.5 24 - 1 RAKER 4.50 19.50 39 60 67 8 W 16 x 50 24.0 12.5 36.5 24 - 1 STRUT 4.50 19.50 0 - ** - - 68 76 9 W 16x50 24.0 17.5 41.5 24 6 1 TB 4.00 20.00 40 3 93 121 15 17 32 77 79 3 W 16x67 24.0 11.5 35.5 24 - 1 RAKER 4.00 20.00 39 - - - 80 87 8 W 16x67 25.0 11.5 36.5 24 - 1 RAKER 5.00 20.00 39 88 92 5 W 16x67 26.0 11.5 37.5 24 - 1 RAKER 6.00 20.00 39 - - - - - 93 95 3 W 16x 57 26.0 12.5 38.5 24 - 1 STRUT 6.00 20.00 0 - ** - - - 96 98 3 W 16 x 45 26.0 13.0 39.0 24 6 1 TB 6.00 20.00 35 4 120 156 15 22 37 99 99 1 W 18 x 50 26.0 12.5 38.5 24 - 1 STRUT 6.00 20.00 0 - ** - - 100 101 2 W21x68 31.0 16.0 47.0 24 6 1 T 7.00 24.00 30 5 157 204 15 29 44 102 103 2 W 16x45 26.0 13.0 39.0 24 6 1 TB 6.00 20.00 35 4 120 156 15 22 37 104 104 1 W21 x68 26.0 12.5 38.5 24 6 1 T 9.50 16.50 32 4 140 182 15 26 41 105 108 4 W21 x68 26.0 12.5 38.5 24 6 1 T 9.50 16.50 32 4 140 182 15 26 41 109 112 4 W18x86 27.0 12.5 39.5 24 6 1 T 9.50 17.50 30 4 144 188 15 27 42 113 113 1 W21 x68 26.0 12.5 38.5 24 6 1 T 9.50 16.50 32 4 140 182 15 26 41 NOTE: * SEE DETAIL FOR RAKER ANGLE. WHEN STRAND IS SHOWN, TIEBACK SHALL BE DISENGAGED WHEN SHORING IS NO LONGER REQUIRED. PRELOAD & LOCK OFF CORNER STRUTS & RAKERS TO THE VALUES INDICATED IN THE DETAILS. SECTION . 8 Page 198 PRELIMINARY GEOTECHNICAL INVESTIGATION HAMPTON INN AND SUITES, CARLSBAD BOULEVARD AND OAK AVENUE, CARLSBAD, CALIFORNIA Prepared for: DKN Hotels, Inc. 540 Golden Circle, Suite 214 Santa Ana, California 92705 Project No. 600670-001 December 16, 2004 v4ft Leighton Consulting, Inc. A LEIGHTON GROUP COMPANY Page 199 4 Leighton Consulting, Inc. A LEIGHTON GROUP COMPANY December 16, 2004 To: DKN Hotels, Inc. 540 Golden Circle, suite 214 Santa Ana, California 92705 Attention: Mr. Neil Patel Project No. 600670-001 Subject: Preliminary Geotechnical Investigation, Hampton Inn and Suites, Carlsbad Boulevard and Oak Avenue, Carlsbad, California In accordance with your request and authorization, we have prepared a preliminary geotechnical investigation report for the proposed proposed Hampton Inn and Suites located at the corner of Carlsbad Boulevard and Oak Avenue in Carlsbad, California. Based on the results of our study, it is our professional opinion that the development of the site is geotechnically feasible provided the recommendations provided herein are incorporated into the design and construction of the proposed improvements. The accompanying report presents a summary of the existing conditions of the site, the results of our field investigation and laboratory testing, and provides geotechnical conclusions and recommendations relative to the proposed site development. If you have any questions regarding our report, please do not hesitate to contact this office. We appreciate this opportunity to be of service. Respectfully submitted, LEIGHTON CONSULTING, 1/c, I, ILc' William D. Olson, RCE 452% Senior Project Engineer 49 Distribution: (6) Addressee ,9 k*ESSI No. 428) ExPmqt' ) Cg%. Michael R. Stewart, CEG 1349 Vice President/Principal Geologist 3934 Murphy Canyon Road, Suite B205 • San Diego, CA 92123-4425 858.292.8030 • Fax 858.292.0771 • www.leightonoonsulting.com Page 200 600670-001 I v1;]1 01I1tII1 Section FRM 1.0 INTRODUCTION ..........................................................................................................1 1.1 PURPOSE AND SCOPE...................................................................................................1 1.2 SITE LOCATION..........................................................................................................1 1.3 PROPOSED DEVELOPMENT ............................................................................................. 3 2.0 SUBSURFACE EXPLORATION AND LABORATORY TESTING..............................................4 3.0 SUMMARY OF GEOTECHNICAL CONDITIONS ................................................................. 5 3.1 REGIONAL GEOLOGY ....................................................................................................5 3.2 SITE GEOLOGY ...........................................................................................................5 3.2.1 Quaternary Terrace Deposits (Map Symbol Qt) ...................................................5 3.2.2 Tertiary Santiago Formation (Map Symbol TS) ....................................................... 5 3.3 GEOLOGIC STRUCTURE .................................................................................................6 3.4 GROUNDWATER ........................................................................................................6 3.5 ENGINEERING CHARACTERISTICS OF ONSITE SOILS .............................................................6 3.5.1 Expansion Potential ..........................................................................................6 3.5.2 Soil Corrosivity.................................................................................................6 3.5.3 Excavation Characteristics..................................................................................7 4.0 FAULTING AND SEISMICITY ......................................................................................... 8 4.1 FAULTING .................................................................................................................8 4.2 SEISMICITY ...............................................................................................................8 4.2.1 Shallow Ground Rupture .................................................................................10 4.2.2 Liquefaction and Dynamic Settlement...............................................................10 4.2.3 Tsunamis and Seiches.....................................................................................10 5.0 CONCLUSIONS ...........................................................................................................11 6.0 RECOMMENDATIONS.......................................................................................... ........12 6.1 EARTHWORK ............... . ..................................... . ......... . ............................................. 12 6.1.1 Site Preparation..............................................................................................12 6.1.2 Excavations and Oversize Material ...................................................................12 6.1.3 Removal and Recompaction ............................................................................12 6.1.4 Fill Placement and Compaction ........................................................................13 6.2 SHORING OF EXCAVATIONS .........................................................................................13 6.3 SURFACE DRAINAGE AND EROSION................................................................................14 6.4 FOUNDATION AND SLAB CONSIDERATIONS ......................................................................14 6,4.1 Foundations...................................................................................................14 6.4.2 Floor Slabs.....................................................................................................15 6.4.3 Settlement.....................................................................................................15 6.4.4 Lateral Resistance and Retaining Wall Design Pressures ................................ . .... 15 4 Leighton Page 201 600670-001 TABLE OF CONTENTS (Continued) Section pm 6.5 FLEXIBLE PAVEMENT DESIGN ....................................................17 6.6 CONSTRUCTION OBSERVATION AND PLAN REVIEWS ...........................................................18 7.0 LIMITATIONS............................................................................................................19 TABLES TABLE 1 - SEISMIC PARAMETERS FOR ACTIVE FAULTS - PAGE 9 TABLE 2 - STATIC EQUIVALENT FLUID WEIGHT - PAGE 16 TABLE 3 - PRELIMINARY PAVEMENT SECTIONS - PAGE 17 FIGURES FIGURE 1 - SITE LOCATION - PAGE 2 FIGURE 2 - GEOTECHNICAL EXPLORATION MAP - REAR OF TEXT APPENDICES APPENDIX A - REFERENCES APPENDIX B - BORING LOGS APPENDIX C - SUMMARY OF LABORATORY TESTING APPENDIX D - SEISMIC ANALYSIS APPENDIX E - GENERAL EARThWORK AND GRADING SPECIFICATIONS FOR ROUGH GRADING Leighton Page 202 600670-001 E!.Pii1liu'1!1'I'I i['JJ 1.1 Purpose and Scone This report presents the results of our preliminary geotechnical investigation for the proposed Hampton Inn and Suites located at the corner of Carlsbad Boulevard and Oak Avenue in Carlsbad, California (Figure 1). The purpose of our investigation was to evaluate the geotechnical conditions at the site and provide conclusions and recommendations relative to the proposed development. Our scope of services included the following: Review of published and unpublished geotechnical reports, maps and aerial photographs (Appendix A). Site reconnaissance. Coordination with Underground Services Alert (USA) to locate potential underground utilities on site. Obtaining a County of San Diego, Department of Health, Boring Permit. Excavation, logging and sampling of three exploratory borings. The boring logs are presented in Appendix B. Laboratory testing of representative soil samples obtained from the subsurface exploration program. Results of these tests are presented in Appendix C. Preparation of this report presenting our findings, conclusions, and geotechnical recommendations with respect to the proposed design, site grading and general construction considerations. 1.2 Site Location The proposed Hampton Inn and Suites is located in a previously developed area of Carlsbad, California. Currently, the site is occupied by a restaurant building, the Surf Motel (i.e., consisting of a parking area and four to five two-story buildings), and a residential property (i.e., a one-story single family home). The site is bound by an existing one-story retail building to the north, Carlsbad Boulevard to the west, Lincoln Street to the east, and an apartment complex to the south. The existing surface elevation of the site ranges from an estimated 48 feet above mean sea level (msl) at the southeast corner of the site to approximately 52 feet msl at the northwest corner of the Site. 1- 4 Leighton Page 203 600670-001 3.0 SUMMARY OF GEOTECHNICAL CONDITIONS 3.1 Regional Geology The site is located within the coastal subprovince of the Peninsular Ranges Geomorphic Province, near the western edge of the southern California batholith. The topography at the edge of the batholith changes from the rugged landforms developed on the batholith to the more subdued landforms, which typify the softer sedimentary formations of the coastal plain. Specifically, the site is underlain by Quaternary and Tertiary-aged sedimentary formation. 32 Site Geoloav Based on subsurface exploration, aerial photographic analysis, and review of pertinent geologic literature and maps, the geologic unit underlying the site consists of Quaternary- aged Terrace Deposits which overlies the Tertiary-aged Santiago Formation. The approximate areal distribution of this unit is depicted on the Geotechnical Exploration Map (Figure 2). A brief description of the geologic unit encountered on the site is presented below. 3.2.1 Ouaternary Terrace Deposits (Map Symbol Ot) Quaternary-aged Terrace Deposits were encountered at shallow depths during our investigation. As encountered, these soils were observed to generally consist of orange-brown, damp to slightly moist, medium dense to very dense silty fine to medium grained sands. Expansion testing indicated a very low to low expansion potential for these materials. This unit was massive and abundant iron oxide staining was visible throughout the exposures. These deposits are considered suitable for support of fills and anticipated loads. 3.2.2 Tertiary-aged Santiago Formation (Map Symbol Is) The Tertiary-aged Santiago Formation underlies the entire site at depth. As encountered, the Santigo Formation generally consists of light brown to light gray silty sandstones. These materials are generally very dense although localized friable zones may be present. 'I'hese materials will likely be encountered in the basement excavation. 4 Leighton Page 204 600670-001 3.3 Geologic Structure Based on the results of our current investigation, literature review, and our professional experience on nearby sites, the Terrace Deposits are generally massive with no apparent bedding. 3.4 Ground Water Ground water was encountered in all borings during our investigation of the site. Ground water encountered at depths ranging from 33 to 38 feet bgs (i.e., an approximate elevation of 14 feet msl). Ground water is not expected to impact the proposed development considering the estimated depth of the proposed development (i.e., assumed excavation elevation of 35 feet msl). However, seepage conditions may locally be encountered after periods of heavy rainfall or irrigation. These conditions can be treated on an individual basis if they occur. 3.5 Engineering Characteristics of Onsite Soils Based on the results of our current geotechnicat investigation, laboratory testing of representative onsite soils, and our professional experience on adjacent sites with similar soils, the engineering characteristics of the onsite soils are discussed below. 3.5.1 Expansion Potential The onsite Terrace Deposits are anticipated to be in the very low to low expansion range. Geotechnical observations and/or laboratory testing of the excavation materials are recommended to determine the actual expansion potential of soils on the site. 3.5.2 Soil Corrosivity The National Association of Corrosion Engineers (NACE) defines corrosion as "a deterioration of a substance or its properties because of a reaction with its environment". From a geotechnical viewpoint, the "environment" is the prevailing foundation soils and the "substances" are reinforced concrete foundations or various types of metallic buried elements such as piles, pipes, etc. that are in contact with or within close vicinity of the soil, in general soil environments that are detrimental to concrete have high concentrations of soluble sulfates and/or pH values of less than 5.5. Table I9A-4 of the 1997 UBC provides specific guidelines -6 4C - Leighton Page 205 600670-001 6.0 RECOMMENDATIONS 6.1 Earthwork We anticipate that earthwork at the site will consist of site preparation, excavation, and backfill. We recommend that earthwork on the site be performed in accordance with the following recommendations and the General Earthwork and Grading Specifications for Rough Grading included in Appendix E. In case of conflict, the following recommendations shall supersede those in Appendix E. 6.1.1 Site Prenaration Prior to grading, all areas to receive structural fill or engineered structures should be cleared of surface and subsurface obstructions, including any existing debris and undocumented or loose fill soils, and stripped of vegetation. Removed vegetation and debris should be properly disposed off site. All areas to receive fill and/or other surface improvements should be scarified to a minimum depth of 6 inches, brought to near-optimum moisture conditions, and recompacted to at least 90 percent relative compaction (based on American Standard of 'Testing and Materials [ASTM] Test Method 1)1557). 6.1.2 Excavations and Oversize Material Excavations of the onsite materials may generally be accomplished with conventional heavy-duty earthwork equipment. Due to the high-density characteristics of the onsite materials, temporary shallow excavations less than 5 feet in depth with vertical sides should remain stable for the period required to construct the utility, provided the trenches are free of adverse geologic conditions and are not surcharged by static building loads or traffic loads. It should be noted that artificial fill soils, if encountered, are typically less dense than the Terrace Deposits and may cave during excavation. In accordance with OSHA requirements, excavations deeper than 5 feet should be laid back or shored in accordance with Section 6.2, if workers are to enter such excavations. 6.1.3 Removal and Recompaction Undocumented fill soils, if encountered beneath any proposed improvements and not removed by the planned grading, should be excavated down to competent formational material and replaced with compacted liii. The thickness of these -12 44 - Leighton Page 206 600670-001 unsuitable soils may vary across the site and may be locally deeper in certain areas. Where shoring is planned, the design height should consider the planned removal depths, if encountered. 6.1.4 Fill Placement and Compaction The onsite soils are generally suitable for use as compacted fill provided they are free of organic material, debris, and rock fragments larger than 8 inches in maximum dimension. The onsite soils typically possesses a moisture content below optimum and may require moisture conditioning prior to reuse as compacted fill. All fill, soils should be brought to above-optimum moisture conditions and compacted in uniform lifts to at least 90 percent relative compaction based on laboratory standard ASTM Test Method D1557-91. The optimum lift thickness required to produce a uniformly compacted fill will depend on the type and size of compaction equipment used. In general, fill should be placed in lifts not exceeding 8 inches in thickness. Placement and compaction of fill should be performed in general accordance with the current City of Carlsbad grading ordinances, sound construction practice, and the General Earthwork and Grading Specifications for Rough Grading presented in Appendix E. 6.2 Shorina of Excavations Based on our present understanding of the project, excavations on the order of 10 to 20 feet deep are anticipated. Accordingly, and because of the limited space, temporary shoring of vertical excavations will be required. We recommend that excavations be retained either by a cantilever or braced shoring system with cast-in-place soldier piles and sheeting or wood lagging, as needed. It should be noted that a tie-back restrained pile system may encounter a caving condition and may not be appropriate for this site. Based on our experience with similar projects, if lateral movement of the shoring system on the order of 1 to 2 inches cannot be tolerated, we recommend the utilization of a braced (i.e., rakers) pile system. Shoring of excavations of this size is typically performed by specialty contractors with knowledge of the San Diego County area soil conditions. Lateral earth pressures for design of shoring are presented below: 13- Leighton Page 207 600670-001 Cantilever Shoring System Active pressure = 35H(psf), triangular distribution Passive Pressure = 350h (psf) H = wall height (active case) or h = embedment (passive case) Multi-Braced Shoring System Active Pressure = 25H(psf), rectangular distribution Passive Pressure = 350h (psi) H = wall height (active case) or h = embedment (passive case) General All pressures are based on dewatered conditions, with the water table at least 4 feet below the base of the excavation. All shoring systems should consider additional loading of adjacent surcharging loads. Settlement monitoring of adjacent building, sidewalks and adjacent settlement sensitive structures should be considered to evaluate the performance of the shoring. Shoring of the excavation is the responsibility of the contractor. Extreme caution should be used to minimize damage to existing pavement, utilities, and/or structures caused by settlement or reduction of lateral support. 6.3 Surface Drainage and Erosion Surface drainage should be controlled at all times. The proposed structure should have an appropriate drainage system to collect roof runoff. Positive surface drainage should be provided to direct surface water away from the structure toward the street or suitable drainage facilities. Planters should be designed with provisions for drainage to the storm drain system. Ponding of water should be avoided adjacent to the structure. 6.4 Foundation and Slab Considerations Foundations and slabs should be designed in accordance with structural considerations and the following recommendations. These recommendations assume that the soils encountered within 5 feet of pad grade have a very low to low potential for expansion. If highly expansive soils are encountered, additional foundation design may be necessary. 6.4.1 Foundations The proposed structures may be supported by conventional continuous or isolated spread footings. Footings should extend a minimum of 24 inches beneath the lowest adjacent soil grade. At these depths, footings may be ~n~ -14- Leighton -. . Page 208 GEOTECHNICAL BORING LOG KEY Date Sheet 1 of I Project - - KEY TO BORING LOG GRAPHICS Project No. - Drilling Co. Type of Rig .._ Hole Diameter Drive Weight Drop Elevation Top of Elevation Location DESCRIPTION 0 9x ow. 20 4 Logged By 0 - Sampled By - sphalbc Concrete - —= Portland cement concrete inorganic clay of low to medium plasticity; gravelly clay; sw* clay. .- clay. lean c CR•5 - .......- Tfl - - ML Inorganic silt; clayey silt with IowpIasticity - 14W inorganic silt; diatomaceous, fine sandy or silty soils; elastic silt - Clay silt to silty clay MtCJ 5S - - _• - GW Well-graded gravel; gravel-sand mixture, little or no tines rlgraded gravel; gravel-sand mixture, ittie or no fines - S... - S Cay I; gravel-sand-clay mixture __•SS_ ( Wcll-gradedsandjveIlysHttleornofines -- - ? Poorly graded sand; gravelly sand, Iittleornb fines - Siltysand;poorlygradcdsand-siltznixture M Bedrock - Ground water encountered at time of drilling B- Bulk Sample 20 C-I Core Sample c-i Grab Sample R- 1 Modified California Sampler (3" O.D., 2.5 ID.) - Si-1 Shelby Tube Sampler (3' O.D.) - SJ Standard Penetration Test SPT (Sampler (2" O.D., 1.4" l.D.) 25- 30 SAMPLE TYPES: TYPE OF TESTS S SPLIT SPOON G GRAS SAMPLE DS DIRECT SHEAR SA SIEVE ANALYSIS A RING SAMPLE SH SHELBY TUBE MD MAXIMUM DENSITY AT ATTERBURG UNITS B BULK SAMPLE ON CONSOLIDATION El EXPANSION INDEX T TUBE SAMPLE CR CORROSION RV R-VALUE LEIGHTON CONSULTING, INC. Page 209 GEOTECHNICAL BORING LOG B-I Date 11-23-04 Sheet 1 of 2 Project DKN-Hampton Inn Project No. 600670-001 Drilling Co. West Hazmat Type of Rig CME-75 Hole Diameter - 8" Drive Weight 140 pound hammer Drop 30" Elevation lop of Hole 52' Location - See Map W • • ci COLL eu.. c- a a 1A 20 Q• LJ se Logged DESCRIPTION By _____-.GJM Sampled By GJM t .0 I- - - - RV iK7fine to medium SAND: Orange-brown to red-brown, damp 50 - toxnoist,xnediumdensetodense 5- 45 10 @19: Dense, little recovery, installed catcher atl5' R-1 57 40 nARY SAfl1AGOF)RMATON(T -. - - - - R-2 68 SP @ IS': Fine to medium SAND to slightly silly SAND: Light brown to light orange-brown, city, damp, dense; fraible, (sampled with - catcher) 20— @ 29: (Sampled with catcher) .. - R-3 64 30- 25 - - -- -. R-4 68 @25: Light gray to light gray-brown, (sampled with catcher) 25 30 - -.••----A. ••_____ ...._____ ______ _____ SAMPLE TYPES: TYPE OF TESTS: S SPLIT SPOON G GRAB SAMPLE OS DIRECT SHEAR SA SIEVE ANALYSIS R RING SAMPLE C CORE SAMPLE MD MAXIMUM DENSITY RV R-VALUE a BULK SAMPLE CN CONSOLIDATION El EXPANSION INDEX T TUBE SAMPLE - CR CORROSION P1 ATIERBERG LIMIT LEIGHTON CONSULTING, INC. Page 210 GEOTECHNICAL BORING LOG B-I Date 11-23-04 Sheet 2 of 2 Project DKN-Hampton Inn Project No. 600670-001 Drilling Co. - West Hazmat Type of Rig CME-75 Hole Diameter 8" Drive Weight 140pound hammer Drop 30" Elevation Top of Hole 52' Location SeeMap .2 DESCRIPTION 3 . 0 • a o o' C- .2,4 I— lop 0 CL 25 i Logged By GJM Sampled By GJM I— 30— - s _ ytolightgray.browi,drytoJamp, 3O':Fm SAND: U lea dense; friable • R-5 72 witn (samp catcher) 20- 35-- Micas (sampled with catcher) - . R-iS 73 15 - •. 40— R7 66 SW @40': Fine tDcoarse SAND: Light gray, wet to saturated, dense; friable (sampled with catcher) 10 TotalDepth=41.5Fcct - Ground tcr encountered at 38 feet at time of drilling Backfihled with bentonite grout on 11/23/04 45- 5- 0- 55--- .5. 60J f I SAMPLE TYPES: S SPLIT SPOON R RING SAMPLE B BULK SAMPLE G GRAB SAMPLE C CORE SAMPLE TYPE OF TESTS: OS DIRECT SHEAR SA SIEVE ANALYSIS MD MAXIMUM DENSITY RV R-VALUE CM CONSOLIDATION El EXPANSION INDEX T TUBE SAMPLE CR CORROSION P1 ATTERBERG LIMIT LEIGHTON CONSULTING, INC. Page 211 GEOTECHNICAL BORING LOG B-2 Date 11.23-04 - Sheet - I of 2 Project DKN-Hampton Inn Project No. 600670-001 Drilling Co. West Hazmat Type of Rig CM-75 Hole Diameter -. B" Drive Weight 140poundhammer Drop 30" Elevation Top of Hole 52' Location See Map UJI C' I!OU. OIL I . to 1 . L 2. c i 13d _L_ DESCRIPTION Logged By GJM Sampled By GJM I— ..::: SM OUAARY rs1 U.5" Silt)P fine to medium SAND: 0rongi brown to red-brown, damp dense to moist, medium - 5— B-I 4DDSCF l5-lO 45- 10- @10: Fine to medium SAND slightly silty: Orange-brown to R-1 49 6.0 SP damp red-brown, (sampled with catche) 40' R-2 64 6.4 SP @ 151: Fmc to medium SAND sliht1y silty: Light oiango-brown to light brown, dense (sampled with catcher) 35- 20— .• @20': Light brown, very dense (sampled with catcher) - . ••.' R-3 79 4.4 30' 25— •, @25: (Sampled with catcher) R-4 53 3.6 25 .'..'._ '—'-- SAMPLE TYPES: TYPE OF TESTS; S SPLIT SPOON G GRAB SAMPLE DS DIRECT SHEAR SA SIEVE ANALYSIS R RING SAMPLE C CORE SAMPLE MD MAXIMUM DENSITY RV R.VALUE B BULK SAMPLE CN CONSOLIDATION El EXPANSION INDEX T TUBE SAMPLE CR CORROSION P1 ATTERBERG LIMIT LEIGHTON CONSULTING, INC. Page 212 GEOTECHNICAL BORING LOG B-2 Date 11-23-04 Sheet 2 of 2 Project DKN-Hampton Inn - Project No. 800870-001 Drilling Co. West Hazmat Type of Rig -CME.75 Hole Diameter 8" Drive Weight 140 pound hammer Drop 30" Elevation Top of Hole 52' Location See Map - .44 OIL " T 0 CL 2W DESCRIPTION Logged By GJM Sampled By GJM I— _____ - - - @3(Y: Fine to medium SAND slightly silty Light brown, damp my - R-5 86 SP dense; friable (sampled with catcher) 20 B-2 J. :.. • @ 35': Light gray, damp to moist, micas (sampled with catcher) - R.6 67 15 - 40— ..-.--: R-7 10016' SW 440': Fine to coarse SAND: Light gray, saturated, very dense; friable - pd with catdr)_______ Total Depth = 40.5 Feet 10 - Ground water encountered at 38 feel at time of drilling acktiilcd with bentonite grout on 11/23/04 45- 5 - 50- 0 - 55- -5 - 60---- ___ -••--••--••- ___-•-•_____ -• - SAMPLE TYPES: TYPE OF TESTS: S SPLIT SPOON C GRAB SAMPLE DS DIRECT SEAR SA SIEVE ANALYSIS R RING SAMPLE C CORE SAMPLE MD MAXIMUM DENSITY RV R-VALUE B BULK SAMPLE CN CONSOLIDATION El EXPANSION INDEX T TUBE SAMPLE CR CORROSION P1 ATTERBERG LIMIT LEIGHTON CONSULTING, INC. Page 213 GEOTECHNICAL BORING LOG B-3 Date 11-23-04 Sheet I of 2 Project DKN-Hampton inn Project No. 600670-001 Drilling Co. West Hazmat Type of Rig CME-75 Hole Diameter 8" Drive Weight 140 pound hammer Drop 30" Eievation Top of Hole -. 50' Location See Map U.a . .w d • 'a o °'- CL .- We a . man, g, jai DESCRIPTION Logged By GJMW Sampled By GJM a ° ° -...- - ;;- -10 RF2 5nr -----------El silty fine to medium SAb: Orange-brown, damp to moisl, - : Y medium dense to dense .: 40 10 @ 101: (Sampled with catcher) k-I 36 35 15- -. . R.2 62 si @ Is':_Fine to medium SAND sllghily silty: Light gray to light damp, friable gray-brown, dense; (sampled with catcher) 30 20— @20': Light orange-brown (sampled with catcher) - R-3 65 25 25— .. @25': No recovery, very dense; friable • . . 78 _.[.__H............................ 2030—_.__ SAMPLE TYPES: TYPE OF TESTS: S SPLIT SPOON G GRAB SAMPLE OS DIRECT SHEAR SA SIEVE ANALYSIS R RING SAMPLE C CORE SAMPLE MD MAXIMUM DENSITY RV R.VALUE B BULK SAMPLE CM CONSOLIDATION El EXPANSION INDEX T TUBE SAMPLE CR CORROSION P1 ATTERBERG LIMIT LhK3MTON CONSULTING, INC. Page 214 GEOTECHNICAL BORING LOG B-3 Date 11-23-04 Sheet 2 of 2 Project DKN-Hampton Inn Project No. 600670-001 Drilling Co. __ West Hazmat Type of Rig CME-75 Hole Diameter 8" Drive Weight 140 pound hammer - Drop 30" Elevation Top of Hole 50' Location See Map DESCRIPTION .2 g. .o J . W u LL OIL in CL U. Logged By GJM - Sampled By GJM 1- 20 30— -- - @30': Fine to medium SAND sliØitly silty: Light gray, damp tomoist, R4 100/6" SP very dense; friable (sampled with catcher) ' @35': Fine tocoarse SAND: Light gray, saturated, very dense; 'P ... R-5 SI SW (sampled with catcher); minor gravel to 3/4" - .. tO 40—,-..-.R6 65 @40: Micas (samp!cd with catcher) TotalDepth=41.5Feet - - Ground water encountered at 33 feet at time of drilling l3adcfiilcd with bentonite grout on 11123/04 5 45--- 0 50- -5 55--- -101 60— ---- — —• - ... - — -- -•--•---- .----.-.___ SAMPLE TYPES: TYPE OF TESTS: S SPLIT SPOON a GRAM SAMPLE 05 DIRECT SHEAR SA SIEVE ANALYSIS R RING SAMPLE C CORE SAMPLE MD MAXIMUM DENSITY RV R.VALUE. B BULK SAMPLE CN CONSOLIDATION El EXPANSION INDEX T TUBE SAMPLE CR CORROSION P1 ATTERBERG LIMIT LEIGHTON CONSULTING, INC. Page 215 5000 4000 a 3000 a . 2000 to 1000 - 0 --- 0 1000 Boring Location Sample Depth (feet) Sample Description 2000 3000 Vertical Stress (psf) B-2 Remolded 0 - 10' Silty SAND (SM) 4000 5000 Deformation Rate 0.05 In/mm Average Strength Parameters Friction Angle, Vplak (deg) 34 tS0.3" Friction Angle, (deg) 32 Cohesion, C'peak (psf) 300 -- Cohesion, c'003. (psf) 250 D Project No. 600670-001 DIRECT SHEAR SUMMARY Project Name DKN hampton Inn